Science.gov

Sample records for endothelium-dependent relaxation responses

  1. Production of endothelium-dependent relaxation responses by saphenous vein grafts in the canine arterial circulation.

    PubMed

    el Khatib, H; Lupinetti, F M; Sanofsky, S J; Behrendt, D M

    1991-09-01

    To determine if venous endothelium can acquire the ability to elicit endothelium-dependent relaxation responses, five dogs underwent femoral artery bypass with autogenous saphenous vein. The veins were harvested 15 to 17 months later. Endothelium-dependent relaxation was determined by measuring tension of deendothelialized coronary arteries mounted on a tensiometer and superfused with the effluent of the vein grafts. These grafts were perfused with acetylcholine and calcium ionophore A23187, which cause case vascular smooth muscle relaxation by means of endothelium-dependent relaxing factor production. Control arteries and veins were obtained from other dogs for comparison. In response to acetylcholine from 10(-9) to 10(-4) mol/L, the final cumulative relaxation produced in the detector coronary artery (mean +/- SD) was 64.2% +/- 25.7% by the control arteries, 14.2% +/- 5.5% by the vein bypass graft, and 5.3% +/- 5.6% by the control veins. In response to A23187 from 10(-8) to 10(-4) mol/L, the final cumulative relaxation was 66.2% +/- 19.0% by the control arteries, 30.6% +/- 8.9% by the vein bypass grafts, and 5.3% +/- 5.6% by the control veins. The differences were significant between the vein bypass grafts and the control arteries (p less than 0.04 for acetylcholine; p less than 0.04 for A23187) and the control veins (p less than 0.03 for acetylcholine; p less than 0.02 for A23187). Perfusion of saphenous veins used as chronic arterial bypass grafts with either acetylcholine or A23187 produced detector vessel relaxation, consistent with endothelium-dependent relaxing factor production. The magnitude of the relaxation response did not approach that from perfusion of control arteries. PMID:1887376

  2. Marginal copper deficiency impairs endothelium-dependent relaxation responses across two generations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generational effects of marginal copper (Cu) deficiency on vascular function have not been characterized.In this study, the vascular consequences of marginal Cu deficiency were determined by relaxation responses in mesenteric arteries of dams and two generations of offspring. Pups from dams (fir...

  3. Ultrasonic Measurement of Change in Elasticity due to Endothelium Dependent Relaxation Response by Accurate Detection of Artery-Wall Boundary

    NASA Astrophysics Data System (ADS)

    Kaneko, Takuya; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-07-01

    Ross hypothesized that an endothelial dysfunction is considered to be an initial step in atherosclerosis. Endothelial cells, which release nitric oxide (NO) in response to shear stress from blood flow, have a function of relaxing smooth muscle in the media of the arterial wall. For the assessment of the endothelial function, there is a conventional method in which the change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) is measured with ultrasound. However, despite the fact that the collagen-rich hard adventitia does not respond to NO, the conventional method measures the change in diameter depending on the mechanical property of the entire wall including the adventitia. Therefore, we developed a method of measuring the change in the thickness and the elasticity of the brachial artery during a cardiac cycle using the phased tracking method for the evaluation of the mechanical property of only the intima-media region. In this study, the initial positions of echoes from the lumen-intima and media-adventitia boundaries are determined using complex template matching to accurately estimate the minute change in the thickness and the elasticity of the brachial and radial arteries. The ambiguity in the determination of such boundaries was eliminated using complex template matching, and the change in elasticity measured by the proposed method was larger than the change in inner diameter obtained by the conventional method.

  4. Human obesity and endothelium-dependent responsiveness

    PubMed Central

    Campia, Umberto; Tesauro, Manfredi; Cardillo, Carmine

    2012-01-01

    Obesity is an ongoing worldwide epidemic. Besides being a medical condition in itself, obesity dramatically increases the risk of development of metabolic and cardiovascular disease. This risk appears to stem from multiple abnormalities in adipose tissue function leading to a chronic inflammatory state and to dysregulation of the endocrine and paracrine actions of adipocyte-derived factors. These, in turn, disrupt vascular homeostasis by causing an imbalance between the NO pathway and the endothelin 1 system, with impaired insulin-stimulated endothelium-dependent vasodilation. Importantly, emerging evidence suggests that the vascular dysfunction of obesity is not just limited to the endothelium, but also involves the other layers of the vessel wall. In particular, obesity-related changes in medial smooth muscle cells seem to disrupt the physiological facilitatory action of insulin on the responsiveness to vasodilator stimuli, whereas the adventitia and perivascular fat appear to be a source of pro-inflammatory and vasoactive factors that may contribute to endothelial and smooth muscle cell dysfunction, and to the pathogenesis of vascular disease. While obesity-induced vascular dysfunction appears to be reversible, at least in part, with weight control strategies, these have not proved sufficient to prevent the metabolic and cardiovascular complication of obesity on a large scale. While a number of currently available drugs have shown potentially beneficial vascular effects in patients with obesity and the metabolic syndrome, elucidation of the pathophysiological mechanisms underlying vascular damage in obese patients is necessary to identify additional pharmacologic targets to prevent the cardiovascular complications of obesity, and their human and economic costs. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21895631

  5. L-Carnitine supplementation impairs endothelium-dependent relaxation in mesenteric arteries from rats.

    PubMed

    Valgas da Silva, Carmem P; Rojas-Moscoso, Julio A; Antunes, Edson; Zanesco, Angelina; Priviero, Fernanda B M

    2014-07-01

    L-Carnitine (L-Car) is taken as fat burner. The risks of L-Car supplementation for the cardiovascular system are unclear. We evaluated the relaxing responses of the mesenteric and aorta rings from rats after four weeks of L-Car supplementation and/or physical training. Concentration response curves to acetylcholine (ACh) and sodium nitroprusside (SNP), as well as cyclic GMP levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) were evaluated. Physical training decreased body weight gain that was potentiated by L-Car. In mesenteric rings, L-Car impaired endothelium-dependent relaxation whereas endothelium independent relaxation was increased. In aorta, exercise improved endothelium-dependent relaxation; however, it was partially inhibited by L-Car. SNP-induced relaxation was similar in aorta of all groups. Basal cGMP were increased in aorta of exercised rats. SOD activity and MDA levels were unaltered. In conclusion, L-Car and physical exercise promotes body weight loss; however, it impairs endothelium-dependent vaso-relaxation possibly involving alterations in muscarinic receptors/eNOS/NO signalling pathway in mesenteric artery.

  6. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats.

    PubMed Central

    Heygate, K. M.; Lawrence, I. G.; Bennett, M. A.; Thurston, H.

    1995-01-01

    1. Previous studies have shown that endothelium-dependent relaxation in the aorta of spontaneously diabetic bio bred rats (BB) is impaired. 2. We have investigated noradrenaline (NA) contractility, endothelium-dependent acetylcholine (ACh) and bradykinin (BK) relaxation, and endothelium-independent sodium nitroprusside (SNP) relaxation in mesenteric resistance arteries of recent onset BB rats and established insulin treated BB rats, compared to their age-matched non diabetic controls. 3. There was no significant difference in the maximum contractile response or sensitivity to noradrenaline in either of the diabetic groups compared to their age-matched controls. 4. Incubation with the nitric oxide synthetase inhibitor NG-nitro-L-arginine (L-NOARG) resulted in a significant increase in maximum contractile response to noradrenaline in the recent onset age-matched control group (P < 0.05). Analysis of the whole dose-response curve (using ANOVA for repeated measures with paired t test) showed a significant left-ward shift following the addition of L-NOARG (P < 0.001). A similar but less marked shift (P < 0.01) was evident in vessels from recent onset diabetics. An overall shift in both sensitivity and maximum response was also evident in the age-matched non diabetic controls of the insulin-treated group (P < 0.05). However, by contrast, there was no significant change in sensitivity in the insulin-treated diabetic rats. 5. ACh-induced endothelium-dependent relaxation was significantly impaired in the recent onset diabetic rats compared to their age-matched controls (47 +/- 11% versus 92 +/- 2%, P < 0.05, n = 6), and in the insulin treated diabetic rats (34 +/- 5% versus 75 +/- 6%, P < 0.05, n = 6). The relaxation responses to BK also were significantly impaired in the diabetic rats compared to their age-matched controls (recent onset: 20 +/- 3% versus 72 +/- 7%, P < 0.05, n = 6; insulin treated: 12 +/- 9% versus 68 +/- 7%, P < 0.05, n = 7). 6. Incubation with either the

  7. Effects of reactive oxygen species and neutrophils on endothelium-dependent relaxation of rat thoracic aorta

    PubMed Central

    Bauer, Viktor; Sotníková, Ružena; Drábiková, Katarína

    2011-01-01

    Reactive oxygen species (ROS) are produced in different metabolic processes including the respiratory burst of neutrophils accompanying local inflammation. The aim of this study was to analyze the effects of N-formyl-methionyl-leucyl-phenylalanine (FMLP)-activated neutrophils, isolated from the guinea pig peritoneal cavity, on isolated rings of a large (conduit) artery, the rat thoracic aorta. FMLP-activated neutrophils enhanced the basal tension increased by α1-adrenergic stimulation. In phenylephrine-precontracted aortae, they elicited marked contraction, while in noradrenaline-precontracted rat aortal rings they caused a biphasic response (contraction-relaxation). To eliminate interaction of activated neutrophils with catecholamines, in the subsequent experiments the basal tension was increased by KCl-induced depolarization. Activated neutrophils evoked a low-amplitude biphasic response (relaxation-contraction) on the KCl-induced contraction. Not only the acetylcholine- and A23187-induced relaxations but also the catalase sensitive hydrogen peroxide (H2O2) elicited contractions were endothelium-dependent. Even though the acetylcholine-induced relaxation was changed by activated neutrophils and by the ROS studied, their effects differed significantly, yet none of them did eliminate fully the endothelium-dependent acetylcholine relaxation. The effect of activated neutrophils resembled the effect of superoxide anion radical (O2 •–) produced by xanthine/xanthine oxidase (X/XO) and differed from the inhibitory effects of Fe2SO4/H2O2-produced hydroxyl radical (•OH) and H2O2. Thus O2 •– produced either by activated neutrophils or X/XO affected much less the endothelium-dependent acetylcholine-activated relaxation mechanisms than did •OH and H2O2. In the large (conduit) artery, the effects of activated neutrophils and various ROS (O2 •–, •OH and H2O2) seem to be more dependent on muscle tension than on endothelial mechanisms. PMID:22319253

  8. The effects of chronic ethanol treatment on endothelium-dependent responses in rat thoracic aorta.

    PubMed

    Williams, S P; Adams, R D; Mustafa, S J

    1990-01-01

    The purpose of this study was to investigate the effects of chronic ethanol consumption on blood pressure and vascular responses, specifically, the possible alterations in endothelium-dependent relaxation which are associated with ethanol-induced hypertension in the rat model. Male rats received ethanol in drinking water for 13 weeks. Systolic pressure was recorded weekly. Following treatment, segments of thoracic aorta with and without intact endothelium were used to generate relaxation-response curves to the endothelium-dependent agents, acetylcholine, ATP and bradykinin, as well as the endothelium-independent agents, adenosine and sodium nitroprusside. Mean systolic pressures at the end of the treatment period were: 127.8 +/- 1.2 and 151.1 +/- 1.3 mmHg for controls and ethanol-treated rats, respectively. Ethanol treatment did not affect the relaxation produced by either acetylcholine, ATP or sodium nitroprusside in aorta with or without endothelium. In contrast, ring segments with intact endothelium from ethanol-treated rats exhibited augmented relaxation in response to both adenosine and bradykinin compared to controls. Removal of the endothelium abolished the relaxation produced by bradykinin in both groups. Although removal of the endothelium had no effect on the relaxation produced by adenosine in the control group, it attenuated the adenosine-induced relaxation in the ethanol-treated group back to control levels. These data suggest that chronic ingestion of ethanol causes elevated blood pressure and augments the endothelium-dependent relaxation to bradykinin. These findings also suggest that chronic ethanol treatment can cause the appearance of an endothelium-dependent component in the relaxation produced by adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Histamine H1-receptors mediate endothelium-dependent relaxation of rat isolated pulmonary arteries.

    PubMed

    Szarek, J L; Bailly, D A; Stewart, N L; Gruetter, C A

    1992-01-01

    Histamine has been reported to cause endothelium-dependent relaxation of vascular smooth muscle and vasodilation. This study was undertaken to examine the inhibitory effects of histamine on cylindrical segments of extrapulmonary arteries isolated from male Sprague Dawley rats. In arterial segments precontracted with phenylephrine (10 microM), histamine (0.1-100 microM) elicited concentration-dependent relaxation responses. Removal of the endothelium or pretreatment with methylene blue (10 microM) abolished relaxation responses to low concentrations of histamine and markedly inhibited those caused by histamine at concentrations greater than 1 microM. Incubation of endothelium-intact arterial segments with pyrilamine (1 microM) caused a significant rightward shift of the histamine concentration-response curves. Treatment of the segments with cimetidine (100 microM) or indomethacin (10 microM) only minimally antagonized histamine-induced relaxation in arteries with endothelium. Residual relaxation responses observed in arteries stripped of endothelium were unaffected by pretreatment with cimetidine, indomethacin, or pyrilamine. The results suggest that the inhibitory effect of histamine in rat pulmonary arteries is mediated predominantly by activation of H1-receptors on the endothelium and the subsequent release of endothelium-derived relaxing factor(s).

  10. Endothelium-dependent and -independent relaxation in the forelimb and hindlimb vasculatures of swine.

    PubMed

    Newcomer, Sean C; Taylor, Jessica C; Bowles, Douglas K; Laughlin, M Harold

    2007-10-01

    Limb differences in endothelial function exist between arm and leg vasculatures of humans. The current investigation tested the hypothesis that forelimb and hindlimb vasorelaxation are similar in the absence of limb differences in blood pressure. Conduit arteries (brachials/femorals) and second order arterioles were harvested from 22 miniature Yucatan swine. In vitro assessment of vasorelaxation was determined by administering increasing doses of bradykinin (BK), acetylcholine (ACh), and sodium nitroprusside (SNP). The role of the nitric oxide synthase (NOS) and cyclooxygenase (COX) pathways was assessed in conduit arteries but not resistance arterioles through L-NAME (300 microM) and INDO (5 microM) incubation, respectively. The relaxation responses to BK and ACh were similar in brachial and femoral arteries. SNP relaxation response was greater in the brachial compared to femoral arteries. There were also no significant differences in the relaxation responses of second order arterioles of the forelimb and hindlimb to BK, ACh, and SNP. Incubation of conduit arterial rings in L-NAME produced a greater reduction in BK and ACh relaxation in the brachial (approximately 25%) compared to femoral (approximately 13%) arterial rings. The current results of this investigation suggest that the forelimb and hindlimb vasculatures of swine have relatively similar vasorelaxation responses to both endothelium-dependent and -independent vasodilators.

  11. Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery.

    PubMed

    Cohen, R A; Plane, F; Najibi, S; Huk, I; Malinski, T; Garland, C J

    1997-04-15

    It is controversial whether the endothelial cell release of nitric oxide (NO) or a different factor(s) accounts for endothelium-dependent hyperpolarization, because in many arteries endothelium-dependent relaxation and hyperpolarization resists inhibitors of NO synthase. The contribution of NO to acetylcholine-induced endothelium-dependent hyperpolarization and relaxation of the rabbit carotid artery was determined by measuring NO with electrochemical and chemiluminescence techniques. In the presence of phenylephrine to depolarize and contract the smooth muscle cells, acetylcholine caused concentration-dependent hyperpolarization and relaxation which were closely correlated to the release of NO. N(omega)-nitro-L-arginine methyl ester (30 microM) partially reduced the release of NO and caused a similar reduction in smooth muscle cell relaxation and hyperpolarization. To determine if the residual responses were mediated by another endothelium-derived mediator or NO released despite treatment with N(omega)-nitro-L-arginine methyl ester, N(omega)-nitro-L-arginine (300 microM) was added. The combined inhibitors further reduced, but did not eliminate, NO release, smooth muscle relaxation, and hyperpolarization. Hyperpolarization and relaxation to acetylcholine remained closely correlated with the release of NO in the presence of the inhibitors. In addition, the NO donor, SIN-1, caused hyperpolarization and relaxation which correlated with the concentrations of NO that it released. These studies indicate that (i) the release of NO by acetylcholine is only partially inhibited by these inhibitors of NO synthase when used even at high concentrations, and (ii) NO rather than another factor accounts fully for endothelium-dependent responses of the rabbit carotid artery. PMID:9108128

  12. Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery

    PubMed Central

    Cohen, Richard A.; Plane, Frances; Najibi, Soheil; Huk, Igor; Malinski, Tadeusz; Garland, Chris J.

    1997-01-01

    It is controversial whether the endothelial cell release of nitric oxide (NO) or a different factor(s) accounts for endothelium-dependent hyperpolarization, because in many arteries endothelium-dependent relaxation and hyperpolarization resists inhibitors of NO synthase. The contribution of NO to acetylcholine-induced endothelium-dependent hyperpolarization and relaxation of the rabbit carotid artery was determined by measuring NO with electrochemical and chemiluminescence techniques. In the presence of phenylephrine to depolarize and contract the smooth muscle cells, acetylcholine caused concentration-dependent hyperpolarization and relaxation which were closely correlated to the release of NO. Nω-nitro-l-arginine methyl ester (30 μM) partially reduced the release of NO and caused a similar reduction in smooth muscle cell relaxation and hyperpolarization. To determine if the residual responses were mediated by another endothelium-derived mediator or NO released despite treatment with Nω-nitro-l-arginine methyl ester, Nω-nitro-l-arginine (300 μM) was added. The combined inhibitors further reduced, but did not eliminate, NO release, smooth muscle relaxation, and hyperpolarization. Hyperpolarization and relaxation to acetylcholine remained closely correlated with the release of NO in the presence of the inhibitors. In addition, the NO donor, SIN-1, caused hyperpolarization and relaxation which correlated with the concentrations of NO that it released. These studies indicate that (i) the release of NO by acetylcholine is only partially inhibited by these inhibitors of NO synthase when used even at high concentrations, and (ii) NO rather than another factor accounts fully for endothelium-dependent responses of the rabbit carotid artery. PMID:9108128

  13. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats

    PubMed Central

    Fukao, Mitsuhiro; Hattori, Yuichi; Kanno, Morio; Sakuma, Ichiro; Kitabatake, Akira

    1997-01-01

    The aim of this study was to determine whether endothelium-dependent hyperpolarization and relaxation are altered during experimental diabetes mellitus. Membrane potentials were recorded in mesenteric arteries from rats with streptozotocin-induced diabetes and age-matched controls. The resting membrane potentials were not significantly different between control and diabetic mesenteric arteries (−55.3±0.5 vs −55.6±0.4 mV). However, endothelium-dependent hyperpolarization produced by acetylcholine (ACh; 10−8–10−5 M) was significantly diminished in amplitude in diabetic arteries compared with that in controls (maximum −10.4±1.1 vs −17.2±0.8 mV). Furthermore, the hyperpolarizing responses of diabetic arteries were more transient. ACh-induced hyperpolarization observed in control and diabetic arteries remained unaltered even after treatment with 3×10−4 M NG-nitro-L-arginine (L-NOARG), 10−5 M indomethacin or 60 u ml−1 superoxide dismutase. Endothelium-dependent hyperpolarization with 10−6 M A23187, a calcium ionophore, was also decreased in diabetic arteries compared to controls (−8.3±1.4 vs −18.0±1.9 mV). However, endothelium-independent hyperpolarizing responses to 10−6 M pinacidil, a potassium channel opener, were similar in control and diabetic arteries (−20.0±1.4 vs −19.2±1.1 mV). The altered endothelium-dependent hyperpolarizations in diabetic arteries were almost completely prevented by insulin therapy. Endothelium-dependent relaxations by ACh in the presence of 10−4 M L-NOARG and 10−5 M indomethacin in diabetic arteries were also reduced and more transient compared to controls. These data indicate that endothelium-dependent hyperpolarization is reduced by diabetes, and this would, in part, account for the impaired endothelium-dependent relaxations in mesenteric arteries from diabetic rats. PMID:9257918

  14. [Ionic mechanisms of endothelium-dependent relaxation of vascular smooth muscle under the action of acetylcholine].

    PubMed

    Taranenko, V M; Talaeva, T V; Bratus', V V

    1988-04-01

    Acetylcholine and nitroglycerin were shown to induce relaxation in muscles of the ring vascular segments of canine coronary arteries and rabbit aortic archs, the magnitude of the reaction depending on the level of initial tonic tension. Methylene blue abolished the relaxation. Mechanical removal of endothelium abolished the reaction to acetylcholine but not to nitroglycerin. Verapamil decreased the relaxation by 70%. The endothelium-dependent relaxation seems to be connected mainly with a decrease in the calcium entering vascular smooth muscle cells through voltage-dependent channels.

  15. Endothelium-dependent relaxation in the isolated rat kidney: impairment by cyclosporine A.

    PubMed

    Stephan, D; Billing, A; Krieger, J P; Grima, M; Fabre, M; Hofner, M; Imbs, J L; Barthelmebs, M

    1995-12-01

    The therapeutical use of cyclosporine A (CsA) is hampered by the development of nephrotoxicity characterized by a marked increase in renal vascular resistance (RVR). We investigated vascular functions in kidneys of rats treated with CsA. The ex vivo vascular reactivity of kidneys from control rats and animals treated subacutely with CsA [50 mg/kg/day subcutaneously (s.c.) for 16-21 days] or an olive oil vehicle (1 ml/kg) was analyzed in male Wistar rats. The right kidney was isolated and perfused with Tyrode's or Krebs solution in an open circuit. The effects of acetylcholine (Ach), fenoldopam (FEN), and sodium nitroprusside (SNP) on norepinephrine (NE) preconstricted kidneys were studied. In control kidneys (untreated or vehicle-treated), Ach induced a relaxation (EC50 = 0.56 +/- 0.05 x 10(-9)M; Emax = 88.2 +/- 2.1% decrease in the vascular tone restored by NE) which was endothelium-dependent [near-complete abolition after treatment with a detergent, 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propane-sulfonate (CHAPS) treatment] but only partially inhibited by indomethacin (EC50 = 1.71 +/- 0.39 x 10(-9)M, p < 0.05; Emax = 87.1 +/- 4.9%, NS) or indomethacin with NG-nitro-L-arginine methyl ester (L-NAME: EC50 = 1.04 +/- 0.38 x 10(-9)M, NS; Emax = 63.8 +/- 2.5%, p < 0.01). CsA treatment induced a marked decrease in creatinine clearance and natriuresis measured in vivo but had no effect on systolic blood pressure (SBP). In CsA-treated rats, Ach-induced renal relaxation was partially blunted (EC50 = 1.88 +/- 0.34 x 10(-9)M, p < 0.01; Emax = 82.8 +/- 4.6, NS), with both a defect in prostaglandin (PG) and nitric oxide (NO)-related responses. CsA treatment had no effect on endothelium-independent relaxations induced by FEN and SNP. These results show that subacute CsA treatment selectively impairs renal endothelium-dependent relaxation related to PGs and NO release.

  16. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    SciTech Connect

    Cheng Wei; Oike, Masahiro . E-mail: moike@pharmaco.med.kyushu-u.ac.jp; Hirakawa, Masakazu; Ohnaka, Keizo; Koyama, Tetsuya; Ito, Yushi

    2005-09-15

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca{sup 2+} transients and cellular uptake of L-[{sup 3}H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[{sup 3}H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine.

  17. Resistance of endothelium-dependent relaxation to elevation of O(-)(2) levels in rabbit carotid artery.

    PubMed

    Pagano, P J; Griswold, M C; Najibi, S; Marklund, S L; Cohen, R A

    1999-11-01

    Endogenous superoxide anion (O(-)(2)) interferes with the bioactivity of nitric oxide (NO) in endothelium-dependent arterial relaxation (EDR). Using the lucigenin chemiluminescence assay, we measured O(-)(2) in the thoracic and abdominal aortas and the carotid artery of rabbits to determine whether ambient O(-)(2) varies among the three arteries and differentially diminishes the effect of NO. Basal levels of O(-)(2) were significantly higher in carotid arteries than in the thoracic aorta [23 +/- 6.1 vs. 3.9 +/- 1.4 chemiluminescence units (CU); P < 0.05], whereas EDR in response to ACh (10(-8)-10(-5) M) was not significantly different on ANOVA. After treatment with the superoxide dismutase (SOD) inhibitor diethyldithiocarbamate (DDC; 10 mM), O(-)(2) levels were significantly elevated, becoming greater in the carotid artery and abdominal aorta than in the thoracic aorta (185 +/- 31.2 and 202 +/- 40.3 vs. 89 +/- 18 CU; P < 0.05). DDC significantly reversed EDR in the thoracic aorta but not in the carotid artery; at 10(-6) M ACh, the decrease seen with DDC was 48 +/- 6.2 vs. 6.8 +/- 8.0% of maximal relaxation in the thoracic aorta and carotid artery, respectively. In the thoracic aorta, exogenous SOD reversed the inhibition of EDR caused by DDC. Moreover, DDC/O(-)(2)-resistant EDR in the carotid artery was ablated by the addition of nitro-L-arginine methyl ester (300 microM; P < 0.05), an NO synthase inhibitor, consistent with peroxynitrite or an O(-)(2)-resistant NO donor being involved in carotid relaxation. Indeed, exogenous peroxynitrite caused similar relaxation of the carotid artery and thoracic aorta, which was unaffected by DDC. Our studies show a greater production of nitrite and O(-)(2) per unit area by the carotid artery, suggesting a greater amount of their product peroxynitrite. These findings support the hypothesis that peroxynitrite is the relaxing agent that resists high O(-)(2) in the carotid artery. PMID:10564167

  18. Arbutus unedo induces endothelium-dependent relaxation of the isolated rat aorta.

    PubMed

    Ziyyat, Abderrahim; Mekhfi, Hassane; Bnouham, Mohamed; Tahri, Abdelhafid; Legssyer, Abdelkhaleq; Hoerter, Jacqueline; Fischmeister, Rodolphe

    2002-09-01

    Arbutus unedo L. (Ericaceae) is used in oriental Morocco to treat arterial hypertension. We studied its vasodilator effect and mechanisms of action in vitro. The root aqueous extract of Arbutus (0.25 mg/mL) produced a relaxation of noradrenaline-precontracted ring preparations of rat aorta with intact endothelium. Relaxation by Arbutus did not occur in specimens without endothelium and was inhibited by pretreatment with 100 microM N(G)-methyl-L-arginine (L-NMA), 10 microM methylene blue or 50 microM 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) but not by 10 microM atropine. These results suggest that Arbutus produces an endothelium-dependent relaxation of the isolated rat aorta which may be mediated mainly by a stimulation of the endothelial nitric oxide synthase by mechanisms other than activation of muscarinic receptors. PMID:12237817

  19. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions.

    PubMed

    Allen, Tracy; Iftinca, Mircea; Cole, William C; Plane, Frances

    2002-12-15

    The release of endothelium-derived relaxing factors, such as nitric oxide (NO), is dependent on an increase in intracellular calcium levels ([Ca(2+)](i)) within endothelial cells. Endothelial cell membrane potential plays a critical role in the regulation of [Ca(2+)](i) in that calcium influx from the extracellular space is dependent on membrane hyperpolarization. In this study, the effect of inhibition of vascular smooth muscle delayed rectifier K(+) (K(DR)) channels by 4-aminopyridine (4-AP) on endothelium-dependent relaxation of rat basilar artery to acetylcholine (ACh) was assessed. ACh-evoked endothelium-dependent relaxations were inhibited by N-(Omega)-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), confirming a role for NO and guanylyl cyclase. 4-AP (300 microM) also suppressed ACh-induced relaxation, with the maximal response reduced from approximately 92 to approximately 33 % (n = 11; P < 0.01). However, relaxations in response to exogenous NO, applied in the form of authentic NO, sodium nitroprusside or diethylamineNONOate (DEANONOate), were not affected by 4-AP treatment (n = 3-11). These data are not consistent with the view that 4-AP-sensitive K(DR) channels are mediators of vascular hyperpolarization and relaxation in response to endothelium-derived NO. Inhibition of ACh-evoked relaxation by 4-AP was reversed by pinacidil (0.5-1 microM; n = 5) or 18beta-glycyrrhetinic acid (18betaGA; 5 microM; n = 5), indicating that depolarization and electrical coupling of the smooth muscle to the endothelium were involved. 4-AP caused depolarization of both endothelial and vascular smooth muscle cells of isolated segments of basilar artery (mean change 11 +/- 1 and 9 +/- 2 mV, respectively; n = 15). Significantly, 18betaGA almost completely prevented the depolarization of endothelial cells (n = 6), but not smooth muscle cells (n = 6) by 4-AP. ACh-induced hyperpolarization of endothelium and smooth muscle cells was also reduced by 4-AP

  20. Inhibition by quinine of endothelium-dependent relaxation of rabbit aortic strips.

    PubMed Central

    Gebremedhin, D.; Hadházy, P.; Magyar, K.

    1987-01-01

    1 The effects of quinine sulphate, tetramethylammonium chloride (TMA) and tetraethylammonium chloride (TEA) (all blockers of the Ca2+-activated K+ channels) on the relaxations induced by acetylcholine (ACh), calcium ionophore A23187 and sodium nitrite were studied in helical strips of rabbit aorta. 2 The strips were contracted to a moderate stable tone with phenylephrine (10(-7) M). ACh (4 X 10(-9) to 10(-6) M) as well as A23187 (10(-8) to 3 X 10(-7) M) reduced this tone in a concentration- and endothelium-dependent manner. 3 Pretreatment of the tissues with quinine (2.5 X 10(-5) to 10(-4) M) for 60 min produced a concentration-dependent inhibition of the relaxation induced by ACh. Also 90 min incubation of the strips with TMA (3 X 10(-3) to 6.5 X 10(-2) M) or TEA (10(-3) to 3 X 10(-2) M) inhibited the ACh-evoked relaxation in a manner similar to quinine. 4 Quinine (10(-4) M, 60 min), TMA (6.5 X 10(-2) M, 90 min) or TEA (3 X 10(-2) M, 90 min) produced 5 to 10 fold reductions in the relaxant EC50 values of A23187 and ACh and depressed (by 40 to 95%) the maximal relaxations to the ionophore and ACh. 5 On a molar basis, quinine was more effective than the two tetraalkylammonium ions in reducing the endothelium-dependent relaxations of the aortic strips induced by ACh or A23187. The inhibitory actions were reversible after 60 to 90 min washout.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2827827

  1. Endothelium-dependent and-independent relaxation induced by resveratrol in rat superior mesenteric arteries

    PubMed Central

    Chen, Yulong; Xu, Cangbao; Wei, Yahui; Zhang, Yaping; Cao, Ailan

    2016-01-01

    Resveratrol (Res) is a specific agonist of sirtuin 1, and has many cardioprotective effects. Although Res is able to relax various vascular beds, its pharmacological properties in rat superior mesenteric arteries and the underlying mechanism are not well clarified. The aim of present study was to investigate the vasorelaxant effects of Res on rat superior mesenteric arteries and the mechanisms involved. The isometric tension of rat superior mesenteric arterial rings was recorded in vitro using myography. It was found that Res concentration-dependently relaxed endothelium-intact superior mesenteric artery rings pre-contracted by phenylephrine hydrochloride (Emax, 97.66±0.79%; pD2, 4.30±0.14) or KCl (Emax, 101.3±0.6%; pD2, 4.12±0.03). The vasorelaxant effect of Res on the superior mesenteric artery rings was partially endothelium-dependent. NG-nitro-L-arginine methyl ester (100 µM) significantly inhibited the Res-induced vasorelaxant effect. However, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (10 µM) and indomethacin (5 µM) each had no effect on the Res-induced vasorelaxation. In artery rings without endothelium, the vasorelaxation induced by Res was attenuated by 4-aminopyridine (100 µM) and glibenclamide (10 µM). However, barium chloride dehydrate (10 µM) and tetraethylammonium chloride (1 mM) did not affect the vasorelaxation induced by Res. Moreover, Res also inhibited the contraction induced by an increase in external calcium concentration in Ca2+-free medium plus KCl (60 mM). These results suggest that Res induces relaxation in superior mesenteric arterial rings through an endothelium-dependent pathway, involving nitric oxide release, and also through an endothelium-independent pathway, with opening of voltage-dependent K+ channels and ATP-sensitive K+ channels and blockade of extracellular Ca2+ influx. PMID:27698719

  2. Endothelium-dependent and-independent relaxation induced by resveratrol in rat superior mesenteric arteries

    PubMed Central

    Chen, Yulong; Xu, Cangbao; Wei, Yahui; Zhang, Yaping; Cao, Ailan

    2016-01-01

    Resveratrol (Res) is a specific agonist of sirtuin 1, and has many cardioprotective effects. Although Res is able to relax various vascular beds, its pharmacological properties in rat superior mesenteric arteries and the underlying mechanism are not well clarified. The aim of present study was to investigate the vasorelaxant effects of Res on rat superior mesenteric arteries and the mechanisms involved. The isometric tension of rat superior mesenteric arterial rings was recorded in vitro using myography. It was found that Res concentration-dependently relaxed endothelium-intact superior mesenteric artery rings pre-contracted by phenylephrine hydrochloride (Emax, 97.66±0.79%; pD2, 4.30±0.14) or KCl (Emax, 101.3±0.6%; pD2, 4.12±0.03). The vasorelaxant effect of Res on the superior mesenteric artery rings was partially endothelium-dependent. NG-nitro-L-arginine methyl ester (100 µM) significantly inhibited the Res-induced vasorelaxant effect. However, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (10 µM) and indomethacin (5 µM) each had no effect on the Res-induced vasorelaxation. In artery rings without endothelium, the vasorelaxation induced by Res was attenuated by 4-aminopyridine (100 µM) and glibenclamide (10 µM). However, barium chloride dehydrate (10 µM) and tetraethylammonium chloride (1 mM) did not affect the vasorelaxation induced by Res. Moreover, Res also inhibited the contraction induced by an increase in external calcium concentration in Ca2+-free medium plus KCl (60 mM). These results suggest that Res induces relaxation in superior mesenteric arterial rings through an endothelium-dependent pathway, involving nitric oxide release, and also through an endothelium-independent pathway, with opening of voltage-dependent K+ channels and ATP-sensitive K+ channels and blockade of extracellular Ca2+ influx.

  3. Prenatal Testosterone Induces Sex-Specific Dysfunction in Endothelium-Dependent Relaxation Pathways in Adult Male and Female Rats1

    PubMed Central

    Chinnathambi, Vijayakumar; Yallampalli, Chandrasekhar; Sathishkumar, Kunju

    2013-01-01

    ABSTRACT Prenatal testosterone (T) exposure impacts postnatal cardiovascular function, leading to increases in blood pressure with associated decreased endothelium-dependent vascular relaxation in adult females. Endothelial function in males is not known. Furthermore, which of the endothelial pathways contributes to endothelial dysfunction and if there exists sex differences are not known. The objective of this study was to characterize the relative contribution of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) to the impaired endothelium-dependent vasodilation in prenatal T-exposed adult males and females. Offspring of pregnant rats treated with T propionate or its vehicle were examined. Telemetric blood pressure levels and endothelium-dependent vascular reactivity were assessed with wire myography. Levels of nitric oxide synthase (NOS3) and Kcnn3 and Kcnn4 channel expression were examined in mesenteric arteries. Mean arterial pressure was significantly higher in T males and females than in controls. Endothelium-dependent acetylcholine relaxation was significantly lower in both T males and females. EDHF-mediated relaxation was specifically blunted in T males (Emax = 48.64% ± 3.73%) compared to that in control males (Emax = 81.71% ± 3.18%); however, NO-mediated relaxation was specifically impaired in T females (Emax = 36.01% ± 4.29%) compared with that in control females (Emax = 54.56% ± 6.37%). Relaxation to sodium nitroprusside and levcromakalim were unaffected with T-treatment. NOS3 protein was decreased in T females but not in T males. Kcnn3 expression was decreased in both T males and females compared to controls. These findings suggest that prenatal T leads to an increase in blood pressure in the adult offspring, associated with blunting of endothelial cell-associated relaxation and that the effects are sex-specific: EDHF-related in males and NO-related in females. PMID:23966325

  4. B2 kinin receptor activation is the predominant mechanism by which trypsin mediates endothelium-dependent relaxation in bovine coronary arteries.

    PubMed

    Drummond, Grant R; Selemidis, Stavros; Cocks, Thomas M

    2008-07-01

    The roles of kinin and protease-activated receptors (PAR) in endothelium-dependent relaxations to the serine protease, trypsin, were examined in rings of bovine left anterior descending coronary artery (LAD). Trypsin (0.01-30 U/ml) caused biphasic, endothelium-dependent relaxations-a high potency (0.01-0.3 U/ml), low efficacy relaxation [maximum relaxation (R (max)), 9.0 +/- 5.1%] followed by a lower potency (1-30 U/ml) but high efficacy (R (max), 90.4 +/- 5.5%) relaxation, which was abolished by aprotinin. Captopril (10 microM) caused an approximately 10-fold leftward shift of the second phase response such that the first phase was masked. The second phase relaxation to trypsin was inhibited in a concentration-dependent, non-surmountable manner by the B2 antagonist, HOE-140. At 3 nM HOE-140, the second phase response to trypsin was abolished unmasking the first phase. Kallikrein (0.0003-0.3 U/ml) caused monophasic, endothelium-dependent relaxations (R (max), 33.7 +/- 14.6%), which were potentiated by captopril (R (max), 94.2 +/- 1.0%) and abolished by HOE-140. In the presence of captopril, the second phase relaxation to trypsin was only minimally inhibited by either N(G)-nitro-L: -arginine (100 microM) or 67 mM [K(+)](o) alone but markedly reduced when these two treatments were combined (R (max), 26.1 +/- 11.6% versus 98.6 +/- 2.9% in controls). The PAR1-activating peptide, SFLLRN (0.1-30 microM), but not the PAR2-activating peptide, SLIGRL, caused concentration-dependent relaxations (pEC(50), 5.9 +/- 0.0%; R (max), 43.3 +/- 8.3%). In conclusion, trypsin causes endothelium-dependent relaxations in the bovine LAD predominantly via release of endogenous BK, which in turn activates endothelial B2 receptors. Only a minor role for PAR1-like receptors was evident in this tissue. PMID:18458878

  5. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries

    PubMed Central

    Prieto, Dolores; Simonsen, Ulf; Hernández, Medardo; García-Sacristán, Albino

    1998-01-01

    Penile small arteries (effective internal lumen diameter of 300–600 μm) were isolated from the horse corpus cavernosum and mounted in microvascular myographs in order to investigate the mechanisms underlying the endothelium-dependent relaxations to acetylcholine (ACh) and bradykinin (BK).In arteries preconstricted with the thromboxane analogue U46619 (3–30 nM), ACh and BK elicited concentration-dependent relaxations, pD2 and maximal responses being 7.71±0.09 and 91±1% (n=23), and 8.80±0.07 and 89±2% (n=24) for ACh and BK, respectively. These relaxations were abolished by mechanical endothelial cell removal, attenuated by the nitric oxide (NO) synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG, 100 μM) and unchanged by indomethacin (3 μM). However, raising extracellular K+ to concentrations of 20–30 mM significantly inhibited the ACh and BK relaxant responses to 63±4% (P<0.01, n=7) and to 59±4% (P<0.01, n=6), respectively. ACh- and BK-elicited relaxations were abolished in arteries preconstricted with K+ in the presence of 100 μM L-NOARG.In contrast to the inhibitor of ATP-sensitive K+ channels, the blockers of Ca2+-activated K+ (KCa) channels, charybdotoxin (30 nM) and apamin (0.3 μM), each induced slight but significant rightward shifts of the relaxations to ACh and BK without affecting the maximal responses. Combination of charybdotoxin and apamin did not cause further inhibition of the relaxations compared to either toxin alone. In the presence of L-NOARG (100 μM), combined application of the two toxins resulted in the most effective inhibition of the relaxations to both ACh and BK. Thus, pD2 and maximal responses for ACh and BK were 7.65±0.08 and 98±1%, and 9.17±0.09 and 100±0%, respectively, in controls, and 5.87±0.09 (P<0.05, n=6) and 38±11% (P<0.05, n=6), and 8.09±0.14 (P<0.01, n=6) and 98±1% (n=6), respectively, after combined application of charybdotoxin plus apamin and L-NOARG.The selective inhibitor of

  6. Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease

    PubMed Central

    Heaps, Cristine L.; Robles, Juan Carlos; Sarin, Vandana; Mattox, Mildred L.; Parker, Janet L.

    2014-01-01

    Objective Test the hypothesis that exercise training enhances sustained relaxation to persistent endothelium-dependent vasodilator exposure via increased nitric oxide contribution in small coronary arteries of control and ischemic hearts. Methods Yucatan swine were designated to a control group or a group in which an ameroid constrictor was placed around the proximal LCX. Subsequently, pigs from both groups were assigned to exercise (5 days/week; 16 weeks) or sedentary regimens. Coronary arteries (~100–350 μm) were isolated from control pigs and from both nonoccluded and collateral-dependent regions of chronically-occluded hearts. Results In arteries from control pigs, training significantly enhanced relaxation responses to increasing concentrations of bradykinin (10−10 to 10−7 M) and sustained relaxation to a single bradykinin concentration (30 nM), which were abolished by NOS inhibition. Training also significantly prolonged bradykinin-mediated relaxation in collateral-dependent arteries of occluded pigs, which was associated with more persistent increases in endothelial cellular Ca2+ levels, and reversed with NOS inhibition. Protein levels for eNOS and p-eNOS-(Ser1179), but not caveolin-1, Hsp90, or Akt, were significantly increased with occlusion, independent of training state. Conclusions Exercise training enhances sustained relaxation to endothelium-dependent agonist stimulation in small arteries of control and ischemic hearts by enhanced nitric oxide contribution and endothelial Ca2+ responses. PMID:24447072

  7. Effects of trientine, a metal chelator, on defective endothelium-dependent relaxation in the mesenteric vasculature of diabetic rats.

    PubMed

    Inkster, Melanie E; Cotter, Mary A; Cameron, Norman E

    2002-10-01

    Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has

  8. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation

    PubMed Central

    Malmsjö, M; Edvinsson, L; Erlinge, D

    1998-01-01

    The dilator effect of extracellular adenosine triphosphate (ATP) has mainly been characterized as a direct effect on smooth muscle or as an endothelium-dependent effect mediated by nitric oxide (NO) or prostaglandins. We tested the hypothesis that endothelium-derived hyperpolarizing factor (EDHF) may also be involved. Dilator effects were studied in vitro by continuous recording of isomeric tension in cylindrical segments of rat blood vessels precontracted by noradrenaline (NA), in the presence of indomethacin (10 μM). By screening different blood vessels in the rat we found that both acetylcholine (ACh) and ATP dilate mesenteric arteries with a resting tone of 1 mN by an endothelium-dependent non-NO mechanism. With an increased resting tone (4 mN) the dilatation was mediated by NO. Thus by varying the resting tension the different dilator mechanisms could be examined. However, in the carotid artery the dilatation was solely mediated by an endothelium-dependent NO mechanism, even at different resting tones (1 and 4 mN). The N-nitro-L-arginine methyl ester (L-NAME)-resistant dilatation to ACh and ATP was further inhibited by the NO-scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), indicating L-NAME insensitive NO-synthesis. In carotid arteries and mesenteric arteries at high resting tones (4 mN) the ATP-dilatation was totally inhibited by endothelium removal or L-NAME (10−3 M). In mesenteric arteries at low resting tone (1 mN) the ATP, UTP (uridine-triphosphate) and 2-MeSATP (2methylthioATP)-dilatation was totally inhibited by endothelium removal. However, L-NAME in combination with indomethacin attenuated only 5% of the UTP dilatation, 70% of the ATP dilatation but all of the 2-MeSATP-dilatation. The inhibitors of Ca2+-activated K+ channels charybdotoxin (0.5×10−7 M) together with apamin (10−6 M), and the cytochrome P450 inhibitor, SKF 525A (10−4 M), each in combination with indomethacin, L-NAME and PTIO (0.5×10

  9. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation.

    PubMed

    Malmsjö, M; Edvinsson, L; Erlinge, D

    1998-02-01

    1. The dilator effect of extracellular adenosine triphosphate (ATP) has mainly been characterized as a direct effect on smooth muscle or as an endothelium-dependent effect mediated by nitric oxide (NO) or prostaglandins. We tested the hypothesis that endothelium-derived hyperpolarizing factor (EDHF) may also be involved. Dilator effects were studied in vitro by continuous recording of isomeric tension in cylindrical segments of rat blood vessels precontracted by noradrenaline (NA), in the presence of indomethacin (10 microM). 2. By screening different blood vessels in the rat we found that both acetylcholine (ACh) and ATP dilate mesenteric arteries with a resting tone of 1 mN by an endothelium-dependent non-NO mechanism. With an increased resting tone (4 mN) the dilatation was mediated by NO. Thus by varying the resting tension the different dilator mechanisms could be examined. However, in the carotid artery the dilatation was solely mediated by an endothelium-dependent NO mechanism, even at different resting tones (1 and 4 mN). 3. The N-nitro-L-arginine methyl ester (L-NAME)-resistant dilatation to ACh and ATP was further inhibited by the NO-scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), indicating L-NAME insensitive NO-synthesis. 4. In carotid arteries and mesenteric arteries at high resting tones (4 mN) the ATP-dilatation was totally inhibited by endothelium removal or L-NAME (10(-3) M). In mesenteric arteries at low resting tone (1 mN) the ATP, UTP (uridine-triphosphate) and 2-MeSATP (2methylthioATP)-dilatation was totally inhibited by endothelium removal. However, L-NAME in combination with indomethacin attenuated only 5% of the UTP dilatation, 70% of the ATP dilatation but all of the 2-MeSATP-dilatation. The inhibitors of Ca2+-activated K+ channels charybdotoxin (0.5 x 10(-7) M) together with apamin (10(-6) M), and the cytochrome P450 inhibitor, SKF 525A (10(-4) M), each in combination with indomethacin. L-NAME and PTIO (0.5 x 10

  10. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    PubMed

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids.

  11. Polyphenol-enriched extract of oil palm fronds (Elaeis guineensis) promotes vascular relaxation via endothelium-dependent mechanisms.

    PubMed

    Abeywardena, Mahinda; Runnie, Irine; Nizar, Mohd; Suhaila, Momamed; Head, Richard

    2002-01-01

    Plant-based polyphenolic compounds have been reported to possess cardiovascular health benefits. Several dietary sources, including herbs and spices, fruits and vegetables, and tea and wine, contain an array of biologically active compounds that have been shown to be effective in retarding oxidation of low-density lipoproteins (LDL) and promoting vascular relaxation. In the present study four different plant sources, both edible and non-edible, were evaluated for potential activity. Organic extracts enriched in polyphenols were prepared from palm fronds (Elaesis guineensis); lemongrass (Cymbopogon citrates); papaya shoots (Carica papaya) and green chilli (Capsicum frutescenes) and tested for their ability to prevent in vitro oxidation of LDL, and for potential vascular relaxation actions. Rings of rat thoracic aorta and isolated perfused mesenteric vascular beds were mounted in organ baths, contracted using a half-maximal dose of noradrenaline and exposed to cumulative additions of test extracts. Palm frond extract resulted in considerable relaxation (>75%) in both preparations and was found to be endothelium-dependent as removal of endothelium or inhibition of endogenous nitric oxide (NO) led to a total loss in relaxant activity. Lemongrass extract caused a greater relaxation action in the mesenteric preparation compared to aortic rings, and appears to be mediated via NO-independent and non-prostanoid mechanisms. Of the extracts tested, palm fronds also demonstrated the highest antioxidant capacity, as determined by the ferric reducing activity/potential assay, and resulted in a significant delay (P < 0.05) in the oxidation of LDL. Collectively, these preliminary findings lend further support to the potential cardiovascular actions of plant polyphenols and also identify oil palm fronds as containing constituents that promote vascular relaxation via endothelium-dependent mechanisms.

  12. Chelation of copper reduces inhibition by oxidized lipoproteins of endothelium-dependent relaxation in porcine coronary arteries.

    PubMed

    Hayashi, T; Ishikawa, T; Kuzuya, M; Naito, M; Yamada, K; Asai, K; Hidaka, H; Iguchi, A

    1994-01-01

    We examined the effect of dialyzing oxidized low-density lipoprotein (oLDL) against Krebs-Ringer solution, in the absence (yielding d-oLDL) or presence (yielding EDTA-oLDL) of ethylenediamine tetraacetic acid (EDTA), to investigate the mechanism that underlies the inhibition of endothelium-dependent relaxation (EDR) by o-LDL. Oxidation of LDL by exposure to Cu2+ resulted in the formation of a thiobarbituric acid-reacting substance (TBARS) and lipid hydroperoxide (LPO). At a concentration of 5 mg/dl, d-oLDL markedly attenuated EDR in the porcine coronary artery. Analysis of d-oLDL by gel filtration revealed that TBARS was ditributed in both the lipoprotein and the aqueous phases, whereas LPO was present only in the lipoprotein particles. Lysophosphatidylcholine (LPC), which has been suggested to be responsible for the impairment of EDR by oLDL, was present not only in the lipoprotein but also in the aqueous phase. However, EDR inhibitory activity was observed only in the oLDL particles, not in the aqueous phase. Almost all Cu2+ associated with the oLDL particles was removed by dialysis of oLDL against Krebs-Ringer solution containing EDTA. EDTA-oLDL or native LDL, at concentrations as high as 75 mg/dl, exerted only a moderate inhibitory action on EDR, Both TBARS and LPO in EDTA-oLDL were distributed only in the lipoprotein particles, not in the aqueous phase. These results demonstrate that the impairment of EDR by oLDL is related both to LPO and to transition metal ions such as Cu2+ associated with the lipoprotein particles, not to the amount of the TBARS or negative charge, and that factors other than LPC may affect EDR.

  13. Vascular Protective Effect of an Ethanol Extract of Camellia japonica Fruit: Endothelium-Dependent Relaxation of Coronary Artery and Reduction of Smooth Muscle Cell Migration.

    PubMed

    Park, Sin-Hee; Shim, Bong-Sup; Yoon, Jun-Seong; Lee, Hyun-Ho; Lee, Hye-Won; Yoo, Seok-Bong; Wi, An-Jin; Park, Whoa-Shig; Kim, Hyun-Jung; Kim, Dong-Wok; Oak, Min-Ho

    2015-01-01

    Camellia japonica is a popular garden plant in Asia and widely used as cosmetic sources and traditional medicine. However, the possibility that C. japonica affects cardiovascular system remains unclear. The aim of the present study was to evaluate vascular effects of an extract of C. japonica. Vascular reactivity was assessed in organ baths using porcine coronary arteries and inhibition of proliferation and migration were assessed using human vascular smooth muscle cells (VSMCs). All four different parts, leaf, stem, flower, and fruits, caused concentration-dependent relaxations and C. japonica fruit (CJF) extract showed the strongest vasorelaxation and its effect was endothelium dependent. Relaxations to CJF were markedly reduced by inhibitor of endothelial nitric oxide synthase (eNOS) and inhibitor of PI3-kinase, but not affected by inhibitor of cyclooxygenase and endothelium-derived hyperpolarizing factor-mediated response. CJF induced activated a time- and concentration-dependent phosphorylation of eNOS in endothelial cells. Altogether, these studies have demonstrated that CJF is a potent endothelium-dependent vasodilator and this effect was involved in, at least in part, PI3K-eNOS-NO pathway. Moreover, CJF attenuated TNF-α induced proliferation and PDGF-BB induced migration of VSMCs. The present findings indicate that CJF could be a valuable candidate of herbal medicine for cardiovascular diseases associated with endothelial dysfunction and atherosclerosis. PMID:26697138

  14. Long-lasting endothelium-dependent relaxation of isolated arteries caused by an extract from the bark of Combretum leprosum

    PubMed Central

    Alves, Francisco das Chagas; Cavalcanti, Paulo Marques da Silva; Passaglia, Rita de Cassia Aleixo Tostes; Ballejo, Gustavo

    2015-01-01

    Objective To describe and to characterize the relaxing effect of an extract of the bark of Combretum leprosum on isolated arterial rings from different animals. Methods Rings (3 to 4mm) from rabbit, rat, or porcine arteries rings were suspended in an organ bath (Krebs, 37°C, 95%O2/5%CO2) to record isometric contractions. After the stabilization period (2 to 3 hours) contractions were induced by the addition of phenylephrine (0.1 to 0.3µM) or U46619 (10 to 100nM), and Combretum leprosum extract was added on the plateau of the contractions. Experiments were performed to determine the potency, duration, reversibility, and to get insights on the potential mechanism involved in extract-induced relaxations. Results In all rings tested, Combretumleprosum extract (1.5μg/mL) was able to cause relaxations, which were strictly endothelium-dependent. In rabbit or rat thoracic aorta rings, the relaxations were reversed by vitamin B12a or L-NG-nitroarginine. In porcine right coronary arteries and rabbit abdominal aorta, extract caused both L-NG-nitroarginine-sensitive and L-NG-nitroarginine-resistant relaxations. In rabbit thoracic aorta, the extract was relatively potent (EC50=0.20µg/mL) and caused relaxations; intriguingly the endothelium continued to produce relaxing factors for a long period after removing the extract. The magnitude of extract-induced relaxations was significantly reduced in the absence of extracellular Ca2+; in addition, the TRPs channels blocker ruthenium red (10µM) was able to revert extract-induced relaxations. Phytochemical analyses indicated that the extract was rich in polyphenol-like reacting substances. Conclusions Combretum leprosum extract contains bioactive compounds capable of promoting Ca2+-dependent stimulation of endothelial cells which results in a prolonged production of relaxing factors. PMID:26466063

  15. Singlet oxygen scavengers affect laser-dye impairment of endothelium-dependent responses of brain arterioles.

    PubMed

    Rosenblum, W I; Nelson, G H

    1996-04-01

    This study investigates the possible role of singlet oxygen in accounting for the inhibitory effect of laser-dye injury on endothelium-dependent dilations. The combination of helium-neon (HeNe) laser (20-s exposure) and intravascular Evans blue impairs endothelium-dependent dilation of mouse pial arterioles by acetylcholine (ACh), bradykinin (BK), and calcium ionophore A23187. Each has a different endothelium-derived mediator (EDRFACh, EDRFBK, EDRFionophore, respectively). In this study, diameters at a craniotomy site were monitored in vivo with an image splitter-television microscope. The laser-dye injury, as usual, abolished the responses 10 and 30 min after injury, with recovery, complete or partial, at 60 min. Dilations by sodium nitroprusside, an endothelium-independent dilator, were not affected by laser-dye. When the singlet oxygen scavengers L-histidine (10(-3) M) and L-tryptophan (10(-2) M) were added to the suffusate over the site, the responses to ACh at 10 and 30 min were relatively intact, the response to BK was partly protected at 10 min only, and the response to ionophore was still totally impaired at 10 and 30 min. Lysine, a nonscavenging amino acid, had no protective effects with any dilator. We postulate that a heat-induced injury initiates a chain of events resulting in prolonged singlet oxygen generation by the endothelial cell (not by the dye). We postulate further that destruction of EDRFACh by singlet oxygen is responsible for laser-dye inhibition of ACh and that generation of the radical must continue for > or = 30 min. On the other hand, the heat injury itself is probably responsible for the elimination of the response to ionophore. Heat plus singlet oxygen generated by heat-damaged tissue may initially impair the response to BK, but by 30 min only the effects of some other factor, presumably heat injury, account for the impaired response to BK. PMID:8967364

  16. Paullinia pinnata extracts rich in polyphenols promote vascular relaxation via endothelium-dependent mechanisms.

    PubMed

    Zamble, Alexis; Carpentier, Marie; Kandoussi, Abdelmejid; Sahpaz, Sevser; Petrault, Olivier; Ouk, Tawarak; Hennuyer, Nathalie; Fruchart, Jean-Charles; Staels, Bart; Bordet, Régis; Duriez, Patrick; Bailleul, François; Martin-Nizard, Françoise

    2006-04-01

    Paullinia pinnata L. (Sapindaceae) is an African tropical plant whose roots and leaves are used in traditional medicine for many purposes, especially for erectile dysfunction, but its action mechanism is unknown. P. pinnata root and leaf methanolic extracts are rich in phenolic compounds. This study shows that both extracts are highly antioxidative and induce a slight transcriptional activity of peroxisome proliferator activated receptor-alpha. They also increased and decreased endothelial nitric oxide synthase and endothelin-1 mRNA levels in bovine aortic endothelial cells, respectively. In this study P. pinnata methanolic extracts in cumulative doses elicited in a dose-dependent manner the relaxation of phenylephrine precontracted isolated rat aortic rings. N-nitro-L-arginine methyl ester significantly attenuated the capacity of both extracts to induce arterial relaxation, indicating that this arterial relaxation was mediated by endothelial nitric oxide release. It could be suggested that the arterial relaxation induced by both extracts could be mainly linked to their capacities to inhibit nitric oxide oxidation through their antioxidant properties.

  17. Paullinia pinnata extracts rich in polyphenols promote vascular relaxation via endothelium-dependent mechanisms.

    PubMed

    Zamble, Alexis; Carpentier, Marie; Kandoussi, Abdelmejid; Sahpaz, Sevser; Petrault, Olivier; Ouk, Tawarak; Hennuyer, Nathalie; Fruchart, Jean-Charles; Staels, Bart; Bordet, Régis; Duriez, Patrick; Bailleul, François; Martin-Nizard, Françoise

    2006-04-01

    Paullinia pinnata L. (Sapindaceae) is an African tropical plant whose roots and leaves are used in traditional medicine for many purposes, especially for erectile dysfunction, but its action mechanism is unknown. P. pinnata root and leaf methanolic extracts are rich in phenolic compounds. This study shows that both extracts are highly antioxidative and induce a slight transcriptional activity of peroxisome proliferator activated receptor-alpha. They also increased and decreased endothelial nitric oxide synthase and endothelin-1 mRNA levels in bovine aortic endothelial cells, respectively. In this study P. pinnata methanolic extracts in cumulative doses elicited in a dose-dependent manner the relaxation of phenylephrine precontracted isolated rat aortic rings. N-nitro-L-arginine methyl ester significantly attenuated the capacity of both extracts to induce arterial relaxation, indicating that this arterial relaxation was mediated by endothelial nitric oxide release. It could be suggested that the arterial relaxation induced by both extracts could be mainly linked to their capacities to inhibit nitric oxide oxidation through their antioxidant properties. PMID:16680075

  18. Heterogeneity of endothelium-dependent responses to acetylcholine in canine femoral arteries and veins. Separation of the role played by endothelial and smooth muscle cells.

    PubMed

    Rubanyi, G M; Vanhoutte, P M

    1988-01-01

    The purpose of this study was to determine whether heterogeneity in endothelium-dependent responses to acetylcholine between canine blood vessels of different anatomical origin reflects variations in endothelial function or in responsiveness of vascular smooth muscle cells. Experiments were conducted in a bioassay system, where segments of femoral artery or vein with endothelium were perfused intraluminally and the perfusate used to superfuse rings of femoral arteries or veins without endothelium. Indomethacin was present in all experiments to prevent the synthesis of prostanoids. The blood vessels were contracted by phenylephrine. Measurement of wall tension in both the perfused segment and bioassay ring allowed simultaneous detection of endothelium-derived relaxing factor(s) released abluminally (segment) and intraluminally (ring). Intraluminal infusion of acetylcholine (ACh) induced relaxations in the perfused artery but not in vein segments. During arterial superfusion ACh induced relaxation in femoral arterial rings but contraction in venous rings. After treatment with atropine the arterial perfusate evoked relaxations in venous rings. Infusion of ACh through the femoral vein evoked only moderate relaxations in arterial rings. These data demonstrate that depressed endothelium-dependent relaxation to ACh in femoral veins compared to femoral arteries is due to a masking effect of the direct stimulating action of ACh and decreased release of the same mediator or the release of a different relaxing factor from venous endothelium.

  19. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation.

    PubMed Central

    Zakhary, R; Gaine, S P; Dinerman, J L; Ruat, M; Flavahan, N A; Snyder, S H

    1996-01-01

    Heme oxygenase 2 (HO-2), which synthesizes carbon monoxide (CO), has been localized by immunohistochemistry to endothelial cells and adventitial nerves of blood vessels. HO-2 is also localized to neurons in autonomic ganglia, including the petrosal, superior cervical, and nodose ganglia, as well as ganglia in the myenteric plexus of the intestine. Enzyme studies demonstrated that tin protoporphyrin-9 is a selective inhibitor of HO with approximately 10-fold selectivity for HO over endothelial nitric oxide synthase (NOS) and soluble guanylyl cyclase. Inhibition of HO activity by tin protoporphyrin 9 reverses the component of endothelial-derived relaxation of porcine distal pulmonary arteries not reversed by an inhibitor of NOS. Thus, CO, like NO, may have endothelial-derived relaxing activity. The similarity of NOS and HO-2 localizations and functions in blood vessels and the autonomic nervous system implies complementary and possibly coordinated physiologic roles for these two mediators. Images Fig. 1 Fig. 2 Fig. 3 PMID:8570637

  20. Chronic administration of nicotine-free cigarette smoke extract impaired endothelium-dependent vascular relaxation in rats via increased vascular oxidative stress.

    PubMed

    Shimosato, Takashi; Geddawy, Ayman; Tawa, Masashi; Imamura, Takeshi; Okamura, Tomio

    2012-01-01

    Cigarette smoking has been implicated in the initiation and progression of cardiovascular disorders and atherosclerosis. Here, we examined the effects of nicotine-free cigarette smoke extract (CSE) on the regulation of cardiovascular function. Rats were subcutaneously administered PBS or nicotine-free CSE at 0.05 to 1.5 mL/day per rat for 4 weeks. Blood pressure, cardiac function, and vascular responsiveness were measured at 4 weeks after administration. Furthermore, acute effects of nicotine-free CSE were also studied in the aorta isolated from normal rats. Blood pressure and left ventricular systolic pressure (LVSP) were significantly increased in the nicotine-free CSE-administered rats, but heart rate, dP/dt(max), and dP/dt(min) were not affected. Endothelium-dependent relaxation by acetylcholine (ACh) in the nicotine-free CSE-treated rats was significantly attenuated compared to PBS-treated rats, but endothelium-independent relaxation by sodium nitroprusside (SNP) did not differ. Pretreatment with superoxide dismutase restored the attenuated ACh-induced relaxation. Contractions by phenylephrine, angiotensin II, and KCl did not differ between two groups. In vitro acute nicotine-free CSE treatment did not alter the response to ACh or SNP. These results suggest that chronic nicotine-free CSE administration impairs endothelial function by increased production of superoxide derived from the vascular wall components other than smooth muscles and induces slight hypertension accompanied with LVSP elevation.

  1. Brazilin isolated from the heartwood of Caesalpinia sappan L induces endothelium-dependent and -independent relaxation of rat aortic rings

    PubMed Central

    Yan, Yu; Chen, Yu-cai; Lin, Yi-huang; Guo, Jing; Niu, Zi-ran; Li, Li; Wang, Shou-bao; Fang, Lian-hua; Du, Guan-hua

    2015-01-01

    Aim: Brazilin is one of the major constituents of Caesalpinia sappan L with various biological activities. This study sought to investigate the vasorelaxant effect of brazilin on isolated rat thoracic aorta and explore the underlying mechanisms. Methods: Endothelium-intact and -denuded aortic rings were prepared from rats. The tension of the preparations was recorded isometrically with a force displacement transducer connected to a polygraph. The phosphorylation levels of ERK1/2 and myosin light chain (MLC) were analyzed using Western blotting assay. Results: Application of brazilin (10–100 μmol/L) dose-dependently relaxed the NE- or high K+-induced sustained contraction of endothelium-intact aortic rings (the EC50 was 83.51±5.6 and 79.79±4.57 μmol/L, respectively). The vasorelaxant effect of brazilin was significantly attenuated by endothelium removal or by pre-incubation with L-NAME, methylene blue or indomethacin. In addition, pre-incubation with brazilin dose-dependently attenuated the vasoconstriction induced by KCl, NE or Ang II. Pre-incubation with brazilin also markedly suppressed the high K+-induced extracellular Ca2+ influx and NE-induced intracellular Ca2+ release in endothelium-denuded aortic rings. Pre-incubation with brazilin dose-dependently inhibited the NE-stimulated phosphorylation of ERK1/2 and MLC in both endothelium-intact and -denuded aortic rings. Conclusion: Brazilin induces relaxation in rat aortic rings via both endothelium-dependent and -independent ways as well as inhibiting NE-stimulated phosphorylation of ERK1/2 and MLC. Brazilin also attenuates vasoconstriction via blocking voltage- and receptor-operated Ca2+ channels. PMID:26564314

  2. Great heterogeneity of commercial fruit juices to induce endothelium-dependent relaxations in isolated porcine coronary arteries: role of the phenolic content and composition.

    PubMed

    Auger, Cyril; Pollet, Brigitte; Arnold, Cécile; Marx, Céline; Schini-Kerth, Valérie B

    2015-01-01

    Since polyphenol-rich products such as red wine, grape juice, and grape extracts have been shown to induce potent endothelium-dependent relaxations, we have evaluated whether commercial fruit juices such as those from berries are also able to induce endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine whether this effect is related to their phenolic content. Among the 51 fruit juices tested, 2/12 grape juices, 3/7 blackcurrant juices, 4/5 cranberry juices, 1/6 apple juices, 0/5 orange juices, 2/6 red fruit and berry juices, 3/6 blends of red fruit juices, and 0/4 non-red fruit juices were able to induce relaxations achieving more than 50% at a volume of 1%. The active fruit juices had phenolic contents ranging from 0.31 to 1.86 g GAE/L, which were similar to those of most of the less active juices with the exception of one active grape juice (2.14 g GAE/L) and one active blend of red fruit juices (3.48 g GAE/L). Altogether, these findings indicate that very few commercial fruit juices have the ability to induce potent endothelium-dependent relaxations, and that this effect is not related to their quantitative phenolic content, but rather to their qualitative phenolic composition.

  3. Osteocalcin attenuates high fat diet-induced impairment of endothelium-dependent relaxation through Akt/eNOS-dependent pathway

    PubMed Central

    2014-01-01

    Background Recent studies have demonstrated a protective effect of osteocalcin (OCN) on glucose homeostasis and metabolic syndrome. However, its role in vascular function remains unknown. This study investigated the contribution of OCN to the pathogenesis of endothelial dysfunction in the thoracic aorta of apolipoprotein E-deficient (ApoE-KO) mice. Methods Eight-week-old ApoE–KO mice were given chow or high fat diet (HFD) for 12 weeks with or without daily intraperitoneal injection of OCN. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT),measurement of serum lipid profiles and blood pressure were carried out. Endothelium-dependent relaxation (EDR) was measured by wire myography. Human umbilical vein endothelial cells (HUVECs) were used to study the role of OCN on eNOS levels in vitro. PI3K inhibitor (LY294002) and Akt inhibitor V were used ex-vivo to determine whether PI3K/Akt/eNOS contributes to the beneficial effect of OCN for the vascular or not. Results Daily injections of OCN can significantly improve lipid metabolism, glucose tolerance and insulin sensitivity in ApoE-KO mice. In ApoE-KO mice fed with HFD, the OCN-treated mice displayed an improved acetylcholine-stimulated EDR compared to the vehicle-treated group. In addition, compared to vehicle-treated HUVECs, OCN-treated HUVECs displayed increased activation of the Akt-eNOS signaling pathway, as evidenced by significantly higher levels of phosphorylated Akt and eNOS. Furthermore, a similar beneficial effect of OCN on thoracic aorta was observed using ex vivo organ culture of isolated mouse aortic segment. However, this effect was attenuated upon co-incubation with PI3K inhibitor or Akt inhibitor V. Conclusions Our study demonstrates that OCN has an endothelial-protective effect in atherosclerosis through mediating the PI3K/Akt/eNOS signaling pathway. PMID:24708830

  4. Tocotrienol-Rich Tocomin Attenuates Oxidative Stress and Improves Endothelium-Dependent Relaxation in Aortae from Rats Fed a High-Fat Western Diet

    PubMed Central

    Ali, Saher F.; Nguyen, Jason C. D.; Jenkins, Trisha A.; Woodman, Owen L.

    2016-01-01

    We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study, we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high-fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat) or control rat chow (standard diet, 6% fat) for 12 weeks. Tocomin (40 mg/kg/day sc) or its vehicle (peanut oil) was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin, and phosphorylated Akt and an increase in caveolin. Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS), soluble guanylate cyclase (sGC) and calcium-activated potassium (KCa) channels we demonstrated that tocomin increased NO-mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggest that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity. PMID:27800483

  5. Evidence that mechanisms dependent and independent of nitric oxide mediate endothelium-dependent relaxation to bradykinin in human small resistance-like coronary arteries

    PubMed Central

    Kemp, B K; Cocks, T M

    1997-01-01

    The effects of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the NO scavenger, oxyhaemoglobin (HbO) and high extracellular K+ upon endothelium-dependent relaxation to bradykinin were investigated in human isolated small coronary arteries.Endothelium-dependent relaxations to bradykinin were compared in vessels contracted to ∼50% of their maximum contraction to 124 mM KCl Krebs solution, regardless of treatments, with the thromboxane A2 mimetic, U46619 and acetylcholine. All relaxations were expressed as percentage reversal of the initial level of active force.L-NOARG (100 μM) caused a small but significant, 12% (P<0.01), decrease in the maximum relaxation (Rmax: 91.5±5.4%) to bradykinin but did not significantly affect the sensitivity (pEC50: 8.08±0.17). Increasing the concentration of L-NOARG to 300 μM had no further effect on the pEC50 or Rmax to bradykinin. HbO (20 μM) and a combination of HbO (20 μM) and L-NOARG (100 μM) reduced Rmax to bradykinin by 58% (P<0.05) and 54% (P<0.05), respectively. HbO (20 μM) and L-NOARG (100 μM, combined but not HbO (20 μM) alone, caused a significant 11 fold (P<0.05) decrease in sensitivitiy to bradykinin. HbO (20 μM) decreased the sensitivity to the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), approximately 17 fold (P<0.05).Raising the extracellular concentration of K+ isotonically to 30 mM, reduced the Rmax to bradykinin from 96.6±3.1% to 43.9±10.1% (P<0.01) with no significant change in sensitivity. A combination of HbO, L-NOARG and high K+ (30 mM) abolished the response to bradykinin. High K+ did not change either the sensitivity or maximum relaxation to SNAP.In conclusion, L-NOARG does not completely inhibit endothelial cell NO synthesis in human isolated small coronary arteries. By comparison, HbO appeared to block all the effects of NO in this tissue and revealed that most of the relaxation to bradykinin was due to NO. The non

  6. Polydatin Restores Endothelium-Dependent Relaxation in Rat Aorta Rings Impaired by High Glucose: A Novel Insight into the PPARβ-NO Signaling Pathway.

    PubMed

    Wu, Yang; Xue, Lai; Du, Weimin; Huang, Bo; Tang, Cuiping; Liu, Changqing; Qiu, Hongmei; Jiang, Qingsong

    2015-01-01

    Polydatin, a natural component from Polygonum Cuspidatum, has important therapeutic effects on metabolic syndrome. A novel therapeutic strategy using polydatin to improve vascular function has recently been proposed to treat diabetes-related cardiovascular complications. However, the biological role and molecular basis of polydatin's action on vascular endothelial cells (VECs)-mediated vasodilatation under diabetes-related hyperglycemia condition remain elusive. The present study aimed to assess the contribution of polydatin in restoring endothelium-dependent relaxation and to determine the details of its underlying mechanism. By measuring endothelium-dependent relaxation, we found that acetylcholine-induced vasodilation was impaired by elevated glucose (55 mmol/L); however, polydatin (1, 3, 10 μmol/L) could restore the relaxation in a dose-dependent manner. Polydatin could also improve the histological damage to endothelial cells in the thoracic aorta. Polydatin's effects were mediated via promoting the expression of endothelial NO synthase (eNOS), enhancing eNOS activity and decreasing the inducible NOS (iNOS) level, finally resulting in a beneficial increase in NO release, which probably, at least in part, through activation of the PPARβ signaling pathway. The results provided a novel insight into polydatin action, via PPARβ-NO signaling pathways, in restoring endothelial function in high glucose conditions. The results also indicated the potential utility of polydatin to treat diabetes related cardiovascular diseases. PMID:25941823

  7. Transient Receptor Potential Channel Opening Releases Endogenous Acetylcholine, which Contributes to Endothelium-Dependent Relaxation Induced by Mild Hypothermia in Spontaneously Hypertensive Rat but Not Wistar-Kyoto Rat Arteries.

    PubMed

    Zou, Q; Leung, S W S; Vanhoutte, P M

    2015-08-01

    Mild hypothermia causes endothelium-dependent relaxations, which are reduced by the muscarinic receptor antagonist atropine. The present study investigated whether endothelial endogenous acetylcholine contributes to these relaxations. Aortic rings of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats were contracted with prostaglandin F2 α and exposed to progressive mild hypothermia (from 37 to 31°C). Hypothermia induced endothelium-dependent, Nω-nitro-l-arginine methyl ester-sensitive relaxations, which were reduced by atropine, but not by mecamylamine, in SHR but not in WKY rat aortae. The responses in SHR aortae were also reduced by acetylcholinesterase (the enzyme responsible for acetylcholine degradation), bromoacetylcholine (inhibitor of acetylcholine synthesis), hemicholinium-3 (inhibitor of choline uptake), and vesamicol (inhibitor of acetylcholine release). The mild hypothermia-induced relaxations in both SHR and WKY rat aortae were inhibited by AMTB [N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide; the transient receptor potential (TRP) M8 inhibitor]; only those in SHR aortae were inhibited by HC-067047 [2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide; TRPV4 antagonist] while those in WKY rat aortae were reduced by HC-030031 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide; TRPA1 antagonist]. The endothelial uptake of extracellular choline and release of cyclic guanosine monophosphate was enhanced by mild hypothermia and inhibited by HC-067047 in SHR but not in WKY rat aortae. Compared with WKY rats, the SHR preparations expressed similar levels of acetylcholinesterase and choline acetyltransferase, but a lesser amount of vesicular acetylcholine transporter, located mainly in the endothelium. Thus, mild hypothermia causes nitric oxide-dependent relaxations by opening TRPA1 channels in WKY rat aortae

  8. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    PubMed Central

    Ribeiro, Êurica Adélia Nogueira; Herculano, Edla de Azevedo; da Costa, Cintia Danieli Ferreira; Furtado, Fabiola Fialho; da-Cunha, Emídio Vasconcelos Leitão; Barbosa-Filho, José Maria; da Silva, Marcelo Sobral; de Medeiros, Isac Almeida

    2012-01-01

    The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy). In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS), indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release. PMID:23346202

  9. Effect of chronic lithium administration on endothelium-dependent relaxation of rat mesenteric bed: role of nitric oxide.

    PubMed

    Afsharimani, Banafsheh; Moezi, Leila; Sadeghipour, Hamed; Rahimzadeh-Rofouyi, Bahareh; Nobakht, Maliheh; Sanatkar, Mehdi; Ghahremani, Mohammad Hosein; Dehpour, Ahmad R

    2007-10-01

    The mechanism of action of lithium, an effective treatment for bipolar disease, is still unknown. In this study, the mesenteric vascular beds of control rats and rats that were chronically treated with lithium were prepared by the McGregor method, and the mesenteric vascular bed vasorelaxation responses were examined. NADPH-diaphorase histochemistry was used to determine the activity of NOS (nitric oxide synthase) in mesenteric vascular beds. We demonstrated that ACh-induced vasorelaxation increased in the mesenteric vascular bed of rats treated with lithium. Acute No-nitro-L-arginine methyl ester (L-NAME) administration in the medium blocked ACh-induced vasorelaxation in the control group more effectively than in lithium-treated rats, while the vasorelaxant response to sodium nitroprusside, a NO donor, was not different between lithium-treated and control groups. Acute aminoguanidine administration blocked ACh-induced vasorelaxation of lithium-treated rats, but had no effect in the control rats. Furthermore, NOS activity, determined by NADPH-diaphorase staining, was significantly greater in the mesenteric vascular beds from chronic lithium-treated rats than in those from control rats. These data suggest that the enhanced ACh-induced endothelium-derived vasorelaxation in rat mesenteric bed from chronic lithium-treated rats might be associated with increased NOS activity, likely via iNOS. Simultaneous acute L-NAME and indomethacin administration suggests the possible upregulation of EDHF (endothelium-derived hyperpolarizing factor) in lithium-treated rats.

  10. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    PubMed

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  11. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    PubMed

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  12. Endothelium dependency of contractile activity differs in infant and adult vertebral arteries.

    PubMed Central

    Charpie, J R; Schreur, K D; Papadopoulos, S M; Webb, R C

    1994-01-01

    Contractions to serotonin (5-HT) and endothelin-1 (ET-1) in infant (0-2 yr) and adult (38-71 yr) vertebral arteries were examined in the presence of either the cyclooxygenase inhibitor indomethacin or NG-monomethyl-L-arginine (L-NMMA), an inhibitor of nitric oxide production. In addition, endothelium-dependent relaxations to acetylcholine were characterized in arteries contracted with agonist. The results showed that: (a) Contractions of infant arteries to 5-HT or ET-1 decreased to 44 +/- 8% and 27 +/- 13%, respectively, within 10 min. Indomethacin or removal of endothelium abolished this decreased response, whereas L-NMMA had no effect. (b) Adult arteries produced sustained contractions to 5-HT or ET-1 that were unaffected by indomethacin, endothelium denudation, or L-NMMA. (c) Endothelium-dependent relaxations to acetylcholine were greater in infant than adult arteries and were abolished by indomethacin (but not L-NMMA) in infants and L-NMMA (but not indomethacin) in adults. Thus, endothelium-dependent responses in infant arteries are attenuated because of increased prostaglandin activity not observed in adult tissues. Additionally, there is an age-dependent change in the primary mechanism responsible for acetylcholine-induced vasodilation. Apparently, endothelium dependency of acetylcholine-induced relaxation is highly dependent on cyclooxygenase activity in the infant vertebral artery, but in the adult artery, nitric oxide is linked to the vasodilator response. Images PMID:8132776

  13. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans.

    PubMed Central

    Creager, M A; Gallagher, S J; Girerd, X J; Coleman, S M; Dzau, V J; Cooke, J P

    1992-01-01

    Endothelium-dependent vasodilation is impaired in hypercholesterolemia, even before the development of atherosclerosis. The purpose of this study was to determine whether infusion of L-arginine, the precursor of the endothelium-derived relaxing factor, nitric oxide, improves endothelium-dependent vasodilation in hypercholesterolemic humans. Vascular reactivity was measured in the forearm resistance vessels of 11 normal subjects (serum LDL cholesterol = 2.76 +/- 0.10 mmol/liter) and 14 age-matched patients with hypercholesterolemia (serum LDL cholesterol = 4.65 +/- 0.36 mmol/liter, P < 0.05). The vasodilative response to the endothelium-dependent vasodilator, methacholine chloride, was depressed in the hypercholesterolemic group, whereas endothelium-independent vasodilation, induced by nitroprusside, was similar in each group. Intravenous administration of L-arginine augmented the forearm blood flow response to methacholine in the hypercholesterolemic individuals, but not in the normal subjects. L-arginine did not alter the effect of nitroprusside in either group. D-arginine had no effect on forearm vascular reactivity in either group. It is concluded that endothelium-dependent vasodilation is impaired in hypercholesterolemic humans. This abnormality can be improved acutely by administration of L-arginine, possibly by increasing the synthesis of endothelium-derived relaxing factor. PMID:1401062

  14. Acetylcholine- and sodium hydrosulfide-induced endothelium-dependent relaxation and hyperpolarization in cerebral vessels of global cerebral ischemia-reperfusion rat.

    PubMed

    Han, Jun; Chen, Zhi-Wu; He, Guo-Wei

    2013-01-01

    We investigated the effects of endothelium-derived hyperpolarizing factor (EDHF) and the role of hydrogen sulphide (H2S) in the cerebral vasorelaxation induced by acetylcholine (ACh) in global cerebral ischemia-reperfusion (CIR) rats. CIR was induced by occlusion of bilateral carotid and vertebral arteries. Isolated arterial segments from the cerebral basilar (CBA) and middle artery (MCA) of CIR rats were studied in a pressurized chamber. Transmembrane potential was recorded using glass microelectrodes to evaluate hyperpolarization. In the CIR CBAs and MCAs preconstricted by 30 mM KCl, ACh induced concentration-dependent vasorelaxation and hyperpolarization that were partially attenuated by NG-nitro-l-arginine methyl ester (l-NAME, 30 μM) and l-NAME plus indomethacin (10 μM). The residual responses were abolished by the H2S inhibitor dl-propargylglycine (PPG, 100 μM). The H2S donor NaHS and l-Cys, the substrate of endogenous H2S synthase, elicited similar responses to ACh and was inhibited by tetraethylamonine (1 mM) or PPG. ACh induces EDHF-mediated vasorelaxation and hyperpolarization in rat cerebral arteries. These responses are up-regulated by ischemia-reperfusion while NO-mediated responses are down-regulated. Further, the ACh-induced, EDHF-mediated relaxation, and hyperpolarization and the inhibition of these responses are similar to the H2S-induced responses, suggesting that H2S is a possible candidate for EDHF in rat cerebral vessels.

  15. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat.

    PubMed

    Spitler, Kathryn M; Matsumoto, Takayuki; Webb, R Clinton

    2013-08-01

    A contributing factor to increased peripheral resistance seen during hypertension is an increased production of endothelium-derived contractile factors (EDCFs). The main EDCFs are vasoconstrictor prostanoids, metabolites of arachidonic acid (AA) produced by Ca(2+)-dependent cytosolic phospholipase A2 (cPLA2) following phosphorylation (at Ser(505)) mediated by extracellular signal-regulated kinase (ERK1/2) and cyclooxygenase (COX) activations. Although endoplasmic reticulum (ER) stress has been shown to contribute to pathophysiological alterations in cardiovascular diseases, the relationship between ER stress and EDCF-mediated responses remains unclear. We tested the hypothesis that ER stress plays a role in EDCF-mediated responses via activation of the cPLA2/COX pathway in the aorta of the spontaneously hypertensive rat (SHR). Male SHR and Wistar-Kyoto rats (WKY) were treated with ER stress inhibitor, tauroursodeoxycholic acid or 4-phenlybutyric acid (TUDCA or PBA, respectively, 100 mg·kg(-1)·day(-1) ip) or PBS (control, 300 μl/day ip) for 1 wk. There was a decrease in systolic blood pressure in SHR treated with TUDCA or PBA compared with control SHR (176 ± 3 or 181 ± 5, respectively vs. 200 ± 2 mmHg). In the SHR, treatment with TUDCA or PBA normalized aortic (vs. control SHR) 1) contractions to acetylcholine (ACh), AA, and tert-butyl hydroperoxide, 2) ACh-stimulated releases of prostanoids (thromboxane A2, PGF2α, and prostacyclin), 3) expression of COX-1, 4) phosphorylation of cPLA2 and ERK1/2, and 5) production of H2O2. Our findings demonstrate a novel interplay between ER stress and EDCF-mediated responses in the aorta of the SHR. Moreover, ER stress inhibition normalizes such responses by suppressing the cPLA2/COX pathway.

  16. Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway.

    PubMed

    Choi, Sujeong; Kwon, Hyon-Jo; Song, Hee-Jung; Choi, Si Wan; Nagar, Harsha; Piao, Shuyu; Jung, Saet-Byel; Jeon, Byeong Hwa; Kim, Dong Woon; Kim, Cuk-Seong

    2016-09-01

    Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function. PMID:27610041

  17. Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

    PubMed Central

    Choi, Sujeong; Kwon, Hyon-Jo; Song, Hee-Jung; Choi, Si Wan; Nagar, Harsha; Piao, Shuyu; Jung, Saet-byel; Jeon, Byeong Hwa

    2016-01-01

    Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function. PMID:27610041

  18. Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

    PubMed Central

    Choi, Sujeong; Kwon, Hyon-Jo; Song, Hee-Jung; Choi, Si Wan; Nagar, Harsha; Piao, Shuyu; Jung, Saet-byel; Jeon, Byeong Hwa

    2016-01-01

    Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.

  19. Association and cosegregation of stroke with impaired endothelium-dependent vasorelaxation in stroke prone, spontaneously hypertensive rats.

    PubMed Central

    Volpe, M; Iaccarino, G; Vecchione, C; Rizzoni, D; Russo, R; Rubattu, S; Condorelli, G; Ganten, U; Ganten, D; Trimarco, B; Lindpaintner, K

    1996-01-01

    While hypertension is a major risk factor for stroke, it is not its sole determinant. Despite similar blood pressures, spontaneously hypertensive rats (SHR) do not share the predisposition to cerebrovascular disease typical of stroke-prone spontaneously hypertensive rats (SHRSP). We investigated vascular function in male SHR and SHRSP as well as in SHRSP/SHR-F2 hybrid animals. Animals were maintained on the appropriate dietary regimen necessary for the manifestation of stroke. Among the hybrid animals, a group of stroke-prone and a group of stroke-resistant rats were selected. Blood pressure was similar in all groups. Endothelium-independent vascular reactivity tested on isolated rings of thoracic aorta and basilar artery after death showed similar contractile and dilatory responses to serotonin and nitroglycerin, respectively, in all groups. In contrast, endothelium-dependent relaxation, in response to acetylcholine or substance P, was markedly reduced in SHRSP compared with SHR. Similarly, reduced vasodilatory responses were present in aortae of F2 rats that had suffered a stroke when compared with SHR or F2 rats resistant to stroke. The observed association and cosegregation of stroke with significant and specific impairment of endothelium-dependent vasorelaxation among SHRSP and stroke-prone F2 hybrids, respectively, suggest a potential causal role of altered endothelium-dependent vascular relaxation in the pathogenesis of stroke. PMID:8755632

  20. Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta

    PubMed Central

    Andriambeloson, Emile; Kleschyov, Andrei L; Muller, Bernard; Beretz, Alain; Stoclet, Jean Claude; Andriantsitohaina, Ramaroson

    1997-01-01

    The aim of this work was to investigate the mechanism of vasorelaxation induced by red wine polyphenolic compounds (RWPC) and two defined polyphenols contained in wine, leucocyanidol and catechin. The role of the endothelium, especially endothelium-derived nitric oxide (NO), was also investigated.Relaxation produced by polyphenols was studied in rat aortic rings with and without functional endothelium, pre-contracted to the same extent with noradrenaline (0.3 and 0.1 μM, respectively). RWPC and leucocyanidol, but not catechin, produced complete relaxation of vessels with and without endothelium. However, 1000 fold higher concentrations were needed to relax endothelium-denuded rings compared to those with functional endothelium.High concentrations of catechin (in the range of 10−1 g l−1) only produced partial relaxation (maximum 30%) and had the same potency in rings with and without endothelium.The NO synthase inhibitor, Nω-nitro-L-arginine-methyl-ester (L-NAME, 300 μM) completely abolished the endothelium-dependent but not the endothelium-independent relaxations produced by all of the polyphenolic compounds.In contrast to superoxide dismutase (SOD, 100 u ml−1), neither RWPC nor leucocyanidol affected the concentration-response curve for the NO donor, SIN-1 (3-morpholino-sydnonimine) which also produces superoxide anion (O2−).In aortic rings with endothelium, RWPC (10−2 g l−1) produced a 7 fold increase in the basal production of guanosine 3′ : 5′-cyclic monophosphate (cyclic GMP) which was prevented by L-NAME (300 μM).Electron paramagnetic resonance (e.p.r.) spectroscopy studies with Fe2+-diethyldithiocarbamate as an NO spin trap demonstrated that RWPC and leucocyanidol increased NO levels in rat thoracic aorta about 2 fold. This NO production was entirely dependent on the presence of the endothelium and was abolished by L-NAME (300 μM).These results show that RWPC and leucocyanidol, but not the structurally closely

  1. Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation

    PubMed Central

    Soloviev, Anatoly I; Tishkin, Sergey M; Parshikov, Alexander V; Ivanova, Irina V; Goncharov, Eugene V; Gurney, Alison M

    2003-01-01

    Gamma radiation impairs vascular function, leading to the depression of endothelium-dependent vasodilatation. Loss of the nitric oxide (NO) pathway has been implicated, but little is known about radiation effects on other endothelial mediators. This study investigated the mechanisms of endothelial dysfunction in rabbits subjected to whole-body irradiation from a cobalt60 source. The endothelium-dependent relaxation of rabbit aorta evoked by acetylcholine (ACh) or A23187 was impaired in a dose-dependent manner by irradiation at 2 Gy or above. Inhibition was evident 9 days post-irradiation and persisted over the 30 day experimental period. Endothelium-independent responses to glyceryl trinitrate (GTN), sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1) were suppressed over a similar dose range at 7–9 days post-irradiation, but recovered fully by 30 days post-irradiation. In healthy vessels, ACh-induced relaxation was inhibited by L-Nω-nitroarginine (L-NA; 3×10−4 M) and charybdotoxin (10−8 M) plus apamin (10−6 M) but resistant to indomethacin, indicating the involvement of NO and endothelium-derived hyperpolarizing factor (EDHF). Supporting this, ACh caused smooth muscle hyperpolarization that was reduced by L-NA and charybdotoxin plus apamin. In irradiated vessels, responses to ACh were insensitive to L-NA but abolished by charybdotoxin plus apamin, indicating selective loss of NO-mediated relaxation. In animals treated shortly after irradiation with the antioxidant, α-tocopherol acetate, the NO-dependent relaxation was restored without effect on the EDHF-dependent component. The results imply that radiation selectively impairs the NO pathway as a consequence of oxidative stress, while EDHF is able to maintain endothelium-dependent relaxation at a reduced level. PMID:12642385

  2. Superoxide dismutase restores endothelium-dependent arteriolar dilatation during acute infusion of nicotine.

    PubMed

    Mayhan, W G; Sharpe, G M

    1998-10-01

    We previously showed [Am. J. Physiol. 272 (Heart Circ. Physiol. 41): H2337-H2342, 1997] that nicotine impairs endothelium-dependent arteriolar dilatation. However, mechanisms that accounted for the effect of nicotine on endothelium-dependent vasodilatation were not examined. Thus the goal of this study was to examine the role of oxygen radicals in nicotine-induced impairment of arteriolar reactivity. We measured diameter of cheek pouch resistance arterioles (approximately 50 micrometer diameter) in response to endothelium-dependent (ACh and ADP) and -independent (nitroglycerin) agonists before and after infusion of vehicle or nicotine in the absence or presence of superoxide dismutase. ACh, ADP, and nitroglycerin produced dose-related dilatation of cheek pouch arterioles before infusion of vehicle or nicotine. Infusion of vehicle, in the absence or presence of superoxide dismutase (150 U/ml), did not alter endothelium-dependent or -independent arteriolar dilatation. In contrast, infusion of nicotine (2 microgram . kg-1 . min-1) impaired endothelium-dependent, but not -independent, arteriolar dilatation. In addition, the effect of nicotine on endothelium-dependent vasodilatation was reversed by topical application of superoxide dismutase. We suggest that nicotine impairs endothelium-dependent arteriolar dilatation via an increase in the synthesis/release of oxygen-derived free radicals.

  3. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes.

    PubMed Central

    Bucala, R; Tracey, K J; Cerami, A

    1991-01-01

    Nitric oxide (an endothelium-derived relaxing factor) induces smooth muscle relaxation and is an important mediator in the regulation of vascular tone. Advanced glycosylation end products, the glucose-derived moieties that form nonenzymatically and accumulate on long-lived tissue proteins, have been implicated in many of the complications of diabetes and normal aging. We demonstrate that advanced glycosylation products quench nitric oxide activity in vitro and in vivo. Acceleration of the advanced glycosylation process in vivo results in a time-dependent impairment in endothelium-dependent relaxation. Inhibition of advanced glycosylation with aminoguanidine prevents nitric oxide quenching, and ameliorates the vasodilatory impairment. These results implicate advanced glycosylation products as important modulators of nitric oxide activity and endothelium-dependent relaxation. PMID:1991829

  4. Age Impaired endothelium-dependent vasodilation is improved by resveratrol in rat mesenteric arteries

    PubMed Central

    Gocmez, Semil S; Scarpace, Philip J; Whidden, Melissa A; Erdos, Benedek; Kirichenko, Nataliya; Sakarya, Yasemin; Utkan, Tijen; Tumer, Nihal

    2016-01-01

    [Purpose] To determine whether resveratrol improves the adverse effects age on vascular function in mesenteric arteries (MAs), and diminishes the hyperactivity in adrenal gland with age. [Methods] Male F344 x Brown Norway rats were assigned to 6-month control (YC), 6-month resveratrol (YR), 24-month control (OC) and 24-month resveratrol (OR). Resveratrol (15 mg/kg) was provided to resveratrol groups in drinking water for 14 days. [Results] Concentration response curves to phenylephrine (PE, 10-9-10-5M), acetylcholine (Ach, 10-9-10-5M) and resveratrol (10-8-10-4M) were evaluated in pressurized isolated MAs. The Ach concentration-response curve was right shifted with maximal response diminished in OC compared with YC rats. These effects were reversed by resveratrol treatment. The resveratrol-mediated relaxant responses were unchanged with age or resveratrol suggesting an endothelium-independent mechanism. Resveratrol tended to increase endothelial nitric oxide synthase; caused no effect on copper-zinc superoxide dismutase; and normalized the age-related elevatation in DβH and NPY levels in adrenal medulla, two indicators of sympathetic activity [Conclusion] These data indicate that resveratrol reverses age-related dysfunction in endothelium-dependent vasodilation in MAs and partially reverses hyperactivity of adrenomedullary function with age. This treatment may have a therapeuticpotential in the treatment of cardiovascular diseases or hypertension in the elderly. PMID:27298812

  5. Vasorelaxant and antihypertensive effects of formononetin through endothelium-dependent and -independent mechanisms

    PubMed Central

    SUN, Tao; LIU, Rui; CAO, Yong-xiao

    2011-01-01

    Aim: To investigate the mechanisms underlying the vasorelaxant effect of formononetin, an O-methylated isoflavone, in isolated arteries, and its antihypertensive activity in vivo. Methods: Arterial rings of superior mesenteric arteries, renal arteries, cerebral basilar arteries, coronary arteries and abdominal aortas were prepared from SD rats. Isometric tension of the arterial rings was recorded using a myograph system. Arterial pressure was measured using tail-cuff method in spontaneously hypertensive rats. Results: Formononetin (1–300 μmol/L) elicited relaxation in arteries of the five regions that were pre-contracted by KCl (60 mmol/L), U46619 (1 μmol/L) or phenylephrine (10 μmol/L). The formononetin-induced relaxation was reduced by removal of endothelium or by pretreatment with L-NAME (100 μmol/L). Under conditions of endothelium denudation, formononetin (10, 30, and 100 μmol/L) inhibited the contraction induced by KCl and that induced by CaCl2 in Ca2+-free depolarized medium. In the absence of extracellular Ca2+, formononetin (10, 30, and 100 μmol/L) depressed the constriction caused by phenylephrine (10 μmol/L), but did not inhibit the tonic contraction in response to the addition of CaCl2 (2 mmol/L). The contraction caused by caffeine (30 mmol/L) was not inhibited by formononetin (100 μmol/L). Formononetin (10 and 100 μmol/L) reduced the change rate of Ca2+-fluorescence intensity in response to KCl (50 mmol/L). In spontaneously hypertensive rats, formononetin (5, 10, and 20 mg/kg) slowly lowered the systolic, diastolic and mean arterial pressure. Conclusion: Formononetin causes vasodilatation via two pathways: (1) endothelium-independent pathway, probably due to inhibition of voltage-dependent Ca2+ channels and intracellular Ca2+ release; and (2) endothelium-dependent pathway by releasing NO. Both the pathways may contribute to its antihypertensive effect. PMID:21818108

  6. Influence of habitual high dietary fat intake on endothelium-dependent vasodilation.

    PubMed

    Dow, Caitlin A; Stauffer, Brian L; Greiner, Jared J; DeSouza, Christopher A

    2015-07-01

    High-fat diets are associated with an increased risk of cardiovascular disease. A potential underlying mechanism for the increased cardiovascular risk is endothelial dysfunction. Nitric oxide (NO)-mediated endothelium-dependent vasodilation is critical in the regulation of vascular tone and overall vascular health. The aim of this study was to determine the influence of dietary fat intake on endothelium-dependent vasodilation. Forty-four middle-aged and older sedentary, healthy adults were studied: 24 consumed a lower fat diet (LFD; 29% ± 1% calories from fat) and 20 consumed a high-fat diet (HFD; 41% ± 1% calories from fat). Four-day diet records were used to assess fat intake, and classifications were based on American Heart Association guidelines (<35% of total calories from fat). Forearm blood flow (FBF) responses to acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor N(G)-monomethyl-l-arginine (L-NMMA), as well as responses to sodium nitroprusside were determined by plethysmography. The FBF response to acetylcholine was lower (∼15%; P < 0.05) in the HFD group (4.5 ± 0.2 to 12.1 ± 0.8 mL/100 mL tissue/min) than in the LFD group (4.6 ± 0.2 to 14.4 ± 0.6 mL/100 mL tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the LFD group (∼25%) but not in the HFD group. There were no differences between groups in the vasodilator response to sodium nitroprusside. These data indicate that a high-fat diet is associated with endothelium-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with high dietary fat intake.

  7. Endothelium-dependent Effect of Sesame Seed Feeding on Vascular Reactivity of Streptozotocin-diabetic Rats: Underlying Mechanisms.

    PubMed

    Roghani, Mehrdad; Jalali-Nadoushan, Mohammad Reza; Baluchnejadmojarad, Tourandokht; Vaez Mahdavi, Mohammad-Reza; Naderi, Gholamali; Roghani Dehkordi, Farshad; Joghataei, Mohammad Taghi

    2013-01-01

    Cardiovascular disorders continue to constitute major causes of morbidity and mortality in diabetic patients. In this study, the effect of chronic administration of sesame (Sesamum indicum L) seed feeding was studied on aortic reactivity of streptozotocin (STZ)-diabetic rats. Male diabetic rats received sesame seed-mixed food at weight ratios of 3% and 6% for 7 weeks, one week after diabetes induction. Contractile responses to KCl and phenylephrine (PE) and relaxation response to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained from aortic rings. Maximum contractile response of endothelium-intact rings to PE was significantly lower in sesame-treated diabetic rats (at a ratio of 6%) relative to untreated diabetics and endothelium removal abolished this difference. Endothelium-dependent relaxation to ACh was also significantly higher in sesame-treated diabetic rats (at a ratio of 6%) as compared to diabetic rats and pretreatment of rings with nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME) significantly attenuated the observed response. Two-month diabetes also resulted in an elevation of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activity and sesame treatment significantly reversed the increased MDA content and restored activity of SOD. We thus conclude that chronic treatment of diabetic rats with sesame seed could in a dose-manner prevent some abnormal changes in vascular reactivity through nitric oxide and via attenuation of oxidative stress in aortic tissue and endothelium integrity is necessary for this beneficial effect.

  8. Influence of growth during infancy on endothelium-dependent vasodilatation at the age of 6 months.

    PubMed

    Touwslager, Robbert N H; Gerver, Willem-Jan M; Tan, Frans E S; Gielen, Marij; Zeegers, Maurice P; Zimmermann, Luc J; Houben, Alfons J H M; Blanco, Carlos E; Stehouwer, Coen D A; Mulder, Antonius L M

    2012-11-01

    Low birth weight and accelerated infant growth are associated with cardiovascular disease in adulthood. Endothelial dysfunction is regarded as a precursor of atherosclerosis and is also related to infant growth. We aimed to examine whether an association between infant growth and endothelial function is already present during discrete periods of growth during the first 6 months of life in healthy term infants. A cohort of 104 newborns was studied in the first week after birth and reexamined at the age of 6 months. Maximum vasodilatation in response to acetylcholine (endothelium dependent) and nitroprusside (endothelium independent) was measured in the vasculature of the forearm skin, using laser Doppler flowmetry and iontophoresis. Growth was calculated as difference in Z scores for weight, length, weight-for-length, and head circumference. Multivariable multilevel linear regression was used for the analysis. Growth from 0 to 1 month (calculated as difference in weight) was the only window in the first 6 months of life that was significantly and inversely associated with endothelium-dependent vasodilatation at 6 months (b=-11.72 perfusion units per Z score, P=0.01 in multivariable analysis). Birth size was not important when considered simultaneously with infant growth. Maximum endothelium-independent vasodilatation was not associated with birth size or growth parameters. We conclude that growth in the first month of life is inversely associated with endothelium-dependent vasodilatation at the age of 6 months in healthy term infants, regardless of birth size.

  9. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels

    PubMed Central

    Greenberg, Harry Z.E.; Shi, Jian; Jahan, Kazi S.; Martinucci, Matthew C.; Gilbert, Steven J.; Vanessa Ho, W.-S.; Albert, Anthony P.

    2016-01-01

    Stimulation of vascular calcium-sensing receptors (CaSRs) is reported to induce both constrictions and relaxations. However, cellular mechanisms involved in these responses remain unclear. The present study investigates the effect of stimulating CaSRs on vascular contractility and focuses on the role of the endothelium, nitric oxide (NO) and K+ channels in these responses. In wire myography studies, increasing [Ca2 +]o from 1 mM to 6 mM induced concentration-dependent relaxations of methoxamine pre-contracted rabbit mesenteric arteries. [Ca2 +]o-induced relaxations were dependent on a functional endothelium, and were inhibited by the negative allosteric CaSR modulator Calhex-231. [Ca2 +]o-induced relaxations were reduced by inhibitors of endothelial NO synthase, guanylate cyclase, and protein kinase G. CaSR activation also induced NO production in freshly isolated endothelial cells (ECs) in experiments using the fluorescent NO indicator DAF-FM. Pre-treatment with inhibitors of large (BKCa) and intermediate (IKCa) Ca2 +-activated K+ channels (iberiotoxin and charybdotoxin), and Kv7 channels (linopirdine) also reduced [Ca2 +]o-induced vasorelaxations. Increasing [Ca2 +]o also activated IKCa currents in perforated-patch recordings of isolated mesenteric artery ECs. These findings indicate that stimulation of CaSRs induces endothelium-dependent vasorelaxations which are mediated by two separate pathways involving production of NO and activation of IKCa channels. NO stimulates PKG leading to BKCa activation in vascular smooth muscle cells, whereas IKCa activity contributes to endothelium-derived hyperpolarisations. PMID:26772767

  10. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles.

    PubMed

    Haberl, R L; Decker, P J; Einhäupl, K M

    1991-06-01

    This study demonstrates that the hexapeptide angiotensin II-(3-8) and L-arginine, generated through enzymatic degradation of angiotensin, mediate endothelium-dependent dilation in rabbit brain arterioles. Topical application of angiotensin II (10(-5) M) on the brain surface of anesthetized rabbits caused 21.6 +/- 4.5% (mean +/- SEM) cerebral arteriolar dilation. The cyclooxygenase inhibitor indomethacin did not change this dilation. The natural degradation product of angiotensin II in the brain, angiotensin III, also induced vasodilation at concentrations of 10(-7) to 10(-5) M. The dilation to angiotensin II and angiotensin III was eliminated in the presence of 10(-5) M methylene blue, a known inhibitor of endothelium-dependent vasodilation. Amastatin, an aminopeptidase inhibitor and blocker of enzymatic angiotensin degradation, also inhibited the response to angiotensin II and angiotensin III. The angiotensin fragment angiotensin II-(3-8), which lacks the amino-terminal L-arginine residue of angiotensin III, did not elicit an arteriolar response. When angiotensin II-(3-8) was topically applied subsequent to L-arginine, a 21.2 +/- 2.9% vasodilation was observed. L-Arginine itself induced only moderate vasodilation with a maximum of 4.0 +/- 0.9% at 10(-5) M L-arginine. The dilating response to angiotensin II-(3-8) after L-arginine was inhibited by methylene blue. It was not affected by amastatin. It is concluded that degradation products of angiotensin, rather than angiotensin II itself, induce endothelium-dependent dilation in rabbit brain arterioles without involvement of cyclooxygenase products.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles.

    PubMed

    Delp, Michael D; Behnke, Bradley J; Spier, Scott A; Wu, Guoyao; Muller-Delp, Judy M

    2008-02-15

    Ageing reduces endothelium-dependent vasodilatation through an endothelial nitric oxide synthase (NOS) signalling pathway. The purpose of this study was to determine whether arginase activity diminishes endothelium-dependent vasodilatation in skeletal muscle arterioles from old rats, and whether NOS substrate (L-arginine) and cofactor (tetrahydrobiopterin; BH(4)) concentrations are reduced. First-order arterioles were isolated from the soleus muscle of young (6 months old) and old (24 months old) male Fischer 344 rats. In vitro changes in luminal diameter in response to stepwise increases in flow were determined in the presence of the NOS inhibitor N(G)-nitro-L-arginine methyl ester (l-NAME, 10(-5) mol l(-1)), the arginase inhibitor N(omega)-hydroxy-nor-L-arginine (NOHA, 5 x 10(-4) mol l(-1)), exogenous L-arginine (3 x 10(-3) mol l(-1)) or the precursor for BH(4) synthesis sepiapterin (1 micromol l(-1)). Arteriolar L-arginine and BH(4) content were determined via HPLC. Ageing decreased flow-mediated vasodilatation by 52%, and this difference was abolished with NOS inhibition. Neither inhibition of arginase activity nor addition of exogenous L-arginine had any effect on flow-mediated vasodilatation; arteriolar l-arginine content was also not different between age groups. BH(4) content was lower in arterioles from old rats (94 +/- 8 fmol (mg tissue)(-1)) relative to controls (234 +/- 21 fmol (mg tissue)(-1)), and sepiapterin elevated flow-mediated vasodilatation in arterioles from old rats. These results demonstrate that the impairment of endothelium-dependent vasodilatation induced by old age is due to an altered nitric oxide signalling mechanism in skeletal muscle arterioles, but is not the result of increased arginase activity and limited L-arginine substrate. Rather, the age-related deficit in flow-mediated vasodilatation appears to be the result, in part, of limited BH(4) bioavailability.

  12. Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults.

    PubMed Central

    Clarkson, P; Adams, M R; Powe, A J; Donald, A E; McCredie, R; Robinson, J; McCarthy, S N; Keech, A; Celermajer, D S; Deanfield, J E

    1996-01-01

    In hypercholesterolemic rabbits, oral L-arginine (the substrate for endothelium derived nitric oxide) attenuates endothelial dysfunction and atheroma formation, but the effect in hypercholesterolemic humans is unknown. Using high resolution external ultrasound, we studied arterial physiology in 27 hypercholesterolemic subjects aged 29+/-5 (19-40) years, with known endothelial dysfunction and LDL-cholesterol levels of 238+/-43 mg/dl. Each subject was studied before and after 4 wk of L-arginine (7 grams x 3/day) or placebo powder, with 4 wk washout, in a randomized double-blind crossover study. Brachial artery diameter was measured at rest, during increased flow (causing endothelium-dependent dilation, EDD) and after sublingual glyceryl trinitrate (causing endothelium-independent dilation). After oral L-arginine, plasma L-arginine levels rose from 115+/-103 to 231+/-125 micromol/liter (P<0.001), and EDD improved from 1.7+/-1.3 to 5.6+/-3.0% (P<0.001). In contrast there was no significant change in response to glyceryl trinitrate. After placebo there were no changes in endothelium-dependent or independent vascular responses. Lipid levels were unchanged after L-arginine and placebo. Dietary supplementation with L-arginine significantly improves EDD in hypercholesterolemic young adults, and this may impact favorably on the atherogenic process. PMID:8621785

  13. Potassium and potassium clouds in endothelium-dependent hyperpolarizations.

    PubMed

    Edwards, Gillian; Weston, Arthur H

    2004-06-01

    A small increase in extracellular K(+) acts as a local, physiological regulator of blood flow to certain vascular beds. The K(+) derives from active tissues such as contracting skeletal muscle and brain and increases blood supply to these organs by the activation of Na(+)/K(+)-ATPases and/or inwardly-rectifying K(+) channels on the vascular myocytes. K(+) liberated from the vascular endothelium also acts as an endothelium-derived hyperpolarizing and relaxing factor within blood vessels. The K(+) effluxes from endothelial cell intermediate- and small-conductance, Ca(2+)-sensitive K(+) channels which open in response to stretch and local hormones. In many vessels, endothelium-derived hyperpolarizing factor (EDHF) seems identical to the K(+) derived from endothelial cells; it activates Na(+)/K(+)-ATPases (particularly those containing alpha2 and alpha3 subunits) and inward rectifiers (particularly Kir2.1) located on the vascular myocytes. Vasospastic agents generate "potassium clouds" around vascular smooth muscle cells via the efflux of this ion through large conductance, Ca(2+)-sensitive K(+) channels on the myocytes. These potassium clouds can reduce the hyperpolarizing actions of endothelium-derived K(+) by effectively saturating the Na(+)/K(+)-ATPases and inward rectifiers on the muscle cells and they may be of clinical significance in vasospastic conditions.

  14. Differences in responsiveness of intrapulmonary artery and vein to arachidonic acid: mechanism of arterial relaxation involves cyclic guanosine 3':5'-monophosphate and cyclic adenosine 3':5'-monophosphate

    SciTech Connect

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Wolin, M.S.; McNamara, D.B.; Hyman, A.L.; Kadowitz, P.J.

    1985-06-01

    The objective of this study was to examine the relationship between responses of bovine intrapulmonary artery and vein to arachidonic acid and cyclic nucleotide levels in order to better understand the mechanism of relaxation elicited by arachidonic acid and acetylcholine. Arachidonic acid relaxed phenylephrine-precontracted arterial rings and elevated both cyclic GMP and cyclic AMP levels in arteries with intact endothelium. In contrast, endothelium-damaged arterial rings contracted to arachidonic acid without demonstrating significant changes in cyclic nucleotide levels. Indomethacin partially inhibited endothelium-dependent relaxation and abolished cyclic AMP accumulation whereas methylene blue, a guanylate cyclase inhibitor, partially inhibited relaxation and abolished cyclic GMP accumulation in response to arachidonic acid. All vessel responses were blocked by a combination of the two inhibitors. Prostaglandin (PG) I2 relaxed arterial rings and elevated cyclic AMP levels whereas PGE2 and PGF2 alpha caused contraction, suggesting that the indomethacin-sensitive component of arachidonic acid-elicited relaxation is due to PGI2 formation and cyclic AMP accumulation. The methylene blue-sensitive component is attributed to an endothelium-dependent but cyclooxygenase-independent generation of a substance causing cyclic GMP accumulation. Intrapulmonary veins contracted to arachidonic acid with no changes in cyclic nucleotide levels and PGI2 was without effect. Homogenates of intrapulmonary artery and vein formed 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from (/sup 14/C)arachidonic acid, which was inhibited by indomethacin. Thus, bovine intrapulmonary vein may not possess receptors for PGI2.

  15. Mechanisms underlying the endothelium-dependent vasodilatory effect of an aqueous extract of Elaeis Guineensis Jacq. (Arecaceae) in porcine coronary artery rings.

    PubMed

    Ndiaye, Mamadou; Anselm, Eric; Séne, Madièye; Diatta, Williams; Dièye, Amadou Moctar; Faye, Babacar; Schini-Kerth, Valérie B

    2009-12-30

    This study was undertaken to investigate the vasodilatory effect of an aqueous extract of Elaeis guineensis Jacq (EGE) in the porcine coronary artery and elicit its possible mechanism(s) of action. Vascular effects of crude extract of dried and powdered leaves of Elaeis guineensis were evaluated on isolated coronary arteries on organ chambers. Determination of eNOS expression and the phosphorylation level of eNOS were determined by Western blot analysis. In the presence of indomethacin, EGE caused pronounced relaxations in endothelium-intact but not in endothelium-denuded coronary artery rings. Relaxations to EGE were significantly reduced by N(ω)-nitro-L-arginine (L-NA, a competitive inhibitor of NO synthase), slightly but not significantly by charybdotoxin plus apamin (two potent inhibitors of EDHF-mediated responses) and abolished by the combination of L-NA and charybdotoxin plus apamin. Relaxations to EGE were abolished by the membrane permeant, SOD mimetic, MnTMPyP, and significantly reduced by wortmannin, an inhibitor of PI3-kinase. Exposure of endothelial cells to EGE increased the phosphorylation level of eNOS at Ser1177 in a time and concentration-dependent manner. MnTMPyP abolished the EGE-induced phosphorylation of eNOS.In conclusion, the obtained data indicate that EGE induces pronounced endothelium-dependent relaxations of the porcine coronary artery, which involve predominantly NO. The stimulatory effect of EGE on eNOS involves the redox-sensitive phosphorylation of eNOS at Ser1177 most likely via the PI3-kinase pathway.

  16. Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men.

    PubMed

    Westby, Christian M; Weil, Brian R; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2011-06-01

    ET (endothelin)-1, a potent vasoconstrictor peptide released by the endothelium, plays an important role in vasomotor regulation and has been linked to diminished endothelial vasodilator capacity in several pathologies associated with human aging, including hypertension, Type 2 diabetes and coronary artery disease. However, it is currently unknown whether the decline in endothelial vasodilatation with advancing age is due to elevated ET-1 vasoconstrictor activity. Accordingly, we tested the hypothesis that the age-related impairment in ACh (acetylcholine)-mediated endothelium-dependent vasodilatation is due, at least in part, to increased ET-1-mediated vasoconstrictor tone. FBF (forearm blood flow) responses to ACh, SNP (sodium nitroprusside) and BQ-123 (ET(A) receptor blocker) were determined in 14 young (age, 25 ± 1 years) and 14 older (age, 61 ± 2 years) healthy non-obese men. Additionally, FBF responses to ACh were determined in the presence of ETA blockade. Vasodilatation to ACh was lower (approx. 25%; P<0.05) in the older men (from 4.9 ± 0.2 to 13.9 ± 0.9 ml·100 ml(-1) of tissue·min(-1)) compared with the young men (4.6 ± 0.3 to 17.2 ± 1.0 ml·100 ml(-1) of tissue·min(-1)). There were no differences in FBF responses to SNP between the young (4.8 ± 0.3 to 18.5 ± 0.3 ml·100 ml(-1) of tissue·min(-1)) and older (5.1 ± 0.3 to 17.3 ± 0.8 ml·100 ml(-1) of tissue·min(-1)) men. In the young men, resting FBF was not significantly altered by BQ-123, whereas, in the older men, FBF increased approx. 25% in response to BQ-123 infusion (P<0.05). Co-infusion of ACh with BQ-123 resulted in an approx. 20% increase in the ACh-induced vasodilatation in older men compared with saline. In contrast, FBF responses to ACh were not significantly altered by ET(A) blockade in the young men. In conclusion, these results demonstrate that ET-1 vasoconstrictor activity contributes, at least in part, to diminished endothelium-dependent vasodilatation in older men.

  17. Comparison of endothelium-derived relaxing factor activity between nonpregnant and pregnant rats.

    PubMed

    Honda, H; Kaneko, H; Kondo, M; Kogo, H

    1996-07-01

    The tension of isolated ring preparation of aorta from nonpregnant and pregnant rats was measured isometrically to study the effect of pregnancy on endothelium-derived relaxing factor activity. Contraction in response to norepinephrine and potassium chloride was greater in aortae from nonpregnant rats than in those from pregnant rats. The endothelium-dependent relaxation that was caused by acetylcholine (10(-10)-3 x 10(-9) M) in aortae precontracted with norepinephrine was significantly enhanced in aortae from pregnant rats compared with the relaxation in those from nonpregnant rats. NG-nitro-L-arginine methyl ester (L-NAME) inhibited the endothelium-dependent relaxation in both aorta from pregnant and nonpregnant rats. L-Arginine reversed the inhibition of L-NAME. Those results suggest that the enhanced endothelium-derived relaxing factor activity in rats aortae is associated with pregnancy. PMID:8856958

  18. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    PubMed Central

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A.; Podratz, P.L.; Graceli, J.B.; Abreu, G.R.

    2015-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women. PMID:26577845

  19. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats.

    PubMed

    Borgo, M V; Claudio, E R G; Silva, F B; Romero, W G; Gouvea, S A; Moysés, M R; Santos, R L; Almeida, S A; Podratz, P L; Graceli, J B; Abreu, G R

    2016-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  20. Overexpression of endothelial nitric oxide synthase improves endothelium-dependent vasodilation in arteries infused with helper-dependent adenovirus.

    PubMed

    Jiang, Bo; Du, Liang; Flynn, Rowan; Dronadula, Nagadhara; Zhang, Jingwan; Kim, Francis; Dichek, David

    2012-11-01

    Adenoviral vectors (Ad) are useful tools for in vivo gene transfer into endothelial cells. However, endothelium-dependent vasodilation is impaired after Ad infusion, and this impairment is not prevented by use of advanced-generation "helper-dependent" (HD) Ad that lack all viral genes. We hypothesized that endothelium-dependent vasodilation could be improved in Ad-infused arteries by overexpression of endothelial nitric oxide synthase (eNOS). We tested this hypothesis in hyperlipidemic, atherosclerosis-prone rabbits because HDAd will likely be used for treating and preventing atherosclerosis. Moreover, the consequences of eNOS overexpression might differ in normal and atherosclerosis-prone arteries and could include atherogenic effects, as reported in transgenic mice. We cloned rabbit eNOS and constructed an HDAd that expresses it. HDAdeNOS increased NO production by cultured endothelial cells and increased arterial eNOS mRNA in vivo by ∼10-fold. Compared to arteries infused with a control HDAd, HDAdeNOS-infused arteries of hyperlipidemic rabbits had significantly improved endothelium-dependent vasodilation, and similar responses to phenylephrine and nitroprusside. Moreover, infusion of HDAdeNOS had local atheroprotective effects including large, significant decreases in intimal lipid accumulation and arterial tumor necrosis factor (TNF)-α expression (p≤0.04 for both). HDAdeNOS infusion yields a durable (≥2 weeks) increase in arterial eNOS expression, improves vasomotor function, and reduces artery wall inflammation and lipid accumulation. Addition of an eNOS expression cassette improves the performance of HDAd, has no harmful effects, and may reduce atherosclerotic lesion growth.

  1. Endothelium-derived Relaxing Factors of Small Resistance Arteries in Hypertension.

    PubMed

    Kang, Kyu-Tae

    2014-09-01

    Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing factor (EDHF), play pivotal roles in regulating vascular tone. Reduced EDRFs cause impaired endothelium-dependent vasorelaxation, or endothelial dysfunction. Impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh) is consistently observed in conduit vessels in human patients and experimental animal models of hypertension. Because small resistance arteries are known to produce more than one type of EDRF, the mechanism(s) mediating endothelium-dependent vasorelaxation in small resistance arteries may be different from that observed in conduit vessels under hypertensive conditions, where vasorelaxation is mainly dependent on NO. EDHF has been described as one of the principal mediators of endothelium-dependent vasorelaxation in small resistance arteries in normotensive animals. Furthermore, EDHF appears to become the predominant endothelium-dependent vasorelaxation pathway when the endothelial NO synthase (NOS3)/NO pathway is absent, as in NOS3-knockout mice, whereas some studies have shown that the EDHF pathway is dysfunctional in experimental models of hypertension. This article reviews our current knowledge regarding EDRFs in small arteries under normotensive and hypertensive conditions. PMID:25343007

  2. Endothelium-dependent induction of vasorelaxation by the butanol extract of Phellinus igniarius in isolated rat aorta.

    PubMed

    Kang, Dae Gill; Cao, Li Hua; Lee, Jun Kyoung; Choi, Deok Ho; Kim, Seung Ju; Lee, Hyuck; Kim, Jin Sook; Lee, Ho Sub

    2006-01-01

    The butanol extract of Phellinus igniarius (BPI) induced relaxation of the phenylephrin e-precontracted rat aorta in a dose-dependent manner, and its effect was abolished by the removal of functional endothelium. Pretreatment of the aortic tissues with N(G)-nitro-L-arginine methyl ester (L-NAME), methylene blue, or 1H-[1,2,4]-oxadiazole-[4,3-alpha]-quinoxalin1-one (ODQ) inhibited the vascular relaxation induced by BPI. BPI-induced vascular relaxations were also markedly attenuated by the addition of verapamil or diltiazem, while the relaxant effect of BPI was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolol. Incubation of endothelium-intact rat aorta with BPI increased the production of cGMP in a dose-dependent manner. These results suggest that BPI dilates vascular smooth muscle via endothelium-dependent nitric oxide-cGMP signaling pathway, with the possible involvement of L-type Ca(2+) channels. PMID:16883636

  3. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  4. Integrins mediate mechanical compression-induced endothelium-dependent vasodilation through endothelial nitric oxide pathway.

    PubMed

    Lu, Xiao; Kassab, Ghassan S

    2015-09-01

    Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α5β1 or αvβ3 antibodies attenuated cyclic compression-induced vasodilation and NOx (NO(-)2 and NO(-)3) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression-induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading.

  5. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    PubMed

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; P<0.001), and this association was independent (r=−0.61; P<0.001) of demographic and classical risk factors, body mass index, estimated glomerular filtration rate, serum phosphorus and calcium, C-reactive protein, and albuminuria. At multiple logistic regression analysis, the risk of endothelial dysfunction was ≈3-fold higher in patients in the third tertile than that of patients in the first tertile. We also tested the combined role of alkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (P<0.001) in patients with serum phosphorus above the median value when compared with patients with serum phosphorus below the median (−5.0% versus −10.2% per alkaline phosphatase unit, respectively), and this interaction remained highly significant (P<0.001) after adjustment of all the previously mentioned risk factors. Our data support a strong and significant inverse relationship between alkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels.

  6. Pkd2 mesenteric vessels exhibit a primary defect in endothelium-dependent vasodilatation restored by rosiglitazone.

    PubMed

    Brookes, Zoë L S; Ruff, Lewis; Upadhyay, Viralkumar S; Huang, Linghong; Prasad, Sony; Solanky, Tirupa; Nauli, Surya M; Ong, Albert C M

    2013-01-01

    Patients with autosomal dominant polycystic kidney disease have a high prevalence of hypertension and structural vascular abnormalities, such as intracranial aneurysms. Hypertension can develop in childhood and often precedes a significant reduction in the glomerular filtration rate. The major aim of this study was to investigate whether a primary endothelial defect or a vascular smooth muscle (VSM) defect was present in murine polycystic kidney disease (Pkd)2 heterozygous mesenteric vessels before the development of renal failure or hypertension. Using pressure myography, we observed a marked defect in ACh-stimulated endothelium-dependent vasodilatation in Pkd2 arterioles. In contrast, Pkd2 vessels responded normally to sodium nitroprusside, phenylephrine, KCl, and pressure, indicating unaltered VSM-dependent responses. Pretreatment with the peroxisome proliferator-activated receptor-γ agonist rosiglitazone significantly restored ACh-dependent vasodilation in Pkd2 mice. Isolated heterozygous Pkd2 endothelial cells displayed normal ACh-stimulated Ca(2+) and nitric oxide production. However, isolated Pkd2 heterozygous VSM cells displayed basal increases in superoxide and sodium nitroprusside-stimulated peroxynitrite formation, which were both suppressed by rosiglitazone. Furthermore, we observed a defective response of Pkd2 mesenteric venules to ACh in vivo, which was more marked after ischemia-reperfusion injury. In conclusion, the results of our study suggest that the defect in vasodilatation in Pkd2 heterozygous vessels is primarily due to a reduction in nitric bioavailability secondary to increased vascular oxidative stress. The ability of rosiglitazone to correct this phenotype suggests that this defect is potentially reversible in patients with autosomal dominant polycystic kidney disease.

  7. Perivascular tissue inhibits rho-kinase-dependent smooth muscle Ca(2+) sensitivity and endothelium-dependent H2 S signalling in rat coronary arteries.

    PubMed

    Aalbaek, Filip; Bonde, Lisbeth; Kim, Sukhan; Boedtkjer, Ebbe

    2015-11-01

    Interactions between perivascular tissue (PVT) and the vascular wall modify artery tone and contribute to local blood flow regulation. Using isometric myography, fluorescence microscopy, membrane potential recordings and phosphospecific immunoblotting, we investigated the cellular mechanisms by which PVT affects constriction and relaxation of rat coronary septal arteries. PVT inhibited vasoconstriction to thromboxane, serotonin and α1 -adrenergic stimulation but not to depolarization with elevated extracellular [K(+) ]. When PVT was wrapped around isolated arteries or placed at the bottom of the myograph chamber, a smaller yet significant inhibition of vasoconstriction was observed. Resting membrane potential, depolarization to serotonin or thromboxane stimulation, and resting and serotonin-stimulated vascular smooth muscle [Ca(2+) ]-levels were unaffected by PVT. Serotonin-induced vasoconstriction was almost abolished by rho-kinase inhibitor Y-27632 and modestly reduced by protein kinase C inhibitor bisindolylmaleimide X. PVT reduced phosphorylation of myosin phosphatase targeting subunit (MYPT) at Thr850 by ∼40% in serotonin-stimulated arteries but had no effect on MYPT-phosphorylation in arteries depolarized with elevated extracellular [K(+) ]. The net anti-contractile effect of PVT was accentuated after endothelial denudation. PVT also impaired vasorelaxation and endothelial Ca(2+) responses to cholinergic stimulation. Methacholine-induced vasorelaxation was mediated by NO and H2 S, and particularly the H2 S-dependent (dl-propargylglycine- and XE991-sensitive) component was attenuated by PVT. Vasorelaxation to NO- and H2 S-donors was maintained in arteries with PVT. In conclusion, cardiomyocyte-rich PVT surrounding coronary arteries releases diffusible factors that reduce rho-kinase-dependent smooth muscle Ca(2+) sensitivity and endothelial Ca(2+) responses. These mechanisms inhibit agonist-induced vasoconstriction and endothelium-dependent vasorelaxation

  8. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery

    PubMed Central

    Dong, Hui; Waldron, Gareth J; Cole, William C; Triggle, Christopher R

    1998-01-01

    The cellular mechanism(s) of action of endothelium-derived vasodilator substances in the rabbit middle cerebral artery (RMCA) were investigated. Specifically, the subtypes of potassium channels involved in the effects of endothelium-derived relaxing factors (EDRFs) in acetylcholine (ACh)-induced endothelium-dependent vasorelaxation in this vessel were systematically compared. In the endothelium-intact RMCA precontracted with histamine (3 μM), ACh induced a concentration-dependent vasorelaxation, which was sensitive to indomethacin (10 μM) or NG-nitro-L-arginine (L-NOARG; 100 μM); pD2 values 8.36 vs 7.40 and 6.38, P<0.01 for both, n=6 and abolished by a combination of both agents. ACh caused relaxation in the presence of high K+ PSS (40 mM KCl), which was not affected by indomethacin, but abolished by L-NOARG and a combination of indomethacin and L-NOARG. In the presence of indomethacin, relaxation to ACh in the endothelium-intact RMCA precontracted with histamine was unaffected by either glibenclamide (10 μM), an ATP-sensitive K+ channel (KATP) blocker, 4-aminopyridine (4-AP, 1 mM) or dendrotoxin (DTX, 0.1 μM), delayed rectifier K+ channel (KV) blockers. However, relaxation responses to ACh were significantly inhibited by either LY83583 (10 μM) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 10 μM), guanylyl cyclase inhibitors, or charybdotoxin (CTX; 0.1 μM), iberiotoxin (ITX, 0.1 μM) and apamin (APA, 0.1 μM), large conductance Ca2+ -activated K+ channels (BKCa) blocker and small conductance Ca2+ -activated K+ channel (SKCa) blocker, respectively. In the presence of L-NOARG, relaxation to ACh was unaffected by glibenclamide or the cytochrome P450 mono-oxygenase inhibitor, clotrimazole (1 μM), but was significantly inhibited by either 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ  22,536, 10 μM) and 2′,3′-dideoxyadenosine (2′,3′-DDA, 30 μM), adenylyl cyclase inhibitors, or 4-AP, DTX, CTX, ITX and APA. In

  9. Nitric oxide, cholesterol oxides and endothelium-dependent vasodilation in plasma of patients with essential hypertension.

    PubMed

    Moriel, P; Sevanian, A; Ajzen, S; Zanella, M T; Plavnik, F L; Rubbo, H; Abdalla, D S P

    2002-11-01

    The objective of the present study was to identify disturbances of nitric oxide radical (.NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of.NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 +/- 9.7 years; blood pressure, 148.3 +/- 24.8/90.8 +/- 10.2 mmHg) and in 11 healthy subjects (N: 48.4 +/- 7.0 years; blood pressure, 119.4 +/- 9.4/75.0 +/- 8.0 mmHg). Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 +/- 26.0, N: 54.2 +/- 24.9 micro M), urate (H: 108.5 +/- 18.9, N: 156.4 +/- 26.3 micro M), beta-carotene (H: 1.1 +/- 0.8, N: 2.5 +/- 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 +/- 0.2, N: 0.7 +/- 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3beta,5,6beta-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 +/- 0.2, N: 0.7 +/- 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for.NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although.NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides. PMID:12426629

  10. Vascular Endothelium-Dependent and Independent Actions of Oleanolic Acid and Its Synthetic Oleanane Derivatives as Possible Mechanisms for Hypotensive Effects

    PubMed Central

    Madlala, Hlengiwe P.; Metzinger, Thomas; van Heerden, Fanie R.; Mubagwa, Kanigula; Dessy, Chantal

    2016-01-01

    Purpose Plant-derived oleanolic acid (OA) and its related synthetic derivatives (Br-OA and Me-OA) possess antihypertensive effects in experimental animals. The present study investigated possible underlying mechanisms in rat isolated single ventricular myocytes and in vascular smooth muscles superfused at 37°C. Methods Cell shortening was assessed at 1 Hz using a video-based edge-detection system and the L-type Ca2+ current (ICaL) was measured using the whole-cell patch-clamp technique in single ventricular myocytes. Isometric tension was measured using force transducer in isolated aortic rings and in mesenteric arteries. Vascular effects were measured in endothelium-intact and denuded vessels in the presence of various enzyme or channel inhibitors. Results OA and its derivatives increased cell shortening in cardiomyocytes isolated from normotensive rats but had no effect in those isolated from hypertensive animals. These triterpenes also caused relaxation in aortic rings and in mesenteric arteries pre-contracted with either phenylephrine or KCl-enriched solution. The relaxation was only partially inhibited by endothelium denudation, and also partly inhibited by the cyclooxygenase (COX) inhibitor indomethacin, with no additional inhibitory effect of the NO synthase inhibitor, N-ω-Nitro-L-arginine. A combination of both ATP-dependent channel inhibition by glibenclaminde and voltage-dependent K+ channel inhibition by 4-aminopyridine was necessary to fully inhibit the relaxation. Conclusion These data indicate that the effects of OA and its derivatives are mediated via both endothelium-dependent and independent mechanisms suggesting the involvement of COX in the endothelium-dependent effects and of vascular muscle K+ channels in the endothelium-independent effects. Finally, our results support the view that the antihypertensive action of OA and its derivatives is due to a decrease of vascular resistance with no negative inotropic effect on the heart. PMID:26799746

  11. Anandamide induces endothelium-dependent vasoconstriction and CGRPergic nerve-mediated vasodilatation in the rat mesenteric vascular bed.

    PubMed

    Tamaki, Chihiro; Nawa, Hideki; Takatori, Shingo; Oda, Sakiko; Sendo, Toshiaki; Zamami, Yoshito; Kawasaki, Hiromu

    2012-01-01

    An endogenous cannabinoid anandamide (N-arachidonoylethanolamide) has been shown to cause vasodilatation in vitro and a brief vasoconstriction followed by prolonged depressor response in vivo. This study investigated the vascular effects of anandamide and underlying mechanisms in rat mesenteric vascular beds. In preparations with an intact endothelium and active tone, anandamide at low concentrations (0.1 - 1 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation, but at high concentrations (10 nM - 1 µM) elicited an initial and sharp increase in perfusion pressure due to vasoconstriction followed by long-lasting vasodilatation in a concentration-dependent manner. Treatment with SR141716A [cannabinoid-1 (CB(1))-receptor antagonist] blunted both the vasoconstrictor and vasodilator responses. Also, removal of the endothelium and indomethacin (cyclooxygenase inhibitor), but not adrenergic denervation with 6-hydoxydopamine (adrenergic neurotoxin), markedly inhibited the vasoconstrictor response to anandamide, while these treatments did not affect vasodilatation. The vasodilatation, but not vasoconstriction, in response to anandamide was markedly attenuated by capsazepine [selective antagonist for transient receptor potential vanilloid-1 (TRPV1)], pretreatment with capsaicin [calcitonin gene-related peptide (CGRP)ergic-nerve depletor], or cold-storage denervation. These results suggest that in rat mesenteric vascular beds, anandamide causes CB(1)-receptor- and prostanoid-mediated endothelium-dependent vasoconstriction and perivascular capsaicin-sensitive CGRPergic nerve-mediated vasodilatation.

  12. Inflammation and impaired endothelium-dependant vasodilatation in non obese women with gestational diabetes mellitus: preliminary results

    PubMed Central

    2013-01-01

    Background To evaluate whether abnormal endothelial function, a common finding in gestational diabetes mellitus (GDM) pregnancies, can be explained by inflammatory cytokines. Methods Forearm skin blood flow (FSBF), into response to acetylcholine (Ach) (endothelium-dependent vasodilatation), were measured in 24 pregnant control subjects and 28 gestational diabetes mellitus (GDM) women, in the third trimester of gestation. A fasting glycemic and lipidic panel was obtained, and inflammatory cytokines (TNF-α and IL-6) and adiponectin were also determined. Results FSBF is significantly reduced in GDM group compared with control subjects (344.59 ± 57.791 vs.176.38 ± 108.52, P < 0.05). Among all subjects, FSBF showed a strong negative correlation with TNF-α and IL-6 (r = −0.426, P < 0.0001 and r = −0.564, P < 0.0001, respectively) and positive correlation with adiponectin (r = 0.468, P < 0.0001). Conclusions Endothelial function, an early marker of macrovascular disease, is present in non-obese pregnancies complicated by GDM. This alteration seems to be directly related to inflammatory status, which may represent a patho-physiological link between GDM and type 2 diabetes and, later on, metabolic syndrome. PMID:23805905

  13. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  14. Retrospectively gated MRI for in vivo assessment of endothelium-dependent vasodilatation and endothelial permeability in murine models of endothelial dysfunction.

    PubMed

    Bar, Anna; Skórka, Tomasz; Jasiński, Krzysztof; Sternak, Magdalena; Bartel, Żaneta; Tyrankiewicz, Urszula; Chlopicki, Stefan

    2016-08-01

    Endothelial dysfunction is linked to impaired endothelial-dependent vasodilatation and permeability changes. Here, we quantify both of these phenomena associated with endothelial dysfunction by MRI in vivo in mice. Endothelial function was evaluated in the brachiocephalic artery (BCA) and left carotid artery (LCA) in ApoE/LDLR(-/-) and high-fat diet (HFD)-fed mice as compared with control mice (C57BL/6J). The 3D IntraGate® FLASH sequence was used for evaluation of changes in vessels' cross-sectional area (CSA) and volume following acetylcholine (Ach) administration. Evaluation of endothelial permeability after administration of contrast agent (Galbumin, BioPAL) was based on the variable flip angle method for the assessment of parameters based on the relaxation time (T1 ) value. In order to confirm the involvement of nitric oxide (NO) in response to Ach, L-NAME-treated mice were also analyzed. To confirm that endothelial permeability changes accompany the impairment of Ach-dependent vasodilatation, permeability changes were analyzed in isolated, perfused carotid artery. In C57BL/6J mice, Ach-induced vasodilatation led to an approximately 25% increase in CSA in both vessels, which was temporarily dissociated from the effect of Ach on heart rate. In ApoE/LDLR(-/-) or HFD-fed mice Ach induced a paradoxical vasoconstriction that amounted to approximately 30% and 50% decreases in CSA of BCA and LCA respectively. In ApoE/LDLR(-/-) and HFD-fed mice endothelial permeability in BCA was also increased (fall in T1 by about 25%). In L-NAME-treated mice Ach-induced vasodilatation in BCA was lost. In isolated, perfused artery from ApoE/LDLR(-/-) mice endothelial permeability was increased. MRI-based assessment of endothelium-dependent vasodilatation induced by Ach and endothelial permeability using a retrospectively self-gated 3D gradient-echo sequence (IntraGate® FLASH) enables the reliable detection of systemic endothelial dysfunction in mice and provides an important tool

  15. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level.

    PubMed Central

    Sorensen, K E; Celermajer, D S; Georgakopoulos, D; Hatcher, G; Betteridge, D J; Deanfield, J E

    1994-01-01

    Familial hypercholesterolemia is associated with premature atherosclerosis. Since endothelial dysfunction is an early event in atherogenesis, we used a noninvasive method to assess endothelial function in the systemic arteries of 30 children aged 7-17 yr (median 11) with familial hypercholesterolemia (2 homozygotes, 28 heterozygotes, total cholesterol 240-696 mg/dl) and 30 healthy age- and sex-matched controls. Using high resolution ultrasound, the diameter of the superficial femoral artery was measured at rest, in response to reactive hyperemia (with increased flow causing endothelium-dependent dilation), and after sublingual glyceryltrinitrate (causing endothelium-independent vasodilation). Flow-mediated dilation was present in the controls (7.5 +/- 0.7%) but was impaired or absent in the hypercholesterolemic children (1.2 +/- 0.4%, P < 0.0001). Total cholesterol was inversely correlated with flow-mediated dilation (r = -0.61, P < 0.0001). In the hypercholesterolemic children, flow-mediated dilation was inversely related to the lipoprotein(a) level (r = -0.61, P = 0.027) but not to other lipid fractions. Glyceryltrinitrate-induced dilation was present in all subjects but was lower in the hypercholesterolemia group (10.0 +/- 0.6% vs 12.4 +/- 0.8%, P = 0.023). Thus, impaired endothelium-dependent dilation is present in children with familial hypercholesterolemia as young as 7 yr of age and the degree of impairment is related to the lipoprotein(a) level. Images PMID:8282821

  16. Enhanced role for the opening of potassium channels in relaxant responses to acetylcholine after myocardial ischaemia and reperfusion in dog coronary arteries

    PubMed Central

    Chan, Elsa C H; Woodman, Owen L

    1999-01-01

    Anaesthetized dogs were subjected to 1 h occlusion of the left circumflex coronary artery followed by 2 h of reperfusion. Relaxant responses were examined in coronary artery rings removed proximal (nonischaemic) or distal (ischaemic) to the site of occlusion. Relaxant responses to acetylcholine (ACh) were similar in nonischaemic and ischaemic artery rings. In addition ACh-induced relaxation of nonischaemic and ischaemic artery rings was equally susceptible to inhibition of nitric oxide (NO) synthase using L-NG-nitroarginine (L-NOARG, 10−4 M), or to inhibition of soluble guanylate cyclase using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10−5 M). In nonischaemic arteries, the relaxation to ACh was unaffected by high K+ (67 mM) but in ischaemic arteries, the maximum relaxation to ACh was significantly reduced from 113±6 to 60±2% (ANOVA, P<0.05). Tetraethylammonium (TEA, 10−3 M), an inhibitor of large conductance calcium activated potassium (BKCa) channels did not inhibit the response to ACh in nonischaemic arteries but in ischaemic arteries TEA significantly shifted the concentration response curve to ACh to the right (pEC50; nonischaemic, 7.07±0.25; ischaemic, 6.54±0.21, P<0.01, ANOVA) without decreasing the maximum relaxation. TEA did not affect the responses to sodium nitroprusside in either nonischaemic or ischaemic arteries. In conclusion, ischaemia/reperfusion did not change the sensitivity of endothelium-dependent relaxation to L-NOARG or ODQ indicating that ischaemia did not affect the contribution of NO or cyclic GMP to ACh-induced relaxation. However, in ischaemic arteries the opening of the BKCa channels contributed to relaxation caused by ACh whereas TEA had no effect in nonischaemic arteries. The factor responsible for the opening of this potassium channel was a factor other than NO and may be endothelium derived hyperpolarizing factor (EDHF). PMID:10193772

  17. TRP channel Ca2+ sparklets: fundamental signals underlying endothelium-dependent hyperpolarization

    PubMed Central

    Sullivan, Michelle N.

    2013-01-01

    Important functions of the vascular endothelium, including permeability, production of antithrombotic factors, and control of vascular tone, are regulated by changes in intracellular Ca2+. The molecular identities and regulation of Ca2+ influx channels in the endothelium are incompletely understood, in part because of experimental difficulties associated with application of patch-clamp electrophysiology to native endothelial cells. However, advances in confocal and total internal reflection fluorescence microscopy and the development of fast, high-affinity Ca2+-binding fluorophores have recently allowed for direct visualization and characterization of single-channel transient receptor potential (TRP) channel Ca2+ influx events in endothelial cells. These events, called “TRP channel Ca2+ sparklets,” have been optically recorded from primary endothelial cells and the intact endothelium, and the biophysical properties and fundamental significance of these Ca2+ signals in vasomotor regulation have been characterized. This review will first briefly discuss the role of endothelial cell TRP channel Ca2+ influx in endothelium-dependent vasodilation, describe improved methods for recording unitary TRP channel activity using optical methods, and highlight discoveries regarding the regulation and physiological significance of TRPV4 Ca2+ sparklets in the vascular endothelium enabled by this new technology. Perspectives on the potential use of these techniques to evaluate changes in TRP channel Ca2+ influx activity associated with endothelial dysfunction are offered. PMID:24025865

  18. Autonomic responses to stress: the effects of progressive relaxation, the relaxation response, and expectancy of relief.

    PubMed

    Bradley, B W; McCanne, T R

    1981-06-01

    Forty-eight male subjects with no previous meditative experience engaged in either progressive relaxation (PR), a meditative treatment designed to induce the relaxation response (RR), or a no-treatment control experience (C) during four sessions on consecutive days. Negative expectations regarding the effectiveness of each technique for reducing physiological responses to stress were induced for half of the subjects in each treatment condition, and positive expectations were induced for the other half. Subjects viewed a stressful film following practice of their technique during the first and fourth sessions. Heart rate and electrodermal responding were recorded continuously during practice of the techniques and during the stressful film throughout the first and fourth sessions. Results indicated lowered heart rate levels prior to the film for subjects in the PR-positive expectancy condition and during the film for subjects in the RR-positive expectancy condition. It is suggested that subjects' expectancies concerning meditation may affect cardiovascular responding during stress, although meditative treatments in general do not appear to reduce stress responding as effectively as previously suggested.

  19. Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice

    PubMed Central

    Toque, Haroldo; Tostes, Rita; Yao, Lin; Xu, Zhimin; Webb, Clinton R.; Caldwell, Ruth; Caldwell, Robert

    2010-01-01

    Introduction Diabetes-induced erectile dysfunction involves elevated arginase (Arg) activity and expression. Because nitric oxide (NO) synthase and Arg share and compete for their substrate L-arginine, NO production is likely linked to regulation of Arg. Arg is highly expressed and implicated in erectile dysfunction. Aim It was hypothesized that Arg-II isoform deletion enhances relaxation function of corpora cavernosal (CC) smooth muscle in a streptozotocin (STZ) diabetic model. Methods Eight weeks after STZ-induced diabetes, vascular functional studies, Arg activity assay, and protein expression levels of Arg and constitutive NOS (using western blots) were assessed in CC tissues from non-diabetic wild type (WT), diabetic (D) WT (WT+D), Arg-II knockout (KO) and Arg-II KO+D mice (N=8–10 per group). Main Outcome Measures Inhibition or lack of arginase results in facilitation of CC relaxation in diabetic CC. Results Strips of CC from Arg-II KO mice exhibited an enhanced maximum endothelium-dependent relaxation (from 70+3% to 84+4%) and increased nitrergic relaxation (by 55%, 71%, 42%, 42%, and 24% for 1, 2, 4, 8 and 16 Hz, respectively) compared to WT mice. WT+D mice showed a significant reduction of endothelium-dependent maximum relaxation (44+8%), but this impairment of relaxation was significantly prevented in Arg-II KO+D mice (69+4%). Sympathetic-mediated and alpha-adrenergic agent-induced contractile responses also were increased in CC strips from D compared to non-D controls. Contractile responses were significantly lower in Arg-II KO control and D versus the WT groups. WT+D mice increased Arg activity (1.5-fold) and Arg-II protein expression and decreased total and phospho-eNOS at Ser-1177, and nNOS levels. These alterations were not seen in Arg-II KO mice. Additionally, the Arg inhibitor BEC (50 μM) enhanced nitrergic and endothelium-dependent relaxation in CC of WT+D mice. Conclusion These studies show for the first time that Arg-II deletion improves CC

  20. Pyocyanin inhibits both nitric oxide-dependent and -independent relaxation in porcine coronary arteries.

    PubMed

    Hempenstall, Allison; Grant, Gary D; Anoopkumar-Dukie, Shailendra; Johnson, Peter J

    2015-02-01

    The effects of the Pseudomonas aeruginosa virulence factor pyocyanin (PCN) on the contractile function of porcine coronary arteries was investigated in vitro. Artery rings (5 mm) were suspended in organ baths containing Krebs' solution for the measurement of isometric tension. The effect of PCN on resting and precontracted coronary arteries was initially investigated with various agents. Arteries were precontracted with prostaglandin (PG) F2α or potassium chloride and endothelium-dependent relaxations were induced by various agents in the presence of PCN. Pyocyanin (0.1-10 μmol/L) evoked small-amplitude, dose-dependent contractions in resting porcine coronary arteries. In addition, PCN amplified the contractile response to PGF2α , but did not alter responses to carbachol. Pyocyanin (0.1-10 μmol/L) significantly inhibited endothelium-dependent relaxations evoked by neurokinin A. Pyocyanin also inhibited relaxations evoked by diethylamine nitric oxide (a nitric oxide donor), forskolin (an adenylate cyclase activator), dibuytyryl-cAMP (a cAMP analogue), 8-bromo-cGMP (a cGMP analogue) and P1075 (a KATP channel activator), but not isoprenaline (β-adrenoceceptor agonist). These results indicate that physiological concentrations of PCN interfere with multiple intracellular processes involved in vascular smooth muscle relaxation, in particular pathways downstream of nitric oxide release. Thus, PCN may alter normal vascular function in patients infected with P. aeruginosa.

  1. Exercise training enhances multiple mechanisms of relaxation in coronary arteries from ischemic hearts

    PubMed Central

    Deer, Rachel R.

    2013-01-01

    Exercise training of coronary artery disease patients is of considerable interest, since it has been shown to improve vascular function and, thereby, enhance blood flow into compromised myocardial regions. However, the mechanisms underlying exercise-induced improvements in vascular function have not been fully elucidated. We tested the hypothesis that exercise training increases the contribution of multiple mediators to endothelium-dependent relaxation of coronary arteries in the underlying setting of chronic coronary artery occlusion. To induce gradual occlusion, an ameroid constrictor was placed around the proximal left circumflex coronary artery in Yucatan miniature swine. At 8 wk postoperatively, pigs were randomly assigned to sedentary or exercise (treadmill, 5 days/wk) regimens for 14 wk. Exercise training significantly enhanced the contribution of nitric oxide, prostanoids, and large-conductance Ca2+-dependent K+ (BKCa) channels to endothelium-dependent, bradykinin-mediated relaxation in nonoccluded and collateral-dependent arteries. Combined nitric oxide synthase, prostanoid, and BKCa channel inhibition ablated the enhanced relaxation associated with exercise training. Exercise training significantly increased nitric oxide levels in response to bradykinin in endothelial cells isolated from nonoccluded and collateral-dependent arteries. Bradykinin treatment significantly increased PGI2 levels in all artery treatment groups and tended to be further enhanced after nitric oxide synthase inhibition in exercise-trained pigs. No differences were found in whole cell BKCa channel currents, BKCa channel protein levels, or arterial cyclic nucleotide levels. Although redundant, upregulation of parallel vasodilator pathways appears to contribute to enhanced endothelium-dependent relaxation, potentially providing a more refined control of blood flow after exercise training. PMID:23997097

  2. Acyl chain-dependent effect of lysophosphatidylcholine on endothelium-dependent vasorelaxation.

    PubMed

    Rao, Shailaja P; Riederer, Monika; Lechleitner, Margarete; Hermansson, Martin; Desoye, Gernot; Hallström, Seth; Graier, Wolfgang F; Frank, Saša

    2013-01-01

    Previously we identified palmitoyl-, oleoyl-, linoleoyl-, and arachidonoyl-lysophosphatidylcholine (LPC 16:0, 18:1, 18:2 and 20:4) as the most prominent LPC species generated by endothelial lipase (EL). In the present study, we examined the impact of those LPC on acetylcholine (ACh)- induced vascular relaxation. All tested LPC attenuated ACh-induced relaxation, measured ex vivo, using mouse aortic rings and wire myography. The rank order of potency was as follows: 18:2>20:4>16:0>18:1. The attenuating effect of LPC 16:0 on relaxation was augmented by indomethacin-mediated cyclooxygenase (COX)-inhibition and CAY10441, a prostacyclin (PGI2)- receptor (IP) antagonist. Relaxation attenuated by LPC 20:4 and 18:2 was improved by indomethacin and SQ29548, a thromboxane A2 (TXA2)- receptor antagonist. The effect of LPC 20:4 could also be improved by TXA2- and PGI2-synthase inhibitors. As determined by EIA assays, the tested LPC promoted secretion of PGI2, TXA2, PGF2α, and PGE2, however, with markedly different potencies. LPC 16:0 was the most potent inducer of superoxide anion production by mouse aortic rings, followed by LPC 18:2, 20:4 and 18:1, respectively. The strong antioxidant tempol recovered relaxation impairment caused by LPC 18:2, 18:1 and 20:4, but not by LPC 16:0. The tested LPC attenuate ACh-induced relaxation through induction of proconstricting prostanoids and superoxide anions. The potency of attenuating relaxation and the relative contribution of underlying mechanisms are strongly related to LPC acyl-chain length and degree of saturation. PMID:23741477

  3. [Changes in endothelium-dependent dilation and α1-adrenoreactivity of rat aorta caused by inducible NO-synthase inhibition after motor activity restrictions].

    PubMed

    Solodkov, A P; Iatskovskaia, N M

    2013-07-01

    The aim of work was to study the influence of the highly selective blocker of the inducible NO-synthase (iNOS) of S-methylthiourea on the alteration of the endothelium-dependent vasodilation and α1-adrenoreactivity of the isolated rat aortic rings which underwent a short-term restriction of physical activity. The experiments were carried out on rat aortic rings preparations from female-rats bathed in Krebs-Henseleit solution, bubbled with 95% O2 and 5% CO2 and contracting in isometric mode. Endothelium-dependent dilation was caused by cumulative addition of acetylcholine (10-(10)-10(-4) M) after phenylephrine precontraction(10(-6) M). Adrenoreactivity was assessed through the response to increasing concentrations of α1-adrenergic receptor agonist. The 60-minute immobilization stress, characterized by the increase of the relative weight of the adrenal glands by 19.5%, the concentration of glucocorticoids (twice as much), of NO2/NO3 (stable NO degradation products) by 35%, the reduction in the level of thyroxine (by 16%), triiodothyronine (by 10%) and the increase in thyrotropic hormone by 45%, interleukin-1b (twice as much) and the appearance of tumour necrosis factor alpha in the blood serum, was accompanied by the two types of reaction of isolated aortic rings to acetylcholine and phenylephrine. The first one was expressed in the enhancing of acetylcholine-induced dilation of isolated aortic rings and the reduction of its response to α1-adrenergic stimulant phenylephrine. The second one showed a decrease in the response of isolated aortic rings to acetylcholine and enhancing the response to phenylephrine. But both of these reaction types were eliminated by using highly selective inducible NO-synthase inhibitor with S-methylisothiourea. However, it was differently directed with a different type of reaction. Taken together, these results suggest that the iNOS is formed in the cells of rat aorta under short-term stress. In some cases it can be a source of a large

  4. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae.

    PubMed

    Howitt, Lauren; Grayson, T Hilton; Morris, Margaret J; Sandow, Shaun L; Murphy, Timothy V

    2012-06-15

    Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component. PMID:22492718

  5. Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1.

    PubMed

    Vikram, Ajit; Kim, Young-Rae; Kumar, Santosh; Li, Qiuxia; Kassan, Modar; Jacobs, Julia S; Irani, Kaikobad

    2016-01-01

    Gut microbiota promotes atherosclerosis, and vascular endothelial dysfunction, signalled by impaired endothelium-dependent vasorelaxation, is an early marker of atherosclerosis. Here we show that vascular microRNA-204 (miR-204) expression is remotely regulated by the microbiome, and impairs endothelial function by targeting the Sirtuin1 lysine deacetylase (Sirt1). MiR-204 is downregulated, while Sirt1 is upregulated, in aortas of germ-free mice. Suppression of gut microbiome with broad-spectrum antibiotics decreases miR-204, increases Sirt1 and bioavailable vascular nitric oxide, and improves endothelium-dependent vasorelaxation in mouse aortas. Antibiotics curtail aortic miR-204 upregulation, and rescue decline of aortic Sirt1 and endothelium-dependent vasorelaxation, triggered by high-fat diet feeding. Improvement of endothelium-dependent vasorelaxation by antibiotics is lost in mice lacking endothelial Sirt1. Systemic antagonism of miR-204 rescues impaired endothelium-dependent vasorelaxation and vascular Sirt1, and decreases vascular inflammation induced by high-fat diet. These findings reveal a gut microbe-vascular microRNA-Sirtuin1 nexus that leads to endothelial dysfunction. PMID:27586459

  6. Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1

    PubMed Central

    Vikram, Ajit; Kim, Young-Rae; Kumar, Santosh; Li, Qiuxia; Kassan, Modar; Jacobs, Julia S.; Irani, Kaikobad

    2016-01-01

    Gut microbiota promotes atherosclerosis, and vascular endothelial dysfunction, signalled by impaired endothelium-dependent vasorelaxation, is an early marker of atherosclerosis. Here we show that vascular microRNA-204 (miR-204) expression is remotely regulated by the microbiome, and impairs endothelial function by targeting the Sirtuin1 lysine deacetylase (Sirt1). MiR-204 is downregulated, while Sirt1 is upregulated, in aortas of germ-free mice. Suppression of gut microbiome with broad-spectrum antibiotics decreases miR-204, increases Sirt1 and bioavailable vascular nitric oxide, and improves endothelium-dependent vasorelaxation in mouse aortas. Antibiotics curtail aortic miR-204 upregulation, and rescue decline of aortic Sirt1 and endothelium-dependent vasorelaxation, triggered by high-fat diet feeding. Improvement of endothelium-dependent vasorelaxation by antibiotics is lost in mice lacking endothelial Sirt1. Systemic antagonism of miR-204 rescues impaired endothelium-dependent vasorelaxation and vascular Sirt1, and decreases vascular inflammation induced by high-fat diet. These findings reveal a gut microbe-vascular microRNA–Sirtuin1 nexus that leads to endothelial dysfunction. PMID:27586459

  7. Diversity in Mechanisms of Endothelium-Dependent Vasodilation in Health and Disease

    PubMed Central

    Durand, Matthew J.; Gutterman, David D.

    2013-01-01

    Small arterioles (40–150 μm) contribute to the majority of vascular resistance within organs and tissues. Under resting conditions, the basal tone of these vessels is determined by a delicate balance between vasodilator and vasoconstrictor influences. Cardiovascular homeostasis and regional tissue perfusion is largely a function of the ability of these small blood vessels to constrict or dilate in response to the changing metabolic demands of specific tissues. The endothelial cell layer of these microvessels is a key modulator of vasodilation through the synthesis and release of vasoactive substances. Beyond their vasomotor properties, these compounds importantly modulate vascular cell proliferation, inflammation, and thrombosis. Thus the balance between local regulation of vascular tone and vascular pathophysiology can vary depending upon which factors are released from the endothelium. This review will focus on the dynamic nature of the endothelial released dilator factors depending on species, anatomic site, and presence of disease, with a focus on the human coronary microcirculation. Knowledge how endothelial signaling changes with disease may provide insights into the early stages of developing vascular inflammation and atherosclerosis, or related vascular pathologies. PMID:23311975

  8. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease.

    PubMed

    Köhler, R; Oliván-Viguera, A; Wulff, H

    2016-01-01

    Endothelial calcium/calmodulin-gated K channels of small (KCa2.3) and intermediate conductance (KCa3.1) produce membrane hyperpolarization and endothelium-dependent hyperpolarization (EDH)-mediated vasodilation. Dysfunctions of the two channels and ensuing EDH impairments are found in several cardiovascular pathologies such as diabetes, atherosclerosis, postangioplastic neointima formation, but also inflammatory disease, cancer, and organ fibrosis. Moreover, KCa3.1 plays an important role in endothelial barrier dysfunction, edema formation in cardiac and pulmonary disease, and in ischemic stroke. Concerning KCa2.3, genome-wide association studies revealed an association of KCa2.3 channels with atrial fibrillation in humans. Accordingly, both channels are considered potential drug targets for cardio- and cerebrovascular disease states. In this chapter, we briefly review the function of the two channels in EDH-type vasodilation and systemic circulatory regulation and then highlight their pathophysiological roles in ischemic stroke as well as in pulmonary and brain edema. Finally, the authors summarize recent advances in the pharmacology of the channels and explore potential therapeutic utilities of novel channel modulators. PMID:27451095

  9. Parallel decrease in arterial distensibility and in endothelium-dependent dilatation in young women with a history of pre-eclampsia.

    PubMed

    Pàez, Olga; Alfie, José; Gorosito, Marta; Puleio, Pablo; de Maria, Marcelo; Prieto, Noemì; Majul, Claudio

    2009-10-01

    Pre-eclampsia not only complicates 5 to 8% of pregnancies but also increases the risk of maternal cardiovascular disease and mortality later in life. We analyzed three different aspects of arterial function (pulse wave velocity, augmentation index, and flow-mediated dilatation), in 55 nonpregnant, normotensive women (18-33 years old) according to their gestational history: 15 nulliparous, 20 with a previous normotensive, and 20 formerly pre-eclamptic pregnancy. Former pre-eclamptic women showed a significantly higher augmentation index and pulse wave velocity (P < 0.001 and P < 0.05, respectively) and lower flow-mediated dilatation (p = 0.01) compared to control groups. In contrast, sublingual nitroglycerine elicited a comparable vasodilatory response in the three groups. The augmentation index correlated significantly with pulse wave velocity and flow-mediated dilatation (R = 0.28 and R = -0.32, respectively, P < 0.05 for both). No significant correlations were observed between augmentation index or flow-mediated dilatation with age, body mass index (BMI), brachial blood pressure, heart rate, or metabolic parameters (plasma cholesterol, glucose, insulin, or insulin resistance). Birth weight maintained a significantly inverse correlation with the augmentation index (R = -0.51, p < 0.002) but not with flow-mediated dilatation. Our findings revealed a parallel decrease in arterial distensibility and endothelium-dependent dilatation in women with a history of pre-eclampsia compared to nulliparous women and women with a previous normal pregnancy. A high augmentation index was the most consistent alteration associated with a history of pre-eclampsia. The study supports the current view that the generalized arterial dysfunction associated with pre-eclampsia persists subclinically after delivery.

  10. Functional brain mapping of the relaxation response and meditation.

    PubMed

    Lazar, S W; Bush, G; Gollub, R L; Fricchione, G L; Khalsa, G; Benson, H

    2000-05-15

    Meditation is a conscious mental process that induces a set of integrated physiologic changes termed the relaxation response. Functional magnetic resonance imaging (fMRI) was used to identify and characterize the brain regions that are active during a simple form of meditation. Significant (p<10(-7)) signal increases were observed in the group-averaged data in the dorsolateral prefrontal and parietal cortices, hippocampus/parahippocampus, temporal lobe, pregenual anterior cingulate cortex, striatum, and pre- and post-central gyri during meditation. Global fMRI signal decreases were also noted, although these were probably secondary to cardiorespiratory changes that often accompany meditation. The results indicate that the practice of meditation activates neural structures involved in attention and control of the autonomic nervous system.

  11. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries.

    PubMed

    Cowan, C L; Palacino, J J; Najibi, S; Cohen, R A

    1993-09-01

    Endothelium-dependent relaxation is associated with smooth muscle hyperpolarization in many arteries which may account for relaxation that persists in the presence of nitric oxide inhibitors such as NG-nitro-L-arginine methyl ester (L-NAME). Acetylcholine (ACh)-induced relaxations of the rabbit thoracic and abdominal aorta and iliac and carotid arteries were studied for the relative contribution of nitric oxide-dependent and -independent mechanisms in rings suspended for measurement of isometric tension. Although relaxation of the thoracic aorta to ACh (10(-6) M) was almost blocked completely by L-NAME (3 x 10(-5) M), the maximal relaxation in the abdominal aorta, carotid and iliac arteries was only reduced by 28, 26 and 62%, respectively. In rings of abdominal aorta, L-NAME blocked the ACh-stimulated (10(-6) M) rise in cyclic GMP verifying that relaxation which persists in L-NAME-treated rings is not mediated by nitric oxide. The L-NAME resistant response was nearly abolished by elevated external K+ in rings of abdominal aorta and carotid artery, suggesting this relaxation may be mediated by a membrane potential sensitive mechanism. Furthermore, tetraethylammonium (10(-3) M) partially and charybdotoxin (5 x 10(-8) M) completely inhibited the remaining L-NAME-resistant relaxation in both abdominal aorta and carotid artery, suggesting a role for Ca(++)-activated K(+)-channels. Blockers of ATP-sensitive K+ channels also inhibited the L-NAME resistant relaxation in the abdominal aorta only.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8396636

  12. Involvement of nitric oxide pathway in the PAF-induced relaxation of rat thoracic aorta.

    PubMed Central

    Moritoki, H.; Hisayama, T.; Takeuchi, S.; Miyano, H.; Kondoh, W.

    1992-01-01

    1. The mechanism of the vasorelaxant effect of platelet activating factor (PAF) on rat thoracic aorta and the effect of aging on the PAF-induced relaxation were investigated. 2. PAF at concentrations causing relaxation induced marked increases in guanosine 3':5'-cyclic monophosphate (cyclic GMP) production, but did not induce an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP). 3. Removal of the endothelium by mechanical rubbing, and treatment with the PAF antagonists CV-3988, CV-6209 and FR-900452, the nitric oxide biosynthesis inhibitor, NG-nitro L-arginine, the radical scavenger, haemoglobin, and the soluble guanylate cyclase inhibitor, methylene blue, inhibited PAF-induced relaxation and abolished or attenuated PAF-stimulated cyclic GMP production. 4. The relaxation was greatest in arteries from rats aged 4 weeks. With an increase in age, the response of the arteries to PAF was attenuated. 5. Endothelium-dependent cyclic GMP production also decreased with increase in age of the rats. 6. These results suggest that PAF stimulates production of nitric oxide from L-arginine by acting on the PAF receptors in the endothelium, which in turn stimulates soluble guanylate cyclase in the smooth muscle cells, and so increases production of cyclic GMP, thus relaxing the arteries. Age-associated decrease in PAF-induced relaxation may result from a reduction of cyclic GMP formation. PMID:1358382

  13. Characterization of endothelium-derived relaxing factors released by bradykinin in human resistance arteries

    PubMed Central

    Ohlmann, P; Martínez, M C; Schneider, F; Stoclet, J C; Andriantsitohaina, R

    1997-01-01

    Relaxing factors released by the endothelium and their relative contribution to the endothelium-dependent relaxation produced by bradykinin (BK) in comparison with different vasodilator agents were investigated in human omental resistance arteries. BK produced an endothelium-dependent relaxation of arteries pre-contracted with the thromboxane A2 agonist, U46619. The B2 receptor antagonist, Hoe 140 (0.1, 1 and 10 μM), produced a parallel shift to the right of the concentration-response curve to BK with a pA2 of 7.75. Neither the cyclo-oxygenase inhibitor, indomethacin (10 μM) alone, the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME, 300 μM) alone, the nitric oxide scavenger, oxyhaemoglobin (Hb, 10 μM) alone, nor the combination of L-NAME plus Hb affected the concentration-response curve to BK. Conversely, the combination of indomethacin with either L-NAME or Hb attenuated but did not abolish the BK-induced relaxation. By contrast, the relaxations produced by the Ca2+ ionophore, calcimycin (A23187), and by the inhibitor of sarcoplasmic reticulum Ca2+-ATPase, thapsigargin (THAPS), were abolished in the presence of indomethacin plus L-NAME. Also, the presence of indomethacin plus L-NAME produced contraction of arteries with functional endothelium. The indomethacin plus L-NAME resistant component of BK relaxation was abolished in physiological solution (PSS) containing 40 mM KCl and vice versa. However, in the presence of KCl 40 mM, indomethacin plus L-NAME did not affect the nitric oxide donor, S-N-acetylpenicillamine-induced relaxation. The indomethacin plus L-NAME resistant component of the relaxation to BK was significantly attenuated by the K+ channel blocker tetrabutylammonium (TBA, 1 mM). However, it was not affected by other K+ channel blockers such as apamin (10 μM), 4-aminopyridine (100 μM), glibenclamide (10 μM), tetraethylammonium (10 mM) and charybdotoxin (50 nM). In the presence of indomethacin

  14. Upregulation of SK3 and IK1 Channels Contributes to the Enhanced Endothelial Calcium Signaling and the Preserved Coronary Relaxation in Obese Zucker Rats

    PubMed Central

    Climent, Belén; Moreno, Laura; Martínez, Pilar; Contreras, Cristina; Sánchez, Ana; Pérez-Vizcaíno, Francisco; García-Sacristán, Albino; Rivera, Luis; Prieto, Dolores

    2014-01-01

    Background and Aims Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals. Methods and Results In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer. Conclusions Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity. PMID:25302606

  15. Identification of Structural Relaxation in the Dielectric Response of Water

    NASA Astrophysics Data System (ADS)

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; Gainaru, Catalin

    2016-06-01

    One century ago pioneering dielectric results obtained for water and n -alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  16. Influenza A infection attenuates relaxation responses of mouse tracheal smooth muscle evoked by acrolein.

    PubMed

    Cheah, Esther Y; Mann, Tracy S; Burcham, Philip C; Henry, Peter J

    2015-02-15

    The airway epithelium is an important source of relaxant mediators, and damage to the epithelium caused by respiratory tract viruses may contribute to airway hyperreactivity. The aim of this study was to determine whether influenza A-induced epithelial damage would modulate relaxation responses evoked by acrolein, a toxic and prevalent component of smoke. Male BALB/c mice were inoculated intranasally with influenza A/PR-8/34 (VIRUS-infected) or allantoic fluid (SHAM-infected). On day 4 post-inoculation, isometric tension recording studies were conducted on carbachol pre-contracted tracheal segments isolated from VIRUS and SHAM mice. Relaxant responses to acrolein (30 μM) were markedly smaller in VIRUS segments compared to SHAM segments (2 ± 1% relaxation vs. 28 ± 5%, n=14, p<0.01). Similarly, relaxation responses of VIRUS segments to the neuropeptide substance P (SP) were greatly attenuated (1 ± 1% vs. 47 ± 6% evoked by 1 nM SP, n=14, p<0.001). Consistent with epithelial damage, PGE2 release in response to both acrolein and SP were reduced in VIRUS segments (>35% reduction, n=6, p<0.01), as determined using ELISA. In contrast, exogenous PGE2 was 2.8-fold more potent in VIRUS relative to SHAM segments (-log EC50 7.82 ± 0.14 vs. 7.38 ± 0.05, n=7, p<0.01) whilst responses of VIRUS segments to the β-adrenoceptor agonist isoprenaline were similar to SHAM segments. In conclusion, relaxation responses evoked by acrolein were profoundly diminished in tracheal segments isolated from influenza A-infected mice. The mechanism through which influenza A infection attenuates this response appears to involve reduced production of PGE2 in response to SP due to epithelial cell loss, and may provide insight into the airway hyperreactivity observed with influenza A infection.

  17. [Two types of relaxation responses mediated by cyclic GMP in cerebral arteries].

    PubMed

    Kanamaru, K; Waga, S; Kojima, T; Fujimoto, K

    1989-06-01

    It has been reported that endothelium-derived relaxing factor (EDRF) possesses chemical and pharmacological properties that are indistinguishable from those of nitric oxide (NO). Moreover, NO is the active chemical species responsible for endothelium-independent vasodilation produced by nitrogen oxide-containing substances including glyceryl trinitrate (GTN). Both EDRF and GTN activate soluble guanylate cyclase and consequently increase cyclic GMP level in various artery preparations. However, there have been few reports regarding cyclic GMP accumulation induced by EDRF or GTN in canine cerebral arteries. Therefore, it was investigated whether EDRF and GTN cause vasodilation through the common pathway mediated by cyclic GMP in the canine basilar artery. The relaxation responses induced by EDRF or GTN were studied in the canine basilar artery by an isometric tension-recording method. EDRF was induced by calcium ionophore A 23187. A 23187 did not relax the vascular tissue in the absence of the endothelial cells. On the other hand, GTN did induce relaxation in either the presence or absence of endothelial cells. FeSO4 at 3 X 10(-5) M reversed A23187-induced relaxation, but not GTN-induced relaxation (N = 10). Since Fe2+ is able to catalyse the formation of O2- in oxygenated phosphate buffer, these findings suggest that Fe2+ antagonizes EDRF by inactivating it via the generation of O2-. By the addition of 10(-5) M methylene blue, both A 23187- and GTN-induced relaxations were reversed (N = 8). Moreover, pretreatment with 10(-5) M methylene blue augmented contractile responses to 3 X 10(-6) M prostaglandin F2 alpha (N = 5).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Sex differences in the role of NADPH oxidases in endothelium-dependent vasorelaxation in porcine isolated coronary arteries.

    PubMed

    Wong, Pui San; Randall, Michael D; Roberts, Richard E

    2015-09-01

    The present study examined whether vascular function, expression and activity of NADPH oxidases differ between sexes in porcine isolated coronary arteries (PCAs) using selective Nox inhibitors, ML-171 and VAS2870. Vascular responses of distal PCAs were examined under myographic conditions in the presence of a range of inhibitors. Nox activity in PCA homogenates was assessed using lucigenin-enhanced chemiluminescence. Protein expression of Nox1, Nox2 and Nox4 was compared using Western immunoblotting. The presence of ML-171 or DPI had no effect on the bradykinin-induced vasorelaxation in PCAs from females. In males, DPI shifted the EC50 2.8-fold to the right. In the presence of L-NAME and indomethacin, DPI and ML-171 had no effect in females, but enhanced the bradykinin-induced vasorelaxation in males. ML-171 had no effect on the forskolin-induced vasorelaxation but decreased the potency of U46619-induced tone in both sexes in the absence or presence of endothelium. VAS2870 had no effect on the bradykinin-induced vasorelaxation in both sexes but reduces the EDH-type response in males only. Nox activity was reduced by DPI and ML-171, but not VAS2870 in PCAs from both sexes. Protein expression of Nox1 and Nox2 in PCAs was higher in males compared to females whereas Nox4 was higher in females. Inhibition of Nox with ML-171 enhances while VAS2870 reduces the EDH-type response in PCAs from males but not females. This indicates that Nox-generated ROS play a role in the EDH-type response in males with differences attributed to the differential expression of Nox isoforms. This may underlie the greater oxidative stress observed in males. PMID:25872163

  19. The effects of behavior therapy, self-relaxation, and transcendental meditation on cardiovascular stress response.

    PubMed

    Puente, A E; Beiman, I

    1980-01-01

    Compared Behavior Therapy (BT), self-relaxation (SR), transcendental meditation (TM), and a waiting-list control group (WL) on measures of cardiovascular and subjective stress response. Male and female respondents (N = 60) to an ad for therapy were evaluated in assessment sessions before and after treatment. The results indicate that BT and SR were more effective than either TM or WL in reducing cardiovascular stress response. These data were interpreted as resulting from therapeutic suggestion and positively reinforced client progress.

  20. AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension

    PubMed Central

    Sonkusare, Swapnil K.; Dalsgaard, Thomas; Bonev, Adrian D.; Hill-Eubanks, David C.; Kotlikoff, Michael I.; Scott, John D.; Santana, Luis F.; Nelson, Mark T.

    2015-01-01

    Endothelial cell dysfunction, characterized by a diminished response to endothelial cell–dependent vasodilators, is a hallmark of hypertension. TRPV4 channels play a major role in endothelial-dependent vaso-dilation, a function mediated by local Ca2+ influx through clusters of functionally coupled TRPV4 channels rather than by a global increase in endothelial cell Ca2+. We showed that stimulation of muscarinic acetylcholine receptors on endothelial cells of mouse arteries exclusively activated TRPV4 channels that were localized at myoendothelial projections (MEPs), specialized regions of endothelial cells that contact smooth muscle cells. Muscarinic receptor–mediated activation of TRPV4 depended on protein kinase C (PKC) and the PKC-anchoring protein AKAP150, which was concentrated at MEPs. Cooperative opening of clustered TRPV4 channels specifically amplified Ca2+ influx at MEPs. Cooperativity of TRPV4 channels at non-MEP sites was much lower, and cooperativity at MEPs was greatly reduced by chelation of intracellular Ca2+ or AKAP150 knockout, suggesting that Ca2+ entering through adjacent channels underlies the AKAP150-dependent potentiation of TRPV4 activity. In a mouse model of angiotensin II–induced hypertension, MEP localization of AKAP150 was disrupted, muscarinic receptor stimulation did not activate TRPV4 channels, cooperativity among TRPV4 channels at MEPs was weaker, and vasodilation in response to muscarinic receptor stimulation was reduced. Thus, endothelial-dependent dilation of resistance arteries is enabled by MEP-localized AKAP150, which ensures the proximity of PKC to TRPV4 channels and the coupled channel gating necessary for efficient communication from endothelial to smooth muscle cells in arteries. Disruption of this molecular assembly may contribute to altered blood flow in hypertension. PMID:25005230

  1. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    PubMed

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  2. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect

    PubMed Central

    Celotto, A.C.; Ferreira, L.G.; Capellini, V.K.; Albuquerque, A.A.S.; Rodrigues, A.J.; Evora, P.R.B.

    2015-01-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  3. Exercise training-enhanced, endothelium-dependent dilation mediated by altered regulation of BKCa channels in collateral-dependent porcine coronary arterioles

    PubMed Central

    Xie, Wei; Parker, Janet L.; Heaps, Cristine L.

    2012-01-01

    Objective Test the hypothesis that exercise training increases the contribution of large-conductance, Ca2+-dependent K+ (BKCa) channels to endothelium-mediated dilation in coronary arterioles from collateral-dependent myocardial regions of chronically occluded pig hearts and may function downstream of H2O2. Methods An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomly assigned to sedentary or exercise training (treadmill; 14 wk) regimens. Results Exercise training significantly enhanced bradykinin-mediated dilation in collateral-dependent arterioles (~125 μm diameter) compared with sedentary pigs. The BKCa-channel blocker, iberiotoxin alone or in combination with the H2O2 scavenger, polyethylene glycol catalase, reversed exercise training-enhanced dilation in collateral-dependent arterioles. Iberiotoxin-sensitive whole-cell K+ currents (i.e., BKCa-channel currents) were not different between smooth muscle cells of nonoccluded and collateral-dependent arterioles of sedentary and exercise trained groups. Conclusions These data provide evidence that BKCa-channel activity contributes to exercise training-enhanced endothelium-dependent dilation in collateral-dependent coronary arterioles despite no change in smooth muscle BKCa-channel current. Taken together, our findings suggest that a component of the bradykinin signaling pathway, which stimulates BKCa channels, is enhanced by exercise training in collateral-dependent arterioles and suggest a potential role for H2O2 as the mediator. PMID:23002811

  4. Cilostazol Enhances Mobilization of Circulating Endothelial Progenitor Cells and Improves Endothelium-Dependent Function in Patients at High Risk of Cardiovascular Disease.

    PubMed

    Chao, Ting-Hsing; Chen, I-Chih; Lee, Cheng-Han; Chen, Ju-Yi; Tsai, Wei-Chuan; Li, Yi-Heng; Tseng, Shih-Ya; Tsai, Liang-Miin; Tseng, Wei-Kung

    2016-08-01

    This is the first study to investigate the vasculoangiogenic effects of cilostazol on endothelial progenitor cells (EPCs) and flow-mediated dilatation (FMD) in patients at high risk of cardiovascular disease (CVD). This double-blind, placebo-controlled study included 71 patients (37 received 200 mg/d cilostazol and 34 received placebo for 12 weeks). Use of cilostazol, but not placebo, significantly increased circulating EPC (kinase insert domain receptor(+)CD34(+)) counts (percentage changes: 149.0% [67.9%-497.8%] vs 71.9% [-31.8% to 236.5%], P = .024) and improved triglyceride and high-density lipoprotein cholesterol levels (P = .002 and P = .003, respectively). Plasma levels of vascular endothelial growth factor (VEGF)-A165 and FMD significantly increased (72.5% [32.9%-120.4%] vs -5.8% [-46.0% to 57.6%], P = .001; 232.8% ± 83.1% vs -46.9% ± 21.5%, P = .003, respectively) in cilostazol-treated patients. Changes in the plasma triglyceride levels significantly inversely correlated with the changes in the VEGF-A165 levels and FMD. Cilostazol significantly enhanced the mobilization of EPCs and improved endothelium-dependent function by modifying some metabolic and angiogenic markers in patients at high risk of CVD.

  5. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates. PMID:27130474

  6. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates.

  7. A factorial randomized controlled trial to evaluate the effect of micronutrients supplementation and regular aerobic exercise on maternal endothelium-dependent vasodilatation and oxidative stress of the newborn

    PubMed Central

    2011-01-01

    Background Many studies have suggested a relationship between metabolic abnormalities and impaired fetal growth with the development of non-transmissible chronic diseases in the adulthood. Moreover, it has been proposed that maternal factors such as endothelial function and oxidative stress are key mechanisms of both fetal metabolic alterations and subsequent development of non-transmissible chronic diseases. The objective of this project is to evaluate the effect of micronutrient supplementation and regular aerobic exercise on endothelium-dependent vasodilation maternal and stress oxidative of the newborn. Methods and design 320 pregnant women attending to usual prenatal care in Cali, Colombia will be included in a factorial randomized controlled trial. Women will be assigned to the following intervention groups: 1. Control group: usual prenatal care (PC) and placebo (maltodextrine). 2. Exercise group: PC, placebo and aerobic physical exercise. 3. Micronutrients group: PC and a micronutrients capsule consisting of zinc (30 mg), selenium (70 μg), vitamin A (400 μg), alphatocopherol (30 mg), vitamin C (200 mg), and niacin (100 mg). 4. Combined interventions Group: PC, supplementation of micronutrients, and aerobic physical exercise. Anthropometric measures will be taken at the start and at the end of the interventions. Discussion Since in previous studies has been showed that the maternal endothelial function and oxidative stress are related to oxidative stress of the newborn, this study proposes that complementation with micronutrients during pregnancy and/or regular physical exercise can be an early and innovative alternative to strengthen the prevention of chronic diseases in the population. Trial registration NCT00872365. PMID:21356082

  8. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO.

    PubMed

    Najibi, S; Cohen, R A

    1995-09-01

    Endothelium-dependent relaxations to acetylcholine remain normal in the carotid artery of hypercholesterolemic rabbits, but unlike endothelium-dependent relaxations of normal rabbits, they are inhibited by charybdotoxin, a specific blocker of Ca(2+)-dependent K+ channels. Because nitric oxide (NO) is the mediator of endothelium-dependent relaxation and can activate Ca(2+)-dependent K+ channels directly or via guanosine 3',5'-cyclic monophosphate, the present study investigated the role of Ca(2+)-dependent K+ channels in relaxations caused by NO, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-Brc-GMP) in hypercholesterolemic rabbit carotid artery. Isometric tension was measured in rabbit carotid artery denuded of endothelium from normal and hypercholesterolemic rabbits which were fed 0.5% cholesterol for 12 wk. Under control conditions, relaxations to all agents were similar in normal and hypercholesterolemic rabbit arteries. Charybdotoxin had no significant effect on relaxations of normal arteries to NO, sodium nitroprusside, or 8-BrcGMP, but the Ca(2+)-dependent K+ channel blocker significantly inhibited the relaxations caused by each of these agents in the arteries from hypercholesterolemic rabbits. By contrast, relaxations to the calcium channel blocker nifedipine were potentiated to a similar extent by charybdotoxin in both groups. In addition, arteries from hypercholesterolemic rabbits relaxed less than normal to sodium nitroprusside when contracted with depolarizing potassium solution. These results indicate that although nitrovasodilator relaxations are normal in the hypercholesterolemic rabbit carotid artery, they are mediated differently, and to a greater extent, by Ca(2+)-dependent K+ channels. These data also suggest that K+ channel-independent mechanism(s) are impaired in hypercholesterolemia. PMID:7573521

  9. Enhanced role of potassium channels in relaxations to acetylcholine in hypercholesterolemic rabbit carotid artery.

    PubMed

    Najibi, S; Cowan, C L; Palacino, J J; Cohen, R A

    1994-05-01

    The effect of hypercholesterolemia for 10 wk on endothelium-dependent relaxations to acetylcholine was studied in isolated rings of rabbit carotid artery and abdominal aorta contracted with phenylephrine or elevated potassium. In these arteries obtained from hypercholesterolemic rabbits, endothelium-dependent relaxations to acetylcholine were not significantly different from those of normal rabbits. In normal and hypercholesterolemic arteries, partial relaxation persisted in the presence of NG-nitro-L-arginine methyl ester (L-NAME), which blocked acetylcholine-induced increases in arterial guanosine 3',5'-cyclic monophosphate (cGMP). Combined treatment with L-NAME and the calcium-dependent potassium-channel inhibitor, charybdotoxin, blocked relaxations in both groups, suggesting that L-NAME-resistant relaxations are mediated by an endothelium-derived hyperpolarizing factor. Charybdotoxin alone or depolarizing potassium had no significant effect on normal carotid artery or normal and hypercholesterolemic abdominal aorta but significantly inhibited relaxations of the carotid artery from cholesterol-fed rabbits. The enhanced role of calcium-dependent potassium channels and the hyperpolarizing factor in relaxation of the hypercholesterolemic carotid artery suggested by these results was likely related to the fact that acetylcholine failed to stimulate cGMP only in that artery. These data suggest that endothelium-dependent relaxation in these rabbit arteries is mediated by nitric oxide-cGMP-dependent and -independent mechanisms. In hypercholesterolemia, the contribution of nitric oxide-cGMP in the carotid artery is reduced, but a hyperpolarizing factor and calcium-dependent potassium channels maintain normal acetylcholine-induced relaxation. PMID:7515589

  10. Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback.

    PubMed

    Lee, Hyun Joon; Shim, Jeong Hyun; Moon, Han Seb; Kim, Kiwoong

    2014-08-25

    We demonstrate that the use of negative feedback extends the detection bandwidth of an atomic magnetometer in a spin-exchange relaxation free (SERF) regime. A flat-frequency response from zero to 190 Hz was achieved, which is nearly a three-fold enhancement while maintaining sensitivity, 3 fT/Hz1/2 at 100 Hz. With the extension of the bandwidth, the linear correlation between measured signals and a magne-tocardiographic field synthesized for comparison was increased from 0.21 to 0.74. This result supports the feasibility of measuring weak biomagnetic signals containing multiple frequency components using a SERF atomic magnetometer under negative feedback.

  11. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    NASA Astrophysics Data System (ADS)

    Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.

    2010-02-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.

  12. Substance P-induced relaxation and hyperpolarization in human cerebral arteries.

    PubMed Central

    Petersson, J.; Zygmunt, P. M.; Brandt, L.; Högestätt, E. D.

    1995-01-01

    1. Vascular effects of substance P were studied in human isolated pial arteries removed from 14 patients undergoing cerebral cortical resection. 2. Substance P induced a concentration-dependent relaxation in the presence of indomethacin. No relaxation was seen in arteries where the endothelium had been removed. 3. N omega-nitro-L-arginine (L-NOARG, 0.3 mM) abolished the relaxation in arteries from six patients. The relaxation was only partially inhibited in the remaining eight patients, the reduction of the maximum relaxation being less than 50% in each patient. 4. The L-NOARG-resistant relaxation was abolished when the external K+ concentration was raised above 30 mM. 5. Substance P caused a smooth muscle hyperpolarization (in the presence of L-NOARG and indomethacin), but only when the artery showed an L-NOARG-resistant relaxation. 6. The results indicate that nitric oxide is an important mediator of endothelium-dependent relaxation in human cerebral arteries. Furthermore, another endothelium-dependent pathway, causing hyperpolarization and vasodilatation, was identified in arteries from more than half the population of patients. PMID:7582516

  13. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  14. Effects of portal hypertension on responsiveness of rat mesenteric artery and aorta.

    PubMed Central

    Cawley, T; Geraghty, J; Osborne, H; Docherty, J R

    1995-01-01

    1. We have examined the effects of pre-hepatic portal hypertension on the responsiveness of rat small mesenteric arteries and aorta. Rats were made portal hypertensive by creating a calibrated portal vein stenosis, or sham-operated. 2. In rat mesenteric arteries, there was no significant difference between portal hypertensive and sham-operated animals in the contractile potency of noradrenaline (NA), but the maximum contractile responses to NA, U46619 and KCl were significantly increased in vessels from portal hypertensive animals. This altered maximum contractile response was not due to alterations in smooth muscle mass. 3. In rat mesenteric arteries, there were no significant differences between portal hypertensive and sham-operated animals in endothelium-dependent relaxations to acetylcholine (ACh). The difference between portal hypertensive and sham-operated rats in the maximum response to U46619 was maintained following a combination of methylene blue (1 microM) and NG-monomethyl-L-arginine (100 microM), suggesting that any differences in endothelial function do not explain differences in the response to vasoconstrictors. 4. In rat aorta, there were no significant differences between portal hypertensive and sham-operated animals in the contractile response to NA or KCl or in the endothelium-dependent relaxations to ACh. 5. In pithed rats, there was no difference between portal hypertensive and sham-operated animals in the pressor potency of NA. 6. It is concluded that portal hypertension produces an increase in the contractile response to the vasoconstrictors NA, U46619 and KCl in rat mesenteric arteries but not in the aorta. This suggests that the diminished responsiveness to vasoconstrictors reported in portal hypertensive rats in vivo is not due to a diminished responsiveness at the level of the vascular smooth muscle. PMID:7773539

  15. Stress-relaxation response of human menisci under confined compression conditions.

    PubMed

    Martin Seitz, Andreas; Galbusera, Fabio; Krais, Carina; Ignatius, Anita; Dürselen, Lutz

    2013-10-01

    The objective of this study was to determine the viscoelastic properties of human meniscal tissue during stress-relaxation under confined compression conditions. Lateral and medial longitudinal meniscus plugs of 25 donor knees (ntotal=150) were exposed to stress-relaxation tests under confined compression conditions at three compression levels (ε=0.1; 0.15; 0.2). Mathematical modelling using an exponential 1D-diffusion equation was used to predict the viscoelastic properties. Subsequently, finite element (FE) models were created using identical geometry, properties and test conditions as used for the in-vitro tests. Two constitutively different underlying mathematical formulations were applied to the FE models to reveal possible differences in their predictions for the relaxation response. While the first FE model mimicked the analytical model (FE1), the second FE model used a different biphasic, non-linear approach (FE2). Regression analyses showed promising coefficients of determination (R(2)>0.73) between the experimental data and the predictions obtained from the diffusion equation and the two FE models. Mean aggregate modulus, predicted with the diffusion equation (HA=64.0 kPa) was lower than those obtained with the two FE analyses (HA,FE1=91.9 kPa; HA,FE2=81.5 kPa). Mean hydraulic permeability (kFE2=1.5×10(-15)m(4)/Ns) of the second FE2 approach was statistically lower (p<0.01) than the other permeability values (k=3.9×10(-15)m(4)/Ns; kFE1=3.4×10(-15)m(4)/Ns). These differences are mainly due to the different underlying mathematical models used. However, when compared with corresponding literature, the results of the present study indicated good agreement. The results of the present study contribute to a better understanding of the complex nature of meniscal tissue and might also have an impact on the design of future meniscal substitutes. PMID:23811278

  16. Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin.

    PubMed Central

    Martínez, M C; Vila, J M; Aldasoro, M; Medina, P; Flor, B; Lluch, S

    1994-01-01

    1. The effects of vasopressin and deamino-8-D-arginine vasopressin (DDAVP, desmopressin) were studied in artery rings (0.8-1 mm in external diameter) obtained from portions of human omentum during the course of abdominal operations (27 patients). 2. In arterial rings under resting tension, vasopressin produced concentration-dependent, endothelium-independent contractions with an EC50 of 0.59 +/- 0.12 nM. The V1 antagonist d(CH2)5Tyr(Me)AVP (1 microM) and the mixed V1-V2 antagonist desGly-d(CH2)5D-Tyr(Et)ValAVP (0.01 microM) displaced the control curve to vasopressin to the right in a parallel manner without differences in the maximal responses. In the presence of indomethacin (1 microM) the contractile response to vasopressin was significantly increased (P < 0.01). 3. In precontracted arterial rings, previously treated with the V1 antagonist, d(CH2)5Tyr(Me)AVP (1 microM), vasopressin produced endothelium-dependent relaxation. This relaxation was reduced significantly (P < 0.05) by indomethacin (1 microM) and unaffected by the V1-V2 receptor antagonist desGly-d(CH2)5D-Tyr(Et)ValAVP (1 microM) or by NG-nitro-L-arginine methyl ester (L-NAME, 0.1 mM). 4. The selective V2 receptor agonist, DDAVP, caused endothelium-independent, concentration-dependent relaxations in precontracted arterial rings that were inhibited by the mixed V1-V2 receptor antagonist, but not by the V1 receptor antagonist or by pretreatment with indomethacin or L-NAME. 5. Results from this study suggest that vasopressin is primarily a constrictor of human mesenteric arteries by V1 receptor stimulation; vasopressin causes dilatation only during V1 receptor blockade. The relaxation appears to be mediated by the release of vasodilator prostaglandins from the endothelial cell layer and is independent of V2 receptor stimulation or release of nitric oxide.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834191

  17. Dependence of the time of the appearance of a Stark echo response on irreversible relaxation of a system

    NASA Astrophysics Data System (ADS)

    Akhmedshina, E. N.; Nefed'ev, L. A.; Garnaeva, G. I.

    2016-09-01

    The dependence of the time of the appearance of a Stark (gradient) echo response on the irreversible transverse relaxation time of a system in the nanosecond range and on the width of the excitation region of an inhomogeneously broadened line has been investigated. It has been shown that the use of nonresonant laser pulses with an artificially created spatial inhomogeneity makes it possible to determine the relaxation time in the nanosecond range from the time of the appearance of a Stark (gradient) echo response, which is a more accurate method than the method of determining the relaxation time from the decay of the intensity by varying time intervals of the exposure to inhomogeneous electromagnetic fields.

  18. Persistent photoconductivity in poly(p-phenylenevinylene): Spectral response and slow relaxation

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Yu, G.; Heeger, A. J.

    1993-06-01

    We report the spectral response and slow decay of the steady-state photoconductivity in poly(p-phenylenevinylene) (PPV) films. The spectral response of the photoconductivity is in good agreement with that calculated from the absorption data with the assumption of rapid recombination at the surface of the film; the results indicate direct photogeneration of free charge carriers via an interband transition. The photoconductivity is, therefore, consistent with a description of the electronic structure of PPV in terms of a semiconductor band model (rather than an exciton model). The very slow stretched-exponential relaxation of the photoinduced conductivity is reminiscent of the persistent photoconductivity observed in inorganic semiconductors. By assuming that the photocurrent is carried predominantly by mobile polarons near the surface, one can construct a model for the persistent photoconductivity in which the recombination of long-lived bipolarons is inhibited in the bulk where bipolarons have a lower free energy than polarons. The persistent photoconductivity, therefore, is caused by the slow dispersive diffusion of photogenerated bipolarons to the surface where they dissociate into polarons and where both polaron transport and recombination occur.

  19. Electrical responses and dielectric relaxations in giant permittivity NaCu3Ti3TaO12 ceramics

    NASA Astrophysics Data System (ADS)

    Sangwong, Nuchjarin; Somphan, Weeraya; Thongbai, Prasit; Yamwong, Teerapon; Meansiri, Santi

    2012-08-01

    Dielectric relaxations and electrical responses in NaCu3Ti3TaO12 ceramics were investigated as a function of temperature. NaCu3Ti3TaO12 ceramics exhibit giant dielectric constants with values of ɛ'˜1.45-2.08×104. Two sets of thermally activated dielectric relaxations were observed in low and high temperature ranges. Sintering conditions have an insignificant influence on the microstructure of NaCu3Ti3TaO12 ceramics, and have a slight impact on their ɛ' values. Thermally activated electrical responses of grains and grain boundaries have been studied at different temperatures by using complex admittance and impedance spectroscopy analyses, respectively. The low temperature relaxation mechanism is found to correlate closely with electrical response of semiconducting grains; whereas the apparent high ɛ' values are attributed to electrical response of insulating grain boundaries. These results support the internal barrier layer capacitor model to explain the giant dielectric properties of NaCu3Ti3TaO12 ceramics. Additionally, high temperature relaxation may be attributed to the sample-electrode effect and/or defect ordering.

  20. Predicting Differential Response to EMG Biofeedback and Relaxation Training: The Role of Cognitive Structure.

    ERIC Educational Resources Information Center

    Hart, James D.

    1984-01-01

    Analyzed treatment outcome data for 102 headache patients who had been assigned randomly to receive either EMG biofeedback (N=70) or relaxation training (N=32). Analysis demonstrated that relaxation training was significantly more effective than biofeedback and that mixed headache patients improved significantly less than either migraine or…

  1. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    PubMed

    Bhasin, Manoj K; Dusek, Jeffery A; Chang, Bei-Hung; Joseph, Marie G; Denninger, John W; Fricchione, Gregory L; Benson, Herbert; Libermann, Towia A

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress. PMID:23650531

  2. Relaxation response of A533B steel from 25 to 600/degree/C

    SciTech Connect

    Swindeman, R.W.; Bolling, E.

    1989-01-01

    Relaxation tests were performed on A533B steel over the range 25 to 600/degree/C in order to examine the general features of time- dependent deformation. It was found that the relaxation strength increased with the flow stress at low temperatures and was relatively independent of history at high temperatures. In the temperature range 400 to 600/degree/C the inelastic strain rates calculated from the relaxation rates followed stress dependencies that were consistent with expectations based on a model proposed by Hart and coworkers for matrix deformation. 21 refs., 10 figs.

  3. Evaluation of meditation and relaxation on physiological response during the performance of fine motor and gross motor tasks.

    PubMed

    Wood, C J

    1986-02-01

    This study investigated the effects of meditation/relaxation on physiological responses during the performance of a fine motor and a gross motor task. A pretest-posttest control group, randomized-blocks design was used to study a group of 16 meditators and a group of 16 nonmeditators, subgroups of each who relaxed prior to performing on a pursuit-rotor tracking device as a fine motor task and to performing the Luft cycle ergometer protocol to a heart rate of 70% of age-adjusted maximum heart rate as a gross motor task. During each of these tasks heart rate, systolic blood pressure, rate-pressure-product, and EMG activity of the frontalis muscle were monitored. No significant difference in the performance of either the fine motor or the gross motor task was noted for persons practicing meditation and persons who were nonmeditators but were given the opportunity to relax prior to a motor task. Likewise, no significant difference was noted in the pattern of response to the imposed fine motor or gross motor task by meditators or relaxed nonmeditators.

  4. TNF-α knockout mice have increased corpora cavernosa relaxation

    PubMed Central

    2010-01-01

    Introduction Erectile dysfunction (ED) is considered an early clinical manifestation of vascular disease and an independent risk factor for cardiovascular events associated with endothelial dysfunction and increased levels of pro-inflammatory cytokines. Tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine, suppresses endothelial nitric oxide synthase (eNOS) expression. Aim Considering that nitric oxide (NO) is of critical importance in penile erection, we hypothesized that blockade of TNF-α actions would increase cavernosal smooth muscle relaxation through an increase in NOS expression. Methods In vitro organ bath studies were used to measure cavernosal reactivity in wild type and TNF-α knockout (TNF-α KO) mice and NOS expression was evaluated by western blot. In addition, spontaneous erections (in vivo) were evaluated by videomonitoring the animals (30 min.). Collagen and elastin expression were evaluated by Masson trichrome and Verhoff-van Gieson stain reaction, respectively. Main Outcome Measures Corpora cavernosa from TNF-α KO mice exhibited increased NO-dependent relaxation, which was associated with increased eNOS and neuronal NOS (nNOS) cavernosal expression. Results Cavernosal strips from TNF-α KO mice displayed increased endothelium-dependent [97.4±5.3 vs Control: 76.3±6.3, %] and nonadrenergic-noncholinergic (NANC) [93.3±3.0 vs Control: 67.5±16.0; 16 Hz] relaxation compared to control animals. These responses were associated with increased protein expression of eNOS and nNOS (p<0.05). Sympathetic-mediated [0.69±0.16 vs Control: 1.22±0.22; 16 Hz] as well as phenylephrine-induced contractile responses [1.6±0.1 vs Control: 2.5±0.1, mN] were attenuated in cavernosal strips from TNF-α KO mice. Additionally, corpora cavernosa from TNF-α KO mice displayed increased collagen and elastin expression. In vivo experiments demonstrated that TNF-α KO mice display increased number of spontaneous erections. Conclusion Corpora cavernosa from

  5. Changes in the flexion relaxation response induced by lumbar muscle fatigue

    PubMed Central

    Descarreaux, Martin; Lafond, Danik; Jeffrey-Gauthier, Renaud; Centomo, Hugo; Cantin, Vincent

    2008-01-01

    Background The flexion relaxation phenomenon (FRP) is an interesting model to study the modulation of lumbar stability. Previous investigations have explored the effect of load, angular velocity and posture on this particular response. However, the influence of muscular fatigue on FRP parameters has not been thoroughly examined. The objective of the study is to identify the effect of erector spinae (ES) muscle fatigue and spine loading on myoelectric silence onset and cessation in healthy individuals during a flexion-extension task. Methods Twenty healthy subjects participated in this study and performed blocks of 3 complete trunk flexions under 4 different experimental conditions: no fatigue/no load (1), no fatigue/load (2), fatigue/no load(3), and fatigue/load (4). Fatigue was induced according to the Sorenson protocol, and electromyographic (EMG) power spectral analysis confirmed that muscular fatigue was adequate in each subject. Trunk and pelvis angles and surface EMG of the ES L2 and L5 were recorded during a flexion-extension task. Trunk flexion angle corresponding to the onset and cessation of myoelectric silence was then compared across the different experimental conditions using 2 × 2 repeated-measures ANOVA. Results Onset of myoelectric silence during the flexion motion appeared earlier after the fatigue task. Additionally, the cessation of myoelectric silence was observed later during the extension after the fatigue task. Statistical analysis also yielded a main effect of load, indicating a persistence of ES myoelectric activity in flexion during the load condition. Conclusion The results of this study suggest that the presence of fatigue of the ES muscles modifies the FRP. Superficial back muscle fatigue seems to induce a shift in load-sharing towards passive stabilizing structures. The loss of muscle contribution together with or without laxity in the viscoelastic tissues may have a substantial impact on post fatigue stability. PMID:18218087

  6. Involvement of large-conductance Ca(2+) -activated K(+) channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries.

    PubMed

    Király, István; Pataricza, János; Bajory, Zoltán; Simonsen, Ulf; Varro, András; Papp, Julius Gy; Pajor, Lászlo; Kun, Attila

    2013-07-01

    Large-conductance Ca(2+) -activated K(+) channels (BKC a ), located on the vascular smooth muscle, play an important role in regulation of vascular tone. In penile corpus cavernosum tissue, opening of BKC a channels leads to relaxation of corporal smooth muscle, which is essential during erection; however, there is little information on the role of BKC a channels located in penile vascular smooth muscle. This study was designed to investigate the involvement of BKC a channels in endothelium-dependent and endothelium-independent relaxation of human intracavernous penile arteries. In human intracavernous arteries obtained in connection with transsexual operations, change in isometric force was recorded in microvascular myographs, and endothelium-dependent [nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type] and endothelium-independent (NO-donor) relaxations were measured in contracted arteries. In penile small arteries contracted with phenylephrine, acetylcholine evoked NO- and EDH-type relaxations, which were sensitive to iberiotoxin (IbTX), a selective blocker of BKC a channels. Iberiotoxin also inhibited relaxations induced by a NO-donor, sodium nitroprusside. NS11021, a selective opener of BKC a channels, evoked pronounced relaxations that were inhibited in the presence of IbTX. NS13558, a BKC a -inactive analogue of NS11021, failed to relax human penile small arteries. Our results show that BKC a channels are involved in both NO- and EDH-type relaxation of intracavernous penile arteries obtained from healthy men. The effect of a selective opener of BKC a channels also suggests that direct activation of the channel may be an advantageous approach for treatment of impaired endothelium-dependent relaxation often associated with erectile dysfunction.

  7. Meditation and psychotherapy: a rationale for the integration of dynamic psychotherapy, the relaxation response, and mindfulness meditation.

    PubMed

    Kutz, I; Borysenko, J Z; Benson, H

    1985-01-01

    A framework for the integration of meditation and psychotherapy is presented through a consideration of the psychobiological nature of meditation (the relaxation response) and discussion of a traditional meditation practice (mindfulness meditation) as an effective cognitive technique for the development of self-awareness. The mechanisms by which the emotional and cognitive changes of meditation can be of therapeutic value are explored and the synergistic advantages of the combination of psychotherapy and meditation are discussed.

  8. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF

    PubMed Central

    Zygmunt, Peter M; Plane, Frances; Paulsson, Marie; Garland, Christopher J; Högestätt, Edward D

    1998-01-01

    In rat isolated hepatic arteries contracted with phenylephrine, acetylcholine and the calcium ionophore A23187 each elicit endothelium-dependent relaxations, which involve both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). However, the contribution of prostanoids to these responses, and the potential interaction between EDHF and other endothelium-derived relaxing factors have not been examined.In the presence of the NO synthase inhibitor NG-nitro-L-arginine (L-NOARG, 0.3 mM) and a mixture of charybdotoxin (0.3 μM) and apamin (0.3 μM), inhibitors of the target potassium (K) channel(s) for EDHF, acetylcholine and A23187 each induced a concentration-dependent and almost complete relaxation, which was abolished in the additional presence of indomethacin (10 μM). Thus, in addition to EDHF and NO, a relaxing factor(s) generated by cyclo-oxygenase (COX) contributes to endothelium-dependent relaxation in the rat hepatic artery.The resting membrane potentials of endothelium-intact and endothelium-denuded vascular segments were −57 mV and −52 mV, respectively (P>0.05). In intact arteries, the resting membrane potential was not affected by L-NOARG plus indomethacin, but reduced to −47 mV in the presence of charybdotoxin plus apamin. Acetylcholine and A23187 (10 μM each) elicited a hyperpolarization of 13 mV and 15 mV, respectively. The hyperpolarization induced by these agents was not affected by L-NOARG plus indomethacin (12 mV and 14 mV, respectively), but reduced in the presence of charybdotoxin plus apamin (7 mV and 10 mV, respectively), and abolished in the combined presence of charybdotoxin, apamin and indomethacin.The NO donor 3-morpholino-sydnonimine (SIN-1) induced a concentration-dependent relaxation, which was unaffected by charybdotoxin plus apamin, but abolished by the selective soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μM). SIN-1 (10 μM) did not

  9. Silicic acid in drinking water prevents age-related alterations in the endothelium-dependent vascular relaxation modulating eNOS and AQP1 expression in experimental mice: an immunohistochemical study.

    PubMed

    Buffoli, Barbara; Foglio, Eleonora; Borsani, Elisa; Exley, Christopher; Rezzani, Rita; Rodella, Luigi Fabrizio

    2013-06-01

    The maintenance of endothelial integrity is of great importance in coping with age-related vascular alterations. Endothelium-derived nitric oxide is one of the various vasoactive substances able to regulate vascular tone and homeostasis, and whose decrease is known to be related with senescence in endothelial cells. There are reports on the efficacy of silicon, especially as silicic acid, in protecting vascular integrity during age-related vascular diseases. The aim of this study was to evaluate the ability of supplementation of silicic acid in drinking water in the maintenance of vascular health in a mouse model of early physiological aging. In particular, we evaluated the relationship between Si supplementation and endothelial nitric oxide synthase (eNOS) expression, taking into account also the aquaporin-1 (AQP-1) isoform that, as recently reported, seems to be involved in nitric oxide transport across cell membranes. Our results showed that silicic acid supplementation increased both eNOS and AQP-1 expression, suggesting that silicic acid modulation of endothelial nitric oxide synthase and aquaporin-1 could represent a potential strategy against age-related vascular senescence.

  10. Integrating a Relaxation Response-Based Curriculum into a Public High School in Massachusetts

    ERIC Educational Resources Information Center

    Foret, Megan M.; Scult, Matthew; Wilcher, Marilyn; Chudnofsky, Rana; Malloy, Laura; Hasheminejad, Nicole; Park, Elyse R.

    2012-01-01

    Academic and societal pressures result in U.S. high school students feeling stressed. Stress management and relaxation interventions may help students increase resiliency to stress and overall well-being. The objectives of this study were to examine the feasibility (enrollment, participation and acceptability) and potential effectiveness (changes…

  11. Relaxation Training and Opioid Inhibition of Blood Pressure Response to Stress.

    ERIC Educational Resources Information Center

    McCubbin, James A.; And Others

    1996-01-01

    Sought to determine the role of endogenous opioid mechanisms in the circulatory effects of relaxation training. Subjects were 32 young men with mildly elevated casual arterial pressure. Assessed opioid mechanisms by examining the effects of opioid receptor blockade with naltrexone on acute cardiovascular reactivity to laboratory stress before and…

  12. Local CC2 response method based on the Laplace transform: orbital-relaxed first-order properties for excited states.

    PubMed

    Ledermüller, Katrin; Kats, Daniel; Schütz, Martin

    2013-08-28

    A multistate local CC2 response method for the calculation of orbital-relaxed first order properties is presented for ground and electronically excited states. It enables the treatment of excited state properties including orbital relaxation for extended molecular systems and is a major step on the way towards analytic gradients with respect to nuclear displacements. The Laplace transform method is employed to partition the eigenvalue problem and the lambda equations, i.e., the doubles parts of these equations are inverted on-the-fly, leaving only the corresponding effective singles equations to be solved iteratively. Furthermore, the state specific local approximations are adaptive. Density-fitting is utilized to decompose the electron-repulsion integrals. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated on the example of an organic sensitizer for solar-cell applications, which consists of about 100 atoms.

  13. Local CC2 response method based on the Laplace transform: Orbital-relaxed first-order properties for excited states

    NASA Astrophysics Data System (ADS)

    Ledermüller, Katrin; Kats, Daniel; Schütz, Martin

    2013-08-01

    A multistate local CC2 response method for the calculation of orbital-relaxed first order properties is presented for ground and electronically excited states. It enables the treatment of excited state properties including orbital relaxation for extended molecular systems and is a major step on the way towards analytic gradients with respect to nuclear displacements. The Laplace transform method is employed to partition the eigenvalue problem and the lambda equations, i.e., the doubles parts of these equations are inverted on-the-fly, leaving only the corresponding effective singles equations to be solved iteratively. Furthermore, the state specific local approximations are adaptive. Density-fitting is utilized to decompose the electron-repulsion integrals. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated on the example of an organic sensitizer for solar-cell applications, which consists of about 100 atoms.

  14. Possible involvement of ATP-sensitive K+ channels in the relaxant response of dog middle cerebral artery to cromakalim

    SciTech Connect

    Masuzawa, K.; Asano, M.; Matsuda, T.; Imaizumi, Y.; Watanabe, M. )

    1990-11-01

    To determine the functions of ATP-sensitive K+ (KATP) channels in cerebral arterial smooth muscle, the effects of cromakalim, an opener of these channels, on tension and 86Rb efflux were investigated in endothelium-removed strips of dog middle cerebral arteries (MCAs). Cromakalim relaxed the strips that were precontracted with 20.9 mM K+ with a small maximum response. The relaxant responses to cromakalim were competitively antagonized by glibenclamide, a blocker of KATP channels. In strips precontracted with 65.9 mM K+, cromakalim failed to relax the strips. The addition of cromakalim to a resting strip caused a dose-dependent relaxation. In the resting strips of MCAs preloaded with 86Rb, cromakalim did not increase the 86Rb efflux. With 42K as the tracer ion, cromakalim still had no effect on the efflux from the resting strips. On the other hand, cromakalim increased the 86Rb and 42K efflux from the strips of dog coronary arteries (CAs). In 20.9 mM K(+)-contracted strips of MCAs, cromakalim significantly decreased the 86Rb efflux. However, after the inactivation of Ca(++)-activated K+ channels by the addition of 1 x 10(-7) M nifedipine to the 20.9 mM K(+)-contracted strips of MCAs, cromakalim produced a small but significant increase in the 86Rb efflux. Similarly, when the resting strips of MCAs were placed in the Ca(++)-free 12 mM-Mg(+)+ solution, cromakalim increased the 86Rb efflux. In 65.9 mM K(+)-contracted strips, cromakalim increased the 86Rb efflux from both arteries. However, the extent of the increase in 86Rb efflux was significantly smaller in the MCA than in the CA.

  15. Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.

    2015-03-01

    Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.

  16. The large strain response of polypropylene in multiaxial stretching and stress relaxation

    NASA Astrophysics Data System (ADS)

    Sweeney, J.; Caton-Rose, P.; Spencer, P. E.; O'Conner, C.; Martin, P. J.; Menary, G.

    2011-05-01

    In this study, a biaxial testing machine is used to stretch polypropylene sheet at elevated temperatures (150-160° C) in a number of modes, including simultaneous equibiaxial and a sequential mode that consists of planar extension followed by a second perpendicular extension to achieve a final equibiaxial state. On completion of the stretching process the applied forces continue to be monitored to give further data on stress relaxation. A constitutive model is devised that combines the Eyring process and large strain elastic theory. A Guiu-Pratt model, including a single Eyring process, is fitted to the stress relaxation curves and produces values of Eyring parameters. Fits are improved if the initial part of the curve is excluded, indicating that the activation volume derived relates to a process in the relatively long term. In support of this, the strain rate dependence of the loading curves indicates a quite different value of activation volume. A two-process model is derived with parameter values deduced from these two types of fit, and implemented in a finite element package. Its capability of modelling the whole of the stress relaxation curve is explored.

  17. Childhood Trauma and Neural Responses to Personalized Stress, Favorite-Food and Neutral-Relaxing Cues in Adolescents

    PubMed Central

    Elsey, James; Coates, Alice; Lacadie, Cheryl M; McCrory, Eamon J; Sinha, Rajita; Mayes, Linda C; Potenza, Marc N

    2015-01-01

    Previous studies have found childhood trauma to be associated with functional and structural abnormalities in corticostriatal-limbic brain regions, which may explain the associations between trauma and negative mental and physical health outcomes. However, functional neuroimaging of maltreatment-related trauma has been limited by largely using generic and predominantly aversive stimuli. Personalized stress, favorite-food, and neutral/relaxing cues during functional magnetic resonance imaging were used to probe the neural correlates of emotional/motivational states in adolescents with varying exposure to maltreatment-related trauma. Sixty-four adolescents were stratified into high- or low-trauma-exposed groups. Cue-related measures of subjective anxiety and craving were collected. Relative to the low-trauma-exposed group, high-trauma-exposed adolescents displayed an increased activation of insula, anterior cingulate, and prefrontal cortex in response to stress cues. Activation in subcortical structures, including the hippocampus, was inversely correlated with subjective anxiety in the high- but not the low-trauma-exposed group. The high-trauma-exposed group displayed hypoactivity of cerebellar regions in response to neutral/relaxing cues. No group differences were observed in response to favorite-food cues. The relationship between trauma exposure and altered cortico-limbic circuitry may in part explain the association between childhood trauma and heightened vulnerability to emotional disturbances and risky behaviour. This may be particularly pertinent during adolescence when such difficulties often emerge. Further work is needed to elucidate the mechanism linking trauma to obesity. PMID:25567424

  18. The effects of relaxation response meditation on the symptoms of irritable bowel syndrome: results of a controlled treatment study.

    PubMed

    Keefer, L; Blanchard, E B

    2001-07-01

    In this study, Herbert Benson's (1975) Relaxation Response Meditation program was tested as a possible treatment for Irritable Bowel Syndrome (IBS). Participants were 16 adults who were matched into pairs based on presence of Axis I disorder, primary IBS symptoms and demographic features and randomized to either a six week meditation condition or a six week wait list symptom monitoring condition. Thirteen participants completed treatment and follow-up. All subjects assigned to the Wait List were subsequently treated. Patients in the treatment condition were taught the meditation technique and asked to practice it twice a day for 15 minutes. Composite Primary IBS Symptom Reduction (CPSR) scores were calculated for each patient from end of baseline to two weeks post-treatment (or to post wait list). One tailed independent sample t-tests revealed that Meditation was superior to the control (P=0.04). Significant within-subject improvements were noted for flatulence (P=0.03) and belching (P=0.02) by post-treatment. By three month follow-up, significant improvements in flatulence (P<0.01), belching (P=0.02), bloating (P=0.05), and diarrhea (P=0.03) were shown by symptom diary. Constipation approached significance (P=0.07). Benson's Relaxation Response Meditation appears to be a viable treatment for IBS.

  19. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure

    PubMed Central

    Lerch, Michael T.; López, Carlos J.; Yang, Zhongyu; Kreitman, Margaux J.; Horwitz, Joseph; Hubbell, Wayne L.

    2015-01-01

    Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306–E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron–electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111–114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2–3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape. PMID:25918400

  20. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise

    NASA Astrophysics Data System (ADS)

    Lim, Hyungkwang; Ahn, Hyung-Woo; Kornijcuk, Vladimir; Kim, Guhyun; Seok, Jun Yeong; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2016-05-01

    A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration.A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic

  1. Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue

    PubMed Central

    2010-01-01

    Background The flexion-relaxation phenomenon (FRP) is defined by reduced lumbar erector spinae (ES) muscle myoelectric activity during full trunk flexion. The objectives of this study were to quantify the effect of hip and back extensor muscle fatigue on FRP parameters and lumbopelvic kinematics. Methods Twenty-seven healthy adults performed flexion-extension tasks under 4 different experimental conditions: no fatigue/no load, no fatigue/load, fatigue/no load, and fatigue/load. Total flexion angle corresponding to the onset and cessation of myoelectric silence, hip flexion angle, lumbar flexion angle and maximal trunk flexion angle were compared across different experimental conditions by 2 × 2 (Load × Fatigue) repeated-measures ANOVA. Results The angle corresponding to the ES onset of myoelectric silence was reduced after the fatigue task, and loading the spine decreased the lumbar contribution to motion compared to the hip during both flexion and extension. A relative increment of lumbar spine motion compared to pelvic motion was also observed in fatigue conditions. Conclusions Previous results suggested that ES muscles, in a state of fatigue, are unable to provide sufficient segmental stabilization. The present findings indicate that, changes in lumbar-stabilizing mechanisms in the presence of muscle fatigue seem to be caused by modulation of lumbopelvic kinematics. PMID:20525336

  2. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise.

    PubMed

    Lim, Hyungkwang; Ahn, Hyung-Woo; Kornijcuk, Vladimir; Kim, Guhyun; Seok, Jun Yeong; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2016-05-14

    A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration. PMID:27103542

  3. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  4. Relaxant and contractile responses of detrusor muscle strips obtained from bladder outlet-obstructed rats treated with doxazosin enantiomers.

    PubMed

    Wang, Miao; Ren, Xue-Jiao; Zhao, Qing-Hua; Lin, Li-Xin; Wang, Xue; Zhao, Yan; Ren, Lei-Ming

    2011-12-01

    (-)Doxazosin, one of (±)doxazosin enantiomers, was speculated to have a pharmacological enantioselectivity between the cardiovascular system and the urinary system by comparison with (+)doxazosin. Therefore, to evaluate the potential benefits of (-)doxazosin in the treatment of benign prostate hyperplasia, we compared the effects of the 3 agents, using rat mesenteric artery preparations and obstructed bladder strips. Concentration-response curves for carbachol (contractile response) and isoprenaline (relaxant response) in detrusor muscle strips of the bladder outlet obstruction (BOO) rats were shifted to the left, with significant increases in the Emax values, and significant decreases in the EC50 values by comparison with the sham-operated rats (P < 0.05, n = 10). The enhanced responses in detrusor muscle strips of the BOO rats treated with (±)doxazosin and its enantiomers at 3 mg·(kg body mass)(-1)·day(-1) for 2 weeks returned to normal levels, and the 3 agents inhibited the enhanced responses to carbachol and isoprenaline to the same extent. On the other hand, the 3 agents uncompetitively inhibited the vasoconstrictive response curves for NA in the rat isolated mesenteric artery, and the pKB value of (-)doxazosin at vascular α1-adrenoceptors was significantly smaller (P < 0.05, n = 6) than that of (+)doxazosin or (±)doxazosin. In conclusion, although (-)doxazosin inhibits vascular functional α1-adrenoceptors more weakly than (+)doxazosin, both agents equally ameliorate the enhanced responses in detrusor muscle of BOO rats, suggesting that the chiral carbon atom in the molecular structure of doxazosin does not affect its beneficial effects in the bladder smooth muscle of BOO rats.

  5. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF) effects

    PubMed Central

    Fedan, Jeffrey S.; Thompson, Janet A.; Ismailoglu, U. Burcin; Jing, Yi

    2013-01-01

    In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M) elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL) and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF), which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D-M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated perfused tracheas (IPT). Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG) chloride, Na gluconate (Glu), NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium. PMID:24130533

  6. Mas receptor overexpression increased Ang-(1-7) relaxation response in renovascular hypertensive rat carotid.

    PubMed

    Olivon, V C; Aires, R D; Santiago, L B; Ramalho, L Z N; Cortes, S F; Lemos, V S

    2015-09-01

    Renin-angiotensin system (RAS) is an important factor in the pathophysiology of hypertension. Mas receptor, Angiotensin-(1-7) [Ang-(1-7)]-activated receptor, is an important RAS component and exerts protective effects in the vasculature. Ang-(1-7) vascular effects and Mas receptor expression in carotid from renovascular hypertensive (2K-1C) rats is not clear. In the present study we investigated Mas receptor vasodilator response activated by Ang-(1-7) in the carotid rings from sham and 2K-1C rats. Changes in isometric tension were recorded on organ chamber. Mas receptors expression was investigated in carotid by Western blot. Nitric oxide production was evaluated by 2,3-diaminonaphthalene (DAN) and eNOS expression and activity by immunofluoresce and western blot, respectively. Ang-(1-7) induced concentration-dependent vasodilator effect in carotid rings from sham and 2K-1C, which the hypertension increased vasodilatation response. In the 2K-1C carotid rings, A-779 (Mas receptor antagonist) reduced but not abolish the vasodilator effect of Ang-(1-7). Corroborating, Mas receptor protein expression was significantly increased in the 2K-1C rats. L-NAME and ibuprofen decreased Ang-(1-7) vasodilator response and L-NAME plus ibuprofen practically abolish the remaining vasodilatation response. Nitric oxide production is increased due increased of eNOS expression and pSer(1177) activity. Our results demonstrated that renovascular hypertension increased Mas receptors expression and nitric oxide production in the rats carotid which, consequently increased Ang-(1-7)-vasorelaxant response. PMID:26256416

  7. Physiological Predictors of Response to Exposure, Relaxation, and Rescripting Therapy for Chronic Nightmares in a Randomized Clinical Trial

    PubMed Central

    Davis, Joanne L.; Rhudy, Jamie L.; Pruiksma, Kristi E.; Byrd, Patricia; Williams, Amy E.; McCabe, Klanci M.; Bartley, Emily J.

    2011-01-01

    Study Objectives: Evidence supports the use of cognitive behavioral therapies for nightmares in trauma-exposed individuals. This randomized clinical trial replicated a study of exposure, relaxation, and rescripting therapy(ERRT) and extended prior research by including broad measures of mental health difficulties, self-reported physical health problems, and quality of life. Additionally, physiological correlates of treatment-related change assessed from a script-driven imagery paradigm were examined. Methods: Forty-seven individuals were randomized to treatment or waitlist control. Results: The treatment group demonstrated improvements relative to the control group at the one-week post-treatment assessment. At the 6-month follow-up assessment, significant improvements were found for frequency and severity of nightmares, posttraumatic stress disorder symptoms, depression, sleep quality and quantity, physical health symptoms, anger, dissociation, and tension reduction behaviors. Participants also reported improved quality of life. Treatment-related decreases in heart rate to nightmare imagery were correlated with improvements in sleep quality and quantity; treatment-related decreases in skin conductance to nightmare imagery were correlated with improvements in nightmare severity, posttraumatic stress disorder symptom severity, sleep quality, and fear of sleep; and treatment-related decreases in corrugator activity to nightmare imagery were correlated with improved physical health. Conclusions: Findings provide additional support for the use of ERRT in treating nightmares and related difficulties and improving sleep. Citation: Davis JL; Rhudy JL; Pruiksma KE; Byrd P; Williams AE; McCabe KM; Bartley EJ. Physiological predictors of response to exposure, relaxation, and rescripting therapy for chronic nightmares in a randomized clinical trial. J Clin Sleep Med 2011;7(6):622-631. PMID:22171201

  8. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  9. Relaxation: mapping an uncharted world.

    PubMed

    Smith, J C; Amutio, A; Anderson, J P; Aria, L A

    1996-03-01

    Nine hundred and forty practitioners of massage, abbreviated progressive muscle relaxation (PMR), yoga stretching, breathing, imagery meditation, and various combination treatments described their technique experiences on an 82-item wordlist. Factor analysis yielded 10 interpretable relaxation categories: Joyful Affects and Appraisals (Joyful), Distant, Calm, Aware, Prayerful, Accepted, Untroubled, Limp, Silent, and Mystery The relaxation response and cognitive/somatic specificity models predict Calm and Limp, which account for only 5.5% of the variance of relaxation experience. Unlike much of previous relaxation research, we found important technique differences. PMR and massage are associated with Distant and Limp; yoga stretching, breathing, and meditation with Aware; meditation with Prayerful and all techniques except PMR with Joyful. Results are consistent with cognitive-behavioral relaxation theory and have implications for relaxation theory, treatment, training, assessment, and research. We close with a revised model of relaxation that posits three global dimensions; tension-relief, passive disengagement, and passive engagement.

  10. Photoexcited carrier relaxation dynamics and terahertz response of photoconductive antennas made on proton bombarded GaAs materials

    NASA Astrophysics Data System (ADS)

    Savard, S.; Allard, J.-F.; Bernier, M.; Petersen, J. C.; Dodge, J. S.; Fournier, P.; Morris, D.

    2010-12-01

    We present a model reproducing the instrumental response of a time-domain spectrometer that integrates photoconductive transmitter and receiver antennas made on identical proton-bombarded GaAs substrates. This model is used to determine the ultrafast capture time of the photoexcited carriers by the ion-bombardment-induced traps. A 0.5 ps capture time can be extracted for a low laser pump fluence of 0.66 μJ/cm2 per pulse. This carrier trapping time gets longer as the pump fluence increases. This behavior is explained by a gradual filling of the traps that are distributed over a 1 μm depth from the GaAs surface. This interpretation is supported by time-resolved measurements obtained on the same photoconductive material using both an 820 nm pump/terahertz-probe transmission experiment and a degenerate 760 nm pump/probe reflectivity experiment. The differential transmission and reflectivity dynamics are reproduced using a biexponential function which correctly describes the photoexcited carrier relaxation and transport dynamics in this material. The strong agreement observed between these different measurements reinforces the validity of the theoretical model used to reproduce the instrumental response of the terahertz setup.

  11. Contributions of dipolar relaxation processes and ionic transport to the response of liquids to electrical perturbation fields.

    PubMed

    Sanchis, M J; Ortiz-Serna, P; Carsí, M; Díaz-Calleja, R; Riande, E; Gargallo, L; Radić, D

    2011-05-19

    The objective of this work was to study the influence of small variations in the chemical structure on the molecular dynamics of liquids using as models bis(cyclohexylmethyl) 2-methyl- and dicyclohexyl 2-methylsuccinate. The dielectric behavior of the low molecular weight liquids was studied over a wide range of frequencies and temperatures. The results show that the temperature dependence of the dielectric strengths, relaxation times, and shape parameters of the secondary and glass-liquid relaxations are very sensitive to the slight differences in the structures of the liquids. Significant changes take place in the dielectric strength of the β relaxation in the glass liquid transition. Moreover, the temperature dependence of the β relaxation exhibits Arrhenius behavior in the glassy state and departs from this behavior in the liquid state. Special attention is paid to the temperature dependence of low-frequency relaxations produced by the motion of a macrodipole arising from charges located near the liquid-electrode boundaries.

  12. Tunicamycin-Induced Alterations in the Vasorelaxant Response in Organ-Cultured Superior Mesenteric Arteries of Rats.

    PubMed

    Matsumoto, Takayuki; Ando, Makoto; Watanabe, Shun; Iguchi, Maika; Nagata, Mako; Kobayashi, Shota; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-01-01

    In cellular events, endoplasmic reticulum (ER) stress has an important role in the development of various diseases including cardiovascular diseases. Tunicamycin, an inhibitor of N-linked glycosylation, is known to be an inducer of ER stress. However, the extent to which tunicamycin affects the vasorelaxant function is not completely understood. Thus, we investigated the effect of tunicamycin on relaxations induced by various vasorelaxant agents, including acetylcholine (ACh; endothelium-dependent vasodilator), sodium nitroprusside (SNP; endothelium-independent vasodilator), isoprenaline (ISO; beta-adrenoceptor agonist), forskolin (FSK; adenylyl cyclase activator), and cromakalim [ATP-sensitive K(+) (KATP) channel activator] in organ-cultured superior mesenteric arteries of rats, which are treated with either a vehicle [dimethyl sulfoxide (DMSO)] or tunicamycin (20 µg/mL for 22-24 h). Protein levels of the ER stress marker binding immunoglobulin protein (BiP) were determined by Western blotting. Tunicamycin increased the expression of BiP in organ-cultured arteries. Tunicamycin impaired ACh-induced relaxation, but did not alter SNP-induced relaxation. Tunicamycin also impaired vasorelaxation induced by ISO, FSK, and cromakalim; moreover, it reduced basal nitric oxide (NO) formation. In conclusion, short-term treatment with tunicamycin not only caused endothelial dysfunction but also impaired cAMP- and KATP-mediated responses in the superior mesenteric arteries of rats. These alterations in tunicamycin-treated arteries may be due to reduced basal NO formation. This work provides new insight into ER stress in vascular dysfunction. PMID:27582328

  13. A one year follow-up of relaxation response meditation as a treatment for irritable bowel syndrome.

    PubMed

    Keefer, L; Blanchard, E B

    2002-05-01

    Ten of thirteen original participants with Irritable Bowel Syndrome (IBS) participated in a one year follow-up study to determine whether the effects of Relaxation Response Meditation (RRM) on IBS symptom reduction were maintained over the long-term. From pre-treatment to one-year follow-up, significant reductions were noted for the symptoms of abdominal pain (p = 0.017), diarrhea (p = 0.045), flatulence (p = 0.030), and bloating (p = 0.018). When we examined changes from the original three month follow-up point to the one year follow-up, we noted significant additional reductions in pain (p = 0.03) and bloating (p = 0.04), which tended to be the most distressing symptoms of IBS. It appears that: (1) continued use of meditation is particularly effective in reducing the symptoms of pain and bloating; and (2) RRM is a beneficial treatment for IBS in the both short- and the long-term.

  14. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  15. Reduced nitric oxide-mediated relaxation and endothelial nitric oxide synthase expression in the tail arteries of streptozotocin-induced diabetic rats.

    PubMed

    Mokhtar, Siti Safiah; Vanhoutte, Paul M; Leung, Susan Wai Sum; Suppian, Rapeah; Yusof, Mohd Imran; Rasool, Aida Hanum Ghulam

    2016-02-15

    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.

  16. The Relaxation Response Resiliency Enhancement Program in the Management of Chronic Refractory Temporomandibular Joint Disorder: Results from a Pilot Study

    PubMed Central

    Vranceanu, Ana-Maria; Shaefer, Jeffery R.; Saadi, Ashkan Fahandej; Slawsby, Ellen; Sarin, Jaya; Scult, Matthew; Benson, Herbert; Denninger, John W.

    2015-01-01

    Objectives This is an open-pilot study to evaluate the feasibility, acceptability and efficacy of a pain-specific version of an established mind–body medicine program, the Relaxation Response [RR] Resiliency Program [R3P], in patients with chronic temporomandibular disorder [TMD]. Methods Male and female with at least a six-month history of pain involving the masticatory muscles were sought in the Orofacial Pain Centers of the Massachusetts General Hospital [MGH] or through an advertisement sent to MGH employees from 2008 to 2010. Eligible participants underwent the R3P intervention [eight group sessions] after standard medical management. Pre- and post-group patients underwent objective measures of impairment [vertical and lateral range of motion with and without pain, temporomandibular joint and muscle pain palpation, and algometer measures] and completed psychosocial measures [Symptom Severity Index, Perceived Stress Scale, the Symptom Checklist-90-Revised and Short Form 36 Health Survey]. Results Twenty-four subjects [16 females, 90% from MGH Orofacial Pain Centers,10% from among MGH employees], mean age 38 years, met eligibility criteria and participated in the study. The intervention was highly feasible and accepted by patients, as evidenced by a 92% rate of completion. Paired t-test analyses revealed improvement on self-reported pain measures: pain intensity [p<0.02], pain frequency [p<0.002], pain duration [p<0.027], pain tolerability [p<0.009] and on several objective tests. Conclusions The pain specific R3P is efficacious in reducing objective and subjective symptoms in patients with chronic refractory TMD. The comprehensive intervention, which combines educational information about pain with RR, cognitive behavioral and resiliency-enhancement skills, is accepted by patients and may be more efficacious than other treatments with fewer elements. PMID:26568669

  17. Tranilast Increases Vasodilator Response to Acetylcholine in Rat Mesenteric Resistance Arteries through Increased EDHF Participation

    PubMed Central

    Sastre, Esther; Caracuel, Laura; Callejo, María; Balfagón, Gloria

    2014-01-01

    Background and Purpose Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA). Experimental Approach Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholine-induced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619. Key Results Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilast-incubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast. Conclusions and Implications Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channels. PMID:24992476

  18. Mn2+ doped ZnS quantum dots in ferroelectric liquid crystal matrix: Analysis of new relaxation phenomenon, faster optical response, and concentration dependent quenching in photoluminescence

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Daoudi, A.; Gupta, S. K.; Pandey, S.; Vimal, T.; Manohar, R.; Kole, A. K.; Kumbhakar, P.; Kumar, A.

    2016-03-01

    Phase transitional, dielectric, electro-optical, polarizing optical microscopic, photoluminescence (PL), and Fourier transformed infrared (FTIR) spectroscopic measurements have been carried out on ZnS:Mn quantum dots (QDs) dispersed ferroelectric liquid crystal (FLC). A new dielectric relaxation mode has been envisaged in FLC material due to the presence of 0.25 wt. % ZnS:Mn (40 mol. %) QDs. The characteristics of the new mode have been compared with those of the soft mode. A significant fastening of the electro-optical response (˜75%) has been observed in the case of 0.25 wt. % ZnS:Mn (20 mol. %) QDs doped FLC material. The induction of the new relaxation mode is attributed to the flexoelectric tilt fluctuations. The induced flexoelectric polarization in the FLC medium at the vicinity of QDs might be responsible for the enhanced spontaneous polarization in the FLC/QDs mixtures. Quenching in PL for the FLC/QDs mixtures has been observed, which strongly depends on Mn content in QDs. The change in FTIR spectra for the FLC/QDs composite clearly indicates the change in molecular dynamics of the pure FLC after the dispersion of QDs. The presented results will certainly pave a way to utilize QDs for obtaining faster response of the FLC material and potential material to tune the relaxation processes.

  19. Femtosecond relaxation of 2-amino-7-nitrofluorene in acetonitrile: Observation of the oscillatory contribution to the solvent response

    NASA Astrophysics Data System (ADS)

    Ruthmann, J.; Kovalenko, S. A.; Ernsting, N. P.; Ouw, D.

    1998-10-01

    Transient absorption measurements of aminonitrofluorene in acetonitrile reveal for the first time an oscillatory behavior in the dynamic Stokes shift of stimulated emission. The measured relaxation curve for the maximum of the stimulated emission band is in excellent agreement with the solvation correlation function C(t) obtained from the simple continuum theory of dipolar solvation.

  20. A High Frequency Response Relaxed Eddy Accumulation Flux Measurement System for Sampling Short-Lived Biogenic Volatile Organic Compounds

    EPA Science Inventory

    A second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m−2 hr−1. The system features a continuous, integrated gas-phase ozo...

  1. The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Thongbai, Prasit; Jumpatam, Jutapol; Putasaeng, Bundit; Yamwong, Teerapon; Maensiri, Santi

    2012-12-01

    The origin of giant dielectric relaxation behavior and related electrical properties of grains and grain boundaries (GBs) of W6+-doped CaCu3Ti4O12 ceramics were studied using admittance and impedance spectroscopy analyses based on the brick-work layer model. Substitution of 1.0 at. % W6+ caused a slight decrease in GB capacitance, leading to a small decrease in the low-frequency dielectric constant. Surprisingly, W6+ doping ions have remarkable effects on the macroscopic dielectric relaxation and electrical properties of grains. X-ray photoelectron spectroscopy analysis suggested that the large enhancements of grain resistance and conduction activation energy of grains for the W6+-doped CaCu3Ti4O12 ceramic are caused by reductions in concentrations of Cu3+ and Ti3+ ions. Considering variation of dielectric properties together with changes in electrical properties of the W6+-doped CaCu3Ti4O12 ceramic, correlation between giant dielectric properties and electrical responses of grains and GBs can be described well by the internal barrier layer capacitor model. This model can ascribe mechanisms related to giant dielectric response and relaxation behavior in CaCu3Ti4O12 ceramics.

  2. Role of the endothelium in the response to cholinoceptor stimulation of rabbit ear and femoral arteries during cooling.

    PubMed Central

    Monge, L.; García-Villalón, A. L.; Montoya, J. J.; García, J. L.; Fernández, N.; Gómez, B.; Diéguez, G.

    1993-01-01

    1. The role of the endothelium in the effects of cooling on the response to cholinoceptor stimulation of the rabbit central ear (cutaneous) and femoral (non-cutaneous) arteries was studied using 2 mm long cylindrical segments. 2. Concentration-response curves for acetylcholine (10(-9)-10(-5) M), methacholine (10(-9)-10(-5) M) and sodium nitroprusside (10(-9)-10(-4) M) were isometrically recorded in arteries under conditions, with and without endothelium or following pretreatment with the nitric oxide-synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10(-6)-3 x 10(-4) M) at 37 degrees C and at 24 degrees C (cooling). 3. Ear and femoral arteries showed endothelium-dependent relaxation to acetylcholine and methacholine at 37 degrees C and 24 degrees C. The extent of relaxation of the control ear arteries, but not of the control femoral arteries, to acetylcholine and methacholine increased during cooling. 4. L-NAME (10(-6)-3 x 10(-4) M) reduced in a concentration-dependent way the response of ear arteries to acetylcholine at both 37 degrees C and 24 degrees C, this reduction being more potent at 37 degrees C. L-Arginine (10(-5)-10(-3) M) reversed in a concentration-dependent manner the inhibitor effects of 10(-5) M L-NAME at both temperatures. 5. Sodium nitroprusside caused a concentration-dependent relaxation in both arteries that was endothelium-independent. However, the extent of relaxation to this nitrovasodilator in ear and femoral arteries was lower at 24 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8495247

  3. The influence of hostility and family history of cardiovascular disease on autonomic activation in response to controllable versus noncontrollable stress, anger imagery induction, and relaxation imagery.

    PubMed

    Nelson, Charles; Franks, Susan; Brose, Andrea; Raven, Peter; Williamson, Jon; Shi, Xiangrong; McGill, Jerry; Harrell, Ernest

    2005-06-01

    Autonomic activation in response to controllable versus noncontrollable stress, anger imagery induction, and relaxation imagery was studied among 80 participants between the ages of 18 and 34 years. Participants differed in level of trait hostility and family history of cardiovascular disease. Results were obtained through power spectral analyses of electrocardiograph R-R intervals, which produced an index of autonomic nervous system activation. For both male and female populations, parasympathetic regulation was diminished during anger induction for individuals with high levels of trait hostility and having a family history of cardiovascular disease. Similar results were obtained for women during the uncontrolled stress condition. Based on family history of cardiovascular disease and trait hostility, men responded differentially to relaxation imagery induction, whereas no differences were found among females. PMID:16015455

  4. Ganoderma atrum polysaccharide improves aortic relaxation in diabetic rats via PI3K/Akt pathway.

    PubMed

    Zhu, Ke-Xue; Nie, Shao-Ping; Li, Chuan; Gong, Deming; Xie, Ming-Yong

    2014-03-15

    A newly identified polysaccharide (PSG-1) has been purified from Ganoderma atrum. The study was to investigate the protective effect of PSG-1 on diabetes-induced endothelial dysfunction in rat aorta. Rats were fed a high fat diet for 8 weeks and then injected with a low dose of streptozotocin to induce type 2 diabetes. The diabetic rats were orally treated with PSG-1 for 4 weeks. It was found that administration of PSG-1 significantly reduced levels of fasting blood glucose, improved endothelium-dependent aortic relaxation, increased levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt), endothelial nitric oxide synthase (eNOS) and nitric oxide in the aorta from diabetic rats, compared to un-treated diabetics. These results suggested that the protective effects of PSG-1 against endothelial dysfunction may be related to activation of the PI3K/Akt/eNOS pathway.

  5. Simulation of DNA Supercoil Relaxation.

    PubMed

    Ivenso, Ikenna D; Lillian, Todd D

    2016-05-24

    Several recent single-molecule experiments observe the response of supercoiled DNA to nicking endonucleases and topoisomerases. Typically in these experiments, indirect measurements of supercoil relaxation are obtained by observing the motion of a large micron-sized bead. The bead, which also serves to manipulate DNA, experiences significant drag and thereby obscures supercoil dynamics. Here we employ our discrete wormlike chain model to bypass experimental limitations and simulate the dynamic response of supercoiled DNA to a single strand nick. From our simulations, we make three major observations. First, extension is a poor dynamic measure of supercoil relaxation; in fact, the linking number relaxes so fast that it cannot have much impact on extension. Second, the rate of linking number relaxation depends upon its initial partitioning into twist and writhe as determined by tension. Third, the extensional response strongly depends upon the initial position of plectonemes.

  6. Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory effects in the adsorption-desorption process of ionic impurities

    NASA Astrophysics Data System (ADS)

    de Paula, J. L.; Santoro, P. A.; Zola, R. S.; Lenzi, E. K.; Evangelista, L. R.; Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  7. Guinea-pig interpubic joint (symphysis pubica) relaxation at parturition: Underlying cellular processes that resemble an inflammatory response

    PubMed Central

    Rodríguez, Horacio A; Ortega, Hugo H; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2003-01-01

    Background At term, cervical ripening in coordination with uterine contractions becomes a prerequisite for a normal vaginal delivery. Currently, cervical ripening is considered to occur independently from uterine contractions. Many evidences suggest that cervical ripening resembles an inflammatory process. Comparatively little attention has been paid to the increased flexibility of the pelvic symphysis that occurs in many species to enable safe delivery. The aim of this study was to investigate whether the guinea-pig interpubic joint relaxation process observed during late pregnancy and parturition resembles an inflammatory process. Methods Samples of pubic symphysis were taken from pregnant guinea-pigs sacrificed along gestation, parturition and postpartum. Serial sections of paraffin-embedded tissues were used to measure the interpubic distance on digitalized images, stained with Giemsa to quantify leukocyte infiltration and to describe the vascular area changes, or studied by the picrosirius-polarization method to evaluate collagen remodeling. P4 and E2 serum levels were measured by a sequential immunometric assay. Results Data showed that the pubic relaxation is associated with an increase in collagen remodeling. In addition, a positive correlation between E2 serum levels and the increase in the interpubic distance was found. On the other hand, a leukocyte infiltration in the interpubic tissue around parturition was described, with the presence of almost all inflammatory cells types. At the same time, histological images show an increase in vascular area (angiogenesis). Eosinophils reached their highest level immediately before parturition; whereas for the neutrophilic and mononuclear infiltration higher values were recorded one day after parturition. Correlation analysis showed that eosinophils and mononuclear cells were positively correlated with E2 levels, but only eosinophilic infiltration was associated with collagen remodeling. Additionally, we observed

  8. A high-frequency response relaxed eddy accumulation flux measurement system for sampling short-lived biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Arnts, Robert R.; Mowry, Fred L.; Hampton, Gary A.

    2013-05-01

    second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m-2 hr-1. The system features a continuous, integrated gas-phase ozone removal procedure to allow for the measurement of highly reactive species such as β-caryophyllene and polar terpenoids such as linalool. A two-component internal standard continuously added to the accumulators was used to correct for switching-induced volumetric errors and as a check on VOC losses exceeding accumulator tube adsorption limits. In addition, the internal standards were used to demonstrate that accumulators quickly return to target flow rates at segregation valve switching frequencies up to at least 0.8 Hz. The system was able to measure daytime hourly fluxes of individual biogenic VOC including oxygenated terpenoids, monoterpenes, and sesquiterpenes.

  9. Glycation does not modify bovine serum albumin (BSA)-induced reduction of rat aortic relaxation: The response to glycated and nonglycated BSA is lost in metabolic syndrome

    PubMed Central

    Rubio-Ruiz, Maria Esther; Díaz-Díaz, Eulises; Cárdenas-León, Mario; Argüelles-Medina, Rabindranath; Sánchez-Canales, Patricia; Larrea-Gallo, Fernando; Soria-Castro, Elizabeth; Guarner-Lans, Verónica

    2008-01-01

    The effects of nonglycated bovine serum albumin (BSA) and advanced glycosylation end products of BSA (AGE-BSA) on vascular responses of control and metabolic syndrome (MS) rats characterized by hypertriglyceridemia, hypertension, hyperinsulinemia, and insulin resistance were studied. Albumin and in vitro prepared AGE-BSA have vascular effects; however, recent studies indicate that some effects of in vitro prepared AGEs are due to the conditions in which they were generated. We produced AGEs by incubating glucose with BSA for 60 days under sterile conditions in darkness and at 37°C. To develop MS rats, male Wistar animals were given 30% sucrose in drinking water since weanling. Six month old animals were used. Blood pressure, insulin, triglycerides, and serum albumin were increased in MS rats. Contraction of aortic rings elicited with norepinephrine was stronger. There were no effects of nonglycated BSA or AGE-BSA on contractions in control or MS rats; however, both groups responded to L-NAME, an inhibitor of nitric oxide synthesis. Arterial relaxation induced using acetylcholine was smaller in MS rats. Nonglycated BSA and AGE-BSA significantly diminished relaxation in a 35% in the control group but the decrease was similar when using nonglycated BSA and AGE-BSA. This decrease was not present in the MS rats and was not due to increased RAGEs or altered biochemical characteristics of BSA. In conclusion, both BSA and AGE-BSA inhibit vascular relaxation in control artic rings. In MS rats the effect is lost possibly due to alterations in endothelial cells that are a consequence of the illness. PMID:18458031

  10. Different β-adrenoceptor subtypes coupling to cAMP or NO/cGMP pathways: implications in the relaxant response of rat conductance and resistance vessels

    PubMed Central

    Flacco, N; Segura, V; Perez-Aso, M; Estrada, S; Seller, JF; Jiménez-Altayó, F; Noguera, MA; D'Ocon, P; Vila, E; Ivorra, MD

    2013-01-01

    Background and Purpose To analyse the relative contribution of β1-, β2- and β3-adrenoceptors (Adrb) to vasodilatation in conductance and resistance vessels, assessing the role of cAMP and/or NO/cGMP signalling pathways. Experimental Approach Rat mesenteric resistance artery (MRA) and aorta were used to analyse the Adrb expression by real-time-PCR and immunohistochemistry, and for the pharmacological characterization of Adrb-mediated activity by wire myography and tissue nucleotide accumulation. Key Results The mRNAs and protein for all Adrb were identified in endothelium and/or smooth muscle cells (SMCs) in both vessels. In MRA, Adrb1 signalled through cAMP, Adrb3 through both cAMP and cGMP, but Adrb2, did not activate nucleotide formation; isoprenaline relaxation was inhibited by propranolol (β1, β2), CGP20712A (β1), and SQ22536 (adenylyl cyclase inhibitor), but not by ICI118,551 (β2), SR59230A (β3), ODQ (soluble guanylyl cyclase inhibitor), L-NAME or endothelium removal. In aorta, Adrb1 signalled through cAMP, while β2- and β3-subtypes through cGMP; isoprenaline relaxation was inhibited by propranolol, ICI118,551, ODQ, L-NAME, and to a lesser extent, by endothelium removal. CL316243 (β3-agonist) relaxed aorta, but not MRA. Conclusion and Implication Despite all three Adrb subtypes being found in both vessels, Adrb1, located in SMCs and acting through the adenylyl cyclase/cAMP pathway, are primarily responsible for vasodilatation in MRA. However, Adrb-mediated vasodilatation in aorta is driven by endothelial Adrb2 and Adrb3, but also by the Adrb2 present in SMCs, and is coupled to the NO/cGMP pathway. These results could help to understand the different physiological roles played by Adrb signalling in regulating conductance and resistance vessels. PMID:23373597

  11. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  12. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation.

    PubMed

    Montiel, V; Leon Gomez, E; Bouzin, C; Esfahani, H; Romero Perez, M; Lobysheva, I; Devuyst, O; Dessy, C; Balligand, J L

    2014-02-01

    The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1-AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac

  13. A physiological and subjective evaluation of meditation, hypnosis, and relaxation.

    PubMed

    Morse, D R; Martin, J S; Furst, M L; Dubin, L L

    1977-01-01

    Ss were monitored for respiratory rate, pulse rate, blood pressure, skin resistance, EEG activity, and muscle activity. They were monitored during the alert state, meditation (TM or simple word type), hypnosis (relaxation and task types), and relaxation. Ss gave a verbal comparative evaluation of each state. The results showed significantly better relaxation responses for the relaxation states (relaxation, relaxation-hypnosis, meditation) than for the alert state. There were no significant differences between the relaxation states except for the measure "muscle activity" in which meditation was significantly better than the other relaxation states. Overall, there were significant differences between task-hypnosis and relaxation-hypnosis. No significant differences were found between TM and simple word meditation. For the subjective measures, relaxation-hypnosis and meditation were significantly better than relaxation, but no significant differences were found between meditation and relaxation-hypnosis.

  14. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  15. Hydrogen peroxide induced relaxation in porcine pulmonary arteries in vitro is mediated by EDRF and cyclic GMP

    SciTech Connect

    Zellers, T.; McCormick, J. )

    1991-03-15

    Xanthine and xanthine oxidase induced relaxations in porcine pulmonary arteries in vitro are augmented in the presence of the endothelium and abolished by catalase, implicating hydrogen peroxide as an endothelium-dependent effector. To determine the mechanism whereby H{sub 2}O{sub 2} causes relaxations, isolated rings of fifth order porcine pulmonary artery, with (E{sup +}) and without (E{sup {minus}}) endothelium, were suspended in organ baths filled with buffer, and isometric tension was recorded. Hydrogen peroxide caused concentration-dependent, endothelium-augmented relaxations which were abolished by catalase and hydroquinone and reversed by L-nitroarginine and methylene blue. Prostacyclin (PGI{sub 2}) levels, measured after a two minute exposure to H{sub 2}O{sub 2} in rings with endothelium were comparable to controls. This concentration of PGI{sub 2} does not cause relaxations in these rings. These data suggest that H{sub 2}O{sub 2} stimulates the release of an EDRF, causing relaxations mediated by cyclic GMP, which is independent of prostacyclin.

  16. Isometric squeeze relaxation (progressive relaxation) vs meditation: absorption and focusing as predictors of state effects.

    PubMed

    Weinstein, M; Smith, J C

    1992-12-01

    We taught isometric squeeze relaxation (a variant of progressive relaxation) or meditation to 52 anxious subjects (16 men, 36 women). For meditation, pretreatment high absorption correlated with reductions in state cognitive and somatic anxiety as well as increments in state focusing. For isometric squeeze relaxation, pretreatment low state focusing correlated with reductions in somatic anxiety and increments in focusing. Results suggest that isometric squeeze relaxation (and progressive relaxation) may be more appropriate for individuals who have difficulty focusing, and meditation for those who already possess well-developed relaxation skills at a trait level. The results appear more consistent with Smith's cognitive-behavioral model of relaxation than with Benson's relaxation response or Davidson and Schwartz's specific effects models.

  17. Evidence that NO/cGMP/PKG signalling cascade mediates endothelium dependent inhibition of IP3R mediated Ca2+ oscillations in myocytes and pericytes of ureteric microvascular network in situ

    PubMed Central

    Borysova, Lyudmyla; Burdyga, Theodor

    2015-01-01

    In ureteric microvessels the antagonistic relationship between Ca2+ signalling in endothelium and Ca2+ oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca2+ signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca2+ oscillations in the myocytes and pericytes and were not abolished by the removal of Ca2+ from extracellular fluid. Carbachol-induced rise of intracellular Ca2+ in endothelium was accompanied by the termination of the Ca2+ oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca2+ oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca2+ oscillations in myocytes and pericytes. SNAP had no effects on Ca2+ oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca2+ oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels. PMID:26344105

  18. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery

    PubMed Central

    Plane, Frances; Wiley, Katherine E; Jeremy, Jamie Y; Cohen, Richard A; Garland, Christopher J

    1998-01-01

    The endothelium-dependent relaxants acetylcholine (ACh; 0.03–10 μM) and A23187 (0.03–10 μM), and nitric oxide (NO), applied either as authentic NO (0.01–10 μM) or as the NO donors 3-morpholino-sydnonimine (SIN-1; 0.1–10 μM) and S-nitroso-N-acetylpenicillamine (SNAP; 0.1–10 μM), each evoked concentration-dependent relaxation in phenylephrine stimulated (1–3 μM; mean contraction and depolarization, 45.8±5.3 mV and 31.5±3.3 mN; n=10) segments of rabbit isolated carotid artery. In each case, relaxation closely correlated with repolarization of the smooth muscle membrane potential and stimulated a maximal reversal of around 95% and 98% of the phenylephrine-induced depolarization and contraction, respectively.In tissues stimulated with 30 mM KCl rather than phenylephrine, smooth muscle hyperpolarization and relaxation to ACh, A23187, authentic NO and the NO donors were dissociated. Whereas the hyperpolarization was reduced by 75–80% to around a total of 10 mV, relaxation was only inhibited by 35% (n=4–7 in each case; P<0.01). The responses which persisted to ACh and A23187 in the presence of 30 mM KCl were abolished by either the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME; 100 μM) or the inhibitor of soluble guanylyl cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM; 10 min; n=4 in each case; P<0.01).Exposure to ODQ significantly attenuated both repolarization and relaxation to ACh, A23187 and authentic NO, reducing the maximum changes in both membrane potential and tension to each relaxant to around 60% of control values (n=4 in each case; P<0.01). In contrast, ODQ almost completely inhibited repolarization and relaxation to SIN-1 and SNAP, reducing the maximum responses to around 8% in each case (n=3–5; P<0.01).The potassium channel blockers glibenclamide (10 μM), iberiotoxin (100 nM) and apamin (50 nM), alone or in combination, had no significant effect on relaxation to ACh

  19. Heart rate and autonomic response to stress after experimental induction of worry versus relaxation in healthy, high-worry, and generalized anxiety disorder individuals.

    PubMed

    Fisher, Aaron J; Newman, Michelle G

    2013-04-01

    Generalized anxiety disorder (GAD) is the most commonly occurring anxiety disorder and has been related to cardiovascular morbidity such as cardiac ischemia, sudden cardiac death, and myocardial infarction. Both GAD and its cardinal symptom - worry - have been shown to promote muted physiological reactivity in response to laboratory and ecological stressors. Importantly, no study to date has examined the concurrent and relative contributions of trait and state worry within healthy controls, (non-clinical) high trait-worry controls, and GAD participants. The present study examined heart rate (HR), respiratory sinus arrhythmia (RSA), and salivary alpha-amylase (sAA) responses to laboratory stress during and following the experimental induction of worry versus relaxation in healthy controls (n=42), high trait worriers (n=33) and participants with GAD (n=76). All groups exhibited increased HR and decreased RSA in response to the stressor, with no differences by condition. Baseline sAA significantly moderated HR and RSA reactivity, such that higher sAA predicted greater increases in HR and decreases in RSA. There was a significant group by baseline sAA interaction such that in GAD, higher baseline sAA predicted decreased change in sAA during stress, whereas higher baseline sAA predicted greater sAA change in healthy controls. High-worry controls fell non-significantly between these groups. The present study provides additional evidence for the effect of worry on diminished HR stress response and points to possible suppression of adrenergic sympathetic stress responses in GAD. PMID:23384513

  20. On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting

    NASA Astrophysics Data System (ADS)

    Řehoř, Martin; Pr&oring; ša, Vít; T&oring; ma, Karel

    2016-10-01

    Rigorous analysis of the response of nonlinear materials to step inputs requires one to simultaneously handle the discontinuity, differentiation, and nonlinearity. This task is however beyond the reach of the standard theories such as the classical theory of distributions and presents a considerable mathematical difficulty. New advanced mathematical tools are necessary to handle the challenge. An elegant and relatively easy-to-use framework capable of accomplishing the task is provided by the Colombeau algebra, which is a generalisation of the classical theory of distributions to the nonlinear setting. We use the Colombeau algebra formalism and derive explicit formulae describing the response of incompressible Maxwell viscoelastic fluid subject to step load/deformation in the lubricated squeeze flow setting.

  1. Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni,Zn)Fe{sub 2}O{sub 4} ceramics

    SciTech Connect

    Chen, D. G.; Tang, X. G.; Liu, Q. X.; Jiang, Y. P.; Ma, C. B.; Li, R.

    2013-06-07

    Dielectric spectra and magnetization hysteresis loops were used to investigate the grain size effect with temperature on the electrical and magnetic response of co-precipitation derived spinel (Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} (NZFO) ceramics. Remarkable dielectric relaxation phenomena of non-Debye type have been observed in each NZFO ceramics as confirmed by two kinds of Cole-Cole plots of the 1100 Degree-Sign C sintered samples, mainly due to the electron-hopping mechanism between n-type and p-type carriers and interfacial ion effect when applied an increase of temperature. The high and low response of grain and grain-boundary regions were determined by modeling the impedance experimental results on two equivalent RC circuits taking into account grain deep trap states. By employing the modified Arrhenius equation, activation energy values of different sintering temperatures were calculated and analyzed in combination with oxygen vacancy. In addition, the magnetization of various sintering temperature samples is dominated by cation distribution and surface effect in different particle ranges.

  2. Responses of rabbit pulmonary arteries to hydrogen peroxide

    SciTech Connect

    Russell, J.A.; Gugino, S.F.; Giese, E.C. )

    1991-03-15

    The effects of hydrogen peroxide on isolated rabbit intrapulmonary arteries were investigated using tissue bath techniques. Exposure of resting vessels to 10{sup {minus}7}-10{sup {minus}5} M H{sub 2}O{sub 2} caused concentration-dependent contractions that were blocked by 10{sup {minus}5} M indomethacin, 3 {times} 10{sup {minus}6} M SQ 29548 or by removal of the endothelium. Addition of a single concentration of H{sub 2}O{sub 2} to resting vessels incubated with 3 {times} 10{sup {minus}6} M SQ 29548 caused slowly developing contractions that attained approximately 80% of the response to 118mM KCL. Late phase contractions were highly resistance to the inhibitory effects of 10{sup {minus}8}-10{sup {minus}5} M isoproterenol or 10{sup {minus}7}-10{sup {minus}5} M sodium nitroprusside and they persisted in calcium-free media, in vessels incubated with 5 {times} 10{sup {minus}5} M verapamil, and after removal of the endothelium. Pulmonary arteries incubated with 3 {times} 10{sup {minus}6} M SQ 29548 and contracted by 10{sup {minus}7} M phenylephrine relaxed in response to 10{sup {minus}7}-10{sup {minus}5} M H{sub 2}O{sub 2}. H{sub 2}O{sub 2}-induced relaxations were unaffected by 10{sup {minus}4} M N{omega}-nitro-L-arginine or 10{sup {minus}5}M indomethacin but were partially depressed by removal of the endothelium. The authors conclude that H{sub 2}O{sub 2} causes: an early phase contraction via release of thromboxane A2 from endothelial cells; a late-phase contraction that is endothelium-independent and probably results from the release of calcium from intracellular stores in smooth muscle cells; and an early phase relaxation that may be due to both endothelium-dependent and endothelium-independent mechanisms. The endothelium-derived relaxing factor does not appear to be nitric oxide or a dilator prostaglandin.

  3. Density relaxation of a near-critical fluid in response to local heating and low frequency vibration in microgravity.

    PubMed

    Jounet, Arnaud

    2002-03-01

    The response of a confined near-critical fluid to local heating in the presence of vibration is studied by means of two-dimensional numerical simulations of the compressible and unsteady Navier-Stokes equations written for a van der Waals fluid. As in the experiments performed two years ago onboard the Mir orbital station, two different regimes of density distribution are observed. For sufficiently low frequency and high amplitude vibration, two thermal plumes develop from the heat source along the vibration axis. Otherwise (higher frequency and/or lower amplitude), density inhomogeneities caused by heating stay around the heat source. For this regime, the pair of vortices created in each half period absorbs the preceding one, while it is convected away for the double-plume regime. As time goes on, this process repeats, with a lateral extension of the low density region. At lower frequencies, instabilities appear in the flow, thus corroborating again microgravity experiments.

  4. Psychophysiological Effects of Progressive Relaxation in Anxiety Neurotic Patients and of Progressive Relaxation and Alpha Feedback in Nonpatients.

    ERIC Educational Resources Information Center

    Lehrer, Paul M.

    1978-01-01

    Compared physiological effects of progressive relaxation, alpha feedback, and a no-treatment condition. Nonpatients showed more psychophysiological habituation than patients in response to hearing very loud tones and to reaction time tasks. Patients showed greater physiological response to relaxation than nonpatients. After relaxation, autonomic…

  5. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer R.; Brox, Timothy I.; Vogt, Sarah J.; Seymour, Joseph D.; Skidmore, Mark L.; Codd, Sarah L.

    2012-12-01

    Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and molecular diffusion, useful for probing pore structure and transport dynamics in porous systems, were used to physically characterize the unfrozen vein network structure in ice and its response to the presence of metabolic products produced by V3519-10, a cold tolerant microorganism isolated from the Vostok ice core. Recent research has found microorganisms that can remain viable and even metabolically active within icy environments at sub-zero temperatures. One potential mechanism of survival for V3519-10 is secretion of an extracellular ice binding protein that binds to the prism face of ice crystals and inhibits ice recrystallization, a coarsening process resulting in crystal growth with ice aging. Understanding the impact of ice binding activity on the bulk vein network structure in ice is important to modeling of frozen geophysical systems and in development of ice interacting proteins for biotechnology applications, such as cryopreservation of cell lines, and manufacturing processes in food sciences. Here, we present the first observations of recrystallization inhibition in low porosity ice containing V3519-10 extracellular protein extract as measured with Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

  6. The Endothelium-Dependent Nitric Oxide-cGMP Pathway.

    PubMed

    Mónica, F Z; Bian, K; Murad, F

    2016-01-01

    Nitric oxide (NO)-cyclic 3'-5' guanosine monophosphate (cGMP) signaling plays a critical role on smooth muscle tone, platelet activity, cardiac contractility, renal function and fluid balance, and cell growth. Studies of the 1990s established endothelium dysfunction as one of the major causes of cardiovascular diseases. Therapeutic strategies that benefit NO bioavailability have been applied in clinical medicine extensively. Basic and clinical studies of cGMP regulation through activation of soluble guanylyl cyclase (sGC) or inhibition of cyclic nucleotide phosphodiesterase type 5 (PDE5) have resulted in effective therapies for pulmonary hypertension, erectile dysfunction, and more recently benign prostatic hyperplasia. This section reviews (1) how endothelial dysfunction and NO deficiency lead to cardiovascular diseases, (2) how soluble cGMP regulation leads to beneficial effects on disorders of the circulation system, and (3) the epigenetic regulation of NO-sGC pathway components in the cardiovascular system. In conclusion, the discovery of the NO-cGMP pathway revolutionized the comprehension of pathophysiological mechanisms involved in cardiovascular and other diseases. However, considering the expression "from bench to bedside" the therapeutic alternatives targeting NO-cGMP did not immediately follow the marked biochemical and pathophysiological revolution. Some therapeutic options have been effective and released on the market for pulmonary hypertension and erectile dysfunction such as inhaled NO, PDE5 inhibitors, and recently sGC stimulators. The therapeutic armamentarium for many other disorders is expected in the near future. There are currently numerous active basic and clinical research programs in universities and industries attempting to develop novel therapies for many diseases and medical applications.

  7. Relaxation Techniques for Trauma.

    PubMed

    Scotland-Coogan, Diane; Davis, Erin

    2016-01-01

    Physiological symptoms of posttraumatic stress disorder (PTSD) manifest as increased arousal and reactivity seen as anger outburst, irritability, reckless behavior with no concern for consequences, hypervigilance, sleep disturbance, and problems with focus (American Psychiatric Association, 2013 ). In seeking the most beneficial treatment for PTSD, consideration must be given to the anxiety response. Relaxation techniques are shown to help address the physiological manifestations of prolonged stress. The techniques addressed by the authors in this article include mindfulness, deep breathing, yoga, and meditation. By utilizing these techniques traditional therapies can be complemented. In addition, those who are averse to the traditional evidence-based practices or for those who have tried traditional therapies without success; these alternative interventions may assist in lessening physiological manifestations of PTSD. Future research studies assessing the benefits of these treatment modalities are warranted to provide empirical evidence to support the efficacy of these treatments. PMID:27119722

  8. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed

    PubMed Central

    McCulloch, Audrey I; Bottrill, Fiona E; Randall, Michael D; Robin Hiley, C

    1997-01-01

    presence of high K+ was abolished by L-NAME (100 μM; n=5). In preparations preconstricted with high K+, the potency of sodium nitroprusside was not significantly different from that in preparations precontracted with methoxamine, though the maximal response was reduced (62.4±3.4% high K+, n=7; 83.1±3.1% control, n=7).In the presence of the cytochrome P450 inhibitor, clotrimazole (1 μM, n=5 and 10 μM, n=4), the dose-response curve to carbachol was significantly shifted to the right 2 fold (P<0.05) and 4 fold (P<0.001) respectively, an effect which was further enhanced in the presence of L-NAME. Rmax was significantly (P<0.01) reduced by the presence of 10 μM clotrimazole alone, being 86.9±2.5% in its absence and 61.8±7.8% in its presence (n=6).In the presence of the cell permeable analogue of cyclic GMP, 8-bromo cyclic GMP (6 μM), the inhibitory effects of L-NAME on carbachol-induced relaxation were substantially enhanced (ED50: L-NAME alone, 0.52±0.11 nmol, n=5; L-NAME+8-bromo cyclic GMP, 1.42±0.28 nmol, n=7. Rmax: L-NAME alone, 82.2±2.4%; L-NAME+8-bromo cyclic GMP, 59.1±1.8%. P<0.001). These results suggest that the magnitude of the NO-independent component of vasorelaxation is reduced when functional cyclic GMP levels are maintained, suggesting that basal NO (via cyclic GMP) may modulate EDHF activity and, therefore, on loss of basal NO production the EDHF component of endothelium-dependent relaxations becomes functionally greater.The present investigation demonstrates that muscaranic receptor-induced vasorelaxation in the rat mesenteric arterial bed is mediated by both NO-dependent and independent mechanisms. The L-NAME-insensitive mechanism, most probably occurs via activation of a K+ conductance and shows the characteristics of EDHF-mediated responses. Finally, the results demonstrate that EDHF activity may become upregulated on inhibition of NO production and this may compensate for the loss of NO. PMID:9113362

  9. Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF)

    PubMed Central

    Gerber, R T; Anwar, M A; Poston, L

    1998-01-01

    Small mesenteric arteries from pregnant rats demonstrated greater sensitivity (pEC50 : P<0.001) and maximum relaxation (P<0.01) to acetylcholine (ACh) than those of control non-pregnant animals.Maximum relaxation, but not sensitivity, to ACh remained greater (P<0.01) in pregnant animals when evaluated in 25 mM KCl, which prevents relaxation dependent upon hyperpolarization. ACh induced relaxation in the presence of 25 mM KCl was completely inhibited in pregnant and non-pregnant groups by Nω-nitro L-arginine methyl ester (L-NAME, 100 μM), indomethacin (INDO, 10 μM) and oxadiazole quinoxalin (ODQ, 1 μM), suggesting pregnancy associated enhancement of dilator prostanoid and/or nitric oxide (NO) synthesis.ACh induced relaxation in 5 mM KCl was only partially inhibited by a combination of Nω-nitro L-arginine methyl ester (L-NAME, 100 μM), indomethacin (INDO, 10 μM) and oxadiazole quinoxalin (ODQ, 1 μM). The residual relaxation, which was greater in arteries from pregnant rats (maximum relaxation: P<0.01), was prevented by 25 mM KCl, indicating pregnancy associated enhanced synthesis/reduced degradation of a hyperpolarizing factor. Residual relaxation to ACh in 5 mM KCl was inhibited by the cytochrome P450 inhibitor, proadifen (1 μM) in the pregnant group (P<0.001).Relaxation to spermine NONOate was similar in pregnant and non-pregnant groups and totally inhibited by ODQ (in the presence of L-NAME).This study suggests that, in addition to enhanced endothelium dependent NO/dilator prostanoid synthesis, a hyperpolarizing factor may contribute to the vascular adaptation to pregnancy. PMID:9806327

  10. Effects of chronic nicotine ingestion on pressor response to Nomega-Nitro-L-arginine methyl ester and ex vivo concentration and relaxation response of aorta to L-arginine.

    PubMed

    Hui, S; Mei, Q; Qiu, B

    1997-12-01

    Effects of nitric oxide synthase inhibition on blood vessels were studied in nicotine-treated rats. Male Sprague-Dawley rats drank a nicotine solution with a concentration of 25 or 50 microg/ml for 15 days. The blood pressure and heart rate of chloralose-anaesthetized rats and isolated aortic strip contractions were measured. NomegaNitro-L-arginine methyl ester (L-NAME)-induced hypertension was significantly reduced after chronic nicotine treatment. The Emax of contractions of isolated aortic strips to noradrenaline were dose-dependently enhanced by nicotine and the potentiation was abolished by L-arginine. The relaxation of aortic strips to acetylcholine was significantly decreased in nicotine-treated rats, whereas L-arginine, but not D-arginine, reversed this action. Neither nicotine nor L-NAME affected the heart rate. The results show that chronic nicotine treatment reduced the pressor response of L-NAME.

  11. Genomic and Clinical Effects Associated with a Relaxation Response Mind-Body Intervention in Patients with Irritable Bowel Syndrome and Inflammatory Bowel Disease

    PubMed Central

    Jacquart, Jolene; Scult, Matthew A.; Slipp, Lauren; Riklin, Eric Isaac Kagan; Lepoutre, Veronique; Comosa, Nicole; Norton, Beth-Ann; Dassatti, Allison; Rosenblum, Jessica; Thurler, Andrea H.; Surjanhata, Brian C.; Hasheminejad, Nicole N.; Kagan, Leslee; Slawsby, Ellen; Rao, Sowmya R.; Macklin, Eric A.; Fricchione, Gregory L.; Benson, Herbert; Libermann, Towia A.; Korzenik, Joshua; Denninger, John W.

    2015-01-01

    Introduction Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) can profoundly affect quality of life and are influenced by stress and resiliency. The impact of mind-body interventions (MBIs) on IBS and IBD patients has not previously been examined. Methods Nineteen IBS and 29 IBD patients were enrolled in a 9-week relaxation response based mind-body group intervention (RR-MBI), focusing on elicitation of the RR and cognitive skill building. Symptom questionnaires and inflammatory markers were assessed pre- and post-intervention, and at short-term follow-up. Peripheral blood transcriptome analysis was performed to identify genomic correlates of the RR-MBI. Results Pain Catastrophizing Scale scores improved significantly post-intervention for IBD and at short-term follow-up for IBS and IBD. Trait Anxiety scores, IBS Quality of Life, IBS Symptom Severity Index, and IBD Questionnaire scores improved significantly post-intervention and at short-term follow-up for IBS and IBD, respectively. RR-MBI altered expression of more genes in IBD (1059 genes) than in IBS (119 genes). In IBD, reduced expression of RR-MBI response genes was most significantly linked to inflammatory response, cell growth, proliferation, and oxidative stress-related pathways. In IBS, cell cycle regulation and DNA damage related gene sets were significantly upregulated after RR-MBI. Interactive network analysis of RR-affected pathways identified TNF, AKT and NF-κB as top focus molecules in IBS, while in IBD kinases (e.g. MAPK, P38 MAPK), inflammation (e.g. VEGF-C, NF-κB) and cell cycle and proliferation (e.g. UBC, APP) related genes emerged as top focus molecules. Conclusions In this uncontrolled pilot study, participation in an RR-MBI was associated with improvements in disease-specific measures, trait anxiety, and pain catastrophizing in IBS and IBD patients. Moreover, observed gene expression changes suggest that NF-κB is a target focus molecule in both IBS and IBD—and that

  12. Adenoviral expression of 15-lipoxygenase-1 in rabbit aortic endothelium: role in arachidonic acid-induced relaxation.

    PubMed

    Aggarwal, Nitin T; Holmes, Blythe B; Cui, Lijie; Viita, Helena; Yla-Herttuala, Seppo; Campbell, William B

    2007-02-01

    Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.

  13. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  14. Relaxation selective pulses in fast relaxing systems.

    PubMed

    Lopez, Christopher J; Lu, Wei; Walls, Jamie D

    2014-05-01

    In this work, the selectivity or sharpness of the saturation profiles for relaxation selective pulses (R^rsps) that suppress magnetization possessing relaxation times of T2=T2(rsp) and T1=αT2 for α∈12,∞ was optimized. Along with sharpening the selectivity of the R^rsps, the selective saturation of these pulses was also optimized to be robust to both B0 and B1 inhomogeneities. Frequency-swept hyperbolic secant and adiabatic time-optimal saturation pulse inputs were found to work best in the optimizations, and the pulse lengths required to selectivity saturate the magnetization were always found to be less than the inversion recovery delay, T1ln(2). The selectivity of the optimized relaxation selective pulses was experimentally demonstrated in aqueous solutions with varying concentrations of the paramagnetic species, [Mn(+2)], and for use in solvent suppression. Finally, the "rotational" properties of spin relaxation were explored along with an analytical derivation of adiabatic time-optimal saturation pulses. PMID:24631803

  15. Requirements for muscle relaxation in Friedreich's ataxia.

    PubMed

    Mouloudi, H; Katsanoulas, C; Frantzeskos, G

    1998-02-01

    Friedreich's ataxia is an inherited disorder of the nervous system, requiring special care during anaesthesia, because of increased sensitivity to muscle relaxants. We report a case of Friedreich's ataxia in a 31-year-old woman, anaesthetised on two occasions, for tendinoplasty and pes cavus repair. Atracurium was used for neuromuscular blockade and monitored by a train-of-four twitch technique. The patient's response was normal. She returned to adequate spontaneous breathing within 20 min of the last dose of the muscle relaxant without need for anticholinesterase administration. When neuromuscular function is monitored, normal doses of muscle relaxant can safely be used in these patients.

  16. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described. PMID:2647960

  17. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described.

  18. Arrested Hematopoiesis and Vascular Relaxation Defects in Mice with a Mutation in Dhfr.

    PubMed

    Thoms, Julie A I; Knezevic, Kathy; Liu, Jia Jenny; Glaros, Elias N; Thai, Thuan; Qiao, Qiao; Campbell, Heather; Packham, Deborah; Huang, Yizhou; Papathanasiou, Peter; Tunningley, Robert; Whittle, Belinda; Yeung, Amanda W S; Chandrakanthan, Vashe; Hesson, Luke; Chen, Vivien; Wong, Jason W H; Purton, Louise E; Ward, Robyn L; Thomas, Shane R; Pimanda, John E

    2016-04-01

    Dihydrofolate reductase (DHFR) is a critical enzyme in the folate metabolism pathway and also plays a role in regulating nitric oxide (NO) signaling in endothelial cells. Although both coding and noncoding mutations with phenotypic effects have been identified in the human DHFR gene, no mouse model is currently available to study the consequences of perturbing DHFR in vivo In order to identify genes involved in definitive hematopoiesis, we performed a forward genetic screen and produced a mouse line, here referred to as Orana, with a point mutation in the Dhfr locus leading to a Thr136Ala substitution in the DHFR protein. Homozygote Orana mice initiate definitive hematopoiesis, but expansion of progenitors in the fetal liver is compromised, and the animals die between embryonic day 13.5 (E13.5) and E14.5. Heterozygote Orana mice survive to adulthood but have tissue-specific alterations in folate abundance and distribution, perturbed stress erythropoiesis, and impaired endothelium-dependent relaxation of the aorta consistent with the role of DHFR in regulating NO signaling. Orana mice provide insight into the dual roles of DHFR and are a useful model for investigating the role of environmental and dietary factors in the context of vascular defects caused by altered NO signaling.

  19. Arrested Hematopoiesis and Vascular Relaxation Defects in Mice with a Mutation in Dhfr

    PubMed Central

    Thoms, Julie A. I.; Knezevic, Kathy; Liu, Jia Jenny; Glaros, Elias N.; Thai, Thuan; Qiao, Qiao; Campbell, Heather; Packham, Deborah; Huang, Yizhou; Papathanasiou, Peter; Tunningley, Robert; Whittle, Belinda; Yeung, Amanda W. S.; Chandrakanthan, Vashe; Hesson, Luke; Chen, Vivien; Wong, Jason W. H.; Purton, Louise E.; Ward, Robyn L.

    2016-01-01

    Dihydrofolate reductase (DHFR) is a critical enzyme in the folate metabolism pathway and also plays a role in regulating nitric oxide (NO) signaling in endothelial cells. Although both coding and noncoding mutations with phenotypic effects have been identified in the human DHFR gene, no mouse model is currently available to study the consequences of perturbing DHFR in vivo. In order to identify genes involved in definitive hematopoiesis, we performed a forward genetic screen and produced a mouse line, here referred to as Orana, with a point mutation in the Dhfr locus leading to a Thr136Ala substitution in the DHFR protein. Homozygote Orana mice initiate definitive hematopoiesis, but expansion of progenitors in the fetal liver is compromised, and the animals die between embryonic day 13.5 (E13.5) and E14.5. Heterozygote Orana mice survive to adulthood but have tissue-specific alterations in folate abundance and distribution, perturbed stress erythropoiesis, and impaired endothelium-dependent relaxation of the aorta consistent with the role of DHFR in regulating NO signaling. Orana mice provide insight into the dual roles of DHFR and are a useful model for investigating the role of environmental and dietary factors in the context of vascular defects caused by altered NO signaling. PMID:26830229

  20. Activation of endothelial and epithelial KCa2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    PubMed Central

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm; Laursen, Britt E; Pilegaard, Hans; Köhler, Ralf; Simonsen, Ulf

    2012-01-01

    BACKGROUND AND PURPOSE Small (KCa2) and intermediate (KCa3.1) conductance calcium-activated potassium channels (KCa) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we investigated the expression of KCa2.3 and KCa3.1 channels, and hypothesized that activation of these channels would produce relaxation of human bronchioles and pulmonary arteries. EXPERIMENTAL APPROACH Channel expression and functional studies were conducted in human isolated small pulmonary arteries and bronchioles. KCa2 and KCa3.1 currents were examined in human small airways epithelial (HSAEpi) cells by whole-cell patch clamp techniques. RESULTS While KCa2.3 expression was similar, KCa3.1 protein was more highly expressed in pulmonary arteries than bronchioles. Immunoreactive KCa2.3 and KCa3.1 proteins were found in both endothelium and epithelium. KCa currents were present in HSAEpi cells and sensitive to the KCa2.3 blocker UCL1684 and the KCa3.1 blocker TRAM-34. In pulmonary arteries contracted by U46619 and in bronchioles contracted by histamine, the KCa2.3/ KCa3.1 activator, NS309, induced concentration-dependent relaxations. NS309 was equally potent in relaxing pulmonary arteries, but less potent in bronchioles, than salbutamol. NS309 relaxations were blocked by the KCa2 channel blocker apamin, while the KCa3.1 channel blocker, charybdotoxin failed to reduce relaxation to NS309 (0.01–1 µM). CONCLUSIONS AND IMPLICATIONS KCa2.3 and KCa3.1 channels are expressed in the endothelium of human pulmonary arteries and epithelium of bronchioles. KCa2.3 channels contributed to endo- and epithelium-dependent relaxations suggesting that these channels are potential targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease. PMID:22506557

  1. [Main relaxation techniques].

    PubMed

    Mateos Rodilla, Juana

    2002-11-01

    After having provided a detailed explanation on what relaxation consists of (see Rev. Rol Enf 2002; 25(9):582-586), the author presents a recap of the major known relaxation techniques including progressive muscular therapy, yoga stretching exercises, breathing techniques, therapeutic massages, meditation,... emphasizing the theoretical basis and practical experience as a function of each technique; each person ought to adopt those techniques which are most appropriate.

  2. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  3. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  4. Anomalous C-V response correlated to relaxation processes in TiO2 thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    NASA Astrophysics Data System (ADS)

    Kahouli, A.; Marichy, C.; Sylvestre, A.; Pinna, N.

    2015-04-01

    Capacitance-voltage (C-V) and capacitance-frequency (C-f) measurements are performed on atomic layer deposited TiO2 thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C-V anomalous) is observed in the C-V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C-V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO2 interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trap level of 0.60-0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti3+ ions. Both the C-V anomalous and relaxation processes in TiO2 arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.

  5. Suxiao Jiuxin Pill Induces Potent Relaxation and Inhibition on Contraction in Human Artery and the Mechanism

    PubMed Central

    Bai, Xiao-Yan; Zhang, Ping; Yang, Qin; Liu, Xiao-Cheng; Wang, Jun; Tong, Yong-Ling; Xiong, Song-Jin; Liu, Li-Hua; Wang, Lei; He, Guo-Wei

    2014-01-01

    Suxiao Jiuxin Pill, a compound Chinese traditional medicine with main components of tetramethylpyrazine and borneol, is widely used for antiangina treatment in China but its pharmacological effect on human blood vessels is unknown. We investigated the effect and possible mechanism of SJP in the human internal mammary artery (IMA, n = 78) taken from patients undergoing coronary surgery. SJP caused full relaxation in KCl- (99.4 ± 10.5%, n = 6) and U46619- (99.9 ± 5.6%, n = 6) contracted IMA. Pretreatment of IMA with plasma concentrations of SJP (1 mg/mL), calculated from the plasma concentration of its major component borneol, significantly depressed the maximal contraction to KCl (from 35.8 ± 6.0 mN to 12.6 ± 5.6 mN, P = 0.03) and U46619 (from 19.4 ± 2.9 mN to 5.7 ± 2.4 mN, P = 0.007) while SJP at 10 mg/mL abolished the subsequent contraction. Endothelium denudation and inhibition of eNOS significantly altered the SJP-induced relaxation without changes of eNOS expression. We conclude that SJP has a potent inhibitory effect on the vasoconstriction mediated by a variety of vasoconstrictors in human arteries. The vasorelaxation involves both endothelium-dependent and -independent mechanisms. Thus, the effect of SJP on human arteries demonstrated in this study may prove to be particularly important in vasorelaxing therapy in cardiovascular disease. PMID:24808920

  6. Vascular endothelial dysfunction associated with elevated serum homocysteine levels in rat adjuvant arthritis: effect of vitamin E administration.

    PubMed

    Can, Cenk; Cinar, Mehtap G; Koşay, Sezen; Evinç, Akgün

    2002-06-14

    We aimed to study the alterations in serum homocysteine levels and endothelium-dependent and -independent vascular relaxant responses in adjuvant-induced arthritis of the rat and to determine the effects of vitamin E administration on these changes. Arthritis was induced by a single intradermal injection of Freund's complete adjuvant into the paw. 26 days after the induction of arthritis, serum homocysteine levels and relaxant responses to acetylcholine and sodiumnitroprusside in thoracic aortas were evaluated. The relaxant responses to acetylcholine were decreased in aortas from arthritic rats, whereas the responses to sodiumnitroprusside were not significantly different when compared to the aortas from control rats. A significant increase was observed in serum homocysteine levels of the arthritic rats in comparison to those of controls. Vitamin E administration (100 mg/kg/day, i.m. for 26 days) to arthritic rats resulted in a significant increase in endothelium-dependent aortic responses to acetylcholine and a significant decrease in serum homocysteine levels with respect to the non-treated arthritic rats. However, in healthy rats, vitamin E treatment significantly decreased the acetylcholine-induced relaxant responses. We conclude that adjuvant-induced arthritis in the rat is associated with increased serum homocysteine levels and this is accompanied by a reduction in endothelium-dependent vascular responses in the thoracic aortas. Vitamin E treatment leads to normalization of the increased serum homocysteine levels and improves the endothelium-dependent relaxant responses in this experimental model. PMID:12044840

  7. Increased production of nitric oxide in coronary arteries during congestive heart failure.

    PubMed Central

    O'Murchu, B; Miller, V M; Perrella, M A; Burnett, J C

    1994-01-01

    Experiments were designed to determine whether a heterogeneity of endothelium-dependent relaxations in arteries from different vascular beds exists in experimental congestive heart failure (CHF) and to determine the mediators of those responses. CHF was produced in dogs by rapid ventricular pacing for 15 d. Rings of coronary, femoral, and renal arteries with and without endothelium from control and CHF dogs were suspended in organ chambers for measurement of isometric force. In arteries contracted with prostaglandin F2 alpha, endothelium-dependent relaxations to BHT 920 (an alpha 2-adrenergic agonist) were increased in coronary arteries from dogs with CHF (maximal relaxation: control -15 +/- 9% vs CHF -92 +/- 5%; n = 5-6; P < 0.05), with a modest enhancement in renal arteries. Relaxations to adenosine diphosphate and the calcium ionophore were unchanged. Relaxations to BHT 920 in CHF were reduced by NG monomethyl-L-arginine (L-NMMA) and pertussis toxin but not by indomethacin. These data suggest that endothelium-dependent relaxations are affected heterogeneously in CHF. The enhanced response to alpha 2-adrenergic agonists in the coronary artery is mediated by nitric oxide through a mechanism sensitive to inhibition by pertussis toxin. This selective increase in endothelium-dependent relaxations in the coronary artery may contribute to preserving coronary blood flow during CHF. Images PMID:8282783

  8. A comparison of somatic relaxation and EEG activity in classical progressive relaxation and transcendental meditation.

    PubMed

    Warrenburg, S; Pagano, R R; Woods, M; Hlastala, M

    1980-03-01

    Oxygen consumption, electroencephalogram (EEG), and four other measures of somatic relaxation were monitored in groups of long-term practitioners of classical Jacobson's progressive relaxation (PR) and Transcendental Meditation (TM) and also in a group of novice PR trainees. All subjects (1) practiced relaxation or meditation (treatment), (2) sat with eyes closed (EC control), and (3) read from a travel book during two identical sessions on different days. EEG findings indicated that all three groups remained primarily awake during treatment and EC control and that several subjects in each group displayed rare theta (5-7 Hz) waveforms. All three groups demonstrated similar decrements in somatic activity during treatment and EC control which were generally of small magnitude (e. g., 2-5% in oxygen consumption). These results supported the "relaxation response" model for state changes in somatic relaxation for techniques practiced under low levels of stress but not the claim that the relaxation response produced a hypometabolic state. Despite similar state effects, the long-term PR group manifested lower levels of somatic activity across all conditions compared to both novice PR and long-term TM groups. We concluded that PR causes a generalized trait of somatic relaxation which is manifested in a variety of settings and situations. Two likely explanations for this trait were discussed: (1) PR practitioners are taught to generalize relaxation to daily activities, and/or (2) according to a "multiprocess model," PR is a "somatic technique," which should produce greater somatic relaxation than does TM, a "cognitive technique." Further research is required to elucidate these possibilities.

  9. Different vasodilator responses of human arms and legs

    PubMed Central

    Newcomer, Sean C; Leuenberger, Urs A; Hogeman, Cynthia S; Handly, Brian D; Proctor, David N

    2004-01-01

    Forearm vascular responses to intra-arterial infusions of endothelium-dependent and -independent vasodilators have been thoroughly characterized in humans. While the forearm is a well-established experimental model for studying human vascular function, it is of limited consequence to systemic cardiovascular control owing to its small muscle mass and blood flow requirements. In the present study we determined whether these responses could be generalized to the leg. Based upon blood pressure differences between the leg and arm during upright posture, we hypothesized that the responsiveness to endothelium-dependent vasodilators would be greater in the forearm than the leg. Brachial and femoral artery blood flow (Q, ultrasound Doppler) at rest and during intra-arterial infusions of endothelium-dependent (acetylcholine and substance P) and -independent (sodium nitroprusside) vasodilators were measured in eight healthy men (22–27 years old). Resting blood flows in the forearm before infusion of acetylcholine, substance P or sodium nitroprusside were 25 ± 4, 30 ± 7 and 29 ± 5 ml min−1, respectively, and in the leg were 370 ± 32, 409 ± 62 and 330 ± 30 ml min−1, respectively. At the highest infusion rate of acetylcholine (16 μg (100 ml tissue)−1 min−1) there was a greater (P < 0.05) increase in Q to the forearm (1864 ± 476%) than to the leg (569 ± 86%). Similarly, at the highest infusion rate of substance P (125 pg (100 ml tissue)−1 min−1) there was a greater (P < 0.05) increase in Q to the forearm (911 ± 286%) than to the leg (243 ± 58%). The responses to sodium nitroprusside (1 μg (100 ml tissue)−1 min−1) were also greater (P < 0.05) in the forearm (925 ± 164%) than in the leg (326 ± 65%). These data indicate that vascular responses to both endothelium-dependent and -independent vasodilator agents are blunted in the leg compared to the forearm. PMID:14990681

  10. Collection Development: Relaxation & Meditation, September 1, 2010

    ERIC Educational Resources Information Center

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  11. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  12. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  13. Long-Term Psychosomatic Effects of Biofeedback vs. Relaxation Training.

    ERIC Educational Resources Information Center

    Nowlis, David P.; Borzone, Ximena C.

    Differences were compared in the short-term and long-term responses of subjects with headache, insomnia, or hypertension to biofeedback training, relaxation, or a combination of both. Headache sufferers, insomniacs, and hypertensives were randomly assigned in equal numbers to biofeedback, relaxation training or a record-keeping control. Over 2…

  14. Nonlocal and collective relaxation in stellar systems

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  15. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  16. Photocytotoxicity and magnetic relaxivity responses of dual-porous γ-Fe2O3@meso-SiO2 microspheres.

    PubMed

    Xuan, Shou-hu; Lee, Siu-Fung; Lau, Janet Ting-Fong; Zhu, Xiaoming; Wang, Yi-Xiang J; Wang, Feng; Lai, Josie M Y; Sham, Kathy W Y; Lo, Pui-Chi; Yu, Jimmy C; Cheng, Christopher H K; Leung, Ken Cham-Fai

    2012-04-01

    Novel high magnetization microspheres with porous γ-Fe(2)O(3) core and porous SiO(2) shell were synthesized using a templating method, whereas the size of the magnetic core and the thickness of the porous shell can be controlled by tuning the experimental parameters. By way of an example, as-prepared γ-Fe(2)O(3)@meso-SiO(2) microspheres (170 nm) display excellent water-dispersity and show photonic characteristics under externally applied a magnetic field. The magnetic property of the γ-Fe(2)O(3) porous core enables the microspheres to be used as a contrast agent in magnetic resonance imaging with a high r(2) (76.5 s(-1) mM(-1) Fe) relaxivity. The biocompatible composites possess a large BET surface area (222.3 m(2)/g), demonstrating that they can be used as a bifunctional agent for both MRI and drug carrier. Because of the high substrate loading of the magnetic, dual-porous materials, only a low dosage of the substrate will be acquired for potential practical applications. Hydrophobic zinc(II) phthalocyanine (ZnPC) photosensitizing molecules have been encapsulated into the dual-porous microspheres to form γ-Fe(2)O(3)@meso-SiO(2)-ZnPC microspheres. Biosafety, cellular uptake in HT29 cells, and in vitro MRI of these nanoparticles have been demonstrated. Photocytotoxicity (λ > 610 nm) of the HT29 cells uptaken with γ-Fe(2)O(3)@meso-SiO(2)-ZnPC microspheres has been demonstrated for 20 min illumination.

  17. Analysis of pomegranate juice components in rat corpora cavernosal relaxation.

    PubMed

    Oztekin, C V; Gur, S; Abdulkadir, N A; Kartal, M; Karabakan, M; Akdemir, A O; Gökkaya, C S; Cetinkaya, M

    2014-01-01

    This study evaluated the action of pomegranate juice (PJ) and its five principal phenolic constituents on rat corpus cavernosum smooth muscle (CCSM). Isometric tension studies were performed after precontraction with phenylephrine in CCSM from rats. Relaxant responses to PJ and its constituents ellagic acid (EA), chlorogenic acid, caffeic acid, cumaric acid and rutin were investigated. PJ and EA caused CCSM relaxations (94.1 ± 3.7 and 51.3 ± 9.9%), while others induced limited relaxant responses. EA response was not inhibited by L-N(G)-nitroarginine methyl ester (100 μM) and 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (1 μM). Tetraethylammonium (100 μM) and apamin (10 μM) and nifedipine (10 μM) inhibited EA-induced relaxations at 10(-3) M by 84%, 82% and 78%, respectively. Glibenclamide (10 μM) inhibited EA response (97%, 100 μM). PJ-induced relaxation was not altered by several inhibitors. EA was estimated to be responsible for 13.3% of relaxation caused by PJ. Our study demonstrated that PJ and EA-induced marked relaxations in CCSM. The opening of Ca(2+)-activated K+ channels and the inhibition of Ca(2+)-channels regulate the relaxation by EA, but not PJ. EA has a minor contribution to the marked relaxation obtained by PJ, suggesting the presence of other PJ constituents, which induce nitric oxide-independent corporal relaxation. Further studies are needed to examine the potential of PJ in combination with a PDE5 inhibitor in ED.

  18. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  19. [Death in a relaxation tank].

    PubMed

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  20. Topological constraints on magnetic relaxation.

    PubMed

    Yeates, A R; Hornig, G; Wilmot-Smith, A L

    2010-08-20

    The final state of turbulent magnetic relaxation in a reversed field pinch is well explained by Taylor's hypothesis. However, recent resistive-magnetohydrodynamic simulations of the relaxation of braided solar coronal loops have led to relaxed fields far from the Taylor state, despite the conservation of helicity. We point out the existence of an additional topological invariant in any flux tube with a nonzero field: the topological degree of the field line mapping. We conjecture that this constrains the relaxation, explaining why only one of three example simulations reaches the Taylor state. PMID:20868104

  1. A rationale for a multilevel model of relaxation.

    PubMed

    Kokoszka, A

    1994-01-01

    A Three dimensional evolutionary leveled model of the main states of consciousness is offered as a rationale for relaxation. "Relaxing states" and "relaxation response states--Differentiated Waking States of Consciousness" are distinguish on the horizontal plane according to the integrated model of the main states of consciousness. It is proposed that states of consciousness in relaxation could be considered also on vertical evolutionary dimension described according to neo-Jacksonian theory in terms of the metabolism of information. The model opens perspectives for the description of dynamic fluctuations of states of consciousness during relaxation in terms of the main states of consciousness, i.e., REM-sleep, NREM-sleep, Ordinary Waking States of Consciousness, Differentiated Waking States of Consciousness, as well as in terms of dissolution (regression) and evolution on the vertical developmental dimension. It is illustrated by the discussion on meditation and hyponosis.

  2. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  3. Vascular relaxation induced by Eucommiae Ulmoides Oliv. and its compounds Oroxylin A and wogonin: implications on their cytoprotection action

    PubMed Central

    Akinyi, Mary; Gao, Xiu Mei; Li, Yu Hong; Wang, Bing Yao; Liu, Er Wei; Chai, Li Juan; JawoBah, Abdulai; Fan, Guan Wei

    2014-01-01

    The vascular relaxation action of Eucommiae Ulmoides Oliv. also known as Duzhong has been seen on arteries of the heart such as the aorta and the coronary artery which are elastic in nature. Duzhong is historically an active ingredient commonly used in hypertensive herbal prescriptions in China. This work investigated the vasodilating effect of Duzhong and its compounds (wogonin 10 μM and oroxylin-A) in the isolated intact rat heart, perfused retrograde according the method of Langendorff and the cytoprotective effect in EA.hy926 cell lines Coronary perfusion pressure was monitored with a pressure transducer connected to a side-arm of the aortic perfusion cannula. Duzhong induced vasorelaxation in a dose dependent manner, on precontracting the vessels with endothelin-1, Duzhong 10 mg/ml, wogonin 10 μM and oroxylin-A 10 μM could significantly lower the perfusion pressure in reference to positive control SNP, Duzhong induced vasodilation was not inhibited by L-NAME (nitric oxide inhibitor), but was significantly inhibited by Tetraethyl ammonium (TEA, a K+ channel blocker and almost abolished by potassium chloride. The underlying mechanism was carried out in EA.hy926 cell lines. When these cells were treated with H2O2, there was higher expression of NOX-4, TNF-α and COX-2 mRNA. However, wogonin treatment attenuated the mRNA of NOX-4, TNF-α and COX-2. Wogonin also upregulated the mRNA expression of CAT, SOD-1 and GSR in oxidative stress induced by H2O2 EA.hy926 cells. Duzhong and compounds can exert an in vitro relaxation effect of the coronary artery and improve the heart function in Langendorff apparatus. This action appears to be endothelium dependent but not NO mediated. Cell culture findings indicated that wogonin can exert vascular and cellular protection by scavenging Reactive Oxygen Species. PMID:25419347

  4. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery.

    PubMed

    Yeung, Dennis K Y; Leung, Susan W S; Xu, Yan Chun; Vanhoutte, Paul M; Man, Ricky Y K

    2006-12-15

    Puerarin, an isoflavonoid derived from the Chinese medicinal herb Radix puerariae, has been suggested to be useful in the management of various cardiovascular disorders. The present study examined the effect of acute exposure (30 min) to puerarin on vascular relaxation. Rings from porcine coronary artery of either sex were used. The highest concentration of puerarin (100 microM) produced a small but statistically significant relaxation of U46619-contracted rings. Vascular relaxations were also studied in the presence of lower concentrations of puerarin (0.1, 1 and 10 microM) which had no direct relaxation effect. Puerarin enhanced vasorelaxation to endothelium-independent relaxing agents, sodium nitroprusside and cromakalim. However, puerarin had no effect on vasorelaxation induced by endothelium-dependent relaxing agents, bradykinin and calcium ionophore A23187. The potentiating action of puerarin (10 microM) on sodium nitroprusside-mediated relaxation was not affected by the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 microM), or by the disruption of the endothelium with Triton X-100. The effect of puerarin was reversible following a washout period. The potentiating effects were comparable with the 3'-5'-cyclic adenosine monophosphate (cyclic AMP) analogues, 8-bromoadenosine-3'-5'-cyclic monophosphate (8-Br-cyclic AMP; 10 muM) and Sp-isomer [S nomenclature refers to phosphorus] of adenosine-3', 5'-cyclic monophosphorothioate (Sp-cyclic AMPS; 3 microM), but not the 3'-5'-cyclic guanosine monophosphate (cyclic GMP) analogue, 8-bromoguanosine-3'-5'-cyclic monophosphate (8-Br-cyclic GMP; 3 microM). The cyclic AMP antagonist, Rp-isomer [R nomenclature refers to phosphorus] of 8-bromoadenosine-3', 5'-cyclic monophosphorothioate (Rp-8-Br-cyclic AMPS; 10 microM), but not cyclic GMP antagonist, Rp-isomer of 8-bromoguanosine-3', 5'-cyclic monophosphorothioate (Rp-8-Br-cyclic GMPS; 10 microM), reversed the effects of puerarin (10

  5. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  6. Measuring the longitudinal NMR relaxation rates of fast relaxing nuclei using a signal eliminating relaxation filter.

    PubMed

    Hansen, D F; Led, J J

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  7. Vascular relaxation and cyclic guanosine monophosphate in hypertension

    SciTech Connect

    Otsuka, Y.; DiPiero, A.; Lockette, W.

    1986-03-01

    Isolated aortae from hypertensive rats have a decreased relaxation response to acetylcholine (Ach), A23187, and nitroprusside (SNP). Since cyclic guanosine monophosphate (cGMP) has been shown to increase in response to these vasodilators, the authors measured cGMP in response to these agents in isolated aortae from normotensive rats and DOCA, 1K1C, and coarctation induced hypertension. cGMP was measured by radioimmunoassay in vessels after exposure to phenylephrine followed by either Ach, A23187, or SNP. The aortae from the hypertensive rats had decreased basal levels of cGMP and attenuated increases in cGMP in response to Ach and A23187. Rises in cGMP in response to SNP were also attenuated in aortae from the hypertensive rats, even at concentrations which induced similar relaxation in normotensive and hypertensive blood vessels. The data suggest that changes in cGMP do not necessarily reflect changes in endothelium independent vascular relaxation in hypertension.

  8. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  9. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  10. Progressive muscle relaxation, breathing exercises, and ABC relaxation theory.

    PubMed

    Matsumoto, M; Smith, J C

    2001-12-01

    This study compared the psychological effects of Progressive Muscle Relaxation (PMR) and breathing exercises. Forty-two students were divided randomly into two groups and taught PMR or breathing exercises. Both groups practiced for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, PMR practitioners displayed greater increments in relaxation states (R-States) Physical Relaxation and Disengagement, while breathing practitioners displayed higher levels of R-State Strength and Awareness. Slight differences emerged at Weeks 1 and 2; major differences emerged at Weeks 4 and 5. A delayed and potentially reinforcing aftereffect emerged for PMR only after five weeks of training--increased levels of Mental Quiet and Joy. Clinical and theoretical implications are discussed.

  11. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  12. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit.

    PubMed Central

    Cooke, J P; Singer, A H; Tsao, P; Zera, P; Rowan, R A; Billingham, M E

    1992-01-01

    The purpose of this study was to determine if chronic administration of L-arginine, the precursor of endothelium-derived relaxing factor (EDRF), normalizes endothelium-dependent relaxation and decreases atherosclerosis in hypercholesterolemic animals. Male rabbits were fed (a) normal rabbit chow; (b) 1% cholesterol diet; or (c) 1% cholesterol diet supplemented by 2.25% L-arginine HCl in drinking water. Arginine supplementation doubled plasma arginine levels without affecting serum cholesterol values. After 10 wk, the thoracic aorta was harvested for studies of vascular reactivity and histomorphometry. Endothelium-dependent relaxations (to acetylcholine and calcium ionophore A23187) were significantly impaired in thoracic aortae from animals fed a 1% cholesterol diet. By contrast, vessels from hypercholesterolemic animals receiving L-arginine supplementation exhibited significantly improved endothelium-dependent relaxations. Responses to norepinephrine or nitroglycerin were not affected by either dietary intervention. Histomorphometric analysis revealed a reduction in lesion surface area and intimal thickness in thoracic aortae from arginine-supplemented animals compared to those from untreated hypercholesterolemic rabbits. This is the first study to demonstrate that supplementation of dietary L-arginine, the EDRF precursor, improves endothelium-dependent vasorelaxation. More importantly, we have shown that this improvement in EDRF activity is associated with a reduction in atherogenesis. PMID:1522225

  13. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta.

    PubMed Central

    Minor, R L; Myers, P R; Guerra, R; Bates, J N; Harrison, D G

    1990-01-01

    We examined the hypothesis that impaired endothelium-dependent vasodilation in atherosclerosis is associated with decreased synthesis of nitrogen oxides by the vascular endothelium. The descending thoracic aortae of rabbits fed either normal diet, a high cholesterol diet for 2-5 wk (hypercholesterolemic, HC), or a high cholesterol diet for 6 mo (atherosclerotic, AS) were perfused in a bioassay organ chamber with physiologic buffer containing indomethacin. Despite a dramatic impairment in the vasodilator activity of endothelium-dependent relaxing factor (EDRF) released from both HC and AS aortae (assessed by bioassay), the release of nitrogen oxides (measured by chemiluminescence) from these vessels was not reduced, but markedly increased compared to NL. Thus, impaired endothelium-dependent relaxation in atherosclerosis is neither due to decreased activity of the enzyme responsible for the production of nitrogen oxides from arginine nor to arginine deficiency. Because the production of nitrogen oxides increased in response to acetylcholine in both hypercholesterolemic and atherosclerotic vessels, impairments in signal transduction are not responsible for abnormal endothelium-dependent relaxations. Impaired vasodilator activity of EDRF by cholesterol feeding may result from loss of incorporation of nitric oxide into a more potent parent compound, or accelerated degradation of EDRF. Images PMID:2254462

  14. Relaxation techniques for stress

    MedlinePlus

    ... also help you manage stress and ease the effects of stress on your body. ... your body. These sensors measure your skin temperature, brain ... or emotions to help control your body's responses. Over time, ...

  15. Endothelial dysfunction and increased responses to renal nerve stimulation in rat kidneys during rhabdomyolysis-induced acute renal failure: role of hydroxyl radical.

    PubMed

    Cil, Onur; Ertunc, Mert; Gucer, Kadri Safak; Ozaltin, Fatih; Iskit, Alper Bektas; Onur, Rustu

    2012-01-01

    Rhabdomyolysis is an important cause of acute renal failure (ARF) and renal vasoconstriction is the main mechanism in the pathogenesis of ARF. Lipid peroxidation due to hydroxyl radical (.OH) formation and redox cycling of myoglobin also have a role. We investigated the disturbance in renal vascular reactivity to reveal the mechanisms leading to ARF. Female Wistar rats (n = 7) were injected with glycerol (10 mL/kg, 50% in saline) intramuscularly to induce rhabdomyolysis, and then the kidneys were isolated and perfused. We investigated acetylcholine (ACh)-induced endothelium-dependent and papaverine (PAP)-induced endothelium-independent vasodilation responses and renal nerve stimulation (RNS)-induced vasoconstrictions. These were also investigated both in rats which received either .OH scavenger, dimethylthiourea (DMTU: 500 mg/kg before glycerol injection and 125 mg/kg 8 h after glycerol injection, n = 7), or myoglobin redox cycling inhibitor, acetaminophen (ApAP: 100 mg/kg 2 h before glycerol injection and 100 mg/kg each 4 h, and 22 h after glycerol injection, n = 7). ACh-induced responses in glycerol group were decreased (p < 0.001), but PAP-induced vasodilation did not change. RNS-induced vasoconstriction in all kidneys was greater (p < 0.001) in glycerol group. DMTU restored both endothelium-dependent vasodilation and RNS-induced vasoconstriction. ApAP had no effect on vascular responses. Both DMTU and ApAP exerted a partial protective effect in renal histology without restoring serum creatinine and blood urea nitrogen (BUN) levels or creatinine clearance. This study showed that endothelial dysfunction and increased vasoconstriction developed during rhabdomyolysis. .OH plays an important role in the development of these vascular responses. These findings suggest that decreased endothelium-dependent vasodilation and augmented renal sympathetic tonus contribute to the development of renal vasoconstriction during rhabdomyolysis-induced ARF.

  16. Relaxation strategies for patients during dermatologic surgery.

    PubMed

    Shenefelt, Philip D

    2010-07-01

    Patient stress and anxiety are common preoperatively and during dermatologic procedures and surgeries. Stress and anxiety can occasionally interfere with performance of procedures or surgery and can induce hemodynamic instability, such as elevated blood pressure or syncope, as well as producing considerable discomfort for some patients. Detection of excess stress and anxiety in patients can allow the opportunity for corrective or palliative measures. Slower breathing, biofeedback, progressive muscular relaxation, guided imagery, hypnosis, meditation and music can help calm and rebalance the patient's autonomic nervous system and immune functioning. Handheld miniaturized heart rate variability biofeedback devices are now available. The relaxation response can easily be taught. Guided imagery can be recorded or live. Live rapid induction hypnosis followed by deepening and then self-guided imagery requires no experience on the part of the patient but does require training and experience on the part of a provider. Recorded hypnosis inductions may also be used. Meditation generally requires more prior experience and training, but is useful when the patient already is skilled in it. Live, guided meditation or meditation recordings may be used. Relaxing recorded music from speakers or headphones or live performance music may also be employed to ease discomfort and improve the patient's attitude for dermatologic procedures and surgeries.

  17. Relaxation strategies for patients during dermatologic surgery.

    PubMed

    Shenefelt, Philip D

    2010-07-01

    Patient stress and anxiety are common preoperatively and during dermatologic procedures and surgeries. Stress and anxiety can occasionally interfere with performance of procedures or surgery and can induce hemodynamic instability, such as elevated blood pressure or syncope, as well as producing considerable discomfort for some patients. Detection of excess stress and anxiety in patients can allow the opportunity for corrective or palliative measures. Slower breathing, biofeedback, progressive muscular relaxation, guided imagery, hypnosis, meditation and music can help calm and rebalance the patient's autonomic nervous system and immune functioning. Handheld miniaturized heart rate variability biofeedback devices are now available. The relaxation response can easily be taught. Guided imagery can be recorded or live. Live rapid induction hypnosis followed by deepening and then self-guided imagery requires no experience on the part of the patient but does require training and experience on the part of a provider. Recorded hypnosis inductions may also be used. Meditation generally requires more prior experience and training, but is useful when the patient already is skilled in it. Live, guided meditation or meditation recordings may be used. Relaxing recorded music from speakers or headphones or live performance music may also be employed to ease discomfort and improve the patient's attitude for dermatologic procedures and surgeries. PMID:20677535

  18. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  19. Biofeedback-Assisted Relaxation Training in the Elementary Classroom.

    ERIC Educational Resources Information Center

    Zaichkowsky, Linda B.; And Others

    1986-01-01

    Examined feasibility of training young elementary school children in stress responses and coping techniques. Findings indicated children can learn to control heart rate, respiration rate, and skin temperature responses by participating in a program that includes instruction on proper breathing; modified, progressive muscle relaxation; visual…

  20. Disturbed Paraspinal Reflex Following Prolonged Flexion-Relaxation and Recovery

    PubMed Central

    Rogers, Ellen L.; Granata, Kevin P.

    2006-01-01

    Study Design. Repeated measures experimental study of the effect of flexion-relaxation, recovery, and gender on paraspinal reflex dynamics. Objective. To determine the effect of prolonged flexion-relaxation and recovery time on reflex behavior in human subjects. Summary of Background Data. Prolonged spinal flexion has been shown to disturb the paraspinal reflex activity in both animals and human beings. Laxity in passive tissues of the spine from flexion strain may contribute to desensitization of mechanoreceptors. Animal studies indicate that recovery of reflexes may take up to several hours. Little is known about human paraspinal reflex behavior following flexion tasks or the recovery of reflex behavior following the flexion tasks. Methods. A total of 25 subjects performed static flexionrelaxation tasks. Paraspinal muscle reflexes were recorded before and immediately after flexion-relaxation and after a recovery period. Reflexes were quantified from systems identification analyses of electromyographic response in relation to pseudorandom force disturbances applied to the trunk. Results. Trunk angle measured during flexion-relaxation postures was significantly higher following static flexion-relaxation tasks (P < 0.001), indicating creep deformation of passive supporting structures in the trunk. Reflex response was diminished following flexion-relaxation (P < 0.029) and failed to recover to baseline levels during 16 minutes of recovery. Conclusion. Reduced reflex may indicate that the spine is less stable following prolonged flexion-relaxation and, therefore, susceptible to injury. The absence of recovery in reflex after a substantial time indicates that increased low back pain risk from flexion-relaxation may persist after the end of the flexion task. PMID:16582860

  1. Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1

    PubMed Central

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.

    2014-01-01

    Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540

  2. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  3. Dependence of Brownian and Néel relaxation times on magnetic field strength

    SciTech Connect

    Deissler, Robert J. Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  4. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  5. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  6. Stress relaxation in pulsed DC electromigration measurements

    NASA Astrophysics Data System (ADS)

    Ringler, I. J.; Lloyd, J. R.

    2016-09-01

    When a high current density is applied to a conductor, it activates several driving forces for mass transport that can lead to device failure, the most prominent of which is electromigration. However, there are other driving forces operating as well that can counteract or add to the effects of electromigration. A major driving force is a stress gradient that is developed as a response to electromigration in the presence of a blocking boundary condition. When the electrical stress is interrupted by pulsing DC measurements at low frequency, relaxation of the stress is observed through longer lifetime.

  7. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  8. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  9. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  10. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  11. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  12. Molecular relaxations in amorphous phenylbutazone

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Thayyil, M. Shahin; Capaccioli, S.

    2016-05-01

    Molecular dynamics of phenylbutazone in the supercooled liquid and glassy state is studied using broadband dielectric spectroscopy for test frequencies 1 kHz, 10 kHz and 100 kHz over a wide temperature range. Above the glass transition temperature Tg, the presence of the structural α-relaxation peak was observed which shifts towards lower frequencies as the temperature decreases and kinetically freezes at Tg. Besides the structural α-relaxation peak, a β-process which arises due to the localized molecular fluctuations is observed at lower temperature.

  13. Thermomechanical Modeling of Stress Relaxation in Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Zare, Fateme; Kadkhodaei, Mahmoud; Salafian, Iman

    2015-04-01

    When a shape memory alloy (SMA) is subjected to a mechanical load, especially at high strain rates, its temperature varies due to thermomechanical coupling in the response of these materials. Thus, if strain is kept constant during the transformation, temperature change will cause stress to decrease during loading and to increase during unloading. A decrease in stress under constant strain indicates stress relaxation, and an increase in stress indicates stress recovery, i.e., reverse stress relaxation. In this paper, a fully coupled thermomechanical model is developed in a continuum framework to study stress relaxation and stress recovery in SMA wires. Numerical simulations at different ambient temperatures, applied strain rates, wire radii, and relaxation intervals are done to show the abilities of the proposed model in predicting relaxation phenomena in various conditions where strain remains constant during loading or unloading. Relaxation experiments were also performed on NiTi wires, and the numerical and empirical results are shown to be in a good agreement.

  14. Inhibition of the release of endothelium-derived relaxing factor in vitro and in vivo by dipeptides containing NG-nitro-L-arginine.

    PubMed Central

    Thiemermann, C.; Mustafa, M.; Mester, P. A.; Mitchell, J. A.; Hecker, M.; Vane, J. R.

    1991-01-01

    1. We have shown that dipeptides containing NG-nitro-L-arginine (NO2Arg) inhibit the biosynthesis of endothelium-derived relaxing factor (EDRF) in vitro and in vivo. 2. In anaesthetized rats, intravenous administration at 1-30 mg kg-1 of the methyl ester of NO2Arg, NO2-Arg-L-phenylalanine (NO2Arg-Phe), L-alanyl-NO2Arg (Ala-NO2Arg) or NO2Arg-L-arginine (NO2Arg-Arg) produced dose-related increases in mean arterial blood pressure (MABP) which were unaffected by D-arginine (D-Arg; 20 mg kg-1 min-1 for 15 min), but prevented by co-infusions of L-arginine (L-Arg; 20 mg kg-1 min-1 for 15 min) or by their parent dipeptides. 3. NO2Arg methyl ester, NO2Arg-Phe methyl ester or Ala-NO2Arg methyl ester (10 mg kg-1, i.v.) also inhibited the reduction in MABP caused by the endothelium-dependent vasodilator, acetylcholine (30 micrograms kg-1 min-1 for 3 min), but not those induced by glycerly trinitrate (20 micrograms kg-1 min-1 for 3 min) or iloprost (6 micrograms kg-1 min-1 for 3 min) which act directly on the vascular smooth muscle. 4. Moreover, NO2Arg methyl ester, NO2Arg-Phe methyl ester or NO2Arg-Arg methyl ester (100 microM) inhibited the acetylcholine-induced relaxation of rabbit aortic strips, and NO2Arg-Phe methyl ester (30 microM) blocked the stimulated (bradykinin, 30 pmol) release of EDRF from bovine aortic endothelial cells grown on microcarrier beads.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1786515

  15. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats.

    PubMed

    Wang, Zhuo; Li, Ai-Ying; Guo, Qiu-Hong; Zhang, Jian-Ping; An, Qi; Guo, Ya-jing; Chu, Li; Weiss, J Woodrow; Ji, En-Sheng

    2013-01-01

    Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.

  16. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  17. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  18. Relaxation times estimation in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.

  19. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  20. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  1. Relaxation properties in classical diamagnetism.

    PubMed

    Carati, A; Benfenati, F; Galgani, L

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  2. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  3. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  4. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  5. 5-hydroxytryptamine induced relaxation in the pig urinary bladder neck

    PubMed Central

    Recio, Paz; Barahona, María Victoria; Orensanz, Luis M; Bustamante, Salvador; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2009-01-01

    Background and purpose 5-Hydroxytryptamine (5-HT) is one of the inhibitory mediators in the urinary bladder outlet region. Here we investigated mechanisms involved in 5-HT-induced relaxations of the pig bladder neck. Experimental approach Urothelium-denuded strips of pig bladder were mounted in organ baths for isometric force recordings of responses to 5-HT and electrical field stimulation (EFS). Key results After phenylephrine-induced contraction, 5-HT and 5-HT receptor agonists concentration-dependently relaxed the preparations, with the potency order: 5-carboxamidotryptamine (5-CT) > 5-HT = RS67333 > (±)-8-hydroxy-2-dipropylaminotetralinhydrobromide > m-chlorophenylbiguanide > α-methyl-5-HT > ergotamine. 5-HT and 5-CT relaxations were reduced by the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulphonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride and potentiated by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride (WAY 100135) and cyanopindolol, 5-HT1A and 5-HT1A/1B receptor antagonists respectively. Inhibitors of 5-HT1B/1D, 5-HT2, 5-HT2B/2C, 5-HT3, 5-HT4, 5-HT5A and 5-HT6 receptors failed to modify 5-HT responses. Blockade of monoamine oxidase A/B, noradrenergic neurotransmission, α-adrenoceptors, muscarinic and purinergic receptors, nitric oxide synthase, guanylate cyclase and prostanoid synthesis did not alter relaxations to 5-HT. Inhibitors of Ca2+-activated K+ and ATP-dependent K+ channels failed to modify 5-HT responses but blockade of neuronal voltage-gated Na+-, Ca2+-and voltage-gated K+ (Kv)-channels potentiated these relaxations. Adenylyl cyclase activation and cAMP-dependent protein kinase (PKA) inhibition potentiated and reduced, respectively, 5-HT-induced responses. Under non-adrenergic, non-cholinergic, non-nitrergic conditions, EFS induced neurogenic, frequency-dependent, relaxations which were resistant to WAY 100135 and cyanopindolol. Conclusions and implications 5-HT relaxed

  6. Relaxation Models for Glassy Systems

    NASA Astrophysics Data System (ADS)

    Ajay

    In this thesis we explore some models based on constrained dynamics to understand the origin and ubiquity of the stretched exponential relaxation q(t) = exp(-(t/tau)^{ beta}). The first chapter has a pedagogical introduction to this field. Then we explore two models based primarily on constraints to see whether they would exhibit a stretched exponential relaxation. The first is a sliding block type of model based on a child's puzzle which has blocks and vacancies. The blocks can move only when they are nearest neighbor to a vacancy. We simulate random walk of the blocks and explore the relaxation behavior to equilibrium. We obtain three regimes of relaxation. In the short time regime (where the constraints are strong) we see a stretched exponential behavior. The intermediate time regime is best described as a simple random walk and we obtain a power law (with exponent 1/2). The long time behavior is a simple exponential, as expected. We do a Monte Carlo simulation of random walk on a bond-diluted hypercube. The site-diluted version of this model was suggested by Campbell as an explanation of the relaxation behavior seen in spin glasses. We come to it from the perspective of a system which exemplifies only constraints and nothing else (we have hard constraints with {cal H} = 0). We see that the relaxation to equilibrium is exponential for all p >=q 1/2 and below that it is a stretched exponential. In fact, the beta decreases as p decreases and attains a value of 1/4 at the percolation threshold of p = 1/n, where n is the dimensionality of the hypercube. We also do a calculation for determining the probability of connectivity for finite graphs. This demonstrates that the usual numerical results provided in graph theory, which are in the limit of infinite graphs, are not accurate for finite graphs. The final chapter has a conclusion. We also propose a model based on random graphs and percolation for studying sliding block kind of models.

  7. Restricting query relaxation through user constraints

    SciTech Connect

    Gaasterland, T.

    1993-07-01

    This paper describes techniques to restrict and to heuristically control relaxation of deductive database queries. The process of query relaxation provides a user with a means to automatically identify new queries that are related to the user`s original query. However, for large databases, many relaxations may be possible. The methods to control and restrict the relaxation process introduced in this paper focus the relaxation process and make it more efficient. User restrictions over the data base domain may be expressed as user constraints. This paper describes how user constraints can restrict relaxed queries. Also, a set of heuristics based on cooperative answering techniques are presented for controlling the relaxation process. Finally, the interaction of the methods for relaxing queries, processing user constraints, and applying the heuristic rules is described.

  8. Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation

    PubMed Central

    Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio

    2016-01-01

    Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619

  9. Plasmon-mediated energy relaxation in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-01

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  10. Plasmon-mediated energy relaxation in graphene

    SciTech Connect

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  11. Anomalous diffusion approach to non-exponential relaxation in complex physical systems

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina; Weron, Aleksander

    2015-07-01

    We derive the relaxation function from the simple model of two-state systems under memory effects caused by the subordination. The non-exponential relaxation is shown to result from subordination by inverse infinity divisible random processes. The wide class of such random processes includes ordinary α-stable, tempered α-stable, exponential, gamma processes and many others as particular cases. This approach generalizes the Cole-Cole, Cole-Davidson and Havriliak-Negami laws well known in experimental physics of relaxation. The presented considerations discover a direct (one-to-one) relationship between the method of random relaxation rates and the anomalous diffusion approach based on subordination of random processes that are applied for the theory of relaxation phenomena. Moreover, it is found that the space and time clusterizations are responsible on equal foots for power-law memory effects in relaxation of complex physical systems.

  12. Viscoelastic Relaxation of Lunar Basins

    NASA Astrophysics Data System (ADS)

    Mohit, P. S.; Phillips, R. J.

    2004-12-01

    The large lunar impact basins provide a unique glimpse into early lunar history. Here we investigate the possibility that the relief of the oldest lunar basins (with the exception of South-Pole Aitken) has decayed through viscous relaxation. We identify nine ancient multi-ring basins with very low relief and low-amplitude Bouguer and free-air gravity anomalies. The characteristics of these basins are consistent with either 1) relaxation of topographic relief by ductile flow (e.g. Solomon et al., 1982) or 2) obliteration of basin topography during crater collapse immediately following impact. Both scenarios require that the basins formed early in lunar history, when the Moon was hot. The latter possibility appears to be unlikely due to the great topographic relief of South Pole-Aitken basin (SPA), the largest and oldest impact basin on the Moon (with the possible exception of the putative Procellarum basin; Wilhelms, 1987). On the other hand, the thin crust beneath SPA may not have allowed ductile flow in its lower portions, even for a hot Moon, implying that a thicker crust is required beneath other ancient basins for the hypothesis of viscous relaxation to be tenable. Using a semi-analytic, self-gravitating viscoelastic model, we investigate the conditions necessary to produce viscous relaxation of lunar basins. We model topographic relaxation for a crustal thickness of 30 km, using a dry diabase flow law for the crust and dry olivine for the mantle. We find that the minimum temperature at the base of the crust (Tb) permitting nearly complete relaxation of topography by ductile flow on a timescale < 108 yrs is 1400 K, corresponding to a heat flow of 55mW/m2, into the crust. Ductile flow in the lower crust becomes increasingly difficult as the crustal thickness decreases. The crust beneath SPA, thinned by the impact, is only 15-20 km thick and would require Tb ≥ 1550 K for relaxation to occur. The fact that SPA has maintained high-amplitude relief suggests that

  13. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  14. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  15. Localized relaxation in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Kirimoto, K.; Nobugai, K.; Wigmore, J. K.; Miyasato, T.

    2002-05-01

    Stabilized zirconia is well known for long-range transport of oxygen ions which is caused by diffusion relaxation of oxygen vacancies. We used torsional vibrations to measure the temperature dependence of internal friction in yttria-stabilized zirconia (YSZ) doped with 9.5 mol% Y 2O 3 and calcia-stabilized zirconia (CSZ) doped with 12 mol% CaO. In the temperature range 300- 700 K, the internal friction peak exhibits anisotropy, different in YSZ from CSZ, which we attribute to localized relaxation of oxygen vacancies. The results imply that some oxygen vacancies are bound within the local structure, a greater number in CSZ than in YSZ, and suggest that the defect symmetry of local structure depends on the type of dopant ion.

  16. Relaxation and biofeedback techniques in the management of hypertension.

    PubMed

    Patel, C; Datey, K K

    1976-02-01

    In a controlled trial, 27 patients with systemic hypertension were given training in relaxation and meditation using biofeedback procedures. As a result there was a significant reduction in both systolic and diastolic pressure in 77% of the patients. In 50% of the patients it was also possible to reduce antihypertensive drugs, ranging from 33 to 100%. Six-month follow up results show that the benefit can be maintained for a long term provided the patients practice relaxation regularly. The response is unlikely to be a "placebo effect" in the usual meaning. Its genuine therapeutic value should be exploited and reevaluated on a larger scale.

  17. Dielectric relaxation of thin films of polyamide random copolymers

    NASA Astrophysics Data System (ADS)

    Taniguchi, Natsumi; Fukao, Koji; Sotta, Paul; Long, Didier R.

    2015-05-01

    We investigate the relaxation behavior of thin films of a polyamide random copolymer, PA66/6I, with various film thicknesses using dielectric relaxation spectroscopy. Two dielectric signals are observed at high temperatures, the α process and the relaxation process due to electrode polarization (the EP process). The relaxation time of the EP process has a Vogel-Fulcher-Tammann type of temperature dependence, and the glass transition temperature, Tg, evaluated from the EP process agrees very well with the Tg determined from the thermal measurements. The fragility index derived from the EP process increases with decreasing film thickness. The relaxation time and the dielectric relaxation strength of the EP process are described by a linear function of the film thickness d for large values of d , which can be regarded as experimental evidence for the validity of attributing the observed signal to the EP process. Furthermore, there is distinct deviation from this linear law for thicknesses smaller than a critical value. This deviation observed in thinner films is associated with an increase in the mobility and/or diffusion constant of the charge carriers responsible for the EP process. The α process is located in a higher-frequency region than the EP process at high temperatures but merges with the EP process at lower temperatures near the glass transition region. The thickness dependence of the relaxation time of the α process is different from that of the EP process. This suggests that there is decoupling between the segmental motion of the polymers and the translational motion of the charge carriers in confinement.

  18. Relaxation: A Fourth "R" for Education.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    Relaxation training helps the individual handle tension through concentrating upon efficient use of muscles. A program of progressive relaxation can be easily incorporated into elementary and secondary schools. Objectives of such a program include the following: (a) to learn to relax technically for purposes of complete rest (deep muscle…

  19. Dynamic Relaxation of Financial Indices

    NASA Astrophysics Data System (ADS)

    Shen, J.; Zheng, B.; Lin, H.; Qiu, T.

    The dynamic relaxation of the German DAX both before and after a large price-change is investigated. The dynamic behavior is characterized by a power law. At the minutely time scale, the exponent p governing the power-law behavior takes a same value before and after the large price change, while at the daily time scale, it is different. Numerical simulations of an interacting EZ herding model are performed for comparison.

  20. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  1. The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation

    PubMed Central

    Manicam, Caroline; Staubitz, Julia; Brochhausen, Christoph; Grus, Franz H.; Pfeiffer, Norbert; Gericke, Adrian

    2016-01-01

    Cholinergic regulation of arterial luminal diameter involves intricate network of intercellular communication between the endothelial and smooth muscle cells that is highly dependent on the molecular mediators released by the endothelium. Albeit the well-recognized contribution of nitric oxide (NO) towards vasodilation, the identity of compensatory mechanisms that maintain vasomotor tone when NO synthesis is deranged remain largely unknown in the ophthalmic artery. This is the first study to identify the vasodilatory signalling mechanisms of the ophthalmic artery employing wild type mice. Acetylcholine (ACh)-induced vasodilation was only partially attenuated when NO synthesis was inhibited. Intriguingly, the combined blocking of cytochrome P450 oxygenase (CYP450) and lipoxygenase (LOX), as well as CYP450 and gap junctions, abolished vasodilation; demonstrating that the key compensatory mechanisms comprise arachidonic acid metabolites which, work in concert with gap junctions for downstream signal transmission. Furthermore, the voltage-gated potassium ion channel, Kv1.6, was functionally relevant in mediating vasodilation. Its localization was found exclusively in the smooth muscle. In conclusion, ACh-induced vasodilation of mouse ophthalmic artery is mediated in part by NO and predominantly via arachidonic acid metabolites, with active involvement of gap junctions. Particularly, the Kv1.6 channel represents an attractive therapeutic target in ophthalmopathologies when NO synthesis is compromised. PMID:26831940

  2. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation

    PubMed Central

    Stanley, Christopher P.; Hind, William H.; Tufarelli, Cristina; O'Sullivan, Saoirse E.

    2015-01-01

    Aims The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Methods and results Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. Conclusion This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. PMID:26092099

  3. Habitual exercise may maintain endothelium-dependent dilation in overweight postmenopausal women.

    PubMed

    Sanders, Kate; Maresh, Carl M; Ballard, Kevin D; Creighton, Brent C; Pryor, J Luke; Kraemer, William J; Volek, Jeff S; Anderson, Jeff M

    2015-01-01

    Compared with their physically active peers, overweight sedentary postmenopausal women demonstrate impaired vascular endothelial function (VEF), substantially increasing the risk for cardiovascular disease (CVD). Habitual exercise is associated with improved VEF and reduced CVD risk. The purpose of this study was to compare brachial artery flow mediated dilation (FMD), a measure of VEF, in overweight, postmenopausal women who were physically active (EX: n = 17, BMI: 29.3 ± 3.11 kg/m2) or sedentary (CON: n = 8, BMI: 30.3 ± 3.6 kg/m2). Anthropomorphic measures were similar in both groups (P > .05). FMD was significantly greater in EX (10.24 ± 2.36%) versus CON (6.60 ± 2.18%) (P < .002). FMD was not significantly correlated with estimated VO2max (EX: r = .17, P = .52; CON: r = .20, P = .60) but was negatively associated with percent body fat in EX group (EX: r = -.48, P = .05; CON: r = .41, P = .31). These results are consistent with the positive effects of habitual exercise on VEF in overweight postmenopausal women.

  4. Effects of Various Forms of Relaxation Training on Physiological and Self-Report Measures of Relaxation

    ERIC Educational Resources Information Center

    Reinking, Richard H.; Kohl, Marilyn L.

    1975-01-01

    Examines relative effectiveness of four types of relaxation training including Jacobson-Wolpe and electromyograph (EMG) feedback. Dependent measures are EMG recordings and self-report measures of relaxation. All groups reported increased relaxation, but EMG groups were superior in EMG measures of speed of learning and depth of relaxation.…

  5. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  6. Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Zavada, John; Kim, Ki Wook

    2010-03-01

    The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.

  7. Unexpected power-law stress relaxation of entangled ring polymers

    NASA Astrophysics Data System (ADS)

    Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M.

    2008-12-01

    After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers.

  8. Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods

    NASA Astrophysics Data System (ADS)

    Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.

    The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Relaxational dynamics in the glassy, supercooled liquid, and orientationally disordered crystal phases of a polymorphic molecular material

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruiz, M.; González, M. A.; Bermejo, F. J.; Miller, M. A.; Birge, Norman O.; Cendoya, I.; Alegría, A.

    1999-04-01

    The relaxational dynamics of the ambient pressure phases of ethyl alcohol are studied by means of measurements of frequency dependent dielectric susceptibility. A comparison of the α relaxation in the supercooled liquid and in the rotator phase crystal indicates that the molecular rotational degrees of freedom are the dominant contribution to structural relaxation at temperatures near the glass transition, the flow processes having lesser importance. Below the glass transition a secondary β relaxation is resolved for the orientational and structural glasses. Computer molecular-dynamics results suggest that localized molecular librations, strongly coupled to the low-frequency internal molecular motions, are responsible for this secondary relaxation.

  10. Preserving the excitation profile of small flip angle RF pulses in the presence of rapid transverse relaxation.

    PubMed

    Shen, Jun

    2012-11-01

    Degradation of excitation profile of selective RF pulses by rapid transverse relaxation has been a long-standing concern. In this report we demonstrate that transverse relaxation can be incorporated into small flip angle RF pulse design based on the linear response theory. Small flip angle pulses that were designed without considering transverse relaxation effects can be transformed for a predefined pulse duration/T(2) ratio. The transformed pulses, within the realm of the linear response theory, produce the same transverse frequency response as if there were no relaxation.

  11. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  12. Distinguishing spin relaxation mechanisms in organic semiconductors.

    PubMed

    Harmon, N J; Flatté, M E

    2013-04-26

    A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism. PMID:23679752

  13. Hypoxia promotes relaxation of bovine coronary arteries through lowering cytosolic NADPH.

    PubMed

    Gupte, Sachin A; Wolin, Michael S

    2006-06-01

    Hypoxia relaxes endothelium-denuded bovine coronary arteries (BCA) through mechanisms that do not appear to involve reactive oxygen species, prostaglandins, or nitric oxide. Because of similarities in the relaxation of BCA to hypoxia (Po(2) = 8-10 Torr) and inhibitors of the pentose phosphate pathway (PPP) including 6-aminonicotinamide and epiandrosterone, we measured NADPH and NADP and found that hypoxia caused NADPH oxidation (decreased NADPH/NADP). The relaxation to hypoxia was similar to previously reported properties of relaxation to PPP inhibitors in that both responses were associated with glutathione oxidation and depressed intracellular calcium release and calcium influx-mediated contractile responses. Inhibitors of potassium channels had minimal effects on these relaxation responses. Relaxation to hypoxia and PPP inhibitors were attenuated by a thiol reductant (3 mM dithiothreitol) and by eliciting contraction with an activator of protein kinase C (phorbol 12,13-dibutyrate). In the presence of contraction to U-46619, relaxation to hypoxia and PPP inhibitors were attenuated by the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump inhibitor 200 microM cyclopiazonic acid and by 10 mM pyruvate. Hypoxia decreased BCA levels of glucose-6-phosphate but not ATP. Pyruvate prevented the hypoxia-elicited decrease in glucose-6-phosphate and glutathione oxidation, and it increased NADPH levels under hypoxia to levels observed under normoxia. Thus hypoxia causes a metabolic stress on the PPP that promotes BCA relaxation through processes controlled by lowering the levels of cytosolic NADPH.

  14. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  15. Biaxial stress relaxation in glassy polymers - Polymethylmethacrylate.

    NASA Technical Reports Server (NTRS)

    Sternstein, S. S.; Ho, T. C.

    1972-01-01

    Biaxial stress relaxation studies were performed on glassy polymethylmethacrylate in combined torsion-tension strain fields using a specially designed apparatus with exceptionally high stiffness and low cross talk between the torsional and tensile load measuring transducers. It was found that at low strain levels uniaxial tension relaxation is slower than pure torsion relaxation; tensile-component relaxation rates are unaffected by the level of torsional strain; torsional-component relaxation rates decrease as tensile strain is increased; uniaxial tension relaxation rates approach the pure torsion rates at higher strains (about 2%). A phenomenological treatment is presented which shows that relaxation rates can be coupled to the strain fields in which they are observed and yet be consistent with the concepts of linear viscoelasticity and the Boltzmann superposition integral.

  16. Low frequency dielectric relaxation in boracites

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Somoano, R.

    1983-01-01

    In order to elucidate the nature of the imperfections which adversely affect pyroelectric processes in boracites, the thermal and dispersive characteristics of the low frequency dielectric response in iron-iodide boracite (Fe3B7O13I) and copper-chloride boracite (Cu3B7O13Cl) have been investigated. These characteristics were measured as a function of crystallographic orientation and applied field in both the ferroelectric and paraelectric states. The low frequency dielectric relaxation of 100 line oriented multi-domain copper-chloride boracite clearly indicates the dipole nature of the lattice imperfections. The activation energies calculated from a noninteracting Debye model, are 0.53 eV in the ferroelectric phase and 0.10 eV in the paraelectric phase.

  17. Stress relaxation of vitreous silica on irradiation

    SciTech Connect

    Primak, W.

    1982-11-01

    The radiation-induced stress relaxation which is observed on ion bombardment of vitreous silica is described as a viscoelastic behavior in which the apparent viscosity is reduced to approx.10/sup 14/ Poise during irradiation and then increases rapidly by 4 or 5 orders of magnitude on cessation or interruption of irradiation. The bombarded layer appears to possess a viscosity approx.10/sup 19/ Poise, lower than would be expected for normal vitreous silica. On electron bombardment the viscosity is also reduced, but not as greatly as an ion bombardment, yet sufficiently to result in the whole radiation-induced volume contraction being realized perpendicularly to the surface, as has been found for ion bombardment. The maximum elastic stored energy which can be realized is but a fraction of a calorie per gram, hence the reported values of 200 cal/g would seem to be associated with the fragmentation of the network responsible for the reduced viscosity.

  18. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    SciTech Connect

    Kahouli, A.; Marichy, C.; Pinna, N.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trap level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.

  19. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    SciTech Connect

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpreted using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).

  20. Relaxation Kinetic Study of Eudragit® NM30D Film Based on Complex Modulus Formalism.

    PubMed

    Penumetcha, Sai Sumana; Byrn, Stephen R; Morris, Kenneth R

    2015-10-01

    This study is aimed at resolving and characterizing the primary (α) and secondary relaxations (β) in Eudragit® NM30D film based on apparent activation energies derived from complex modulus formalism using dielectric analysis (DEA). The glass transition (T g) of the film was determined using differential scanning calorimetry (DSC). The α relaxation corresponding to T g and the β relaxations occurring below T g were probed using DEA. The occurrence of α and β relaxations in Eudragit® NM30D film was elucidated using the complex modulus of the dielectric response employing loss modulus and permittivity data. Activation energies of these relaxations and the fundamental frequency so determined support the assignment of the relaxation pattern in the Eudragit® NM30D film. DEA methodology of the complex modulus formalism is a useful tool for differentiating the α and β relaxation kinetics in Eudragits® not easily studied using traditional thermal methods such as DSC. The kinetics associated with α and β relaxations so determined will provide formulation design support for solid orals that incorporate Eudragit® polymers. As mobility changes can affect stability and diffusion, the dipolar α and β relaxations revealed through DEA analysis may enable a better correlation to functionality of Eudragit® based pharmaceutical dosage forms.

  1. Dielectric and specific heat relaxations in vapor deposited glycerol.

    PubMed

    Kasina, A; Putzeys, T; Wübbenhorst, M

    2015-12-28

    ) and conclusively explains the extraordinary high kinetic stability of the MROL state, its specific calorimetric signature, the enhanced strength, and apparent slow-down of the dielectric α-relaxation. In this new picture, the incredibly slow and strengthened dielectric response is ascribed to driven rotational diffusion of whole RPCs, a mechanism that perfectly couples to the relaxation time of the "normal" glycerol fraction. First considerations based on the strength and the retardation of the dielectric RPCs' response yield independently a size estimate for the RPCs in the order of 4-5 nm. Finally, we have discussed possible crystallisation and reorganisation effects, which give rise to pronounced out-of phase components of the specific heat at higher temperatures. PMID:26723689

  2. Relaxation damping in oscillating contacts.

    PubMed

    Popov, M; Popov, V L; Pohrt, R

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  3. Violent relaxation of ellipsoidal clouds

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Sylos Labini, Francesco

    2015-04-01

    An isolated, initially cold and ellipsoidal cloud of self-gravitating particles represents a relatively simple system in which to study the effects of deviations from spherical symmetry in the mechanism of violent relaxation. Initial deviations from spherical symmetry are shown to play a dynamical role that is equivalent to that of density fluctuations in the case of an initially spherical cloud. Indeed, these deviations control the amount of particle-energy change and thus determine the properties of the final energy distribution, particularly the appearance of two species of particles: bound and free. Ejection of mass and energy from the system, together with the formation of a density profile decaying as ρ(r) ˜ r-4 and a Keplerian radial velocity dispersion profile, are prominent features similar to those observed after the violent relaxation of spherical clouds. In addition, we find that ejected particles are characterized by highly non-spherical shapes, the features of which can be traced in the initial deviations from spherical symmetry that are amplified during the dynamical evolution: particles can indeed form anisotropic configurations, like bars and/or discs, even though the initial cloud was very close to spherical.

  4. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  5. A numerical study of vector resonant relaxation

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Tremaine, Scott

    2015-04-01

    Stars bound to a supermassive black hole interact gravitationally. Persistent torques acting between stellar orbits lead to a rapid resonant relaxation of the orbital orientation vectors (`vector' resonant relaxation) and slower relaxation of the eccentricities (`scalar' resonant relaxation), both at rates much faster than two-body or non-resonant relaxation. We describe a new parallel symplectic integrator, N-RING, which follows the dynamical evolution of a cluster of N stars through vector resonant relaxation, by averaging the pairwise interactions over the orbital period and periapsis precession time-scale. We use N-RING to follow the evolution of clusters containing over 104 stars for tens of relaxation times. Among other results, we find that the evolution is dominated by torques among stars with radially overlapping orbits, and that resonant relaxation can be modelled as a random walk of the orbit normals on the sphere, with angular step size ranging from ˜0.5-1 rad. The relaxation rate in a cluster with a fixed number of stars is proportional to the root mean square (rms) mass of the stars. The rms torque generated by the cluster stars is reduced below the torque between Kepler orbits due to apsidal precession and declines weakly with the eccentricity of the perturbed orbit. However, since the angular momentum of an orbit also decreases with eccentricity, the relaxation rate is approximately eccentricity-independent for e ≲ 0.7 and grows rapidly with eccentricity for e ≳ 0.8. We quantify the relaxation using the autocorrelation function of the spherical multipole moments; this decays exponentially and the e-folding time may be identified with the vector resonant relaxation time-scale.

  6. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  7. Hydration dependence of conformational dielectric relaxation of lysozyme.

    PubMed

    Knab, Joseph; Chen, Jing-Yin; Markelz, Andrea

    2006-04-01

    Dielectric response of hen egg white lysozyme is measured in the far infrared (5-65 cm-1, 0.15-1.95 THz, 0.6-8.1 meV) as a function of hydration. The frequency range is associated with collective vibrational modes of protein tertiary structure. The observed frequency dependence of the absorbance is broad and glass-like. For the entire frequency range, there is a slight increase in both the absorbance and index of refraction with increasing hydration for <0.27 h (mass of H2O per unit mass protein). At 0.27 h, the absorbance and index begin to increase more rapidly. This transition corresponds to the point where the first hydration shell is filled. The abrupt increase in dielectric response cannot be fully accounted for by the additional contribution to the dielectric response due to bulk water, suggesting that the protein has not yet achieved its fully hydrated state. The broad, glass-like response suggests that at low hydrations, the low frequency conformational hen egg white lysozyme dynamics can be described by a dielectric relaxation model where the protein relaxes to different local minima in the conformational energy landscape. However, the low frequency complex permittivity does not allow for a pure relaxational mechanism. The data can best be modeled with a single low frequency resonance (nu approximately 120 GHz=4 cm-1) and a single Debye relaxation process (tau approximately .03-.04 ps). Terahertz dielectric response is currently being considered as a possible biosensing technique and the results demonstrate the required hydration control necessary for reliable biosensor applications.

  8. Dynamic relaxation properties of aromatic polyimides and polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Comer, Anthony C.

    immobilized at the particle-polymer interface. Dielectric measurements, which were used to probe the time-temperature response across the local sub-glass relaxations, indicate no variation in relaxation characteristics with particle loading. Nanocomposite studies were also conducted on rubbery poly(ethylene oxide) networks crosslinked in the presence of MgO or SiO2 nanoparticles. The inclusion of nanoparticles led to a systematic increase in rubbery modulus and a modest positive offset in the measured glass transition temperature (Talpha) for both systems. The sizeable increases in gas transport with particle loading reported for certain other rubbery nanocomposite systems were not realized in these crosslinked networks. KEYWORDS: glass transition, membranes, nanocomposites, dynamic mechanical analysis, broadband dielectric spectroscopy.

  9. Temperature relaxation in dense plasma mixtures

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  10. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  11. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  12. Nuclear relaxation of dilute Cd dopants in liquid semiconducting SexTe1-x alloys

    NASA Astrophysics Data System (ADS)

    Gaskill, D. K.; Gardner, John A.; Rasera, R. L.

    1985-10-01

    The nuclear relaxation of very dilute 111Cd impurities in liquid Se, Te, and Se-Te alloys has been investigated by measuring the time-dependent perturbation of the angular correlation between γ rays emitted during the decay of 111In to 111Cd. The relaxation is always within the Abragam-Pound motionally narrowed limit and is found to be a function of the density of paramagnetic dangling bonds, with little explicit composition dependence. In pure Se the relaxation rate is proportional to the dangling-bond spin-fluctuation rate. Two possible models for the 111Cd relaxation are discussed. Relaxation by magnetic interaction with dangling bonds would imply that the Cd is incorporated as part of a small paramagnetic molecule or ion. Quadrupole interaction due to molecular rotation or Cd bond fluctuations could also be responsible for the 111Cd relaxation. If molecular tumbling is responsible for the fluctuations, the Cd must be bound into molecules smaller than the polymeric chalcogen molecules at lower temperatures. If bond fluctuations are responsible for quadrupole relaxation of 111Cd, the Cd bond-fluctuation rate is determined by the density of dangling bonds on chalcogen atoms.

  13. Electrically controlled relaxation at twist deformation of a dual-frequency nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, V. N.; Konshina, E. A.; Fedorov, M. A.; Amosova, L. P.

    2010-06-01

    The relaxation of a dual-frequency liquid crystal at the twist effect and the influence of the external electrical circuit parameters on the relaxation process in the case of a large initial inclination angle (44) of the director are studied. It is found that oscillation arising at the trailing edge of the modulator’s electro-optic response considerably increases the time of relaxation due to the action of a high-frequency electric field. The influence of the electric field on the relaxation time is stronger, the thinner the liquid crystal layer. It is experimentally shown that the duration of the interval between the removal of low-frequency voltage from and the application of high-frequency voltage to the modulator affects the relaxation time.

  14. Zen meditation and ABC relaxation theory: an exploration of relaxation states, beliefs, dispositions, and motivations.

    PubMed

    Gillani, N B; Smith, J C

    2001-06-01

    This study is an attempt to rigorously map the psychological effects of Zen meditation among experienced practitioners. Fifty-nine Zen meditators with at least six years of experience practiced an hour of traditional Zazen seated meditation. A control group of 24 college students spent 60 min silently reading popular magazines. Before relaxation, all participants took the Smith Relaxation States Inventory (SRSI), the Smith Relaxation Dispositions/Motivations Inventory (SRD/MI), and the Smith Relaxation Beliefs Inventory (SRBI). After practice, participants again took the SRSI. Analyses revealed that meditators are less likely to believe in God, more likely to believe in Inner Wisdom, and more likely to display the relaxation dispositions Mental Quiet, Mental Relaxation, and Timeless/Boundless/Infinite. Pre- and postsession analyses revealed that meditators showed greater increments in the relaxation states Mental Quiet, Love and Thankfulness, and Prayerfulness, as well as reduced Worry. Results support Smith's ABC Relaxation Theory.

  15. Experimental and Numerical Study on Stress Relaxation of Sandstones Disturbed by Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Zhu, Wancheng; Li, Shuai; Niu, Leilei; Liu, Kai; Xu, Tao

    2016-10-01

    Time-dependent rheological deformation of rocks affects the stability of underground stopes or constructions. It may also be altered by dynamic disturbances, such as rock blasting. To study such effects, a new stress relaxation-disturbance testing machine was invented, capable of loading conditions for stress relaxation and dynamic disturbance. Effects of testing machine stiffness on rock deformation behavior were examined to confirm that rocks had undergone stress relaxation. Stress relaxation tests on specimens under uniaxial compression were carried out over 6 or more days. Under single-stage stress relaxation, axial stress relaxed within 5-7 days, stabilizing at constant strain. During two-stage stress relaxation, larger stress decay was observed under the higher strain level. A dynamic disturbance from a pendulum hammer was applied to specimens under stress relaxation to evaluate their response. In these tests, stress decline and strain increase were related to residual strain induced by the dynamic disturbance. The strain variation in specimens was found to be within 1.5 % of values before the disturbance. Finally, a damage-based constitutive model for rocks subjected to stress relaxation and dynamic disturbance is proposed. It reproduces the stress relaxation behavior of rock observed in our experiments. The model was used to quantify stress relaxation of rocks and the effects of dynamic disturbance on this process. The larger stress decay of rocks under higher strain is likely related to damage in the rock. Clearly, increases in strain and decreases in stress induced by dynamic loading, coupled with rock damage, are over-estimated in our numerical simulations.

  16. Relaxation models for single helical reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto

    2016-09-01

    In this paper, a relaxation theory for plasmas where a single dominant mode is present [Bhattacharjee et al., Phys. Rev. Lett. 45, 347 (1980)], is revisited. The solutions of a related eigenvalue problem are numerically calculated and discussed. Although these solutions can reproduce well, the magnetic fields measured in experiments, there is no way within the theory to determine the dominant mode, whose pitch is a free parameter in the model. To find the preferred helical perturbation, a procedure is proposed that minimizes the "distance" of the relaxed state from a state which is constructed as a two region generalization of the Taylor's relaxation model [Taylor, Phys. Rev. Lett. 33, 1139 (1974); Rev. Mod. Phys. 58, 751 (1986)] and that allows current discontinuities. It is found that this comparison is able to predict the observed scaling with the aspect ratio and reversal parameter for the dominant mode in the Single Helical states. The aspect ratio scaling alone is discussed in a previous paper [Paccagnella, Nucl. Fusion 56, 046010 (2016)] in terms of the efficient response of a toroidal shell to specific modes (leaving a sign undetermined), showing that the ideal wall boundary condition, a key ingredient in relaxation theories, is particularly well matched for them. Therefore, the present paper altogether [Paccagnella, Nucl. Fusion 56, 046010 (2016)] can give a new and satisfactory explanation of some robust and reproducible experimental facts observed in the Single Helical Reversed Field Pinch plasmas and never explained before.

  17. Critical relaxation with overdamped quasiparticles in open quantum systems

    NASA Astrophysics Data System (ADS)

    Lang, Johannes; Piazza, Francesco

    2016-09-01

    We study the late-time relaxation following a quench in an open quantum many-body system. We consider the open Dicke model, describing the infinite-range interactions between N atoms and a single, lossy electromagnetic mode. We show that the dynamical phase transition at a critical atom-light coupling is characterized by the interplay between reservoir-driven and intrinsic relaxation processes in the absence of number conservation. Above the critical coupling, small fluctuations in the occupation of the dominant quasiparticle mode start to grow in time, while the quasiparticle lifetime remains finite due to losses. Near the critical interaction strength, we observe a crossover between exponential and power-law 1 /τ relaxation, the latter driven by collisions between quasiparticles. For a quench exactly to the critical coupling, the power-law relaxation extends to infinite times, but the finite lifetime of quasiparticles prevents aging from appearing in two-times response and correlation functions. We predict our results to be accessible to quench experiments with ultracold bosons in optical resonators.

  18. Muon spin relaxation studies of interstitial and molecular motion.

    PubMed

    Cox, S F

    1998-03-01

    The unusual methods of preparation and analysis of spin polarization in muSR spectroscopy, which exploit the unique properties of the positive muon, are introduced in this article. Following a summary overview of applications, particular attention is paid to the problem of spin-lattice relaxation for a muon experiencing a hyperfine interaction with a single unpaired electron. The specific cases considered are the interstitial diffusion of muonium--the 1-electron atom which may be considered as a light isotope of hydrogen-and the molecular dynamics of organic radicals labelled by muonium. Rate equations for the evolution of population in the hyperfine-coupled spin states are solved numerically for various relaxation mechanisms. The formalism is equally valid for conventional ESR studies of paramagnetic states but is pursued specifically to simulate T1-relaxation in muSR. The simulations are compared with literature data. Also treated is the case of intermittent hyperfine coupling, appropriate to electron capture and loss in semiconductors or soliton motion in polymers; for this, a Monte Carlo approach is used to simulate the muon response. (For low-dimensional motion, the relaxation function is not exponential, so that a unique value of T1 cannot be defined.) Finally, a proposal is made to implement muon-T1 measurements in the rotating frame; this is designed for the selective study of electronically diamagnetic muonium states (i.e., those without hyperfine coupling) in the presence of a paramagnetic muonium or radical fraction.

  19. Microstructural stress relaxation mechanics in functionally different tendons.

    PubMed

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs.

  20. Muon spin relaxation studies of interstitial and molecular motion.

    PubMed

    Cox, S F

    1998-03-01

    The unusual methods of preparation and analysis of spin polarization in muSR spectroscopy, which exploit the unique properties of the positive muon, are introduced in this article. Following a summary overview of applications, particular attention is paid to the problem of spin-lattice relaxation for a muon experiencing a hyperfine interaction with a single unpaired electron. The specific cases considered are the interstitial diffusion of muonium--the 1-electron atom which may be considered as a light isotope of hydrogen-and the molecular dynamics of organic radicals labelled by muonium. Rate equations for the evolution of population in the hyperfine-coupled spin states are solved numerically for various relaxation mechanisms. The formalism is equally valid for conventional ESR studies of paramagnetic states but is pursued specifically to simulate T1-relaxation in muSR. The simulations are compared with literature data. Also treated is the case of intermittent hyperfine coupling, appropriate to electron capture and loss in semiconductors or soliton motion in polymers; for this, a Monte Carlo approach is used to simulate the muon response. (For low-dimensional motion, the relaxation function is not exponential, so that a unique value of T1 cannot be defined.) Finally, a proposal is made to implement muon-T1 measurements in the rotating frame; this is designed for the selective study of electronically diamagnetic muonium states (i.e., those without hyperfine coupling) in the presence of a paramagnetic muonium or radical fraction. PMID:9650794

  1. Clinical relevance of endothelium-derived relaxing factor (EDRF)

    PubMed Central

    Bassenge, E.

    1992-01-01

    1 In addition to metabolic and neurohumoral factors endothelium-derived autacoids like the nitric oxide radical NO and prostacyclin are effective regulators of vascular tone and thus tissue perfusion. NO is produced in endothelial cells from L-arginine by a Ca2+/calmodulin-dependent enzyme NO synthase. In addition, the NO radical is ultimately cleaved from all nitrovasodilators and resembles their vasoactive and antiaggregatory principle, which is used under pathological conditions as substitution therapy for impaired endothelial function and autacoid production. Impaired endothelium-dependent vasomotor control has been documented in hypercholesterolaemia, atheromatosis, diabetes, hypertension, and in reperfusion damage. L-arginine supplementation is effective in a few instances. PMID:1633078

  2. Stress relaxation and mechanical properties of RL-1973 and PD-200-16 silicone resin sponge materials

    NASA Technical Reports Server (NTRS)

    Saylak, D.; Noel, J. S.; Ham, J. S.; Mccoy, R.

    1975-01-01

    Stress relaxation tests were conducted by loading specimens in double-lap shear to a preselected strain level and monitoring the decay of stress with time. The stress relaxation response characteristics were measured over a temperature range of 100 to 300 K and four strain levels. It is concluded that only a slight amount of stress relaxation was observed, and the stiffness increased approximately two orders of magnitude over the range of temperatures.

  3. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition.

    PubMed

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  4. The impact of hierarchically constrained dynamics with a finite mean of cluster sizes on relaxation properties

    SciTech Connect

    Weron, Karina; Jurlewicz, Agnieszka; Patyk, Michał; Stanislavsky, Aleksander

    2013-05-15

    In this paper, a stochastic scenario of relaxation underlying the generalization (Kahlau et al., 2010) [15] of the Cole–Davidson (CD) and Kohlrausch–Williams–Watts (KWW) functions is proposed. As it has been shown (Kahlau et al., 2010) [15], the new three-parameter time-domain fitting function provides a very flexible description of the dielectric spectroscopy data for viscous glass-forming liquids. In relation to that result we discuss a hierarchically-constrained model yielding the proposed relaxation fitting function. Within the “exponentially decaying relaxation contributions” framework we show origins of the high-frequency (short-time, respectively) fractional power law, i.e., the characteristic feature of the new, as well as, of both CD and KWW response functions. We also bring into light a reason for which their common behavior in the opposite frequency limit is linear on external field frequency. Finally, we relate the new relaxation pattern (Kahlau et al., 2010) [15] with the Generalized Gamma (GG) survival probability of an imposed, non-equilibrium initial state in a relaxing system. -- Highlights: ► Combine the empirical Kohlrausch–Williams–Watts and Cole–Davidson laws of relaxation. ► Establish a microscopic stochastic scenario explaining the generalized law. ► Derive a frequency-domain relaxation function fitting the dielectric spectroscopy data. ► Find the low- and high-frequency properties for the relaxation pattern.

  5. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition

    PubMed Central

    Kato, Kouki; Muraoka, Tetsuro; Mizuguchi, Nobuaki; Nakagawa, Kento; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition. PMID:27242482

  6. Molecular dynamics in polymers, polymer networks, and model compounds by dielectric relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Fitz, Benjamin David

    Segmental dynamics are investigated in model compounds, polymers, and network-forming polymers. Two aspects of these materials are investigated: (1) the role of molecular structure and connectivity on determining the characteristics of the segmental relaxation, and (2) monitoring the variations in the segmental dynamics during network-forming chemical reactions. We quantify the most important aspects of the dynamics: the relaxation shape, the relaxation strength, the relaxation time, and the temperature dependencies of these properties. Additionally, two general segmental dynamics issues of interest are the length-scale and the homogeneous/heterogeneous aspects. A judicious choice of network-forming polymer provides for the determination of an upper bound on the length-scale. A comparison of relaxation characteristics between dynamic light scattering (measuring density fluctuations) and dielectric relaxation spectroscopy (measuring segmental dipolar reorientation) provides one evaluation of the heterogeneity issue. Dipole dynamics in small molecule model compounds show the influence of molecular connectivity on the cooperative molecular response associated with the glass transition. A rigid, nonpolar, cyanate ester network is shown to develop an anomalous relaxation process during crosslinking. A specific local mode of motion is assigned. Additionally, the main relaxation becomes extraordinarily broad during the course of the network formation, due to markedly increased segmental rigidity and loss of configurational entropy.

  7. Mechanisms of relaxations of bovine isolated bronchioles by the nitric oxide donor, GEA 3175

    PubMed Central

    Hernández, Medardo; Elmedal, Britt; Mulvany, Michael J; Simonsen, Ulf

    1998-01-01

    The present study was designed to investigate the effects and mechanisms of relaxation induced by the nitric oxide (NO) donor, GEA 3175 (a 3-aryl-substituted oxatriazole derivative) on bovine bronchioles (effective lumen diameter 200–800 μm) suspended in microvascular myographs for isometric tension recording. In segments of bovine bronchioles contracted to 5-hydroxytryptamine, GEA 3175 (10−8–10−4 M) induced concentration-dependent reproducible relaxations. These relaxations were slow in onset compared to other NO-donors such as 3-morpholinosydonimine-hydrochloride (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). In 5-hydroxytryptamine-contracted preparations the order of relaxant potency (pD2) was: salbutamol (7.80)>GEA 3175 (6.18)>SIN-1 (4.90)>SNAP (3.55). In segments contracted to acetylcholine, the relaxant responses were reduced and GEA 3175 relaxed the bronchioles with pD2=4.41±0.12 and relaxations of 66±10% (n=4), while SNAP and salbutamol caused relaxations of 19±6% (n=4) and 27±6% (n=8) at the highest concentration used, respectively. Oxyhaemoglobin (10−5 M), the scavenger of nitric oxide, caused rightward shifts of the concentration-relaxation curves to GEA 3175 and NO. 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 3×10−6 M) and LY 83583 (10−6 M), the inhibitors of soluble guanylate cyclase, also reduced the relaxations induced by GEA 3175 and nitric oxide. However, ODQ did not affect salbutamol-evoked relaxation in the bovine small bronchioles. GEA 3175-induced relaxations were reduced in potassium-rich (60 mmol l−1 K+) solution. Glibenclamide (10−6 M) markedly inhibited the relaxations induced by the opener of ATP-sensitive K+ channels, levcromakalim (3×10−8–10−5 M), but it did not modify the relaxations induced by GEA 3175 or salbutamol. Apamin (5×10−7 M), a blocker of the small Ca2+-activated K+-channels did not affect the relaxations to GEA 3175. In contrast, blockers of large Ca2

  8. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  9. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    PubMed Central

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.

    2009-01-01

    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  10. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.

    PubMed Central

    Fujiwara, T.; Angus, J. A.

    1996-01-01

    1. The mechanisms by which nicorandil causes relaxation of rat isolated small mesenteric arteries mounted on a Mulvany myograph was investigated by use of a combination of putatively mechanism-specific antagonists. 2. In arteries precontracted by the thromboxane-mimetic, U46619, the EC50 for cromakalim and levcromakalim-induced relaxation curves were raised by 36 and 17 fold by glibenclamide (3 microM) while the EC50 for nicorandil-induced relaxation was unaffected by either glibenclamide or methylene blue (10 microM). A combination of these antagonists raised the EC50 for nicorandil by 8 fold. 3. In U46619-contracted arteries, nifedipine (100 nM) did not affect the cromakalim relaxation curve but it raised the EC50 for nicorandil by 5 fold. The combination of methylene blue, glibenclamide and nifedipine further inhibited the maximum relaxation to nicorandil. 4. In separate experiments, membrane potential (Em) and force responses were measured simultaneously. In arteries depolarized and contracted by U46619 both nicorandil and cromakalim repolarized (delta Em, 35 mV) and relaxed (100%) the vessels. Glibenclamide (3 microM) did not alter the relaxation-concentration curve to nicorandil but reduced the maximum repolarization to delta 10.8 mV. In contrast to Em and relaxation-response curves to cromakalim were shifted to the right by glibenclamide by 30-100 fold. 5. In unstimulated arteries, nicorandil (but not cromakalim) -induced hyperpolarization was significantly antagonized by methylene blue (10 microM) (6.6 fold rightward shift) or nifedipine (100 nM) (2.6 fold). In depolarized arteries (U46619), nifedipine but not methylene blue inhibited the nicorandil-induced hyperpolarization. 6. In arteries precontracted to 50% tissue maximum by either KCl or U46619, nifedipine (100 nM) relaxed the artery but failed to repolarize the Em. Presumably voltage-operated calcium channels (VOCC) were blocked preventing contraction but the artery remained depolarized, presumably

  11. A novel role for epidermal growth factor receptor tyrosine kinase and its downstream endoplasmic reticulum stress in cardiac damage and microvascular dysfunction in type 1 diabetes mellitus.

    PubMed

    Galán, Maria; Kassan, Modar; Choi, Soo-Kyoung; Partyka, Megan; Trebak, Mohamed; Henrion, Daniel; Matrougui, Khalid

    2012-07-01

    Epidermal growth factor receptor tyrosine kinase (EGFRtk) and endoplasmic reticulum (ER) stress are important factors in cardiovascular complications. Understanding whether enhanced EGFRtk activity and ER stress induction are involved in cardiac damage, and microvascular dysfunction in type 1 diabetes mellitus is an important question that has remained unanswered. Cardiac fibrosis and microvascular function were determined in C57BL/6J mice injected with streptozotocin only or in combination with EGFRtk inhibitor (AG1478), ER stress inhibitor (Tudca), or insulin for 2 weeks. In diabetic mice, we observed an increase in EGFRtk phosphorylation and ER stress marker expression (CHOP, ATF4, ATF6, and phosphorylated-eIF2α) in heart and mesenteric resistance arteries, which were reduced with AG1478, Tudca, and insulin. Cardiac fibrosis, enhanced collagen type I, and plasminogen activator inhibitor 1 were decreased with AG1478, Tudca, and insulin treatments. The impaired endothelium-dependent relaxation and -independent relaxation responses were also restored after treatments. The inhibition of NO synthesis reduced endothelium-dependent relaxation in control and treated streptozotocin mice, whereas the inhibition of NADPH oxidase improved endothelium-dependent relaxation only in streptozotocin mice. Moreover, in mesenteric resistance arteries, the mRNA levels of Nox2 and Nox4 and the NADPH oxidase activity were augmented in streptozotocin mice and reduced with treatments. This study unveiled novel roles for enhanced EGFRtk phosphorylation and its downstream ER stress in cardiac fibrosis and microvascular endothelial dysfunction in type 1 diabetes mellitus.

  12. Stretched exponential relaxation in molecular and electronic glasses

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    1996-09-01

    Stretched exponential relaxation, 0034-4885/59/9/003/img1, fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where 0034-4885/59/9/003/img2 is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0034-4885/59/9/003/img3 even at 0034-4885/59/9/003/img4, a glass transition temperature. We show that for molecular relaxation 0034-4885/59/9/003/img5 can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, 0034-4885/59/9/003/img6 for short-range forces, and 0034-4885/59/9/003/img7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from 0034-4885/59/9/003/img8 to s, as collected and analysed phenomenologically by Angell, Ngai, Böhmer and others. The electronic materials discussed include a-Si:H, granular 0034-4885/59/9/003/img9, semiconductor nanocrystallites, charge density waves in 0034-4885/59/9/003/img10, spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van

  13. Nitric oxide and sensory nerves are involved in the vasodilator response to acetylcholine but not calcitonin gene-related peptide in rat skin microvasculature.

    PubMed Central

    Ralevic, V.; Khalil, Z.; Dusting, G. J.; Helme, R. D.

    1992-01-01

    1. The contributions of sensory nerves and nitric oxide (NO) to vasodilator responses to acetylcholine (ACh) and calcitonin gene-related peptide (CGRP) were examined in rat skin microvasculature with a laser Doppler flowmeter to monitor relative blood flow. 2. Perfusion of ACh (100 microM; for 30 min) over a blister base on the rat hind footpad elicited microvascular vasodilatation and this response was not sustained. CGRP (1 microM; 10 min perfusion) also elicited vasodilatation and this response was maintained even when CGRP was no longer in contact with the blister base. 3. The vasodilator response to ACh was significantly smaller in rats pretreated as neonates with capsaicin to destroy primary sensory afferents than it was in age-matched controls. The vasodilator response to CGRP was unaffected by capsaicin pretreatment. 4. Selective inhibitors of NO synthase, NG-nitro-L-arginine (L-NOARG) and NG-monomethyl-L-arginine (L-NMMA) (both at 100 microM) attenuated the vasodilator response to ACh in control rats, but had no effect on the vasodilator response to CGRP. There was a significant L-NOARG-resistant component in control rats while in capsaicin-treated rats the vasodilator response to ACh was virtually abolished by L-NOARG. The inactive stereoisomer NG-monomethyl-D-arginine (100 microM) did not affect the vasodilator response to ACh. 5. The efficacy of L-NOARG and L-NMMA as inhibitors of endothelium-dependent responses was confirmed by use of an endothelium-dependent vasodilator, the calcium ionophore A23187 (100 microM; 10 min perfusion). Vasodilatation to A23187 was strongly attenuated by both L-NOARG and L-NMMA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504748

  14. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-10-01

    Relaxation like dielectric anomaly is observed in Y3+ and Mn2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  15. Measurement of Young's relaxation modulus using nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Lu, Hongbing

    2006-09-01

    In a previous paper (Lu et al., Mechanics of Time-Dependent Materials, 7, 2003, 189 207), we described methods to measure the creep compliance of polymers using Berkovich and spherical indenters by nanoindentation. However, the relaxation modulus is often needed in stress and deformation analysis. It has been well known that the interconversion between creep compliance and relaxation function presents an ill-posed problem, so that converting the creep compliance function to the relaxation function cannot always give accurate results, especially considering that the creep data at short times in nanoindentation are often not reliable, and the overall nanoindentation time is short, typically a few hundred seconds. In this paper, we present methods to measure Young’s relaxation functions directly using nanoindentation. A constant-rate displacement loading history is usually used in nanoindentations. Using viscoelastic contact mechanics, Young’s relaxation modulus is extracted using nanoindentation load-displacement data. Three bulk polymers, Polymethyl Methacrylate (PMMA), Polycarbonate (PC) and Polyurethane (PU), are used in this study. The Young’s relaxation functions measured from the nanoindentation are compared with data measured from conventional tensile and shear tests to evaluate the precision of the methods. A reasonably good agreement has been reached for all these materials for indentation depth higher than a certain value, providing reassurance for these methods for measuring relaxation functions.

  16. Open Fissure Folds record coseismic loading and postseismic stress relaxation

    NASA Astrophysics Data System (ADS)

    Nüchter, Jens-Alexander

    2015-03-01

    Open Fissure Folds hosted by high pressure/low temperature metamorphic rocks of south Evia (Greece) are introduced, their structural and microstructural record is analysed, and a mechanical model is proposed. Open Fissure Folds are preserved as at least two parallel folded quartz-feldspar veins separated by narrow buckled rock columns. The veins originated as tensile cracks that propagated in the middle crust driven by high differential stress. Features diagnostic for Open Fissure Folds indicate that the rock columns represented the layers of high viscosity, and not the veins as consistently reported in many previous studies on folded veins. This record is taken to indicate that buckling of the rock columns initiated after arrest of the fractures and terminated prior to complete vein sealing. Accordingly, mechanical decoupling by open fissures allowed for buckling of the rock columns in response to episodic creep of the host rocks according to stress relaxation, as expected for postseismic deformation in the earthquake cycle. I propose that the parental fractures propagated in response to quasi-instantaneous coseismic loading of the middle crust. Buckling was attributed to transient postseismic creep and stress relaxation. Complete sealing of the veins occurred when stresses were largely relaxed. Each Open Fissure Fold records the stress and strain history of a single earthquake.

  17. Damping effects in doped graphene: The relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Kupčić, I.

    2014-11-01

    The dynamical conductivity of interacting multiband electronic systems derived by Kupčić et al. [J. Phys.: Condens. Matter 90, 145602 (2013), 10.1088/0953-8984/25/14/145602] is shown to be consistent with the general form of the Ward identity. Using the semiphenomenological form of this conductivity formula, we have demonstrated that the relaxation-time approximation can be used to describe the damping effects in weakly interacting multiband systems only if local charge conservation in the system and gauge invariance of the response theory are properly treated. Such a gauge-invariant response theory is illustrated on the common tight-binding model for conduction electrons in doped graphene. The model predicts two distinctly resolved maxima in the energy-loss-function spectra. The first one corresponds to the intraband plasmons (usually called the Dirac plasmons). On the other hand, the second maximum (π plasmon structure) is simply a consequence of the Van Hove singularity in the single-electron density of states. The dc resistivity and the real part of the dynamical conductivity are found to be well described by the relaxation-time approximation, but only in the parametric space in which the damping is dominated by the direct scattering processes. The ballistic transport and the damping of Dirac plasmons are thus the problems that require abandoning the relaxation-time approximation.

  18. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    NASA Astrophysics Data System (ADS)

    Maceiras, A.; Costa, C. M.; Lopes, A. C.; San Sebastián, M.; Laza, J. M.; Vilas, J. L.; Ribelles, J. L. Gómez; Sabater i Serra, R.; Andrio Balado, A.; Lanceros-Méndez, S.; León, L. M.

    2015-08-01

    Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

  19. Relaxation mechanisms, structure and properties of semi-coherent interfaces

    DOE PAGESBeta

    Shao, Shuai; Wang, Jian

    2015-10-15

    In this work, using the Cu–Ni (111) semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE) profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes). This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes.more » The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. In conclusion, the various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.« less

  20. Relaxation mechanisms, structure and properties of semi-coherent interfaces

    SciTech Connect

    Shao, Shuai; Wang, Jian

    2015-10-15

    In this work, using the Cu–Ni (111) semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE) profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes). This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes. The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. In conclusion, the various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.

  1. A Fresh Look at Potential Mechanisms of Change in Applied Relaxation for Generalized Anxiety Disorder: A Case Series

    ERIC Educational Resources Information Center

    Hayes-Skelton, Sarah A.; Usmani, Aisha; Lee, Jonathan K.; Roemer, Lizabeth; Orsillo, Susan M.

    2012-01-01

    Applied relaxation (AR), which involves noticing early signs of anxiety and responding with a relaxation response, is an empirically supported treatment for generalized anxiety disorder (GAD). However, research on hypothesized mechanisms of AR (e.g., reduced muscle tension) has been mixed, making it likely that additional mechanisms are…

  2. Magnetic relaxation in dysprosium-dysprosium collisions

    SciTech Connect

    Newman, Bonna K.; Johnson, Cort; Kleppner, Daniel; Greytak, Thomas J.; Brahms, Nathan; Au, Yat Shan; Connolly, Colin B.; Doyle, John M.

    2011-01-15

    The collisional magnetic reorientation rate constant g{sub R} is measured for magnetically trapped atomic dysprosium (Dy), an atom with large magnetic dipole moments. Using buffer gas cooling with cold helium, large numbers (>10{sup 11}) of Dy are loaded into a magnetic trap and the buffer gas is subsequently removed. The decay of the trapped sample is governed by collisional reorientation of the atomic magnetic moments. We find g{sub R}=1.9{+-}0.5x10{sup -11} cm{sup 3} s{sup -1} at 390 mK. We also measure the magnetic reorientation rate constant of holmium (Ho), another highly magnetic atom, and find g{sub R}=5{+-}2x10{sup -12} cm{sup 3} s{sup -1} at 690 mK. The Zeeman relaxation rates of these atoms are greater than expected for the magnetic dipole-dipole interaction, suggesting that another mechanism, such as an anisotropic electrostatic interaction, is responsible. Comparison with estimated elastic collision rates suggests that Dy is a poor candidate for evaporative cooling in a magnetic trap.

  3. "Basic MR Relaxation Mechanisms & Contrast Agent Design"

    PubMed Central

    De León-Rodríguez, Luis M.; Martins, André F.; Pinho, Marco; Rofsky, Neil; Sherry, A. Dean

    2015-01-01

    The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we will detail the many important considerations when pursuing the design and use of MR contrast media. We will offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand based contrast agents. We will discuss the mechanisms involved in magnetic resonance relaxation in the context of probe design strategies. A brief description of currently available contrast agents will be accompanied by an in-depth discussion that highlights promising MRI contrast agents in development for future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. PMID:25975847

  4. Relaxation from Steady States Far from Equilibrium and the Persistence of Anomalous Shock Behavior in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Auslender, Aaron H.

    1999-01-01

    The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.

  5. Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Maldonado-Camargo, L.; Torres-Díaz, I.; Chiu-Lam, A.; Hernández, M.; Rinaldi, C.

    2016-08-01

    We demonstrate how dynamic magnetic susceptibility measurements (DMS) can be used to estimate the relative contributions of Brownian and Néel relaxation to the dynamic magnetic response of a magnetic fluid, a suspension of magnetic nanoparticles. The method applies to suspensions with particles that respond through Brownian or Néel relaxation and for which the characteristic Brownian and Néel relaxation times are widely separated. First, we illustrate this using magnetic fluids consisting of mixtures of particles that relax solely by the Brownian or Néel mechanisms. Then, it is shown how the same approach can be applied to estimate the relative contributions of Brownian and Néel relaxation in a suspension consisting of particles obtained from a single synthesis and whose size distribution straddles the transition from Néel to Brownian relaxation.

  6. Spin-Lattice Relaxation Times in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wink, Donald J.

    1989-01-01

    Discussed are the mechanisms of nuclear magnetic relaxation, and applications of relaxation times. The measurement of spin-lattice relaxations is reviewed. It is stressed that sophisticated techniques such as these are becoming more important to the working chemist. (CW)

  7. Changes in nitric oxide release in vivo in response to vasoactive substances.

    PubMed Central

    Nava, E.; Wiklund, N. P.; Salazar, F. J.

    1996-01-01

    1. Changes in the release of nitric oxide (NO) in vivo were studied in rats following the administration of endothelium-dependent and -independent vasodilators as well as the NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO production was assessed by measuring variations of nitrate in plasma by capillary ion analysis. 2. Intravenous administration of the endothelium-dependent vasodilators, bradykinin (2 and 10 micrograms kg-1 min-1) or substance P (0.3-3 micrograms kg-1 min-1) caused a transient dose-dependent hypotension followed by an increase in plasma nitrate concentration (maximal increments: 33 +/- 5% and 38 +/- 6%, for bradykinin and substance P, respectively). Prior administration of L-NAME (10 mg kg-1 min-1) inhibited the hypotension and increase in plasma nitrate caused by these substances. Intravenous administration of sodium nitrate (200 micrograms kg-1) also produced a transitory elevation in plasma nitrate which was similar in magnitude as that caused by the vasodilators. A rapid and transitory increment in plasma nitrate was observed after i.v. administration of authentic NO (400 micrograms kg-1). 3. Rats receiving the endothelium-dependent vasodilators, prostacyclin (0.6 micrograms kg-1 min-1) or adenosine (3 mg kg-1 min-1) intravenously showed a drop in blood pressure paralleled by a decrease in plasma nitrate (maximal decreases: 34 +/- 5% and 24 +/- 4%, for prostacyclin and adenosine, respectively). A similar effect on the plasmatic concentration of nitrate was observed when L-NAME (10 mg kg-1 min-1, i.v.) was administered to the animals. 4. This study demonstrates that (i) changes in plasma nitrate can be detected in vivo after stimulation or inhibition of NO synthase, (ii) an increased production of NO, measured as plasma nitrate, is related to the hypotension caused by bradykinin and substance P and (iii) a diminished concentration of plasmatic nitrate is associated to the hypotension induced by adenosine or prostacyclin

  8. Vasorelaxing effects of estetrol in rat arteries.

    PubMed

    Hilgers, Rob H P; Oparil, Suzanne; Wouters, Wout; Coelingh Bennink, Herjan J T

    2012-10-01

    This study compared ex vivo relaxing responses to the naturally occurring human hormone estetrol (E(4)) vs 17β-estradiol (E(2)) in eight different vascular beds. Arteries were mounted in a myograph, contracted with either phenylephrine or serotonin, and cumulative concentration-response curves (CRCs) to E(4) and E(2) (0·1-100  μmol/l) were constructed. In all arteries tested, E(4) had lower potency than E(2), although the differential effect was less in larger than smaller arteries. In uterine arteries, the nonselective estrogen receptor (ER) blocker ICI 182 780 (1  μmol/l) caused a significant rightward shift in the CRC to both E(4) and E(2), indicating that the relaxation responses were ER dependent. Pharmacological blockade of nitric oxide (NO) synthases by N(ω)-nitro-L-arginine methyl ester (L-NAME) blunted E(2)-mediated but not E(4)-mediated relaxing responses, while inhibition of prostaglandins and endothelium-dependent hyperpolarization did not alter relaxation to either E(4) or E(2) in uterine arteries. Combined blockade of NO release and action with L-NAME and the soluble guanylate cyclase (sGC) inhibitor ODQ resulted in greater inhibition of the relaxation response to E(4) compared with E(2) in uterine arteries. Endothelium denudation inhibited responses to both E(4) and E(2), while E(4) and E(2) concentration-dependently blocked smooth muscle cell Ca(2)(+) entry in K(+)-depolarized and Ca(2)(+)-depleted uterine arteries. In conclusion, E(4) relaxes precontracted rat arteries in an artery-specific fashion. In uterine arteries, E(4)-induced relaxations are partially mediated via an endothelium-dependent mechanism involving ERs, sGC, and inhibition of smooth muscle cell Ca(2)(+) entry, but not NO synthases or endothelium-dependent hyperpolarization.

  9. Vasorelaxing effects of estetrol in rat arteries.

    PubMed

    Hilgers, Rob H P; Oparil, Suzanne; Wouters, Wout; Coelingh Bennink, Herjan J T

    2012-10-01

    This study compared ex vivo relaxing responses to the naturally occurring human hormone estetrol (E(4)) vs 17β-estradiol (E(2)) in eight different vascular beds. Arteries were mounted in a myograph, contracted with either phenylephrine or serotonin, and cumulative concentration-response curves (CRCs) to E(4) and E(2) (0·1-100  μmol/l) were constructed. In all arteries tested, E(4) had lower potency than E(2), although the differential effect was less in larger than smaller arteries. In uterine arteries, the nonselective estrogen receptor (ER) blocker ICI 182 780 (1  μmol/l) caused a significant rightward shift in the CRC to both E(4) and E(2), indicating that the relaxation responses were ER dependent. Pharmacological blockade of nitric oxide (NO) synthases by N(ω)-nitro-L-arginine methyl ester (L-NAME) blunted E(2)-mediated but not E(4)-mediated relaxing responses, while inhibition of prostaglandins and endothelium-dependent hyperpolarization did not alter relaxation to either E(4) or E(2) in uterine arteries. Combined blockade of NO release and action with L-NAME and the soluble guanylate cyclase (sGC) inhibitor ODQ resulted in greater inhibition of the relaxation response to E(4) compared with E(2) in uterine arteries. Endothelium denudation inhibited responses to both E(4) and E(2), while E(4) and E(2) concentration-dependently blocked smooth muscle cell Ca(2)(+) entry in K(+)-depolarized and Ca(2)(+)-depleted uterine arteries. In conclusion, E(4) relaxes precontracted rat arteries in an artery-specific fashion. In uterine arteries, E(4)-induced relaxations are partially mediated via an endothelium-dependent mechanism involving ERs, sGC, and inhibition of smooth muscle cell Ca(2)(+) entry, but not NO synthases or endothelium-dependent hyperpolarization. PMID:22798015

  10. Relaxation of vibrational degrees of freedom

    NASA Astrophysics Data System (ADS)

    Frohn, A.

    Shock tubes were used to measure relaxation times of the degrees of freedom in inelastic collisions of gas molecules. Design and construction of the experimental setup are described. For relaxation time measurements of vibrational degrees of freedom an initial pressure between 0.1 and 1 mbar is found to be optimal, and for dissociation between 1 and 10 mbar. The density gradients in the shock tube flow are measured with four differential laser interferometers and plotted with a transient recorder. A FORTRAN program was developed to determine the relaxation times. This measurement technique does not in general allow the degrees of freedom to be investigated separately.

  11. Relaxation time in disordered molecular systems

    SciTech Connect

    Rocha, Rodrigo P.; Freire, José A.

    2015-05-28

    Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

  12. Collisionless Relaxation in Non-Neutral Plasmas

    SciTech Connect

    Levin, Yan; Pakter, Renato; Teles, Tarcisio N.

    2008-02-01

    A theoretical framework is presented which allows us to quantitatively predict the final stationary state achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application, the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates, parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the density and the velocity distributions in the final stationary state.

  13. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  14. Fatty acid-induced changes in vascular reactivity in healthy adult rats.

    PubMed

    Christon, Raymond; Marette, André; Badeau, Mylène; Bourgoin, Frédéric; Mélançon, Sébastien; Bachelard, Hélène

    2005-12-01

    Dietary fatty acids (FAs) are known to modulate endothelial dysfunction, which is the first stage of atherosclerosis. However, their exact role in this initial phase is still unclear. The effects of isolated or combined (by 2) purified FAs from the main FA families were studied on the vascular response of isolated thoracic aorta in healthy rats to get a better understanding of the mechanisms of action of dietary FAs in regulating vascular endothelial function. Cumulative contraction curves to phenylephrine and relaxation curves to carbachol and then to sodium nitroprusside were obtained in the absence or presence of the FAs studied allowing endothelium-dependent and endothelium-independent ability of the smooth muscle to relax to be assessed in each experimental group. The endothelium-dependent vasodilator response to carbachol was lowered by eicosapentaenoic acid, whereas it was not altered either by docosahexaenoic acid alone or by combined eicosapentaenoic acid-docosahexaenoic acid, oleic acid, or stearic acid, and it was increased by linoleic acid (LA). A decreased phenylephrine-induced contraction was observed after incubation with arachidonic acid and with stearic acid. On the other hand, the endothelium-dependent relaxation was reduced by the addition of combined LA-arachidonic acid and LA-oleic acid. In conclusion, these data point out the differential effects of different types of FAs and of FAs alone vs combined on vascular reactivity. The complex nature of these effects could be partially linked to metabolic specificities of endothelial cells and to interactions between some FAs.

  15. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    PubMed

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells.

  16. Thermal and Gamma-ray induced relaxation in As-S glasses: modeling and experiment

    SciTech Connect

    Lucas, Pierre; King, Ellyn A.; Erdmann, Robert G.; Riley, Brian J.; Sundaram, S. K.; McCloy, John S.

    2011-09-09

    Enthalpy relaxation is measured in a series of As-S glasses irradiated with gamma rays and these samples are compared with a set of identical control samples kept in the dark. It is shown that gamma irradiation lifts the kinetic barrier for relaxation at room temperature and speeds up the enthalpy release. The measured values of thermal relaxation in the dark agree closely with modeling results obtained by fitting differential scanning calorimetry curves with the TNM equations. The measured values of activation energy for enthalpy relaxation are also in close agreement with that predicted by the TNM model therefore lending credence to the fitting results. These measurements permit extraction of the effect of gamma irradiation on the glass structure for a series of As-S glasses with increasing structural coordination, and gamma irradiation is shown to reduce the structural relaxation time. It is also shown that lower coordination glasses exhibit greater radiation sensitivity but also greater thermal relaxation due to their lower Tg. On the other end, over-coordinated glasses show lower relaxation and almost no radiation sensitivity. This behavior is similar to the glass response under sub-bandgap light irradiation.

  17. Comparative Relaxant Effects of Ataciguat and Zaprinast on Sheep Sphincter of Oddi

    PubMed Central

    Çakmak, Erol; Yönem, Özlem; Saraç, Bülent; Parlak, Mesut; Çelik, Cumali; Ataseven, Hilmi; Bağcivan, İhsan

    2016-01-01

    Background: Relaxing the sphincter of Oddi (SO) is an important process during endoscopic retrograde cholangiopancreatography (ERCP) procedures. This issue suggests that the easier the sphincterotomy and cannulation, the more post-ERCP complications decrease. Aims: To compare the relaxant effects of ataciguat (a novel soluble guanylyl cyclase activator) and zaprinast (an inhibitor of phosphodiesterase 5) on sheep SO in vitro, thus testing whether they can be used during ERCP. Study Design: Animal experimentation. Methods: Sheep SO rings were placed in tissue baths and their isometric tension to ataciguat and zaprinast were tested. We also tested their isometric tension against ataciguat in the presence of 1H-(1,2,4) oxadiazole (4,3-a) quinoxalin-1-one (ODQ) which is a soluble guanylyl cyclase inhibitor. Results: Ataciguat and zaprinast both triggered concentration addicted relaxation on sheep SO rings (p=0.0018, p=0.0025 respectively) but the relaxation of the ataciguat was significantly greater than that of zaprinast at all concentrations (p=0.0024). It was observed that decreased relaxation responses were initiated by ataciguat in the presence of ODQ (p=0.0012). Conclusion: Ataciguat and zaprinast both have relaxing effects on sphincter of Oddi, although that of zaprinast is lower. We believe that ataciguat and zaprinast can be used in ERCP procedures in order to relax the sphincter of Oddi and thus can be used locally in order to decrease complications.

  18. Comparative Relaxant Effects of Ataciguat and Zaprinast on Sheep Sphincter of Oddi

    PubMed Central

    Çakmak, Erol; Yönem, Özlem; Saraç, Bülent; Parlak, Mesut; Çelik, Cumali; Ataseven, Hilmi; Bağcivan, İhsan

    2016-01-01

    Background: Relaxing the sphincter of Oddi (SO) is an important process during endoscopic retrograde cholangiopancreatography (ERCP) procedures. This issue suggests that the easier the sphincterotomy and cannulation, the more post-ERCP complications decrease. Aims: To compare the relaxant effects of ataciguat (a novel soluble guanylyl cyclase activator) and zaprinast (an inhibitor of phosphodiesterase 5) on sheep SO in vitro, thus testing whether they can be used during ERCP. Study Design: Animal experimentation. Methods: Sheep SO rings were placed in tissue baths and their isometric tension to ataciguat and zaprinast were tested. We also tested their isometric tension against ataciguat in the presence of 1H-(1,2,4) oxadiazole (4,3-a) quinoxalin-1-one (ODQ) which is a soluble guanylyl cyclase inhibitor. Results: Ataciguat and zaprinast both triggered concentration addicted relaxation on sheep SO rings (p=0.0018, p=0.0025 respectively) but the relaxation of the ataciguat was significantly greater than that of zaprinast at all concentrations (p=0.0024). It was observed that decreased relaxation responses were initiated by ataciguat in the presence of ODQ (p=0.0012). Conclusion: Ataciguat and zaprinast both have relaxing effects on sphincter of Oddi, although that of zaprinast is lower. We believe that ataciguat and zaprinast can be used in ERCP procedures in order to relax the sphincter of Oddi and thus can be used locally in order to decrease complications. PMID:27606143

  19. Protein dynamics from nuclear magnetic relaxation.

    PubMed

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  20. METHOD OF HYPERBOLIC SYSTEMS WITH STIFF RELAXATION

    SciTech Connect

    R. B. LOWRIE; J. E. MOREL

    2001-03-01

    Three methods are analyzed for solving a linear hyperbolic system that contains stiff relaxation. We show that the semi-discrete discontinuous Galerkin method, with a linear basis, is accurate when the relaxation time is unresolved (asymptotically preserving--AP). A recently developed central method is shown to be non-AP. To discriminate between AP and non-AP methods, we argue that one must study problems that are diffusion dominated.

  1. Relaxant effects of different fractions of essential oil from Carum copticum on guinea pig tracheal chains.

    PubMed

    Boskabady, M H; Ramazani, M; Tabei, T

    2003-12-01

    In previous studies, the relaxant and anticholinergic (functional antagonism), histamine(H1) inhibitory, and xanthine-like activity effect of Carum copticum have been demonstrated on guinea pig tracheal chains. To investigate the effective component(s) of this plant, responsible for the observed bronchodilatory effect, fractionation of the essential oil from Carum copticum was carried out and the relaxant effects of different fractions were examined in this study. The bronchodilatory effect of different fractions of essential oil from Carum copticum and theophylline in comparison with ethanol was examined by their relaxant effects on precontracted tracheal chains of guinea pig by 60 mM KCl (group 1) and 10 microM methacholine in two different conditions including: non-incubated tissues (group 2) and incubated tissues with 1 microM propranolol and 1 microM chlorpheniramine (group 3). In addition the relaxant effect of carvacrol was also examined on precontracted tracheal chains of guinea pig by 10 microM methacholine (group 4), (for each group, n = 5). In group 1 experiments, only theophylline and fraction 2 showed significant relaxant effect compared to that of ethanol. Fraction 2 and 3 of essential oil from carum copticum showed potent and volume (concentration) dependent relaxant effects comparable to that of theophylline in groups 2 and 3 experiments. The relaxant effects of different volumes of these two fractions were significantly higher than that of ethanol (p < 0.05 to p < 0.002 ). The volumes of fraction 1 showed relatively small relaxant effects in groups 2 and 3 experiments which were not significantly different from that of ethanol. However, the relaxant effect of different volumes of fractions 2 and 3 obtained in group 2 experiments were not significantly different from those of group 3 experiments. The volumes of fraction 4 did not show any relaxant effects. In addition volumes of carvacrol also showed comparable relaxant effect with those of fraction

  2. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-01

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  3. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  4. Sensitivity of proton NMR relaxation times in a HTPB based polyurethane elastomer to thermo-oxidative aging.

    SciTech Connect

    Assink, Roger Alan; Mowery, Daniel Michael; Celina, Mathias Christopher

    2004-09-01

    Solid-state {sup 1}H NMR relaxometry studies were conducted on a hydroxy-terminated polybutadiene (HTPB) based polyurethane elastomer thermo-oxidatively aged at 80 C. The {sup 1}H T{sub 1}, T{sub 2}, and T{sub 1{rho}} relaxation times of samples thermally aged for various periods of time were determined as a function of NMR measurement temperature. The response of each measurement was calculated from a best-fit linear function of the relaxation time vs. aging time. It was found that the T{sub 2,H} and T{sub 1{rho},H} relaxation times exhibited the largest response to thermal degradation, whereas T{sub 1,H} showed minimal change. All of the NMR relaxation measurements on solid samples showed significantly less sensitivity to thermal aging than the T{sub 2,H} relaxation times of solvent-swollen samples.

  5. The evolution of antipredator behaviour following relaxed and reversed selection in Alaskan threespine stickleback fish

    PubMed Central

    Wund, Matthew A.; Baker, John A.; Golub, Justin L.; Foster, Susan A.

    2015-01-01

    Changing environments, whether through natural or anthropogenic causes, can lead to the loss of some selective pressures (‘relaxed selection’) and possibly even the reinstatement of selective agents not encountered for many generations (‘reversed selection’). We examined the outcome of relaxed and reversed selection in the adaptive radiation of the threespine stickleback fish, Gasterostues aculeatus L., in which isolated populations encounter a variety of predation regimes. Oceanic stickleback, which represent the ancestral founders of the freshwater radiation, encounter many piscivorous fish. Derived, freshwater populations, on the other hand, vary with respect to the presence of predators. Some populations encounter native salmonids, whereas others have not experienced predation by large fish in thousands of generations (relax-selected populations). Some relax-selected populations have had sport fish, including rainbow trout, Oncorhynchus mykiss, introduced within the past several decades (reverse-selected). We examined the behavioural responses of stickleback from three populations of each type to simulated attacks by trout and birds to determine whether relaxed and reversed selection has led to divergence in behaviour, and whether this divergence was predator specific. Fish from trout-free populations showed weak responses to trout, as predicted, but these responses were similar to those of oceanic (ancestral) populations. Fish from populations that co-occur with trout, whether native or introduced, showed elevated antipredator responses, indicating that in freshwater, trout predation selects for enhanced antipredator responses, which can evolve extremely rapidly. Comparison of laboratory-reared and wild-caught individuals suggests a combination of learned and genetic components to this variation. Responses to a model bird flyover were weakly linked to predation environment, indicating that the loss of predation by trout may partially influence the

  6. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  7. Grain alignment: Role of radiative torques and paramagnetic relaxation

    NASA Astrophysics Data System (ADS)

    Lazarian, Alexander; Andersson, B.-G.; Hoang, Thiem

    2015-05-01

    Polarization arising from aligned dust grains presents a unique opportunity to study magnetic fields in the diffuse interstellar medium and molecular clouds. Polarization from circumstellar regions, accretion disks and comet atmospheres can also be related to aligned dust.To reliably trace magnetic fields quantitative theory of grain alignment is required. Formulating the theory that would correspond to observations was one of the longstanding problems in astrophysics. Lately this problem has been successfully addressed, and in this review we summarize some of the most important theoretical advances in the theory of grain alignment by radiative torques (RATs) that act on realistic irregular dust grains. We discuss an analytical model of RATs and the ways to make RAT alignment more efficient, e.g. through paramagnetic relaxation when grains have inclusions with strong magnetic response. For very small grains for which RAT alignment is inefficient, we also discuss paramagnetic relaxation and a process termed resonance relaxation. We provide an extensive analysis of the observational tests of grain alignment theory.

  8. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  9. Dielectric and specific heat relaxations in vapor deposited glycerol

    SciTech Connect

    Kasina, A. E-mail: wubbenhorst@fys.kuleuven.be; Putzeys, T.; Wübbenhorst, M. E-mail: wubbenhorst@fys.kuleuven.be

    2015-12-28

    existence of rigid polar clusters (RPCs) and conclusively explains the extraordinary high kinetic stability of the MROL state, its specific calorimetric signature, the enhanced strength, and apparent slow-down of the dielectric α-relaxation. In this new picture, the incredibly slow and strengthened dielectric response is ascribed to driven rotational diffusion of whole RPCs, a mechanism that perfectly couples to the relaxation time of the “normal” glycerol fraction. First considerations based on the strength and the retardation of the dielectric RPCs’ response yield independently a size estimate for the RPCs in the order of 4-5 nm. Finally, we have discussed possible crystallisation and reorganisation effects, which give rise to pronounced out-of phase components of the specific heat at higher temperatures.

  10. Decreased aortic glutathione levels may contribute to impaired nitric oxide-induced relaxation in hypercholesterolaemia

    PubMed Central

    Adachi, Takeshi; Cohen, Richard A

    2000-01-01

    The aim of this study was to determine if the decrease in aortic total glutathione (GSH) levels in hypercholesterolaemia is related to the impairment of relaxation to acetylcholine (ACh) and exogenous nitric oxide (NO). Isometric tension and vascular GSH levels were measured in thoracic aortic rings from rabbits fed for 12 weeks with 0.5% cholesterol diet. Hypercholesterolaemia decreased aortic GSH levels and impaired relaxation to ACh and NO. To determine if GSH depletion impaired the response to NO, normal rabbit thoracic aorta was incubated with 1,3-bis [2-chloroethyl]-1-nitrosourea (BCNU; 0.2 mmol L−1), a GSH reductase inhibitor, or diazine-dicarboxylic acid bis [N, N dimethylamide] (diamide; 1 mmol L−1), a thiol oxidizing agent. BCNU or diamide decreased aortic GSH levels and impaired ACh and NO-induced relaxation. The effects of diamide on GSH levels and relaxation were partially prevented by co-incubation with GSH ester (GSE; 2 mmol L−1). Increasing GSH with GSE significantly enhanced NO-induced relaxation in aorta from both hypercholesterolaemic and normal rabbits, however relaxation of hypercholesterolaemic rabbit aorta was not restored to normal. These data suggest that other factors, perhaps related to the long-term decrease in GSH levels, are responsible for reduced NO bioactivity in hypercholesterolaemia. PMID:10696103

  11. Maxwell Wagner and Goldstone mode relaxations in a oligomethylene spacer based ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Goswami, D.; Mandal, P. K.; Debnath, A.; Dabrowski, R.

    2016-05-01

    One recently synthesized fluorinated ferroelectric liquid crystal ((S)-(+)-4-[(3-tridecafluoroheptanoyloxy)prop-1-oxy]biphenyl-4-yl 4-(1-methylheptyloxy) benzoate (6F3R) has been characterized by frequency dependent dielectric study. The sample exhibits only SmC* phase over a wide temperature range. Two distinct relaxation phenomenon have been observed in its dielectric spectrum and are identified as goldstone mode (GM) relaxation and Maxwell Wagner (MW) relaxation. In most reported works, the MW mode, which is mainly observed for highly conducting liquid crystals, had been reported to be overlapped by the conductivity contribution. But in the present sample we have found distinct and strong MW peaks along with GM mode peaks. However, no soft mode relaxation was observed. Moreover, the sample shows very low response time (μs range) and moderate value of optical tilt angle which are promising criteria for display applications.

  12. Mechanism of stress relaxation in nanocrystalline Fe-N thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjeeta; Gupta, Ajay; Leitenberger, W.; Rüffer, R.

    2012-02-01

    The mechanism of stress relaxation in nanocrystalline Fe-N thin film has been studied. The as-deposited film possesses a strong in-plane compressive stress which relaxes with thermal annealing. Precise diffusion measurements using nuclear resonance reflectivity show that stress relaxation does not involve any long-range diffusion of Fe atoms. Rather, a redistribution of nitrogen atoms at various interstitial sites, as evidenced by conversion electron Mössbauer spectroscopy, is responsible for the relaxation of internal stresses. On the other hand, formation of the γ'-Fe4N phase at temperatures above 523 K involves long-range rearrangement of Fe atoms. The activation energy for Fe self-diffusion is found to be 0.38±0.04 eV.

  13. Can Stress Relaxation Experiments be Used to Assess Deformation Induced Mobility in Glassy Polymers?

    NASA Astrophysics Data System (ADS)

    Kropka, Jamie; Long, Kevin

    The observance of an increase in glassy polymer relaxation rates under a mechanical deformation is often referred to as deformation induced mobility (DIM). It has been argued that stress relaxation experiments can provide indirect evidence of this phenomenon. Recently, stress relaxation experiments have been interpreted as demonstrating a mobility decrease with increased deformation when very slow strain rates, 1.2 x 10-5 s-1, are used to apply the deformation. This would suggest against generality of DIM and would have significant implications to constitutive models founded on this principle. Here, a mathematical exercise is performed to evaluate the implications of DIM on stress relaxation response. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  14. Field-dependent Brownian relaxation dynamics of a superparamagnetic clustered-particle suspension.

    PubMed

    Trisnanto, S B; Kitamoto, Y

    2014-09-01

    The distinguishable Brownian relaxation dynamics of a clustered-particle system of superparamagnetic iron oxide nanoparticle suspension compared to that of a dispersed-particle system has been experimentally investigated through characterization of the frequency and field strength dependences of complex magnetic susceptibility. We confirmed that the application of low sinusoidal magnetic field strength enables cluster rotation instead of individual particle rotations. Furthermore, we found that the cluster rotation was altered to individual particle rotations in higher field strength, resulting in a shorter Brownian relaxation time, which suggests a change in the hydrodynamic volume. This evolutional relaxation behavior was associated with a change in the fitting parameter which satisfies the empirical model of relaxation and further represents the significance of interparticle interactions in defining the nonlinearity of the magnetization response.

  15. Suppression of relaxation modes in dye dispersed SmC* phase

    NASA Astrophysics Data System (ADS)

    Yadav, Satya Prakash; Pande, Mukti; Manohar, Rajiv; Singh, Shri

    2014-03-01

    We report the results of dielectric and electro-optical properties of ferroelectric liquid crystal (FLC), Felix 17/100, exhibiting chiral smectic C phase and dye dispersed FLCs. The polarization measurement on pristine and dye dispersed FLC mixture shows decrease in the value of polarization, indicating the distribution of dye dipole in a direction opposite to the orientation of FLC molecule. The rotational viscosity also decreases accordingly as shown by the measurement of response time. Dielectric measurement shows existence of two relaxation modes both in pure FLC and dye dispersed FLC. The relaxation strength of Goldstone mode decreases with the dispersion of dye and the relaxation frequency of this mode shifts towards the high-frequency side. The second relaxation mode arises due to the formation of domains at the surface interface. The dispersion of dye into FLC suppresses the domains.

  16. Numerical Simulation of the Proton Spin-Lattice Relaxation in Bimetallic Chain Compounds

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.

    In response to recent proton spin relaxation-time measurements on a bimetallic chain compound NiCu(C7H6N2O6) (H2O)3\\cdot2H2O, we simulate the Raman relaxation process in Heisenberg alternating-spin chains on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T1-1 qualitatively varies with (S,s), while T1-1 is almost proportional to H-1/2 due to the characteristic dispersion relations.

  17. Simulated nuclear spin-lattice relaxation in Heisenberg ferrimagnets: Indirect observation of quadratic dispersion relations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2000-01-01

    In response to recent proton spin-relaxation time measurements on NiCu(pba)(H2O)3.2H2O with pba=1,3-propylenebis(oxamato), which is an excellent one-dimensional ferrimagnetic Heisenberg model system of spin (1,12), we study the Raman relaxation process in spin-(S,s) quantum ferrimagnets on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T-11 qualitatively varies with (S,s), while T-11 is almost proportional to H-1/2 due to the characteristic dispersion relations.

  18. Relaxation or breakup of a low-conductivity drop upon removal of a uniform dc electric field

    NASA Astrophysics Data System (ADS)

    Lanauze, Javier A.; Walker, Lynn M.; Khair, Aditya S.

    2016-07-01

    We quantify the dynamics of a prolate leaky dielectric drop upon removal of a uniform dc electric field. Experiments consisting of a castor oil drop suspended in silicone oil are compared against axisymmetric boundary integral computations that account for transient charging, or charge relaxation, of the interface. A temporal asymmetry between the drop deformation and relaxation processes is observed in the experiments and computations: The drop relaxes back to its spherical equilibrium shape faster than the time taken to achieve its steady-state deformation. During the deformation process, the electrical (Maxwell) stress deforms the drop along the direction of the applied field; it is counteracted by the capillary stress. During the relaxation process, i.e., after the field is removed, the electrical stress acts together with the capillary stress to quickly restore the drop back to equilibrium. This change in action of the electrical stress is responsible for the asymmetry between the drop deformation and relaxation. Notably, the electrical stress acts over the charge relaxation time scales of the fluids: Thus, counterintuitively, longer charging time scales yield faster drop relaxation. That is, the longer it takes for the interface to discharge, the faster the drop shape relaxes. We also present computational results for a drop that does not relax back to its initial spherical shape upon removal of the electric field; rather, the drop breaks up via an end-pinching mechanism.

  19. A comparative study of potassium-induced relaxation in vascular smooth muscle of tiger salamanders and rats.

    PubMed

    Malvin, G M; Webb, R C

    1984-07-01

    This study compares potassium-induced relaxation in vascular tissue of an amphibian (Ambystoma tigrinum) and a mammal (rat). Aortas (salamanders) and tail arteries (rats) were cut into helical strips for isometric force recording. After norepinephrine-induced contraction in potassium-free solution, arteries relaxed in response to added potassium (1-20 mmol/l). Potassium-induced relaxation was greater in rat tail arteries than in salamander aortas. Half-maximal relaxation occurred at a potassium concentration of approximately 3 mmol/l in both species. Ouabain inhibited potassium-induced relaxation; salamanders were more sensitive to the glycoside than rats. Potassium-induced relaxation decreased as the temperature of the bathing medium was lowered; half-maximal inhibition occurred at 19 and 29 degrees C for salamander aortas and rat tail arteries, respectively. Potassium-induced relaxation also varied with the interval in potassium-free solution, the hydrogen ion concentration (rats only), and the magnitude of norepinephrine-induced contraction. It appears that the cellular mechanism causing potassium-induced relaxation is similar in blood vessels of salamanders and rats. The observations are consistent with the hypothesis that stimulated electrogenic sodium transport produced membrane hyperpolarization and relaxation in vascular smooth muscle.

  20. Effect of Rb+ on cromakalim-induced relaxation and ion fluxes in guinea pig trachea.

    PubMed

    Foster, K A; Arch, J R; Newson, P N; Shaw, D; Taylor, S G

    1992-11-01

    The effects of cromakalim, verapamil and salbutamol have been examined in guinea pig trachealis smooth muscle in both Krebs physiological salt solution and Krebs solution where K+ has been replaced by Rb+. Cromakalim-induced relaxation in the presence of Rb+ was reduced in extent and became transient, whilst the relaxation response to verapamil was enhanced and that to salbutamol unaffected. The transient relaxation occurring in Rb+ was blocked by quinidine and glibenclamide. The presence of extracellular Rb+ also prevented cromakalim-stimulated efflux of both 86Rb+ and 42/43K+. There was, however, no effect on cromakalim-stimulated 86Rb+ uptake. It is proposed that cromakalim is opening two populations of potassium channel in guinea pig tracheal smooth muscle, one of which is susceptible to blockade by Rb+ and one of which is not. The latter channel appears to play the dominant role in cromakalim-stimulated uptake, and is responsible for the transient relaxation response in the presence of rubidium, whilst the former is responsible for the maintained relaxation. PMID:1468491

  1. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation

    PubMed Central

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries. PMID:26599698

  2. Low frequency dielectric investigations into the relaxation behavior of frozen polyvinylpyrrolidone-water systems.

    PubMed

    Barker, S A; He, R; Craig, D Q

    2001-02-01

    The low frequency dielectric response of aqueous solutions containing 0, 1, 5, and 10% w/v polyvinylpyrrolidone (PVP) was studied to characterize the low temperature relaxation behavior of these systems. Complementary modulated temperature differential scanning calorimetry (MTDSC) studies allowed measurement of the glass transition temperature for these materials, corresponding to the behavior of the nonfrozen phase. Dielectric investigations in the frequency range of 10(6) to 10(-2) Hz were performed on the systems in the liquid state, with a Maxwell-Wagner response noted for both the PVP solutions and water. The solid-phase responses were studied over a range of temperatures down to -70 degrees C, with a relaxation peak observed for the PVP systems in the kilohertz region. The spectra were modeled using the Havriliak-Negami equation and the corresponding relaxation times were calculated, with a satisfactory fit to the Arrhenius equation noted. The calculated activation energies were similar to literature values for the dielectric relaxation of water. It is suggested that the dielectric response is primarily a reflection of the relaxation behavior of the water molecules in the nonfrozen fraction, thereby indicating that the dielectric technique may yield insights into specific components of frozen aqueous systems.

  3. Merging of the α and β relaxations in polybutadiene: A neutron spin echo and dielectric study

    NASA Astrophysics Data System (ADS)

    Arbe, A.; Richter, D.; Colmenero, J.; Farago, B.

    1996-10-01

    The local dynamics of 1,4 polybutadiene below and above the merging of the α and β relaxations have been investigated by combining neutron spin echo (NSE) and dielectric spectroscopy. The study of the dynamic structure factor measured by NSE over a wide momentum transfer range allows us to characterize the α relaxation as an interchain process while the β relaxation originates from mainly intrachain motions. At temperatures below the merging, the dynamic structure factor can be described by a superposition of elemental processes for the β relaxation as obtained from dielectric spectroscopy. The elemental motions behind this process can be related to rotational jumps of the chain building blocks around their center of mass. Furthermore, we have been able to consistently describe the dynamic structure factor above the merging of the α and β relaxations by assuming that both processes are statistically independent. In the framework of this scenario a procedure for analyzing the dielectric response in the α-β merging region has been developed. Its application to the dielectric data allows us to describe the dielectric response in this region on the basis of the low temperature behavior of the α and β processes and without considering any particular change in the relaxation mechanism of these processes. The temperature dependence found for the relaxation time of the α process follows now the viscosity, a masked feature in the experimental data due to the merging process. In this way, we have been able to consistently describe the relaxation of both, the polarization and the density fluctuations, by using the same scenario, i.e., independent α and β processes, and considering the same functional forms and temperature dependences of the characteristic times of the two processes.

  4. Applied Relaxation as Training in Self-Control

    ERIC Educational Resources Information Center

    Chang-Liang, Rosa; Denney, Douglas R.

    1976-01-01

    Text-anxious students who were high or low in general anxiety were treated with applied relaxation, systematic desensitization, relaxation only, or no treatment (control). The results indicated that applied relaxation was more effective in reducing anxiety than relaxation only and no treatment on measures of general anxiety and measures of test…

  5. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide.

    PubMed Central

    Graves, J.; Poston, L.

    1993-01-01

    1. Isoprenaline (10(-9)-10(-5) M) relaxed rat isolated mesenteric resistance arteries pre-contracted with K+ (30-60 mM) (p EC50 (M) 8.03 +/- 0.40; maximum relaxation 66.79 +/- 2.43%, n = 7). This relaxation was partially attenuated by the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 10(-4) M). 2. The beta 2-adrenoceptor agonist, salbutamol (10(-9)-10(-5) M), produced a modest maximum relaxation (35.93 +/- 2.93%), which was not sensitive to L-NAME. 3. The beta 1-adrenoceptor agonist, dobutamine (10(-9)-10(-5) M), relaxed arteries precontracted with K+. This relaxation was abolished by L-NAME (10(-4) M) and also by propranolol (10(-6) M), but not affected by D-NAME (10(-4) M). The inhibition by L-NAME was partially reversed by L-arginine (10(-3) M). Removal of the endothelium severely attenuated relaxation to dobutamine. 4. Contractile responses to depolarizing K+ solutions were enhanced by the addition of L-NAME, and also by removal of the endothelium. 5. The above findings demonstrate that beta 1-adrenoceptor causes relaxation via NO release from the endothelium of rat mesenteric resistance arteries. In addition, contraction to K+ is modified by release of NO from the endothelium, possibly in response to tension development. PMID:8096781

  6. Heterogeneous vasodilator responses of human limbs: influence of age and habitual endurance training.

    PubMed

    Newcomer, Sean C; Leuenberger, Urs A; Hogeman, Cynthia S; Proctor, David N

    2005-07-01

    Forearm endothelium-dependent vasodilation is impaired with age in sedentary, but not endurance-trained, men. The purpose of this investigation was to determine whether these age- and physical activity-related differences in endothelium-dependent vasodilation also occur in the leg. Brachial and common femoral arterial blood flow were measured with Doppler ultrasound during increasing doses of acetylcholine (1, 4, and 16 microg.100 ml limb tissue(-1).min(-1)), substance P (8, 31, and 125 pg.100 ml limb tissue(-1).min(-1)), and sodium nitroprusside (0.063, 0.25, and 1 microg.100 ml limb tissue(-1).min(-1)) in 23 healthy men (8 younger sedentary, 8 older sedentary, and 7 older endurance trained). Increases in forearm blood flow to the highest dose of acetylcholine and sodium nitroprusside were smaller (P < 0.05) in older sedentary (841 +/- 142%, 428 +/- 74%) compared with younger sedentary (1,519 +/- 256%, 925 +/- 163%) subjects. Similarly, increases in forearm blood flow to sodium nitroprusside (1 microg.100 ml limb tissue(-1).min(-1)) were smaller (P < 0.05) in older endurance-trained (505 +/- 110%) compared with younger sedentary (925 +/- 163%) subjects. In contrast, no differences in leg blood flow responses to intra-arterial infusions of acetylcholine, substance P, or sodium nitroprusside were noted between subject groups. These results demonstrate that 1) acetylcholine- and sodium nitroprusside-induced vasodilation are attenuated in the forearm vasculature and preserved in the leg vasculature of older sedentary subjects and 2) sodium nitroprusside-induced vasodilation remains attenuated in the forearm vasculature of healthy older endurance-trained men but preserved in the leg vasculature of these men.

  7. Carrier relaxation dynamics in heavy fermion compounds

    SciTech Connect

    Demsar, J.; Tracy, L. A.; Averitt, R. D.; Trugman, S. A.; Sarrao, John L.,; Taylor, Antoinette J.,

    2002-01-01

    The first femtosecond carrier relaxation dynamics studies in heavy fermion compounds are presented. The carrier relaxation time shows a dramatic hundred-fold increase below the Kondo temperature revealing a dramatic sensitivity to the electronic density of states near the Fermi level. Femtosecond time-resolved optical spectroscopy is an excellent experimental alternative to conventional spectroscopic methods that probe the low energy electronic structure in strongly correlated electron systems. In particular, it has been shown that carrier relaxation dynamics are very sensitive to changes in the low energy density of states (e.g. associated with the formation of a low energy gap or pseudogap) providing new insights into the low energy electronic structure in these materials. In this report we present the first studies of carrier relaxation dynamics in heavy fermion (HF) systems by means of femtosecond time-resolved optical spectroscopy. Our results show that the carrier relaxation dynamics, below the Kondo temperature (T{sub K}), are extremely sensitive to the low energy density of states (DOS) near the Ferini level to which localized f-moments contribute. Specifically, we have performed measurements of the photoinduced reflectivity {Delta}R/R dynamics as a function of temperature and excitation intensity on the series of HF compounds YbXCu{sub 4} (X = Ag, Cd, In) in comparison to their non-magnetic counterparts LuXCu{sub 4}.

  8. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  9. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  10. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  11. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  12. Convex relaxations for gas expansion planning

    SciTech Connect

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution

  13. Convex relaxations for gas expansion planning

    DOE PAGESBeta

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  14. Suppression of Spin-Exchange Relaxation Using Pulsed Parametric Resonance

    NASA Astrophysics Data System (ADS)

    Korver, A.; Wyllie, R.; Lancor, B.; Walker, T. G.

    2013-07-01

    We demonstrate that spin-exchange dephasing of Larmor precession at near-Earth-scale fields is effectively eliminated by dressing the alkali-metal atom spins in a sequence of ac-coupled 2π pulses, repeated at the Larmor precession frequency. The contribution of spin-exchange collisions to the spectroscopic linewidth is reduced by a factor of the duty cycle of the pulses. We experimentally demonstrate resonant transverse pumping in magnetic fields as high as 0.1 G, present experimental measurements of the suppressed spin-exchange relaxation, and show enhanced magnetometer response relative to a light-narrowed scalar magnetometer.

  15. Anomalous glassy relaxation near the isotropic-nematic phase transition

    NASA Astrophysics Data System (ADS)

    Jose, Prasanth P.; Chakrabarti, Dwaipayan; Bagchi, Biman

    2005-03-01

    Dynamical heterogeneity in a system of Gay-Berne ellipsoids near its isotropic-nematic (I-N) transition, and also in an equimolar mixture of Lennard-Jones spheres and Gay-Berne ellipsoids in deeply supercooled regime, is probed by the time evolution of non-Gaussian parameters (NGP). The appearance of a dominant second peak in the rotational NGP near the I-N transition signals the growth of pseudonematic domains. Surprisingly, such a second peak is instead observed in the translational NGP for the glassy binary mixture. Localization of orientational motion near the I-N transition is found to be responsible for the observed anomalous orientational relaxation.

  16. New electric field methods in chemical relaxation spectrometry.

    PubMed Central

    Persoons, A; Hellemans, L

    1978-01-01

    New stationary relaxation methods for the investigation of ionic and dipolar equilibria are presented. The methods are based on the measurement of non-linearities in conductance and permittivity under high electric field conditions. The chemical contributions to the nonlinear effects are discussed in their static as well as their dynamic behavior. A sampling of experimental results shows the potential and range of possible applications of the new techniques. It is shown that these methods will become useful in the study of nonlinear responses to perturbation, in view of the general applicability of the experimental principles involved. PMID:708817

  17. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries

    PubMed Central

    Petersson, Jesper; Zygmunt, Peter M; Högestätt, Edward D

    1997-01-01

    In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 μM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery.Inhibitors of adenosine 5′-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 μM), voltage-sensitive K-channels (KV; dendrotoxin-I, 0.1 μM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 μM) and large (BKCa; iberiotoxin, 0.1 μM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine.Synthetic charybdotoxin (0.1 μM), an inhibitor of BKCa and KV, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited.A combination of charybdotoxin (0.1 μM) and apamin (0.1 μM) abolished the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 μM) and apamin (0.1 μM).Ciclazindol (10 μM), an inhibitor of KV in rat portal vein smooth muscle, inhibited the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 μM) was combined with apamin (0.1 μM).Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 μM) and apamin (0.1 μM), whereas each toxin had little effect alone.The results suggest that KV, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic

  18. A kinetic model for liquids: Relaxation in liquids, origin of the Vogel-Tammann-Fulcher equation, and the essence of fragility

    NASA Astrophysics Data System (ADS)

    Wang, L. W.; Fecht, H.-J.

    2008-12-01

    On the basis of the kinetic model for liquids, which gave a quantitative description of liquid substructures, atomic relaxations in a model liquid were calculated. A crossover temperature Tcoop was recognized: relaxations were noncooperative at temperatures above Tcoop while cooperative below Tcoop. The cooperation in relaxation was responsible for the very slow dynamics near glass transition, departing significantly from the Arrhenius relation. This found supports in a large variety of glass forming liquids. The degree of cooperation in relaxation was straightforwardly determined by the number of atoms, N, in the liquid substructure and was responsible for the fragility of liquids: the larger the N was, the more fragile a liquid was.

  19. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  20. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  1. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  2. Stratospheric Relaxation in IMPACT's Radiation Code

    SciTech Connect

    Edis, T; Grant, K; Cameron-Smith, P

    2006-11-13

    While Impact incorporates diagnostic radiation routines from our work in previous years, it has not previously included the stratospheric relaxation required for forcing calculations. We have now implemented the necessary changes for stratospheric relaxation, tested its stability, and compared the results with stratosphere temperatures obtained from CAM3 met data. The relaxation results in stable temperature profiles in the stratosphere, which is encouraging for use in forcing calculations. It does, however, produce a cooling bias when compared to CAM3, which appears to be due to differences in radiation calculations rather than the interactive treatment of ozone. The cause of this bias is unclear as yet, but seems to be systematic and hence cancels out when differences are taken relative to a control simulation.

  3. Substrate stress relaxation regulates cell spreading

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.

    2015-02-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  4. Swelling and Stress Relaxation in Portland Brownstone

    NASA Astrophysics Data System (ADS)

    Jimenez, I.; Scherer, G.

    2003-04-01

    Portland Brownstone (PB) is an arkose sandstone extensively used in the northeast-ern USA during the nineteenth century. This reddish-brown stone contains a fraction of swelling clays that are thought to contribute to its degradation upon cycles of wet-ting and drying. During drying events, contraction of the drying surface leads to stresses approaching the tensile strength of the stone. However, we have found that the magnitude of these stresses is limited by the ability of the stone to undergo stress relaxation. In this paper we describe novel methods to determine the magnitude of the stresses and the rate at which they develop and relax. We also discuss the influ-ence of surfactants on the magnitude of swelling and the rate of the stress relaxation of PB. The implications of our findings for the understanding of damage due to swelling of clays are discussed.

  5. Substrate stress relaxation regulates cell spreading

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J

    2015-01-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECM are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behavior through computational modeling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM. PMID:25695512

  6. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  7. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  8. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  9. Magnetic Relaxation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Fornberg, Bengt; Flyer, Natasha; Low, B. C.

    2009-01-01

    This is a mathematical study of the long-lived hydromagnetic structures produced in the tenuous solar corona by the turbulent, resistive relaxation of a magnetic field under the condition of extremely high electrical conductivity. The relaxation theory of Taylor, originally developed for a laboratory device, is extended to treat the open atmosphere where the relaxing field must interact with its surrounding fields. A boundary-value problem is posed for a two-dimensional model that idealizes the corona as the half Cartesian plane filled with a potential field (1) that is anchored to a rigid, perfectly conducting base and (2) that embeds a force-free magnetic field in the form of a flux-rope oriented horizontally and perpendicular to the Cartesian plane. The flux-rope has a free boundary, which is an unknown in the construction of a solution for this atmosphere. Pairs of magnetostatic solutions are constructed to represent the initial and final states of a flux-rope relaxation that conserve both the total magnetic helicity and total axial magnetic flux, using a numerical iterative method specially developed for this study. The collection of numerical solutions found provides an insight into the interplay among several hydromagnetic properties in the formation of long-lived coronal structures. In particular, the study shows (1) that the outward spread of reconnection between a relaxing flux-rope and its external field may be arrested at some outer magnetic flux surface within which a constant-α force-free field emerges as the minimum-energy state and (2) that this outward spread is complicated by an inward, partial collapse of the relaxing flux-rope produced by a loss of internal magnetic pressure.

  10. Molecular Relaxations in Constrained Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel B., Jr.

    Current engineering challenges in the areas of energy, gas separation and photonics demand novel materials that are cognitively engineered at the molecular level, with a view toward replacing the conventional trial and error approach to materials development. Cognitive molecular engineering of organic materials demands the incorporation of internal constraints (inherent to molecular architecture) and external constraints (stemming from interactions with system boundaries) to obtain desired material properties. Both types of constraints affect intrinsic relaxation behavior in a material, which dictates thermal and viscoelastic material properties. The challenge, then, is to quantify the influence of constraints on relaxation behavior with a view toward producing a 'toolbox' for molecular engineering. In this work, local atomic force microscopy based thermomechanical measurements, paired with dielectric spectroscopy, kinetic models and molecular dynamic simulation are used to explore the effect of constraints on the relaxation behavior of model lubricants, amorphous polymers, and organic non-linear optical (NLO) materials. The impact of interfacial constraints on the inter- and intramolecular relaxation processes were investigated in lubricating model systems from fast relaxing simple monolayers to sluggishly unwinding complex polymer systems. At the free surface of amorphous polystyrene, apparent Arrhenius-type surface and subsurface activation energies were found where dissipation is a discrete function of loading, indicating sensitivity to surface and subsurface mobilities. Finally, in organic NLO systems, constraints in the form of self assembling dendritic groups are introduced to provide both sufficient mobility for alignment of their constituent chromophores and limited mobility for long-term alignment stability. Relaxation activation energies for NLO materials were deduced for these self assembling glassy chromophores, resulting in a first toolbox to guide

  11. Strain-Rate Frequency Superposition (SRFS) - A rheological probe of structural relaxation in soft materials

    NASA Astrophysics Data System (ADS)

    Wyss, Hans M.

    2007-03-01

    The rheological properties of soft materials such as concentrated suspensions, emulsions, or foams often exhibit surprisingly universal linear and nonlinear features. Here we show that their linear and nonlinear viscoelastic responses can be unified in a single picture by considering the effect of the strain-rate amplitude on the structural relaxation of the material. We present a new approach to oscillatory rheology, which keeps the strain rate amplitude fixed as the oscillation frequency is varied. This allows for a detailed study of the effects of strain rate on the structural relaxation of soft materials. Our data exhibits a characteristic scaling, which isolates the response due to structural relaxation, even when it occurs at frequencies too low to be accessible with standard techniques. Our approach is reminiscent of a technique called time-temperature superposition (TTS), where rheological curves measured at different temperatures are shifted onto a single master curve that reflects the viscoelastic behavior in a dramatically extended range of frequencies. By analogy, we call our approach strain-rate frequency superposition (SRFS). Our experimental results show that nonlinear viscoelastic measurements contain useful information on the slow relaxation dynamics of soft materials. The data indicates that the yielding behavior of soft materials directly probes the structural relaxation process itself, shifted towards higher frequencies by an applied strain rate. This suggests that SRFS will provide new insight into the physical mechanisms that govern the viscoelastic response of a wide range of soft materials.

  12. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  13. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  14. Magnetic Relaxation Detector for Microbead Labels

    PubMed Central

    Liu, Paul Peng; Skucha, Karl; Duan, Yida; Megens, Mischa; Kim, Jungkyu; Izyumin, Igor I.; Gambini, Simone; Boser, Bernhard

    2014-01-01

    A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement, eliminating the need for baseline calibration and reference sensors. The device includes embedded electromagnets to eliminate external magnets and reduce power dissipation. Correlated double sampling combined with offset servo loops and magnetic field modulation, suppresses the detector offset to sub-μT. Single 4.5-μm magnetic beads are detected in 16 ms with a probability of error <0.1%. PMID:25308988

  15. Centrally acting muscle relaxants in tetanus

    PubMed Central

    Webster, R. A.

    1961-01-01

    The anti-tetanus activity of a number of phenothiazine derivatives and other centrally acting muscle relaxants, such as mephenesin, dicyclopropyl ketoxime, 2-amino-6-methylbenzothiazole and meprobamate, has been determined in rabbits with experimental local tetanus. Structure-activity relationships were obtained for the phenothiazine derivatives and their anti-tetanus activity correlated with other central and peripheral properties. Both dicyclopropyl ketoxime and 2-amino-6-methyl-benzothiazole were twice as active as mephenesin. Meprobamate does not appear to be primarily a muscle relaxant of the mephenesin type. PMID:14005498

  16. Synthetic aperture radar autofocus via semidefinite relaxation.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  17. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    PubMed Central

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  18. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    PubMed

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium.

  19. Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data

    DOE PAGESBeta

    Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris; Jesse, Stephen; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-08-19

    Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias themore » average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior.« less

  20. Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data

    SciTech Connect

    Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris; Jesse, Stephen; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-08-19

    Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior.

  1. Decoupling of relaxation and diffusion in random pinning glass-forming liquids.

    PubMed

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2015-03-28

    We investigate numerically the relaxation and diffusion dynamics in three-dimensional Kob-Andersen glass-forming liquids in which part of the particles are randomly chosen and pinned permanently. We find that both the relaxation dynamics and diffusion dynamics slow down as increasing the pinning concentration (cpin) at fixed temperatures that we study. For higher temperature and lower cpin, the α relaxation time τ and the diffusion coefficient D have the scaling relationship D ∼ τ(-1). However, this coupling behavior breaks down if cpin is further increased, and the scaling relationship is replaced by D ∼ τ(-ν) with ν < 1. At temperatures around the onset temperature of the bulk system, a transition from ν ∼ 0.75 to ν ∼ 0.61 with increasing cpin is found. However, at lower temperatures, ν ∼ 0.67 holds in the whole studied cpin range. By fitting the relaxation time as a function of cpin with Vogel-Fulcher-Tamman equation, we find that the change of scaling exponent ν is accompanied with the change of fragility parameter K at higher temperatures. However, at lower temperatures, pinning particles have little effect on the system's qualitative properties. Moreover, we investigate three measures of heterogeneity of dynamics and find that the relaxation and the diffusion motion of particles show different responses to the pinned particles, which may lead to the slower relaxation than diffusion and the decoupling of relaxation and diffusion. The string-like motion is found to saturate at the mode-coupling theory (MCT) crossover point, which indicates that other relaxation modes may exist below the MCT transition point. PMID:25833596

  2. Decoupling of relaxation and diffusion in random pinning glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2015-03-01

    We investigate numerically the relaxation and diffusion dynamics in three-dimensional Kob-Andersen glass-forming liquids in which part of the particles are randomly chosen and pinned permanently. We find that both the relaxation dynamics and diffusion dynamics slow down as increasing the pinning concentration (cpin) at fixed temperatures that we study. For higher temperature and lower cpin, the α relaxation time τ and the diffusion coefficient D have the scaling relationship D ˜ τ-1. However, this coupling behavior breaks down if cpin is further increased, and the scaling relationship is replaced by D ˜ τ-ν with ν < 1. At temperatures around the onset temperature of the bulk system, a transition from ν ˜ 0.75 to ν ˜ 0.61 with increasing cpin is found. However, at lower temperatures, ν ˜ 0.67 holds in the whole studied cpin range. By fitting the relaxation time as a function of cpin with Vogel-Fulcher-Tamman equation, we find that the change of scaling exponent ν is accompanied with the change of fragility parameter K at higher temperatures. However, at lower temperatures, pinning particles have little effect on the system's qualitative properties. Moreover, we investigate three measures of heterogeneity of dynamics and find that the relaxation and the diffusion motion of particles show different responses to the pinned particles, which may lead to the slower relaxation than diffusion and the decoupling of relaxation and diffusion. The string-like motion is found to saturate at the mode-coupling theory (MCT) crossover point, which indicates that other relaxation modes may exist below the MCT transition point.

  3. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    PubMed

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. PMID:23845591

  4. Multidimensional dynamic piezoresponse measurements: Unraveling local relaxation behavior in relaxor-ferroelectrics via big data

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama K.; Zhang, Shujun; Baris Okatan, M.; Jesse, Stephen; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-08-01

    Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) remains unprobed at the mesoscopic level. Here, we use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. These studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior.

  5. Factors involved in the relaxation of female pig urethra evoked by electrical field stimulation.

    PubMed Central

    Werkström, V.; Persson, K.; Ny, L.; Bridgewater, M.; Brading, A. F.; Andersson, K. E.

    1995-01-01

    1. Non-adrenergic, non-cholinergic (NANC) relaxations induced by electrical field stimulation (EFS) were studied in pig isolated urethra. The mechanism for relaxation was characterized by measurement of cyclic nucleotides and by study of involvement of different subsets of voltage-operated calcium channels (VOCCs). 2. EFS evoked frequency-dependent and tetrodotoxin-sensitive relaxations in the presence of propranolol (1 microM), phentolamine (1 microM) and scopolamine (1 microM). At low frequencies (< 12 Hz), relaxations were rapid, whereas at high (> 12 Hz) frequencies distinct biphasic relaxations were evoked. The latter consisted of a rapidly developing first phase followed by a more long-lasting second phase. 3. Treatment with the NO-synthesis inhibitor NG-nitro-L-arginine (L-NOARG; 0.3 mM) inhibited relaxations at low frequencies of stimulation. At high frequencies (> 12 Hz) only the first relaxation phase was affected. 4. Measurement of cyclic nucleotides in preparations subjected to continuous nerve-stimulation, revealed an increase in guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels from 1.3 +/- 0.3 to 3.0 +/- 0.4 pmol mg-1 protein (P < 0.01). In the presence of L-NOARG, there was a significant decrease in cyclic GMP content to control. However, there was no increase in cyclic GMP content in response to EFS. Levels of cyclic AMP remained unchanged following EFS. 5. Treatment with the N-type VOCC-inhibitor, omega-conotoxin GVIA (0.1 microM) reduced NO-dependent relaxations, the effect being most pronounced at low frequencies (1-4 Hz) of stimulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8564225

  6. Mechanics of myocardial relaxation: application of a model to isometric and isotonic relaxation of rat myocardium.

    PubMed

    Wiegner, A W; Bing, O H

    1982-01-01

    Using a simple model for cardiac muscle relaxation which takes into account muscle length, activation, elasticity and a rate constant for the decay of activation, we are able to use easily measured mechanical parameters to assess the state of the cardiac relaxing system. In isolated trabeculae carneae from the left ventricle of the rat, performing physiologically sequenced contractions, observations have been made (1) at varying preloads and afterloads, (2) with changes in temperature from 23 degrees to 33 degrees C, (3) with changes in bath Ca2+ concentration and (4) with the addition of isoproterenol. During isometric relaxation, the slope (SIM) of the curve relating maximum rate of decline of force (-dF/dtmax) to end-systolic muscle length is load-independent and sensitive to interventions which directly affect the cardiac relaxing system (e.g., temperature, isoproterenol); it is only slightly sensitive to bath calcium concentration. During isotonic relaxation, the maximum velocity of lengthening (+dL/dtmax) is in negative linear proportion to muscle shortening at a given preload, the slope (SIT) of the curve relating +dL/dtmax to end-systolic length is sensitive to the interventions which directly affect the cardiac relaxing system but insensitive to calcium-mediated inotropic interventions. The model provides a theoretical basis for the use of SIM and SIT as measures of the relaxation process. PMID:7161285

  7. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose

    PubMed Central

    Salheen, Salheen M.; Panchapakesan, Usha; Pollock, Carol A.; Woodman, Owen L.

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity. PMID:26618855

  8. Proteinase-activated receptor-1 (PAR1) and PAR2 mediate relaxation of guinea pig internal anal sphincter.

    PubMed

    Huang, Shih-Che

    2014-02-10

    Activation of proteinase-activated receptor-1 (PAR1) and PAR2 stimulates contraction of the rat but relaxation of the guinea pig colon. The aim of the present study was to investigate PAR effects on internal anal sphincter (IAS) motility. We measured relaxation of isolated muscle strips from the guinea pig IAS caused by PAR agonists using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the existence of PAR. In the IAS, thrombin and PAR1 peptide agonists TFLLR-NH2 and SFLLRN-NH2 evoked moderate to marked relaxation in a concentration-dependent manner. In addition, trypsin and PAR2 peptide agonists 2-furoyl-LIGRLO-NH2, SLIGRL-NH2 and SLIGKV-NH2 produced relaxation. In contrast, both PAR1 and PAR2 inactive control peptides did not elicit relaxation. Furthermore, the selective PAR1 antagonist vorapaxar and PAR2 antagonist GB 83 specifically inhibited thrombin and trypsin-induced relaxations, respectively. RT-PCR revealed the presence of PAR1 and PAR2 in the IAS. This indicates that PAR1 and PAR2 mediate the IAS relaxation. The relaxant responses of TFLLR-NH2 and trypsin were attenuated by N(omega)-Nitro-L-arginine (L-NNA), indicating involvement of NO. These responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. On the other hand, PAR4 agonists GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2 did not cause relaxation or contraction, suggesting that PAR4 is not involved in the sphincter motility. Taken together, these results demonstrate that both PAR1 and PAR2 mediate relaxation of the guinea pig IAS through the NO pathway. PAR1 and PAR2 may regulate IAS tone and might be potential therapeutic targets for anal motility disorders. PMID:24631471

  9. Upwelling relaxation and estuarine plumes

    NASA Astrophysics Data System (ADS)

    Rao, Shivanesh; Pringle, James; Austin, Jay

    2011-09-01

    After coastal upwelling, the water properties in the nearshore coastal region close to estuaries is determined by the race between the new estuarine plume traveling along the coast and the upwelled front (a marker for the old upwelled plume and the coastal pycnocline) returning to the coast under downwelling winds. Away from an estuary, downwelling winds can return the upwelled front to the coast bringing less dense water nearshore. Near the estuary, the estuarine plume can arrive along the coast and return less dense water to the nearshore region before the upwelled front returns to the coast. Where the plume brings less dense water to the coast first, the plume keeps the upwelled front from returning to the coast. In this region, only the plume and the anthropogenic input and larvae associated with the plume waters influence the nearshore after upwelling. We quantify the extent of the region where the plume is responsible for bringing less dense water to the nearshore and keeping the upwelled front from returning to the coast after upwelling. We successfully tested our predictions against numerical experiments and field observations of the Chesapeake plume near Duck, North Carolina. We argue that this alongshore region exists for other estuaries where the time-integrated upwelling and downwelling wind stresses are comparable.

  10. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    SciTech Connect

    Roberts, R.E. Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  11. Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States.

    PubMed

    Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara

    2014-09-01

    Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.

  12. Relaxation dynamics of multilayer triangular Husimi cacti.

    PubMed

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-14

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number. PMID:27634273

  13. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  14. Stretched Exponential relaxation in pure Se glass

    NASA Astrophysics Data System (ADS)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  15. Relaxation for Children. (Revised and Expanded Edition.)

    ERIC Educational Resources Information Center

    Rickard, Jenny

    Intended as a guide to reduce negative stress in children, this book suggests relaxation and meditation techniques to help children cope with stressful events. Part 1 provides an introduction to the format of the book. Part 2 contains summaries of the 10 sessions that make up the program. Each session has six sequential stages in which students…

  16. Relaxation processes in administered-rate pricing

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Arnold, Michael R.

    2000-10-01

    We show how the theory of anelasticity unifies the observed dynamics and proposed models of administered-rate products. This theory yields a straightforward approach to rate model construction that we illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demonstrate how the use of this formalism leads to a natural definition of market friction.

  17. Magnetic relaxation in dipolar magnetic nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hovorka, Ondrej; Barker, Joe; Chantrell, Roy; Friedman, Gary; York-Drexel Collaboration

    2013-03-01

    Understanding the role of dipolar interactions on thermal relaxation in magnetic nanoparticle (MNP) systems is of fundamental importance in magnetic recording, for optimizing the hysteresis heating contribution in the hyperthermia cancer treatment in biomedicine, or for biological and chemical sensing, for example. In this talk, we discuss our related efforts to quantify the influence of dipolar interactions on thermal relaxation in small clusters of MNPs. Setting up the master equation and solving the associated eigenvalue problem, we identify the observable relaxation time scale spectra for various types of MNP clusters, and demonstrate qualitatively different spectral characteristics depending on the point group of symmetries of the particle arrangement within the cluster - being solely a dipolar interaction effect. Our findings provide insight into open questions related to magnetic relaxation in bulk MNP systems, and may prove to be also of practical relevance, e.g., for improving robustness of methodologies in biological and chemical sensing. OH gratefully acknowledges support from a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under grant agreement PIEF-GA-2010-273014

  18. Relaxation Mechanisms in Hyperpolarized Polycrystalline ^129Xe

    NASA Astrophysics Data System (ADS)

    Samuelson, G.; Su, T.; Saam, B.

    2002-10-01

    Through spin exchange with optically polarized Rb vapor, it is possible to achieve upwards of 30% nuclear spin polarization in ^129Xe and a corresponding NMR signal some 5 orders of magnitude stronger than typical thermally polarized ^129Xe. Due to such a strong signal, hyperpolarized ^129Xe is being used for several leading-edge technologies (eg. biochemical spectroscopy, MRI, and polarization transfer). We have measured the nuclear spin relaxation rate of polycrystalline hyperpolarized ^129Xe at 77K (well below the freezing point of 160K) in a magnetic field of only a few Gauss and have observed that the hyperpolarization completely survives the freezing process. Furthermore, in this regime we have observed non-exponential spin relaxation that depends strongly on magnetic field, isotopic concentration (between ^129Xe and ^131Xe) and differences in crystallite formation. We present a simple spin-diffusion model that fits and explains the features of the data. Our results agree with the hypothesis that at low fields and temperatures the dominant spin relaxation mechanism is cross-relaxation with ^131Xe on the surface of the crystallites (Gatzke, et al., PRL b70, 690 (1993)).

  19. Relaxation Treatment for Insomnia: A Component Analysis.

    ERIC Educational Resources Information Center

    Woolfolk, Robert L.; McNulty, Terrence F.

    1983-01-01

    Compared four relaxation treatments for sleep onset insomnia with a waiting-list control. Treatments varied in presence or absence of muscular tension-release instructions and in foci of attention. Results showed all treatment conditions reduced latency of sleep onset and fatigue; visual focusing best reduced the number of nocturnal awakenings.…

  20. Relaxation dynamics of multilayer triangular Husimi cacti

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  1. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  2. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of

  3. Dielectric Relaxation of Water in Complex Systems

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Puzenko, Alexander A.; Ishai, Paul Ben; Levy, Evgenya

    Whenever water interacts with another dipolar or charged entity, a broadening of the dielectric relaxation peak occurs. This broadening can often be described by the phenomenological Cole-Cole (CC) spectral function. A new approach (Puzenko AA, Ben Ishai P, and Feldman Y, Phys Rev Lett 105:037601, 2010) based on the fractal nature of the time set of the interaction of the relaxing water dipoles with its encompassing matrix has been recently presented showing a fundamental connection between the relaxation time, τ, the broadening parameter, α, and the Kirkwood-Fröhlich correlation function B. Parameters B, τ and α where chosen as the coordinates of a new 3D space. The evolution of the relaxation process due to the variation of external macroscopic parameters (temperature, pressure etc.) represents the trajectory in 3D space. This trajectory demonstrates the connection between the kinetic and structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassium chloride in water have been measured and have been carefully analyzed along with previously measured spectra for aqueous solutions of D-glucose and D-fructose.

  4. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics

    PubMed Central

    Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar

    2000-01-01

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere

  5. Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates.

    PubMed

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2015-09-01

    Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied. PMID:26093345

  6. Prominent β-relaxations in yttrium based metallic glasses

    SciTech Connect

    Luo, P.; Lu, Z.; Zhu, Z. G.; Li, Y. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-19

    Most metallic glasses (MGs) exhibit weak slow β-relaxation. We report the prominent β-relaxation in YNiAl metallic glass with a wide composition range. Compared with other MGs, the MGs show a pronounced β-relaxation peak and high β-relaxation peak temperature, and the β-relaxation behavior varies significantly with the changes of the constituent elements, which is attributed to the fluctuations of chemical interactions between the components. We demonstrate the correlation between the β-relaxation and the activation of flow units for mechanical behaviors of the MG and show that the MG is model system for studying some controversial issues in glasses.

  7. The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits.

    PubMed

    Ziv, Naomi; Rotem, Tomer; Arnon, Zahi; Haimov, Iris

    2008-01-01

    A large percentage of older people suffer from chronic insomnia, affecting many aspects of life quality and well-being. Although insomnia is most often treated with medication, a growing number of studies demonstrate the efficiency of various relaxation techniques. The present study had three aims: first, to compare two relaxation techniques--music relaxation and progressive muscular relaxation--on various objective and subjective measures of sleep quality; second, to examine the effect of these techniques on anxiety and depression; and finally, to explore possible relationships between the efficiency of both techniques and personality variables. Fifteen older adults took part in the study. Following one week of base-line measurements of sleep quality, participants followed one week of music relaxation and one week of progressive muscular relaxation before going to sleep. Order of relaxation techniques was controlled. Results show music relaxation was more efficient in improving sleep. Sleep efficiency was higher after music relaxation than after progressive muscular relaxation. Moreover, anxiety was lower after music relaxation. Progressive muscular relaxation was related to deterioration of sleep quality on subjective measures. Beyond differences between the relaxation techniques, extraverts seemed to benefit more from both music and progressive muscular relaxation. The advantage of non-pharmacological means to treat insomnia, and the importance of taking individual differences into account are discussed.

  8. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    PubMed

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-01

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg. PMID:26049505

  9. [Effect of alcohol on vascular function].

    PubMed

    Kudo, Risa; Yuui, Katsuya; Kasuda, Shogo; Hatake, Katsuhiko

    2015-06-01

    Vascular function is regulated by a balance of vasoconstriction and vasorelaxation. Disorder in this balance due to alcohol consumption causes various clinical conditions. In this review, we discuss the effects of acute and chronic ethanol consumption on vascular responses, including vasoconstriction, endothelium-dependent vasorelaxation, and nerve-mediated vasorelaxation. Acute ethanol administration induces vasoconstriction in ethanol-naive animals in vitro. Furthermore, ethanol can both potentiate and suppress agonist-induced Ca(2+)-dependent vasoconstriction. Moreover, ethanol augments Ca(2+)-independent vasoconstriction by increasing Ca2+ sensitivity. Endothelium-dependent relaxation is mediated by the nitric oxide (NO) pathway and the endothelium-derived hyperpolarizing factor (EDHF) pathway. Acute ethanol treatment inhibits both NO- and EDHF-mediated relaxation. Furthermore, acute ethanol ingestion can also potentiate and suppress calcitonin gene-related peptide (CGRP)-induced nerve-mediated relaxation. These opposing effects may be due to differences in species or vascular beds. Thus, acute ethanol treatment decreases vasorelaxation, thereby shifting the contraction-relaxation balance towards contraction. Combined, these effects are one mechanism by which acute heavy alcohol consumption causes circulatory disturbances such as vasospasms or ischemic heart disease. In contrast, chronic low-dose ethanol has no effect on vasoconstriction, whereas chronic high-dose ethanol increases vasoconstriction. Additionally, chronic ethanol intake has diminished, unchanged, and even increased effects on nerve-mediated relaxation; therefore, conclusions on these effects are not possible at present. Interestingly, chronic low-dose ethanol administration enhanced endothelium-dependent relaxation; however, higher doses inhibited these responses. Therefore, regular or light-to-moderate alcohol intake increases vasorelaxation and may suppress elevated blood pressure, whereas

  10. Histochemical assessment of nitric oxide synthase activity in aortic endothelial cells of streptozotocin-induced diabetic rats.

    PubMed

    Shafiei, M; Nobakht, M; Fattahi, M; Kohneh-Shahri, L; Mahmoudian, M

    2003-12-01

    Impaired endothelium-dependent relaxation of blood vessels is a common feature in diabetes, but the exact underlying mechanisms have not yet been clarified. In present study, endothelium-dependent vasorelaxation of aortic rings were evaluated in vitro in streptozotocin (STZ)-induced diabetic and age-matched control rats. Moreover, nitric oxide synthase (NOS) activity of aortic endothelial cells was assessed in both diabetic and healthy rats using histochemical staining for nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The results showed a significant decrease of endothelium-dependent relaxation in response to acetylcholine (ACh) in diabetic rings, compared with controls, that was accompanied by a remarkable attenuation of NOS activity in diabetic sections of rat aorta stained for NADPH-diaphorase. Furthermore, a membrane disruption of some endothelial cells was also observed in all diabetic sections. It can be concluded that a decrease in NOS activity together with a disruption of endothelial cell membrane play a major role in endothelial dysfunction observed in diabetes.

  11. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations.

  12. Novel Roles for Kv7 Channels in Shaping Histamine-Induced Contractions and Bradykinin-Dependent Relaxations in Pig Coronary Arteries.

    PubMed

    Chen, Xingjuan; Li, Wennan; Hiett, S Christopher; Obukhov, Alexander G

    2016-01-01

    . We propose that in CAs, a decreased expression or a loss of function of Kv7 channels may lead to sustained histamine-induced contractions and reduced endothelium-dependent relaxation, both risk factors for coronary spasm.

  13. Response

    ERIC Educational Resources Information Center

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  14. Nonlinear effects in spin relaxation of cavity polaritons

    SciTech Connect

    Solnyshkov, D. D.; Shelykh, I. A. Glazov, M. M.; Malpuech, G.; Amand, T.; Renucci, P.; Marie, X.; Kavokin, A. V.

    2007-09-15

    We present the general kinetic formalism for the description of spin and energy relaxation of the cavity polaritons in the framework of the Born-Markov approximation. All essential mechanisms of polariton redistribution in reciprocal space together with the final state bosonic stimulation are taken into account from our point of view. The developed theory is applied to describe our experimental results on the polarization dynamics obtained in the polariton parametric amplifier geometry (pumping at the so-called magic angle). Under circular pumping, we show that the spin relaxation time is strongly dependent on the detuning between the exciton and cavity mode energies mainly because of the influence of the detuning on the coupling strength between the photon-like part of the exciton-polariton lower dispersion branch and the reservoir of uncoupled exciton states. In the negative detuning case we find a very long spin relaxation time of about 300 ps. In the case of excitation by a linearly polarized light, we have experimentally confirmed that the anisotropy of the polariton-polariton interaction is responsible for the build-up of the cross-linear polarization of the signal. In the spontaneous regime the polarization degree of the signal is -8% but it can reach -65% in the stimulated regime. The long-living linear polarization observed at zero detuning indicates that the reservoir is formed by excitons localized at the anisotropic islands oriented along the crystallographic axes. Finally, under elliptical pumping, we have directly measured in the time domain and modeled the effect of self-induced Larmor precession, i.e., the rotation of the linear polarization of a state about an effective magnetic field proportional to the projection of the total spin of exciton-polaritons in the cavity on its growth axis.

  15. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation.

    PubMed

    Rotz, Matthew W; Culver, Kayla S B; Parigi, Giacomo; MacRenaris, Keith W; Luchinat, Claudio; Odom, Teri W; Meade, Thomas J

    2015-03-24

    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)-DNA), followed by surface conjugation onto gold nanostars (DNA-Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM(-1) s(-1). Additionally, DNA-Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA-Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA-Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)-DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)-DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs.

  16. Stress Testing Recovery EMG for Evaluation of Biofeedback and Progressive Muscle Relaxation Training Effects.

    ERIC Educational Resources Information Center

    Sime, Wesley E.; DeGood, Douglas E.

    The purpose of this investigation was to assess biofeedback (BF) and progressive muscle relaxation (PMR) and placebo-control training by means of a post-training transfer test. The subjects for the research were 30 women. Initial tests consisted of measuring the electromyographic response of the frontalis muscle of the forehead to stress. After…

  17. Relax and Try This Instead: Abbreviated Habit Reversal for Maladaptive Self-Biting.

    ERIC Educational Resources Information Center

    Jones, Kevin M.; Swearer, Susan M.; Friman, Patrick C.

    1997-01-01

    A study evaluated the effectiveness of an abbreviated habit reversal procedure to reduce maladaptive oral self-biting in an adolescent boy in residential care. Treatment involved a combination of relaxation and two competing responses (gum chewing and tongue-lip rubbing). The intervention eliminated the biting and the tissue damage it caused.…

  18. Nonlinear visco-elastic relaxation of non-lithostatic pressure

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Dabrowski, Marcin

    2014-05-01

    We investigate the rate of viscoelastic relaxation of non-lithostatic pressure as a function of a number of model parameters. Nonlinearity and anisotropy of viscosity are under investigation. We also study to what limit the pressure is relaxing.

  19. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    SciTech Connect

    Soltis, E.E.; Field, F.P.

    1986-11-01

    The Na/sup +/-K/sup +/ pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive /sup 86/Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na/sup +/-K/sup +/ pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive /sup 86/Rb uptake was significantly greater at 3, 10, and 20 minutes of /sup 86/Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of /sup 86/Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive /sup 86/Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na/sup +/-K/sup +/ pump activity in vascular smooth muscle from DOCA-salt hypertensive rats.

  20. Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck

    PubMed Central

    Hernández, M; Barahona, M V; Recio, P; Benedito, S; Martínez, A C; Rivera, L; García-Sacristán, A; Prieto, D; Orensanz, L M

    2006-01-01

    Background and purpose: As pituitary adenylate cyclase-activating polypeptide 38 (PACAP 38)- and vasoactive intestinal peptide (VIP) are widely distributed in the urinary tract, the current study investigated the receptors and mechanisms involved in relaxations induced by these peptides in the pig bladder neck. Experimental approach: Urothelium-denuded strips were suspended in organ baths for isometric force recordings and the relaxations to VIP and PACAP analogues were investigated. Key results: VIP, PACAP 38, PACAP 27 and [Ala11,22,28]-VIP produced similar relaxations. Inhibition of neuronal voltage-gated Ca2+ channels reduced relaxations to PACAP 38 and increased those induced by VIP. Blockade of capsaicin-sensitive primary afferents (CSPA), nitric oxide (NO)-synthase or guanylate cyclase reduced the PACAP 38 relaxations but failed to modify the VIP responses. Inhibition of VIP/PACAP receptors and of voltage-gated K+ channels reduced PACAP 38 and VIP relaxations, which were not modified by the K+ channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The phosphodiesterase 4 inhibitor rolipram and the adenylate cyclase activator forskolin produced potent relaxations. Blockade of protein kinase A (PKA) reduced PACAP 38- and VIP-induced relaxations. Conclusions and implications: PACAP 38 and VIP relax the pig urinary bladder neck through muscle VPAC2 receptors linked to the cAMP-PKA pathway and involve activation of voltage-gated K+ channels. Facilitatory PAC1 receptors located at CSPA and coupled to NO release, and inhibitory VPAC receptors at motor endings are also involved in the relaxations to PACAP 38 and VIP, respectively. VIP/PACAP receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency. PMID:16847435

  1. Protease-activated receptor-1 (PAR1) and PAR2 but not PAR4 mediate relaxations in lower esophageal sphincter.

    PubMed

    Huang, Shih-Che

    2007-07-01

    Protease-activated receptor-1 (PAR1), PAR2 and PAR4 activation can alter the gastrointestinal motility. To investigate effects mediated by PARs in the lower esophageal sphincter, we measured contraction or relaxation of transverse strips from the guinea-pig lower esophageal sphincter caused by PAR1 (TFLLR-NH2 and SFLLRN-NH2), PAR2 (SLIGKV-NH2 and SLIGRL-NH2) and PAR4 peptide agonists (GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2) as well as PAR protease activators (thrombin and trypsin). In resting lower esophageal sphincter strips, TFLLR-NH2 and SFLLRN-NH2 caused moderate concentration-dependent relaxation whereas thrombin did not cause any relaxation or contraction. Furthermore, in carbachol-contracted strips, TFLLR-NH2 and SFLLRN-NH2 caused marked whereas thrombin caused mild concentration-dependent relaxation. These indicate the existence of PAR1 mediating relaxation. Similarly, in resting lower esophageal sphincter strips,