Datyner, M. E.; Gage, P. W.
1973-01-01
1. Crude venom (TSV) from the Australian tiger snake (Notechis scutatus scutatus) has both presynaptic and postsynaptic effects at the neuromuscular junctions of toads. 2. TSV (50 μg/ml) rapidly blocked indirectly elicited muscle twitches without affecting the compound action potential in the sciatic nerve or twitches elicited by direct stimulation. 3. Low concentrations of the venom (1-10 μg/ml) reduced the amplitude of miniature endplate potentials (m.e.p.ps) and inhibited the depolarization of muscle fibres normally caused by carbachol. It was concluded that a fraction of the venom binds to acetylcholine receptors. 4. The frequency of m.e.p.ps was at first increased by TSV at a concentration of 1 μg/ml. Occasional, high frequency `bursts' of m.e.p.ps were recorded in some preparations. The mean frequency of m.e.p.ps appeared to fall after several hours in the venom. 5. The quantal content of endplate potentials (e.p.ps) was reduced by the venom. With low concentrations (1 μg/ml), an initial increase in quantal content was often seen. When the quantal content was markedly depressed there was no parallel reduction in the amplitude of nerve terminal spikes recorded extracellularly, though a later fall in size and slowing of time course was often seen. 6. There was evidence that TSV eventually changed the normal Poisson characteristics of the spontaneous release of quanta and this may be correlated with electronmicroscopic changes in nerve terminals. 7. Tiger snake antivenene counteracted the postsynaptic, but not the presynaptic effects of TSV when they had developed. PMID:4367126
Effect of oxygen at high pressure on spontaneous transmitter release.
Colton, J S; Colton, C A
1978-11-01
The effect of oxygen at high pressure (OHP) on resting membrane properties (effective membrane resistance (Reff) and membrane potential (Vm)) and the spontaneous release of excitatory transmitter were examined at the lobster neuromuscular junction. Pressurization with 100% oxygen to 150 pounds per square inch gauge pressure (psig) or with nitrogen to 150 psig (7,000 mmHg nitrogen and 135 mmHg oxygen) produced a decrease in Reff associated with a hyperpolarization of Vm. These changes, however, returned to control values within 20--30 min after completion of pressurization. Spontaneous release of excitatory transmitter was shown to increase dramatically in the presence of 100% oxygen at 150 psig. The increase in miniature end-plate potential (MEPP) frequency persisted beyond the transient changes seen with Reff and Vm. This effect was selective to oxygen, as pressurization with nitrogen did not produce an increase in MEPP frequency. No change in average MEPP amplitude was seen with either OHP or pressure alone. An OHP-induced increase in MEPP frequency was also seen at the frog neuromuscular junction. The results indicate that both glutamate-mediated and acetylcholine-mediated synaptic transmission are altered by OHP.
2011-01-01
in the number of quanta released per impulse or a reduction in the desensitization rate of AChRs, which are potentially adaptive, do not seem to occur... potential , Medical chemical defense 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...must adapt to allow for survival of the organism in the absence of AChE. Nerve-elicited muscle contractions, miniature endplate potentials (MEPPs) and
Protection of human muscle acetylcholinesterase from soman by pyridostigmine bromide.
Maselli, Ricardo A; Henderson, John D; Ng, Jarae; Follette, David; Graves, Gregory; Wilson, Barry W
2011-04-01
Pretreatment with pyridostigmine bromide (PB) of human intercostal muscle fibers exposed to the irreversible acetylcholinesterase (AChE) inhibitor soman was investigated. Muscles were pretreated with 3 × 10(-6) M PB or saline for 20 minutes, then exposed to 10(-7) M soman for 10 minutes. AChE of muscles treated with soman alone was inhibited >95%. In contrast, PB pretreatment of soman-exposed bundles protected 20% of AChE activity. AChE of bundles exposed to PB alone recovered after 4 hours, but bundles exposed to both PB and soman did not. Soman-induced reduction of resting membrane potentials and increment of amplitudes and decay times of miniature endplate potentials (MEPPs) were partially corrected by PB pretreatment. In vitro pretreatment of human muscles with PB protected up to 20% of muscle AChE and ameliorated some deleterious effects on endplate physiology induced by soman. Copyright © 2011 Wiley Periodicals, Inc.
Valadão, Priscila Aparecida Costa; Naves, Lígia Araújo; Gomez, Renato Santiago; Guatimosim, Cristina
2013-11-01
Etomidate is an intravenous anesthetic used during anesthesia induction. This agent induces spontaneous movements, especially myoclonus after its administration suggesting a putative primary effect at the central nervous system or the periphery. Therefore, the aim of this study was to investigate the presynaptic and postsynaptic effects of etomidate at the mouse neuromuscular junction (NMJ). Diaphragm nerve muscle preparations were isolated and stained with the styryl dye FM1-43, a fluorescent tool that tracks synaptic vesicles exo-endocytosis that are key steps for neurotransmission. We observed that etomidate induced synaptic vesicle exocytosis in a dose-dependent fashion, an effect that was independent of voltage-gated Na(+) channels. By contrast, etomidate-evoked exocytosis was dependent on extracellular Ca(2+) because its effect was abolished in Ca(2+)-free medium and also inhibited by omega-Agatoxin IVA (30 and 200nM) suggesting the participation of P/Q-subtype Ca(2+) channels. Interestingly, even though etomidate induced synaptic vesicle exocytosis, we did not observe any significant difference in the frequency and amplitude of miniature end-plate potentials (MEPPs) in the presence of the anesthetic. We therefore investigated whether etomidate could act on nicotinic acetylcholine receptors labeled with α-bungarotoxin-Alexa 594 and we observed less fluorescence in preparations exposed to the anesthetic. In conclusion, our results suggest that etomidate exerts a presynaptic effect at the NMJ inducing synaptic vesicle exocytosis, likely through the activation of P-subtype voltage gated Ca(2+) channels without interfering with MEPPs frequency. The present data contribute to a better understanding about the effect of etomidate at the neuromuscular synapse and may help to explain some clinical effects of this agent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Melaré, Rodolfo; Floriano, Rafael Stuani; Gracia, Marta; Rodrigues-Simioni, Léa; Cruz-Höfling, Maria Alice da; Rocha, Thalita
2016-11-01
Bites by Bothrops snakes normally induce local pain, haemorrhage, oedema and myonecrosis. Mammalian isolated nerve-muscle preparations exposed to Bothrops venoms and their phospholipase A 2 toxins (PLA 2 ) can exhibit a neurotoxic pattern as increase in frequency of miniature end-plate potentials (MEPPs) as well as in amplitude of end-plate potentials (EPPs); neuromuscular facilitation followed by complete and irreversible blockade without morphological evidence for muscle damage. In this work, we analysed the ultrastructural damage induced by Bothrops jararacussu and Bothrops bilineatus venoms and their PLA 2 toxins (BthTX-I and Bbil-TX) in mouse isolated nerve-phrenic diaphragm preparations (PND). Under transmission electron microscopy (TEM), PND preparations previously exposed to B. jararacussu and B. bilineatus venoms and BthTX-I and Bbil-TX toxins showed hypercontracted and loosed myofilaments; unorganized sarcomeres; clusters of edematous sarcoplasmic reticulum and mitochondria; abnormal chromatin distribution or apoptotic-like nuclei. The principal affected organelles, mitochondria and sarcoplasmic reticulum, were those related to calcium buffering and, resulting in sarcomeres and myofilaments hypercontraction. Schwann cells were also damaged showing edematous axons and mitochondria as well as myelin sheath alteration. These ultrastructural changes caused by both of Bothrops venoms and toxins indicate that the neuromuscular blockade induced by them in vitro can also be associated with nerve and muscle degeneration. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi
APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials,more » recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.« less
The effect of anions on bound acetylcholine in frog sartorius muscle.
Ceccarelli, B; Molenaar, P C; Oen, B S; Polak, R L; Torri-Tarelli, F; van Kempen, G T
1989-01-01
1. Frog sartorius muscles were treated with an irreversible cholinesterase inhibitor and then incubated in isotonic potassium propionate solution (isotonic KPr). Total and bound, presumably vesicular, acetylcholine (ACh) in the tissue and ACh in the medium were assayed by mass fragmentography, miniature end-plate potentials (MEPPs) were recorded and the end-plates were investigated by electron microscopy. 2. Incubation in isotonic KPr for 30 min stimulated ACh release and concomitantly decreased total and bound ACh. Nerve stimulation for 30 min by trains of impulses (0.1 s trains of 100 Hz, 1 train s-1) in normal-potassium propionate-containing solution had the same effects. 3. When the tissue was incubated in normal-K+ Ringer solution for 3 h, following chemical or electric stimulation, bound ACh recovered to about 75% of the initial value, provided that Cl- ions were present in the medium. In the presence of propionate instead of Cl- ions almost no recovery of bound ACh took place. There was also recovery of bound ACh in the presence of either NO3- or gluconate ions. In NO3- it was the same as in Cl-, but in gluconate it was less than found in Cl- -containing medium. 4. Recovery of total ACh, in contrast to bound ACh, took place even in the presence of propionate ions, showing that extracellular Cl- is not required for the synthesis of ACh. 5. In terminals recovered in normal Ringer solution, many synaptic vesicles were found, but terminals 'recovered' in propionate solution were depleted of vesicles. 6. From these and other results it is concluded that the recycling of synaptic vesicles normally requires the presence of extracellular chloride. Images Fig. 1 Fig. 2 PMID:2789283
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-01-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population. PMID:7473230
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-08-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population.
Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep
2013-07-01
Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Action of Micrurus dumerilii carinicauda coral snake venom on the mammalian neuromuscular junction.
Serafim, Francine G; Reali, Marielga; Cruz-Höfling, Maria Alice; Fontana, Marcos D
2002-02-01
The venoms of coral snakes (mainly Micrurus species) have pre- and/or postsynaptic actions, but only a few of these have been studied in detail. We have investigated the effects of Micrurus dumerilii carinicauda coral snake venom on neurotransmission in rat isolated phrenic nerve-diaphragm muscle and chick biventer cervicis preparations stimulated directly or indirectly. M. d. carinicauda venom (5 or 10 microg/ml) produced neuromuscular blockade in rat (85-90% in 291.8+/-7.3 min and 108.3+/-13.8, respectively; n=5) and avian (95.0+/-2.0 min; 5 microg/ml, n=5) preparations. Neostigmine (5.8 microM) and 3,4-diaminopyridine (230 microM) partially reversed the venom-induced neuromuscular blockade in rat nerve-muscle preparations. In neither preparation did the venom depress the twitch response elicited by direct muscle stimulation. The contractures induced by acetylcholine in chick preparations were inhibited by the venom (95-100%; n=4; p<0.05). In rat preparations, the venom produced a progressive decrease in the amplitude of miniature end-plate potentials (m.e.p.ps control frequency=69.3+/-5.0/min and control amplitude=0.4+/-0.2 mV) until these were abolished. Neostigmine (5.8 microM) and 3,4-diaminopyridine (230 microM) partially antagonized this blockade of m.e.p.ps. The resting membrane potential was not altered with the venom (10 microg/ml). M. d. carinicauda venom produced dose-dependent morphological changes in indirectly stimulated mammal preparations. Twenty-five per cent of muscle fibers were affected by a venom concentration of 5 microg/ml, whilst 60.7% were damaged by 10 microg of venom/ml. In biventer cervicis preparations, the morphological changes were slower in onset and were generally characterized by undulating fibers and, to a lesser extent, by zones of disintegrating myofibrils. A venom concentration of 5 microg/ml damaged 52.2% of the fibers. These findings indicate that M. d. carinicauda venom has neurotoxic and myotoxic effects and that the neuromuscular blockade involves mainly a postsynaptic action.
Meunier, Frédéric A; Mercado, José A; Molgó, Jordi; Tosteson, Thomas R; Escalona de Motta, Gladys
1997-01-01
The actions of a chromatographically identified extract of the marine dinoflagellate Ostreopsis lenticularis, named ostreotoxin-3 (OTX-3), were studied on frog isolated neuromuscular preparations. OTX-3 (1–10 μg ml−1) applied to cutaneous pectoris nerve-muscle preparations depolarized skeletal muscle fibres and caused spontaneous contractions. The depolarization was neither reversed by prolonged washing nor by (+)-tubocurarine. OTX-3 decreased the amplitude of miniature end plate potentials (m.e.p.ps) but did not affect their frequency. Extracellular recording of compound action potentials revealed that OTX-3 affected neither excitability nor conduction along intramuscular nerve branches. End-plate potentials (e.p.ps) elicited by nerve stimulation were reduced in amplitude by OTX-3 and even showed reversed polarity in junctions deeply depolarized by the toxin. Membrane depolarization induced by OTX-3 was decreased about 70% in muscles pretreated for 30 min with 10 μM tetrodotoxin. In contrast, muscles pretreated with 5 μM μ-conotoxin GIIIA were completely insensitive to OTX-3-induced depolarization. OTX-3 did not affect e.p.p. amplitude and the quantal content of e.p.ps in junctions in which muscle depolarization was abolished by μ-conotoxin GIIIA. OTX-3 is a novel type of sodium-channel activating toxin that discriminates between nerve and skeletal muscle membranes. PMID:9249261
Sugita, Satoshi; Fleming, Leland L; Wood, Caleb; Vaughan, Sydney K; Gomes, Matheus P S M; Camargo, Wallace; Naves, Ligia A; Prado, Vania F; Prado, Marco A M; Guatimosim, Cristina; Valdez, Gregorio
2016-01-01
Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age- and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). Chat-ChR2-EYFP (VAChT Hyp ) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1 G93A ), and Chat-IRES-Cre and tdTomato transgenic mice were used in this study. NMJs, muscle fibers, and α-motor neurons' somata and their axons were examined using a light microscope. Transcripts for select genes in muscles and spinal cords were assessed using real-time quantitative PCR. Motor function tests were carried out using an inverted wire mesh and a rotarod. Electrophysiological recordings were collected to examine miniature endplate potentials (MEPP) in muscles. We show that VAChT is elevated in the spinal cord and at NMJs of VAChT Hyp mice. We also show that the amplitude of MEPPs is significantly higher in VAChT Hyp muscles, indicating that more ACh is loaded into synaptic vesicles and released into the synaptic cleft at NMJs of VAChT Hyp mice compared to control mice. While the development of NMJs was not affected in VAChT Hyp mice, NMJs prematurely acquired age-related structural alterations in adult VAChT Hyp mice. These structural changes at NMJs were accompanied by motor deficits in VAChT Hyp mice. However, cellular features of muscle fibers and levels of molecules with critical functions at the NMJ and in muscle fibers were largely unchanged in VAChT Hyp mice. In the SOD1 G93A mouse model for ALS, increasing synaptic ACh accelerated degeneration of NMJs caused motor deficits and resulted in premature death specifically in male mice. The data presented in this manuscript demonstrate that increasing levels of ACh at the synaptic cleft promote degeneration of adult NMJs, contributing to age- and disease-related motor deficits. We thus propose that maintaining normal cholinergic signaling in muscles will slow degeneration of NMJs and attenuate loss of motor function caused by aging and neuromuscular diseases.
Endogenous purines modulate K+ -evoked ACh secretion at the mouse neuromuscular junction.
Guarracino, Juan F; Cinalli, Alejandro R; Veggetti, Mariela I; Losavio, Adriana S
2018-06-01
At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y 13 and A 1 , A 2A , and A 3 receptors, respectively. To elucidate the action of endogenous purines on K + -dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K + , the P2Y 13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A 1 , A 3 , and A 2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K + -evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K + , endogenous ATP/ADP and adenosine bind to inhibitory P2Y 13 and A 1 and A 3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5'-nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K + , suggesting that more adenosine is needed to activate excitatory A 2A receptors. At high K + concentration, the equilibrative transporters appear to be saturated allowing the accumulation of adenosine in the synaptic cleft. In conclusion, when motor nerve terminals are depolarized by increasing K + concentrations, the ATP/ADP and adenosine endogenously generated are able to modulate ACh secretion by sequential activation of different purinergic receptors. © 2018 Wiley Periodicals, Inc.
Presynaptic pH and vesicle fusion in Drosophila larvae neurones.
Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J
2013-11-01
Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.
Tanaka, T; Nakabayashi, N; Masuhara, E
1978-07-01
The whitish translucent shade of a thermosetting resin cured from a mixture of a 2,2-Bis (p-methacryloxy (ethoxy)1-2 phenyl)-propane monomer and PMMA pearls makes it difficult to reconstruct a shade of the natural tooth. The attempt to improve the transparency of the mixed polymer was made in this study. Varying the molecular weight of BisMEPP monomer, PMMA polymer and curing temperature, cured specimens were prepared and their transparency was measured with a spectrophotometer. The results obtained are as follows. 1) In any molecular weight of PMMA, BisMEPP with 2.3 to 3.3 average number of ethylene oxide linkage showed the highest transpalency on the specimen. 2) With increasing the curing temperature, transpalency of the specimens made from BisME4.0 PP increased. With another molecular of BisMEPP, transpalency of the cured specimens showed the highest transpalency at the curing temperature of 120 degrees C. 3) With increasing the molecular weight of PMMA, the transpalency increased.
The effect of papaine on the time course of the end-plate current.
Humar, M; Kordas, M; Melik, Z
1980-07-01
Papaine is known to detach cholinesterases from the synaptic cleft. It could be expected that this would result in an increase of the amplitude and half-time of the end-plate current. Thus, the effect of papaine on the end-plate current. Thus, the effect of papaine on the end-plate current should be similar to the effect of anticholinesterase methanesulfonylfluoride. The end-plate current was recorded in frog skeletal muscle at various levels of membrane potential, before and after papaine was added to the bath. The effect of papaine was an increase of the half-time of the end-plate current, similarly as after treatment of the muscle by methanesulfonylfluoride. It seems that both papaine and methanesulfonylfluoride have a similar mechanism of action. In either experimental condition hydrolysis of transmitter is decreased or abolished, which results in an increase of the half-time of the end-plate current.
Cao, Yong; Liao, Shenghui; Zeng, Hao; Ni, Shuangfei; Tintani, Francis; Hao, Yongqiang; Wang, Lei; Wu, Tianding; Lu, Hongbin; Duan, Chunyue; Hu, Jianzhong
2017-01-01
A better understanding of functional changes in the intervertebral disc (IVD) and interaction with endplate is essential to elucidate the pathogenesis of IVD degeneration disease (IDDD). To date, the simultaneous depiction of 3D micro-architectural changes of endplate with aging and interaction with IVD remains a technical challenge. We aim to characterize the 3D morphology changes of endplate and IVD during aging using PPCST. The lumbar vertebral level 4/5 IVDs harvested from 15-day-, 4- and 24-month-old mice were initially evaluated by PPCST with histological sections subsequently analyzed to confirm the imaging efficiency. Quantitative assessments of age-related trends after aging, including mean diameter, volume fraction and connectivity of the canals, and endplate porosity and thickness, reached a peak at 4 months and significantly decreased at 24 months. The IVD volume consistently exhibited same trend of variation with the endplate after aging. In this study, PPCST simultaneously provided comprehensive details of 3D morphological changes of the IVD and canal network in the endplate and the interaction after aging. The results suggest that PPCST has the potential to provide a new platform for attaining a deeper insight into the pathogenesis of IDDD, providing potential therapeutic targets. PMID:28266560
Effects of dithiothreitol on end-plate currents.
Terrar, D A
1978-01-01
1. End-plate currents have been studied in frog cutaneus pectoris nerve-muscle preparations mounted in continuously flowing solution, using the voltage clamp technique. 2. Exposure of the muscle to 1 mM-dithiothreitol reduced the amplitude of end-plate currents by a factor of 2.7 (mean; range 1.6-3.4; twelve fibres). 3. 1 mM-dithiothreitol also caused a 2.7-fold (2.3-3.1) increase in the rate of decay, and a 1.4-fold (1.3-1.6) decrease in the time to peak of end-plate currents. During the onset of action of dithiothreitol, there was little or no indication of departure of end-plate current decay from a simple exponential. 4. Dithiothreitol actions on amplitude and decay of end-plate currents developed with similar time courses and both effects were slower in onset at pH 7.2 than at pH 8.5. 5. The actions of dithiothreitol were reversed by exposure of the muscle to 1 mM-5,5'-dithio-bis-(2-nitrobenzoic acid). 6. Following dithiothreitol treatment, the rates of decay of end-plate currents continued to depend on membrane potential; there was little or no change in the slope of the relation between in (rate of decay) and membrane potential, consistent with little or no change in the dipole moment of a gating molecule for ion channels. 7. Dithiothreitol changed the relation between peak end-plate current and membrane potential, so that peak conductance increased at more negative membrane potentials; this finding could be accounted for in terms of the closure of ion-channel gates becoming faster though remaining voltage-sensitive after exposure to dithiothreitol. 8. It is concluded that dithiothreitol causes changes in the kinetics of gating of ion channels associated with receptors and that these changes accompany changes in the binding of ACh to receptors. PMID:25960
NASA Technical Reports Server (NTRS)
Chen, B. M.; Grinnell, A. D.
1997-01-01
Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.
How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History
NASA Astrophysics Data System (ADS)
Chapman, E. J.; Childers, D. L.; Vallino, J. J.
2014-12-01
Throughout the history of ecosystem ecology many attempts have been made to develop a general principle governing how systems develop and organize. We reviewed the historical developments that led to conceptualization of several goal-oriented principles in ecosystem ecology and the relationships among them. We focused our review on two prominent principles—the Maximum Power Principle and the Maximum Entropy Production Principle—and the literature that applies to both. While these principles have considerable conceptual overlap and both use concepts in physics (power and entropy), we found considerable differences in their historical development, the disciplines that apply these principles, and their adoption in the literature. We reviewed the literature using Web of Science keyword searches for the MPP, the MEPP, as well as for papers that cited pioneers in the MPP and the MEPP development. From the 6000 papers that our keyword searches returned, we limited our further meta-analysis to 32 papers by focusing on studies with a foundation in ecosystems research. Despite these seemingly disparate pasts, we concluded that the conceptual approaches of these two principles were more similar than dissimilar and that maximization of power in ecosystems occurs with maximum entropy production. We also found that these two principles have great potential to explain how systems develop, organize, and function, but there are no widely agreed upon theoretical derivations for the MEPP or the MPP, possibly hindering their broader use in ecological research. We end with recommendations for how ecosystems-level studies may better use these principles.
Simulation of miniature endplate potentials in neuromuscular junctions by using a cellular automaton
NASA Astrophysics Data System (ADS)
Avella, Oscar Javier; Muñoz, José Daniel; Fayad, Ramón
2008-01-01
Miniature endplate potentials are recorded in the neuromuscular junction when the acetylcholine contents of one or a few synaptic vesicles are spontaneously released into the synaptic cleft. Since their discovery by Fatt and Katz in 1952, they have been among the paradigms in neuroscience. Those potentials are usually simulated by means of numerical approaches, such as Brownian dynamics, finite differences and finite element methods. Hereby we propose that diffusion cellular automata can be a useful alternative for investigating them. To illustrate this point, we simulate a miniature endplate potential by using experimental parameters. Our model reproduces the potential shape, amplitude and time course. Since our automaton is able to track the history and interactions of each single particle, it is very easy to introduce non-linear effects with little computational effort. This makes cellular automata excellent candidates for simulating biological reaction-diffusion processes, where no other external forces are involved.
Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A
2011-04-01
We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.
Gillingwater, Thomas H; Thomson, Derek; Mack, Till G A; Soffin, Ellen M; Mattison, Richard J; Coleman, Michael P; Ribchester, Richard R
2002-01-01
Axons in WldS mutant mice are protected from Wallerian degeneration by overexpression of a chimeric Ube4b/Nmnat (Wld) gene. Expression of Wld protein was independent of age in these mice. However we identified two distinct neuromuscular synaptic responses to axotomy. In young adult Wlds mice, axotomy induced progressive, asynchronous synapse withdrawal from motor endplates, strongly resembling neonatal synapse elimination. Thus, five days after axotomy, 50–90 % of endplates were still partially or fully occupied and expressed endplate potentials (EPPs). By 10 days, fewer than 20 % of endplates still showed evidence of synaptic activity. Recordings from partially occupied junctions indicated a progressive decrease in quantal content in inverse proportion to endplate occupancy. In Wlds mice aged > 7 months, axons were still protected from axotomy but synapses degenerated rapidly, in wild-type fashion: within three days less than 5 % of endplates contained vestiges of nerve terminals. The axotomy-induced synaptic withdrawal phenotype decayed with a time constant of ∼30 days. Regenerated synapses in mature Wlds mice recapitulated the juvenile phenotype. Within 4–6 days of axotomy 30–50 % of regenerated nerve terminals still occupied motor endplates. Age-dependent synapse withdrawal was also seen in transgenic mice expressing the Wld gene. Co-expression of Wld protein and cyan fluorescent protein (CFP) in axons and neuromuscular synapses did not interfere with the protection from axotomy conferred by the Wld gene. Thus, Wld expression unmasks age-dependent, compartmentally organised programmes of synapse withdrawal and degeneration. PMID:12231635
Shape memory alloy-based moment connections with superior self-centering properties
NASA Astrophysics Data System (ADS)
Farmani, Mohammad Amin; Ghassemieh, Mehdi
2016-07-01
Superelastic shape memory alloys (SMAs) have the potential to create a spontaneous recentering mechanism on the connections of a structural system under seismic actions, which results in mitigation of the damage in the main structural members. In this article, innovative types of steel beam-to-column moment connections incorporating SMA bolts and plates are introduced and studied through a numerical approach. First, SMA bolted end-plate connection model is produced and analyzed by means of the finite element method to validate the numerical analysis against the prior experimental results. Then, the performance of eleven different end-plate moment connection models subjected to cyclic loading is investigated. By selecting the lower values for the moment capacity based on bolts strength in comparison to the flexural resistance of the beam, the plastic hinge is transferred from the beam section to the beam-column interface. Hence, employing superelastic materials at the connection interface could be potentially effective in providing the desired self-centering effect in the connection. To this end, the impact of utilizing superelastic SMA bolts and end-plates instead of using the conventional structural steel on the overall cyclic response of the connections is evaluated in this study. Results show that extended end-plate connections equipped with SMA bolts and end-plates, if properly proportioned and detailed, not only exhibit a clear reduction in the residual drifts after a seismic event, but also can meet the ductility requirements with good energy dissipation and sufficient stiffness.
Transition from moving to stationary double layers in a single-ended Q machine
NASA Technical Reports Server (NTRS)
Song, Bin; Merlino, R. L.; D'Angelo, N.
1990-01-01
Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.
The permeability of the endplate channel to organic cations in frog muscle
1980-01-01
The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes were measured as the NaCl of the bathing medium was replaced by salts of organic cations, and permeability ratios relative to Na+ ions were calculated from the Goldman-Hodgkin-Katz equation. 40 small monovalent organic cations had permeability ratios larger than 0.1. The most permeant including NH4+, hydroxylamine, hydrazine, methylamine, guanidine, and several relatives of guanidine had permeability ratios in the range 1.3--2.0. However, even cations such as imidazole, choline, tris(hydroxymethyl)aminomethane, triethylamine, and glycine methylester were appreciably permeant with permeability ratios of 0.13--0.95. Four compounds with two charged nitrogen groups were also permeant. Molecular models of the permeant ions suggest that the smallest cross-section of the open pore must be at least as large as a square, 6.5 A x 6.5 A. Specific chemical factors seem to be less important than access or friction in determining the ionic selectivity of the endplate channel. PMID:6247422
Sagittal endplate morphology of the lower lumbar spine.
Lakshmanan, Palaniappan; Purushothaman, Balaji; Dvorak, Vlasta; Schratt, Walter; Thambiraj, Sathya; Boszczyk, Maximilian
2012-05-01
The sagittal profile of lumbar endplates is discrepant from current simplified disc replacement and fusion device design. Endplate concavity is symmetrical in the coronal plane but shows considerable variability in the sagittal plane, which may lead to implant-endplate mismatch. The aim of this investigation is to provide further analysis of the sagittal endplate morphology of the mid to lower lumbar spine study (L3–S1), thereby identifying the presence of common endplate shape patterns across these levels and providing morphological reference values complementing the findings of previous studies. Observational study. A total of 174 magnetic resonance imaging (MRI) scans of the adult lumbar spine from the digital archive of our centre, which met the inclusion criteria, were studied. Superior (SEP) and inferior (IEP) endplate shape was divided into flat (no concavity), oblong (homogeneous concavity) and ex-centric (inhomogeneous concavity). The concavity depth (ECD) and location of concavity apex (ECA) relative to endplate diameter of the vertebrae L3–S1 were determined. Flat endplates were only predominant at the sacrum SEP (84.5%). The L5 SEP was flat in 24.7% and all other endplates in less than 10%. The majority of endplates were concave with a clear trend of endplate shape becoming more ex-centric from L3 IEP (56.9% oblong vs. 37.4% ex-centric) to L5 IEP (4% oblong vs. 94.3% ex-centric). Ex-centric ECA were always found in the posterior half of the lumbar endplates. Both the oblong and ex-centric ECD was 2-3 mm on average with the IEP of a motion segment regularly possessing the greater depth. A sex- or age-related difference could not be found. The majority of lumbar endplates are concave, while the majority of sacral endplates are flat. An oblong and an ex-centric endplate shape can be distinguished, whereby the latter is more common at the lower lumbar levels. The apex of the concavity of ex-centric discs is located in the posterior half of the endplate and the concavity of the inferior endplate is deeper than that of the superior endplate. Based on the above, the current TDR and ALIF implant design does not sufficiently match the morphology of lumbar endplates in the sagittal plane.
The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction.
Ceccarelli, B; Fesce, R; Grohovaz, F; Haimann, C
1988-01-01
1. Electrophysiology and morphology have been combined to investigate the time course of the exocytosis of quanta of neurotransmitter induced by elevated concentrations of K+ at the frog neuromuscular junction. 2. Replicas of freeze-fractured resting nerve terminals fixed in the presence of 20 mM-K+ showed images of fusion of synaptic vesicles with the presynaptic axolemma which were closely associated with the active zones. After 1 min in 20 nM-K+ fusions appeared also outside the active zones, and by 5 min they became uniformly distributed over the presynaptic membrane. 3. The average total density of fusions was not significantly different at the various times examined since it decreased at the active zones while it increased over the rest of the membrane. 4. Resting terminals fixed in 20 mM-K+ released 33,000-45,000 quanta after the addition of fixative; terminals stimulated by 20 mM-K+ for 1-5 min released 50,000-100,000 quanta during fixation. The fixative potentiated K+-induced transmitter release. 5. Fusions were uniformly distributed in terminals pre-incubated for 5 min in 20 mM-K+ without added Ca2+, stimulated by adding Ca2+ for 30 s, and then fixed. Conversely, after 5 min stimulation in hypertonic Ringer solution fusions remained predominantly located near the active zones. A similar distribution was observed after 15 min stimulation by a lower concentration of K+ (15 mM). 6. At all concentrations of K+ tested (10, 15, 20, 25 mM) miniature end-plate potential (MEPP) rate attained a steady-state value within 10-15 min. Values from a single junction were generally lower at higher concentrations of K+, which indicates partial inactivation of the secretion-recycling process. 7. The data indicate that K+ initially activates exocytosis at the active zones. Subsequently, ectopic exocytosis is activated while sites at the active zones appear to undergo partial inactivation. These phenomena are not related to the intensity or to the amount of previous secretion. Images Fig. 1 Fig. 2 Fig. 3 Fig. 8 Fig. 10 PMID:2902217
NASA Astrophysics Data System (ADS)
Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo
2012-12-01
We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.
In vitro comparison of endplate preparation between four mini-open interbody fusion approaches.
Tatsumi, Robert; Lee, Yu-Po; Khajavi, Kaveh; Taylor, William; Chen, Foster; Bae, Hyun
2015-04-01
Discectomy and endplate preparation are important steps in interbody fusion for ensuring sufficient arthrodesis. While modern less-invasive approaches for lumbar interbody fusion have gained in popularity, concerns exist regarding their ability to allow for adequate disc space and endplate preparation. Thus, the purpose of this study was to quantitatively and qualitatively evaluate and compare disc space and endplate preparation achieved with four less-invasive approaches for lumbar interbody fusion in cadaveric spines. A total of 24 disc spaces (48 endplates) from L2 to L5 were prepared in eight cadaveric torsos using mini-open anterior lumbar interbody fusion (mini-ALIF), minimally invasive posterior lumbar interbody fusion (MAS PLIF), minimally invasive transforaminal lumbar interbody fusion (MAS TLIF) or minimally invasive lateral, transpsoas interbody fusion (XLIF) on two specimens each, for a total of six levels and 12 endplates prepared per procedure type. Following complete discectomy and endplate preparation, spines were excised and split axially at the interbody disc spaces. Endplates were digitally photographed and evaluated using image analysis software. Area of endplate preparation was measured and qualitative evaluation was also performed to grade the quality of preparation. The XLIF approach resulted in the greatest relative area of endplate preparation (58.3 %) while mini-ALIF resulted in the lowest at 35.0 %. Overall, there were no differences in percentage of preparation between cranial and caudal endplates, though this was significantly different in the XLIF group (65 vs 52 %, respectively). ALL damage was observed in 3 MAS TLIF levels. Percentage of endplate that was deemed to have complete disc removal was highest in XLIF group with 90 % compared to 65 % in MAS TLIF group, 43 % in MAS PLIF, and 40 % in mini-ALIF group. Endplate damage area was highest in the MAS TLIF group at 48 % and lowest in XLIF group at 4 %. These results demonstrate that adequate endplate preparation for interbody fusion can be achieved utilizing various minimally invasive approach techniques (mini-ALIF, MAS TLIF, MAS PLIF, XLIF), however, XLIF appears to provide a greater area of and more complete endplate preparation.
Youssef, J A; McKinley, T O; Yerby, S A; McLain, R F
1999-06-01
A bending analysis of pedicle screws inserted into vertebral body analogues. Intravertebral and intrapedicular pedicle screw bending moments were studied as a function of sagittal insertion angle. To determine how the pedicle screw bending moment is affected by changes in the insertion angle. There is a significant incidence of failure when pedicle screws are used to instrument unstable spinal segments. Extrinsic factors that affect screw bending failure have been poorly characterized. Previous work has demonstrated that intrapedicular pedicle screw bending moments are significantly affected by the sagittal location and depth of pedicle screw placement. Pedicle screw transducers were inserted in analogue vertebrae at one of three orientations: 7 degrees cephalad (toward the superior endplate), 7 degrees caudal (toward the inferior endplate), or parallel to the superior endplate (control). An axial load was applied to the superior endplate of the vertebra, and screw bending moments were recorded directly from the transducers. Screws angled 7 degrees cephalad developed significantly greater mean intrapedicular bending moments compared with screws inserted caudal or control screws. There was no significant difference in bending moments realized within the vertebral body for the three screw positions. Angulating pedicle screws toward the superior endplate increased bending moments within the pedicle. If attention to optimal screw insertion technique can reduce bending moments and potential for screw failure without increasing morbidity, surgical risk, or operative time, then proper insertion technique takes on new importance.
Gong, Lin; Jiang, Changqing; Liu, Li; Wan, Shengxiang; Tan, Wen; Ma, Sushuang; Jia, Xiaojian; Wang, Meiwei; Hu, Azhen; Shi, Yu; Zhang, Yu; Shen, Yuanyuan; Wang, Feng; Chen, Yun
2018-01-01
Neurotrophin-3 (NT-3) has potential as a therapeutic agent for the treatment of patients with denervated muscle atrophy. However, the endogenous secretion of NT-3 is low and exogenous NT-3 lacks sufficient time to accumulate due to its short half-life. The transfection of NT-3 has been demonstrated to have a beneficial effect on denervated muscle and motor endplates. Neural stem cells (NSCs) differentiate into neurons and form motor endplate nerve-muscle connections. It has been previously demonstrated that local and noninvasive transfection can be performed using ultrasound with microbubbles (MBs). In the current study, hematoxylin and eosin, acetylcholinesterase and gold chloride staining, as well as transmission electron microscopy, were performed to verify the effects of this treatment strategy. The results demonstrated that using ultrasound with MBs for the transfection of NT-3 into NSCs, and their subsequent transplantation in vivo , attenuated the atrophy of denervated muscle and reduced motor endplate degeneration. This noninvasive, efficient and targeted treatment strategy may therefore be a potential treatment for patients with denervated muscle atrophy.
Rhee, Wootack; Ha, Seongil; Lim, Jae Hyeon; Jang, Il Tae
2014-01-01
Objective Using alendronate after spinal fusion is a controversial issue due to the inhibition of osteoclast mediated bone resorption. In addition, there are an increasing number of reports that the endplate degeneration influences the lumbar spinal fusion. The object of this retrospective controlled study was to evaluate how the endplate degeneration and the bisphosphonate medication influence the spinal fusion through radiographic evaluation. Methods In this study, 44 patients who underwent single-level posterior lumbar interbody fusion (PLIF) using cage were examined from April 2007 to March 2009. All patients had been diagnosed as osteoporosis and would be recommended for alendronate medication. Endplate degeneration is categorized by the Modic changes. The solid fusion is defined if there was bridging bone between the vertebral bodies, either within or external to the cage on the plain X-ray and if there is less than 5° of angular difference in dynamic X-ray. Results In alendronate group, fusion was achieved in 66.7% compared to 73.9% in control group (no medication). Alendronate did not influence the fusion rate of PLIF. However, there was the statistical difference of fusion rate between the endplate degeneration group and the group without endplate degeneration. A total of 52.4% of fusion rate was seen in the endplate degeneration group compared to 91.3% in the group without endplate degeneration. The endplate degeneration suppresses the fusion process of PLIF. Conclusion Alendronate does not influence the fusion process in osteoporotic patients. The endplate degeneration decreases the fusion rate. PMID:25620981
Tzermiadianos, Michael N.; Renner, Susan M.; Phillips, Frank M.; Hadjipavlou, Alexander G.; Zindrick, Michael R.; Havey, Robert M.; Voronov, Michael
2008-01-01
This study investigated the effect of endplate deformity after an osteoporotic vertebral fracture in increasing the risk for adjacent vertebral fractures. Eight human lower thoracic or thoracolumbar specimens, each consisting of five vertebrae were used. To selectively fracture one of the endplates of the middle VB of each specimen a void was created under the target endplate and the specimen was flexed and compressed until failure. The fractured vertebra was subjected to spinal extension under 150 N preload that restored the anterior wall height and vertebral kyphosis, while the fractured endplate remained significantly depressed. The VB was filled with cement to stabilize the fracture, after complete evacuation of its trabecular content to ensure similar cement distribution under both the endplates. Specimens were tested in flexion-extension under 400 N preload while pressure in the discs and strain at the anterior wall of the adjacent vertebrae were recorded. Disc pressure in the intact specimens increased during flexion by 26 ± 14%. After cementation, disc pressure increased during flexion by 15 ± 11% in the discs with un-fractured endplates, while decreased by 19 ± 26.7% in the discs with the fractured endplates. During flexion, the compressive strain at the anterior wall of the vertebra next to the fractured endplate increased by 94 ± 23% compared to intact status (p < 0.05), while it did not significantly change at the vertebra next to the un-fractured endplate (18.2 ± 7.1%, p > 0.05). Subsequent flexion with compression to failure resulted in adjacent fracture close to the fractured endplate in six specimens and in a non-adjacent fracture in one specimen, while one specimen had no adjacent fractures. Depression of the fractured endplate alters the pressure profile of the damaged disc resulting in increased compressive loading of the anterior wall of adjacent vertebra that predisposes it to wedge fracture. This data suggests that correction of endplate deformity may play a role in reducing the risk of adjacent fractures. PMID:18795344
Correlation of cervical endplate strength with CT measured subchondral bone density
Ordway, Nathaniel R.; Lu, Yen-Mou; Zhang, Xingkai; Cheng, Chin-Chang; Fang, Huang
2007-01-01
Cervical interbody device subsidence can result in screw breakage, plate dislodgement, and/or kyphosis. Preoperative bone density measurement may be helpful in predicting the complications associated with anterior cervical surgery. This is especially important when a motion preserving device is implanted given the detrimental effect of subsidence on the postoperative segmental motion following disc replacement. To evaluate the structural properties of the cervical endplate and examine the correlation with CT measured trabecular bone density. Eight fresh human cadaver cervical spines (C2–T1) were CT scanned and the average trabecular bone densities of the vertebral bodies (C3–C7) were measured. Each endplate surface was biomechanically tested for regional yield load and stiffness using an indentation test method. Overall average density of the cervical vertebral body trabecular bone was 270 ± 74 mg/cm3. There was no significant difference between levels. The yield load and stiffness from the indentation test of the endplate averaged 139 ± 99 N and 156 ± 52 N/mm across all cervical levels, endplate surfaces, and regional locations. The posterior aspect of the endplate had significantly higher yield load and stiffness in comparison to the anterior aspect and the lateral aspect had significantly higher yield load in comparison to the midline aspect. There was a significant correlation between the average yield load and stiffness of the cervical endplate and the trabecular bone density on regression analysis. Although there are significant regional variations in the endplate structural properties, the average of the endplate yield loads and stiffnesses correlated with the trabecular bone density. Given the morbidity associated with subsidence of interbody devices, a reliable and predictive method of measuring endplate strength in the cervical spine is required. Bone density measures may be used preoperatively to assist in the prediction of the strength of the vertebral endplate. A threshold density measure has yet to be established where the probability of endplate fracture outweighs the benefit of anterior cervical procedure. PMID:17712574
Oravec, Daniel; Quazi, Abrar; Xiao, Angela; Yang, Ellen; Zauel, Roger; Flynn, Michael J; Yeni, Yener N
2015-12-01
Endplate morphology is understood to play an important role in the mechanical behavior of vertebral bone as well as degenerative processes in spinal tissues; however, the utility of clinical imaging modalities in assessment of the vertebral endplate has been limited. The objective of this study was to evaluate the ability of two clinical imaging modalities (digital tomosynthesis, DTS; high resolution computed tomography, HRCT) to assess endplate topography by correlating the measurements to a microcomputed tomography (μCT) standard. DTS, HRCT, and μCT images of 117 cadaveric thoracolumbar vertebrae (T10-L1; 23 male, 19 female; ages 36-100 years) were segmented, and inferior and superior endplate surface topographical distribution parameters were calculated. Both DTS and HRCT showed statistically significant correlations with μCT approaching a moderate level of correlation at the superior endplate for all measured parameters (R(2)Adj=0.19-0.57), including averages, variability, and higher order statistical moments. Correlation of average depths at the inferior endplate was comparable to the superior case for both DTS and HRCT (R(2)Adj=0.14-0.51), while correlations became weak or nonsignificant for higher moments of the topography distribution. DTS was able to capture variations in the endplate topography to a slightly better extent than HRCT, and taken together with the higher speed and lower radiation cost of DTS than HRCT, DTS appears preferable for endplate measurements. Copyright © 2015 Elsevier Inc. All rights reserved.
Hyperconcavity of the lumbar vertebral endplates in the elite football lineman.
Moorman, Claude T; Johnson, David C; Pavlov, Helene; Barnes, Ronnie; Warren, Russell F; Speer, Kevin P; Guettler, Joseph H
2004-09-01
Hyperconcavity of the vertebral endplates is a previously unreported radiologic phenomenon. To analyze hyperconcavity of the vertebral endplates with expansion of the disk space in pre-National Football League lineman and to determine its clinical significance. Descriptive anatomical study. Over a 2-year period (1992-1993), 266 elite football linemen were evaluated at the National Football League scouting combine held in Indianapolis, Indiana. Evaluation focused on the lumbosacral spine and included history, physical examination, and lateral radiographs. Measurements were taken of all the vertebral endplate defects of involved vertebrae and compared with an age-matched control group of 110 patients. The analyzed data revealed the following: (1) hyperconcavity of the vertebral endplates appeared as a distinct entity in a high percentage of pre-National Football League lineman (33%) compared with age-matched controls (8%), (2) there was a trend toward a lower incidence of lumbosacral spine symptoms in those players who displayed hyperconcavity of the vertebral endplates (16%) versus those who did not (25%), and (3) when hyperconcavity of the vertebral endplates was present, all 5 lumbosacral disk spaces were commonly affected. Hyperconcavity of the vertebral endplates and hypertrophy of the disk space are likely adaptive changes occurring over time in response to the repetitive high loading and axial stress experienced in football line play.
Antosh, Ivan J; DeVine, John G; Carpenter, Clyde T; Woebkenberg, Brian J; Yoest, Stephen M
2010-12-01
Disc arthroplasty is an alternative to fusion following anterior discectomy when treating either cervical radiculopathy or myelopathy. Its theoretical benefits include preservation of the motion segment and the potential prevention of adjacent-segment degeneration. There is a paucity of data regarding the ability to use MR imaging to evaluate the adjacent segments. The purpose of this study was for the authors to introduce open MR imaging as an alternative method in imaging adjacent segments following cervical disc arthroplasty using a Co-Cr implant and to report their preliminary results using this technique. Postoperative cervical MR images were obtained in the first 16 patients in whom the porous coated motion (PCM-V) cervical arthroplasty system was used to treat a single level between C-3 and C-7. Imaging was performed in all 16 patients with a closed 1.5-T unit, and in the final 6 patients it was also performed with an open 0.2-T unit. All images were evaluated by an independent radiologist observer for the ability to visualize the superior endplate, disc space, and inferior endplate at the superior and inferior adjacent levels. Utilizing the 1.5-T magnet to assess the superior adjacent level, the superior endplate, disc space, and inferior endplate could each be visualized less than 50% of the time on sagittal T1- and sagittal and axial T2-weighted images. Similarly, the inferior adjacent level structures were adequately visualized less than 50% of the time, with the exception of slightly improved visualization of the inferior endplate on T1-weighted images (56%). Axial images allowed worse visualization than sagittal images at both the superior and inferior adjacent levels. Utilizing the 0.2-T magnet to assess the superior and inferior adjacent levels, the superior endplate, disc space, and inferior endplate were adequately visualized in 100% of images. Based on the results of this case series, it appears that the strength of the magnet affects the artifact from the Co-Cr endplates. The open 0.2-T MR imaging unit reduces artifact at adjacent levels after cervical disc arthroplasty without a significant reduction in the image quality. Magnetic resonance imaging can be used to evaluate the adjacent segments after disc arthroplasty if magnet strength is addressed, providing another means to assess the long-term efficacy of this novel treatment.
NASA Technical Reports Server (NTRS)
Murray, Harry E
1946-01-01
A vertical-tail model with stub fuselage was tested in combination with various simulated horizontal tails to determine the effect of horizontal-tail span and location on the aerodynamic characteristics of the vertical tail. Available theoretical data on end-plate effects were collected and presented in the form most suitable for design purposes. Reasonable agreement was obtained between the measured and theoretical end-plate effects of horizontal tails on vertical tails, and the data indicated that the end-plate effect was determined more by the location of the horizontal tail than by the span of the horizontal tail. The horizontal tail gave most end-plate effect when located near either tip of the vertical tail and, when located near the base of the vertical tail, the end-plate effect was increased by moving the horizontal tail rearward.
Zhang, Yu; Tang, Yibo; Shen, Hongxing
2017-12-01
In order to reduce the incidence of adjacent segment disease (ASD), the current study was designed to establish Chinese finite element models of normal 3rd~7th cervical vertebrae (C3-C7) and anterior cervical corpectomy and fusion (ACCF) with internal fixation , and analyze the influence of screw sagittal angle (SSA) on stress on endplate of adjacent cervical segments. Mimics 8.1 and Abaqus/CAE 6.10 softwares were adopted to establish finite element models. For C4 superior endplate and C6 inferior endplate, their anterior areas had the maximum stress in anteflexion position, and their posterior areas had the maximum stress in posterior extension position. As SSA increased, the stress reduced. With an increase of 10° in SSA, the stress on anterior areas of C4 superior endplate and C6 inferior endplate reduced by 12.67% and 7.99% in anteflexion position, respectively. With an increase of 10° in SSA, the stress on posterior areas of C4 superior endplate and C6 inferior endplate reduced by 9.68% and 10.22% in posterior extension position, respectively. The current study established Chinese finite element models of normal C3-C7 and ACCF with internal fixation , and demonstrated that as SSA increased, the stress on endplate of adjacent cervical segments decreased. In clinical surgery, increased SSA is able to play important role in protecting the adjacent cervical segments and reducing the incidence of ASD.
Significance of Vertebral Endplate Failure in Symptomatic Lumbar Disc Herniation.
Sahoo, Madan Mohan; Mahapatra, Sudhir Kumar; Kaur, Sheetal; Sarangi, Jitendra; Mohapatra, Manoranjan
2017-05-01
Prospective cohort study. Endplate lesions though have been implicated in the genesis of lumbar disc herniation (LDH), very little is known regarding their clinical course. Thus, the present study is aimed to investigate the incidence and types of endplate failure (EPF) in LDH and its correlation with the clinical symptoms and prognosis. Clinical and magnetic resonance imaging (MRI) features of 66 patients with isolated single level LDH were studied. Three-dimensional fast spoiled gradient (3D FSPGR) MRI and computed tomography scans were used to identify the bony and cartilaginous EPF. Twenty-five patients were operated on and 41 patients were treated conservatively. Changes in the pain score, function and neurology were noted at 3, 6, 12, 24, and 36 weeks. Endplate lesions were observed in 64 patients (96.9%), including bony endplate failure (bony failure) in 47 patients (71.2%) and isolated cartilaginous endplate lesions in 17 patients (25.7%). Bony failure group had similar pain and functional scores but more severe neurological deficit at the initial evaluation. Clinical parameters improved in all groups, but the recovery was lesser in conservatively treated bony failure patients. Endplate lesions are commonly associated with symptomatic LDH. Presence of bony failure can increase neurological deficit and reduce the chance of recovery with conservative management. The 3D FSPGR sequence of MRI can be successfully used for detection of the endplate lesions in the herniated disc.
Influence of tip end-plate on noise of small axial fan
NASA Astrophysics Data System (ADS)
Mao, Hongya; Wang, Yanping; Lin, Peifeng; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2017-02-01
In this work, tip end-plate is used to improve the noise performance of small axial fans. Both numerical simulations and experimental methods were adopted to study the fluid flow and noise level of axial fans. Four modified models and the prototype are simulated. Influences of tip end-plate on static characteristics, internal flow field and noise of small axial fans are analyzed. The results show that on basis of the prototype, the model with the tip end-plate of 2 mm width and changed length achieved best noise performance. The overall sound pressure level of the model with the tip end-plate of 2 mm width and changed length is 2.4 dB less than that of the prototype at the monitoring point in specified far field. It is found that the mechanism of noise reduction is due to the decrease of vorticity variation on the surface of blades caused by the tip end-plate. Compared with the prototype, the static pressure of the model with the tip end-plate of 2 mm width and changed length at design flow rate decreases by 2 Pa and the efficiency decreases by 0.8%. It is concluded that the method of adding tip end-plate to impeller blades has a positive influence on reducing noise, but it may diminish the static characteristics of small axial fan to some extent.
Significance of Vertebral Endplate Failure in Symptomatic Lumbar Disc Herniation
Sahoo, Madan Mohan; Kaur, Sheetal; Sarangi, Jitendra; Mohapatra, Manoranjan
2017-01-01
Study Design: Prospective cohort study. Objective: Endplate lesions though have been implicated in the genesis of lumbar disc herniation (LDH), very little is known regarding their clinical course. Thus, the present study is aimed to investigate the incidence and types of endplate failure (EPF) in LDH and its correlation with the clinical symptoms and prognosis. Methods: Clinical and magnetic resonance imaging (MRI) features of 66 patients with isolated single level LDH were studied. Three-dimensional fast spoiled gradient (3D FSPGR) MRI and computed tomography scans were used to identify the bony and cartilaginous EPF. Twenty-five patients were operated on and 41 patients were treated conservatively. Changes in the pain score, function and neurology were noted at 3, 6, 12, 24, and 36 weeks. Results: Endplate lesions were observed in 64 patients (96.9%), including bony endplate failure (bony failure) in 47 patients (71.2%) and isolated cartilaginous endplate lesions in 17 patients (25.7%). Bony failure group had similar pain and functional scores but more severe neurological deficit at the initial evaluation. Clinical parameters improved in all groups, but the recovery was lesser in conservatively treated bony failure patients. Conclusion: Endplate lesions are commonly associated with symptomatic LDH. Presence of bony failure can increase neurological deficit and reduce the chance of recovery with conservative management. The 3D FSPGR sequence of MRI can be successfully used for detection of the endplate lesions in the herniated disc. PMID:28660105
Octanol reduces end-plate channel lifetime
Gage, Peter W.; McBurney, Robert N.; Van Helden, Dirk
1978-01-01
1. Post-synaptic effects of n-octanol at concentrations of 0·1-1 mM were examined in toad sartorius muscles by use of extracellular and voltage-clamp techniques. 2. Octanol depressed the amplitude and duration of miniature end-plate currents and hence depressed neuromuscular transmission. 3. The decay of miniature end-plate currents remained exponential in octanol solutions even when the time constant of decay (τD) was decreased by 80-90%. 4. The lifetime of end-plate channels, obtained by analysis of acetylcholine noise, was also decreased by octanol. The average lifetime measured from noise spectra agreed reasonably well with the time constant of decay of miniature end-plate currents, both in control solution and in octanol solutions. 5. Octanol caused a reduction in the conductance of end-plate channels. Single channel conductance was on average about 25 pS in control solution and 20 pS in octanol. 6. In most cells the normal voltage sensitivity of the decay of miniature end-plate currents was retained in octanol solutions. The lifetime of end-plate channels measured from acetylcholine noise also remained voltage-sensitive in octanol solutions. In some experiments in which channel lifetime was exceptionally reduced the voltage sensitivity was less than normal. 7. In octanol solutions, τD was still very sensitive to temperature changes in most cells although in some the temperature sensitivity of τD was clearly reduced. Changes in τD with temperature could generally be fitted by the Arrhenius equation suggesting that a single step reaction controlled the decay of currents both in control and in octanol solutions. In some cells in which τD became less than 0·3 ms, the relationship between τD and temperature became inconsistent with the Arrhenius equation. 8. As the decay of end-plate currents in octanol solutions remains exponential, and the voltage and temperature sensitivity can be unchanged even when τD is significantly reduced, it seems likely that octanol decreases τD by increasing the rate of the reaction which normally controls the lifetime of end-plate channels. PMID:203674
Zhang, Fan; Xu, Hao-Cheng; Yin, Bo; Xia, Xin-Lei; Ma, Xiao-Sheng; Wang, Hong-Li; Yin, Jun; Shao, Ming-Hao; Lyu, Fei-Zhou; Jiang, Jian-Yuan
2016-08-01
To evaluate the biomechanical characteristics of endplate-conformed cervical cages by finite element method (FEM) analysis and cadaver study. Twelve specimens (C2 -C7 ) and a finite element model (C3 -C7 ) were subjected to biomechanical evaluations. In the cadaver study, specimens were randomly assigned to intact (I), endplate-conformed (C) and non-conformed (N) groups with C4-5 discs as the treated segments. The morphologies of the endplate-conformed cages were individualized according to CT images of group C and the cages fabricated with a 3-D printer. The non-conformed cages were wedge-shaped and similar to commercially available grafts. Axial pre-compression loads of 73.6 N and moment of 1.8 Nm were used to simulate flexion (FLE), extension (EXT), lateral bending (LB) and axial rotation (AR). Range of motion (ROM) at C4-5 of each specimen was recorded and film sensors fixed between the cages and C5 superior endplates were used to detect interface stress. A finite element model was built based on the CT data of a healthy male volunteer. The morphologies of the endplate-conformed and wedge-shaped, non-conformed cervical cages were both simulated by a reverse engineering technique and implanted at the segment of C4-5 in the finite element model for biomechanical evaluation. Force loading and grouping were similar to those applied in the cadaver study. ROM of C4-5 in group I were recorded to validate the finite element model. Additionally, maximum cage-endplate interface stresses, stress distribution contours on adjoining endplates, intra-disc stresses and facet loadings at adjacent segments were measured and compared between groups. In the cadaver study, Group C showed a much lower interface stress in all directions of motion (all P < 0.05) and the ROM of C4-5 was smaller in FLE-EXT (P = 0.001) but larger in AR (P = 0.017). FEM analysis produced similar results: the model implanted with an endplate-conformed cage presented a lower interface stress with a more uniform stress distribution than that implanted with a non-conformed cage. Additionally, intra-disc stress and facet loading at the adjacent segments were obviously increased in both groups C and N, especially those at the supra-jacent segments. However, stress increase was milder in group C than in group N for all directions of motion. Endplate-conformed cages can decrease cage-endplate interface stress in all directions of motion and increase cervical stability in FLE-EXT. Additionally, adjacent segments are possibly protected because intra-disc stress and facet loading are smaller after endplate-conformed cage implantation. However, axial stability was reduced in group C, indicating that endplate-conformed cage should not be used alone and an anterior plate system is still important in anterior cervical discectomy and fusion. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Fatehi, M; Rowan, E G; Harvey, A L
2002-01-01
The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.
Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D
2015-03-01
The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute fiber bending at the soft-hard interface of the tidemark. This finding is consistent with evidence showing that flexion, which induces a similar pattern of axial tension, increases the risk of herniation involving endplate failure. The study also highlights the important strengthening role of calcification at this junction and provides new evidence of a fibril-based form of structural integration across the cement line. Copyright © 2015 Elsevier Inc. All rights reserved.
Maselli, Ricardo A; Arredondo, Juan; Vázquez, Jessica; Chong, Jessica X; Bamshad, Michael J; Nickerson, Deborah A; Lara, Marian; Ng, Fiona; Lo, Victoria L; Pytel, Peter; McDonald, Craig M
2017-08-01
Defects in genes encoding the isoforms of the laminin alpha subunit have been linked to various phenotypic manifestations, including brain malformations, muscular dystrophy, ocular defects, cardiomyopathy, and skin abnormalities. We report here a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin alpha-5 subunit gene (LAMA5). The variant c.8046C>T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had muscle weakness, myopia, and facial tics. Magnetic resonance imaging of brain showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation revealed 50% decrement of compound muscle action potential amplitudes and 250% facilitation immediately after exercise, Endplate studies identified a profound reduction of the endplate potential quantal content and endplates with normal postsynaptic folding that were denuded or partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin alpha-5 to SV2A and impaired laminin-521 cell-adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding alpha-laminins. © 2017 Wiley Periodicals, Inc.
Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep
2010-04-05
Confocal immunohistochemistry shows that neurotrophin-3 (NT-3) and its receptor tropomyosin-related tyrosin kinase C (trkC) are present in both neonatal (P6) and adult (P45) mouse motor nerve terminals in neuromuscular junctions (NMJ) colocalized with several synaptic proteins. NT-3 incubation (1-3h, in the range 10-200ng/ml) does not change the size of the evoked and spontaneous endplate potentials at P45. However, NT-3 (1h, 100ng/ml) strongly potentiates evoked ACh release from the weak (70%) and the strong (50%) axonal inputs on dually innervated postnatal endplates (P6) but not in the most developed postnatal singly innervated synapses at P6. The present results indicate that NT-3 has a role in the developmental mechanism that eliminates redundant synapses though it cannot modulate synaptic transmission locally as the NMJ matures.
Lightweight bipolar storage battery
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1992-01-01
An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.
Geometry of the intervertebral volume and vertebral endplates of the human spine.
van der Houwen, E B; Baron, P; Veldhuizen, A G; Burgerhof, J G M; van Ooijen, P M A; Verkerke, G J
2010-01-01
Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column.
Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.
2013-01-01
Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures. PMID:20633709
Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D
2013-01-01
In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963
Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D
2013-05-15
In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft.
The permeability of endplate channels to monovalent and divalent metal cations
1980-01-01
The relative permeability of endplate channels to monovalent and divalent metal ions was determined from reversal potentials. Thallium is the most permeant ion with a permeability ratio relative to Na+ of 2.5. The selectivity among alkali metals is weak with a sequence, Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+, and permeability ratios of 1.4, 1.3, 1.1, 1.0, and 0.9. The selectivity among divalent ions is also weak, with a sequence for alkaline earths of Mg++ greater than Ca++ greater than Ba++ greater than Sr++. The transition metal ions Mn++, Co++, Ni++, Zn++, and Cd++ are also permeant. Permeability ratios for divalent ions decreased as the concentration of divalent ion was increased in a manner consistent with the negative surface potential theory of Lewis (1979 J. Physiol. (Lond.). 286: 417--445). With 20 mM XCl2 and 85.5 mM glucosamine.HCl in the external solution, the apparent permeability ratios for the alkaline earth cations (X++) are in the range 0.18--0.25. Alkali metal ions see the endplate channel as a water-filled, neutral pore without high-field-strength sites inside. Their permeability sequence is the same as their aqueous mobility sequence. Divalent ions, however, have a permeability sequence almost opposite from their mobility sequence and must experience some interaction with groups in the channel. In addition, the concentrations of monovalent and divalent ions are increased near the channel mouth by a weak negative surface potential. PMID:6247423
Cartilage of the Intervertebral Disc Eng-Plate, A Histological, Histochemical, Fine Structure Study.
1982-08-01
degeneration (Nachemson et al., 1970). These and related studies consider the end-plates to be composed of hyaline cartilage and thus homologues of articular...results of this study in rhesus indicate, that while present, the cartilage of the end-plate is quite different in structure and presumably...HZSTOLO6ZCAL,-ETCfU) I AUG 82 N 5 NUSSBAUM IUNCLASSIFDATRL8R-1222NL.rnximommmB~iIEND2 AFAMRL-TR-81 - 122 " CARTILAGE OF THE INTERVERTEBRAL DISC END-PLATE A
Xu, Hong-Guang; Ma, Ming-Ming; Zheng, Quan; Shen, Xiang; Wang, Hong; Zhang, Shu-Feng; Xu, Jia-Jia; Wang, Chuan-Dong; Zhang, Xiao-Ling
2016-08-15
The changes of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT) were observed by realtime reverse transcription-polymerase chain reaction, immunofluorescence, and Western blot analysis. To investigate the role of RhoA/ROCK-1 signaling pathway and E-cadherin/P120-catenin complex in endplate chondrocytes degeneration induced by ICMT. ICMT can induce the endplate chondrocyte degeneration. However, the relationship between P120-catenin or RhoA/ROCK-1 signaling pathway and endplate chondrocytes degeneration induced by ICMT is not clear. ICMT (strain at 0.5 Hz sinusoidal curve at 8% elongation) was applied to rat endplate chondrocytes for 6 days, 16 hours a day. The cell viability and apoptosis were examined by the LIVE/DEAD assay and flow cytometry. Histological staining was used to examine the lumbar disc tissue morphology and extracellular matrix. To regulate RhoA/ROCK-1 signaling pathway and the expression of E-cadherin and P120-catenin, RhoA/ROCK-1 pathway-specific inhibitors, E-cadherin, and p120-catenin plasmid were applied. Coimmunoprecipitation was employed to examine the interaction between E-cadherin and P120-catenin, P120-catenin, and RhoA. The related gene expression and protein location was examined by realtime reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence. There was no change of viability verified by LIVE/DEAD assay and flow cytometry after ICMT loading. ICMT loading led to RhoA/ROCK-1 signaling activation and the loss of the chondrogenic phenotype of endplate chondrocytes. Inhibition of RhoA/ROCK-1 signaling pathway significantly ameliorated the degeneration induced by ICMT. The expression of P120-catenin and E-cadherin were inhibited by ICMT. ICMT reduced the interaction between P120-catenin and E-cadherin. Furthermore, over-expression of P120-catenin and E-cadherin can suppress the expression of chondrogenic gene, over-expression of P120-catenin can suppress the RhoA/ROCK-1 signaling pathway, but over-expression of E-cadherin cannot do it. P120-catenin protects endplate chondrocytes from ICMT Induced degeneration by inhibiting the expression of RhoA/ROCK-1 signaling pathway. N/A.
[Mechanical and dimensional properties of thermosetting resins for crown (author's transl)].
Hirasawa, T; Hirano, S; Harashima, I; Hirabayashi, S; Mori, R
1979-10-01
The various mechanical and dimensional properties of seven thermosetting methacrylic resins for crown and one heat-curing methacrylic resin as the control were investigated. The obtained results were as follows. 1. The water sorption, namely amount of sorption water and linear expansion by water sorption of hydrophobic poly-bis-MEPP resins were 50 to 70% of that of the control. But hydrophilic poly-EDMA resins indicated the water sorption about 1 to 1.5 times as much as the control. And a poly-UDMA resin was also hydrophilic as poly-EDMA resins, indicated about 1.3 times as much as the control. 2. The properties of poly-bis-MEPP resins were more excellent than that of poly-EDMA resins especially in the wet condition, at least were equal. 3. A poly-UDMA resin contained so-called organic composite fillers, indicated more excellent properties than other resins on hardness, abrasion resistance, linear coefficient of thermal expansion, compressive strength and bending strength in the dry condition. But, in the wet condition, some of these properties of a poly-UDMA resin were approximately equal to those of other resins.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A
2015-07-01
Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.
Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D
2014-01-01
Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174
Identifying osteoporotic vertebral endplate and cortex fractures
Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H.
2017-01-01
Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs. PMID:29184768
Giniatullin, R A; Talantova, M; Vyskocil, F
1997-08-01
1. The desensitization induced by bath-applied carbachol or acetylcholine (ACh) and potentiated by proadifen (SKF 525A) was studied in the frog sartorius with intact synaptic acetylcholinesterase (AChE). 2. The reduction in the density and number of postsynaptic receptors produced by desensitization lowered the amplitude of the endplate currents (EPCs) and shortened the EPC decay when the quantal content (m) of the EPC was about 170 and when multiple release of quanta at single active zones was highly probably. The shortening of high-quantal-content EPCs persisted for at least 15 min after the wash-out of agonists, at a time when the amplitude had recovered fully. 3. The decay times of the low-quantal-content EPCs recorded from preparations pretreated with 5 mM Mg2+ (m approximately 70) and single-quantum miniature endplate currents (MEPCs) were not affected by carbachol, ACh or proadifen. 4. The desensitization of ACh receptors potentiated by proadifen, prevented completely the 6- to 8-fold prolongation of EPC which was induced by neostigmine inhibition of synaptic AChE. 5. It is assumed that high-quantal-content EPCs increase the incidence of multiple quanta release at single active zones and the probability of repetitive binding of ACh molecules which leads to EPC prolongation. The shortening which persists after complete recovery of the amplitude during wash-out of the exogenous agonist is probably due to 'trapping' of ACh molecules onto rapidly desensitized receptors and the reduced density of functional AChRs during the quantum action.
RESEARCH ON EFFECTS OF ACETYLCHOLINE ON THE MAMMALIAN MOTOR END-PLATE
presumably through the release of a chemical mediator. (3) The chemical sensitivity of end-plate receptors in muscles from patients with myasthenia ... gravis is normal, suggesting that the neuromuscular defect in this disease is of pre-junctional origin.
Human Disc Nucleus Properties and Vertebral Endplate Permeability
Rodriguez, Azucena G.; Slichter, Chloe K.; Acosta, Frank L.; Rodriguez-Soto, Ana E.; Burghardt, Andrew J.; Majumdar, Sharmila; Lotz, Jeffrey C.
2010-01-01
Study of human cadaveric discs quantifying endplate permeability and porosity and correlating these with measures of disc quality: cell density, proteoglycan content, and overall degeneration. Permeability and porosity increased with age and were not correlated with cell density or overall degeneration, suggesting that endplate calcification may not accelerate disc degeneration. Study Design Experimental quantification of relationships between vertebral endplate morphology, permeability, disc cell density, glycosaminoglycan content and degeneration in samples harvested from human cadaveric spines. Objective To test the hypothesis that variation in endplate permeability and porosity contribute to changes in intervertebral disc cell density and overall degeneration. Summary of Background Data Cells within the intervertebral disc are dependent on diffusive exchange with capillaries in the adjacent vertebral bone. Previous findings suggest that blocked routes of transport negatively affect disc quality, yet there are no quantitative relationships between human vertebral endplate permeability, porosity, cell density and disc degeneration. Such relationships would be valuable for clarifying degeneration risk factors, and patient features that may impede efforts at disc tissue engineering. Methods Fifty-one motion segments were harvested from 13 frozen cadaveric human lumbar spines (32 to 85 years) and classified for degeneration using the MRI-based Pfirrmann scale. A cylindrical core was harvested from the center of each motion segment that included vertebral bony and cartilage endplates along with adjacent nucleus tissue. The endplate mobility, a type of permeability, was measured directly using a custom-made permeameter before and after the cartilage endplate was removed. Cell density within the nucleus tissue was estimated using the picogreen method while the nuclear GAG content was quantified using the DMMB technique. Specimens were imaged at 8 μm resolution using microCT, bony porosity was calculated. Analysis of variance, linear regression, and multiple comparison tests were used to analyze the data. Results Nucleus cell density increased as the disc height decreased (R2=0.13; p=0.01) but was not related to subchondral bone porosity (p>0.5), total mobility (p>0.4) or age (p>0.2). When controlling for disc height however, a significant, negative effect of age on cell density was observed (p=0.03). In addition to this, GAG content decreased with age non-linearly (R2=0.83, p<0.0001) and a cell function measurement, GAGs/cell decreased with degeneration (R2=0.24; p<0.0001). Total mobility (R2=0.14; p<0.01) and porosity (R2=0.1, p<0.01) had a positive correlation with age. Conclusion Although cell density increased with degeneration, cell function indicated that GAGs/cell decreased. Since permeability and porosity increase with age and degeneration, this implies that cell dysfunction, rather than physical barriers to transport, accelerate disc disease. PMID:21240044
Ryu, Robert; Techy, Fernando; Varadarajan, Ravikumar; Amirouche, Farid
2016-02-01
To study effects (stress loads) of lumbar fusion on the remaining segments (adjacent or not) of the lumbar spine in the setting of degenerated adjacent discs. A lumbar spine finite element model was built and validated. The full model of the lumbar spine was a parametric finite element model of segments L 1-5 . Numerous hypothetical combinations of one-level lumbar spine fusion and one-level disc degeneration were created. These models were subjected to 10 Nm flexion and extension moments and the stresses on the endplates and consequently on the intervertebral lumbar discs measured. These values were compared to the stresses on healthy lumbar spine discs under the same load and fusion scenarios. Increased stress at endplates was observed only in the settings of L4-5 fusion and L3-4 disc degeneration (8% stress elevation at L2,3 in flexion or extension, and 25% elevation at L3,4 in flexion only). All other combinations showed less endplate stress than did the control model. For fusion at L3-4 and degeneration at L4-5 , the stresses in the endplates at the adjacent level inferior to the fused disc decreased for both loading disc height reductions. Stresses in flexion decreased after fusion by 29.5% and 25.8% for degeneration I and II, respectively. Results for extension were similar. For fusion at L2-3 and degeneration at L4-5 , stresses in the endplates decreased more markedly at the degenerated (30%), than at the fused level (14%) in the presence of 25% disc height reduction and 10 Nm flexion, whereas in extension stresses decreased more at the fused (24.3%) than the degenerated level (5.86%). For fusion at L3-4 and degeneration at L2-3 , there were no increases in endplate stress in any scenario. For fusion at L4-5 and degeneration at L3-4 , progression of degeneration from I to II had a significant effect only in flexion. A dramatic increase in stress was noted in the endplates of the degenerated disc (L3-4 ) in flexion for degeneration II. Stresses are greater in flexion at the endplates of L3-4 and in flexion and extension at L2-3 in the presence of L3-4 disc disease and L4-5 fusion than in the control group. In all other combinations of fusion and disc disease, endplate stress was less for all levels tested than in the control model. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D
2014-07-01
Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
ERIC Educational Resources Information Center
National Association for Environmental Education, Miami, FL.
The Maine Environmental Priorities Project (MEPP) is a comparative risk project designed to identify, compare, and rank the most serious environmental problems facing Maine. Once the problems are analyzed and ranked according to their threat or risk to Maine's ecological health, human health, and quality of life, the project will propose…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muresan, Ioana Cristina; Balc, Roxana
Beam-to-column end-plate bolted connections are usually used as moment-resistant connections in steel framed structures. For this joint type, the deformability is governed by the deformation capacity of the column flange and end-plate under tension and elongation of the bolts. All these elements around the beam tension flange form the tension region of the joint, which can be modeled by means of equivalent T-stubs. In this paper a beam-to-column end-plate bolted connection is substituted with a T-stub of appropriate effective length and it is analyzed using the commercially available finite element software ABAQUS. The performance of the model is validated bymore » comparing the behavior of the T-stub from the numerical simulation with the behavior of the connection as a whole. The moment-rotation curve of the T-stub obtained from the numerical simulation is compared with the behavior of the whole extended end-plate connection, obtained by numerical simulation, experimental tests and analytical approach.« less
Mattei, Tobias A
2017-06-01
Previous studies have demonstrated lower rates of cement extravasation when comparing balloon kyphoplasty with vertebroplasty, an effect attributed to the low-pressure injection. However, in patients with isolated endplate fractures, balloon kyphoplasty may lead to further endplate damage and increased risks of intradiscal extravasation. The author provides a stepwise description of a new technique called cavitational kyphoplasty that allows targeted low-pressure cement injection without the necessity of balloon inflation. The new technique of cavitational kyphoplasty has been shown to be specially useful in patients with isolated endplate fractures without significant loss of the vertebral body height.
Indian hedgehog contributes to human cartilage endplate degeneration.
Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei
2015-08-01
To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.
2001-01-01
ofAcetylcholinesterase at Motor Endplates John P. Petrali and Kenneth R. Mills INTRODUCTION Acetylcholinesterase (AChE) is the modulating enzyme of cholin ...utilized for this study was the Pelco 3440, 800 W. The animal used was the haired guinea pig, which was euthanatized by an overdose of Na pentobarbital
Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H
2015-05-01
The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Parametric study of extended end-plate connection using finite element modeling
NASA Astrophysics Data System (ADS)
Mureşan, Ioana Cristina; Bâlc, Roxana
2017-07-01
End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.
Degenerative changes of the canine cervical spine after discectomy procedures, an in vivo study.
Grunert, Peter; Moriguchi, Yu; Grossbard, Brian P; Ricart Arbona, Rodolfo J; Bonassar, Lawrence J; Härtl, Roger
2017-06-23
Discectomies are a common surgical treatment for disc herniations in the canine spine. However, the effect of these procedures on intervertebral disc tissue is not fully understood. The objective of this study was to assess degenerative changes of cervical spinal segments undergoing discectomy procedures, in vivo. Discectomies led to a 60% drop in disc height and 24% drop in foraminal height. Segments did not fuse but showed osteophyte formation as well as endplate sclerosis. MR imaging revealed terminal degenerative changes with collapse of the disc space and loss of T2 signal intensity. The endplates showed degenerative type II Modic changes. Quantitative MR imaging revealed that over 95% of Nucleus Pulposus tissue was extracted and that the nuclear as well as overall disc hydration significantly decreased. Histology confirmed terminal degenerative changes with loss of NP tissue, loss of Annulus Fibrosus organization and loss of cartilage endplate tissue. The bony endplate displayed sclerotic changes. Discectomies lead to terminal degenerative changes. Therefore, these procedures should be indicated with caution specifically when performed for prophylactic purposes.
Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun
2016-06-01
The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.
Sinclair, Sarina K; Bell, Spencer; Epperson, Richard Tyler; Bloebaum, Roy D
2013-05-01
To gain an understanding of the vertebral cortical endplate and factors that may affect the ability to achieve skeletal attachment to intervertebral implants and fusion, this study aimed to characterize the hypermineralized tissue on the cortical endplate of the vertebral body on a commonly used animal model. Skeletally mature sheep were injected with tetracycline prior to euthanasia and the C2-C3, T5-T6, and L2-L3 spinal motion segments were excised and prepared. Vertebral tissues were imaged using backscatter electron (BSE) imaging, histology, and tetracycline labeling was used to assess bone remodeling within different tissue layers. It was determined that the hypermineralized tissue layer was calcified fibrocartilage (CFC). No tetracycline labels were identified in the CFC layer, in contrast to single and double labels that were present in the underlying bone, indicating the CFC present on the cortical endplate was not being actively remodeled. The average thickness of the CFC layer was 146.3 ± 70.53 µm in the cervical region, 98.2 ± 40.29 µm in the thoracic region, and 150.89 ± 69.25 µm in the lumbar region. This difference in thickness may be attributed to the regional biomechanical properties of the spine. Results from this investigation indicate the presence of a nonremodeling tissue on the cortical endplate of the vertebral body in sheep spines, which attaches the intervertebral disc to the vertebrae. This tissue, if not removed, would likely prevent successful bony attachment to an intervertebral device in spinal fusion studies and total disc replacement surgeries. Copyright © 2013 Wiley Periodicals, Inc.
Uraoka, Hideyuki; Higashino, Kosaku; Morimoto, Masatoshi; Yamashita, Kazuta; Tezuka, Fumitake; Takata, Yoichiro; Sakai, Toshinori; Nagamachi, Akihiro; Murase, Masaaki; Sairyo, Koichi
2018-02-01
The lesion of the lumbar endplate is sometimes identified in the vertebrae of children and adolescents. The purpose of this study is to compare between skeletal maturity and chronological age. The second purpose of this study is to clarify the lesions of the lumbar endplate based on the maturation of the lumbar vertebral body. Six hundred and thirty-two (485 men and 147 women) consecutive patients were included. The mean age at the first medical examination was 13.8 years. Their skeletal maturity was evaluated based on the appearances of the secondary ossification center of L3. The area of the endplate lesions was classified into five types. The apophyseal stage was observed from 10 years old to 18 years old, and the apophyseal stage was shown the peak at 14 years old. The appearance of the apophyseal ring was observed earlier in female patients than in male patients. For the concave type, the lesion at upper level vertebra was more prevalent. The anterior and middle type of the lesion at upper level vertebra was more prevalent. For the posterior type, the lesion of the inferior rim of L4 and the lesion of the rim of L5 were more prevalent. This study emerged after comparing skeletal maturity based on the maturation of the lumbar vertebral body with the chronological age of a large number of patients and examining the lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body.
Effect of prosthesis endplate lordosis angles on L5-S1 kinematics after disc arthroplasty.
Tsitsopoulos, Parmenion P; Wojewnik, Bartosz; Voronov, Leonard I; Havey, Robert M; Renner, Susan M; Zelenakova, Julia; McIntosh, Braden; Carandang, Gerard; Abjornson, Celeste; Patwardhan, Avinash G
2012-06-01
We hypothesized that L5-S1 kinematics will not be affected by the lordosis distribution between the prosthesis endplates. Twelve cadaveric lumbosacral spines (51.3 ± 9.8 years) were implanted with 6° or 11° prostheses (ProDisc-L) with four combinations of superior/inferior lordosis (6°/0°, 3°/3°, 11°/0°, 3°/8°). Specimens were tested intact and after prostheses implantation with different lordosis distributions. Center of rotation (COR) and range of motion (ROM) were quantified. Six-degree lordosis prostheses (n = 7) showed no difference in flexion-extension ROM, regardless of design (6°/0° or 3°/3°) (p > 0.05). In lateral bending (LB), both designs reduced ROM (p < 0.05). In axial rotation, only the 3°/3° design reduced ROM (p < 0.05). Eleven-degree lordosis prostheses (n = 5) showed no difference in flexion-extension ROM for either design (p > 0.05). LB ROM decreased with distributed lordosis prostheses (3°/8°) (p < 0.05). Overall, L5-S1 range of motion was not markedly influenced by lordosis distribution among the two prosthesis endplates. The ProDisc-L prosthesis design where all lordosis is concentrated in the superior endplate yielded COR locations that were anterior and caudal to intact controls. The prosthesis with lordosis distributed between the two endplates yielded a COR that tended to be closer to intact. Further clinical and biomechanical studies are needed to assess the long-term impact of lordosis angle distribution on the fate of the facet joints.
Moreira, K G; Prates, M V; Andrade, F A C; Silva, L P; Beirão, P S L; Kushmerick, C; Naves, L A; Bloch, C
2010-08-01
Neurotoxicity is a major symptom of envenomation caused by Brazilian coral snake Micrurus frontalis. Due to the small amount of material that can be collected, no neurotoxin has been fully sequenced from this venom. In this work we report six new three-finger like toxins isolated from the venom of the coral snake M. frontalis which we named Frontoxin (FTx) I-VI. Toxins were purified using multiple steps of RP-HPLC. Molecular masses were determined by MALDI-TOF and ESI ion-trap mass spectrometry. The complete amino acid sequence of FTx II, III, IV and V were determined by sequencing of overlapping proteolytic fragments by Edman degradation and by de novo sequencing. The amino acid sequences of FTx I, II, III and VI predict 4 conserved disulphide bonds and structural similarity to previously reported short-chain alpha-neurotoxins. FTx IV and V each contained 10 conserved cysteines and share high similarity with long-chain alpha-neurotoxins. At the frog neuromuscular junction FTx II, III and IV reduced miniature endplate potential amplitudes in a time-and concentration-dependent manner suggesting Frontoxins block nicotinic acetylcholine receptors. Copyright 2010 Elsevier Ltd. All rights reserved.
Seismic behavior of outrigger truss-wall shear connections using multiple steel angles
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang
2016-06-01
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.
The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube
1992-06-01
9 C. CONDENSER SECTION .................................... 12 D. COOLING SECTION...lower tube kc thermal conductivity of copper L active boiling tube length Lu non-boiling tube length x Nu Nusselt number p tube outside wall perimeter Pr...teflon endplates. 2. A condenser , assembled using a similar Pyrex-glass tee with aluminum endplates. 3. A reservoir for R- 114 liquid storage. 4. A
Sano, Ichiya; Tanito, Masaki; Uchida, Koji; Katsube, Takashi; Kitagaki, Hajime; Ohira, Akihiro
2015-01-01
To evaluate ocular fluid filtration and endplate positioning in glaucomatous eyes with long-tube glaucoma drainage devices (GDDs) using magnetic resonance imaging (MRI) and the effects of various factors on postoperative intraocular pressure (IOP). This observational case series included 27 consecutive glaucomatous eyes (18 men, 7 women; mean age ± standard error, 63.0±2.0 years) who underwent GDD implantation (n = 8 Ahmed Glaucoma Valves [AGV] and n = 19 Baerveldt Glaucoma Implants [BGI]). Tubes were inserted into the pars plana in 23 eyes and anterior chamber in 4 eyes. Six months postoperatively, high-resolution orbital images were obtained using 3-Tesla MRI with head-array coils, and the filtering bleb volume, bleb height, and distances between the anterior endplate edge and corneal center or limbus or between the endplate and orbital wall were measured. In MR images obtained by three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) sequences, the shunt endplate was identified as low-intensity signal, and the filtering bleb was identified as high-intensity signals above and below the endplate in all eyes. The 6-month-postoperative IOP level was correlated negatively with bleb volume (r = -0.4510, P = 0.0182) and bleb height (r = -0.3954, P = 0.0412). The postoperative IOP was significantly (P = 0.0026) lower in BGI-implanted eyes (12.2±0.7 mmHg) than AGV-implanted eyes (16.7±1.2 mmHg); bleb volume was significantly (P = 0.0093) larger in BGI-implanted eyes (478.8±84.2 mm3) than AGV-implanted eyes (161.1±52.3 mm3). Other parameters did not differ. The presence of intraorbital/periocular accumulation of ocular fluid affects postoperative IOP levels in eyes implanted with long-tube GDDs. Larger filtering blebs after BGI than AGI implantations explain lower postoperative IOP levels achieved with BGI than AGV. The findings will contribute to better understanding of IOP reducing mechanism of long-tube GDDs.
Fatehi, M; Rowan, E G; Harvey, A L
1995-12-01
Previous studies have shown that homologous phospholipases A2 (PLA2) (Pa-3, Pa-9C, Pa-10F and Pa-11) from the venom of the Australian king brown snake, Pseudechis australis, significantly reduce the resting membrane potentials and quantal contents of endplate potentials recorded from endplate regions of mouse triangularis sterni nerve-muscle preparations. It is not clear whether PLA2 activity is essential for their neuromuscular activities. Therefore, pharmacological studies were carried out to determine whether neuromuscular activity of the toxins changed after treatment with the phospholipase A2 inhibitors 7,7-dimethyl-eicosadienoic acid (DEDA) and manoalide. After incubation of the toxins with manoalide (120 nM), or DEDA (50 microM), no PLA2 activity against 1-stearoyl 2-[3H]arachidonoylglycerophosphocholine was detected. After incubation with manoalide and/or DEDA, the toxins did not depolarize muscle fibre membranes up to 60 min after administration. However, manoalide and DEDA had different influences on the inhibitory effect of these toxic enzymes on acetylcholine release from nerve terminals. Manoalide abolished the inhibitory effect of the toxins on evoked release of acetylcholine. In contrast, DEDA was not able to prevent the reduction of quantal content of endplate potentials induced by the toxins. This study provides evidence that the depolarizing action and the inhibitory effect on release of acetylcholine exerted by these toxic PLA2 from king brown snake are independent phenomena. The evidence for this conclusion was that inhibition of enzymatic activity with an arachidonic acid analogue (DEDA) abolished the depolarizing effect of the toxins but not the effects on the quantal release of acetylcholine from mouse motor nerve terminals. The data suggest that the depolarizing effect of these toxins is probably due to the enzymatic activity. Since manoalide interacts with lysine residues of PLA2 polypeptides, and, as shown here, manoalide prevented inhibition of neurotransmitter release, lysine residues may play an important role in the inhibitory activity of these toxins.
Experimental Investigation of a Wing-in-Ground Effect Craft
Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin
2014-01-01
The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170
Experimental investigation of a wing-in-ground effect craft.
Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin
2014-01-01
The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1977-01-01
Surface pressure distributions are presented for regions where three-dimensional separated flow effects are prominent on swept-wing-elevon-end-plate models of 0 degree, 50 degree, and 70 degree sweepback, and with 0 degree, 10 degree, 20 degree, and 30 degree elevon deflections. Surface-oil-flow photographs and pressure distributions on the flat-plate wing, elevon, and end-plate surfaces are presented for numerous geometric variations, including various spacings between the elevon and the end plate, with and without a tip fin. The data, for a free-stream Mach number of 6 and a wing-root-chord Reynolds number of 20 x 10 to the sixth power, reveal considerably larger regions of elevon induced loads on the adjacent end-plate surface than would be anticipated by using inviscid flow analyses.
Muscle paralyzing effect of the juice from the trunk of the banana tree.
Singh, Y N; Dryden, W F
1985-01-01
The effect of an extract from the trunk of the banana tree (Musa sapientum) was investigated in isolated skeletal muscle preparations from the chick, mouse and frog using twitch tension and intracellular recording techniques. The extract produced, in the same concentration range and after an initial period of twitch augmentation, paralysis of skeletal muscle in both directly and indirectly stimulated preparations. It also had a dose-dependent stimulant effect on the muscle causing a contracture. The neuromuscular blockade was reversed by calcium, but only when added before complete paralysis of the muscle. On the other hand, neostigmine usually hastened the blockade and aggravated the contracture. The frequency of the miniature endplate potential in the mouse phrenic nerve-diaphragm preparation greatly increased initially, declining to an elevated plateau. Effects on quantal content of endplate potentials (e.p.p.s) were studied in the transected mouse phrenic nerve-hemidiaphragm using trains of e.p.p.s. In the presence of the extract, only a few e.p.p. trains could normally be evoked, probably due to nerve terminal block. When quantal content could be measured at low concentrations of the extract, an increase was usually obtained. Muscle action potentials in the frog sartorius muscle were decreased in amplitude until no further potentials could be generated. The results suggest that the nature of the block produced by the extract resembles that of a potent local anaesthetic with an initial atypical labilizing effect on cell calcium rather than a conventional curariform block.
Proposed principles of maximum local entropy production.
Ross, John; Corlan, Alexandru D; Müller, Stefan C
2012-07-12
Articles have appeared that rely on the application of some form of "maximum local entropy production principle" (MEPP). This is usually an optimization principle that is supposed to compensate for the lack of structural information and measurements about complex systems, even systems as complex and as little characterized as the whole biosphere or the atmosphere of the Earth or even of less known bodies in the solar system. We select a number of claims from a few well-known papers that advocate this principle and we show that they are in error with the help of simple examples of well-known chemical and physical systems. These erroneous interpretations can be attributed to ignoring well-established and verified theoretical results such as (1) entropy does not necessarily increase in nonisolated systems, such as "local" subsystems; (2) macroscopic systems, as described by classical physics, are in general intrinsically deterministic-there are no "choices" in their evolution to be selected by using supplementary principles; (3) macroscopic deterministic systems are predictable to the extent to which their state and structure is sufficiently well-known; usually they are not sufficiently known, and probabilistic methods need to be employed for their prediction; and (4) there is no causal relationship between the thermodynamic constraints and the kinetics of reaction systems. In conclusion, any predictions based on MEPP-like principles should not be considered scientifically founded.
Cunningham, Bryan W; Hu, Nianbin; Zorn, Candace M; McAfee, Paul C
2010-02-01
Using a synthetic vertebral model, the authors quantified the comparative fixation strengths and failure mechanisms of 6 cervical disc arthroplasty devices versus 2 conventional methods of cervical arthrodesis, highlighting biomechanical advantages of prosthetic endplate fixation properties. Eight cervical implant configurations were evaluated in the current investigation: 1) PCM Low Profile; 2) PCM V-Teeth; 3) PCM Modular Flange; 4) PCM Fixed Flange; 5) Prestige LP; 6) Kineflex/C disc; 7) anterior cervical plate + interbody cage; and 8) tricortical iliac crest. All PCM treatments contained a serrated implant surface (0.4 mm). The PCM V-Teeth and Prestige contained 2 additional rows of teeth, which were 1 mm and 2 mm high, respectively. The PCM Modular and Fixed Flanged devices and anterior cervical plate were augmented with 4 vertebral screws. Eight pullout tests were performed for each of the 8 conditions by using a synthetic fixation model consisting of solid rigid polyurethane foam blocks. Biomechanical testing was conducted using an 858 Bionix test system configured with an unconstrained testing platform. Implants were positioned between testing blocks, using a compressive preload of -267 N. Tensile load-to-failure testing was performed at 2.5 mm/second, with quantification of peak load at failure (in Newtons), implant surface area (in square millimeters), and failure mechanisms. The mean loads at failure for the 8 implants were as follows: 257.4 +/- 28.54 for the PCM Low Profile; 308.8 +/- 15.31 for PCM V-Teeth; 496.36 +/- 40.01 for PCM Modular Flange; 528.03+/- 127.8 for PCM Fixed Flange; 306.4 +/- 31.3 for Prestige LP; 286.9 +/- 18.4 for Kineflex/C disc; 635.53 +/- 112.62 for anterior cervical plate + interbody cage; and 161.61 +/- 16.58 for tricortical iliac crest. The anterior plate exhibited the highest load at failure compared with all other treatments (p < 0.05). The PCM Modular and Fixed Flange PCM constructs in which screw fixation was used exhibited higher pullout loads than all other treatments except the anterior plate (p < 0.05). The PCM VTeeth and Prestige and Kineflex/C implants exhibited higher pullout loads than the PCM Low Profile and tricortical iliac crest (p < 0.05). Tricortical iliac crest exhibited the lowest pullout strength, which was different from all other treatments (p < 0.05). The surface area of endplate contact, measuring 300 mm(2) (PCM treatments), 275 mm(2) (Prestige LP), 250 mm(2) (Kineflex/C disc), 180 mm(2) (plate + cage), and 235 mm(2) (tricortical iliac crest), did not correlate with pullout strength (p > 0.05). The PCM, Prestige, and Kineflex constructs, which did not use screw fixation, all failed by direct pullout. Screw fixation devices, including anterior plates, led to test block fracture, and tricortical iliac crest failed by direct pullout. These results demonstrate a continuum of fixation strength based on prosthetic endplate design. Disc arthroplasty constructs implanted using vertebral body screw fixation exhibited the highest pullout strength. Prosthetic endplates containing toothed ridges (>or= 1 mm) or keels placed second in fixation strength, whereas endplates containing serrated edges exhibited the lowest fixation strength. All treatments exhibited greater fixation strength than conventional tricortical iliac crest. The current study offers insights into the benefits of various prosthetic endplate designs, which may potentially improve acute fixation following cervical disc arthroplasty.
Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N
2009-10-01
The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.
Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging.
Moon, Sung M; Yoder, Jonathon H; Wright, Alexander C; Smith, Lachlan J; Vresilovic, Edward J; Elliott, Dawn M
2013-08-01
The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage positioned between the vertebral endplate and nucleus pulposus (NP) that functions both as a mechanical barrier and as a gateway for nutrient transport into the disc. Despite its critical role in disc nutrition and degeneration, the morphology of the CEP has not been well characterized. The objective of this study was to visualize and report observations of the CEP three-dimensional morphology, and quantify CEP thickness using an MRI FLASH (fast low-angle shot) pulse sequence. MR imaging of ex vivo human cadaveric lumbar spine segments (N = 17) was performed in a 7T MRI scanner with sequence parameters that were selected by utilizing high-resolution T1 mapping, and an analytical MRI signal model to optimize image contrast between CEP and NP. The CEP thickness at five locations along the mid-sagittal AP direction (center, 5 mm, 10 mm off-center towards anterior and posterior) was measured, and analyzed using two-way ANOVA and a post hoc Bonferonni test. For further investigation, six in vivo volunteers were imaged with a similar sequence in a 3T MRI scanner. In addition, decalcified and undecalcified histology was performed, which confirmed that the FLASH sequence successfully detected the CEP. CEP thickness determined by MRI in the mid-sagittal plane across all lumbar disc levels and locations was 0.77 ± 0.24 mm ex vivo. The CEP thickness was not different across disc levels, but was thinner toward the center of the disc. This study demonstrates the potential of MRI FLASH imaging for structural quantification of the CEP geometry, which may be developed as a technique to evaluate changes in the CEP with disc degeneration in future applications.
Cholinergic regulation of the evoked quantal release at frog neuromuscular junction
Nikolsky, Eugeny E; Vyskočil, František; Bukharaeva, Ella A; Samigullin, Dmitry; Magazanik, Lev G
2004-01-01
The effects of cholinergic drugs on the quantal contents of the nerve-evoked endplate currents (EPCs) and the parameters of the time course of quantal release (minimal synaptic latency, main modal value of latency histogram and variability of synaptic latencies) were studied at proximal, central and distal regions of the frog neuromuscular synapse. Acetylcholine (ACh, 5 × 10−4 m), carbachol (CCh, 1 × 10−5 m) or nicotine (5 × 10−6 m) increased the numbers of EPCs with long release latencies mainly in the distal region of the endplate (90–120 μm from the last node of Ranvier), where the synchronization of transmitter release was the most pronounced. The parameters of focally recorded motor nerve action potentials were not changed by either ACh or CCh. The effects of CCh and nicotine on quantal dispersion were reduced substantially by 5 × 10−7 m (+)tubocurarine (TC). The muscarinic agonists, oxotremorine and the propargyl ester of arecaidine, as well as antagonists such as pirenzepine, AF-DX 116 and methoctramine, alone or in combination, did not affect the dispersion of the release. Muscarinic antagonists did not block the dispersion action of CCh. Cholinergic drugs either decreased the quantal content mo (muscarinic agonist, oxotremorine M, and nicotinic antagonist, TC), or decreased mo and dispersed the release (ACh, CCh and nicotine). The effects on mo were not related either to the endplate region or to the initial level of release dispersion. It follows that the mechanisms regulating the amount and the time course of transmitter release are different and that, among other factors, they are altered by presynaptic nicotinic receptors. PMID:15254150
Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics
2014-01-01
The deformation between C4 and C6 measured by the US probe was affected by bulging of the IVD and soft tissues during compressive loading as...endplates of the vertebrae and cartilaginous endplate of the discs were added to all segments. Figure 28 Coronal views of the updated C4-T1 FEM (a...the ligaments and soft tissue connections that provide stability to the cervical spine FSUs were added (Figures 30 and 31). For the anterior
END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE
Sine, Steven M.
2012-01-01
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427
Lembke, Kayly M; Scudder, Charles; Morton, David B
2017-09-27
Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in detail. A Drosophila loss-of-function model displays pronounced locomotion defects that can be reversed by restoring the expression levels of a voltage-gated calcium channel, cacophony. We show these defects can be rescued by expression of cacophony in motor neurons and by expression in two pairs of neurons in the brain. These data suggest that loss of TDP-43 can disrupt the central circuitry of the CNS, opening up identification of alternative therapeutic targets for TDP-43 proteinopathies. Copyright © 2017 the authors 0270-6474/17/379486-12$15.00/0.
Zhang, Zhenjun; Fogel, Guy R; Liao, Zhenhua; Sun, Yitao; Liu, Weiqiang
2018-06-01
Lateral lumbar interbody fusion using cage supplemented with fixation has been used widely in the treatment of lumbar disease. A combined fixation (CF) of lateral plate and spinous process plate may provide multiplanar stability similar to that of bilateral pedicle screws (BPS) and may reduce morbidity. The biomechanical influence of the CF on cage subsidence and facet joint stress has not been well described. The aim of this study was to compare biomechanics of various fixation options and to verify biomechanical effects of the CF. The surgical finite element models with various fixation options were constructed based on computed tomography images. The lateral plate and posterior spinous process plate were applied (CF). The 6 motion modes were simulated. Range of motion (ROM), cage stress, endplate stress, and facet joint stress were compared. For the CF model, ROM, cage stress, and endplate stress were the minimum in almost all motion modes. Compared with BPS, the CF reduced ROM, cage stress, and endplate stress in all motion modes. The ROM was reduced by more than 10% in all motion modes except for flexion; cage stress and endplate stress were reduced more than 10% in all motion modes except for rotation-left. After interbody fusion, facet joint stress was reduced substantially compared with the intact conditions in all motion modes except for flexion. The combined plate fixation may offer an alternative to BPS fixation in lateral lumbar interbody fusion. Copyright © 2018 Elsevier Inc. All rights reserved.
Gray, W P; Keohane, C; Kirwan, W O
1997-10-01
The motor nerve transplantation (MNT) technique is used to transfer an intact nerve into a denervated muscle by harvesting a neurovascular pedicle of muscle containing motor endplates from the motor endplate zone of a donor muscle and implanting it into a denervated muscle. Thirty-six adult New Zealand White rabbits underwent reinnervation of the left long peroneal (LP) muscle (fast twitch) with a motor nerve graft from the soleus muscle (slow twitch). The right LP muscle served as a control. Reinnervation was assessed using microstimulatory single-fiber electromyography (SFEMG), alterations in muscle fiber typing and grouping, and isometric response curves. Neurofilament antibody was used for axon staining. The neurofilament studies provided direct evidence of nerve growth from the motor nerve graft into the adjacent denervated muscle. Median motor endplate jitter was 13 microsec preoperatively, and 26 microsec at 2 months, 29.5 microsec at 4 months, and 14 microsec at 6 months postoperatively (p < 0.001). Isometric tetanic tension studies showed a progressive functional recovery in the reinnervated muscle over 6 months. There was no histological evidence of aberrant reinnervation from any source outside the nerve pedicle. Isometric twitch responses and adenosine triphosphatase studies confirmed the conversion of the reinnervated LP muscle to a slow-type muscle. Acetylcholinesterase studies confirmed the presence of functioning motor endplates beneath the insertion of the motor nerve graft. It is concluded that the MNT technique achieves motor reinnervation by growth of new nerve fibers across the pedicle graft into the recipient muscle.
Brown, Stephen H M; Gregory, Diane E; McGill, Stuart M
2008-01-01
In a healthy spine, end-plate fractures occur from excessive pressurization of the intervening nucleus. Younger spines are most susceptible to such type of injury due to the highly hydraulic nature of their intervertebral discs. The purpose of this paper was to confirm this fracture mechanism of the healthy spine through the pressurization of the nucleus in the absence of external compressive loading. Sixteen functional porcine spine units were dissected and both injection and pressure transducer needles were inserted into the nucleus of the intervertebral disc. Hydraulic fluid was rapidly injected into the nucleus until failure occurred. Peak pressure and rate of pressure development were monitored. Spine units were dissected to determine the type and location of fracture. Fifteen of the 16 spine units fractured (the remaining unit had a degenerated disc). Of the 15 fractures, 13 occurred at the posterior margin of the end-plate along the lines of the growth plates. A slightly exponential relationship was found between peak pressure and its rate of development (R(2) = 0.544). Also, in each of the growth-plate fractured specimens, nuclear material was forcefully emitted, during fracture, from the intervertebral disc into the vertebral foramen. The posterior end-plate fractures produced here are similar to those often seen in young adult humans. This provides insight into a mechanism of fracture development through pressurization of the nucleus that might be seen in older adolescents and younger adults during athletic events or mild trauma.
Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle.
O'Brien, R A; Ostberg, A J; Vrbová, G
1978-01-01
1. The mechanism responsible for the elimination of polyneuronal innervation in developing rat soleus muscles was studied electrophysiologically and histologically. 2. Initially all the axons contacting a single end-plate have simple bulbous terminals. As elimination proceeds one axon develops terminal branches while the other terminals remain bulbous and may be seen in contact with, or a short distance away from, the end-plate. It is suggested that the branched terminal remains in contact with the muscle fibre while the other terminals withdraw. 3. At a time when polyneuronal innervation can no longer be detected electrophysiologically, the histological technique still shows the presence of end-plates contacted by more than one nerve terminal. 4. The effect of activity on the disappearance of polyneuronal innervation was examined. Activity was increased by electrical stimulation of the right sciatic nerve. This procedure also produced reflex activity in the contralateral limb. In both cases polyneuronal innervation was eliminated more rapidly in the active muscles. 5. The finding that proteolytic enzymes are released from muscles treated with acetylcholine (ACh), and the observation of the more rapid elimination of supernumerary terminals at the end-plates of active muscles, lead to the suggestion that superfluous nerve-muscle contacts are removed by the proteolytic enzymes in response to neuromuscular activity. The selective stabilization of only one of the terminals is discussed in the light of these results. Images Plate 1 Plate 2 PMID:722562
Crawford, Charles H; Glassman, Steven D; Gum, Jeffrey L; Carreon, Leah Y
2017-01-01
Advancements in the understanding of adult spinal deformity have led to a greater awareness of the role of the pelvis in maintaining sagittal balance and alignment. Pelvic incidence has emerged as a key radiographic measure and should closely match lumbar lordosis. As proper measurement of the pelvic incidence requires accurate identification of the S-1 endplate, lumbosacral transitional anatomy may lead to errors. The purpose of this study is to demonstrate how lumbosacral transitional anatomy may lead to errors in the measurement of pelvic parameters. The current case highlights one of the potential complications that can be avoided with awareness. The authors report the case of a 61-year-old man who had undergone prior lumbar surgeries and then presented with symptomatic lumbar stenosis and sagittal malalignment. Radiographs showed a lumbarized S-1. Prior numbering of the segments in previous surgical and radiology reports led to a pelvic incidence calculation of 61°. Corrected numbering of the segments using the lumbarized S-1 endplate led to a pelvic incidence calculation of 48°. Without recognition of the lumbosacral anatomy, overcorrection of the lumbar lordosis might have led to negative sagittal balance and the propensity to develop proximal junction failure. This case illustrates that improper identification of lumbosacral transitional anatomy may lead to errors that could affect clinical outcome. Awareness of this potential error may help improve patient outcomes.
Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis.
Phillips, W D; Christadoss, P; Losen, M; Punga, A R; Shigemoto, K; Verschuuren, J; Vincent, A
2015-08-01
Muscle-specific tyrosine kinase (MuSK) autoantibodies are the hallmark of a form of myasthenia gravis (MG) that can challenge the neurologist and the experimentalist. The clinical disease can be difficult to treat effectively. MuSK autoantibodies affect the neuromuscular junction in several ways. When added to muscle cells in culture, MuSK antibodies disperse acetylcholine receptor clusters. Experimental animals actively immunized with MuSK develop MuSK autoantibodies and muscle weakness. Weakness is associated with reduced postsynaptic acetylcholine receptor numbers, reduced amplitudes of miniature endplate potentials and endplate potentials, and failure of neuromuscular transmission. Similar impairments have been found in mice injected with IgG from MG patients positive for MuSK autoantibody (MuSK-MG). The active and passive models have begun to reveal the mechanisms by which MuSK antibodies disrupt synaptic function at the neuromuscular junction, and should be valuable in developing therapies for MuSK-MG. However, translation into new and improved treatments for patients requires procedures that are not too cumbersome but suitable for examining different aspects of MuSK function and the effects of potential therapies. Study design, conduct and analysis should be carefully considered and transparently reported. Here we review what has been learnt from animal and culture models of MuSK-MG, and offer guidelines for experimental design and conduct of studies, including sample size determination, randomization, outcome parameters and precautions for objective data analysis. These principles may also be relevant to the increasing number of other antibody-mediated diseases that are now recognized. Copyright © 2014 Elsevier Inc. All rights reserved.
Powley, Terry L.; Mittal, Ravinder K.; Baronowsky, Elizabeth A.; Hudson, Cherie N.; Martin, Felecia N.; McAdams, Jennifer L.; Mason, Jacqueline K.; Phillips, Robert J.
2013-01-01
Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n = 78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are “hardwired,” in the peripheral architecture of esophageal motor units. PMID:24044976
Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J
2013-12-01
Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.
Matthews-Bellinger, J; Salpeter, M M
1978-01-01
1. The distribution of acetylcholine receptors (AChR) at frog cutaneous pectoris neuromuscular junctions was studied quantitatively using [1125]alpha-bungarotoxin (alpha-BTX) labelling and EM autoradiography. 2. We found that, as in mouse end-plates, the AChR is localized uniformly along the thickened post-junctional membrane. In the frog muscle this specialized membrane constitutes approximately the top 50% of the junctional folds. 3. The receptor site density is approximately 26,000 +/- 6000 sites/micrometer2 on the thickened post-junctional membrane and falls sharply to approximately 50 sites/micrometer2 within 15 micrometer from the axon terminal. 4. alpha-BTX site density on the presynaptic axonal membrane was directly determined to be at most 5% of the value on the thickened post-junctional membrane. 5. The high post junctional AChR site density leads us to conclude that: (a) each quantum of ACh needs to spread only over a very small post-junctional area (to be called the 'critical area') before it encounters as many AChR (plus AchE) sites as there are ACh molecules in the quantum (for a packet of 10(4) ACh molecules this critical area is approximately 0.3 micrometer2), (b) the average concentration of ACh prevailing in the cleft over this critical area during a quantal response will be approximately 10(-3)M (independent of the size of the quantal packet), and (c) since 10(-3)M-ACh is large compared to any estimates of the dissociation constant Kd for ACh binding to the AChR, the ACh will essentially saturate the AChR within the critical area (provided the ACh binding rate is sufficiently faster than the ACh spreading rate). 6. The total receptive surface for a frog end-plate is calculated to be approximately 1500 micrometer2, and therefore an end-plate potential resulting from 300 quanta will be due to the activation of less than 10% of the total receptive area. 7. Free diffusion would allow each small post-junctional critical area to be reached in less than 15 musec. Therefore, either the recorded rise time of the miniature end-plate is not predominantly a function of ACh diffusion time, or, as suggested by Gage & McBurney (1975), the net rate of movement of ACh in the cleft is much slower than indicated by the free diffusion constant. Images Fig. 1a and b Fig. 2 Figs. 3, 5 Fig. 4 PMID:307600
NASA Technical Reports Server (NTRS)
Sivells, James C; Deters, Owen J
1946-01-01
A method is presented for determining the jet-boundary and plan-form corrections necessary for application to test data for a partial-span model with a reflection plane, an end plate, or no end plate in a closed circular wind tunnel. Examples are worked out for a partial-span model with each of the three end conditions in the Langley 19-foot pressure tunnel and the corrections are applied to measured values of lift, drag, pitching-moment, rolling-moment, and yawing-moment coefficients.
Prevalence, Patterns, and Genetic Association Analysis of Modic Vertebral Endplate Changes.
Kanna, Rishi Mugesh; Shanmuganathan, Rajasekaran; Rajagopalan, Veera Ranjani; Natesan, Senthil; Muthuraja, Raveendran; Cheung, Kenneth Man Chee; Chan, Danny; Kao, Patrick Yu Ping; Yee, Anita; Shetty, Ajoy Prasad
2017-08-01
A prospective genetic association study. The etiology of Modic changes (MCs) is unclear. Recently, the role of genetic factors in the etiology of MCs has been evaluated. However, studies with a larger patient subset are lacking, and candidate genes involved in other disc degeneration phenotypes have not been evaluated. We studied the prevalence of MCs and genetic association of 41 candidate genes in a large Indian cohort. MCs are vertebral endplate signal changes predominantly observed in the lumbar spine. A significant association between MCs and lumbar disc degeneration and nonspecific low back pain has been described, with the etiopathogenesis implicating various mechanical, infective, and biochemical factors. We studied 809 patients using 1.5-T magnetic resonance imaging to determine the prevalence, patterns, distribution, and type of lumbar MCs. Genetic association analysis of 71 single nucleotide polymorphisms (SNPs) of 41 candidate genes was performed based on the presence or absence of MCs. SNPs were genotyped using the Sequenome platform, and an association test was performed using PLINK software. The mean age of the study population (n=809) was 36.7±10.8 years. Based on the presence of MCs, the cohort was divided into 702 controls and 107 cases (prevalence, 13%). MCs were more commonly present in the lower (149/251, 59.4%) than in the upper (102/251, 40.6%) endplates. L4-5 endplates were the most commonly affected levels (30.7%). Type 2 MCs were the most commonly observed pattern (n=206, 82%). The rs2228570 SNP of VDR ( p =0.02) and rs17099008 SNP of MMP20 ( p =0.03) were significantly associated with MCs. Genetic polymorphisms of SNPs of VDR and MMP20 were significantly associated with MCs. Understanding the etiopathogenetic mechanisms of MCs is important for planning preventive and therapeutic strategies.
Ventral Dural Injury After Oblique Lumbar Interbody Fusion.
Chang, JaeChil; Kim, Jin-Sung; Jo, Hyunjin
2017-02-01
Oblique lumbar interbody fusion (OLIF) through the oblique corridor between the aorta and anterior border of psoas muscle is favored among spinal surgeons who employ minimally invasive techniques. We report a case of ventral dural tear after OLIF that was associated with the inaccurate trajectory direction of endplate preparation. This is the first report to our knowledge of ventral dural tear associated with OLIF. A 72-year-old woman presented with right leg pain and numbness. X-rays showed degenerative spondylolisthesis and loss of disc height at L4-L5 and L5-S1 levels. Magnetic resonance imaging revealed right-sided paracentral disc herniation at the L3-L4 level and foraminal disc herniation at L4-L5. The initial surgical plan was OLIF of L3-L4 and L4-L5 after percutaneous screw fixation without laminectomy. With the patient in the lateral position, discectomy and endplate preparation were done successfully at the L3-L4 level, and the same procedure was done at the L4-L5 level for OLIF. A sharp Cobbs elevator for endplate preparation triggered a ventral dural defect at the L4-L5 level. We changed the patient's position to attempt dural repair. The ventral dural defect could not be repaired because it was too large. After the herniated rootlets were repositioned, TachoComb was patched over the defect site. Postoperatively, the patient has no definite neurologic deficits. When a surgeon performs OLIF, ventral dural injury should be avoided during the procedure of endplate preparation and contralateral annular release. Copyright © 2016 Elsevier Inc. All rights reserved.
Rotation Capacity of Bolted Flush End-Plate Stiffened Beam-to-Column Connection
NASA Astrophysics Data System (ADS)
Ostrowski, Krzysztof; Kozłowski, Aleksander
2017-06-01
One of the flexibility parameters of semi-rigid joints is rotation capacity. Plastic rotation capacity is especially important in plastic design of framed structures. Current design codes, including Eurocode 3, do not posses procedures enabling designers to obtain value of rotation capacity. In the paper the calculation procedure of the rotation capacity for stiffened bolted flush end-plate beam-to-column connections has been proposed. Theory of experiment design was applied with the use of Hartley's PS/DS-P:Ha3 plan. The analysis was performed with the use of finite element method (ANSYS), based on the numerical experiment plan. The determination of maximal rotation angle was carried out with the use of regression analysis. The main variables analyzed in parametric study were: pitch of the bolt "w" (120-180 mm), the distance between the bolt axis and the beam upper edge cg1 (50-90 mm) and the thickness of the end-plate tp (10-20 mm). Power function was proposed to describe available rotation capacity of the joint. Influence of the particular components on the rotation capacity was also investigated. In the paper a general procedure for determination of rotation capacity was proposed.
Hizay, Arzu; Ozsoy, Umut; Demirel, Bahadir Murat; Ozsoy, Ozlem; Angelova, Srebrina K; Ankerne, Janina; Sarikcioglu, Sureyya Bilmen; Dunlop, Sarah A; Angelov, Doychin N; Sarikcioglu, Levent
2012-06-01
Despite increased understanding of peripheral nerve regeneration, functional recovery after surgical repair remains disappointing. A major contributing factor is the extensive collateral branching at the lesion site, which leads to inaccurate axonal navigation and aberrant reinnervation of targets. To determine whether the Y tube reconstruction improved axonal regrowth and whether this was associated with improved function. We used a Y-tube conduit with the aim of improving navigation of regenerating axons after facial nerve transection in rats. Retrograde labeling from the zygomatic and buccal branches showed a halving in the number of double-labeled facial motor neurons (15% vs 8%; P < .05) after Y tube reconstruction compared with facial-facial anastomosis coaptation. However, in both surgical groups, the proportion of polyinnervated motor endplates was similar (≈ 30%; P > .05), and video-based motion analysis of whisking revealed similarly poor function. Although Y-tube reconstruction decreases axonal branching at the lesion site and improves axonal navigation compared with facial-facial anastomosis coaptation, it fails to promote monoinnervation of motor endplates and confers no functional benefit.
Does bone cement in percutaneous vertebroplasty act as a stress riser?
Aquarius, René; van der Zijden, Astrid Maria; Homminga, Jasper; Verdonschot, Nico; Tanck, Esther
2013-11-15
An in vitro cadaveric study. To determine whether percutaneous vertebroplasty (PVP) with a clinically relevant amount of bone cement is capable of causing stress peaks in adjacent-level vertebrae. It is often suggested that PVP of a primary spinal fracture causes stress peaks in adjacent vertebrae, thereby leading to additional fractures. The in vitro studies that demonstrated this relationship, however, use bigger volumes of bone cement used clinically. Ten fresh-frozen vertebrae were loaded until failure, while registering force and displacement as well as the pressure under the lower endplate. After failure, the vertebrae were augmented with clinically relevant amounts of bone cement and then again loaded until failure. The force, displacement, and pressure under the lower endplate were again registered. Stress peaks were not related to the location of the injected bone cement. Both failure load and stiffness were significantly lower after augmentation. On the basis of our findings, we conclude that vertebral augmentation with clinically relevant amounts of bone cement does not lead to stress peaks under the endplate. It is therefore unlikely that PVP, in itself, causes detrimental stresses in the adjacent vertebrae, leading to new vertebral fractures. N/A.
Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong
2011-06-07
To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.
Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model
Sudres, Muriel; Maurer, Marie; Robinet, Marieke; Bismuth, Jacky; Truffault, Frédérique; Girard, Diane; Dragin, Nadine; Attia, Mohamed; Fadel, Elie; Santelmo, Nicola; Sicsic, Camille; Brenner, Talma
2017-01-01
Myasthenia gravis (MG) with anti–acetylcholine receptor (AChR) Abs is an autoimmune disease characterized by severe defects in immune regulation and thymic inflammation. Because mesenchymal stem cells (MSCs) display immunomodulatory features, we investigated whether and how in vitro–preconditioned human MSCs (cMSCs) could treat MG disease. We developed a new humanized preclinical model by subcutaneously grafting thymic MG fragments into immunodeficient NSG mice (NSG-MG model). Ninety percent of the animals displayed human anti-AChR Abs in the serum, and 50% of the animals displayed MG-like symptoms that correlated with the loss of AChR at the muscle endplates. Interestingly, each mouse experiment recapitulated the MG features of each patient. We next demonstrated that cMSCs markedly improved MG, reducing the level of anti-AChR Abs in the serum and restoring AChR expression at the muscle endplate. Resting MSCs had a smaller effect. Finally, we showed that the underlying mechanisms involved (a) the inhibition of cell proliferation, (b) the inhibition of B cell–related and costimulatory molecules, and (c) the activation of the complement regulator DAF/CD55. In conclusion, this study shows that a preconditioning step promotes the therapeutic effects of MSCs via combined mechanisms, making cMSCs a promising strategy for treating MG and potentially other autoimmune diseases. PMID:28405609
Effect of temperature on endplate potential rundown and recovery in rat diaphragm.
Moyer, M; van Lunteren, E
2001-05-01
The amplitude of neuromuscular junction end-plate potentials (EPPs) decreases quickly within a train but recovers nearly completely from train to train during intermittent stimulation. Rundown has been shown to be dependent not only on the rate of transmitter release but also on the rate of replenishment of the depleted neurotransmitter at the site of release. Two groups of processes have been proposed for synaptic vesicle recycling, both of which involve multiple energy-requiring steps and enzymatic reactions and which therefore would be expected to be very temperature-sensitive. The present study tested the hypothesis that low temperature therefore increases the rate of EPP amplitude rundown. Studies were performed in vitro on rat diaphragm and used micro-conotoxin to allow normal-sized EPPs to be recorded from intact fibers. EPP amplitude rundown during intermittent stimulation at 20 and 50 Hz (duty cycle 333 ms) was greater at 20 degrees C than it was at 37 degrees C. Initially, temperature affected only intra-train rundown but, over longer periods of stimulation, both intra- and inter-train rundown were significantly accelerated by cold temperature. Cumulative EPP amplitudes were calculated by successively adding the amplitudes of each EPP during the stimulation period to provide an estimate of total neurotransmitter release in the neuromuscular junction. The cumulative EPP amplitude was significantly lower at 20 degrees C than it was at 37 degrees C during both 20 and 50 Hz stimulation. These data indicate that the mechanism involved in EPP amplitude rundown and recovery is temperature-sensitive, with a greater decrement in EPP amplitude at cold than at warm temperatures.
The interaction between hexamethonium and tubocurarine on the rat neuromuscular junction.
Rang, H. P.; Rylett, R. J.
1984-01-01
The ability of hexamethonium (C6) to reverse the neuromuscular blocking action of tubocurarine (Tc) has been reinvestigated at the voltage clamped endplate of the omohyoid muscle of rat. The possibility that a weak anticholinesterase action of C6 could contribute to the paradoxical potentiation of the peak amplitude of the endplate response has been examined. C6 (50-200 microM) caused an increase in the amplitude of nerve-evoked endplate currents (e.p.cs) recorded in the presence of 0.6 microM Tc. The effect decreased with hyperpolarization of the muscle fibre. Irreversible inhibition of acetylcholinesterase resulted in a loss of the anti-curare effect of C6. C6 did not cause an increase in e.p.c. amplitude when acetylcholine (ACh) receptors were blocked irreversibly by alpha-bungaratoxin. When transmission was blocked by increased Mg2+ concentration, C6 (50-400 microM) reduced the amplitude of e.p.cs without appreciably affecting their time course. C6 caused a decrease in the amplitude of miniature endplate currents (m.e.p.cs) the effect being slightly increased when the fibre was hyperpolarized. An e-fold increase in the effectiveness of C6 occurred with approximately 58 mV hyperpolarization. High concentrations (greater than 400 microM) affected the time course of m.e.p.cs in a manner suggestive of open channel block, but this was not evident at 200 microM, the concentration that was most effective in reversing Tc block. When tested against responses to short ionophoretic pulses of agonists, C6 was less effective against ACh (EC50ca. 300 microM) than against carbachol (CCh) (EC50 100 microM). When cholinesterase was irreversibly inhibited, C6 blocked responses to both agonists equally (EC50ca. 100 microM). The effectiveness of C6 in blocking the action of CCh was reduced 10 fold in the presence of 0.6 microM Tc, implying that the two antagonists compete for the same binding site. C6 (50-200 microM) in the presence of Tc (0.6 microM) increased the response to ionophoretically applied ACh but not that to CCh. C6 was equipotent in blocking m.e.p.cs and responses to ionophoretically applied ACh whereas Tc was more potent against the exogenously applied agonist. C6 was a weak inhibitor of acetylcholinesterase activity in rat muscle homogenates (EC50 1.5 mM). The results are discussed in terms of the kinetic hypothesis advanced by Ginsborg & Stephenson (1974) to account for the Tc reversal phenomenon.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6141831
Prevalence, Patterns, and Genetic Association Analysis of Modic Vertebral Endplate Changes
Kanna, Rishi Mugesh; Rajagopalan, Veera Ranjani; Natesan, Senthil; Muthuraja, Raveendran; Cheung, Kenneth Man Chee; Chan, Danny; Kao, Patrick Yu Ping; Yee, Anita; Shetty, Ajoy Prasad
2017-01-01
Study Design A prospective genetic association study. Purpose The etiology of Modic changes (MCs) is unclear. Recently, the role of genetic factors in the etiology of MCs has been evaluated. However, studies with a larger patient subset are lacking, and candidate genes involved in other disc degeneration phenotypes have not been evaluated. We studied the prevalence of MCs and genetic association of 41 candidate genes in a large Indian cohort. Overview of Literature MCs are vertebral endplate signal changes predominantly observed in the lumbar spine. A significant association between MCs and lumbar disc degeneration and nonspecific low back pain has been described, with the etiopathogenesis implicating various mechanical, infective, and biochemical factors. Methods We studied 809 patients using 1.5-T magnetic resonance imaging to determine the prevalence, patterns, distribution, and type of lumbar MCs. Genetic association analysis of 71 single nucleotide polymorphisms (SNPs) of 41 candidate genes was performed based on the presence or absence of MCs. SNPs were genotyped using the Sequenome platform, and an association test was performed using PLINK software. Results The mean age of the study population (n=809) was 36.7±10.8 years. Based on the presence of MCs, the cohort was divided into 702 controls and 107 cases (prevalence, 13%). MCs were more commonly present in the lower (149/251, 59.4%) than in the upper (102/251, 40.6%) endplates. L4–5 endplates were the most commonly affected levels (30.7%). Type 2 MCs were the most commonly observed pattern (n=206, 82%). The rs2228570 SNP of VDR (p=0.02) and rs17099008 SNP of MMP20 (p=0.03) were significantly associated with MCs. Conclusions Genetic polymorphisms of SNPs of VDR and MMP20 were significantly associated with MCs. Understanding the etiopathogenetic mechanisms of MCs is important for planning preventive and therapeutic strategies. PMID:28874978
Does location of rotation center in artificial disc affect cervical biomechanics?
Mo, Zhongjun; Zhao, Yanbin; Du, Chengfei; Sun, Yu; Zhang, Ming; Fan, Yubo
2015-04-15
A 3-dimensional finite element investigation. To compare the biomechanical performances of different rotation centers (RCs) in the prevalent artificial cervical discs. Various configurations are applied in artificial discs. Design parameters may influence the biomechanics of implanted spine. The RC is a primary variation in the popular artificial discs. Implantation of 5 prostheses was simulated at C5-C6 on the basis of a validated finite element cervical model (C3-C7). The prostheses included ball-in-socket design with a fixed RC located on the inferior endplate (BS-FI) and on the superior endplate (BS-FS), with a mobile RC at the inferior endplate (BS-MI), dual articulation with a mobile RC between the endplates (DA-M), and sliding articulation with various RCs (SA-V). The spinal motions in flexion and extension served as a displacement loading at the C3 vertebrae. Total disc replacements reduced extension moment. The ball-in-socket designs required less flexion moment, whereas the flexion stiffness of the spines with DA-M and SA-V was similar to that of the healthy model. The contributions of the implanted level to the global motions increased in the total disc replacements, except in the SA-V and DA-M models (in flexion). Ball-in-socket designs produced severe stress distributions in facet cartilage, whereas DA-M and SA-V produced more severe stress distribution on the bone-implant interface. Cervical stability was extremely affected in extension and partially affected in flexion by total disc replacement. With the prostheses with mobile RC, cervical curvature was readjusted under a low follower load. The SA-V and BS-FS designs exhibited better performances in the entire segmental stiffness and in the stability of the operative level than the BS-MI and BS-FI designs in flexion. The 5 designs demonstrated varying advantages relative to the stress distribution in the facet cartilages and on the bone-implant interface. 5.
Zone-dependent changes in human vertebral trabecular bone: clinical implications.
Thomsen, Jesper Skovhus; Ebbesen, E N; Mosekilde, Li
2002-05-01
We have previously shown that there are pronounced age-related changes in human vertebral cancellous bone density and microarchitecture. However, the magnitude of these changes seemed to be dependent on zone location in the vertebral body-the central third vs. the areas adjacent to the endplates. The aim of the present study was, therefore, to investigate whether such zone-specific differences could be identified by static histomorphometric measures. The material comprised 48 individuals (24 women aged 19-97 years, and 24 men aged 23-95 years). Three of the women had a known fracture of the L-2. From each L-2, thick frontal sections of half of the vertebra were embedded undecalcified in methylmethacrylate, cut into 10-microm-thick sections, and stained with aniline blue. The sections were scanned into a computer, and classic static histomorphometry was performed on the images. The histomorphometry was performed on both the whole section and on the separate zones (central and sub-endplate zone). The results showed that trabecular bone volume, trabecular number, and connectivity density decreased significantly faster with age, whereas marrow space star volume increased significantly faster with age in the zones adjacent to the endplates than in the central zone. The other histomorphometric measures showed no zone specificity in relation to aging. However, trabecular thickness and trabecular separation were both higher at all ages in the central zone than in the sub-endplate zone, although this was significant only for trabecular separation. The described differences might have significant clinical implications concerning quantitative computed tomography (QCT) scanning, X-ray analyses, and assessment of fracture liability in the human spine, but the underlying pathogenesis is still not known. This study shows that the human vertebral body can be described as two distinct zones with very specific age-related changes in density and microstructure. This zone-specificity is important for the correct interpretation of clinical data.
Stensby, J Derek; Kaliney, Ryan W; Alford, Bennett; Shen, Francis H; Patrie, James T; Fox, Michael G
2016-03-01
The purpose of this study is to determine whether recombinant human morphogenetic protein-2 (rhBMP-2) alters the findings on routine radiographs performed after transforaminal lumbar interbody fusion (TLIF). A retrospective review of 256 TLIF procedures in 200 patients was performed over a 4-year period. The rhBMP-2 group included 204 TLIFs in 160 patients, and the control group included 52 TLIFs in 40 patients. Two musculoskeletal radiologists reviewed the postoperative radiographs for endplate resorption, resorption resolution, new bone formation, bridging bone, and allograft migration. Statistical analysis was performed using logistic regression. The median age was 53 years in the rhBMP-2 group and 54 years in the control group (p = 0.182). The groups were similar with regard to sex (p = 0.517), single or multilevel TLIF (p = 0.921), specific TLIF levels (p = 0.53), and median radiographic follow-up (373 vs 366 days; p = 0.34). Findings that were more common in the rhBMP-2 group than in the control group included endplate resorption (38% [78/204] vs 12% [6/52]; odds ratio [OR], 4.67; 95% CI, 1.99-12.54; p < 0.001), resorption resolution (59% [46/78] vs 0% [0/6]; OR, 8.09; 95% CI, 1.41 to ∞; p = 0.022), new bone formation (84% [171/204] vs 67% [35/52]; OR, 2.51; 95% CI, 1.24-4.99; p = 0.011), bridging bone (55% [112/204] vs 31% [16/52]; OR, 2.73; 95% CI, 1.43-5.34; p = 0.002), and allograft migration (17% [35/204] vs 2% [1/52]; OR, 6.30; 95% CI, 0.91-151.41; p = 0.065). A statistically significant higher frequency of endplate resorption, new bone formation, and bone bridging is present in TLIF augmented by rhBMP-2 compared with TLIF performed without rhBMP-2. Endplate resorption resolves without treatment in most cases after rhBMP-2 use.
Ion acceleration in a helicon source due to the self-bias effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.
2012-05-15
Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p{sub n} < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding E{sub i} Almost-Equal-To 7 kT{sub e} in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a sweptmore » emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V{sub p-p} Greater-Than-Or-Equivalent-To 140V, V{sub p-p}/V{sub p} Almost-Equal-To 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to 'neutralize' the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an insulating upstream boundary condition is enforced. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate.« less
NASA Astrophysics Data System (ADS)
Wiebold, Matthew D.
Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.
Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E
2015-12-01
Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.
Fields, Aaron J.; Berg-Johansen, Britta; Metz, Lionel N.; Miller, Stephanie; La, Brandan; Liebenberg, Ellen C.; Coughlin, Dezba G.; Graham, James L.; Stanhope, Kimber L.; Havel, Peter J.; Lotz, Jeffrey C.
2015-01-01
Type 2 diabetes (T2D) adversely affects many tissues, and the greater incidence of discogenic low back pain among diabetic patients suggests that the intervertebral disc is affected too. Using a rat model of polygenic obese T2D, we demonstrate that diabetes compromises several aspects of disc composition, matrix homeostasis and biomechanical behavior. Coccygeal motion segments were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days). Findings indicated that diabetes but not obesity reduced disc glycosaminoglycan and water contents, and these degenerative changes correlated with increased vertebral endplate thickness and decreased endplate porosity, and with higher levels of the advanced glycation end-product (AGE) pentosidine. Consistent with their diminished glycosaminoglycan and water contents and their higher AGE levels, discs from diabetic rats were stiffer and exhibited less creep when compressed. At the matrix level, elevated expression of hypoxia-inducible genes and catabolic markers in the discs from diabetic rats coincided with increased oxidative stress and greater interactions between AGEs and one of their receptors (RAGE). Taken together, these findings indicate that endplate sclerosis, increased oxidative stress and AGE/RAGE-mediated interactions could be important factors for explaining the greater incidence of disc pathology in T2D. PMID:25641259
Physiological basis of a steady endogenous current in rat lumbrical muscle
1984-01-01
In an attempt to determine the mechanism by which rat skeletal muscle endplates generate a steady outward current, we measured the effects of several drugs (furosemide, bumetanide, 9-anthracene carboxylic acid [9- AC]) and changes in external ion concentration (Na+, K+, Cl-, Ba++) on resting membrane potential (Vm) and on the steady outward current. Each of the following treatments caused a 10-15-mV hyperpolarization of the membrane: replacement of extracellular Cl- with isethionate, addition of furosemide or bumetanide, and addition of 9-AC. These results suggest that Cl- is actively accumulated by the muscle fibers and that the equilibrium potential of Cl- is more positive than the membrane potential. Removal of external Na+ also caused a large hyperpolarization and is consistent with evidence in other tissues that active Cl- accumulation requires external Na+. The same treatments greatly reduced or abolished the steady outward current, with a time course that paralleled the changes in Vm. These results cannot be explained by a model in which the steady outward current is assumed to arise as a result of a nonuniform distribution of Na+ conductance, but they are consistent with models in which the steady current is produced by a nonuniform distribution of GCl or GK. Other treatments (Na+-free and K+-free solutions, and 50 microM BaCl2) caused a temporary reversal of the steady current. Parallel measurements of Vm suggested that in none of these cases did the electrochemical driving force for K+ change sign, which makes it unlikely that the steady current arises as a result of a nonuniform distribution of GK. All of the results, however, are consistent with a model in which the steady outward current arises as a result of a nonuniform distribution of Cl- conductance, with GCl lower near the endplate than in extrajunctional regions. PMID:6325581
Garcia, N; Santafe, M M; Tomas, M; Lanuza, M A; Besalduch, N; Tomas, J
2010-01-01
We use immunocytochemistry to show that neurotrophin-4 (NT-4) and its receptor proteins (p75(NTR) and tropomyosin-related tyrosine kinase B) are present in neonatal neuromuscular junctions (NMJ) colocalized with several synaptic markers. NT-4 incubation (1h, in the range 2-12 nM) does not change the size of the endplate potential between P6 and P45. However, extended exposure (3h) to a relatively low dose of NT-4 (2 nM) potentiates ACh release (approx. 70%) in adult but not in neonatal muscles. The present results suggest that the developmental mechanism of axonal competition and neonatal elimination of redundant synapses cannot be modulated by added NT-4. However, this neurotrophin was able to modulate synaptic transmission locally in the adult NMJ.
NASA Astrophysics Data System (ADS)
Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao
2018-03-01
In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.
Mwale, F; Roughley, P; Antoniou, J
2004-12-15
Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio) in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.
[Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].
Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying
2014-10-14
To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.
Van der Kloot, W
1988-01-01
1. Following motor nerve stimulation there is a period of greatly enhanced quantal release, called the early release period or ERP (Barrett & Stevens, 1972b). Until now, measurements of the probability of quantal releases at different points in the ERP have come from experiments in which quantal output was greatly reduced, so that the time of release of individual quanta could be detected or so that the latency to the release of the first quantum could be measured. 2. A method has been developed to estimate the timing of quantal release during the ERP that can be used at much higher levels of quantal output. The assumption is made that each quantal release generates an end-plate current (EPC) that rises instantaneously and then decays exponentially. The peak amplitude of the quantal currents and the time constant for their decay are measured from miniature end-plate currents (MEPCs). Then a number of EPCs are averaged, and the times of release of the individual quanta during the ERP estimated by a simple mathematical method for deconvolution derived by Cohen, Van der Kloot & Attwell (1981). 3. The deconvolution method was tested using data from preparations in high-Mg2+ low-Ca2+ solution. One test was to reconstitute the averaged EPCs from the estimated times of quantal release and the quantal currents, by using Fourier convolution. The reconstructions fit well to the originals. 4. Reconstructions were also made from averaged MEPCs which do not rise instantaneously and the estimated times of quantal release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2466987
Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC
2014-01-01
Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441
Jesse, Mary Kristen; Petersen, Brian; Glueck, Deborah; Kriedler, Sarah
2015-01-01
The most widely researched risk/complication following vertebroplasty (VP) or kyphoplasty (KP) is that of adjacent level fracture (ALF). Current literature results regarding the effect of intradiscal extravasation of cement on the risk of ALF is conflicting with about half of the studies concluding there is no added risk with endplate extravasation and half of the studies reporting opposite conclusions. The purpose of the study is to further stratify the data to determine whether specifically the location and extent of endplate cement extravasation more strongly affect ALF risk in osteoporotic patients following either VP or balloon KP. Retrospective cohort study. University teaching hospital. One hundred and fifty-six cemented levels in 80 patients, treated at a single center between 2008 and 2012 were reviewed. Age, gender, T-score, body mass index, and osteoporosis type (primary or secondary) were recorded. An ALF was defined as a fracture: 1) in a non-cemented vertebra; 2) adjacent to a cemented level; and 3) not due to trauma or malignancy. Location of the cement extravasation (anterior, middle, or posterior third of the vertebral body) and extravasation extent (percentage of the intervertebral disc height occupied by the bolus) were measured. A logistic modeling strategy permitted examining the association between the location and extent of extravasation and the odds of ALF. ALF occurred in 14 of the 52 patients (27%) and 20 of the 98 levels (20.4%) remaining after exclusions. Odds of ALF were 5.9 times higher (95% CI: 1.6 to 21.2, P = 0.008) with extravasation when compared to no leakage. Odds of ALF in a given patient were 22.6 times higher (95% CI: 3.0 to 170.9, P = 0.003) with anterior extravasation when compared to no leakage. Leakage in the middle or posterior thirds and extent of extravasation were not associated with ALF. Limitations of the study include the retrospective study design and small sample size as well as the retrospective implementation of follow-up criteria posing risk of selection bias. Cement endplate extravasation isolated to the anterior third of the vertebral body is associated with is significantly higher odds of ALF after VP or KP in patients with osteoporosis.
NASA Astrophysics Data System (ADS)
Benfenati, Francesco; Beretta, Gian Paolo
2018-04-01
We show that to prove the Onsager relations using the microscopic time reversibility one necessarily has to make an ergodic hypothesis, or a hypothesis closely linked to that. This is true in all the proofs of the Onsager relations in the literature: from the original proof by Onsager, to more advanced proofs in the context of linear response theory and the theory of Markov processes, to the proof in the context of the kinetic theory of gases. The only three proofs that do not require any kind of ergodic hypothesis are based on additional hypotheses on the macroscopic evolution: Ziegler's maximum entropy production principle (MEPP), the principle of time reversal invariance of the entropy production, or the steepest entropy ascent principle (SEAP).
Low cost, lightweight fuel cell elements
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor)
2001-01-01
New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.
Development of a Liquefied Noble Gas Time Projection Chamber
NASA Astrophysics Data System (ADS)
Lesser, Ezra; White, Aaron; Aidala, Christine
2015-10-01
Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.
Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M
2012-03-01
Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Kuan; Deng, Zhen; Wang, Hui-Hao; Li, Zheng-Yan; Niu, Wen-Xin; Chen, Bo; Zhang, Ming-Cai; Yuan, Wei-An; Zhan, Hong-Sheng
2017-05-25
To analyze the relationship between position of head, cervical curvature type and associated cervical balance parameters in a neutral looking-forward posture. Cervical lateral X-rays of 60 patients with cervical spondylosis were selected from January to December 2015. There were 22 males and 38 females with an average age of (35.5±10.9) years old. The measured parameters included cervical curvature type, McGregor slope, C2 lower end plate slope, T1 slope, center of gravity to C7 sagittal vertical offset (CG-C7 SVA), and C2 to C7 sagittal vertical offset (C2-C7 SVA). The parameters were analyzed using Spearman correlation. The cervical curvature type was significantly correlated with C2 lower endplate slope, C0-C2 angle (total degree of C2 lower endplate slope plus McGregor slope), CG-C7 SVA and T1 slope ( P <0.05), but it was not significantly correlated McGregor slope ( P >0.05). C2 lower endplate slope and C2-C7 SVA (r=0.87) were significantly ( P <0.05) correlated with CG-C7 SVA ( P <0.05). There was certain some relationship among position of head, cervical curvature type and associated cervical balance parameters in a neutral looking-forward posture. The center of gravity of the head would backwards shift following faced upward. A position of extension with posterior-shifting of the head would suggest that it may be accompanied with a relatively normal lordosis of the cervical spine. Some patients with abnormal curvature showed slightly bended head in the natural posture. Health education toward these people would be meaningful to restore the balance of their neck.
Expression of miR-625 and Fas in cervical vertebral cartilage endplate.
Zhan, Beilei; Zhan, Yan; Wang, Wei; Zhan, Yunzhong; Liu, Bingsheng
2018-01-01
The aim of the present study was to assess miR-625 and Fas expression in normal and degenerative cervical cartilage endplate (CEP) tissues. Following biof-informatics analysis, the Fas gene was predicted to be one of the targets of miR-625. Quantitative PCR (qPCR) and western blotting were used to detect miR-625 and Fas expression in normal and degenerative CEP. A luciferase reporter assay was used to identify whether miR-625 could directly target the 3' untranslated region (3'-UTR) of Fas. Lentiviral overexpression and/or inhibition vectors of miR-625 (pre-miR-625)/antigomiR-625 were constructed to determine whether overexpression or inhibition of miR-625 could affect Fas and B-cell lymphoma 2 (Bcl-2) expression in cartilaginous endplate cells (CECs) and tissues. qPCR analysis demonstrated that miR-625 expression in degenerative CEP was significantly lower than in normal CEP tissue, while the production of Fas in degenerated CEP was significantly higher. Results from western blotting also showed a significant increase in Fas expression in degenerative CEP. miR-625 can bind directly to the 3'-UTR of the Fas gene. However, this inhibition was attenuated by a target mutation in the miR-625-binding site of the 3'-UTR of Fas mRNA. In addition, following transfection of CECs with pre-miR-625 and antigomiR-625, expression of Fas significantly decreased and increased, respectively, and Bcl-2 expression was upregulated and downregulated, respectively. Upregulation of miR-625 can inhibit Fas expression and further affect Bcl-2 expression in CEP degeneration, suggesting that miR-625-mediated inhibition of the Fas gene is important in cervical degeneration.
Pumberger, Matthias; Hughes, Alexander P; Girardi, Federico P; Gogia, Jaspaul; Kotwal, Suhel Y; Thaler, Christoph; Sama, Andrew A
2012-12-01
Cadaveric study. The purpose of this study was to assess the influence of surgical experience on the efficiency of lumbar discectomy in open transforaminal lumbar interbody fusion. There is limited knowledge about the efficiency of discectomy among surgeons. As a first study, we are evaluating the effect of surgical experience on it. Manual and powered discectomies were randomized and performed by 3 attending spine surgeons and 2 clinical spine fellows. Each discectomy procedure was analyzed for the area of complete endplate preparation, total elapsed time, and number of instrument passes. The surface area of discectomy at each endplate was measured utilizing digital imaging and the appropriate software. For the purpose of the analysis, the superior and the inferior endplates were divided into ipsilateral and contralateral halves, and each half was further divided into ventral and dorsal quadrants. Each quadrant was analyzed in a blinded manner by 2 observers. A total of 40 discectomies were performed on 9 fresh-frozen cadaveric torsos between the levels T12 and S1. A powered discectomy device was used in levels 9 and 11 by the attendings. Manual discectomy was performed in 11 levels by the spine fellows and 9 by the spine attendings. No significant difference was observed between the spine fellows and spine attendings when the manual instruments were used (P = 0.924). However, the spine attending surgeon group had a significantly increased total area of discectomy compared with the fellows (P = 0.003). No significant difference was observed between the groups when instrument passes or the total elapsed time were compared either utilizing the manual or the powered technique. Our results demonstrate that a satisfactory discectomy may be performed by surgeons with relatively less surgical experience in the transforaminal approach using a powered discectomy device.
Hou, Yu; Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui
2018-01-01
Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper: t = 31.41, p<0.001; lower: t = 12.19, p<0.001). The higher percentage of the height of polymethylmethacrylate in the middle portion of vertebral body indicates the lower risk of recompression (odds ratio [OR]<0.01, p<0.001). The recompression group and non-recompression group showed significant difference in "contacted" polymethylmethacrylate distribution pattern (polymethylmethacrylate contacted to the both upper/lower endplates) (χ2 = 66.23, p<0.001). The vertebra with a "contacted" polymethylmethacrylate distribution pattern has lower risk of recompression (OR = 0.09, p<0.001). Either more polymethylmethacrylate in the middle portion of vertebral body or "contacted" polymethylmethacrylate distribution pattern had a significantly less incidence of recompression. The findings indicated that the control of polymethylmethacrylate distribution during surgery may reduce the risks of recompression after vertebroplasty or kyphoplasty.
Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui
2018-01-01
Background Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. Methods A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. Results One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper: t = 31.41, p<0.001; lower: t = 12.19, p<0.001). The higher percentage of the height of polymethylmethacrylate in the middle portion of vertebral body indicates the lower risk of recompression (odds ratio [OR]<0.01, p<0.001). The recompression group and non-recompression group showed significant difference in “contacted” polymethylmethacrylate distribution pattern (polymethylmethacrylate contacted to the both upper/lower endplates) (χ2 = 66.23, p<0.001). The vertebra with a “contacted” polymethylmethacrylate distribution pattern has lower risk of recompression (OR = 0.09, p<0.001). Conclusions Either more polymethylmethacrylate in the middle portion of vertebral body or “contacted” polymethylmethacrylate distribution pattern had a significantly less incidence of recompression. The findings indicated that the control of polymethylmethacrylate distribution during surgery may reduce the risks of recompression after vertebroplasty or kyphoplasty. PMID:29856859
Current Status of the Congenital Myasthenic Syndromes
Engel, Andrew G.
2011-01-01
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Clinical, electrophysiologic, and morphologic studies have paved the way for detecting CMS-related mutations in proteins residing in the nerve terminal, the synaptic basal lamina, and in the postsynaptic region of the motor endplate. The disease proteins identified to date include choline acetyltransferase (ChAT), the endplate species of acetylcholinesterase (AChE), β2-laminin, the acetylcholine receptor (AChR), rapsyn, plectin, Nav1.4, the muscle specific protein kinase (MuSK), agrin, downstream of tyrosine kinase 7 (Dok-7), and glutamine-fructose-6-phosphate transaminase 1 (GFPT1). Myasthenic syndromes associated with centronuclear myopathies were recently recognized. Analysis of properties of expressed mutant proteins contributed to finding improved therapy for most CMS. Despite these advances, the molecular basis of some phenotypically characterized CMS remains elusive. Moreover, other types of CMS and disease genes likely exist and await discovery. PMID:22104196
Land, B R; Harris, W V; Salpeter, E E; Salpeter, M M
1984-01-01
In previous papers we studied the rising phase of a miniature endplate current (MEPC) to derive diffusion and forward rate constants controlling acetylcholine (AcCho) in the intact neuromuscular junction. The present study derives similar values (but with smaller error ranges) for these constants by including experimental results from the falling phase of the MEPC. We find diffusion to be 4 X 10(-6) cm2 s-1, slightly slower than free diffusion, forward binding to be 3.3 X 10(7) M-1 s-1, and the distance from an average release site to the nearest exit from the cleft to be 1.6 micron. We also estimate the back reaction rates. From our values we can accurately describe the shape of MEPCs under different conditions of receptor and esterase concentration. Since we suggest that unbinding is slower than isomerization, we further predict that there should be several short "closing flickers" during the total open time for an AcCho-ligated receptor channel. PMID:6584895
Thermal Behaviour of Beams with Slant End-Plate Connection Subjected to Nonsymmetric Gravity Load
Osman, Mohd Hanim; Talebi, Elnaz
2014-01-01
Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used. PMID:24587720
Thermal behaviour of beams with slant end-plate connection subjected to nonsymmetric gravity load.
Zahmatkesh, Farshad; Osman, Mohd Hanim; Talebi, Elnaz
2014-01-01
Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used.
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Bhattacharya, Deb Sankar; Mukhopadhyay, Supratik; Majumdar, Nayana; Bhattacharya, Sudeb; Colas, Paul; Attié, David
2018-02-01
The R&D activities for the linear collider TPC (LC-TPC) are currently working on the adoption of the micro pattern devices for the gaseous amplification stage. Several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. We worked on a large prototype TPC with an end-plate that was built, for the first time, using seven resistive bulk Micromegas modules. During experiments, reduced signal sensitivity was observed at the boundary of these modules. Electrostatic field distortion near the module boundaries was considered to be the possible major reason behind these observations. In the present work, we will explore this hypothesis through numerical simulation. Our aim has been to understand the origin of distortions observed close to the edges of the test beam modules and to explore the possibility of using the Garfield simulation framework for investigating a phenomenon as complex as distortion.
Paxton, E Scott; Moorman, Claude T; Chehab, Eric L; Barnes, Ronnie P; Warren, Russell F; Brophy, Robert H
2010-11-01
Hyperconcavity of the lumbar spine has been found in a disproportionate percentage of college football lineman evaluated at the National Football League (NFL) Combine compared with age-matched controls. College football linemen with hyperconcavity of the lumbar spine are more likely to play in the NFL and to have a longer career in professional football. Cohort study; Level of evidence, 3. Ninety three linemen from the 1992 and 1993 NFL Combines with hyperconcavity of the lumbar spine were compared with 191 linemen from the same combines without these changes in the lumbar spine. The percentage of athletes who played at least 1 game for an NFL team and the average length of career was calculated for both groups. In addition, the length of career for players with these changes was compared with those of matched controls based on other injuries and surgeries, year drafted, and round drafted. There was no difference in the likelihood of playing professional football between linemen with lumbar spine changes (54 of 93 [58%]) and those without (101 of 191 [53%]) (P = .41). There was no significant difference between the 2 groups in length of career in terms of years played, games played, or games started. Hyperconcavity of the lumbar spine does not appear to have any effect on the potential professional American football careers of college football linemen entering the NFL. Endplate changes on radiographs are not a significant screening tool for elite American football linemen. Further study of larger populations is needed to definitively answer whether these adaptive changes in the lumbar spine have any clinical relevance to these athletes.
Fuel cell elements with improved water handling capacity
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Lee, Albany (Inventor)
2001-01-01
New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.
Jiang, Zengxin; Lu, Wei; Zeng, Qingmin; Li, Defang; Ding, Lei; Wu, Jingping
2018-04-16
Diabetes mellitus (DM) is an important factor in intervertebral disc degeneration (IDD). Apoptosis of cartilage endplate (CEP) cells is one of the initiators of IDD. However, the effects of high glucose on CEP cells are still unknown. Therefore, we conducted the present study to evaluate the effects of high glucose on CEP cells and to identify the mechanisms of those effects. Rat CEP cells were isolated and cultured in 10% foetal bovine serum (FBS, normal control) or high-glucose medium (10% FBS + 0.1 M glucose or 10% FBS + 0.2 M glucose, experimental conditions) for 1 or 3 days. In addition, CEP cells were treated with 0.2 M glucose for 3 days in the presence or absence of alpha-lipoic acid (ALA, 0.15 M). Flow cytometry was performed to identify and quantify the degree of apoptosis. The expression of reactive oxygen species (ROS) was assessed by flow cytometry, and mitochondrial damage (mitochondrial membrane potential) was assessed by fluorescence microscopy. Furthermore, the expression levels of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and cytochrome c were evaluated by Western blotting. High glucose significantly increased apoptosis and ROS accumulation in CEP cells in a dose- and time-dependent manner. Meanwhile, a disrupted mitochondrial membrane potential was detected in rat CEP cells cultured in the two high glucose concentrations. Incubating in high glucose enhanced the expression levels of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but decreased the level of the anti-apoptotic protein Bcl-2. ALA inhibited the expression of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but enhanced the expression of Bcl-2. ALA also prevented disruption of the mitochondrial membrane potential in CEP cells. This study demonstrates that high glucose-induced excessive reactive oxygen species promote mitochondrial damage, thus causing apoptosis in rat CEP cells in a dose- and time-dependent manner. ALA could prevent mitochondrial damage and apoptosis caused by high glucose in CEP cells. The results suggest that appropriate blood glucose control may be the key to preventing IDD in diabetic patients. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Schwann Cells in Neuromuscular Junction Formation and Maintenance.
Barik, Arnab; Li, Lei; Sathyamurthy, Anupama; Xiong, Wen-Cheng; Mei, Lin
2016-09-21
The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to investigate the consequences of the ablation. This study reveals a critical role of SCs in NMJ formation as well as maintenance. Copyright © 2016 the authors 0270-6474/16/369770-12$15.00/0.
Zhang, Bao-cheng; Liu, Hai-bo; Cai, Xian-hua; Wang, Zhi-hua; Xu, Feng; Kang, Hui; Ding, Ran; Luo, Xiao-qing
2015-09-22
The transoral atlantoaxial reduction plate (TARP) fixation has been introduced to achieve reduction, decompression, fixation and fusion of C1-C2 through a transoral-only approach. However, it may also be associated with potential disadvantages, including dysphagia and load shielding of the bone graft. To prevent potential disadvantages related to TARP fixation, a novel transoral atlantoaxial fusion cage with integrated plate (Cage + Plate) device for stabilization of the C1-C2 segment is designed. The aims of the present study were to compare the biomechanical differences between Cage + Plate device and Cage + TARP device for the treatment of basilar invagination (BI) with irreducible atlantoaxial dislocation (IAAD). A detailed, nonlinear finite element model (FEM) of the intact upper cervical spine had been developed and validated. Then a FEM of an unstable BI model treated with Cage + Plate fixation, was compared to that with Cage + TARP fixation. All models were subjected to vertical load with pure moments in flexion, extension, lateral bending and axial rotation. Range of motion (ROM) of C1-C2 segment and maximum von Mises Stress of the C2 endplate and bone graft were quantified for the two devices. Both devices significantly reduced ROM compared with the intact state. In comparison with the Cage + Plate model, the Cage + TARP model reduced the ROM by 82.5 %, 46.2 %, 10.0 % and 74.3 % in flexion, extension, lateral bending, and axial rotation. The Cage + Plate model showed a higher increase stresses on C2 endplate and bone graft than the Cage + TARP model in all motions. Our results indicate that the novel Cage + Plate device may provide lower biomechanical stability than the Cage + TARP device in flexion, extension, and axial rotation, however, it may reduce stress shielding of the bone graft for successful fusion and minimize the risk of postoperative dysphagia. Clinical trials are now required to validate the reproducibility and advantages of our findings using this anchored cage for the treatment of BI with IAAD.
Fuel Cell Vehicle Fleet and Hydrogen Infrastructure at Hickam Air Force Base
2009-04-27
there has been no evidence of busbar or endplate corrosion in the manifold region. The crossover leak was the result of a failed humidification device...leak that develops within the humidifier can lead to a combustible gas mixture entering the fuel cell stack. This humidification device has been
Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice
USDA-ARS?s Scientific Manuscript database
Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...
Minatel, Elaine; Neto, Humberto Santo; Marques, Maria Julia
2003-11-01
The pattern of innervation of the vertebrate neuromuscular junction is established during early development, when junctions go from multiple to single innervation in the phenomenon of synapse elimination, suggesting that changes at the molecular level in the postsynaptic cell lead to the removal of nerve terminals. The mdx mouse is deficient in dystrophin and associated proteins that are part of the postsynaptic cytoskeleton. We used rhodamine-alpha-bungarotoxin and anti-neurofilament IgG-FITC to stain acetylcholine receptors and nerve terminals of the sternomastoid muscle during postnatal development in mdx and control C57BL/10 mice. Using fluorescence confocal microscopy, we observed that, 7 days after birth, 86.7% of the endplates of mdx mice were monoinnervated (n = 200) compared with 41.4% in control mice (n = 200). By the end of the second postnatal week, all endplates were innervated singly (100% mdx and 94.7% controls, n = 200 per group). These results show that dystrophic fibers achieve single innervation earlier, perhaps because dystrophin or a normal cytoskeletal complex is implicated in this phenomenon.
Sex assessment using measurements of the first lumbar vertebra.
Zheng, Wen Xu; Cheng, Fu Bo; Cheng, Kai Liang; Tian, Yong; Lai, Ying; Zhang, Wen Song; Zheng, Ya Juan; Li, You Qiong
2012-06-10
Sex determination is a vital part of the medico-legal system but can be difficult in cases where the integrity of the body has been compromised. The purpose of this study was to develop a technique for sex assessment from measurements of the first lumber vertebrate. Twenty-nine linear measurements and five ratios were collected from 113 Chinese adult males and 97 Chinese adult females using digital three-dimensional anthropometry methods. By using discriminant analysis, we found that 23 linear measurements and two ratios identified sexual dimorphism (P<0.01), with predictive accuracy ranging from 57.1% to 86.6%. Using a stepwise method of discriminant function analysis, we found three dimensions predicted sex with 88.6% accuracy: (a) upper end-plate width (EPWu), (b) left pedicle height (PHl), and (c) middle end-plate depth (EPDm). This study shows that a single first lumber vertebra can be used for this purpose, and that the discriminant equation will help forensic determination of sex in the Chinese population. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Rajasekaran, S; Kanna, Rishi Mugesh; Senthil, Natesan; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Subramaniam, Sakthikanal; Shetty, Ajoy Prasad
2013-10-01
Although the influence of genetics on the process of disc degeneration is well recognized, in recently published studies, there is a wide variation in the race and selection criteria for such study populations. More importantly, the radiographic features of disc degeneration that are selected to represent the disc degeneration phenotype are variable in these studies. The study presented here evaluates the association between single nucleotide polymorphisms (SNPs) of candidate genes and three distinct radiographic features that can be defined as the degenerative disc disease (DDD) phenotype. The study objectives were to examine the allelic diversity of 58 SNPs related to 35 candidate genes related to lumbar DDD, to evaluate the association in a hitherto unevaluated ethnic Indian population that represents more than one-sixth of the world population, and to analyze how genetic associations can vary in the same study subjects with the choice of phenotype. A cross-sectional, case-control study of an ethnic Indian population was carried out. Fifty-eight SNPs in 35 potential candidate genes were evaluated in 342 subjects and the associations were analyzed against three highly specific markers for DDD, namely disc degeneration by Pfirrmann grading, end-plate damage evaluated by total end-plate damage score, and annular tears evaluated by disc herniations and hyperintense zones. Genotyping of cases and controls was performed on a genome-wide SNP array to identify potential associated disease loci. The results from the genome-wide SNP array were then used to facilitate SNP selection and genotype validation was conducted using Sequenom-based genotyping. Eleven of the 58 SNPs provided evidence of association with one of the phenotypes. For annular tears, rs1042631 SNP of AGC1 and rs467691 SNP of ADAMTS5 were highly significantly associated (p<.01) and SNPs in NGFB, IL1B, IL18RAP, and MMP10 were also significantly associated (p<.05). The rs4076018 SNP of NGFB was highly significant (p<.01) and rs2292657 SNP of GLI1 was significantly (p<.05) correlated to disc degeneration. For end-plate damage, the rs2252070 SNP of MMP 13 showed a significant association (p<.05). Previously associated genes such as COL 9, SKT, CHST 3, CILP, IGFR, SOXp, BMP, MMP 2-12, ADH2, IL1RN, and COX2 were not significantly associated and new associations (NGFB and GLI1) were identified. The validity of all the associations was found to be phenotype dependent. For the first time, genetic associations with DDD have been performed in an Indian population. Apart from identifying new associations, the highlight of the study was that in the same study population with DDD, SNP associations completely changed when different radiographic features were used to define the DDD phenotype. Our study results therefore indicate that standardization of the phenotypes chosen to study the genetics of disc degeneration is essential and should be strongly considered before planning genetic association studies. Copyright © 2013 Elsevier Inc. All rights reserved.
The Extensional Rheology of Non-Newtonian Materials
NASA Technical Reports Server (NTRS)
Spiegelberg, Stephen H.; McKinley, Gareth H.
1996-01-01
The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.
Tian, L; Prior, C; Dempster, J; Marshall, I G
1997-11-01
1. The neuronal nicotinic receptor antagonists hexamethonium and methyllycaconitine (MLA) have been used to study the putative prejunctional nicotinic ACh receptors (AChRs) mediating a negative-feedback control of ACh release from motor nerve terminals in voltage-clamped rat phrenic nerve/ hemidiaphragm preparations. 2. Hexamethonium (200 microM), but not MLA (0.4-2.0 microM), decreased the time constant of decay of both endplate currents (e.p.cs) and miniature endplate currents (m.e.p.cs), indicating endplate ion channel block with hexamethonium. However, driving function analysis and reconvolution of e.p.cs and m.e.p.cs indicated that this ion channel block did not compromise the analysis of e.p.c. quantal content. 3. At low frequencies of stimulation (0.5-2 Hz), hexamethonium (200 microM) and MLA (2.0 microM) increased e.p.c. quantal content by 30-40%. At high frequencies (50-150 Hz) neither compound affected e.p.c. quantal content. All effects on quantal content were paralleled by changes in the size of the pool of quanta available for release. 4. The low frequency augmentation of e.p.c. quantal content by hexamethonium was absent when extracellular [Ca2+] was lowered from 2.0 to 0.5 mM. 5. At the concentrations studied, MLA and hexamethonium produced a small (10-20%) decrease in the peak amplitude of m.e.p.cs. 6. Neither apamin (100 nM) nor charybdotoxin (80 nM) had effects on spontaneous or nerve evoked current amplitudes at any frequency of stimulation. Thus the ability of nicotinic antagonists to augment e.p.c. quantal content is not due to inhibition of Ca(2+)-activated K(+)-channels. 7. We suggest that hexamethonium and MLA increase evoked ACh release by blocking prejunctional nicotinic AChRs. These receptors exert a negative feedback control over evoked ACh release and are probably of the alpha-bungarotoxin-insensitive neuronal type.
Tian, >Lijun; Prior, Chris; Dempster, John; Marshall, Ian G
1997-01-01
The neuronal nicotinic receptor antagonists hexamethonium and methyllycaconitine (MLA) have been used to study the putative prejunctional nicotinic ACh receptors (AChRs) mediating a negative-feedback control of ACh release from motor nerve terminals in voltage-clamped rat phrenic nerve/hemidiaphragm preparations. Hexamethonium (200 μM), but not MLA (0.4–2.0 μM), decreased the time constant of decay of both endplate currents (e.p.cs) and miniature endplate currents (m.e.p.cs), indicating endplate ion channel block with hexamethonium. However, driving function analysis and reconvolution of e.p.cs and m.e.p.cs indicated that this ion channel block did not compromise the analysis of e.p.c. quantal content. At low frequencies of stimulation (0.5–2 Hz), hexamethonium (200 μM) and MLA (2.0 μM) increased e.p.c. quantal content by 30–40%. At high frequencies (50–150 Hz) neither compound affected e.p.c. quantal content. All effects on quantal content were paralleled by changes in the size of the pool of quanta available for release. The low frequency augmentation of e.p.c. quantal content by hexamethonium was absent when extracellular [Ca2+] was lowered from 2.0 to 0.5 mM. At the concentrations studied, MLA and hexamethonium produced a small (10–20%) decrease in the peak amplitude of m.e.p.cs. Neither apamin (100 nM) nor charybdotoxin (80 nM) had effects on spontaneous or nerve evoked current amplitudes at any frequency of stimulation. Thus the ability of nicotinic antagonists to augment e.p.c. quantal content is not due to inhibition of Ca2+-activated K+-channels. We suggest that hexamethonium and MLA increase evoked ACh release by blocking prejunctional nicotinic AChRs. These receptors exert a negative feedback control over evoked ACh release and are probably of the α-bungarotoxin-insensitive neuronal type. PMID:9401765
Dudli, Stefan; Liebenberg, Ellen; Magnitsky, Sergey; Miller, Steve; Demir-Deviren, Sibel; Lotz, Jeffrey C
2016-08-01
Modic type I change (MC1) are vertebral bone marrow lesions adjacent to degenerated discs that are specific for discogenic low back pain. The etiopathogenesis is unknown, but occult discitis, in particular with Propionibacteria acnes (P. acnes), has been suggested as a possible etiology. If true, antibiotic therapy should be considered for patients with MC1. However, this hypothesis is controversial. While some studies report up to 40% infection rate in herniated discs, others fail to detect infected discs and attribute reports of positive cultures to contamination during sampling procedure. Irrespective of the clinical controversy, whether it is biologically plausible for P. acnes to cause MC1 has never been investigated. Therefore, the objective of this study was to test if P. acnes can proliferate within discs and cause reactive changes in the adjacent bone marrow. P. acnes was aseptically isolated from a symptomatic human L4/5 disc with MC1 and injected into rat tail discs. We demonstrate proliferation of P. acnes and up-regulation of IL-1 and IL-6 within three days of inoculation. At day-7, disc degeneration was apparent along with fibrotic endplate erosion. TNF-α immunoreactivity was enhanced within the effected endplates along with cellular infiltrates. The bone marrow appeared normal. At day-14, endplates and trabecular bone close to the disc were almost completely resorbed and fibrotic tissue extended into the bone marrow. T-cells and TNF-α immunoreactivity were identified at the disc/marrow junction. On MRI, bone marrow showed MC1-like changes. In conclusion, P. acnes proliferate within the disc, induce degeneration, and cause MC1-like changes in the adjacent bone marrow. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1447-1455, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S
2014-02-01
Existing research on lumbar disc degeneration has remained inconclusive regarding its etiology, pathogenesis, symptomatology, prevention, and management. Degenerative disc disease (DDD) and disc prolapse (DP) are common diseases affecting the lumbar discs. Although they manifest clinically differently, existing studies on disc degeneration have included patients with both these features, leading to wide variations in observations. The possible relationship or disaffect between DDD and DP is not fully evaluated. To analyze the patterns of lumbar disc degeneration in patients with chronic back pain and DDD and those with acute DP. Prospective, magnetic resonance imaging-based radiological study. Two groups of patients (aged 20-50 years) were prospectively studied. Group 1 included patients requiring a single level microdiscectomy for acute DP. Group 2 included patients with chronic low back pain and DDD. Discs were assessed by magnetic resonance imaging through Pfirmann grading, Schmorl nodes, Modic changes, and the total end-plate damage score for all the five lumbar discs. Group 1 (DP) had 91 patients and group 2 (DDD) had 133 patients. DP and DDD patients differed significantly in the number, extent, and severity of degeneration. DDD patients had a significantly higher number of degenerated discs than DP patients (p<.000). The incidence of multilevel and pan-lumbar degeneration was also significantly higher in DDD group. The pattern of degeneration also differed in both the groups. DDD patients had predominant upper lumbar involvement, whereas DP patients had mainly lower lumbar degeneration. Modic changes were more common in DP patients, especially at the prolapsed level. Modic changes were present in 37% of prolapsed levels compared with 9.9% of normal discs (p<.00). The total end-plate damage score had a positive correlation with disc degeneration in both the groups. Further the mean total end-plate damage score at prolapsed level was also significantly higher. The results suggest that patients with disc prolapse, and those with back pain with DDD are clinically and radiologically different groups of patients with varying patterns, severity, and extent of disc degeneration. This is the first study in literature to compare and identify significant differences in these two commonly encountered patient groups. In patients with single-level DP, the majority of the other discs are nondegenerate, the lower lumbar spine is predominantly involved and the end-plate damage is higher. Patients with back pain and DDD have larger number of degenerate discs, early multilevel degeneration, and predominant upper lumbar degeneration. The knowledge that these two groups of patients are different clinically and radiologically is critical for our improved understanding of the disease and for future studies on disc degeneration and disc prolapse. Copyright © 2014 Elsevier Inc. All rights reserved.
Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences.
Finkenstaedt, Tim; Del Grande, Filippo; Bolog, Nicolae; Ulrich, Nils; Tok, Sina; Kolokythas, Orpheus; Steurer, Johann; Andreisek, Gustav; Winklhofer, Sebastian
2018-02-01
To assess the performance of fat-suppressed fluid-sensitive MRI sequences compared to T1-weighted (T1w) / T2w sequences for the detection of Modic 1 end-plate changes on lumbar spine MRI. Sagittal T1w, T2w, and fat-suppressed fluid-sensitive MRI images of 100 consecutive patients (consequently 500 vertebral segments; 52 female, mean age 74 ± 7.4 years; 48 male, mean age 71 ± 6.3 years) were retrospectively evaluated. We recorded the presence (yes/no) and extension (i. e., Likert-scale of height, volume, and end-plate extension) of Modic I changes in T1w/T2w sequences and compared the results to fat-suppressed fluid-sensitive sequences (McNemar/Wilcoxon-signed-rank test). Fat-suppressed fluid-sensitive sequences revealed significantly more Modic I changes compared to T1w/T2w sequences (156 vs. 93 segments, respectively; p < 0.001). The extension of Modic I changes in fat-suppressed fluid-sensitive sequences was significantly larger compared to T1w/T2w sequences (height: 2.53 ± 0.82 vs. 2.27 ± 0.79, volume: 2.35 ± 0.76 vs. 2.1 ± 0.65, end-plate: 2.46 ± 0.76 vs. 2.19 ± 0.81), (p < 0.05). Modic I changes that were only visible in fat-suppressed fluid-sensitive sequences but not in T1w/T2w sequences were significantly smaller compared to Modic I changes that were also visible in T1w/T2w sequences (p < 0.05). In conclusion, fat-suppressed fluid-sensitive MRI sequences revealed significantly more Modic I end-plate changes and demonstrated a greater extent compared to standard T1w/T2w imaging. · When the Modic classification was defined in 1988, T2w sequences were heavily T2-weighted and thus virtually fat-suppressed.. · Nowadays, the bright fat signal in T2w images masks edema-like changes.. · The conventional definition of Modic I changes is not fully applicable anymore.. · Fat-suppressed fluid-sensitive MRI sequences revealed more/greater extent of Modic I changes.. · Finkenstaedt T, Del Grande F, Bolog N et al. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences. Fortschr Röntgenstr 2018; 190: 152 - 160. © Georg Thieme Verlag KG Stuttgart · New York.
The Action of Botulinum Toxin at the Neuromuscular Junction
1980-12-22
fast - twitch " (gastrocnemius) and " slow - twitch " (soleus) muscles ... muscle fibers -"_re not significantly affected by the toxin. It is interesting to note that, although fast - twitch and slow - twitch mucles were...Duchen LW: An electron microscopic study of the changes induced by borulinum o::in in the motor end-plates of slow and fast skeletal muscle fibres of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahk, Y.W.; Kim, O.H.; Chung, S.K.
1987-04-01
The informational gains obtained by the use of pinhole collimator scintigraphy (PCS) have been well documented. The present study has been undertaken to prospectively investigate its efficacy in diagnosing several commonly occurring spinal diseases. Patient material consisted of metastatic cancer (39 vertebrae), compression fractures (33 vertebrae), tuberculous spondylitis (17 vertebrae), and pyogenic spondylitis (six vertebrae). PCS findings were characterized in terms of localization, appearance, and homogeneity of abnormal radionuclide accumulation. Thus, metastatic cancer manifested as diffusely or focally homogeneous accumulation within the vertebral body or as a typical short-segmental accumulation along the end-plate, whereas compression fracture manifested as characteristic board-likemore » accumulation along the entire length of end-plates. Tuberculous spondylitis, on the other hand, revealed homogeneous accumulation throughout the vertebral body, and pyogenic spondylitis revealed accumulation at the end-zone of opposing vertebral bodies giving sandwich-like appearance. The disk space at the affected level was not narrowed in the former two diseases but it was narrowed in the latter two. It was concluded that PCS may be useful in differentiating metastatic cancer, compression fracture, tuberculous spondylitis, and pyogenic spondylitis.« less
Height increase, neuromuscular function, and back pain during 6 degrees head-down tilt with traction
NASA Technical Reports Server (NTRS)
Styf, J. R.; Ballard, R. E.; Fechner, K.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.
1997-01-01
BACKGROUND: Spinal lengthening and back pain are commonly experienced by astronauts exposed to microgravity. METHODS: To develop a ground-based simulation for spinal adaptation to microgravity, we investigated height increase, neuromuscular function and back pain in 6 subjects all of whom underwent two forms of bed rest for 3 d. One form consisted of 6 degrees of head-down tilt (HDT) with balanced traction, while the other was horizontal bed rest (HBR). Subjects had a 2-week recovery period in between the studies. RESULTS: Total body and spinal length increased significantly more and the subjects had significantly more back pain during HDT with balanced traction compared to HBR. The distance between the lower endplate of L4 and upper endplate of S1, as measured by ultrasonography, increased significantly in both treatments to the same degree. Intramuscular pressures in the erector spinae muscles and ankle torque measurements during plantarflexion and dorsiflexion did not change significantly during either treatment. CONCLUSION: Compared to HBR, HDT with balanced traction may be a better method to simulate changes of total body and spinal lengths, as well as back pain seen in microgravity.
Disseminated protothecosis associated with diskospondylitis in a dog.
Manino, Paul M; Oliveira, Fabiano; Ficken, Martin; Swinford, Amy; Burney, Derek
2014-01-01
A 6 yr old female Labrador retriever was evaluated for an acute onset of difficulty walking and a head tilt. Initial physical examination revealed bilateral retinal detachment, a left-sided head tilt, positional rotary nystagmus, and lumbar hyperpathia. Pertinent preliminary diagnostic findings included systemic hypertension, bony lysis and adjacent sclerosis of the vertebral endplates of the first and second lumbar vertebrae, and positive urine and blood cultures for a yeast identified as Candida spp. Concerned about disseminated candidiasis after subsequent subretinal aspirates confirmed the presence of a yeast-like organism, therapy with voriconazole was initiated. Because of progressive clinical deterioration and the poor prognosis for recovery, the dog was eventually euthanized. Postmortem histological examination of tissues, including the affected vertebral endplates, revealed numerous intralesional algae compatible with Prototheca spp. To the authors' knowledge, this report is the first to document a case of protothecal diskospondylitis with possible concurrent candidiasis in a dog. Although typically associated with signs referable to the gastrointestinal tract, this report underscores the importance of not excluding protothecosis as a differential diagnosis when such signs are absent. Lastly, the use of voriconazole appears ineffective for reversing the clinical course of late-stage disseminated protothecosis.
Early effects of carbachol on the morphology of motor endplates of mammalian skeletal muscle fibers.
Voigt, Tilman
2010-03-01
Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.
Effect of flow rate and concentration difference on reverse electrodialysis system
NASA Astrophysics Data System (ADS)
Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong
2013-11-01
Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.
Ji, Ming-Liang; Qian, Bang-ping; Qiu, Yong; Wang, Bin; Zhu, Ze-zhang; Yu, Yang; Jiang, Jun
2013-10-15
A computed tomographic study. To investigate the change in aortic length in patients with ankylosing spondylitis (AS) with thoracolumbar kyphosis after closing-opening wedge osteotomy (COWO). Several previous studies reported that COWO can effectively correct severe thoracolumbar kyphosis caused by AS. However, one disadvantage of COWO is elongation of the aorta, which increases the risk of aortic injury. To date, no studies have analyzed the alteration in aortic length in patients with AS undergoing COWO for thoracolumbar kyphosis. A total of 21 consecutive patients with AS with a mean age of 38.9 years undergoing COWO for the correction of thoracolumbar kyphosis were retrospectively studied. Radiographical measurements included global kyphosis, thoracic kyphosis, lumbar lordosis, angle of fusion levels, local kyphosis, and anterior height of the osteotomized vertebra. The computed tomographic scans of the spine were used to measure the aortic diameter (at the site of the osteotomy) and length (the length between the superior endplate of the upper instrumented vertebra and the inferior endplate of L4). The aortic length increased by an average of 2.2 cm postoperatively. Significant changes in global kyphosis, local kyphosis, angle of fusion levels, lumbar lordosis, anterior height of the osteotomized vertebra, and aortic diameter at the site of the osteotomy were observed (P < 0.01). Significant correlation was noted between aortic length and changes in global kyphosis (r = 0.525, P = 0.015), local kyphosis (r = 0.654, P = 0.001), angle of fusion levels (r = 0.634, P = 0.002), and lumbar lordosis (r = 0.538, P = 0.012). Aortic lengthening after COWO for correction of kyphosis was quantitatively confirmed by this study. Spine surgeons should be aware of the potential risk for the development of aortic injury in patients with AS undergoing COWO for the correction of thoracolumbar kyphosis. 4.
Imaging of degenerative lumbar intervertebral discs; linking anatomy, pathology and imaging.
Adams, Ashok; Roche, Oran; Mazumder, Asif; Davagnanam, Indran; Mankad, Kshitij
2014-09-01
Low back pain is a common medical condition that has significant implications for healthcare providers and the UK economy. Low back pain can be classified as 'specific' in which an underlying pathophysiological mechanism is identified (eg, herniated intervertebral disc). Advanced imaging should be performed in this situation and in those patients in whom systemic disease is strongly suspected. In the majority (approximately 90%), low back pain in 'non specific' and there is a weak correlation with imaging abnormalities. This is an area of ongoing research and remains controversial in terms of imaging approach and treatment (eg, theory of discogenic pain, interpretation and treatment of endplate changes). With regards Modic endplate changes, current research suggests that an infective component may be involved that may identify novel potential treatments in patients with chronic low back pain refractory to other treatment modalities. MRI is the imaging modality of choice for the assessment of degenerative changes in intervertebral discs. MRI has superior soft tissue contrast resolution when compared to other imaging modalities (eg, plain radiography, CT). An understanding of normal anatomy and MR appearances of intervertebral discs, particularly with regards to how these appearances change with advancing age, is required to aid image interpretation. Knowledge of the spectrum of degenerative processes that may occur in the intervertebral discs is required in order to identify and explain abnormal MRI appearances. As the communication of MRI findings may guide therapeutic decision making and surgical intervention, the terminology used by radiologists must be accurate and consistent. Therefore, description of degenerative disc changes in the current paper is based on the most up-to-date recommendations, the aim being to aid reporting by radiologists and interpretation of reports by referring clinicians. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.
Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H
2018-03-01
The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.
Cluster of wound botulism in California: clinical, electrophysiologic, and pathologic study.
Maselli, R A; Ellis, W; Mandler, R N; Sheikh, F; Senton, G; Knox, S; Salari-Namin, H; Agius, M; Wollmann, R L; Richman, D P
1997-10-01
Over a period of 15 months we have seen 6 patients with long-standing history of subcutaneous heroin injections who experienced acute blurred vision, dysphagia, dysarthria, and generalized weakness. Decreased or absent deep tendon reflexes, pupillary abnormalities, incremental responses to fast repetitive nerve stimulation, and positive serology for Clostridia botulinum toxin A were found, but not in all cases. Muscle biopsies showed variable signs of neurogenic atrophy. In vitro electrophysiology studies revealed decreased end-plate potentials quantal content, confirming the presynaptic nature of the disorder. Mechanical ventilation was required in 5 patients. Half of the patients were treated with polyvalent antitoxiin. Prognosis was favorable, though recovery was slow. In conclusion, acute bulbar weakness with visual symptoms in patients with subcutaneous heroin abuse strongly suggets the possibility of wound botulism. High diagnostic suspicion combined with histology and in vitro electrophysiology confirmation of presynaptic failure, especially in seronegative cases, may significantly improve morbidity.
Phan, Kevin; Maharaj, Monish; Assem, Yusuf; Mobbs, Ralph J
2016-09-01
Lumbar interbody fusion represents an effective surgical intervention for patients with lumbar degenerative diseases, spondylolisthesis, disc herniation, pseudoarthrosis and spinal deformities. Traditionally, conventional open anterior lumbar interbody fusion and posterior/transforaminal lumbar interbody fusion techniques have been employed with excellent results, but each with their own advantages and caveats. Most recently, the antero-oblique trajectory has been introduced, providing yet another corridor to access the lumbar spine. Termed the oblique lumbar interbody fusion, this approach accesses the spine between the anterior vessels and psoas muscles, avoiding both sets of structures to allow efficient clearance of the disc space and application of a large interbody device to afford distraction for foraminal decompression and endplate preparation for rapid and thorough fusion. This review aims to summarize the early clinical results and complications of this new technique and discusses potential future directions of research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Explosive Venting Technology for Cook-Off Response Mitigation
2010-07-01
endplate blew off 188.3 PAX-28 Go 6.4 Explode, HE boiled out, body banana peeled 177.8 PAX-28 No go 7.6 Burn, HE boiled out of fixture, smoking, then burn...PAX-28 5.1-mm diameter vent test was to blow off the top fixture and peel off three out of the four heating bands while leaving the fixture in its
Liphofer, J P; Theodoridis, T; Becker, G T; Koester, O; Schmid, G
2006-11-01
To study the influence of (Modic) signal alterations (SA) of the cartilage endplate (CEP) of vertebrae L3-S1 on the outcome of an in-patient minimally invasive treatment (MIT) using epidural injections on patients with lumbar disc herniation (LDH). The MR images of 59 consecutive patients with LDH within segments L3/L4 - L5/S1 undergoing in-patient minimally invasive treatment with epidural injections were evaluated in a clinical study. The (Modic) signal alterations of the CEP were recorded using T1- and T2-weighted sagittal images. On the basis of the T2-weighted sagittal images, the extension and distribution of the SA were measured by dividing each CEP into 9 areas. The outcome of the MIT was recorded using the Oswestry Disability Index (ODI) before and after therapy and in a 3-month follow-up. Within a subgroup of patients (n = 35), the distribution and extension of the signal alterations were correlated with the development of the ODI. Segments with LDH showed significantly more (p < 0.001) SA of the CEP than segments without LDH. Although the extension of the SA was not dependent on sex, it did increase significantly with age (p = 0.017). The outcome after MIT did not depend on the sex and age of the patients nor on the type of LDH. The SA extension tended to have a negative correlation with the outcome after MIT after 3 months (p = 0.071). A significant negative correlation could be established between the SA extension in the central section of the upper endplate and the outcome after 3 months (p = 0.019). 1. Lumbar disc herniation is clearly associated with the prevalence of (Modic) signal alterations. 2. Extensive signal alterations tend to correlate with a negative outcome of an MIT using epidural injections. 3. Such SA in the central portion of the upper CEP correlate significantly with a negative treatment result. 4. The central portion of the upper CEP being extensively affected by (Modic) SA is a negative predictor for the success of a minimally invasive pain therapy.
Kuisma, Mari; Karppinen, Jaro; Niinimäki, Jaakko; Ojala, Risto; Haapea, Marianne; Heliövaara, Markku; Korpelainen, Raija; Taimela, Simo; Natri, Antero; Tervonen, Osmo
2007-05-01
Cross-sectional comparison of self-reported low back pain (LBP) symptoms and Modic findings on magnetic resonance imaging (MRI). To investigate associations of frequency and intensity of LBP and sciatic pain with Modic changes in a sample of middle-aged male workers with or without whole-body vibration exposure. Vertebral endplate changes are bone marrow lesions visible on MRI and are assumed to be associated with degenerative intervertebral disc disease. Associations of these so-called Modic changes with clinical symptoms are controversial. Furthermore, most of these studies have been performed in selected series of patients. A total of 228 middle-aged male workers (159 train engineers and 69 sedentary controls) from northern Finland underwent sagittal T1 and T2-weighted MRI. Both endplates of 1140 lumbar interspaces were graded for type and extent of Modic changes. Logistic regression was used to analyze associations of pain variables with Modic changes. Train engineers had on the average higher sciatic pain scores than the sedentary controls, but the prevalence of Modic changes was similar in both occupational groups. Altogether, 178 Modic changes in 128 subjects were recorded: 30% were type I, 66% type II, and 4% both types I and II. Eighty percent of changes occurred at L4-L5 or L5-S1. Modic changes at L5-S1 showed significant association with pain symptoms with increased frequency of LBP (odds ratio [OR] 2.28; 95% confidence interval [CI] 1.44-3.15) and sciatica episodes (OR 1.44; 95% CI 1.01-1.89), and with higher LBP visual analog scores during the past week (OR 1.36; 95% CI 1.06-1.70). Type I lesions and extensive lesions in particular were closely associated with pain. Modic changes at L5-S1 and Modic type I lesions are more likely to be associated with pain symptoms than other types of Modic changes or changes located at other lumbar levels.
The maximum entropy production and maximum Shannon information entropy in enzyme kinetics
NASA Astrophysics Data System (ADS)
Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš
2018-04-01
We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.
Homma, S; Nakajima, Y; Hayashi, K; Toma, S
1986-01-01
Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.
Technology advancement of the electrochemical CO2 concentrating process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.
1977-01-01
A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.
Reinnervation of Paralyzed Muscle by Nerve Muscle Endplate Band Grafting
2016-10-01
PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release... Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT...Nyirenda, PhD1 Liancai Mu, MD, PhD1 1Department of Research , Hackensack University Medical Center, Upper Airway Research Laboratory, Hackensack, New
Vaezi, P.; Holland, C.; Thakur, S. C.; ...
2017-04-01
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
Lazennec, Jean-Yves; Aaron, Alain; Brusson, Adrien; Rakover, Jean-Patrick; Rousseau, Marc-Antoine
2013-02-01
The viscoelastic lumbar disk prosthesis-elastic spine pad (LP-ESP(®)) is an innovative one-piece deformable but cohesive interbody spacer providing 6 full degrees of freedom about the 3 axes, including shock absorption. A 20-year research program has demonstrated that this concept provides mechanical properties very close to those of a natural disk. Improvements in technology have made it possible to solve the problem of the bond between the elastic component and the titanium endplates and to obtain an excellent biostability. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. It thus differs substantially from current prostheses, which are 2- or 3-piece devices involving 1 or 2 bearing surfaces and providing 3 or 5 degrees of freedom. This design and the adhesion-molding technology differentiate the LP-ESP prosthesis from other mono-elastomeric prostheses, for which the constraints of shearing during rotations or movement are absorbed at the endplate interface. Seven years after the first implantation, we can document in a solid and detailed fashion the course of clinical outcomes and the radiological postural and kinematic behavior of this prosthesis.
Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng
2016-01-15
After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. Copyright © 2015 Elsevier B.V. All rights reserved.
1995-01-01
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel. PMID:7561740
Pitman, Michael J; Berzofsky, Craig E; Alli, Opeyemi; Sharma, Sansar
2013-12-01
Optimal management of vocal fold paralysis would entail recurrent laryngeal nerve (RLN) reinnervation resulting in normal vocal fold motion. Unfortunately, RLN reinnervation currently results in a nonfunctional vocal fold due to synkinetic reinnervation. Therapeutic interventions that guide regenerating axons back to the appropriate muscle would prevent synkinesis and restore vocal fold and glottal function. The initial step toward developing these therapies is the elucidation of the embryologic innervation of the larynx. This study aimed to identify the age of occurrence, timing, and pattern of embryologic innervation of the rat larynx, hypothesizing that differences in these parameters exist between distinct laryngeal muscles. Descriptive anatomic study. The larynx of rats aged embryologic day (E) 15, 16, 17, 19, and 21 were harvested and then sectioned. Two rats were used for each age. Sections were colabeled with neuronal class III β-tubulin polyclonal antibody to identify the presence of axons and alexa 488 conjugate α-bungarotoxin to identify the presence of motor endplates. The age at which axons and motor endplates were first present was noted. The position and pattern of the axons and motor endplates was recorded in relation to each other as well as the musculoskeletal anatomy of the larynx. The time at which axons appeared to innervate the medial thyroarytenoid (MTA) muscle, lateral thyroarytenoid (LTA) muscle, and the posterior cricoarytenoid (PCA) muscle was documented. Findings in the rat suggest the RLN reaches the larynx and begins branching by E15. Axons branch dorsally first and reach the PCA muscle before the other muscles. Branching toward the MTA muscle occurs only after axons have reached the LTA muscle. By E19, RLN axons have been guided to and selected their respective muscles with formation of neuromuscular junctions (NMJs) in the PCA, LTA and MTA muscles, though the formation of NMJs in the MTA muscle was comparatively delayed. This study describes the embryologic innervation of the rat larynx and suggests that there are distinct differences in the age of occurrence, timing, and pattern of innervation of the PCA, LTA, and MTA muscles of the rat. These findings lay the foundation for studies investigating the role of guidance cues in RLN axon guidance and the utility of these cues in the treatment of RLN injury via the stimulation of functional, nonsynkinetic reinnervation. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Enhancing Peripheral Nerve Regeneration with a Novel Drug Delivering Nerve Conduit
2017-12-01
control group ) or a conduit that released GDNF. The main outcome measures were muscle atrophy, electrophysiology, motor endplate reinnervation...prepared NGF+GDNF ( Control groups ). 8 Gastrocnemius Atrophy The gastrocnemius muscle weight of the GDNF treated group was ~ 60% of the non...experimental side at 10 weeks. GDNF conduit group (49.4±1.4 %) had statistically less muscle atrophy than the control group (65.1±5.1 %) (pɘ.05) at 10
Reinnervation of Paralyzed Muscle by Nerve-Muscle-Endplate Band Grafting
2017-10-01
of the NMEG would be a critical factor influencing outcomes. In our previous studies , a NMEG was im- planted into an aneural region in the recipient...and demonstrated a sustained release. The factors could be released locally in vitro over periods of 2 weeks13,40 or 4 weeks.40 Experimental studies sug...regeneration studies , a number of exogenous neurotrophic factors have been extensively investigated.69 Due to their rela- tively short half-life in vivo
Joint Collaborative Technology Experiment (JCTE)
2010-12-01
Rm = Earth meridian radius Rn = Earth normal radius Compute: α = ψ + β Lat ldg = Lat ant – (r * cos ( α )) / Rm Lon ldg = Lon ant – (r...Watt selectable Comm-Payload Hardware mounted to 24-in x 7-in x 0.25-in (Length x Width x Thick) Aluminum (AL) plate Designed for dual carriage...was installed into a 24-in long by 7.5-in inner diameter fiberglass tube. This integration included modifying two 7.5-in diameter aluminum endplates
Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian
2017-01-01
Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437
Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong
2017-01-01
The vertebrate neuromuscular junction (NMJ) is considered as a “tripartite synapse” consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system. PMID:28680299
Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong; Park, Hwan Tae
2017-06-01
The vertebrate neuromuscular junction (NMJ) is considered as a "tripartite synapse" consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system.
Liu, Qing-Guang; Liu, Lin; Huang, Qiang-Min; Nguyen, Thi-Tham; Ma, Yan-Tao; Zhao, Jia-Min
2017-01-01
The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs.
2017-01-01
Objective The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Materials and Methods Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. Results The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Conclusion Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs. PMID:28592980
Distribution of vesicular glutamate transporter 1 (VGLUT1) in the mouse esophagus.
Kraus, T; Neuhuber, W L; Raab, M
2007-08-01
In rat and mouse esophagus, vesicular glutamate transporter 2 (VGLUT2) has been demonstrated to identify vagal intraganglionic laminar endings (IGLEs); this has recently also been shown for VGLUT1 in rat esophagus. In this study, we have investigated the distribution of VGLUT1 in the mouse esophagus and compared these results with the recently published data from the rat esophagus. Unexpectedly, we have discovered that VGLUT1 mostly fails to identify IGLEs in the mouse esophagus. This is surprising, since the distribution of VGLUT2 shows comparable results in both species. Confocal imaging has revealed substantial colocalization of VGLUT1 immunoreactivity (-ir) with cholinergic and nitrergic/peptidergic markers within the myenteric neuropil and in both cholinergic and nitrergic myenteric neuronal cell bodies. VGLUT1 and cholinergic markers have also been colocalized in fibers of the muscularis mucosae, whereas VGLUT1 and nitrergic markers have never been colocalized in fibers of the muscularis mucosae, although this does occur in fibers of the muscularis running to motor endplates. Thus, VGLUT1 is contained in the nitrergic innervation of mouse esophageal motor endplates, another difference from the rat esophagus. VGLUT1-ir is therefore present in extrinsic and intrinsic innervation of the mouse esophagus, but the significant differences from the rat indicate species variations concerning the distribution of VGLUTs in the peripheral nervous system.
Human Cartilage Endplate Permeability Varies with Degeneration and Intervertebral Disc Site
DeLucca, John F.; Cortes, Daniel H.; Jacobs, Nathan T.; Vresilovic, Edward J.; Duncan, Randall L.; Elliott, Dawn M.
2016-01-01
Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50–60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1–0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. PMID:26874969
Davis, Timothy T; Hynes, Richard A; Fung, Daniel A; Spann, Scott W; MacMillan, Michael; Kwon, Brian; Liu, John; Acosta, Frank; Drochner, Thomas E
2014-11-01
Access to the intervertebral discs from L2-S1 in one surgical position can be challenging. The transpsoas minimally invasive surgical (MIS) approach is preferred by many surgeons, but this approach poses potential risk to neural structures of the lumbar plexus as they course through the psoas. The lumbar plexus and iliac crest often restrict the L4-5 disc access, and the L5-S1 level has not been a viable option from a direct lateral approach. The purpose of the present study was to investigate an MIS oblique corridor to the L2-S1 intervertebral disc space in cadaveric specimens while keeping the specimens in a lateral decubitus position with minimal disruption of the psoas and lumbar plexus. Twenty fresh-frozen full-torso cadaveric specimens were dissected, and an oblique anatomical corridor to access the L2-S1 discs was examined. Measurements were taken in a static state and with mild retraction of the psoas. The access corridor was defined at L2-5 as the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 corridor of access was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel and vertically to the first vascular structure that crosses midline. The mean access corridor diameters in the static state and with mild psoas retraction, respectively, were as follows: at L2-3, 18.60 mm and 25.50 mm; at L3-4, 19.25 mm and 27.05 mm; and at L4-5, 15.00 mm and 24.45 mm. The L5-S1 corridor mean values were 14.75 mm transversely, from midline to the left common iliac vessel and 23.85 mm from the inferior endplate of L-5 cephalad to the first midline vessel. The oblique corridor allows access to the L2-S1 discs while keeping the patient in a lateral decubitus position without a break in the table. Minimal psoas retraction without significant tendon disruption allowed for a generous corridor to the disc space. The L5-S1 disc space can be accessed from an oblique angle consistently with gentle retraction of the iliac vessels. This study supports the potential of an MIS oblique retroperitoneal approach to the L2-S1 discs.
1982-12-01
shown in the figure is the cartilagenous end-plate, which is comprised of a hyaline cartilage structure. It serves as a boundary region between a disk...without whose love and support this study would have been impossible. ii S’ Contents Page Preface.................... .. . ..... . .. .. . ... List of...T Vector transpose (’) Differentiation with respect to time xiv I 1.. AFIT/GAE/AA/82D-24 Abstract This study consisted of two phases. During the
Superconducting Electronic Film Structures
1991-02-14
diameter YBCO films are being tested as the endplates in a cylindrical dielectric resonator. The Q and phase noise of the 15 dielectric resonator will...vortex state. Magnus force ne(v, -VL)x O/C is balanced by a drag force an- Josephson 9 demonstrated that the motion of flux vor- tiparallel to the...age of the same sign as in the normal metal [Fig. 3(b)i. the Magnus force Thus a reversal of the sign of the Hall voltage upon enter- "Se ing the mixed
Reinnervation of Paralyzed Muscle by Nerve-Muscle-Endplate Band Grafting
2015-10-01
frozen in melting isopentane cooled with dry ice and cut on a cryostat (Reichert- Jung 1800; Mannheim, Germany) at –25ºC. Some sections were stained with... Jung 1800; Mannheim, Germany) at –25ºC, and stored at –80ºC until staining was performed. For each muscle, the caudal and rostral segments were cut...The stained sections were examined under a Zeiss photomicroscope (Axiophot-2; Carl Zeiss, Gottingen, Germany) and photographed using a digital camera
Aghayev, Emin; Zullig, Nicolas; Diel, Peter; Dietrich, Daniel; Benneker, Lorin M
2014-03-01
Currently, the diagnosis of pedicle screw (PS) loosening is based on a subjectively assessed halo sign, that is, a radiolucent line around the implant wider than 1 mm in plain radiographs. We aimed at development and validation of a quantitative method to diagnose PS loosening on radiographs. Between 11/2004 and 1/2010 36 consecutive patients treated with thoraco-lumbar spine fusion with PS instrumentation without PS loosening were compared with 37 other patients who developed a clinically manifesting PS loosening. Three different angles were measured and compared regarding their capability to discriminate the loosened PS over the postoperative course. The inter-observer invariance was tested and a receiver operating characteristics curve analysis was performed. The angle measured between the PS axis and the cranial endplate was significantly different between the early and all later postoperative images. The Spearman correlation coefficient for the measurements of two observers at each postoperative time point ranged between 0.89 at 2 weeks to 0.94 at 2 months and 1 year postoperative. The angle change of 1.9° between immediate postoperative and 6-month postoperative was 75% sensitive and 89% specific for the identification of loosened screws (AUC = 0.82). The angle between the PS axis and the cranial endplate showed good ability to change in PS loosening. A change of this angle of at least 2° had a relatively high sensitivity and specificity to diagnose screw loosening.
DeLucca, John F.; Peloquin, John M.; Smith, Lachlan J.; Wright, Alexander C.; Vresilovic, Edward J.; Elliott, Dawn M.
2017-01-01
Geometry is an important indicator of disc mechanical function and degeneration. While the geometry and associated degenerative changes in the nucleus pulposus and the annulus fibrosus are well-defined, the geometry of the cartilage endplate (CEP) and its relationship to disc degeneration are unknown. The objectives of this study were to quantify CEP geometry in three dimensions using an MRI FLASH imaging sequence and evaluate relationships between CEP geometry and age, degeneration, spinal level, and overall disc geometry. To do so, we assessed the MRI-based measurements for accuracy and repeatability. Next, we measured CEP geometry across a larger sample set and correlated CEP geometric parameters to age, disc degeneration, level, and disc geometry. The MRI-based measures resulted in thicknesses (0.3–1 mm) that are comparable to prior measurements of CEP thickness. CEP thickness was greatest at the anterior/posterior (A/P) margins and smallest in the center. The CEP A/P thickness, axial area, and lateral width decreased with age but were not related to disc degeneration. Age-related, but not degeneration-related, changes in geometry suggest that the CEP may not follow the progression of disc degeneration. Ultimately, if the CEP undergoes significant geometric changes with aging and if these can be related to low back pain, a clinically feasible translation of the FLASH MRI-based measurement of CEP geometry presented in this study may prove a useful diagnostic tool. PMID:27232974
A Radiographic Measurement of the Anterior Epidural Space at L4-5 Disc Level.
Xu, Rui-Sheng; Wu, Jie-Shi; Lu, Hai-Dan; Zhu, Hao-Gang; Li, Xia; Dong, Jian; Yuan, Feng-Lai
2017-05-01
To observe the morphology character of the anterior epidural space at the L 4-5 disc level and to provide an anatomical basis for safely and accurately performing a percutaneous endoscopic lumbar discectomy (PELD). Fifty-five cases with L 5 S 1 lumbar disc herniation were included in this study, and cases with L 4-5 disease were excluded. When the puncture needle reached the epidural space at the L 5 S 1 level, iohexol was injected at the pressure of 50 cm H 2 O during the PELD, then C-Arm fluoroscopy was used to obtain standard lumbar frontal and lateral images. The widths of epidural space at the level of the L 4 lower endplate, the L 5 upper endplate, as well as the middle point of the L 4-5 disc were measured from the lumbar lateral X-ray film. Epidural space at the L 4-5 disc plane performs like a trapezium chart with a short side at the head end and a long side at the tail end in the lumbar lateral X-ray radiograph, while the average widths of epidural space were 10.2 ± 2.5, 12.3 ± 2.3, and 13.8 ± 2.6 mm at the upper, middle, and lower level of the L 4-5 disc. Understanding the morphological characteristics of epidural space will contribute to improving the safety of the tranforaminal percutaneous endoscopy technique. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Human cartilage endplate permeability varies with degeneration and intervertebral disc site.
DeLucca, John F; Cortes, Daniel H; Jacobs, Nathan T; Vresilovic, Edward J; Duncan, Randall L; Elliott, Dawn M
2016-02-29
Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical study on air turbines with enhanced techniques for OWC wave energy conversion
NASA Astrophysics Data System (ADS)
Cui, Ying; Hyun, Beom-Soo; Kim, Kilwon
2017-10-01
In recent years, the oscillating water column (OWC) wave energy converter, which can capture wave energy from the ocean, has been widely applied all over the world. As the essential part of the OWC system, the impulse and Wells turbines are capable of converting the low pressure pneumatic energy into the mechanical shaft power. As an enhanced technique, the design of endplate or ring attached to the blade tip is investigated numerically in this paper. 3D numerical models based on a CFD-software FLUENT 12.0 are established and validated by the corresponding experimental results from the reports of Setoguchi et al. (2004) and Takao et al. (2001). Then the flow fields and non-dimensional evaluating coefficients are calculated and analyzed under steady conditions. Results show that the efficiency of impulse turbine with ring can reach up to 0.49 when ϕ=1, which is 4% higher than that in the cases for the endplate-type and the original one. And the ring-type Wells turbine with fixed guide vanes shows the best performance with the maximal efficiency of 0.55, which is 22% higher than that of the original one. In addition, the quasi-steady analysis is used to calculate the mean efficiency and output-work of a wave cycle under sinusoidal flow condition. Taking all together, this study provides support for structural optimization of impulse turbine and Wells turbine in the future.
A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.
Tian, Heqiang; Wang, Chenchen; Dang, Xiaoqing; Sun, Lining
2017-12-01
Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.
Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development.
Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep
2011-09-01
High-resolution immunohistochemistry shows that the receptor protein p75(NTR) is present in the nerve terminal, muscle cell, and glial Schwann cell at the neuromuscular junction (NMJ) of postnatal rats (P4-P6) during the synapse elimination period. Blocking the receptor with the antibody anti-p75-192-IgG (1-5 μg/ml, 1 hr) results in reduced endplate potentials (EPPs) in mono- and polyinnervated synapses ex vivo, but the mean number of functional inputs per NMJ does not change for as long as 3 hr. Incubation with exogenous brain-derived neurotrophic factor (BDNF) for 1 hr (50 nM) resulted in a significant increase in the size of the EPPs in all nerve terminals, and preincubation with anti-p75-192-IgG prevented this potentiation. Long exposure (24 hr) in vivo of the NMJs to the antibody anti-p75-192-IgG (1-2 μg/ml) results in a delay of postnatal synapse elimination and even some regrowth of previously withdrawn axons, but also in some acceleration of the morphologic maturation of the postsynaptic nicotinic acetylcholine receptor (nAChR) clusters. The results indicate that p75(NTR) is involved in both ACh release and axonal retraction during postnatal axonal competition and synapse elimination. Copyright © 2011 Wiley-Liss, Inc.
Dubory, Arnaud; Bouloussa, Houssam; Riouallon, Guillaume; Wolff, Stéphane
2017-12-01
Widely used in traumatic pelvic ring fractures, the iliosacral (IS) screw technique for spino-pelvic fixation remains anecdotal in adult spinal deformity. The objective of this study was to assess anatomical variability of the adult upper sacrum and to provide a user guide of spino-pelvic fixation with IS screws in adult spinal deformity. Anatomical variability of the upper sacrum according to age, gender, height and weight was sought on 30 consecutive pelvic CT-scans. Thus, a user guide of spino-pelvic fixation with IS screws was modeled and assessed on ten CT-scans as described below. Two invariable landmarks usable during the surgical procedure were defined: point A (corresponding to the connector binding the IS screw to the spinal rod), equidistant from the first posterior sacral hole and the base of the S1 articular facet and 10 mm-embedded into the sacrum; point B (corresponding to the tip of the IS screw) located at the junction of the anterior third and middle third of the sacral endplate in the sagittal plane and at the middle of the endplate in the coronal plane. Point C corresponded to the intersection between the A-B direction and the external facet of the iliac wing. Three-dimensional reconstructions modeling the IS screw optimal direction according to the A-B-C straight line were assessed. Age had no effect on the anatomy of the upper sacrum. The distance between the base of the S1 superior articular facet and the top of the first posterior sacral hole was correlated with weight (r = 0.6; 95% CI [0.6-0.9]); p < 0.001). Sacral end-plate thickness increased for male patients (p < 0.001) and was strongly correlated with height (r = 0.6; 95% CI [0.29-0.75]); p < 0.001) and weight (r = 0.8; 95% CI [0.6-0.9]); p < 0.001). The thickness of the inferior part of the S1 vertebral body increased in male patients (p < 0.001). Other measured parameters slightly varied according to gender, height and weight. Simulating the described technique of pelvic fixation, no misplaced IS screw was found whatever the age, gender and morphologic parameters. This user guide of spinopelvic fixation with IS screws seems to be reliable and reproducible independently of age, gender and morphologic characteristics but needs clinical assessment. Level IV.
Number of junctional acetylcholine receptors: control by neural and muscular influences in the rat.
Andreose, J S; Fumagalli, G; Lømo, T
1995-03-01
1. The number of acetylcholine receptors (AChRs) per neuromuscular junction in soleus muscles of adult rats was estimated from counts of 125I-alpha-bungarotoxin binding sites. The muscles were either denervated, denervated and electrically stimulated, paralysed by botulinum toxin (BoTX), or paralysed by tetrodotoxin (TTX). 2. After denervation, the number of junctional AChRs was normal after 18 days and then fell to 54 and 35% of normal after 33 and 57 days, respectively. 3. Direct high frequency muscle stimulation (100 Hz) maintained a normal number of junctional AChRs for at least 2 months when the stimulation started on the day of denervation. When the stimulation was started progressively later, the effect of the stimulation on AChR number disappeared within about a week. The disappearance was gradual and appeared to affect all the muscle fibres equally. 4. Stimulation at 100 Hz, starting on the day of denervation and stopping after 18 days, did not prevent the endplates from losing AChRs during the subsequent 15 days without stimulation. Thus 100 Hz stimulation and innervation are not equivalent in their effects on junctional AChR number. 5. Direct low frequency muscle stimulation from the day of denervation did not maintain a normal number of junctional AChRs, as the number of AChRs fell to 70 and 62% of normal after 33 days of stimulation at 20 and 10 Hz, respectively. 6. Endplates paralysed by BoTX or TTX for 33 days lost about as many junctional AChRs (54 and 55%) as endplates denervated for 33 days (46%). Direct stimulation at 100 Hz during the last 15 days of BoTX treatment reduced but did not prevent this AChR loss (36% loss at 33 days). 7. The results show that when motor nerve terminals in rat soleus muscles are removed by axotomy, they leave a 'trace' which, in conjunction with appropriate muscle stimulation, can maintain a normal number of AChRs in the postsynaptic region. In non-stimulated muscles the trace responsible for this maintenance disappears within about a week. In stimulated muscles it persists for at least 2 months. From indirect evidence it appears that the trace is a factor, or the postsynaptic effect of a factor, released by impulse activity in the nerve, and that its degradation after denervation is accelerated by the acute effects of nerve degeneration.
Modeling Plasma Turbulence and Flows in LAPD using BOUT++
NASA Astrophysics Data System (ADS)
Friedman, B.; Carter, T. A.; Schaffner, D.; Popovich, P.; Umansky, M. V.; Dudson, B.
2010-11-01
A Braginskii fluid model of plasma turbulence in the BOUT code has recently been applied to LAPD at UCLA [1]. While these initial simulations with a reduced model and periodic axial boundary conditions have shown good agreement with measurements (e.g. power spectrum, correlation lengths), these simulations have lacked physics essential for modeling self-consistent, quantitatively correct flows. In particular, the model did not contain parallel plasma flow induced by sheath boundary conditions, and the axisymmetric radial electric field was not consistent with experiment. This work addresses these issues by extending the simulation model in the BOUT++ code [2], a more advanced version of BOUT. Specifically, end-plate sheath boundary conditions are added, as well as equations to evolve electron temperature and parallel ion velocity. Finally, various techniques are used to attempt to match the experimental electric potential profile, including fixing an equilibrium profile, fixing the radial boundaries, and adding an angular momentum source. [4pt] [1] Popovich et al., http://arxiv.org/abs/1005.2418 (2010).[0pt] [2] Dudson et al., Computer Physics Communications 180 (2009).
Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations
2015-06-01
decreases at a ll l eve l s except L1L2 when s i tting . Even anteri or/posteri or d i stri but i on o f l oad maintains whole lumbar lordosis as load...more forward. Data shown is mean ± STD. Figure 4. Cobb angle was measured in each position to assess lumbar lordosis . A.) Sagittal Cobb angle is...c C/)..C C) 0 () -(/) (!) !.... (!) .Q 0, !.... (!) ~Ŕ c- =<D ro-.....,e> :!:C O><( ro..c Cl)..c 0 () Lordosis Kyphosis endplate
Front-end electronics of the Belle II drift chamber
NASA Astrophysics Data System (ADS)
Shimazaki, Shoichi; Taniguchi, Takashi; Uchida, Tomohisa; Ikeno, Masahiro; Taniguchi, Nanae; Tanaka, Manobu M.
2014-01-01
This paper describes the performance of the Belle II central drift chamber (CDC) front-end electronics. The front-end electronics consists of a current sensitive preamplifier, a 1/t cancellation circuit, baseline restorers, a comparator for timing measurement and an analog buffer for the dE/dx measurement on a CDC readout card. The CDC readout card is located on the endplate of the CDC. Mass production will be completed after the performance of the chip is verified. The electrical performance and results of a neutron/gamma-ray irradiation test are reported here.
Phthalate Metabolites, Consumer Habits and Health Effects
Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter
2016-01-01
Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching. PMID:27428989
Phthalate Metabolites, Consumer Habits and Health Effects.
Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter
2016-07-15
Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.
Measurement of the Heat Capacity of He-II Under a Heat Current Near the Lambda Transition
NASA Technical Reports Server (NTRS)
Harter, Alexa W.; Lee, Richard A. M.; Chui, Talso C. P.; Goodstein, David L.
2000-01-01
We present preliminary measurements of the heat capacity of superfluid helium-4 under an applied heat current near the lambda transition. The calorimeter is a standard cylindrical thermal conductivity cell with a 0.6 mm gap between two copper endplates. The sidewall is made of stainless steel. A heat current density in the range of 1 to 4 microW/sq cm is applied through the helium sample while a pulse method is used to measure the heat capacity. Temperature changes are recorded with high-resolution thermometers (HRTs) located on the top and bottom endplates. Corrections are made to the readings of the HRTs to account for the Kapitza boundary resistance and the anomalous Kapitza boundary resistance. After the corrections, both the top and the bottom HRTs. give the same heat capacity values. The heat capacity is found to be much larger than the prediction of recent theories. We also plotted our data on a scaled plot to test the prediction of scaling by the theories. The result and its interpretation will be presented. The cell height was deliberately made to be thin to reduce the effects of gravity. Nonetheless, gravity is expected to have significant effects on the heat capacity data in the temperature range of our measurement. A space experiment would remove this unwanted gravity effect and allow the true physics to be examined. Moreover, in the absence of gravity, a deeper cell can be used allowing HRTs to be mounted on to the sidewall providing direct measurements of the helium temperature, unaffected by the anomalous Kapitza boundary resistance.
Krause Neto, Walter; Silva, Wellington de Assis; Ciena, Adriano P.; de Souza, Romeu R.; Anaruma, Carlos A.; Gama, Eliane F.
2017-01-01
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats. PMID:29326543
Jaremko, Jacob Lester; Siminoski, Kerry; Firth, Gregory; Matzinger, Mary Ann; Shenouda, Nazih; Konji, Victor N.; Roth, Johannes; Sbrocchi, Anne Marie; Reed, Martin; O’Brien, Kathleen; Nadel, Helen; McKillop, Scott; Kloiber, Reinhard; Dubois, Josée; Coblentz, Craig; Charron, Martin; Ward, Leanne M.
2015-01-01
Children with glucocorticoid-treated illnesses are at risk for osteoporotic vertebral fractures and growing awareness has led to increased monitoring for these fractures. However scant literature describes developmental changes in vertebral morphology that can mimic fractures. The goal of this paper is to aid in distinguishing between normal variants and fractures. We illustrate differences using lateral spine radiographs obtained annually from children recruited to the Canada-wide STeroid-Associated Osteoporosis in the Pediatric Population (STOPP) observational study, in which 400 children with glucocorticoid-treated leukemia, rheumatic disorders, and nephrotic syndrome were enrolled near glucocorticoid initiation and followed prospectively for 6 years. Normal variants mimicking fractures exist in all regions of the spine and fall into two groups. The first group comprises variants mimicking pathological vertebral height loss, including not-yet-ossified vertebral apophyses superiorly and inferiorly which can lead to a vertebral shape easily over-interpreted as anterior wedge fracture, physiologic beaking, and spondylolisthesis associated with shortened posterior vertebral height. The second group includes variants mimicking other radiologic signs of fractures: anterior vertebral artery groove resembling an anterior buckle fracture, Cupid’s bow balloon disk morphology, Schmorl nodes mimicking concave endplate fractures, and parallax artifact resembling endplate interruption or biconcavity. If an unexpected vertebral body contour is detected, careful attention to its location, detailed morphology, and (if available) serial changes over time may clarify whether it is a fracture requiring change in management or simply a normal variant. Awareness of the variants described in this paper can improve accuracy in the diagnosis of pediatric vertebral fractures. PMID:25828359
Why do some intervertebral discs degenerate, when others (in the same spine) do not?
Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia
2015-03-01
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.
Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.
Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M
2015-09-01
To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.
Assessment of scoliosis by direct measurement of the curvature of the spine
NASA Astrophysics Data System (ADS)
Dougherty, Geoff; Johnson, Michael J.
2009-02-01
We present two novel metrics for assessing scoliosis, in which the geometric centers of all the affected vertebrae in an antero-posterior (A-P) radiographic image are used. This is in contradistinction to the existing methods of using selected vertebrae, and determining either their endplates or the intersections of their diagonals, to define a scoliotic angle. Our first metric delivers a scoliotic angle, comparable to the Cobb and Ferguson angles. It measures the sum of the angles between the centers of the affected vertebrae, and avoids the need for an observer to decide on the extent of component curvatures. Our second metric calculates the normalized root-mean-square curvature of the smoothest path comprising piece-wise polynomial splines fitted to the geometric centers of the vertebrae. The smoothest path is useful in modeling the spinal curvature. Our metrics were compared to existing methods using radiographs from a group of twenty subjects with spinal curvatures of varying severity. Their values were strongly correlated with those of the scoliotic angles (r = 0.850 - 0.886), indicating that they are valid surrogates for measuring the severity of scoliosis. Our direct use of positional data removes the vagaries of determining variably shaped endplates, and circumvented the significant interand intra-observer errors of the Cobb and Ferguson methods. Although we applied our metrics to two-dimensional (2- D) data in this paper, they are equally applicable to three-dimensional (3-D) data. We anticipate that they will prove to be the basis for a reliable 3-D measurement and classification system.
Determination of the intervertebral disc space from CT images of the lumbar spine
NASA Astrophysics Data System (ADS)
Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2014-03-01
Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.
Fan, Wei; Guo, Li-Xin
2018-06-01
Few studies have evaluated the need for supplementary instrumentation after lumbar interbody fusion under the condition of whole body vibration (WBV) that is typically present in vehicles. This study aimed to determine the effect of posterior pedicle screw fixation on dynamic response of the whole lumbar spine to vertical WBV after transforaminal lumbar interbody fusion (TLIF). A previously validated nonlinear, osteoligamentous finite element (FE) model of the intact L1-sacrum human lumbar spine was modified to simulate single-level (L4-L5) TLIF without and with bilateral pedicle screw fixation (BPSF). Transit dynamic analysis was performed on the 2 developed models under a sinusoidal vertical vibration load of ±40 N and a compressive follower preload of 400 N. The resulting dynamic response results for the 2 models in terms of stresses and deformations were recorded and compared. When compared with no fixation, BPSF decreased dynamic responses of the spinal levels to the vertical vibration after TLIF. At the fused level (L4-L5), vibration amplitudes of the von-Mises stresses in L4 inferior endplate and L5 superior endplate decreased after BPSF by 48.0% and 46.4%, respectively. At other disc levels (L1-L2, L2-L3, L3-L4, and L5-S1), vibration amplitudes of the disc bulge, von-Mises stress in annulus ground substance and intradiscal pressure also produced 4.2%-9.0%, 2.3%-8.9%, and 3.4%-8.8% deceases, respectively, after BPSF. After TLIF, application of BPSF can be helpful in the prevention of spine injury during vertical WBV. Copyright © 2018 Elsevier Inc. All rights reserved.
Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E
2018-05-01
The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.
McClellan, Taylor; Allen, Brian C; Kappus, Matthew; Bhatti, Lubna; Dafalla, Randa A; Snyder, Laurie D; Bashir, Mustafa R
To determine interreader and intrareader repeatability and correlations among measurements of computerized tomography-based anthropomorphic measurements in patients with pulmonary fibrosis undergoing lung transplantation. This was an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study of 23 randomly selected subjects (19 male and 4 female; median age = 69 years; range: 66-77 years) with idiopathic pulmonary fibrosis undergoing pulmonary transplantation, who had also undergone preoperative thoracoabdominal computerized tomography. Five readers of varying imaging experience independently performed the following cross-sectional area measurements at the inferior endplate of the L3 vertebral body: right and left psoas muscles, right and left paraspinal muscles, total abdominal musculature, and visceral and subcutaneous fat. The following measurements were obtained at the inferior endplate of T6: right and left paraspinal muscles with and without including the trapezius muscles and subcutaneous fat. Three readers repeated all measurements to assess intrareader repeatability. Intrareader repeatability was nearly perfect (interclass correlation coefficients = 0.99, P < 0.001). Interreader agreement was excellent across all 5 readers (interclass correlation coefficients: 0.71-0.99, P < 0.001). Coefficients of variance between measures ranged from 3.2%-6.8% for abdominal measurements, but were higher for thoracic measurements, up to 23.9%. Correlation between total paraspinal and total psoas muscle area was strong (r 2 = 0.67, P < 0.001). Thoracic and abdominal musculature had a weaker correlation (r 2 = 0.35-0.38, P < 0.001). Measures of thoracic and abdominal muscle and fat area are highly repeatable in patients with pulmonary fibrosis undergoing lung transplantation. Measures of muscle area are strongly correlated among abdominal locations, but inversely correlated between abdominal and thoracic locations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sandover, J.
1998-08-01
The fatigue approach assumes that the vertebral end-plates are the weak link in the spine subjected to shock and vibration, and fail as a result of material fatigue. The theory assumes that end-plate damage leads to degeneration and pain in the lumbar spine. There is evidence for both the damage predicted and the fatigue mode of failure so that the approach may provide a basis for predictive methods for use in epidemiology and standards. An available data set from a variety of heavy vehicles in practical situations was used for predictions of spinal stress and fatigue life. Although there was some disparity between the predictive methods used, the more developed methods indicated fatigue lives that appeared reasonable, taking into account the vehicles tested and our knowledge of spinal degeneration. It is argued that the modelling and fatigue approaches combined offer a basis for estimating the effects of vibration and shock on health. Although the human variables are such that the approach, as yet, only offers rough estimates, it offers a good basis for understanding. The approach indicates that peak values are important and large peaks dominate risk. The method indicates that long term r.m.s. methods probably underestimate the risk of injury. The BS 6841Wband ISO 2631Wkweightings have shortcomings when used where peak values are important. A simple model may be more appropriate. The principle can be applied to continuous vibration as well as high acceleration events so that one method can be applied universally to continuous vibrations, high acceleration events and mixtures of these. An endurance limit can be hypothesised and, if this limit is sufficiently high, then the need for many measurements can be reduced.
Structure‐function relationships at the human spinal disc‐vertebra interface
Berg‐Johansen, Britta; Fields, Aaron J.; Liebenberg, Ellen C.; Li, Alfred
2017-01-01
ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018. PMID:28590060
Arnbak, Bodil; Jensen, Tue S; Egund, Niels; Zejden, Anna; Hørslev-Petersen, Kim; Manniche, Claus; Jurik, Anne G
2016-04-01
To estimate the prevalence of degenerative and spondyloarthritis (SpA)-related magnetic resonance imaging (MRI) findings in the spine and sacroiliac joints (SIJs) and analyse their association with gender and age in persistent low back pain (LBP) patients. Degenerative and SpA-related MRI findings in the whole spine and SIJs were evaluated in Spine Centre patients aged 18-40 years with LBP. Among the 1,037 patients, the prevalence of disc degeneration, disc contour changes and vertebral endplate signal (Modic) changes were 87 % (±SEM 1.1), 82 % (±1.2) and 48 % (±1.6). All degenerative spinal findings were most frequent in men and patients aged 30-40 years. Spinal SpA-related MRI findings were rare. In the SIJs, 28 % (±1.4) had at least one MRI finding, with bone marrow oedema being the most common (21 % (±1.3)). SIJ erosions were most prevalent in patients aged 18-29 years and bone marrow oedema in patients aged 30-40 years. SIJ sclerosis and fatty marrow deposition were most common in women. SIJ bone marrow oedema, sclerosis and erosions were most frequent in women indicating pregnancy-related LBP. The high prevalence of SIJ MRI findings associated with age, gender, and pregnancy-related LBP need further investigation of their clinical importance in LBP patients. • The location of vertebral endplate signal changes supports a mechanical aetiology. • Several sacroiliac joint findings were associated with female gender and pregnancy-related back pain. • Sacroiliac joint bone marrow oedema was frequent and age-associated, indicating a possible degenerative aetiology. • More knowledge of the clinical importance of sacroiliac joint MRI findings is needed.
Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C
2011-01-01
Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.
Stokes, Ian A. F.; Laible, Jeffrey P.; Gardner-Morse, Mack G.; Costi, John J.; Iatridis, James C.
2011-01-01
Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force–time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754
A Large Animal Model that Recapitulates the Spectrum of Human Intervertebral Disc Degeneration
Gullbrand, Sarah E.; Malhotra, Neil R.; Schaer, Thomas P.; Zawacki, Zosia; Martin, John T.; Bendigo, Justin R.; Milby, Andrew H.; Dodge, George R.; Vresilovic, Edward J.; Elliott, Dawn M.; Mauck, Robert L.; Smith, Lachlan J.
2016-01-01
Objective The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. Design Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, micro-computed tomography (µCT), and measurement of disc biomechanical properties. Results Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC injected discs also occurred. Spine segment range of motion was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. Conclusions A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration. PMID:27568573
Establishment of a New Zealand rabbit model of spinal tuberculosis.
Geng, Guangqi; Wang, Qian; Shi, Jiandang; Yan, Junfa; Niu, Ningkui; Wang, Zili
2015-04-01
This was an experimental study. To investigate and evaluate the experimental method of establishing a New Zealand rabbit model of spinal tuberculosis. Establishing animal models of tuberculosis is critical to the experimental and clinical study of tuberculosis, especially spinal tuberculosis. However, the rapid spread of Mycobacterium tuberculosis and subsequent high mortality thwarted their effort. Since then, no animal models have been established of spinal tuberculosis. Forty-two New Zealand rabbits were randomly divided into experimental (n=20), control (n=20), and blank groups (n=2). Experimental animals were sensitized by complete Freund's adjuvant. A hole drilled under the upper endplate of the L4 vertebral body was filled with a gelfoam sponge infused with 0.1 mL H37Rv standard M. tuberculosis suspension (in controls, culture medium, and saline). Blank animals received no treatment. Survival 8 weeks after surgery was 89.5%, 94.7%, and 100% in experimental, control, and blank groups, respectively. The model was successfully established in all surviving experimental rabbits. In experimental animals, vertebral body destruction at 4 weeks was 50% by x-ray; 83.3% by computed tomography reconstruction and magnetic resonance imaging; at 8 weeks, 58.8% by x-ray and 100% by computed tomograph reconstruction and magnetic resonance imaging. At 8 weeks, experimental animals developed vertebral destruction, granulation, and necrosis and 17.6% had psoas abscess. Histopathology revealed numerous lymphocytes and epithelioid cells, trabecular bone fracture, and coagulative necrosis in the vertebrae of experimental animals; bacterium culture was 52.9% positive. Control and blank animals showed no such changes. A New Zealand rabbit of spinal tuberculosis model can be successfully established by drilling a hole in the upper endplate of the vertebral body, filling with gelfoam sponge infused with H37Rv standard M. tuberculosis suspension after sensitization by complete Freund's adjuvant.
Akbar, Saleem; Dhar, Shabir A.
2008-01-01
To assess the efficacy and feasibility of vertebroplasty and posterior short-segment pedicle screw fixation for the treatment of traumatic lumbar burst fractures. Short-segment pedicle screw instrumentation is a well described technique to reduce and stabilize thoracic and lumbar spine fractures. It is relatively a easy procedure but can only indirectly reduce a fractured vertebral body, and the means of augmenting the anterior column are limited. Hardware failure and a loss of reduction are recognized complications caused by insufficient anterior column support. Patients with traumatic lumbar burst fractures without neurologic deficits were included. After a short segment posterior reduction and fixation, bilateral transpedicular reduction of the endplate was performed using a balloon, and polymethyl methacrylate cement was injected. Pre-operative and post-operative central and anterior heights were assessed with radiographs and MRI. Sixteen patients underwent this procedure, and a substantial reduction of the endplates could be achieved with the technique. All patients recovered uneventfully, and the neurologic examination revealed no deficits. The post-operative radiographs and magnetic resonance images demonstrated a good fracture reduction and filling of the bone defect without unwarranted bone displacement. The central and anterior height of the vertebral body could be restored to 72 and 82% of the estimated intact height, respectively. Complications were cement leakage in three cases without clinical implications and one superficial wound infection. Posterior short-segment pedicle fixation in conjunction with balloon vertebroplasty seems to be a feasible option in the management of lumbar burst fractures, thereby addressing all the three columns through a single approach. Although cement leakage occurred but had no clinical consequences or neurological deficit. PMID:18193300
Hydrostatic pressure modifies the action of octanol and atropine on frog endplate conductance.
Ashford, M. L.; Macdonald, A. G.; Wann, K. T.
1984-01-01
The effects of octanol, ethanol and atropine were examined on the time course of decay (tau D) of miniature endplate currents (m.e.p.cs) in the frog neuromuscular junction at normal and high pressure. Octanol (25-100 microM) decreased reversibly the tau D of m.e.p.cs in a dose-dependent manner, 100 microM reducing tau D to 0.39 of the control value. Higher concentrations (200-500 microM) additionally depressed the amplitude of m.e.p.cs. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of octanol (25-100 microM)-shortened m.e.p.cs. Thus 3.19 MPa and 5.25 MPa reduced the tau D in the presence of 100 microM octanol to 0.75 and 0.78 of the octanol treated values. This effect was not completely reversed on decompression. The m.e.p.c. amplitude is reversibly decreased by pressure in the presence of octanol. Hydrostatic pressure (3.19-15.55 MPa) did not modify the effect of ethanol on tau D. At 10.40 and 15.55 MPa the tau D was increased equally in the absence or presence of ethanol. Atropine (60 microM) reduced the tau D and amplitude of m.e.p.cs to 0.33 and 0.63 of the control values. These effects were completely reversible. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of atropine-shortened m.e.p.cs to 0.82 and 0.77 of the atropine-treated values respectively. This effect was not completely reversed on decompression. Hydrostatic pressure also reversibly depressed the amplitude of atropine-treated m.e.p.cs. The implications of these drug-hydrostatic pressure interactions are discussed. PMID:6333262
Milani, Giovana Barbosa; Filho, A’Dayr Natal; João, Sílvia Maria Amado
2008-01-01
INTRODUCTION Gynoid lipodystrophy (cellulite) has been cited as a common dermatological alteration. It occurs mainly in adult women and tends to gather around the thighs and buttocks. Its presence and severity have been related to many factors, including biotype, age, sex, circulatory changes, and, as some authors have suggested, mechanical alterations such as lumbar hyperlordosis. OBJECTIVE To correlate the degree of cellulite with the angle of lumbar lordosis in asymptomatic women. METHODS Fifty volunteers were evaluated by digital photos, palpation, and thermograph. The degree of cellulite was classified on a scale of 1–4. Analyses were performed on the superior, inferior, right and left buttocks (SRB, IRB, SLB, ILB), and the superior right and left thighs (SRT, SLT). The volunteers underwent a lateral-view X-ray, and the angle of lumbar lordosis was measured using Cobb’s method (inferior endplate of T12 and the superior endplate of S). The data were statistically analyzed using ANOVA and Spearman’s correlation. A significance level of 5% was adopted. RESULTS Volunteers had a mean age of 26.1 ± 4.4 years and a mean body mass index of 20.7 ± 1.9 kg/m2. There was no significant difference in lumbar lordosis angle between those with cellulite classes 2 and 3 (p ≥ 0.297). There was also no correlation between lumbar lordosis angle and the degree of cellulite (p ≥ 0.085 and r ≥ 0.246). CONCLUSIONS The analysis suggests that there is no correlation between the degree of cellulite and the angle of lumbar lordosis as measured using Cobb’s method. PMID:18719762
Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W
2016-01-01
Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.
In vivo Loads in the Lumbar L3-4 Disc during a Weight Lifting Extension
Wang, Shaobai; Park, Won Man; Kim, Yoon Hyuk; Cha, Thomas; Wood, Kirkham; Li, Guoan
2014-01-01
Background Knowledge of in vivo human lumbar loading is critical for understanding the lumbar function and for improving surgical treatments of lumbar pathology. Although numerous experimental measurements and computational simulations have been reported, non-invasive determination of in vivo spinal disc loads is still a challenge in biomedical engineering. The object of the study is to investigate the in vivo human lumbar disc loads using a subject-specific and kinematic driven finite element approach. Methods Three dimensional (3D) lumbar spine models of three living subjects were created using MR images. A 3D finite element model of the L3-4 disc, including the annulus fibrosus and nucleus pulposus, was built for each subject. The endplate kinematics of the L3-4 segment of each subject during a dynamic weight lifting extension was determined using a dual fluoroscopic imaging technique. The endplate kinematics was used as displacement boundary conditions of the subject specific finite element model of the L3-4 disc to calculate the in-vivo disc forces and moments during the weight lifting activity. Findings During the weight lifting extension, the L3-4 disc experienced maximum shear load of about 230 N or 0.34 bodyweight at the flexion position and maximum compressive load of 1500 N or 2.28 bodyweight at the upright position. The disc experienced a primary flexion-extension moment during the motion which reached a maximum of 4.2 Nm at upright position with stretched arms holding the weight. Interpretation This study provided quantitative data on in vivo disc loading that could help understand intrinsic biomechanics of the spine and improve surgical treatment of pathological discs using fusion or arthroplasty techniques. PMID:24345591
2011-01-01
Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activity at myofascial trigger point originates from the extrafusal motor endplate. The spontaneous electrical activity represents focal muscle fiber contraction and/or muscle cramp potentials depending on trigger point sensitivity. Local pain and tenderness at myofascial trigger points are largely due to nociceptor sensitization with a lesser contribution from non-nociceptor sensitization. Nociceptor and non-nociceptor sensitization at myofascial trigger points may be part of the process of muscle ischemia associated with sustained focal muscle contraction and/or muscle cramps. Referred pain is dependent on the sensitivity of myofascial trigger points. Active myofascial trigger points may play an important role in the transition from localized pain to generalized pain conditions via the enhanced central sensitization, decreased descending inhibition and dysfunctional motor control strategy. PMID:21439050
The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)
NASA Astrophysics Data System (ADS)
Azman, M. F.; Azman, A. W.
2017-11-01
Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.
Biological evolution of replicator systems: towards a quantitative approach.
Martin, Osmel; Horvath, J E
2013-04-01
The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.
Biological Evolution of Replicator Systems: Towards a Quantitative Approach
NASA Astrophysics Data System (ADS)
Martin, Osmel; Horvath, J. E.
2013-04-01
The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.
Shan, Zhi; Zhang, Xuyang; Li, Shengyun; Yu, Tianming; Mamuti, Maiwulanjiang; Zhao, Fengdong
2017-03-15
Modic changes (inflammatory-like changes visible on magnetic resonance imaging [MRI] scans of a vertebral end plate) are common and are associated with low back pain, but their origin is unclear. To our knowledge, there have been no previous in vivo animal models of Modic changes. We hypothesized that Modic changes may be related to Propionibacterium acnes. Ten New Zealand White rabbits were injected percutaneously with 1 mL of P. acnes (1.6 × 10 colony forming units/mL) into the subchondral bone superior to the L4-L5 and L5-L6 discs; 10 other control rabbits received sham injections at L4-L5 and 1 mL of normal saline solution (vehicle) at L5-L6. The subchondral bone superior to L3-L4 discs was untreated (blank). Development of Modic changes was investigated with MRI studies before the operation and at 2 weeks and 1, 2, 3, and 6 months postoperatively. Following sacrifice of the rabbits, histological analysis and microcomputed tomography (micro-CT) were performed, and blood samples were analyzed. Cytokine expression in end-plate tissues was quantified using real-time polymerase chain reaction (PCR). The group that received P. acnes showed significantly increased T1-weighted signal intensity at 6 months (mean and standard deviation, 3.43 ± 0.41 [range, 2.42 to 4.44] compared with 2.43 ± 0.66 [range, 1.98 to 2.87] before the injection) and higher T2-weighted signal intensity at 6 months. Positive culture results were obtained from 9 of 20 samples injected with P. acnes. Specimens with positive cultures had a higher prevalence of Modic changes (4 of 9 samples positive for P. acnes compared with 3 of 11 samples negative for P. acnes). Real-time PCR showed significantly increased expression of tumor necrosis factor-α, interleukin-1β, and interferon-γ following injection of P. acnes, but no changes were seen on histological analysis, micro-CT, or blood analysis. P. acnes can survive within the end-plate region and can initiate mild inflammatory-like responses from host cells, leading to signal intensity changes in MRI scans, which potentially resemble Modic changes. Disc degeneration and low back pain are associated with Modic changes. Our results indicate that Modic changes can be associated with P. acnes in the conjunction area of the disc and subchondral bone. These results may be useful for understanding the underlying mechanisms of Modic changes and related pain.
Complicating autoimmune diseases in myasthenia gravis: a review
Nacu, Aliona; Andersen, Jintana Bunpan; Lisnic, Vitalie; Owe, Jone Furlund; Gilhus, Nils Erik
2015-01-01
Abstract Myasthenia gravis (MG) is a rare autoimmune disease of skeletal muscle endplates. MG subgroup is relevant for comorbidity, but usually not accounted for. MG patients have an increased risk for complicating autoimmune diseases, most commonly autoimmune thyroid disease, systemic lupus erythematosus and rheumatoid arthritis. In this review, we present concomitant autoimmune disorders associated with the different MG subgroups, and show how this influences treatment and prognosis. Concomitant MG should always be considered in patients with an autoimmune disorder and developing new neuromuscular weakness, fatigue or respiratory failure. When a second autoimmune disorder is suspected, MG should be included as a differential diagnosis. PMID:25915571
NASA Technical Reports Server (NTRS)
Garland, D. B.
1980-01-01
Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor.
Long-term effects of vertebroplasty: adjacent vertebral fractures.
Baroud, Gamal; Vant, Christianne; Wilcox, Ruth
2006-01-01
In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre-augmentation measurements. This translates to a high hydrostatic pressure adjacent to the augmented vertebra, representing the first evidence of increased loading. Computational finite element (FE) models have found that the rigid cement augmentation results in an increase in loading in the structures adjacent to the augmented vertebra. The mechanism of the increase of the loading is predicted to be the pillar effect of the rigid cement. The cement inhibits the normal endplate bulge into the augmented vertebra and thus pressurizes the adjacent disc, which subsequently increases the loading of the untreated vertebra. The mechanism for adjacent vertebral fractures is still unclear, but from experimental and computational studies, it appears that the change in mechanical loading following augmentation is responsible. The pillar effect of injected cement is hypothesized to decrease the endplate bulge in the augmented vertebra causing an increase in adjacent disc pressure that is communicated to the adjacent vertebra. To confirm the viability of the pillar effect as the responsible mechanism, endplate bulge and disc pressure should be directly measured before and after augmentation. Future studies should be concerned with quantifying the current and ideal mechanical response of the spine and subsequently developing cements that can achieve this optimum response.
Smith, Lachlan J; Martin, John T; Szczesny, Spencer E; Ponder, Katherine P; Haskins, Mark E; Elliott, Dawn M
2010-01-01
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disorder characterized by a deficiency in β-glucuronidase activity, leading to systemic accumulation of poorly degraded glycosaminoglycans (GAG). Along with other morbidities, MPS VII is associated with paediatric spinal deformity. The objective of this study was to examine potential associations between abnormal lumbar spine matrix structure and composition in MPS VII, and spine segment and tissue-level mechanical properties, using a naturally occurring canine model with a similar clinical phenotype to the human form of the disorder. Segments from juvenile MPS VII and unaffected dogs were allocated to: radiography, gross morphology, histology, biochemistry, and mechanical testing. MPS VII spines had radiolucent lesions in the vertebral body epiphyses. Histologically, this corresponded to a GAG-rich cartilaginous region in place of bone, and elevated GAG staining was seen in the annulus fibrosus. Biochemically, MPS VII samples had elevated GAG in the outer annulus fibrosus and epiphyses, low calcium in the epiphyses, and high water content in all regions except the nucleus pulposus. MPS VII spine segments had higher range of motion and lower stiffness than controls. Endplate indentation stiffness and failure loads were significantly lower in MPS VII samples, while annulus fibrosus tensile mechanical properties were normal. Vertebral body lesions in MPS VII spines suggest a failure to convert cartilage to bone during development. Low stiffness in these regions likely contributes to mechanical weakness in motion segments and is a potential factor in the progression of spinal deformity. PMID:19918911
Foxa1 and Foxa2 are required for formation of the intervertebral discs.
Maier, Jennifer A; Lo, YinTing; Harfe, Brian D
2013-01-01
The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreER(T2)), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1(-/-);Foxa2(c/c);ShhcreER(T2) double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord.
Foxa1 and Foxa2 Are Required for Formation of the Intervertebral Discs
Maier, Jennifer A.; Lo, YinTing; Harfe, Brian D.
2013-01-01
The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreERT2), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1−/−;Foxa2c/c;ShhcreERT2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord. PMID:23383217
Brophy, Carl M; Hoh, Daniel J
2018-06-01
Cervical disc arthroplasty (CDA) has received widespread attention as an alternative to anterior fusion due to its similar neurological and functional improvement, with the advantage of preservation of segmental motion. As CDA becomes more widely implemented, the potential for unexpected device-related adverse events may be identified. The authors report on a 48-year-old man who presented with progressive neurological deficits 3 years after 2-level CDA was performed. Imaging demonstrated periprosthetic osteolysis of the vertebral endplates at the CDA levels, with a heterogeneously enhancing ventral epidural mass compressing the spinal cord. Diagnostic workup for infectious and neoplastic processes was negative. The presumptive diagnosis was an inflammatory pannus formation secondary to abnormal motion at the CDA levels. Posterior cervical decompression and instrumented fusion was performed without removal of the arthroplasty devices or the ventral epidural mass. Postoperative imaging at 2 months demonstrated complete resolution of the compressive pannus, with associated improvement in clinical symptoms. Follow-up MRI at > 6 months showed no recurrence of the pannus. At 1 year postoperatively, CT scanning revealed improvement in periprosthetic osteolysis. Inflammatory pannus formation may be an unexpected complication of abnormal segmental motion after CDA. This rare etiology of an epidural mass associated with an arthroplasty device should be considered, in addition to workup for other potential infectious or neoplastic mass lesions. In symptomatic individuals, compressive pannus lesions can be effectively treated with fusion across the involved segment without removal of the device.
M6-C artificial disc placement.
Coric, Domagoj; Parish, John; Boltes, Margaret O
2017-01-01
There has been a steady evolution of cervical total disc replacement (TDR) devices over the last decade resulting in surgical technique that closely mimics anterior cervical discectomy and fusion as well as disc design that emphasizes quality of motion. The M6-C TDR device is a modern-generation artificial disc composed of titanium endplates with tri-keel fixation as well as a polyethylene weave with a polyurethane core. Although not yet approved by the FDA, M6-C has finished a pilot and pivotal US Investigational Device Exemption (IDE) study. The authors present the surgical technique for implantation of a 2-level M6-C cervical TDR device. The video can be found here: https://youtu.be/rFEAqINLRCo .
Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis
Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Feng, Kuan; Zhang, Shuangyan; Huang, Jiefang; Miao, Xiang; Baggi, Fulvio; Ostrom, Rennolds S.; Zhang, Yanyun; Chen, Xiangjun; Xu, Congfeng
2017-01-01
ABSTRACT Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder. PMID:28933591
Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis.
Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Feng, Kuan; Zhang, Shuangyan; Huang, Jiefang; Miao, Xiang; Baggi, Fulvio; Ostrom, Rennolds S; Zhang, Yanyun; Chen, Xiangjun; Xu, Congfeng
2017-01-01
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.
Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J
2009-04-01
We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, Alexey M., E-mail: fysio@rambler.ru; Zakyrjanova, Guzalija F., E-mail: guzik121192@mail.ru; Yakovleva, Anastasia A., E-mail: nastya1234qwer@mail.ru
Highlights: • We examine the involvement of PKC in MCD induced synaptic vesicle exocytosis. • PKC inhibitor does not decrease the effect MCD on MEPP frequency. • PKC inhibitor prevents MCD induced FM1-43 unloading. • PKC activation may switch MCD induced exocytosis from kiss-and-run to a full mode. • Inhibition of phospholipase C does not lead to similar change in exocytosis. - Abstract: Previous studies demonstrated that depletion of membrane cholesterol by 10 mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement ofmore » spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis.« less
Feng, Zhiyun; Chen, Lunhao; Hu, Xiaojian; Yang, Ge; Wang, Yue; Chen, Zhong
2018-04-11
An experimental study. The aim of this study was to determine the effect of polymethylmethacrylate (PMMA) augmentation on the adjacent disc. Vertebral augmentation with PMMA reportedly may predispose the adjacent vertebra to fracture. The influence of PMMA augmentation on the adjacent disc, however, remains unclear. Using a retroperitoneal approach, PMMA augmentation was performed for 23 rabbits. For each animal, at least one vertebra was augmented with 0.2 to 0.3 mL PMMA. The disc adjacent to the augmented vertebra and a proximal control disc were studied using magnetic resonance (MR) imaging, histological and molecular level evaluation at 1, 3, and 6 months postoperatively. Marrow contact channels in the endplate were quantified in histological slices and number of invalid channels (those without erythrocytes inside) was rated. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) was performed to determine disc cell apoptosis. On MR images, the signal and height of the adjacent disc did not change 6 months after vertebral augmentation. Histological scores of the adjacent disc increased over time, particularly for the nucleus pulposus. The adjacent disc had greater nucleus degeneration score than the control disc at 3 months (5.7 vs. 4.5, P < 0.01) and 6 months (6.9 vs. 4.4, P < 0.001). There were more invalid marrow contact channels in the endplate of augmented vertebra than the control (43.3% vs. 11.1%, P < 0.01). mRNA of ADAMTS-5, MMP-13, HIF-1α, and caspase-3 were significantly upregulated in the adjacent disc at 3 and 6 months (P < 0.05 for all). In addition, there were more TUNEL-positive cells in the adjacent disc than in the control disc (43.4% vs. 24.0%, P < 0.05) at 6 months postoperatively. Vertebral augmentation can induce early degenerative signs in the adjacent disc, which may be due to impaired nutrient supply to the disc. N/A.
van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen
2016-05-01
Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may be worthwhile to understand such a symptom.
Mattei, Tobias A; Rehman, Azeem A; Teles, Alisson R; Aldag, Jean C; Dinh, Dzung H; McCall, Todd D
2017-01-01
In order to evaluate the predictive effect of non-invasive preoperative imaging methods on surgical outcomes of lumbar fusion for patients with degenerative disc disease (DDD) and refractory chronic axial low back pain (LBP), the authors conducted a retrospective review of 45 patients with DDD and refractory LBP submitted to anterior lumbar interbody fusion (ALIF) at a single center from 2007 to 2010. Surgical outcomes - as measured by Visual Analog Scale (VAS/back pain) and Oswestry Disability Index (ODI) - were evaluated pre-operatively and at 6 weeks, 3 months, 6 months, and 1 year post-operatively. Linear mixed-effects models were generated in order to identify possible preoperative imaging characteristics (including bone scan/99mTc scintigraphy increased endplate uptake, Modic endplate changes, and disc degeneration graded according to Pfirrmann classification) which may be predictive of long-term surgical outcomes . After controlling for confounders, a combined score, the Lumbar Fusion Outcome Score (LUFOS), was developed. The LUFOS grading system was able to stratify patients in two general groups (Non-surgical: LUFOS 0 and 1; Surgical: LUFOS 2 and 3) that presented significantly different surgical outcomes in terms of estimated marginal means of VAS/back pain (p = 0.001) and ODI (p = 0.006) beginning at 3 months and continuing up to 1 year of follow-up. In conclusion, LUFOS has been devised as a new practical and surgically oriented grading system based on simple key parameters from non-invasive preoperative imaging exams (magnetic resonance imaging/MRI and bone scan/99mTc scintigraphy) which has been shown to be highly predictive of surgical outcomes of patients undergoing lumbar fusion for treatment for refractory chronic axial LBP.
Yusof, Mohd Imran; Nadarajan, Eswaran; Abdullah, Mohd Shafie
2014-06-15
Cross-sectional study on the measurement of relevant magnetic resonance imaging parameters in 100 patients presented for lumbar spine assessment. To determine anatomical position of lumbar plexus and major blood vessels in relation to vertebral body and anterior edge of psoas muscle at L3-L4 and L4-L5 and to define the safe working zone for transpsoas approach for lumbar fusion. Lateral transpsoas lumbar interbody fusion has been shown to be safe and provides alternative for lumbar fusion. However, proximity of neurovascular structures may not allow a safe passage for this procedure in the Asian population. Relevant parameters were measured from axial magnetic resonance images and analyzed, including the psoas muscle and vertebrae endplate diameters, lumbar plexus and psoas muscle distance, lumbar plexus and vertebra body distance, and vena cava to the anterior vertebrae body diameters. The mean anteroposterior diameters of the right and left psoas muscle ranged from 44.0 to 58.6 mm and 44.8 to 54.0 mm, respectively. The mean anteroposterior diameters of vertebra endplate of L3, L4, and L5 were 38.2 mm, 39.3 mm, and 41.4 mm, respectively. The mean distance of posterior border of vena cava from the vertebra body was 4.5 mm at L3-L4 and 14.1 mm at L4-L5. L3-L4 fusion is feasible at both sides in both sexes; however, at L4-L5 level, the procedure is feasible only on the left side. The safe working zone for transpsoas approach to lumbar spine is significantly narrower at L4-L5 in both sexes. Anterior edge of psoas muscle can be used as a reliable guide to locate lumbar plexus within psoas muscle. N/A.
Back pain in space and post-flight spine injury: Mechanisms and countermeasure development
NASA Astrophysics Data System (ADS)
Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.
2013-05-01
During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical, metabolic, and kinematic spinal changes in the lumbar spine may aid further development of countermeasures to prevent lumbar back pain in microgravity and reduce the incidence of HNPs post-flight.
Li, Yang; Zhang, Zhenjun; Liao, Zhenhua; Mo, Zhongjun; Liu, Weiqiang
2017-10-01
Finite element models have been widely used to predict biomechanical parameters of the cervical spine. Previous studies investigated the influence of position of rotational centers of prostheses on cervical biomechanical parameters after 1-level total disc replacement. The purpose of this study was to explore the effects of axial position of rotational centers of prostheses on cervical biomechanics after 2-level total disc replacement. A validated finite element model of C3-C7 segments and 2 prostheses, including the rotational center located at the superior endplate (SE) and inferior endplate (IE), was developed. Four total disc replacement models were used: 1) IE inserted at C4-C5 disc space and IE inserted at C5-C6 disc space (IE-IE), 2) IE-SE, 3) SE-IE, and 4) SE-SE. All models were subjected to displacement control combined with a 50 N follower load to simulate flexion and extension motions in the sagittal plane. For each case, biomechanical parameters, including predicted moments, range of rotation at each level, facet joint stress, and von Mises stress on the ultra-high-molecular-weight polyethylene core of the prostheses, were calculated. The SE-IE model resulted in significantly lower stress at the cartilage level during extension and at the ultra-high-molecular-weight polyethylene cores when compared with the SE-SE construct and did not generate hypermotion at the C4-C5 level compared with the IE-SE and IE-IE constructs. Based on the present analysis, the SE-IE construct is recommended for treating cervical disease at the C4-C6 level. This study may provide a useful model to inform clinical operations. Copyright © 2017 Elsevier Inc. All rights reserved.
Lift enhancement by trapped vortex
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
1992-01-01
The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.
Kuisma, Mari; Karppinen, Jaro; Haapea, Marianne; Niinimäki, Jaakko; Ojala, Risto; Heliövaara, Markku; Korpelainen, Raija; Kaikkonen, Kaisu; Taimela, Simo; Natri, Antero; Tervonen, Osmo
2008-04-16
Modic changes are bone marrow lesions visible in magnetic resonance imaging (MRI), and they are assumed to be associated with symptomatic intervertebral disc disease, especially changes located at L5-S1. Only limited information exists about the determinants of Modic changes. The objective of this study was to evaluate the determinants of vertebral endplate (Modic) changes, and whether they are similar for Modic changes and severe disc degeneration focusing on L5-S1 level. 228 middle-aged male workers (159 train engineers and 69 sedentary factory workers) from northern Finland underwent sagittal T1- and T2-weighted MRI. Modic changes and disc degeneration were analyzed from the scans. The participants responded to a questionnaire including items of occupational history and lifestyle factors. Logistic regression analysis was used to evaluate the associations between selected determinants (age, lifetime exercise, weight-related factors, fat percentage, smoking, alcohol use, lifetime whole-body vibration) and Modic type I and II changes, and severe disc degeneration (= grade V on Pfirrmann's classification). The prevalences of the Modic changes and severe disc degeneration were similar in the occupational groups. Age was significantly associated with all degenerative changes. In the age-adjusted analyses, only weight-related determinants (BMI, waist circumference) were associated with type II changes. Exposure to whole-body vibration, besides age, was the only significant determinant for severe disc degeneration. In the multivariate model, BMI was associated with type II changes at L5-S1 (OR 2.75 per one SD = 3 unit increment in BMI), and vibration exposure with severe disc degeneration at L5-S1 (OR 1.08 per one SD = 11-year increment in vibration exposure). Besides age, weight-related factors seem important in the pathogenesis of Modic changes, whereas whole-body vibration was the only significant determinant of severe disc degeneration.
Kuisma, Mari; Karppinen, Jaro; Haapea, Marianne; Niinimäki, Jaakko; Ojala, Risto; Heliövaara, Markku; Korpelainen, Raija; Kaikkonen, Kaisu; Taimela, Simo; Natri, Antero; Tervonen, Osmo
2008-01-01
Background Modic changes are bone marrow lesions visible in magnetic resonance imaging (MRI), and they are assumed to be associated with symptomatic intervertebral disc disease, especially changes located at L5-S1. Only limited information exists about the determinants of Modic changes. The objective of this study was to evaluate the determinants of vertebral endplate (Modic) changes, and whether they are similar for Modic changes and severe disc degeneration focusing on L5-S1 level. Methods 228 middle-aged male workers (159 train engineers and 69 sedentary factory workers) from northern Finland underwent sagittal T1- and T2-weighted MRI. Modic changes and disc degeneration were analyzed from the scans. The participants responded to a questionnaire including items of occupational history and lifestyle factors. Logistic regression analysis was used to evaluate the associations between selected determinants (age, lifetime exercise, weight-related factors, fat percentage, smoking, alcohol use, lifetime whole-body vibration) and Modic type I and II changes, and severe disc degeneration (= grade V on Pfirrmann's classification). Results The prevalences of the Modic changes and severe disc degeneration were similar in the occupational groups. Age was significantly associated with all degenerative changes. In the age-adjusted analyses, only weight-related determinants (BMI, waist circumference) were associated with type II changes. Exposure to whole-body vibration, besides age, was the only significant determinant for severe disc degeneration. In the multivariate model, BMI was associated with type II changes at L5-S1 (OR 2.75 per one SD = 3 unit increment in BMI), and vibration exposure with severe disc degeneration at L5-S1 (OR 1.08 per one SD = 11-year increment in vibration exposure). Conclusion Besides age, weight-related factors seem important in the pathogenesis of Modic changes, whereas whole-body vibration was the only significant determinant of severe disc degeneration. PMID:18416819
Ion ejection from a permanent-magnet mini-helicon thruster
NASA Astrophysics Data System (ADS)
Chen, Francis F.
2014-09-01
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.
Ion ejection from a permanent-magnet mini-helicon thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Francis F.
2014-09-15
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant valuesmore » by applying to the endplate of the discharge a small voltage relative to spacecraft ground.« less
Lisboa, Antonio; Melaré, Rodolfo; Franco, Junia R B; Bis, Carolina V; Gracia, Marta; Ponce-Soto, Luis A; Marangoni, Sérgio; Rodrigues-Simioni, Léa; da Cruz-Höfling, Maria Alice; Rocha, Thalita
2016-01-01
Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B. marajoensis venom. CBC incubated with toxins showed irreversible twitch tension blockade and unaffected KCl- and ACh-evoked contractures, and the positive colabelling of acetylcholine receptors confirmed that their action was primarily at the motor nerve terminal. Hypercontraction and loose myofilaments and synaptic vesicle depletion and motor nerve damage indicated that the toxins displayed both myotoxic and neurotoxic effect. The blockade resulted from interference on synaptophysin, synaptobrevin, and SNAP25 proteins leading to the conclusion that BmjeTX-I and BmjeTX-II affected neurotransmitter release machinery by preventing the docking of synaptic vesicles to the axolemma of the nerve terminal.
Endoscopic Pubic Symphysectomy for Athletic Osteitis Pubis
Matsuda, Dean K.; Sehgal, Bantoo; Matsuda, Nicole A.
2015-01-01
Osteitis pubis is a common form of athletic pubalgia associated with femoroacetabular impingement. Endoscopic pubic symphysectomy was developed as a less invasive option than open surgical curettage for recalcitrant osteitis pubis. This technical note demonstrates the use of the anterior and suprapubic portals in the supine lithotomy position for endoscopic burr resection of pubic symphyseal fibrocartilage and hyaline endplates. Key steps include use of the suprapubic portal for burr resection of the posteroinferior symphysis and preservation of the posterior and arcuate ligaments. Endoscopic pubic symphysectomy is a minimally invasive bone-conserving surgery that retains stability and may be useful in the treatment of recalcitrant osteitis pubis or osteoarthritis. It nicely complements arthroscopic surgery for femoroacetabular impingement and may find broader application in this group of co-affected athletes. PMID:26258039
Endoscopic Pubic Symphysectomy for Athletic Osteitis Pubis.
Matsuda, Dean K; Sehgal, Bantoo; Matsuda, Nicole A
2015-06-01
Osteitis pubis is a common form of athletic pubalgia associated with femoroacetabular impingement. Endoscopic pubic symphysectomy was developed as a less invasive option than open surgical curettage for recalcitrant osteitis pubis. This technical note demonstrates the use of the anterior and suprapubic portals in the supine lithotomy position for endoscopic burr resection of pubic symphyseal fibrocartilage and hyaline endplates. Key steps include use of the suprapubic portal for burr resection of the posteroinferior symphysis and preservation of the posterior and arcuate ligaments. Endoscopic pubic symphysectomy is a minimally invasive bone-conserving surgery that retains stability and may be useful in the treatment of recalcitrant osteitis pubis or osteoarthritis. It nicely complements arthroscopic surgery for femoroacetabular impingement and may find broader application in this group of co-affected athletes.
Cohen, A S; Olek, A J
1989-01-01
A soluble toxic extract derived from spine tissue of the lionfish (Pterois volitans) decreased heart rate and force of contraction in isolated clam and frog hearts. These actions were due to the presence of micromolar concentrations of acetylcholine in the extract. Toxicity was retained after hydrolysis of acetylcholine by exogenous acetylcholinesterase, but heart function was no longer affected. Toxin treated in this way induced muscle fibrillation in an isolated nerve-muscle preparation, followed by blockade of neuromuscular transmission. Bursts of transient depolarizations were recorded at the muscle endplate shortly after toxin addition that correlated in time with the duration of toxin-induced muscle fibrillation. These effects are thought to be due to the increased release and then depletion of acetylcholine from the nerve terminal.
NASA Technical Reports Server (NTRS)
Garland, D. B.; Harris, J. L.
1980-01-01
Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.
Effect of blades number to performance of Savonius water turbine in water pipe
NASA Astrophysics Data System (ADS)
Hamzah, Imron; Prasetyo, Ari; Tjahjana, D. D. D. Prija; Hadi, Syamsul
2018-02-01
Savonius is usually known as a wind turbine that works efficiently at low wind speed. In this research, the Savonius turbine is proposed for a pico hydro power plant that is installed straightly on the 3-inch vertical pipeline of rainwater and household waste. The Savonius water turbine was designed with blade curvature angle of 70°, the aspect ratio of 1, turbine diameter of 82 mm, and endplate ratio of 1,1. The experimental study investigated the effect of blades number to the performance of Savonius turbine on various volume flow rate of water. Savonius turbine with three blades number generated the highest coefficient of performance of 0.23 on tip speed ratio of 1.7 compared to turbines with the number of other blades.
Drug interactions with neuromuscular blockers.
Feldman, S; Karalliedde, L
1996-10-01
Drugs administered to patients undergoing anaesthesia may complicate the use of the neuromuscular blockers that are given to provide good surgical conditions. The various sites of interaction include actions on motor nerve conduction and spinal reflexes, acetylcholine (ACh) synthesis, mobilisation and release, sensitivity of the motor end plate to ACh and the ease of propagation of the motor action potential. In addition, many drugs affect the pharmacokinetics of neuromuscular blockers, especially as most drugs depend to a greater or lesser extent upon renal excretion. The clinically significant interaction between nondepolarisers and depolarisers may be due to blockade of the pre-synaptic nicotinic receptors by the depolarisers, leading to decreased ACh mobilisation and release. Synergism between nondepolarisers probably results from post-synaptic receptor mechanisms. Volatile anaesthetic agents affect the sensitivity of the motor end-plate (post-synaptic receptor blockade) in addition to having effects on pre-synaptic nicotinic function. The effects of nondepolarisers are likely to be potentiated and their action prolonged by large doses of local anaesthetics due to depression of nerve conduction, depression of ACh formation, mobilisation and release, decreases in post-synaptic receptor channel opening times and reductions in muscular contraction. Most antibacterials have effects on pre-synaptic mechanisms. Procainamide and quinidine principally block nicotinic receptor channels. Magnesium has a marked inhibitory effect on ACh release. Calcium antagonists could theoretically interfere with neurotransmitter release and muscle contractility. Phenytoin and lithium decrease ACh release, whilst corticosteroids and furosemide (frusemide) tend to increase the release of the transmitter. Ecothiopate, tacrine, organophosphates, propanidid, metoclopramide and bambuterol depress cholinesterase activity and prolong the duration of the neuromuscular block. The probability of clinically significant interactions increases in patients receiving several drugs with possible effects on neuromuscular transmission and muscle contraction.
LRP4 is critical for neuromuscular junction maintenance.
Barik, Arnab; Lu, Yisheng; Sathyamurthy, Anupama; Bowman, Andrew; Shen, Chengyong; Li, Lei; Xiong, Wen-cheng; Mei, Lin
2014-10-15
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms. Copyright © 2014 the authors 0270-6474/14/3413892-14$15.00/0.
Karppinen, Jaro; Sorensen, Joan S.; Niinimäki, Jaakko; Leboeuf-Yde, Charlotte
2008-01-01
The prevalence of “vertebral endplate signal changes” (VESC) and its association with low back pain (LBP) varies greatly between studies. This wide range in reported prevalence rates and associations with LBP could be explained by differences in the definitions of VESC, LBP, or study sample. The objectives of this systematic critical review were to investigate the current literature in relation to the prevalence of VESC (including Modic changes) and the association with non-specific low back pain (LBP). The MEDLINE, EMBASE, and SveMED databases were searched for the period 1984 to November 2007. Included were the articles that reported the prevalence of VESC in non-LBP, general, working, and clinical populations. Included were also articles that investigated the association between VESC and LBP. Articles on specific LBP conditions were excluded. A checklist including items related to the research questions and overall quality of the articles was used for data collection and quality assessment. The reported prevalence rates were studied in relation to mean age, gender, study sample, year of publication, country of study, and quality score. To estimate the association between VESC and LBP, 2 × 2 tables were created to calculate the exact odds ratio (OR) with 95% confidence intervals. Eighty-two study samples from 77 original articles were identified and included in the analysis. The median of the reported prevalence rates for any type of VESC was 43% in patients with non-specific LBP and/or sciatica and 6% in non-clinical populations. The prevalence was positively associated with age and was negatively associated with the overall quality of the studies. A positive association between VESC and non-specific LBP was found in seven of ten studies from the general, working, and clinical populations with ORs from 2.0 to 19.9. This systematic review shows that VESC is a common MRI-finding in patients with non-specific LBP and is associated with pain. However, it should be noted that VESC may be present in individuals without LBP. PMID:18787845
NASA Astrophysics Data System (ADS)
Niedośpiał, Marcin; Knauff, Michał; Barcewicz, Wioleta
2015-03-01
In this paper results of the experimental tests of four full-scale composite steel-concrete elements are reported. In the steel-concrete composite elements, a steel beam was connected with a slab cast on profiled sheeting, by shear studs. The end-plates were (the thickness of 8 mm, 10 mm and 12 mm) thinner than in ordinary design. Joints between the column and the beams have been designed as semi-rigid, i.e. the deformations of endplates affect the distribution of forces in the adjacent parts of the slab. The paper presents the theory of cracking in reinforced concrete and steel-concrete composite members (according to the codes), view of crack pattern on the surface of the slabs and a comparison of the tests results and the code calculations. It was observed, that some factors influencing on crack widths are not taken in Eurocode 4 (which is based on Eurocode 2 with taking into account the phenomenon called "tension stiffening"). W artykule przedstawiono wyniki badań czterech elementów zespolonych. Kształtownik stalowy połączony był z betonowym stropem wykonanym na blasze fałdowej. W modelu zastosowano cienkie blachy czołowe (o grubości 8 mm, 10 mm i 12 mm), cieńsze niż zwykle przyjmowane w praktyce projektowej. Połączenie to zaprojektowano jako podatne tzn. takie, w którym odkształcenia blach czołowych mają istotny wpływ na rozkład sił w połączeniu. Przedstawiono normową teorię dotyczącą zarysowania elementów żelbetowych i zespolonych, obraz zarysowania stropu oraz porównano otrzymane wyniki z obliczeniami wykonanymi wg aktualnych norm. Zauważono, iż nie wszystkie czynniki obliczania szerokości rys w konstrukcjach zespolonych są zdefiniowane w normie projektowania konstrukcji zespolonych (która w tej kwestii odwołuje się do normy projektowania konstrukcji żelbetowych z uwzględnieniem zjawiska "tension stiffening").
Schlösser, Tom P C; Janssen, Michiel M A; Vrtovec, Tomaž; Pernuš, Franjo; Oner, F Cumhur; Viergever, Max A; Vincken, Koen L; Castelein, René M
2014-07-01
Human fully upright ambulation, with fully extended hips and knees, and the body's center of gravity directly above the hips, is unique in nature, and distinguishes humans from all other mammalians. This bipedalism is made possible by the development of a lordosis between the ischium and ilium; it allows to ambulate in this unique bipedal manner, without sacrificing forceful extension of the legs. This configuration in space introduces unique biomechanical forces with relevance for a number of spinal conditions. The aim of this study was to quantify the development of this lordosis between ischium and ilium in the normal growing and adult spine and to evaluate its correlation with the well-known clinical parameter, pelvic incidence. Consecutive series of three-dimensional computed tomography scans of the abdomen of 189 children and 310 adults without spino-pelvic pathologies were used. Scan indications were trauma screening or acute abdominal pathology. Using previously validated image processing techniques, femoral heads, center of the sacral endplate and the axes of the ischial bones were semi-automatically identified. A true sagittal view of the pelvis was automatically reconstructed, on which ischio-iliac angulation and pelvic incidence were calculated. The ischio-iliac angle was defined as the angle between the axes of the ischial bones and the line from the midpoint of the sacral endplate to the center of the femoral heads. A wide natural variation of the ischio-iliac angle (3°-46°) and pelvic incidence (14°-77°) was observed. Pearson's analysis demonstrated a significant correlation between the ischio-iliac angle and pelvic incidence (r = 0.558, P < 0.001). Linear regression analysis revealed that ischio-iliac angle, as well as pelvic incidence, increases during childhood (+7° and +10°, respectively) and becomes constant after adolescence. The development of the ischio-iliac lordosis is unique in nature, is in harmonious continuity with the highly individual lumbar lordosis and defines the way the human spine is biomechanically loaded. The practical parameter that reflects this is the pelvic incidence; both values increase during growth and remain stable in adulthood.
Readout Electronics for the Central Drift Chamber of the Belle-II Detector
NASA Astrophysics Data System (ADS)
Uchida, Tomohisa; Taniguchi, Takashi; Ikeno, Masahiro; Iwasaki, Yoshihito; Saito, Masatoshi; Shimazaki, Shoichi; Tanaka, Manobu M.; Taniguchi, Nanae; Uno, Shoji
2015-08-01
We have developed readout electronics for the central drift chamber (CDC) of the Belle-II detector. The space near the endplate of the CDC for installation of the electronics was limited by the detector structure. Due to the large amounts of data generated by the CDC, a high-speed data link, with a greater than one gigabit transfer rate, was required to transfer the data to a back-end computer. A new readout module was required to satisfy these requirements. This module processes 48 signals from the CDC, converts them to digital data and transfers it directly to the computer. All functions that transfer digital data via the high speed link were implemented on the single module. We have measured its electrical characteristics and confirmed that the results satisfy the requirements of the Belle-II experiment.
Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.
2015-01-01
Purpose. We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. Methods. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. Results. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. Conclusions. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM. PMID:26030102
Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K
2015-06-01
We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
Paniello, Randal C; Brookes, Sarah; Bhatt, Neel K; Bijangi-Vishehsaraei, Khadijeh; Zhang, Hongji; Halum, Stacey
2017-12-08
Muscle progenitor cells (MPCs) can be isolated from muscle samples and grown to a critical mass in culture. They have been shown to survive and integrate when implanted into rat laryngeal muscles. In this study, the ability of MPC implants to enhance adductor function of reinnervated thyroarytenoid muscles was tested in a canine model. Animal study. Sternocleidomastoid muscle samples were harvested from three canines. Muscle progenitor cells were isolated and cultured to 10 7 cells over 4 to 5 weeks, then implanted into right thyroarytenoid muscles after ipsilateral recurrent laryngeal nerve transection and repair. The left sides underwent the same nerve injury, but no cells were implanted. Laryngeal adductor force was measured pretreatment and again 6 months later, and the muscles were harvested for histology. Muscle progenitor cells were successfully cultured from all dogs. Laryngeal adductor force measurements averaged 60% of their baseline pretreatment values in nonimplanted controls, 98% after implantation with MPCs, and 128% after implantation with motor endplate-enhanced MPCs. Histology confirmed that the implanted MPCs survived, became integrated into thyroarytenoid muscle fibers, and were in close contact with nerve endings, suggesting functional innervation. Muscle progenitor cells were shown to significantly enhance adductor function in this pilot canine study. Patient-specific MPC implantation could potentially be used to improve laryngeal function in patients with vocal fold paresis/paralysis, atrophy, and other conditions. Further experiments are planned. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Myasthenia gravis: recent advances in immunopathology and therapy.
Lee, John-Ih; Jander, Sebastian
2017-03-01
Myasthenia gravis is the most frequent acquired disorder of neuromuscular transmission. In the majority of cases, pathogenic antibodies against components of the postsynaptic muscle endplate membrane can be detected. In recent years there have been significant advances in the pathophysiological understanding and therapy of the disease. Areas covered: PubMed searches were conducted for the term 'myasthenia gravis' cross-referenced with the terms 'immunology', 'subgroups', 'antibody', 'ocular', 'thymoma', 'treatment' and 'thymectomy'. Additionally, we summarized the current state of immunopathology and therapy. Expert commentary: Immunological research defined new target antigens at the postsynaptic neuromuscular junction which along with clinical features allow a refined definition of disease subgroups. Overall the prognosis of myasthenia gravis with best possible symptomatic, immunosuppressive and supportive treatment is good but new immunomodulatory treatment options are developed for patients who do not respond well to the first line therapy. For most patients individually adapted long-term drug therapy is needed.
Effect of supramolecular organization of a cartilaginous tissue on thermal stability of collagen II
NASA Astrophysics Data System (ADS)
Ignat'eva, N. Yu.; Averkiev, S. V.; Lunin, V. V.; Grokhovskaya, T. E.; Obrezkova, M. V.
2006-08-01
The thermal stability of collagen II in various cartilaginous tissues was studied. It was found that heating a tissue of nucleus pulposus results in collagen II melting within a temperature range of 60-70°C; an intact tissue of hyaline cartilage (of nasal septum and cartilage endplates) is a thermally stable system, where collagen II is not denatured completely up to 100°C. It was found that partial destruction of glycosaminoglycans in hyaline cartilage leads to an increase in the degree of denaturation of collagen II upon heating, although a significant fraction remains unchanged. It was shown that electrostatic interactions of proteoglycans and collagen only slightly affect the thermal stability of collagen II in the tissues. Evidently, proteoglycan aggregates play a key role: they create topological hindrances for moving polypeptide chains, thereby reducing the configurational entropy of collagen macromolecules in the state of a random coil.
The myasthenic patient in crisis: an update of the management in Neurointensive Care Unit.
Godoy, Daniel Agustin; Mello, Leonardo Jardim Vaz de; Masotti, Luca; Di Napoli, Mario
2013-09-01
Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission leading to generalized or localized muscle weakness due most frequently to the presence of autoantibodies against acetylcholine receptors in the postsynaptic motor end-plate. Myasthenic crisis (MC) is a complication of MG characterized by worsening muscle weakness, resulting in respiratory failure that requires intubation and mechanical ventilation. It also includes postsurgical patients, in whom exacerbation of muscle weakness from MG causes a delay in extubation. MC is a very important, serious, and reversible neurological emergency that affects 20-30% of the myasthenic patients, usually within the first year of illness and maybe the debut form of the disease. Most patients have a predisposing factor that triggers the crisis, generally an infection of the respiratory tract. Immunoglobulins, plasma exchange, and steroids are the cornerstones of immunotherapy. Today with the modern neurocritical care, mortality rate of MC is less than 5%.
Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Priego, Merche; Tomàs, Josep
2010-08-16
We use immunocytochemistry to show that the trophic molecule glial cell line-derived neurotrophic factor (GDNF) and its receptor GDNF family receptor alpha-1 (GFRalpha-1) are present in both neonatal (P6) and adult (P45) rodent neuromuscular junctions (NMJ) colocalized with several synaptic markers. However, incubation with exogenous GDNF (10-200ng/ml, 1-3h), does not affect spontaneous ACh release. Moreover, GDNF does not change the size of the evoked ACh release from the weak and the strong axonal inputs on dually innervated postnatal endplates nor in the most developed singly-innervated synapses at P6 and P45. Our findings indicate that GDNF (unlike neurotrophins) does not acutely modulate transmitter release during the developmental process of synapse elimination nor as the NMJ matures. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms
NASA Technical Reports Server (NTRS)
Deyoung, J.
1980-01-01
A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.
Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.
Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M
2017-12-01
We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.
Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study.
Molinares, Diana M; Davis, Timothy T; Fung, Daniel A
2015-10-09
OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5-S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2-S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors' database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2-5 discs have the following mean distances: L2-3 = 16.04 mm, L3-4 = 14.21 mm, and L4-5 = 10.28 mm. The L5-S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3-4 disc in 5%, at the L-4 vertebral body in 43%, at the L4-5 disc in 11%, and at the L-5 vertebral body in 9%. The confluence of the iliac veins was found at lower levels: 45% at the L-4 level, 19.39% at the L4-5 intervertebral disc, and 34% at the L-5 vertebral body. CONCLUSIONS An oblique corridor of access to the L2-5 discs was found in 90% of the MR images (99% access to L2-3, 100% access to L3-4, and 91% access to L4-5). Access to the L5-S1 disc was also established in 69% of the MR images analyzed. The lower the confluence of iliac veins, the less probable it was that access to the L5-S1 intervertebral disc space was observed. These findings support the use of lumbar MRI as a tool to predetermine the presence of an oblique corridor for access to the L2-S1 intervertebral disc spaces prior to lumbar spine surgery.
Matgé, Guy; Berthold, Christophe; Gunness, Vimal Raj Nitish; Hana, Ardian; Hertel, Frank
2015-03-01
Although cervical total disc replacement (TDR) has shown equivalence or superiority to anterior cervical discectomy and fusion (ACDF), potential problems include nonphysiological motion (hypermobility), accelerated degeneration of the facet joints, particulate wear, and compromise of the mechanical integrity of the endplate during device fixation. Dynamic cervical stabilization is a novel motion-preserving concept that facilitates controlled, limited flexion and extension, but prevents axial rotation and lateral bending, thereby reducing motion across the facet joints. Shock absorption of the Dynamic Cervical Implant (DCI) device is intended to protect adjacent levels from accelerated degeneration. The authors conducted a prospective evaluation of 53 consecutive patients who underwent DCI stabilization for the treatment of 1-level (n = 42), 2-level (n = 9), and 3-level (n = 2) cervical disc disease with radiculopathy or myelopathy. Forty-seven patients (89%) completed all clinical and radiographic outcomes at a minimum of 24 months. Clinical outcomes consisted of Neck Disability Index (NDI) and visual analog scale (VAS) scores, neurological function at baseline and at latest follow-up, as well as patient satisfaction. Flexion-extension radiography was evaluated for device motion, implant migration, subsidence, and heterotopic ossification. Cervical sagittal alignment (Cobb angle), functional spinal unit (FSU) angle, and range of motion (ROM) at index and adjacent levels were evaluated with WEB 1000 software. The NDI score, VAS neck and arm pain scores, and neurological deficits were significantly reduced at each postoperative time point compared with baseline (p < 0.0001). At 24 months postoperatively, 91% of patients were very satisfied and 9% somewhat satisfied, while 89% would definitely and 11% would probably elect to have the same surgery again. In 47 patients with 58 operated levels, the radiographic assessment showed good motion (5°-12°) of the device in 57%, reduced motion (2°-5°) in 34.5%, and little motion (0-2°) in 8.5%. The Cobb and FSU angles improved, showing a clear tendency for lordosis with the DCI. Motion greater than 2° of the treated segment could be preserved in 91.5%, while 8.5% had a near segmental fusion. Mean ROM at index levels demonstrated satisfying motion preservation with DCI. Mean ROM at upper and lower adjacent levels showed maintenance of adjacent-level kinematics. Heterotopic ossification, including 20% minor and 15% major, had no direct impact on clinical results. There were 2 endplate subsidences detected with an increased segmental lordosis. One asymptomatic anterior device migration required reoperation. Three patients underwent a secondary surgery in another segment during follow-up, twice for a new disc herniation and once for an adjacent degeneration. There was no posterior migration and no device breakage. Preliminary results indicate that the DCI implanted using a proper surgical technique is safe and facilitates excellent clinical outcomes, maintains index-and adjacent-level ROM in the majority of cases, improves sagittal alignment, and may be suitable for patients with facet arthrosis who would otherwise not be candidates for cervical TDR. Shock absorption together with maintained motion in the DCI may protect adjacent levels from early degeneration in longer follow-up.
Chen, Chun; Ruan, Dike; Wu, Changfu; Wu, Weidong; Sun, Peidong; Zhang, Yuanzhi; Wu, Jigong; Lu, Sheng; Ouyang, Jun
2013-01-01
Background Accurate placement of pedicle screw during Anterior Transpedicular Screw fixation (ATPS) in cervical spine depends on accurate anatomical knowledge of the vertebrae. However, little is known of the morphometric characteristics of cervical vertebrae in Chinese population. Methods Three-dimensional reconstructions of CT images were performed for 80 cases. The anatomic data and screw fixation parameters for ATPS fixation were measured using the Mimics software. Findings The overall mean OPW, OPH and PAL ranged from 5.81 to 7.49 mm, 7.77 to 8.69 mm, and 33.40 to 31.13 mm separately, and SPA was 93.54 to 109.36 degrees from C3 to C6, 104.99 degrees at C7, whereas, 49.00 to 32.26 degrees from C4 to C7, 46.79 degrees at C3 (TPA). Dl/rSIP had an increasing trend away from upper endplate with mean value from 1.87 to 5.83 mm. Dl/rTIP was located at the lateral portion of the anterior cortex of vertebrae for C3 to C5 and ipsilateral for C6 to C7 with mean value from −2.70 to −3.00 mm, and 0.17 to 3.18 mm. The entrance points for pedicular screw insertion for C3 to C5 and C6 to C7 were recommended −2∼−3 mm and 0–4 mm from the median sagittal plane, respectively, 1–4 mm and 5–6 mm from the upper endplate, with TPA being 46.79–49.00 degrees and 40.89–32.26 degrees, respectively, and SPA being 93.54–106.69 degrees and 109.36–104.99 degrees, respectively. The pedicle screw insertion diameter was recommended 3.5 mm (C3 and C4), 4.0 mm (C5 to C7), and the pedicle axial length was 21–24 mm for C3 to C7 for both genders. However, the ATPS insertion in C3 should be individualized given its relatively small anatomical dimensions. Conclusions The data provided a morphometric basis for the ATPS fixation technique in lower cervical fixation. It will help in preoperative planning and execution of this surgery. PMID:24349038
Müller, Friedrich; Schenk, Henning C; Forterre, Franck
2017-04-01
To determine the effects of a minimally invasive transilial vertebral (MTV) blocking procedure on the computed tomographic (CT) appearance of the lumbosacral (L7/S1) junction of dogs with degenerative lumbosacral stenosis (DLSS). Prospective study. 59 client-owned dogs with DLSS. Lumbosacral CT images were acquired with hyperextended pelvic limbs before and after MTV in all dogs. Clinical follow-up was obtained after 1 year, including a neurologic status classified in 4 grades, and if possible, CT. Morphometric measurements (Mean ± SEM) including foraminal area, endplate distance at L7/S1 and LS angle were obtained on sets of reformatted parasagittal and sagittal CT images. The mean foraminal area (ForL) increased from 32.5 ± 1.7 mm 2 to 59.7 ± 1.9 mm 2 on the left and from 31.1 ± 1.4 mm 2 to 59.1 ± 2.0 mm 2 on the right (ForR) side after MTV. The mean endplate distance (EDmd) between L7/S1 increased from 3.7 ± 0.1 mm to 6.0 ± 0.1 mm, and mean lumbosacral angle (LSa) from 148.0 ± 1.1° to 170.0 ± 1.1° after MTV. CT measurements were available 1 year postoperatively in 12 cases: ForL: 41.2 ± 3.1 mm 2 ; ForR: 37.9 ± 3.1 mm 2 ; EDmd: 4.3 ± 0.4 mm, and LSa 157.6 ± 2.1° (values are mean and standard error of mean = SEM). All 39 dogs with long-term follow-up improved by at least 1 neurologic grade, 9/39 improving by 3 grades, 15/39 by 2 grades, and 15/39 by 1 grade. MTV results in clinical improvement and morphometric enlargement of the foraminal area in dogs with variable degrees of foraminal stenosis. MTV may be a valuable minimally invasive option for treatment of dogs with DLSS. © 2017 The American College of Veterinary Surgeons.
Panaite, Petrica-Adrian; Kuntzer, Thierry; Gourdon, Geneviève; Lobrinus, Johannes Alexander; Barakat-Walter, Ibtissam
2013-01-01
SUMMARY Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1. PMID:23180777
Lumbar degenerative spinal deformity: Surgical options of PLIF, TLIF and MI-TLIF
Hey, Hwee Weng Dennis; Hee, Hwan Tak
2010-01-01
Degenerative disease of the lumbar spine is common in ageing populations. It causes disturbing back pain, radicular symptoms and lowers the quality of life. We will focus our discussion on the surgical options of posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) and minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) for lumbar degenerative spinal deformities, which include symptomatic spondylolisthesis and degenerative scoliosis. Through a description of each procedure, we hope to illustrate the potential benefits of TLIF over PLIF. In a retrospective study of 53 ALIF/PLIF patients and 111 TLIF patients we found reduced risk of vessel and nerve injury in TLIF patients due to less exposure of these structures, shortened operative time and reduced intra-operative bleeding. These advantages could be translated to shortened hospital stay, faster recovery period and earlier return to work. The disadvantages of TLIF such as incomplete intervertebral disc and vertebral end-plate removal and potential occult injury to exiting nerve root when under experienced hands are rare. Hence TLIF remains the mainstay of treatment in degenerative deformities of the lumbar spine. However, TLIF being a unilateral transforaminal approach, is unable to decompress the opposite nerve root. This may require contralateral laminotomy, which is a fairly simple procedure. The use of minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) to treat degenerative lumbar spinal deformity is still in its early stages. Although the initial results appear promising, it remains a difficult operative procedure to master with a steep learning curve. In a recent study comparing 29 MI-TLIF patients and 29 open TLIF, MI-TLIF was associated with longer operative time, less blood loss, shorter hospital stay, with no difference in SF-36 scores at six months and two years. Whether it can replace traditional TLIF as the surgery of choice for degenerative lumbar deformity remains unknown and more studies are required to validate the safety and efficiency. PMID:20419002
NASA Technical Reports Server (NTRS)
Ding, P. Z.; Kawamura, K.; Ferris, J. P.
1996-01-01
The 5'-phosphorimidazolide of uridine reacts on Na(+)-montmorillonite 22A in aqueous solution to give oligomers as long as 7 mers. The maximum chain length increases to 9 mers and the overall oligomer yield increases when 9:1 ImpU, A5' ppA mixtures react under the same conditions. The oligomer yield and maximum chain length decreases with the structure of the added pyrophosphate in the order A5' ppA > A5' ppU > U5' ppU. Structure analysis of individual oligomer fractions was performed by selective enzymatic hydrolyses followed by HPLC analysis of the products. The regioselectivity for 3',5'-bond formation is 80-90% in the 9:1 ImpU, A5' ppA reaction, a percentage comparable to that observed in the 9:1 ImpA, A5' ppA reaction. Oligomerization of ImpU is inhibited by addition of dA5' ppdA, and MeppA. No oligomers containing A5' ppU were products of the 9:1 ImpU,A5' ppA reaction, a finding consistent with the simple addition of the ImpU to the A5' ppA and not the rearrangement of an ImpU-A5' ppA adduct. Concentrations of lysine or arginine which were close to that of the ImpU did not inhibit oligomer formation. Treatment of Na(+)-montmorillonite with 1 M arginine yielded arginine-montmorillonite, an amino acid-mineral adduct which did not catalyze ImpU oligomerization. Neither the 4-9 mers formed in the 9:1 ImpU, A5' ppA reaction nor the 4-9 mers formed by the base hydrolysis of poly(U) served as templates for the formation of oligo(A)s.
Balik, Mehmet Sabri; Kanat, Ayhan; Erkut, Adem; Ozdemir, Bulent; Batcik, Osman Ersagun
2016-01-01
Objective: Inequality in leg length may lead to to abnormal transmission of load across the endplates and degeneration lumbar spine and the disc space. There has been no study focusing on lumbar disc herniation (LDH) and leg length discrepancy. This subject was investigated in this study. Materials and Methods: Consecutive adult patients with leg length discrepancy and low back pain (LBP) admitted to our department were respectivelly studied. Results: A total number of 39 subjects (31 women and eight men) with leg length discrepancy and LBP and 43 (25 females and 18 males) patients with LBP as a control group were tested. Occurrence of disc herniation is statistically different between patients with hip dysplasia and control groups (P < 0.05). Conclusion: The results of this study showed a statistically significant association between leg length discrepancy and occurrence of LDH. The changes of spine anatomy with leg length discrepancy in hip dysplastic patients are of importance in understanding the nature of LDH. PMID:27217654
Study of a Large Prototype TPC for the ILC using Micro-Pattern Gas Detectors
NASA Astrophysics Data System (ADS)
Münnich, A.; LCTPC Collaboration
2016-04-01
In the last decade, R&D for detectors for the future International Linear Collider (ILC) has been performed by the community. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its tracking system consists of a Si vertex detector, forward tracking disks and a large volume Time Projection Chamber (TPC). Within the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. Its endplate is able to house up to seven identical modules with Micro-Pattern Gas Detectors (MPGD) amplification. Recently, the LP has been equipped with resistive anode Micromegas (MM) or Gas Electron Multiplier (GEM) modules. Both the MM and GEM technologies have been studied with an electron beam up to 6 GeV in a 1 Tesla solenoid magnet. After introducing the current R&D status, recent results will be presented including field distortions, ion gating and spatial resolution as well as future plans of the LCTPC R&D.
Preferential superior surface motion in wear simulations of the Charité total disc replacement.
Goreham-Voss, Curtis M; Vicars, Rachel; Hall, Richard M; Brown, Thomas D
2012-06-01
Laboratory wear simulations of the dual-bearing surface Charité total disc replacement (TDR) are complicated by the non-specificity of the device's center of rotation (CoR). Previous studies have suggested that articulation of the Charité preferentially occurs at the superior-bearing surface, although it is not clear how sensitive this phenomenon is to lubrication conditions or CoR location. In this study, a computational wear model is used to study the articulation kinematics and wear of the Charité TDR. Implant wear was found to be insensitive to the CoR location, although seemingly non-physiologic endplate motion can result. Articulation and wear were biased significantly to the superior-bearing surface, even in the presence of significant perturbations of loading and friction. The computational wear model provides novel insight into the mechanics and wear of the Charité TDR, allowing for better interpretation of in vivo results, and giving useful insight for designing future laboratory physical tests.
Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo
2014-11-01
The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. Copyright © 2014 John Wiley & Sons, Ltd.
Design and construction of a remote piloted flying wing. B.S. Thesis
NASA Technical Reports Server (NTRS)
Costa, Alfred J.; Koopman, Fritz; Soboleski, Craig; Trieu, Thai-Ba; Duquette, Jaime; Krause, Scott; Susko, David; Trieu, Thuyba
1994-01-01
Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry.
Experimental Investigation of Electron Cloud Containment in a Nonuniform Magnetic Field
NASA Technical Reports Server (NTRS)
Eninger, J. E.
1974-01-01
Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 Torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V sub a/phi sub a where V sub a is the anode voltage and phi suba is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this conditions are integrated with respect to total ionizing power and are found consistent with measured discharge currents.
Structural correlates of affinity in fetal versus adult endplate nicotinic receptors
NASA Astrophysics Data System (ADS)
Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony
2016-04-01
Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.
Yuan, Feng-Lai; Zhao, Ming-Dong; Jiang, Li-Bo; Wang, Hui-Ren; Cao, Lu; Zhou, Xiao-Gang; Li, Xi-Lei; Dong, Jian
2014-01-01
Extracellular acidification occurs under physiologic and pathologic conditions, such as exercise, ischemia, and inflammation. It has been shown that acidosis has various adverse effects on bone. In recent years there has been increasing evidence which indicates that ovarian cancer G protein-coupled receptor 1 (OGR1) is a pH-sensing receptor and mediates a variety of extracellular acidification-induced actions on bone cells and other cell types. Recent studies have shown that OGR1 is involved in the regulation of osteoclast differentiation, survival, and function, as well as osteoblast differentiation and bone formation. Moreover, OGR1 also regulates acid-induced apoptosis of endplate chondrocytes in intervertebral discs. These observations demonstrate the importance of OGR1 in skeletal development and metabolism. Here, we provide an overview of OGR1 regulation ofosteoclasts, osteoblasts, and chondrocytes, and the molecular actions of OGR1 induced by extracellular acidification in the maintenance of bone health. PMID:25479080
Equilibrium theory of cylindrical discharges with special application to helicons
NASA Astrophysics Data System (ADS)
Curreli, Davide; Chen, Francis F.
2011-11-01
Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature Te and neutral density nn. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform Te and nn, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.
[Biomechanical study of lumbar spine under different vibration conditions].
Xiang, Pin; Du, Chengfei; Mo, Zhongjun; Gong, He; Wang, Lizhen; Fan, Yubo
2015-02-01
We observed the effect of vibration parameters on lumbar spine under different vibration conditions using finite element analysis method in our laboratory. In this study, the CT-images of L1-L5 segments were obtained. All images were used to develop 3D geometrical model using the Mimics10. 01 (Materialise, Belgium). Then it was modified using Geomagic Studio12. 0 (Raindrop Geomagic Inc. USA). Finite element (FE) mesh model was generated by Hypermesh11. 0 (Altair Engineering, Inc. USA) and Abaqus. Abaqus was used to calculate the stress distribution of L1-L5 under different vibration conditions. It was found that in a vibration cycle, tensile stress was occurred on lumbar vertebra mainly. Stress distributed evenly and stress concentration occurred on the left rear side of the upper endplate. The stress had no obvious changes under different frequencies, but the stress was higher when amplitude was greater. In conclusion, frequency and amplitude parameters have little effect on the stress distribution in vertebra. The stress magnitude is positively correlated with the amplitude.
Localisation of the high-affinity choline transporter-1 in the rat skeletal motor unit.
Lips, Katrin S; Pfeil, Uwe; Haberberger, Rainer V; Kummer, Wolfgang
2002-03-01
The rate-limiting step in neuronal acetylcholine (ACh) synthesis is the uptake of choline via a high-affinity transporter. We have generated antisera against the recently identified transporter CHT1 to investigate its distribution in rat motor neurons and skeletal muscle and have used these antisera in combination with (1) antisera against the vesicular acetylcholine transporter (VAChT) to identify cholinergic synapses and (2) Alexa-488-labelled alpha-bungarotoxin to identify motor endplates. In the motor unit, immunohistochemistry and RT-PCR have demonstrated that CHT1 is restricted to motoneurons and absent from the non-neuronal ACh-synthesizing elements, e.g. skeletal muscle fibres. In addition, CHT1 is also present in parasympathetic neurons of the tongue, as evidenced by immunohistochemistry and RT-PCR. CHT1 immunoreativity is principally found at all segments (perikaryon, dendrites, axon) of the motoneuron but is enriched at neuro-neuronal and neuro-muscular synapses. This preferential localisation matches well with its anticipated pivotal role in synaptic transmitter recycling and synthesis.
Serra, Alessandro; Ruff, Robert L; Leigh, Richard John
2012-12-01
An appropriate density of acetylcholine receptors (AChRs) and Na(+) channels (NaChs) in the normal neuromuscular junction (NMJ) determines the magnitude of safety factor (SF) that guarantees fidelity of neuromuscular transmission. In myasthenia gravis (MG), an overall simplification of the postsynaptic folding secondary to NMJ destruction results in AChRs and NaChs depletion. Loss of AChRs and NaChs accounts, respectively, for 59% and 40% reduction of the SF at the endplate, which manifests as neuromuscular transmission failure. The extraocular muscles (EOM) have physiologically less developed postsynaptic folding, hence a lower baseline SF, which predisposes them to dysfunction in MG and development of fatigue during "high performance" eye movements, such as saccades. However, saccades in MG show stereotyped, conjugate initial components, similar to normal, which might reflect preserved neuromuscular transmission fidelity at the NMJ of the fast, pale global fibers, which have better developed postsynaptic folding than other extraocular fibers. © 2012 New York Academy of Sciences.
[Mathematical simulation of biomechanical background of osteophyte formation in cervical vertebra].
Barsa, P; Novák, J; Souček, T; Maršík, F; Suchomel, P
2011-01-01
The aim of this study was to simulate different types of cervical vertebra loading and to find out whether mechanical stress would concentrate in regions known in clinical practice as predilection sites for osteophyte formation. The objective was to develop a theoretical model that would elucidate clinical observations concerning the predilection site of bone remodelling in view of the physiological changes inside the cervical vertebral body. A real 3D-geometry of the fourth cervical vertebra had been made by the commercially available system ATOS II. This is a high-resolution measuring system using principles of optical triangulation. This flexible optical measuring machine projects fringe patterns on the surface of a selected object and the pattern is observed with two cameras. 3D coordinates for each camera pixel were calculated with high precision and a polygon mesh of the object's surface was further generated. In the next step an ANSYS programme was used to calculate strains and stresses in each finite element of the virtual vertebra. The applied forces used in the experiment corresponded in both magnitude and direction to physiological stress. Mechanical loading in neutral position was characterized by a distribution of 80% mechanical stress to the vertebral body and 10% to each of the zygoapophyseal joints. Hyperlordotic loading was simulated by 60% force transfer to the vertebral body end-plate and 20% to each of the small joint while kyphotic loading involved a 90% load on the vertebral body endplate and 5% on each facet. Mechanical stress distribution calculated in a neutral position of the model correlated well with bone mineral distribution of a healthy vertebra, and verified the model itself. The virtual mechanical loading of a vertebra in kyphotic position concentrated deformation stress into the uncinate processes and the dorsal apophyseal rim of the vertebral body. The simulation of mechanical loading in hyperlordosis, on the other hand, shifted the region of maximum deformation into the articulation process of the Z-joint. All locations are known as areas of osteophyte formation in degenerated cervical vertebrae. The theoretical model developed during this study corresponded well with human spine behaviour in terms of predilection sites for osteodegenerative changes, as observed in clinical practice. A mathematical simulation of mechanical stress distribution in pre-operative planning may lead to the optimisation of post-operative anatomical relationship between adjacent vertebrae. Such improvement in our surgical practice may further reduce the incidence of degenerative changes in adjacent motion segments of the cervical spine and possibly also lead to better subjective and clinical results after cervical spine reconstruction.
Petrov, Konstantin A; Yagodina, Lilia O; Valeeva, Guzel R; Lannik, Natalya I; Nikitashina, Alexandra D; Rizvanov, Albert A; Zobov, Vladimir V; Bukharaeva, Ellya A; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František
2011-01-01
BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. PMID:21232040
MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times
NASA Technical Reports Server (NTRS)
Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.
1995-01-01
The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.
Endomicroscopy and electromyography of neuromuscular junctions in situ
Brown, Rosalind; Dissanayake, Kosala N; Skehel, Paul A; Ribchester, Richard R
2014-01-01
Objective Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. Methods We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: WldS mice, which coexpress the Wallerian-degeneration Slow (WldS) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). Results We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. Interpretation Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics. PMID:25540801
NASA Astrophysics Data System (ADS)
Nau, William H.; Diederich, Chris J.; Shu, Richard
2005-06-01
Application of heat in the spine using resistive wire heating devices is currently being used clinically for minimally invasive treatment of discogenic low back pain. In this study, interstitial ultrasound was evaluated for the potential to heat intradiscal tissue more precisely by directing energy towards the posterior annular wall while avoiding vertebral bodies. Two single-element directional applicator design configurations were tested: a 1.5 mm OD direct-coupled (DC) applicator which can be implanted directly within the disc, and a catheter-cooled (CC) applicator which is inserted in a 2.4 mm OD catheter with integrated water cooling and implanted within the disc. The transducers were sectored to produce 90° spatial heating patterns for directional control. Both applicator configurations were evaluated in four human cadaver lumbar disc motion segments. Two heating protocols were employed in this study in which the temperature measured 5 mm away from the applicator was controlled to either T = 52 °C, or T > 70 °C for the treatment period. These temperatures (thermal doses) are representative of those required for thermal necrosis of in-growing nociceptor nerve fibres and disc cellularity alone, or with coagulation and restructuring of annular collagen in the high-temperature case. Steady-state temperature maps, and thermal doses (t43) were used to assess the thermal treatments. Results from these studies demonstrated the capability of controlling temperature distributions within selected regions of the disc and annular wall using interstitial ultrasound, with minimal vertebral end-plate heating. While directional heating was demonstrated with both applicator designs, the CC configuration had greater directional heating capabilities and offered better temperature control than the DC configuration, particularly during the high-temperature protocol. Further, ultrasound energy was capable of penetrating within the highly attenuating disc tissue to produce more extensive radial thermal penetration, lower maximum intradiscal temperature, and shorter treatment times than can be achieved with current clinical intradiscal heating technology. Thus, interstitial ultrasound offers potential as a more precise and faster heating modality for the clinical management of low back pain.
Demetropoulos, C K; Truumees, E; Herkowitz, H N; Yang, K H
2005-05-01
In surgery of the cervical spine, a Caspar pin distractor is often used to apply a tensile load to the spine in order to open up the disc space. This is often done in order to place a graft or other interbody fusion device in the spine. Ideally a tight interference fit is achieved. If the spine is over distracted, allowing for a large graft, there is an increased risk of subsidence into the endplate. If there is too little distraction, there is an increased risk of graft dislodgement or pseudoarthrosis. Generally, graft height is selected from preoperative measurements and observed distraction without knowing the intraoperative compressive load. This device was designed to give the surgeon an assessment of this applied load. Instrumentation of the device involved the application of strain gauges and the selection of materials that would survive standard autoclave sterilization. The device was calibrated, sterilized and once again calibrated to demonstrate its suitability for surgical use. Results demonstrate excellent linearity in the calibration, and no difference was detected in the pre- and post-sterilization calibrations.
Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds
NASA Technical Reports Server (NTRS)
Samant, S. S.; Yu, N. J.
1986-01-01
An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.
Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS
Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva
2016-01-01
The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807
An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
Campbell, Julius Quinn; Petrella, Anthony J
2015-11-01
The purpose of this study was to develop a method for the automated creation of finite-element models of the lumbar spine. Custom scripts were written to extract bone landmarks of lumbar vertebrae and assemble L1-L5 finite-element models. End-plate borders, ligament attachment points, and facet surfaces were identified. Landmarks were identified to maintain mesh correspondence between meshes for later use in statistical shape modeling. 90 lumbar vertebrae were processed creating 18 subject-specific finite-element models. Finite-element model surfaces and ligament attachment points were reproduced within 1e-5 mm of the bone surface, including the critical contact surfaces of the facets. Element quality exceeded specifications in 97% of elements for the 18 models created. The current method is capable of producing subject-specific finite-element models of the lumbar spine with good accuracy, quality, and robustness. The automated methods developed represent advancement in the state of the art of subject-specific lumbar spine modeling to a scale not possible with prior manual and semiautomated methods.
Local anaesthetics transiently block currents through single acetylcholine-receptor channels.
Neher, E; Steinbach, J H
1978-01-01
1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437
Freeman, Andrew L; Camisa, William J; Buttermann, Glenn R; Malcolm, James R
2016-01-01
This study was undertaken to quantify the in vitro range of motion (ROM) of oblique as compared with anterior lumbar interbody devices, pullout resistance, and subsidence in fatigue. Anterior and oblique cages with integrated plate fixation (IPF) were tested using lumbar motion segments. Flexibility tests were conducted on the intact segments, cage, cage + IPF, and cage + IPF + pedicle screws (6 anterior, 7 oblique). Pullout tests were then performed on the cage + IPF. Fatigue testing was conducted on the cage + IPF specimens for 30,000 cycles. No ROM differences were observed in any test group between anterior and oblique cage constructs. The greatest reduction in ROM was with supplemental pedicle screw fixation. Peak pullout forces were 637 ± 192 N and 651 ± 127 N for the anterior and oblique implants, respectively. The median cage subsidence was 0.8 mm and 1.4 mm for the anterior and oblique cages, respectively. Anterior and oblique cages similarly reduced ROM in flexibility testing, and the integrated fixation prevented device displacement. Subsidence was minimal during fatigue testing, most of which occurred in the first 2500 cycles.
Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G
1988-01-01
Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589
NASA Astrophysics Data System (ADS)
Ayari, H.; Thomas, M.; Doré, S.; Serrus, O.
2009-03-01
The objective of this research is to numerically determine the levels of vibration not to exceed accordingly to the corresponding dynamic stresses in the lumbar rachis when exposed to whole-body vibrations in order to identify the risk of adverse health effect to which professional heavy equipment drivers are particularly prone. A parametric finite element model of the lumbar rachis is generated in order to compute the modal parameters, the dynamic stresses and forces under harmonic excitations in a seated posture. The stress analysis reveals that the areas exposed to the highest fracture risk are the cancellous bone of the vertebral body as well as the vertebral endplate when vertical vibrations are transmitted from a seat to the lumbar spine of a driver. An injury risk factor has been developed in order to estimate the risk of adverse health effect arising from mechanical vibrations. It is shown that the injury risk factor increases with the age and consequently that the excitation amplitude must be limited to lower levels when age increases.
Martin, J T; Gullbrand, S E; Kim, D H; Ikuta, K; Pfeifer, C G; Ashinsky, B G; Smith, L J; Elliott, D M; Smith, H E; Mauck, R L
2017-11-17
Total disc replacement with an engineered substitute is a promising avenue for treating advanced intervertebral disc disease. Toward this goal, we developed cell-seeded disc-like angle ply structures (DAPS) and showed through in vitro studies that these constructs mature to match native disc composition, structure, and function with long-term culture. We then evaluated DAPS performance in an in vivo rat model of total disc replacement; over 5 weeks in vivo, DAPS maintained their structure, prevented intervertebral bony fusion, and matched native disc mechanical function at physiologic loads in situ. However, DAPS rapidly lost proteoglycan post-implantation and did not integrate into adjacent vertebrae. To address this, we modified the design to include polymer endplates to interface the DAPS with adjacent vertebrae, and showed that this modification mitigated in vivo proteoglycan loss while maintaining mechanical function and promoting integration. Together, these data demonstrate that cell-seeded engineered discs can replicate many characteristics of the native disc and are a viable option for total disc arthroplasty.
Open-loop correction for an eddy current dominated beam-switching magnet.
Koseki, K; Nakayama, H; Tawada, M
2014-04-01
A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.
Open-loop correction for an eddy current dominated beam-switching magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koseki, K., E-mail: kunio.koseki@kek.jp; Nakayama, H.; Tawada, M.
2014-04-15
A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the requiredmore » flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.« less
Mazur, Marcus D; Ravindra, Vijay M; Dailey, Andrew T; McEvoy, Sara; Schmidt, Meic H
2015-01-01
Pelvic fixation with S2-alar-iliac (S2AI) screws can increase the rigidity of a lumbosacral construct, which may promote bone healing, improve antibiotic delivery to infected tissues, and avoid L5-S1 pseudarthrosis. To describe the use of single-stage posterior fixation without debridement for the treatment of pyogenic vertebral diskitis and osteomyelitis (PVDO) at the lumbosacral junction. Technical report. We describe the management of PVDO at the lumbosacral junction in which the infection invaded the endplates, disk space, vertebrae, prevertebral soft tissues, and epidural space. Pedicle involvement precluded screw fixation at L5. Surgical management consisted of a single-stage posterior operation with rigid lumbopelvic fixation augmented with S2-alar-iliac screws and without formal debridement of the infected area, followed by long-term antibiotic treatment. At 2-year follow-up, successful fusion and eradication of the infection were achieved. PVDO at the lumbosacral junction may be treated successfully using rigid posterior-only fixation without formal debridement combined with antibiotic therapy.
Yiş, Uluç; Becker, Kerstin; Kurul, Semra Hız; Uyanik, Gökhan; Bayram, Erhan; Haliloğlu, Göknur; Polat, Ayşe İpek; Ayanoğlu, Müge; Okur, Derya; Tosun, Ayşe Fahriye; Serdaroğlu, Gül; Yilmaz, Sanem; Topaloğlu, Haluk; Anlar, Banu; Cirak, Sebahattin; Engel, Andrew G
2017-07-01
Congenital myasthenic syndromes are clinically and genetically heterogeneous disorders of neuromuscular transmission. Most are treatable, but certain subtypes worsen with cholinesterase inhibitors. This underlines the importance of genetic diagnosis. Here, the authors report on cases with genetically proven congenital myasthenic syndromes from Turkey. The authors retrospectively reviewed their experience of all patients with congenital myasthenic syndromes, referred over a 5-year period (2011-2016) to the Child Neurology Department of Dokuz Eylül University, Izmir, Turkey. In addition, PubMed was searched for published cases of genetically proven congenital myasthenic syndromes originating from Turkey. In total, the authors identified 43 (8 new patients, 35 recently published patients) cases. Defects in the acetylcholine receptor (n = 15; 35%) were the most common type, followed by synaptic basal-lamina associated (n = 14; 33%) and presynaptic syndromes (n = 10; 23%). The authors had only 3 cases (7%) who had defects in endplate development. One patient had mutation GFPT1 gene (n = 1; 2%). Knowledge on congenital myasthenic syndromes and related genes in Turkey will lead to prompt diagnosis and treatment of these rare neuromuscular disorders.
Advances in the Remote Glow Discharge Experiment
NASA Astrophysics Data System (ADS)
Dominguez, Arturo; Zwicker, A.; Rusaits, L.; McNulty, M.; Sosa, Carl
2014-10-01
The Remote Glow Discharge Experiment (RGDX) is a DC discharge plasma with variable pressure, end-plate voltage and externally applied axial magnetic field. While the experiment is located at PPPL, a webcam displays the live video online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The RGDX is designed as an outreach tool that uses the attractive nature of a plasma in order to reach a wide audience and extend the presence of plasma physics and fusion around the world. In March 2014, the RGDX was made publically available and, as of early July, it has had approximately 3500 unique visits from 107 countries and almost all 50 US states. We present recent upgrades, including the ability to remotely control the distance between the electrodes. These changes give users the capability of measuring Paschen's Law remotely and provides a comprehensive introduction to plasma physics to those that do not have access to the necessary equipment.
Back pain's association with vertebral end-plate signal changes in sciatica.
el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L A M; van der Kallen, Bas F; Lycklama à Nijeholt, Geert J; van den Hout, Wilbert B; Koes, Bart W; Peul, Wilco C
2014-02-01
Patients with sciatica frequently experience disabling back pain. One of the proposed causes for back pain is vertebral end-plate signal changes (VESC) as visualized by magnetic resonance imaging (MRI). To report on VESC findings, changes of VESC findings over time, and the correlation between VESC and disabling back pain in patients with sciatica. A randomized clinical trial with 1 year of follow-up. Patients with 6 to 12 weeks of sciatica who participated in a multicenter, randomized clinical trial comparing an early surgery strategy with prolonged conservative care with surgery if needed. Patients were assessed by means of the 100-mm visual analog scale (VAS) for back pain (with 0 representing no pain and 100 the worst pain ever experienced) at baseline and 1 year. Disabling back pain was defined as a VAS score of at least 40 mm. Patients underwent MRI both at baseline and after 1 year follow-up. Presence and change of VESC was correlated with disabling back pain using chi-square tests and logistic regression analysis. At baseline, 39% of patients had disabling back pain. Of the patients with VESC at baseline, 40% had disabling back pain compared with 38% of the patients with no VESC (p=.67). The prevalence of type 1 VESC increased from 1% at baseline to 35% 1 year later in the surgical group compared with an increase from 3% to 11% in the conservative group. The prevalence of type 2 VESC decreased from 40% to 29% in the surgical group while remaining almost stable in the conservative group at 41%. The prevalence of disabling back pain at 1 year was 12% in patients with no VESC at 1 year, 16% in patients with type 1 VESC, 11% in patients with type 2 VESC, and 3% in patients with both types 1 and 2 VESC (p=.36). Undergoing surgery was associated with increase in the extent of VESC (odds ratio [OR], 8.6; 95% confidence interval [CI], 4.7-15.7; p<.001). Patients who showed an increase in the extent of VESC after 1 year did not significantly report more disabling back pain compared with patients who did not show any increase (OR, 1.2; 95% CI, 0.6-2.6; p=.61). In this study, undergoing surgery for sciatica was highly associated with the development of VESC after 1 year. However, in contrast with the intuitive feeling of spine specialists, those with and those without VESC reported disabling back pain in nearly the same proportion. Therefore, VESC does not seem to be responsible for disabling back pain in patients with sciatica. Copyright © 2014 Elsevier Inc. All rights reserved.
Feng, Zhiyun; Liu, Yuanhao; Wei, Wei; Hu, Shengping; Wang, Yue
2016-08-15
A radiological study of type II Modic changes (MCs). The aim of this study was to determine the characteristics of type II MCs on fat suppression (FS) magnetic resonance (MR) images and its association with radiological disc degeneration. Type II MCs are common endplate signal changes on MR images. On the basis of limited histological samples, type II MCs are thought to be stable fat degeneration. FS technique on MR, which can quantify fat content, may be an alternative to explore the pathology of MCs. To date, however, the characteristics of type II MCs on FS sequence have not been studied. Lumbar MR images conducted in a single hospital during a defined period were reviewed to include those with type II MCs and FS images. On FS images, signal status of type II MCs was visually classified as suppressed or not-suppressed. Signal intensity of vertebral regions with and without MCs was measured quantitatively on T2-weighted (T2W) and FS images to calculate fat content index and validate the visual classification. Using image analysis program Osirix, MCs size and adjacent disc degeneration were measured quantitatively. Paired t-tests and logistic regressions were used to determine the associations studied. Sixty-four lumbar MRIs were included and 150 endplates with type II MCs were studied. Although signal of 37 (24.7%) type II MCs was suppressed on FS images, that of 113 (75.3%) was not suppressed. The discs adjacent to type II MCs had lower signal intensity (0.13 ± 0.003 vs. 0.14 ± 0.004, P < 0.001), lesser disc height (9.73 ± 1.97 vs. 11.07 ± 1.99, P < 0.001) and greater bulging area (80.0 ± 31.4 vs. 61.3 ± 27.5 for anterior bulging, 33.72 ± 21.24 vs. 27.93 ± 12.79 for posterior bulging, and 113.7 ± 39.9 vs. 89.2 ± 35.2 for total bulging, P < 0.05) than normal controls. Type II MCs that were not suppressed on FS image were associated with greater age [odds ratio (OR) = 1.11, P < 0.001], lower height (OR = 0.94, P < 0.05), and greater posterior bulging (OR = 1.05, P < 0.001) at the adjacent disc. Signal of most type II MCs was not suppressed on FS MR images, suggesting that there are ongoing complicated pathologies. Type II MCs may not merely represent fat replacement. 3.
Pham, My; Phan, Kevin; Teng, Ian; Mobbs, Ralph J
2018-05-01
Cervical spondylosis affects a huge proportion of the middle-aged population. Degenerative changes can occur in multiple regions of the cervical spine typically affecting the joints, intervertebral discs and endplates. These changes lead to compression of adjacent nervous structures, which results in radiculopathic and myelopathic pain. Various treatment modalities are currently available with non-surgical approaches the initial go to if there is no symptomatic cord compression. Anterior cervical discectomy and fusion, or arthroplasty are the two common surgical approaches if non-surgical treatments fail to relieve symptoms of the patients or there are signs of central cord compression. However, studies have shown that there is an increased risk of adjacent segment disease related to fusion. Cervical disc arthroplasty aims to restore normal range of motion (ROM) in patients with pain and disability due to degenerative disc disease resistant to conservative care. Two common disc prostheses used include M6-C and Mobi-C. Both prostheses comprise a mobile polymer segment sandwiched between two metal endplates with mechanisms resembling an actual intervertebral disc. This study aims to compare the kinematics associated with these prostheses, against the normal range of motion in the non-degenerative population. Patients who underwent M6-C or Mobi-C disc replacements by the senior author from 2012 to 2015 were identified at a single tertiary institution. Routine 3-month postoperative lateral radiographs were analyzed for flexion and extension ROM angles at the involved vertebral level by two independent authors. Data was compared to previous published studies investigating cervical spine ROM of asymptomatic patients. There was no statistical significance in the difference of overall flexion range between M6-C and Mobi-C prostheses. However, overall range of extension of Mobi-C was greater compared to M6-C (P = 0.028). At C 5-6 , the range of flexion for both implants were similar but lesser compared to asymptomatic patients (P < 0.001). Range of extension was greater in the Mobi-C group (14.2° ± 5.1°) compared to the M6-C (7.3° ± 4.6°) (P = 0.0009). At C 6-7 , there were no statistical differences in both range of flexion and extension between the two prostheses and asymptomatic patients (P > 0.05). The early results regarding restoration of ROM following cervical arthroplasty using either M6-C or Mobi-C prosthesis are encouraging. Long-term follow-up studies are necessary to observe the change in ROM over time with physiological loading and wear patterns. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Giammò, Alessandro; Boido, Marina; Rustichelli, Deborah; Mareschi, Katia; Errichiello, Edoardo; Parola, Maurizio; Ferrero, Ivana; Fagioli, Franca; Vercelli, Alessandro; Carone, Roberto
2012-01-01
Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs) and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation. PMID:23029081
L.-H. Huang, Christopher; Fraser, James A.
2011-01-01
Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca2+ release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (GM) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces GM, whereas prolonged activity can markedly elevate GM. Although these observations implicate GM regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of GM on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including GM changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because GM modulation affects only the low-frequency membrane impedance, the GM changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of GM regulation was increased by high Cl− permeability, as in muscle endplate regions, and by increased extracellular [K+], as observed in working muscle. Thus, reduced GM at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated GM after sustained activity would inhibit these processes and thereby accentuate muscle fatigue. PMID:21670208
Remodeling of the neuromuscular junction precedes sarcopenia related alterations in myofibers.
Deschenes, Michael R; Roby, Mackenzie A; Eason, Margaret K; Harris, M Brennan
2010-05-01
Several mechanisms contributing to the etiology of sarcopenia (age-related loss of muscle size) have been postulated. One of these attributes the loss of muscle mass to a preceding age-related denervation of myofibers. The aim of this study was to determine if signs of denervation were apparent at the neuromuscular junction (NMJ) before fiber atrophy, or fiber type conversion could be documented, and to reveal if a muscle's activity level impacts its sensitivity to age-related denervation. Plantaris and soleus muscles were obtained from young adult (10 months) and early aged (21 months) rats. Pre- and post-synaptic NMJ morphology was quantified with cytofluorescent staining of nerve terminal branches and endplate regions, respectively. Myofiber profiles (fiber size and fiber type composition) were assessed with histochemical procedures. Results show that in the lightly recruited plantaris, significant (P<0.05) signs of denervation were noted in aged rats, while the same muscles displayed no change in myofiber profile. In the heavily recruited soleus, however, there was little evidence of denervation, and again no alterations in myofiber profile. These results indicate that age-related denervation occurs before myofiber atrophy, and that high amounts of neuromuscular activity may delay the onset of age-related denervation and sarcopenia.
Devices for SRF material characterization
Goudket, Philippe; Xiao, B.; Junginger, T.
2016-10-07
The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excitedmore » in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.« less
Silva, P; Crozier, S; Veidt, M; Pearcy, M J
2005-07-01
A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n=4) on different samples (N=2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.
Devices for SRF material characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudket, Philippe; Xiao, B.; Junginger, T.
The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excitedmore » in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.« less
Márquez Sánchez, P
2016-04-01
Spondylodiscitis is an infection of the spine that has been known since ancient times. Its incidence is rising, due to the increases in life expectancy and debilitating conditions. Its age distribution is bimodal, affecting persons younger than 20 years of age or persons aged 50-70 years. According to its origin, it is classified as pyogenic, granulomatous or parasitic, though the first form is the most common, usually caused by Staphylococcus aureus or Escherichia coli. The clinical presentation is insidious, resulting in a delayed diagnosis, particularly in tuberculous spondylodiscitis. The initial onset usually involves inflammatory back pain, though the disease may course with fever, asthenia and neurological deficit, these being the most severe complications. Diagnosis is based on clinical, radiological, laboratory, microbiological and histopathological data. Magnetic resonance imaging is the technique of choice for the diagnosis of spondylodiscitis. The differential diagnosis involves, among other conditions, intervertebral erosive osteochondrosis, tumour, axial spondyloarthropathy, haemodialysis spondyloarthropathy, Modic type 1 endplate changes and Charcot's axial neuroarthropathy. Treatment is based on eliminating the infection with antibiotics, preventing spinal instability with vertebral fixation, and ample debridement of infected tissue to obtain samples for analysis. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Elastic fibre organization in the intervertebral discs of the bovine tail
Yu, Jing; Peter, C; Roberts, Sally; Urban, Jill PG
2002-01-01
Elastic fibres have been revealed by both elastin immunostaining and conventional histological orcein-staining in the intervertebral discs of the bovine tail. These fibres are distributed in all regions of the disc but their organization varies from region to region. In the centre of the nucleus, long (>150 μm) elastic fibres are orientated radially. In the transitional region between nucleus and annulus, the orientation of the elastic fibres changes, producing a criss-cross pattern. In the annulus itself, elastic fibres appear densely distributed in the region between the lamellae and also in ‘bridges’ across the lamellae, particularly in the adult. Elastic fibres are apparent within the lamellae, orientated parallel to the collagen fibres of each lamella, particularly in the young (12-day-old) discs. In the region between the disc and the cartilaginous endplate, elastic fibres appear to anchor into the plate and terminate there. The results of this study suggest that elastic fibres contribute to the mechanical functioning of the intervertebral disc. The varying organization of the elastic fibres in the different regions of the disc is likely to relate to the different regional loading patterns PMID:12489758
Hernandez-Morato, Ignacio; Koss, Shira; Sharma, Sansar; Pitman, Michael J
2017-07-13
Following recurrent laryngeal nerve (RLN) injury, recovery results in poor functional restitution of the paralyzed vocal fold. Netrin-1 has been found to be upregulated in the rat posterior cricoarytenoid muscle (PCA) during nerve regeneration. We evaluated the effect of ectopic Netrin-1 in the PCA during RLN reinnervation. The right RLN was transected and Netrin-1 was injected into the PCA (2.5, 5, 10, 15, 20μg/ml). At 7 days post injury fluorescent retrograde tracer was injected into the PCA and Thyroarytenoid (TA) muscles. At 9 days tissues were harvested. Immunostaining showed reinnervation patterns in the laryngeal muscles and labelled motoneurons in the nucleus ambiguus. Lower concentrations of Netrin-1 (2.5 and 5μg/ml) showed no significant changes in laryngeal muscles reinnervation. Higher concentrations of Netrin-1 significantly reduced motor end plate innervation. The most effective dose was 10μg/ml showing reduced number of innervated motor endplates in the PCA. The somatotopic organization of the nucleus ambiguus was altered in all concentrations of Netrin-1 injection. These findings indicate that injection of Netrin-1 into the PCA changes the reinnervation pattern of the RLN. Copyright © 2017. Published by Elsevier B.V.
Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher
2009-03-01
Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.
Intraocular pressure control of a novel glaucoma drainage device - in vitro and in vivo studies
Cui, Li-Jun; Li, Di-Chen; Liu, Jian; Zhang, Lei; Xing, Yao
2017-01-01
AIM To evaluate the intraocular pressure (IOP) control of an artificial trabeculum drainage system (ATDS), a newly designed glaucoma drainage device, and postoperative complications in normal rabbit eyes. METHODS Pressure drops in air and fluid of 30 ATDS were measured after being connected to a closed manometric system. Twenty of them were then chosen and implanted randomly into the eyes of 20 rabbits. Postoperative slit-lamp, gonioscopic examination and IOP measurements were recorded periodically. Ultrasound biomicroscopy and B-scan ultrasonography were also used to observe the complications. Eyes were enucleated on day 60. RESULTS Pressure drops of 4.6-9.4 mm Hg were obtained at physiological aqueous flow rates in the tests in vitro. The average postoperative IOP of the experimental eyes (11.6-12.8 mm Hg) was lower than the controls significantly (P<0.05) at each time point. Complications of hemorrhage (n=1), cellulosic exudation (two cases) and local iris congestion (two cases) were observed. The lumina of the devices were devoid of obstructions in all specimens examined and a thin fibrous capsule was found around the endplate. CONCLUSION ATDS reduce IOP effectively. However, further studies on the structure are needed to reduce complications. PMID:28944192
Mailly, P; Younès-Chennouft, A B; Bon, S
1989-01-01
The IgM monoclonal antibodies, Elec-39, HNK-1 and NC-1, recognize the same subset of Torpedo electric organ acetylcholinesterase (AChE). We show that they react against a glycosphingolipid (SGPG) containing a sulfated glucuronic acid (SGA). The three antibodies appear essentially identical in their specificity but differ in their affinity for the antigens. We have examined their binding in the CNS, nerves and muscles of several vertebrate species, at the optical and in some cases at the electron microscope level. All three antibodies label the same structures: they show diffuse staining around neuromuscular endplates and label the plasma membrane of the Schwann cells, surrounding the outer layer of myelin sheaths. In the adult rat CNS, the antibodies label certain defined structures, notably extracellular material in the habenula and in the CA2 layer of the hippocampus. In the cortex and cerebellum, they label the surface of neural processes and terminals apposed to large multipolar neurons and Purkinje cells, as well as membranous material contained in inclusions dispersed in the cytoplasm of these neurons. These localizations are consistent with the suggestion that the SGA-antigens may be involved in cellular interactions.
Diagnosis and treatment of lumbosacral discospondylitis in a calf
2011-01-01
Background The aim of this case report was to describe the clinical findings, treatment and outcome of lumbosacral discospondylitis in a calf. Case Presentation A 5.5-month-old calf was presented with difficulty in rising, a stiff and slightly ataxic gait in the hind limbs and a shortened stride. The lumbosacral region was severely painful on palpation. Radiographic examination confirmed lumbosacral discospondylitis. Medical treatment with stall rest was instituted over six weeks. Radiographic and ultrasonographic follow-up examinations showed lysis of the endplates initially, then collapse of the intervertebral space at the lumbosacral junction and progressive sclerosis in the periphery of the lytic zones. Four weeks after institution of treatment, the calf could rise normally and the general condition gradually had returned to normal. The calf was discharged after 6 weeks and was sound at 3.5 months clinical and radiographic follow up examination. Thereafter, it was kept on alpine pastures without problems and was pregnant 1 year after the last examination. Conclusions This report shows that recovery from lumbosacral discospondylitis is possible in heifers, provided that treatment is started before major neurologic deficits have developed and is continued for an extended period of time. PMID:21910913
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaezi, P.; Holland, C.; Thakur, S. C.
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications
NASA Astrophysics Data System (ADS)
Mehlem, Jeremy John
Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.
NASA Astrophysics Data System (ADS)
Ohira, Yoshinobu; Kawano, Fuminori; Goto, Katsumasa; Terada, Masahiro; Ohira, Takashi; Nakai, Naoya; Higo, Yoko; Yoshioka, Toshitada
2008-06-01
Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from the postnatal day 4 to month 3 and the reloading was allowed for 3 months in some rats. Single expression of type I myosin heavy chain (MHC) was observed in ~82% fibers in 3month old controls, but fibers expressing multiple MHC iso-forms were noted in the unloaded rats. Responses of fast or slow MHC protein expression to growth and/or unloading were not directly related to mRNA expression. Although 97% fibers in 3month old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers, which are not directly related to gene expression.
Tang, Shujie; Meng, Xueying
2011-01-01
The restoration of disc space height of fused segment is essential in anterior lumbar interbody fusion, while the disc space height in many cases decreased postoperatively, which may adversely aggravate the adjacent segmental degeneration. However, no literature available focused on the issue. A normal healthy finite element model of L3-5 and four anterior lumbar interbody fusion models with different disc space height of fused segment were developed. 800 N compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending and axial rotation were imposed on L3 superior endplate. The intradiscal pressure, the intersegmental rotation, the tresca stress and contact force of facet joints in L3-4 were investigated. Anterior lumbar interbody fusion with severely decreased disc space height presented with the highest values of the four parameters, and the normal healthy model presented with the lowest values except, under extension, the contact force of facet joints in normal healthy model is higher than that in normal anterior lumbar interbody fusion model. With disc space height decrease, the values of parameters in each anterior lumbar interbody fusion model increase gradually. Anterior lumbar interbody fusion with decreased disc space height aggravate the adjacent segmental degeneration more adversely.
[Mechanical studies of lumbar interbody fusion implants].
Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R
2002-05-01
In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.
Lazennec, Jean-Yves; Aaron, Alain; Ricart, Olivier; Rakover, Jean Patrick
2016-01-01
The viscoelastic cervical disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer. It is an evolution of the LP ESP lumbar disk implanted since 2006. CP ESP provides six full degrees of freedom about the three axes including shock absorbtion. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. The concept of the ESP prosthesis is fundamentally different from that of the devices currently used in the cervical spine. The originality of the concept of the ESP® prosthesis led to innovative and intense testing to validate the adhesion of the viscoelastic component of the disk on the titanium endplates and to assess the mechanical properties of the PCU cushion. The preliminary clinical and radiological results with 2-year follow-up are encouraging for pain, function and kinematic behavior (range of motion and evolution of the mean centers of rotation). In this series, we did not observe device-related specific complications, misalignment, instability or ossifications. Additional studies and longer patient follow-up are needed to assess long-term reliability of this innovative implant.
Krüger, Antonio; Schmuck, Maya; Noriega, David C.; Ruchholtz, Steffen; Baroud, Gamal; Oberkircher, Ludwig
2015-01-01
Purpose. The treatment of vertebral burst fractures is still controversial. The aim of the study is to evaluate the purpose of additional percutaneous intravertebral reduction when combined with dorsal instrumentation. Methods. In this biomechanical cadaver study twenty-eight spine segments (T11-L3) were used (male donors, mean age 64.9 ± 6.5 years). Burst fractures of L1 were generated using a standardised protocol. After fracture all spines were allocated to four similar groups and randomised according to surgical techniques (posterior instrumentation; posterior instrumentation + intravertebral reduction device + cement augmentation; posterior instrumentation + intravertebral reduction device without cement; and intravertebral reduction device + cement augmentation). After treatment, 100000 cycles (100–600 N, 3 Hz) were applied using a servohydraulic loading frame. Results. Overall anatomical restoration was better in all groups where the intravertebral reduction device was used (p < 0.05). In particular, it was possible to restore central endplates (p > 0.05). All techniques decreased narrowing of the spinal canal. After loading, clearance could be maintained in all groups fitted with the intravertebral reduction device. Narrowing increased in the group treated with dorsal instrumentation. Conclusions. For height and anatomical restoration, the combination of an intravertebral reduction device with dorsal instrumentation showed significantly better results than sole dorsal instrumentation. PMID:26137481
Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections
Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.
2010-01-01
18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505
Membrane wing aerodynamics for micro air vehicles
NASA Astrophysics Data System (ADS)
Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning
2003-10-01
The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.
Molecular signaling in intervertebral disk development.
DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A
2005-09-01
The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.
Berg, Alexander; Zelano, Johan; Pekna, Marcela; Wilhelmsson, Ulrika; Pekny, Milos; Cullheim, Staffan
2013-01-01
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics. PMID:24223940
Kang, Hyuno; Tian, Le; Mikesh, Michelle; Lichtman, Jeff W.
2014-01-01
Schwann cells (SCs) at neuromuscular junctions (NMJs) play active roles in synaptic homeostasis and repair. We have studied how SCs contribute to reinnervation of NMJs using vital imaging of mice whose motor axons and SCs are transgenically labeled with different colors of fluorescent proteins. Motor axons most commonly regenerate to the original synaptic site by following SC-filled endoneurial tubes. During the period of denervation, SCs at the NMJ extend elaborate processes from the junction, as shown previously, but they also retract some processes from territory they previously occupied within the endplate. The degree of this retraction depends on the length of the period of denervation. We show that the topology of the remaining SC processes influences the branching pattern of regenerating axon terminals and the redistribution of acetylcholine receptors (AChRs). Upon arriving at the junction, regenerating axons follow existing SC processes within the old synaptic site. Some of the AChR loss that follows denervation is correlated with failure of portions of the old synaptic site that lack SC coverage to be reinnervated. New AChR clustering is also induced by axon terminals that follow SC processes extended during denervation. These observations show that SCs participate actively in the remodeling of neuromuscular synapses following nerve injury by their guidance of axonal reinnervation. PMID:24790203
Cornwall, Jon; Deries, Marianne; Duxson, Marilyn
2010-12-01
Although the morphology of human lumbar transversospinal (TSP) muscles has been studied, little is known about the structure of these muscles in the mouse (Mus musculus). Such information is relevant given mice are often used as a "normal" phenotype for studies modeling human development. This study describes the gross morphology, muscle fiber arrangement, and innervation pattern of the mouse lumbar TSP muscles. A unique feature of the study is the use of a transgenic mouse line bearing a muscle-specific nuclear marker that allows clear delineation of muscle fiber and connective tissue boundaries. The lumbar TSP muscles of five mice were examined bilaterally; at each spinal level muscles attached to the caudal edge of the spinous process and passed caudally as a single complex unit. Fibers progressively terminated over the four vertebral segments caudad, with multiple points of muscle fiber attachment on each vertebra. Motor endplates, defined with acetylcholinesterase histochemistry, were consistently located half way along each muscle fiber, regardless of length, with all muscle fibers arranged in-parallel rather than in-series. These results provide information relevant to interpretation of developmental and functional studies involving this muscle group in the mouse and show mouse lumbar TSP muscles are different in form to descriptions of equivalent muscles in humans and horses.
Outcomes of Corpectomy in Patients with Metastatic Cancer.
Guzik, Grzegorz
2017-01-26
The objective of surgical management of spinal metastases is to reduce pain and improve the patient's quality of life. The operation should restore spinal stability and decompress neural structures. One surgical technique is corpectomy followed by vertebral body reconstruction and stabilisation of the spine. The procedure may be performed in patients in overall good health and a good survival prognosis. The aim of this paper is to present the outcomes of surgical management of spinal metastases in patients who underwent corpectomy followed by vertebral body reconstruction and stabilisation of the spine. The aim of the study was achieved by analysing medical histories of 124 patients with spinal metastases treated in the Oncological Orthopaedics Department in Brzozów in the period 2010-2015. The majority of patients in the group were women, who represented 64% of all the subjects. The average age was 63 years for women and 67 for men. The metastases were most frequently produced by breast cancer (36%) and myeloma (22%). A total of 87% of the group were diagnosed with pathologic fractures and 92% had spinal instability. Stenosis of the spinal canal was found in 78% of the patients. The surgeries were performed in 18 persons with metastases to the cervical spine, 69 patients with metastases to the thoracic spine and 37 participants with metastases to the lumbar spine. Single-level corpectomies were performed in 83 patients and multilevel corpectomies in 41 persons. Parameters analysed comprised overall health condition, neurological function (the Frankel Grade) and performance status (the Karnofsky score) of the patients. A VAS was used to assess the intensity of pain. The course of the operation and complications were also analysed. Following the surgeries, the average VAS pain score decreased from 7.2 to 3.8. Performance improved from a Karnofsky score of 50.26 to 68.65. Neurological function improved in 21 out of 34 patients with pareses. The average duration of the surgery was 67 minutes for the cervical spine, 123 minutes for the thoracic spine and 112 minutes for the lumbar spine. The loss of blood was strongest for lumbar spine surgeries, amounting on average to 580 ml. 62% of patients required transfusion ofblood substitutes after the operation. The average hospitalisation time was 14 days, with a minimum and maximum duration of 7 and 24 days, respectively. The most common complication was damage to the endplate of the vertebra adjacent to the prosthesis (11%). Two patients developed complete and irreversible paralysis of lower limbs. 1. Corpectomy followed by vertebral body reconstruction should be used in patients with a good prognosis. 2. Therapeutic outcomes are good. The surgery produced a considerable reduction in pain and improvement in performance in the majority of patients. 3. Complications are not frequent. The most common complication is intrusion of the implant into the endplate of the adjacent vertebrae. 4. A high survival rate at one year after the surgery, exceeding 90% of the patients, is evidence of effectiveness of the treatment and appropriate qualification of patients for the operation.
Naqvi, Syeda M; Buckley, Conor T
2016-05-01
In vitro culture of porcine bone marrow stem cells (BMSCs) in varying pH microenvironments in a three-dimensional hydrogel system. To characterize the response of BMSCs to varying pH environments (blood [pH 7.4], healthy intervertebral disc (IVD) (pH 7.1), mildly degenerated IVD (pH 6.8), and severely degenerated IVD (pH 6.5) in three-dimensional culture under normoxic (20%) and hypoxic (5%) conditions. The IVD is an avascular organ relying on diffusion of essential nutrients through the cartilaginous endplates (CEPs) thereby creating a challenging microenvironment. Within a degenerated IVD, oxygen and glucose concentrations decrease further (<5% oxygen, <5 mmol/L glucose) and matrix acidity (
Askar, I; Sabuncuoglu, B T; Yormuk, E; Saray, A
2001-07-01
In nerve injuries, if it is not possible to reinnervate muscle by using neurorrhaphy and nerve grafting technique, reinnervation should be provided by the use of neuroization-directly implanting motor nerve into muscle. A comparative study of three techniques of neurotization is presented in rabbits. In this experimental study, a total of 40 white New Zealand rabbits were used and divided into four groups, each including 10 rabbits. In the first group (control--Group 1), only surgical exposure of the gastrocnemius muscle, main muscle nerve (tibial nerve), and peroneal nerve was done, without any injury to the nerves. In the second group (direct neurotization group--Group 2), the tibial nerve was transected, and the peroneal nerve, which had already been divided into fascicles, was implanted into the lateral head of the gastrocnemius muscle aneural zone. In the third group (dual neurotization group--Group 3), the tibial nerve which had been transected and re-anastomosed, and the peroneal nerve were implanted into the lateral head of the gastrocnemius muscle. In the last experimental group (hyperneurotization group--Group 4), fascicles of the peroneal nerve were implanted into the lateral head of the gastrocnemius, preserving the tibial nerve. Six months later, changes in the histologic pattern and the functional recovery of the gastrocnemius muscle were investigated. It was found that functional recovery was achieved in all neurotization groups. Groups with the tibial nerve transected had less muscular weights than those of groups with the tibial nerve intact. EMG recordings showed that polyphasic and late potentials were frequently seen in groups with the tibial nerve transected. Degeneration and regeneration of myofibrils was observed in such groups as well. New motor end-plates, including vesicles, were formed in a scattered manner in all neurotization groups. As a result, the authors conclude that direct and dual neurotization techniques are useful in peripheral nerve injuries, if it is not possible to reinnervate muscle by using neurorraphy and nerve grafting, and that there is no suggested superiority among these techniques.
Ito, Mikako; Ohno, Kinji
2018-02-20
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Inada, Taigo; Furuya, Takeo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Suzuki, Takane; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato; Koda, Masao
2016-08-01
Retrospective case series. To elucidate the impact of postoperative occiput-C2 (O-C2) angle change on subaxial cervical alignment. In the case of occipito-upper cervical fixation surgery, it is recommended that the O-C2 angle should be set larger than the preoperative value postoperatively. The present study included 17 patients who underwent occipito-upper cervical spine (above C4) posterior fixation surgery for atlantoaxial subluxation of various etiologies. Plain lateral cervical radiographs in a neutral position at standing were obtained and the O-C2 angle and subaxial lordosis angle (the angle between the endplates of the lowest instrumented vertebra (LIV) and C7 vertebrae) were measured preoperatively and postoperatively soon after surgery and ambulation and at the final follow-up visit. There was a significant negative correlation between the average postoperative alteration of O-C2 angle (DO-C2) and the average postoperative alteration of subaxial lordosis angle (Dsubaxial lordosis angle) (r=-0.47, p=0.03). There was a negative correlation between DO-C2 and Dsubaxial lordosis angles. This suggests that decrease of mid-to lower-cervical lordosis acts as a compensatory mechanism for lordotic correction between the occiput and C2. In occipito-cervical fusion surgery, care must be taken to avoid excessive O-C2 angle correction because it might induce mid-to-lower cervical compensatory decrease of lordosis.
Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa
2015-08-01
Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.
Ling, Karen K. Y.; Gibbs, Rebecca M.; Feng, Zhihua; Ko, Chien-Ping
2012-01-01
Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy. PMID:21968514
Risbud, Makarand V; Schoepflin, Zachary R; Mwale, Fackson; Kandel, Rita A; Grad, Sibylle; Iatridis, James C; Sakai, Daisuke; Hoyland, Judith A
2015-03-01
Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Yamamoto, Daisuke; Imai, Tomihiro; Tsuda, Emiko; Hozuki, Takayoshi; Yamauchi, Rika; Hisahara, Shin; Kawamata, Jun; Shimohama, Shun
2017-11-01
The ice-pack test is a convenient diagnostic testing procedure for myasthenia gravis (MG). We investigated the underlying mechanism of the ice-pack test performed on bilateral masseters. We performed trigeminal repetitive nerve stimulation (RNS), excitation-contraction (E-C) coupling assessment (Imai's method) and bite force measurement before and after cooling of the masseters in MG patients and normal controls. After placing the ice-pack on the masseters for 3min, serial recordings of the three tests were performed at various time intervals during 10min after cooling. The bite force increased significantly after cooling in ice-pack-positive MG patients. The acceleration and acceleration ratio (acceleration at a given time to baseline acceleration) of jaw movement increased significantly after cooling of the masseters in ice-pack-positive MG patients compared to ice-pack-negative patients and normal controls. The prolonged effect of cooling continued until the end of recording even though decremental response to RNS had returned to baseline value. Cooling of myasthenic muscle may induce two effects. One is relatively short effect on electrical synaptic transmission at the endplate, and another is prolonged effect on E-C coupling in the muscle. The ice-pack test induces a prolonged effect of ameliorating impaired E-C coupling in MG. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Supine vs decubitus lateral patient positioning in vertebral fracture assessment.
Paggiosi, Margaret Anne; Finigan, Judith; Peel, Nicola; Eastell, Richard; Ferrar, Lynne
2012-01-01
In vertebral fracture assessment (VFA), lateral scans are obtained with the patient positioned supine (C-arm densitometers) or lateral decubitus (fixed-arm densitometers). We aimed to determine the impact of positioning on image quality and fracture definition. We performed supine and decubitus lateral VFA in 50 postmenopausal women and used the algorithm-based qualitative method to identify vertebral fractures. We compared the 2 techniques for the identification of fractures (kappa analysis) and compared the numbers of unreadable vertebrae (indiscernible endplates) and vertebrae that were projected obliquely (Wilcoxon matched-pairs signed-rank test). The kappa score for agreement between the VFA techniques (to identify women with vertebral fractures) was 0.84 (95% confidence interval [CI]: 0.68-0.99), and for agreement with fracture assessments made from radiographs, kappa was 0.76 (95% CI: 0.57-0.94) for both supine and decubitus lateral VFA. There were more unreadable vertebrae with supine lateral (48 vertebrae in supine lateral compared with 14 in decubitus lateral; p=0.001), but oblique projection was less common (93 vertebrae compared with 145 in decubitus lateral; p=0.002). We conclude that there were significantly different projection effects with supine and decubitus lateral VFA, but these differences did not influence the identification of vertebral fractures in our study sample. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Wong, Kah-Hui; Naidu, Murali; David, Pamela; Abdulla, Mahmood Ameen; Abdullah, Noorlidah; Kuppusamy, Umah Rani; Sabaratnam, Vikineswary
2011-01-01
Nerve crush injury is a well-established axonotmetic model in experimental regeneration studies to investigate the impact of various pharmacological treatments. Hericium erinaceus is a temperate mushroom but is now being cultivated in tropical Malaysia. In this study, we investigated the activity of aqueous extract of H. erinaceus fresh fruiting bodies in promoting functional recovery following an axonotmetic peroneal nerve injury in adult female Sprague-Dawley rats by daily oral administration. The aim was to investigate the possible use of this mushroom in the treatment of injured nerve. Functional recovery was assessed in behavioral experiment by walking track analysis. Peroneal functional index (PFI) was determined before surgery and after surgery as rats showed signs of recovery. Histological examinations were performed on peroneal nerve by immunofluorescence staining and neuromuscular junction by combined silver-cholinesterase stain. Analysis of PFI indicated that return of hind limb function occurred earlier in rats of aqueous extract or mecobalamin (positive control) group compared to negative control group. Regeneration of axons and reinnervation of motor endplates in extensor digitorum longus muscle in rats of aqueous extract or mecobalamin group developed better than in negative control group. These data suggest that daily oral administration of aqueous extract of H. erinaceus fresh fruiting bodies could promote the regeneration of injured rat peroneal nerve in the early stage of recovery. PMID:21941586
What is the correlation of in vivo wear and damage patterns with in vitro TDR motion response?
Kurtz, Steven M.; Patwardhan, Avinash; MacDonald, Daniel; Ciccarelli, Lauren; van Ooij, André; Lorenz, Mark; Zindrick, Michael; O’Leary, Patrick; Isaza, Jorge; Ross, Raymond
2008-01-01
Background Context Total disc replacements (TDRs) have been used to reduce pain and preserve motion. However, the comparison of polyethylene wear following long-term implantation to those tested using an in vitro model had not yet been investigated. Purpose The purpose of this study was to correlate wear and damage patterns in retrieved TDRs with motion patterns observed in a clinically validated in vitro lumbar spine model. We also sought to determine whether one-sided wear and motion patterns were associated with greater in vivo wear. Study Design This two-part study combined the evaluation of retrieved total disc replacements with a biomechanical study using human lumbar spines. Patient Sample 38 CHARITÉ lumbar artificial discs were retrieved from 32 patients (24 female, 75%) after 7.3 years average implantation (range: 1.8 to 16.1y). The components were implanted at L2/L3 (n=1), L3/L4 (n=2), L4/L5 (n=20), and L5/S1 (n=15). All the implants were removed due to intractable back pain and/or facet degeneration. In addition, they were removed due to subsidence (n=10), anterior migration (n=3), core dislocation (n=2), lateral subluxation (n=1), endplate loosening (n = 2), and osteolysis (n=1). In parallel, 7 new implants were evaluated at L4-L5 and 13 implants at L5-S1 in an in vitro lumbar spine model. Outcome Measures Retrieval analysis included evaluation of clinical data, dimensional measurements and assessment of the extent and severity of PE surface damage mechanisms. In vitro testing involved the observation of motion patterns during physiological loading. Methods For the retrievals, each side of the PE core was independently analyzed at the rim and dome for the presence of machining marks, wear, and fracture. 35 cores were further analyzed using MicroCT to determine whether the wear was one-sided, or symmetrically distributed. For the in vitro study the new implants were tested under physiologic loads (flexion-extension with a compressive follower preload) using a validated cadaveric lumbar spine model. The center of the prosthesis was 2 mm posterior to the mid-point of the vertebral body endplate in mid-sagittal plane. Motion patterns of the in vitro-tested implants were tracked using sequential video-flouroscopy. Results Substantial variability was observed in the wear patterns of the retrievals. 15/35 retrieved cores (43%) displayed one-sided wear patterns. The median dome penetration was 0.2 mm (range: 0.06 to 0.9 mm) and the median penetration rate was 0.04 mm/y (range: 0.01 to 0.2 mm/y). No significant difference in penetration or penetration rate was observed between retrievals with one-sided and symmetric wear patterns (p >0.05). Significant correlations were observed between implantation time and penetration (rho = 0.46, p = 0.004) and penetration rate (rho = −0.48, p = 0.003). In the in vitro study, there was clear visual evidence of motion at both articulations in 8/20 implantations. In additional 8/20 cases, there was some evidence of motion at both articulations; however, the predominant motion occurred at the top articulation. In 4/20 implantations motion could be visually detected only at the top articulation. Core entrapment and pinching was observed in 7/20 cases as the segment was extended, and was associated with visual evidence of core bending or deformation in 5/20 cases. PMID:18317190
Izumi, Noriaki; Matsuyama, Hayato; Ko, Mifa; Shimizu, Yasutake; Takewaki, Tadashi
2003-01-01
Oesophageal peristalsis is controlled by vagal motor neurones, and intrinsic neurones have been identified in the striated muscle oesophagus. However, the effect(s) of intrinsic neurones on vagally mediated contractions of oesophageal striated muscles has not been defined. The present study was designed to investigate the role of intrinsic neurones on vagally evoked contractions of oesophageal striated muscles, using hamster oesophageal strips maintained in an organ bath. Stimulation (30 μs, 20 V) of the vagus nerve trunk produced twitch contractions. Piperine inhibited vagally evoked contractions, while capsaicin and NG-nitro-L-arginine methyl ester (L-NAME) abolished the inhibitory effect of piperine. The effect of L-NAME was reversed by subsequent addition of L-arginine, but not by D-arginine. L-NAME did not have any effect on the vagally mediated contractions and presumed 3H-ACh release. NONOate, a nitric oxide donor, and dibutyryl cyclic GMP inhibited twitch contractions. Inhibition of vagally evoked contractions by piperine and NONOate was fully reversed by ODQ, an inhibitor of guanylate cyclase. Immunohistochemical staining showed immunoreactivity for nitric oxide synthase (NOS) in nerve cell bodies and fibres in the myenteric plexus and the presence of choline acetyltransferase and NOS in the motor endplates. Only a few NOS-immunoreactive portions in the myenteric plexus showed vanilloid receptor 1 (VR1) immunoreactivity. Our results suggest that there is a local neural reflex that involves capsaicin-sensitive neurones, nitrergic myenteric neurones and vagal motor neurones. PMID:12813149
Dimensional accuracy of 3D printed vertebra
NASA Astrophysics Data System (ADS)
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
Inada, Taigo; Furuya, Takeo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Suzuki, Takane; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato
2016-01-01
Study Design Retrospective case series. Purpose To elucidate the impact of postoperative occiput–C2 (O–C2) angle change on subaxial cervical alignment. Overview of Literature In the case of occipito–upper cervical fixation surgery, it is recommended that the O–C2 angle should be set larger than the preoperative value postoperatively. Methods The present study included 17 patients who underwent occipito–upper cervical spine (above C4) posterior fixation surgery for atlantoaxial subluxation of various etiologies. Plain lateral cervical radiographs in a neutral position at standing were obtained and the O–C2 angle and subaxial lordosis angle (the angle between the endplates of the lowest instrumented vertebra (LIV) and C7 vertebrae) were measured preoperatively and postoperatively soon after surgery and ambulation and at the final follow-up visit. Results There was a significant negative correlation between the average postoperative alteration of O–C2 angle (DO–C2) and the average postoperative alteration of subaxial lordosis angle (Dsubaxial lordosis angle) (r=–0.47, p=0.03). Conclusions There was a negative correlation between DO–C2 and Dsubaxial lordosis angles. This suggests that decrease of mid-to lower-cervical lordosis acts as a compensatory mechanism for lordotic correction between the occiput and C2. In occipito-cervical fusion surgery, care must be taken to avoid excessive O–C2 angle correction because it might induce mid-to-lower cervical compensatory decrease of lordosis. PMID:27559456
Investigation of a broadband duct noise control system inspired by the middle ear mechanism
NASA Astrophysics Data System (ADS)
Wang, Chunqi; Huang, Lixi
2012-08-01
A new duct noise control device is introduced based on the mechanism of human middle ear which functions as a compact, broadband impedance transformer between the air motion in the outer ear and the liquid motion in the inner ear. The system consists of two rigid endplates, simulating the tympanic membrane and the stapes footplate, and they are connected by a single rigid rod, simulating the overall action of the ossicular chain. These three pieces are placed in a side-branch cavity, and the whole device is called an ossicular silencer. A specific configuration is investigated numerically with a two-dimensional finite element model. Results show that broadband noise attenuation can be achieved in the very low frequency regime. Typically, two or more resonance peaks are found and the transmission loss between two neighbouring peaks is maintained at a high level. The cavity length is found to be the most crucial parameter that determines the effective frequency range of the ossicular silencer. The total cavity volume, which is a major controlling factor in most existing noise control devices, becomes less influential. The fluid medium in the enclosed cavity mainly acts like an added mass, while its stiffness effect is negligible. Simplified plane wave analysis is also conducted to reveal the mechanisms of the system resonances. The first resonance is identified as of the mass-spring system with mass contributions from both fluid and the plates, while the second one is of the Herschel-Quincke (HQ) tube resonance.
Luebke, Anne E; Holt, Joseph C; Jordan, Paivi M; Wong, Yi Shan; Caldwell, Jillian S; Cullen, Kathleen E
2014-07-30
The neuroactive peptide calcitonin-gene related peptide (CGRP) is known to act at efferent synapses and their targets in hair cell organs, including the cochlea and lateral line. CGRP is also expressed in vestibular efferent neurons as well as a number of central vestibular neurons. Although CGRP-null (-/-) mice demonstrate a significant reduction in cochlear nerve sound-evoked activity compared with wild-type mice, it is unknown whether and how the loss of CGRP influence vestibular system function. Vestibular function was assessed by quantifying the vestibulo-ocular reflex (VOR) in alert mice. The loss of CGRP in (-/-) mice was associated with a reduction of the VOR gain of ≈50% without a concomitant change in phase. Using immunohistochemistry, we confirmed that, although CGRP staining was absent in the vestibular end-organs of null (-/-) mice, cholinergic staining appeared normal, suggesting that the overall gross development of vestibular efferent innervation was unaltered. We further confirmed that the observed deficit in vestibular function of null (-/-) mice was not the result of nontargeted effects at the level of the extraocular motor neurons and/or their innervation of extraocular muscles. Analysis of the relationship between vestibular quick phase amplitude and peak velocity revealed that extraocular motor function was unchanged, and immunohistochemistry revealed no abnormalities in motor endplates. Together, our findings show that the neurotransmitter CGRP plays a key role in ensuring VOR efficacy. Copyright © 2014 the authors 0270-6474/14/3410453-06$15.00/0.
Déjardin, Loïc M; Marturello, Danielle M; Guiot, Laurent P; Guillou, Reunan P; DeCamp, Charles E
2016-07-19
To compare accuracy and consistency of sacral screw placement in canine pelves treated for sacroiliac luxation with open reduction and internal fixation (ORIF) or minimally invasive osteosynthesis (MIO) techniques. Unilateral sacroiliac luxations created experimentally in canine cadavers were stabilized with an iliosacral lag screw applied via ORIF or MIO techniques (n = 10/group). Dorsoventral and craniocaudal screw angles were measured using computed tomography multiplanar reconstructions in transverse and dorsal planes, respectively. Ratios between pilot hole length and sacral width (PL/SW-R) were obtained. Data between groups were compared statistically (p <0.05). Mean screw angles (±SD) were greater in ORIF specimens in both transverse (p <0.001) and dorsal planes (p <0.004). Mean PL/SW-R was smaller (p <0.001) in the ORIF group, yet was greater than 60%. While pilot holes exited the first sacral end-plate in three of 10 ORIF specimens, the spinal canal was not violated in either group. This study demonstrates that MIO fixation of canine sacroiliac luxations provides more accurate and consistent sacral screw placement than ORIF. With proper techniques, iatrogenic neurological damage can be avoided with both techniques. The PL /SW-R, which relates to safe screw fixation, also demonstrates that screw penetration of at least 60% of the sacral width is achievable regardless of surgical approach. These findings, along with the limited dissection needed for accurate sacral screw placement, suggest that MIO of sacroiliac luxations is a valid alternative to ORIF.
Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits.
Jaworski, Diane M; Soloway, Paul; Caterina, John; Falls, William A
2006-01-01
The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP-2(-/-) mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2(-/-) mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2(-/-) mice. Juvenile TIMP-2(-/-) mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2(-/-) endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2(-/-) motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2(-/-) motor phenotype.
Yusof, Mohammad Imran; Hassan, Eskandar; Rahmat, Nasazli; Yunus, Rohaizan
2009-04-01
Pedicle involvement in spinal tuberculosis (TB), the prevertebral abscess formation, severity of vertebral body, and disc collapse were evaluated from magnetic resonance imaging (MRI) of the patients. To study the pedicle involvement in spine TB in relation to the degree of vertebral body and disc collapse, prevertebral abscess collection, and degree of kyphosis; and to correlate the occurrence of pedicle involvement and the degree of spinal deformity. There are a few reports describing the posterior element involvement in spinal TB. Typically, the infection resides in the anterior part of the vertebral body endplates and rarely involved the pedicles. There were 31 patients, who had been diagnosed and treated for spinal TB from 2003 to 2007 at our center. Critical evaluation of each patient's MRI was carried out for the pedicle involvement, prevertebral abscess formation, severity of vertebral body, and disc collapse. Spinal TB mostly involved the thoracic level (48.4%). Pedicle involvement was noted in 64.5% of patients, and the highest involvement was at thoracic level. The mean vertebral body, disc collapse, prevertebral abscess, and kyphosis were more severe in pedicle involved group. The posterior spinal element, specifically the pedicle is not uncommonly involved in spinal TB. Pedicle involvement is part of the disease process and usually associated with relatively severe vertebral body and disc destruction, wide prevertebral abscess, and severe kyphosis. Pedicle involvement can be detected early from MRI and need to be documented as it may influence the treatment strategy.
Failure strength of the bovine caudal disc under internal hydrostatic pressure.
Schechtman, Helio; Robertson, Peter A; Broom, Neil D
2006-01-01
The structure of the disc is both complex and inhomogeneous, and it functions as a successful load-bearing organ by virtue of the integration of its various structural regions. These same features also render it impossible to assess the failure strength of the disc from isolated tissue samples, which at best can only yield material properties. This study investigated the intrinsic failure strength of the intact bovine caudal disc under a simple mode of internal hydrostatic pressure. Using a hydraulic actuator, coloured hydrogel was injected under monitored pressure into the nucleus through a hollow screw insert which passed longitudinally through one of the attached vertebrae. Failure did not involve vertebra/endplate structures. Rather, failure of the disc annulus was indicated by the simultaneous manifestation of a sudden loss of gel pressure, a flood of gel colouration appearing in the outer annulus and audible fibrous tearing. A mean hydrostatic failure pressure of 18+/-3 MPa was observed which was approximated as a thick-wall hoop stress of 45+/-7 MPa. The experiment provides a measurement of the intrinsic strength of the disc using a method of internal hydrostatic loading which avoids any disruption of the complex architecture of the annular wall. Although the disc in vivo is subjected to a much more complex pattern of loading than is achieved using simple hydrostatic pressurization, this latter mode provides a useful tool for investigating alterations in intrinsic disc strength associated with prior loading history or degeneration.
Therapeutic use of botulinum toxin in migraine: mechanisms of action
Ramachandran, Roshni; Yaksh, Tony L
2014-01-01
Migraine pain represents sensations arising from the activation of trigeminal afferents, which innervate the meningeal vasculature and project to the trigeminal nucleus caudalis (TNC). Pain secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the TNC. Such viscerosomatic convergence accounts for referral of migraine pain arising from meningeal afferents to particular extracranial dermatomes. Botulinum toxins (BoNTs) delivered into extracranial dermatomes are effective in and approved for treating chronic migraine pain. Aside from their well-described effect upon motor endplates, BoNTs are also taken up in local afferent nerve terminals where they cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and prevent local terminal release. However, a local extracranial effect of BoNT cannot account for allthe effects of BoNT upon migraine. We now know that peripherally delivered BoNTs are taken up in sensory afferents and transported to cleave SNARE proteins in the ganglion and TNC, prevent evoked afferent release and downstream activation. Such effects upon somatic input (as from the face) likewise would not alone account for block of input from converging meningeal afferents. This current work suggests that BoNTs may undergo transcytosis to cleave SNAREs in second-order neurons or in adjacent afferent terminals. Finally, while SNAREs mediate exocytotic release, they are also involved in transport of channels and receptors involved in facilitated pain states. The role of such post-synaptic effects of BoNT action in migraine remains to be determined. PMID:24819339
Arribas, M; Blasi, J; Egea, G; Fariñas, I; Solsona, C; Marsal, J
1993-12-15
We report here on the synthesis and characterization of a fully active biotinylated derivative of the botulinum neurotoxin type A. Different ratios of biotin: botulinum toxin were tested to optimize derivatizing conditions and a ratio of 35:1 was selected for further experiments. The average number of biotin groups per toxin molecule was estimated to be 7.8, occurring at both heavy and light chains, and almost all externally located and easily accessible to recognition by streptavidin. The modified toxin retained its toxicity and its ability to interact with biological membranes. Apart from its suitability for detection in Western blots and in microtiter well plates, biotinylated botulinum toxin proved to be adequate for morphological labeling studies at both light and electron microscopy. Peroxidase histochemistry in cryostat sections of intoxicated rat hemidiaphragm muscles showed a distinct labeling of end-plates. Electron microscopy studies were performed on the electric organ of Torpedo marmorata using colloidal gold-conjugated streptavidin for detection. After intoxication of electric organ fragments with the modified toxin, gold labels were found associated with the presynaptic plasma membrane of nerve terminals and with the membrane of synaptic vesicles. Moreover, the distribution of biotinylated botulinum toxin binding sites over the membrane of synaptosomes isolated from the electric organ of Torpedo and their relationship with intramembrane particles were analyzed using the replica-staining label-fracture technique. It was found that the toxin is never associated with intramembrane particles.
Ytteborg, Elisabeth; Torgersen, Jacob Seilø; Pedersen, Mona E; Baeverfjord, Grete; Hannesson, Kirsten O; Takle, Harald
2010-12-01
Histological characterization of spinal fusions in Atlantic salmon (Salmo salar) has demonstrated shape alterations of vertebral body endplates, a reduced intervertebral space, and replacement of intervertebral cells by ectopic bone. However, the significance of the notochord during the fusion process has not been addressed. We have therefore investigated structural and cellular events in the notochord during the development of vertebral fusions. In order to induce vertebral fusions, Atlantic salmon were exposed to elevated temperatures from fertilization until they attained a size of 15g. Based on results from radiography, intermediate and terminal stages of the fusion process were investigated by immunohistochemistry and real-time quantitative polymerase chain reaction. Examination of structural extracellular matrix proteins such as Perlecan, Aggrecan, Elastin, and Laminin revealed reduced activity and reorganization at early stages in the pathology. Staining for elastic fibers visualized a thinner elastic membrane surrounding the notochord of developing fusions, and immunohistochemistry for Perlecan showed that the notochordal sheath was stretched during fusion. These findings in the outer notochord correlated with the loss of Aggrecan- and Substance-P-positive signals and the further loss of vacuoles from the chordocytes in the central notochord. At more progressed stages of fusion, chordocytes condensed, and the expression of Aggrecan and Substance P reappeared. The hyperdense regions seem to be of importance for the formation of notochordal tissue into bone. Thus, the remodeling of notochord integrity by reduced elasticity, structural alterations, and cellular changes is probably involved in the development of vertebral fusions.
Ohana, Nissim; Benharroch, Daniel; Sheinis, Dimitri
2018-04-13
A 26-year-old man, who was paraplegic for 6 years due to a motor vehicle accident, presented to the authors' clinic following his incapacity to withstand a sitting posture, the frequent sensation of "clicks" in his back, and a complaint of back pain while in his wheelchair. On imaging, his dorsal spine showed a complete arthrodesis of the primarily fused vertebrae. However, distal to this segment, a Charcot spinal arthropathy with subluxation of T12-L1 was evident. Repair of this complex, uncommon, late complication of his paraplegia by the frequently used fusion techniques was shown to be inappropriate. A novel and elaborate surgical procedure is presented by which a complete fusion of the affected spine was secured. A left retrodiaphragmatic approach was used. Complete corpectomy of both the T-12 and L-1 vertebrae to the preserved endplates was performed. Most of the patient's fibula was resected and shaped for engrafting. The segment of the fibula was introduced into a mesh cage, before its intramedullary implantation into the T-12 and L-1 vertebrae. This 2-step procedure combined the hybrid use of a fibular autograft and an expandable mesh cage, incorporated one into the other, in an innovative intramedullary position. This intervention allowed the patient to resume his former condition as an extremely physically active patient with paraplegia. Nine years later, an asymptomatic early-stage Charcot spine was found at L5-S1, but no treatment is planned at this point.
Rapp, Martin; Ley, Charles J; Hansson, Kerstin; Sjöström, Lennart
2017-03-20
To describe postoperative computed tomography (CT) and magnetic resonance imaging (MRI) findings in dogs with degenerative lumbosacral stenosis (DLSS) treated by dorsal laminectomy and partial discectomy. Prospective clinical case study of dogs diagnosed with and treated for DLSS. Surgical and clinical findings were described. Computed tomography and low field MRI findings pre- and postoperatively were described and graded. Clinical, CT and MRI examinations were performed four to 18 months after surgery. Eleven of 13 dogs were clinically improved and two dogs had unchanged clinical status postoperatively despite imaging signs of neural compression. Vacuum phenomenon, spondylosis, sclerosis of the seventh lumbar (L7) and first sacral (S1) vertebrae endplates and lumbosacral intervertebral joint osteoarthritis became more frequent in postoperative CT images. Postoperative MRI showed mild disc extrusions in five cases, and in all cases contrast enhancing non-discal tissue was present. All cases showed contrast enhancement of the L7 spinal nerves both pre- and postoperatively and seven had contrast enhancement of the lumbosacral intervertebral joints and paraspinal tissue postoperatively. Articular process fractures or fissures were noted in four dogs. The study indicates that imaging signs of neural compression are common after DLSS surgery, even in dogs that have clinical improvement. Contrast enhancement of spinal nerves and soft tissues around the region of disc herniation is common both pre- and postoperatively and thus are unreliable criteria for identifying complications of the DLSS surgery.
Henderson, A L; Hecht, S; Millis, D L
2015-10-01
To investigate whether dogs with degenerative lumbosacral stenosis have decreased lumbar paraspinal muscle transverse area and symmetry compared with control dogs. Retrospective cross-sectional study comparing muscles in transverse T2-weighted magnetic resonance images for nine dogs with and nine dogs without degenerative -lumbosacral stenosis. Mean transverse area was measured for the lumbar multifidus and sacrocaudalis dorsalis lateralis muscles bilaterally and the L7 vertebral body at the level of the caudal endplate. Transverse areas of both muscle groups relative to L7 and asymmetry indices were compared between study populations using independent t tests. Mean muscle-to-L7 transverse area ratios were significantly smaller in the degenerative lumbosacral stenosis group compared with those in the control group in both lumbar multifidus (0·84 ±0·26 versus 1·09 ±0·25; P=0·027) and sacrocaudalis dorsalis lateralis (0·5 ±0·15 versus 0·68 ±0·12; P=0·005) muscles. Mean asymmetry indices were higher for both muscles in the group with degenerative lumbosacral stenosis than in the control group, but highly variable and the difference was not statistically significant. These findings suggest that dogs with degenerative lumbosacral stenosis have decreased lumbar paraspinal muscle mass that may be a cause or consequence of the -syndrome. Understanding altered paraspinal muscle characteristics may improve understanding of the -pathophysiology and management options for degenerative lumbosacral stenosis. © 2015 British Small Animal Veterinary Association.
Ozsoy, Kerem Mazhar; Oktay, Kadir; Gezercan, Yurdal; Cetinalp, Nuri Eralp; Okten, Ali Ihsan; Erman, Tahsin
2018-05-04
The management of thoracolumbar burst fractures without neurological symptoms remains controversial. Certain authors have suggested that vertebroplasty and kyphoplasty are contraindicated in patients with burst fractures. However, we performed vertebroplasty to treat intractable pain, reduce surgical risk and achieve early mobilization. Twelve patients older than 65 years of age with thoracolumbar fractures without neurological deficits underwent vertebroplasty. In all fractures, the anterior and middle columns of the vertebrae were affected, and the canal was mildly compressed. To assess subjects' clinical symptoms and the effects of the procedure, the patients' mobility and pain were assessed prior to the procedure and at 1 day and 3 months following the procedure. Improvements in pain and mobility were observed immediately following vertebroplasty in all patients. These results persisted for 3 months. There were significant improvements at 1 day and 3 months after vertebroplasty, specifically pain was reduced by at least 4 levels at 3 months. No comorbidities were noted. However, tomography revealed evidence of polymethylmethacrylate leakage through the endplate fracture site into the disc space or the paravertebral space in 4 vertebrae and minimal intracanal leakage through the fracture tract in 1 patient. Although vertebroplasty is assumed to be contraindicated in osteoporotic thoracolumbar fractures with posterior body involved, we successfully used this procedure to safely treat such fractures without introducing neurological deficits. Percutaneous vertebroplasty may be an alternative method of treating thoracolumbar burst fractures that avoids the complications of major surgical procedures and achieves early mobilization and pain relief.
Brayda-Bruno, Marco; Viganò, Marco; Cauci, Sabina; Vitale, Jacopo A; de Girolamo, Laura; De Luca, Paola; Lombardi, Giovanni; Banfi, Giuseppe; Colombini, Alessandra
2017-08-01
To evaluate plasma vitamin D and cross-linked C-telopeptides of type I (CTx-I) and type II (CTx-II) collagen concentrations in males with lumbar intervertebral disc degeneration (IVD) compared to healthy controls. Improved knowledge might suggest to optimize the vitamin D status of IVD patients and contribute to clarify mechanisms of cartilage degradation. 79 Italian males with lumbar IVD assessed by Magnetic Resonance Imaging (MRI) and 79 age, sex and BMI-matched healthy controls were enrolled. Plasma 25hydroxyvitamin D (25(OH)D), CTx-I and CTx-II were measured by immunoassays. Circannual seasonality, correlation between biomarkers concentrations and clinical variables were assessed. Overall subjects 25(OH)D and CTx-II showed month rhythmicity with acrophase in August/September and October/November, and nadir in February/March and April/May, respectively. An inverse correlation between 25(OH)D and CTx-I, and a direct correlation between CTx-II and CTx-I were observed. IVD patients, particularly with osteochondrosis, showed higher CTx-II than healthy controls. Month of sampling may affect plasma 25(OH)D and CTx-II concentrations. The correlation between CTx-I and CTx-II suggests an interplay between the osteo-cartilaginous endplate and the fibro-cartilaginous disc. The results of this study highlighted that osteochondrosis associates with increased cartilaginous catabolism. Vitamin D supplementation seems more necessary in winter for lumbar IVD patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Askar, Ibrahím; Sabuncuoglu, Bízden Tavíl
2002-01-01
Neurorraphy, conventional nerve grafting technique, and artificial nerve conduits are not enough for repair in severe injuries of peripheral nerves, especially when there is separation of motor nerve from muscle tissue. In these nerve injuries, reinnervation is indicated for neurotization. The distal end of a peripheral nerve is divided into fascicles and implanted into the aneural zone of target muscle tissue. It is not known how deeply fascicles should be implanted into muscle tissue. A comparative study of superficial and deep implantation of separated motor nerve into muscle tissue is presented in the gastrocnemius muscle of rabbits. In this experimental study, 30 white New Zealand rabbits were used and divided into 3 groups of 10 rabbits each. In the first group (controls, group I), only surgical exposure of the gastrocnemius muscle and motor nerve (tibial nerve) was done without any injury to nerves. In the superficial implantation group (group II), tibial nerves were separated and divided into their own fascicles. These fascicles were implanted superficially into the lateral head of gastrocnemius muscle-aneural zone. In the deep implantation group (group III), the tibial nerves were separated and divided into their own fascicles. These fascicles were implanted around the center of the muscle mass, into the lateral head of the gastrocnemius muscle-aneural zone. Six months later, histopathological changes and functional recovery of the gastrocnemius muscle were investigated. Both experimental groups had less muscular weight than in the control group. It was found that functional recovery was achieved in both experimental groups, and was better in the superficial implantation group than the deep implantation group. EMG recordings revealed that polyphasic and late potentials were frequently seen in both experimental groups. Degeneration and regeneration of myofibrils were observed in both experimental groups. New motor end-plates were formed in a scattered manner in both experimental groups. However, they were more dense in the superficial implantation group than the deep implantation group. It was concluded that superficial implantation has a more powerful contractile capacity than that of deep implantation. We believe that this might arise from the high activity of glycolytic enzymes in peripheral muscle fibers of gastrocnemius muscle, decrease in insufficient intramuscular guidance apparatus, and intramuscular microneuroma formation at the insufficient neuromuscular junction since the motor nerve had less route to muscle fibers. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.
2011-03-01
Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in proximity to the fiber-tip. Preliminary measurements on cadaveric canine intervertebral discs indicated significant reduction of scattering constituents and possible diminishment of water content after percutaneous laser disc ablation (PLDA). This fiber-needle based sensing configuration may be feasible for integrating the evaluation of calcification and water content into the work-flow of holmium:YAG laser disc ablation for pre-operative in-line detection and post-operative evaluation of therapeutic interventions regarding the chondrodystrophic disc.
Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations.
Guergueltcheva, Velina; Müller, Juliane S; Dusl, Marina; Senderek, Jan; Oldfors, Anders; Lindbergh, Christopher; Maxwell, Susan; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres; Vilchez, Juan J; Muelas, Nuria; Kirschner, Janbernd; Nafissi, Shahriar; Kariminejad, Ariana; Nilipour, Yalda; Bozorgmehr, Bita; Najmabadi, Hossein; Rodolico, Carmelo; Sieb, Jörn P; Schlotter, Beate; Schoser, Benedikt; Herrmann, Ralf; Voit, Thomas; Steinlein, Ortrud K; Najafi, Abdolhamid; Urtizberea, Andoni; Soler, Doriette M; Muntoni, Francesco; Hanna, Michael G; Chaouch, Amina; Straub, Volker; Bushby, Kate; Palace, Jacqueline; Beeson, David; Abicht, Angela; Lochmüller, Hanns
2012-05-01
Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of inherited disorders of the neuromuscular junction. A difficult to diagnose subgroup of CMS is characterised by proximal muscle weakness and fatigue while ocular and facial involvement is only minimal. DOK7 mutations have been identified as causing the disorder in about half of the cases. More recently, using classical positional cloning, we have identified mutations in a previously unrecognised CMS gene, GFPT1, in a series of DOK7-negative cases. However, detailed description of clinical features of GFPT1 patients has not been reported yet. Here we describe the clinical picture of 24 limb-girdle CMS (LG-CMS) patients and pathological findings of 18 of them, all carrying GFPT1 mutations. Additional patients with CMS, but without tubular aggregates, and patients with non-fatigable weakness with tubular aggregates were also screened. In most patients with GFPT1 mutations, onset of the disease occurs in the first decade of life with characteristic limb-girdle weakness and fatigue. A common feature was beneficial and sustained response to acetylcholinesterase inhibitor treatment. Most of the patients who had a muscle biopsy showed tubular aggregates in myofibers. Analysis of endplate morphology in one of the patients revealed unspecific abnormalities. Our study delineates the phenotype of CMS associated with GFPT1 mutations and expands the understanding of neuromuscular junction disorders. As tubular aggregates in context of a neuromuscular transmission defect appear to be highly indicative, we suggest calling this condition congenital myasthenic syndrome with tubular aggregates (CMS-TA).
Chen, Jiao-Xiang; Xu, Dao-Liang; Sheng, Sun-Ren; Goswami, Amit; Xuan, Jun; Jin, Hai-Ming; Chen, Jian; Chen, Yu; Zheng, Zeng-Ming; Chen, Xi-Bang; Wang, Xiang-Yang
2016-06-01
Our aim was to evaluate the results of short-segment pedicle instrumentation with screw insertion in the fracture level and find factors predicting kyphosis recurrence in thoracolumbar burst fractures. We retrospectively analysed 122 patients with thoracolumbar burst fracture who were divided into two groups: kyphosis recurrence and no kyphosis recurrence. Pre-operative radiographic data comprising Cobb angle (CA), regional angle, anterior vertebra height (AVH), upper intervertebral angle, vertebral wedge angle (VWA), pre-anteroposterior A/P approach, superior endplate fracture, load-sharing classification (LSC) score and clinical data including age, visual analogue scale (VAS) score, thoracolumbar injury classification and severity score were compared between groups. T test, Pearson's chi-square and multivariate logistic regression were calculated for variables. CA, VWA and AVH were significantly corrected after surgery. CA changed from 23.7 to 3.0 (p <0.001), VWA from 38.7 to 9.6 (p <0.001) and AVH from 48.8 % to 91.2 % (p <0.001). These parameters were well maintained during the follow-up period with a mild, tolerant loss of correction. Neurological function and pain were significantly improved without deterioration. Age, pre-A/P and pre-AVH < 50 % influenced kyphosis recurrence (p = 0.032, 0.026, 0.011, respectively). Short-segment pedicle instrumentation including the fractured vertebra was effective in treating thoracolumbar burst fractures. The loss of correction at follow-up after implant removal was associated with age, A/P ratio and anterior vertebral height < 50 %.
Fluid flow and convective transport of solutes within the intervertebral disc.
Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P
2004-02-01
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.
Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B.; Li, Guoan; Cha, Thomas D.
2017-01-01
While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine. PMID:28334358
Shrot, S; Sayah, A; Berkowitz, F
2017-07-01
To evaluate whether various patterns of bone marrow oedema could be used to discriminate between infection and degenerative change. Seventy patients with imaging features suspicious for discitis and available clinical follow-up were blindly reviewed for vertebral marrow oedema on sagittal short-tau inversion recovery (STIR) images according to the following patterns: I, vertebra oedema is adjacent to the intervertebral space and sharply-marginated; II, vertebral oedema is adjacent to the intervertebral space but not sharply marginated from normal marrow or involves the entire vertebral body; and III, vertebral oedema is distant from the endplate with intervening hypointense marrow signal. Of 45 patients with a clinical diagnosis of discitis, pattern II was the most common oedema pattern (64%). Approximately 20% and 9% of discitis patients showed patterns I and III, respectively. In patients with degenerative changes, 44% patients showed pattern I, 32% showed pattern II, and 24% showed pattern III. Pattern II had a sensitivity, specificity, and positive predictive value of 0.64, 0.68, and 0.78 for diagnosing spine infection, respectively. Although bone marrow oedema in infective discitis most often extends from the disc space and has indistinct margins, the oedema may also have sharp margins or be remote from the involved intervertebral space. Bone marrow oedema patterns of infective discitis overlap with those of degenerative disease and are not sufficiently reliable to exclude infection in cases with magnetic resonance imaging findings suggestive of discitis. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McArdle, J.J.; Choi, J.J.
1989-02-09
Studies of inbred mice indicate that heredity determines the behavioral response to CNS depressants. For example, LS mice lose their righting reflex at blood levels of E having no effect on this reflex of SS mice. In order to determine if such differential sensitivity extends to the effects of depressants known to alter the mean open time (tau) of the ion channel activated by the nicotinic acetylcholine receptor (AR), we used an extracellular electrode to record miniature end-plate currents (23 C) from the triangularis sterni muscle of adult male LS and SS mice. The average decay time constant (tau) ofmore » 70 currents was calculated before, during and after drug exposure. Tau was the same for LS and SS mice (1.41 {plus minus} 0.03 mS and 1.47 {plus minus} 0.02 mS, respectively) prior to treatment and was reversible prolonged by E and shortened by F as expected. However, tau of SS mice was more responsive. For example, 25 mM of E increased tau by 12.9% and 3.8% in SS and LS mice, respectively. Likewise, the decrease of tau in response to 3 mM F was 18.5% and 9.2%. The net result was that the curve relating tau for LS mice to drug concentration was to the right of the for SS mice. These data suggest that the sensitivity of the peripheral AR to CNS depressants can be genetically controlled.« less
RF structure design of the China Material Irradiation Facility RFQ
NASA Astrophysics Data System (ADS)
Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan
2017-10-01
The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.
Hernández-Morato, Ignacio; Berdugo-Vega, Gabriel; Sañudo, Jose R; McHanwell, Stephen; Vázquez, Teresa; Valderrama-Canales, Francisco J; Pascual-Font, Arán
2014-05-01
Changes in motoneurons innervating laryngeal muscles after section and regeneration of the recurrent laryngeal nerve (RLN) are far from being understood. Here, we report the somatotopic changes within the nucleus ambiguus (Amb) after the nerve injury and relates it to the resulting laryngeal fold impairment. The left RLN of each animal was transected and the stumps were glued together using surgical fibrin glue. After several survival periods (1, 2, 4, 8, 12, 16 weeks; at least six rats at each time point) the posterior cricoarytenoid (PCA) and thyroarytenoid (TA) muscles were injected with fluorescent-conjugated cholera toxin and the motility of the vocal folds evaluated. After section and subsequent repair of the RLN, no movement of the vocal folds could be detected at any of the survival times studied and the somatotopy and the number of labeled motoneurons changed. From 4 wpi award, the somatotopy was significantly disorganized, with the PCA motoneurons being located rostrally relative to their normal location. A rostrocaudal overlap between the two pools of motoneurons supplying the PCA and TA muscles was observed from 2 wpi onwards. Hardly any labeled neurons were found in the contralateral Amb in any of the experimental groups. An injury of the RLN leads to a reinnervation of the denervated motor endplates of PCA and TA. However, misdirected axons sprout and regrowth from the proximal stump to the larynx. As a result, misplaced innervation of muscles results in a lack of functional recovery of the laryngeal folds movement following a RLN injury. Copyright © 2014 Wiley Periodicals, Inc.
Nishizawa, Tomie; Tamaki, Hiroyuki; Kasuga, Norikatsu; Takekura, Hiroaki
2003-01-01
We evaluated the degeneration and regeneration of neuromuscular junctions (NMJs) on the extensor digitorum longus muscle of Fischer 344 rats between 4 h and 3 weeks after bupivacaine hydrochloride (BPVC) injection, which induces muscle fiber necrosis, using histochemical staining by acetylcholine esterase (AchE)-silver and electron microscopy. Degeneration of muscle fibers and NMJs was observed 4 h after BPVC injection. One week after BPVC injection, some terminal axons were almost completely retracted, and the level of basal lamina-associated AchE in some NMJ regions had gradually disappeared. At that time, the depression contained a few, mostly pit-like or elongated oval invaginations: the incipient junctional folds and some NMJs did not have any secondary junctional fold. By 2 weeks after the BPVC injection, secondary junctional folds began to develop: however, the number of secondary junctional folds was clearly less than that in normal NMJs. At 3 weeks when regeneration of muscle fibers was well advanced, the staining for AchE at the end-plates became stronger and better-defined. The volume density of mitochondria in the terminal area of the terminal significantly decreased upon BPVC-induced destruction of the NMJ, and the density reached the lowest value 24 h after BPVC injection. Significant changes in the ultrastructural features of the architecture of NMJs occurred in skeletal muscle fibers damaged by BPVC during both the degeneration and regeneration processes. The changes in the ultrastructural and morphological features of the NMJ architecture during the regeneration of degenerated muscle fibers resembled those that occur during the differentiation of normal muscle fibers.
Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D
2017-06-01
While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.
Morphometric analysis of the working zone for endoscopic lumbar discectomy.
Min, Jun-Hong; Kang, Shin-Hyuk; Lee, Jang-Bo; Cho, Tai-Hyoung; Suh, Jung-Keun; Rhyu, Im-Joo
2005-04-01
Our study's purpose was to analyze the working zone for the current practice of endoscopic discectomy at the lateral exit zone of the intervertebral foramen (IVF) and to define a safe point for clinical practice. One hundred eighty-six nerve roots of the lumbar IVFs of cadaveric spines were studied. Upon lateral inspection, we measured the distance from the nerve root to the most dorsolateral margin of the disc and to the lateral edge of the superior articular process of the vertebra below at the plane of the superior endplate of the vertebra below. The angle between the root and the plane of the disc was also measured. The results showed that the mean distance from the nerve root to the most dorsolateral margin of the disc was 3.4 +/- 2.7 mm (range 0.0-10.8 mm), the mean distance from the nerve root to the lateral edge of the superior articular process of the vertebra below was 11.6 +/- 4.6 mm (range 4.1-24.3 mm), and the mean angle between the nerve root and the plane of the disc was 79.1 degrees +/- 7.6 degrees (range 56.0-90.0 degrees ). The values of the base of the working zone have a wide distribution. Blind puncture of annulus by the working cannula or obturator may be dangerous. The safer procedure would be the direct viewing of the annulus by endoscopy before annulotomy; the working cannula should be inserted into the foramen as close as possible to the facet joint.
Force characteristics of a modular squeeze mode magneto-rheological element
NASA Astrophysics Data System (ADS)
Craft, Michael J.; Ahmadian, Mehdi; Farjoud, Alireza; Burke, William C. T.; Nagode, Clement
2010-04-01
While few publications exist on the behavior of Magneto-Rheological (MR) fluid in squeeze mode, devices using squeeze mode may take advantage of the very large range of adjustment that squeeze mode offers. Based on results obtained through modeling and testing MR fluid in a squeeze mode rheometer, a novel compression-adjustable element has been fabricated and tested, which utilizes MR fluid in squeeze mode. While shear and valve modes have been used exclusively for MR fluid damping applications, recent modeling and testing with MR fluid has revealed that much larger adjustment ranges are achievable in squeeze mode. Utilizing squeeze mode, a compression element, or MR Pouch, was developed consisting of a flexible cylindrical membrane with each end fastened to a steel endplate (pole plates). The silicone rubber pouch material was molded in the required shape for use in the squeeze mode rheometer. This flexible membrane allows for the complete self-containment of MR fluid and because the pouch compensates for volume changes, there is no need for dynamic seals and associated surface finish treatments on the steel components. An electromagnet incorporated in the rheometer passes an adjustable magnetic field axially through the pole plates and MR fluid. Test results show the device was capable of varying the compression force from less than 8lbs to greater than 1000lbs when the pole plates were 0.050" apart. Simulations were compared against test data with good correlation. Possible applications of this technology include primary suspension components, auxiliary suspension bump stops, and other vibration isolation components, as MR Pouches are scalable depending on the application and force requirements.
Distribution of cholinesterases in insects*
Booth, G. M.; Lee, An-Horng
1971-01-01
The study of toxicology and other related fields has been largely based on in vitro techniques. These methods have provided quantitative information on the effects of inhibitors on enzymes, but none on the localized effects of inhibitors on selected sites of action within the animal. Histochemical study of frozen sections does provide data on the site of action of toxicants. The utility of histochemistry in conjunction with in vitro methods is discussed. The substrates acetylthiocholine and phenyl thioacetate were utilized in demonstrating cholinesterase. Neither substrate penetrated well into freshly dissected nerve cord preparations, but both compounds were hydrolysed by sectioned tissue. The leaving group of phenyl thioacetate was demonstrated to be benzenethiol. In general, acetylthiocholine was hydrolysed slightly more rapidly by insect cholinesterases. A unique cholinesterase was found in motor end-plates of cricket muscle, which hydrolyses acetylthiocholine and which was inhibited by physostigmine. No other insect muscle preparation showed this activity. Topical application of insecticides showed that a vital site of action in flies is the peripheral area of the thoracic ganglia and that in crickets the brain and nerve cord are involved at knock-down. Kinetic data indicate that acetylthiocholine has a greater affinity than does phenyl thioacetate for a variety of enzyme sources. Ultrastructural evidence shows that cholinesterases that hydrolyse acetylthiocholine are membrane-bound. Phenyl thioacetate was found to be useful as a model in designing new insecticides. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 13Fig. 14Fig. 15Fig. 16Fig. 9Fig. 10Fig. 11Fig. 12Fig. 1Fig. 2Fig. 3Fig. 4Fig. 17Fig. 18Fig. 19 PMID:5315359
Effects of hindlimb unloading on neuromuscular development of neonatal rats
NASA Technical Reports Server (NTRS)
Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.
2000-01-01
We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.
Kida, Kazunobu; Tadokoro, Nobuaki; Kumon, Masashi; Ikeuchi, Masahiko; Kawazoe, Tateo; Tani, Toshikazu
2014-03-01
To determine if cantilever transforaminal lumbar interbody fusion (C-TLIF) using the crescent-shaped titanium interbody spacer (IBS) favors acquisition of segmental and lumbar lordosis even for degenerative spondylolisthesis (DS) on a long-term basis. We analyzed 23 consecutive patients who underwent C-TLIF with pedicle screw instrumentations fixed with compression for a single-level DS. Measurements on the lateral radiographs taken preoperatively, 2 weeks postoperatively and at final follow-up included disc angle (DA), segmental angle (SA), lumbar lordosis (LL), disc height (%DH) and slip rate (%slip). There was a good functional recovery with 100 % fusion rate at the mean follow-up of 62 months. Segmental lordosis (DA and SA) and %DH initially increased, but subsequently decreased with the subsidence of the interbody spacer, resulting in a significant increase (p = 0.046) only in SA from 13.2° ± 5.5° preoperatively to 14.7° ± 6.4° at the final follow-up. Changes of LL and %slip were more consistent without correction loss finally showing an increase of LL by 3.6° (p = 0.005) and a slip reduction by 6.7 % (p < 0.001). Despite the inherent limitation of placing the IBS against the anterior endplate of the upper vertebra in the presence of DS, the C-TLIF helped significantly restore segmental as well as lumbar lordosis on a long-term basis, which would be of benefit in preventing hypolordosis-induced back pain and the adjacent level disc disease.
Pathophysiology, diagnosis, and treatment of discogenic low back pain
Peng, Bao-Gan
2013-01-01
Discogenic low back pain is a serious medical and social problem, and accounts for 26%-42% of the patients with chronic low back pain. Recent studies found that the pathologic features of discs obtained from the patients with discogenic low back pain were the formation of the zones of vascularized granulation tissue, with extensive innervation in fissures extending from the outer part of the annulus into the nucleus pulposus. Studies suggested that the degeneration of the painful disc might originate from the injury and subsequent repair of annulus fibrosus. Growth factors such as basic fibroblast growth factor, transforming growth factor β1, and connective tissue growth factor, macrophages and mast cells might play a key role in the repair of the injured annulus fibrosus and subsequent disc degeneration. Although there exist controversies about the role of discography as a diagnostic test, provocation discography still is the only available means by which to identify a painful disc. A recent study has classified discogenic low back pain into two types that were annular disruption-induced low back pain and internal endplate disruption-induced low back pain, which have been fully supported by clinical and theoretical bases. Current treatment options for discogenic back pain range from medicinal anti-inflammation strategy to invasive procedures including spine fusion and recently spinal arthroplasty. However, these treatments are limited to relieving symptoms, with no attempt to restore the disc’s structure. Recently, there has been a growing interest in developing strategies that aim to repair or regenerate the degenerated disc biologically. PMID:23610750
Effects of Axial Torsion on Disc Height Distribution: an In Vivo Study
Espinoza Orías, Alejandro A.; Mammoser, Nicole M.; Triano, John J.; An, Howard S.; Andersson, Gunnar B.J.; Inoue, Nozomu
2016-01-01
Objectives Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positons on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. Methods Eighty-one volunteers were CT-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each ‘disc’ set as the reference surface and separated into five anatomical zones: four peripheral and one central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions, and were compared against each other with ANOVA, with significance set at p < 0.05. Results Mean neutral disc height was 7.32 (1.59) mm. With 50° rotation, a small but significant increase to 7.44 (1.52) mm (p < 0.0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (p < 0.0001), while the left, anterior and central decreased. Conclusions This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown. PMID:27059249
Teriakidis, Adrianna; Willshaw, David J; Ribchester, Richard R
2012-10-01
During development, neurons form supernumerary synapses, most of which are selectively pruned leading to stereotyped patterns of innervation. During the development of skeletal muscle innervation, or its regeneration after nerve injury, each muscle fiber is transiently innervated by multiple motor axon branches but eventually by a single branch. The selective elimination of all but one branch is the result of competition between the converging arbors. It is thought that motor neurons initially innervate muscle fibers randomly, but that axon branches from the same neuron (sibling branches) do not converge to innervate the same muscle fiber. However, random innervation would result in many neonatal endplates that are co-innervated by sibling branches. To investigate whether this occurs we examined neonatal levator auris longus (LAL) and 4th deep lumbrical (4DL) muscles, as well as adult reinnervated deep lumbrical muscles (1-4) in transgenic mice expressing yellow fluorescent protein (YFP) as a reporter. We provide direct evidence of convergence of sibling neurites within single fluorescent motor units, both during development and during regeneration after nerve crush. The incidence of sibling neurite convergence was 40% lower in regeneration and at least 75% lower during development than expected by chance. Therefore, there must be a mechanism that decreases the probability of its occurrence. As sibling neurite convergence is not seen in normal adults, or at later timepoints in regeneration, synapse elimination must also remove convergent synaptic inputs derived from the same motor neuron. Mechanistic theories of synaptic competition should now accommodate this form of isoaxonal plasticity. Copyright © 2012 Wiley Periodicals, Inc.
Mutsaers, Chantal A.; Thomson, Derek; Hamilton, Gillian; Parson, Simon H.; Gillingwater, Thomas H.
2012-01-01
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA. PMID:23285108
Shigematsu, Hideki; Cheung, Jason Pui Yin; Bruzzone, Mauro; Matsumori, Hiroaki; Mak, Kin-Cheung; Samartzis, Dino; Luk, Keith Dip Kei
2017-05-01
Surgery for adolescent idiopathic scoliosis (AIS) is only complete after achieving fusion to maintain the correction obtained intraoperatively. The instrumented or fused segments can be referred to as the "fusion mass". In patients with AIS, the ideal fusion mass strategy has been established based on fulcrum-bending radiographs for main thoracic curves. Ideally, the fusion mass should achieve parallel endplates of the upper and lower instrumented vertebra and correct any "shift" for truncal balance. Distal adding-on is an important element to consider in AIS surgery. This phenomenon represents a progressive increase in the number of vertebrae included distally in the primary curvature and it should be avoided as it is associated with unsatisfactory cosmesis and an increased risk of revision surgery. However, it remains unknown whether any fusion mass shift, or shift in the fusion mass or instrumented segments, affects global spinal balance and distal adding-on after curve correction surgery in patients with AIS. (1) To investigate the relationship among postoperative fusion mass shift, global balance, and distal adding-on phenomenon in patients with AIS; and (2) to identify a cutoff value of fusion mass shift that will lead to distal adding-on. This was a retrospective study of patients with AIS from a single institution. Between 2006 and 2011 we performed 69 selective thoracic fusions for patients with main thoracic AIS. All patients were evaluated preoperatively and at 2 years postoperatively. The Cobb angle between the cranial and caudal endplates of the fusion mass and the coronal shift between them, which was defined as "fusion mass shift", were measured. Patients with a fusion mass Cobb angle greater than 20° were excluded to specifically determine the effect of fusion mass shift on distal adding-on phenomenon. Fusion mass shift was empirically set as 20 mm for analysis. Therefore, of the 69 patients who underwent selective thoracic fusion, only 52 with a fusion mass Cobb angle of 20° or less were recruited for study. We defined patients with a fusion mass shift of 20 mm or less as the balanced group and those with a fusion mass shift greater than 20 mm as the unbalanced group. A receiver operating characteristic (ROC) curve was used to determine the cutoff point of fusion mass shift for adding-on. Of the 52 patients studied, fusion mass shift (> 20 mm) was noted in 11 (21%), and six of those patients had distal adding-on at final followup. Although global spinal balance did not differ significantly between patients with or without fusion mass shift, the occurrence of adding-on phenomenon was significantly higher in the unbalanced group (55% (six of 11 patients), odds ratio [OR], 8.6; 95% CI, 2-39; p < 0.002) than the balanced group (12% [five of 41 patients]). Based on the ROC curve analysis, a fusion mass shift more than 18 mm was observed as the cutoff point for distal adding-on phenomenon (area under the curve, 0.70; 95% CI, 0.5-0.9; likelihood ratio, 5.0; sensitivity, 0.64; specificity, 0.73; positive predictive value, 39% [seven of 18 patients]; negative predictive value, 88% [30 of 34 patients]; OR, 4.8; 95% CI, 1-20; p = 0.02). Our study illustrates the substantial utility of the fulcrum-bending radiograph in determining fusion levels that can avoid fusion mass shift; thereby, underlining its importance in designing personalized surgical strategies for patients with scoliosis. Preoperatively, determining fusion levels by fulcrum-bending radiographs to avoid residual fusion mass shift is imperative. Intraoperatively, any fusion mass shift should be corrected to avoid distal adding-on, reoperation, and elevated healthcare costs. Level II, prognostic study.
Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study
Elmasry, Shady; Asfour, Shihab; de Rivero Vaccari, Juan Pablo; Travascio, Francesco
2015-01-01
Tobacco smoking is associated with numerous pathological conditions. Compelling experimental evidence associates smoking to the degeneration of the intervertebral disc (IVD). In particular, it has been shown that nicotine down-regulates both the proliferation rate and glycosaminoglycan (GAG) biosynthesis of disc cells. Moreover, tobacco smoking causes the constriction of the vascular network surrounding the IVD, thus reducing the exchange of nutrients and anabolic agents from the blood vessels to the disc. It has been hypothesized that both nicotine presence in the IVD and the reduced solute exchange are responsible for the degeneration of the disc due to tobacco smoking, but their effects on tissue homeostasis have never been quantified. In this study, a previously presented computational model describing the homeostasis of the IVD was deployed to investigate the effects of impaired solute supply and nicotine-mediated down-regulation of cell proliferation and biosynthetic activity on the health of the disc. We found that the nicotine-mediated down-regulation of cell anabolism mostly affected the GAG concentration at the cartilage endplate, reducing it up to 65% of the value attained in normal physiological conditions. In contrast, the reduction of solutes exchange between blood vessels and disc tissue mostly affected the nucleus pulposus, whose cell density and GAG levels were reduced up to 50% of their normal physiological levels. The effectiveness of quitting smoking on the regeneration of a degenerated IVD was also investigated, and showed to have limited benefit on the health of the disc. A cell-based therapy in conjunction with smoke cessation provided significant improvements in disc health, suggesting that, besides quitting smoking, additional treatments should be implemented in the attempt to recover the health of an IVD degenerated by tobacco smoking. PMID:26301590
Congenital myasthenic syndromes due to mutations in ALG2 and ALG14.
Cossins, Judith; Belaya, Katsiaryna; Hicks, Debbie; Salih, Mustafa A; Finlayson, Sarah; Carboni, Nicola; Liu, Wei Wei; Maxwell, Susan; Zoltowska, Katarzyna; Farsani, Golara Torabi; Laval, Steven; Seidhamed, Mohammed Zain; Donnelly, Peter; Bentley, David; McGowan, Simon J; Müller, Juliane; Palace, Jacqueline; Lochmüller, Hanns; Beeson, David
2013-03-01
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.
Logan, Clare V; Cossins, Judith; Rodríguez Cruz, Pedro M; Parry, David A; Maxwell, Susan; Martínez-Martínez, Pilar; Riepsaame, Joey; Abdelhamed, Zakia A; Lake, Alice V R; Moran, Maria; Robb, Stephanie; Chow, Gabriel; Sewry, Caroline; Hopkins, Philip M; Sheridan, Eamonn; Jayawant, Sandeep; Palace, Jacqueline; Johnson, Colin A; Beeson, David
2015-12-03
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs(∗)71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.
2006-07-15
Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months inmore » plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.« less
Activity-dependent degeneration of axotomized neuromuscular synapses in WldS mice
Brown, R.; Hynes-Allen, A.; Swan, A.J.; Dissanayake, K.N.; Gillingwater, T.H.; Ribchester, R.R.
2015-01-01
Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (WldS) mutant mice. First, we maintained ex vivo FDB and DL nerve-muscle explants at 32 °C for up to 48 h. About 90% of fibers from WldS mice remained innervated, compared with about 36% in wild-type muscles at the 24-h checkpoint. Periodic high-frequency nerve stimulation (100 Hz: 1 s/100 s) reduced synaptic protection in WldS preparations by about 50%. This effect was abolished in reduced Ca2+ solutions. Next, we assayed FDB and DL innervation after 7 days of complete tetrodotoxin (TTX)-block of sciatic nerve conduction in vivo, followed by tibial nerve axotomy. Five days later, only about 9% of motor endplates remained innervated in the paralyzed muscles, compared with about 50% in 5 day-axotomized muscles from saline-control-treated WldS mice with no conditioning nerve block. Finally, we gave mice access to running wheels for up to 4 weeks prior to axotomy. Surprisingly, exercising WldS mice ad libitum for 4 weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity. PMID:25617654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, J.S.; Moon, D.H.; Shin, M.J.
1994-05-01
Solitary or a few spinal abnormalities on planar bone scan pose a dilemma in cancer patients. The purpose of this study was to evaluate the usefulness of spine SPECT imaging in differential diagnosis of malignant and benign lesion. Subjects were 54 adult patients with solitary or a few equivocal vertebral lesions on planar bone scan. Spine SPECT imaging was obtained by a triple head SPECT system (TRIAD, Trionix). The final diagnoses were based on data from biopsy, other imaging studies, or minimum 1 year of follow up. Two blind observers reviewed the planar image first, then both planar and SPECTmore » images. The uptake patterns on SPECT images were analyzed, and the diagnostic performance was evaluated by the ROC analysis. Thirty three lesions of 22 patients were malignant, and 60 lesions of 32 patients were benign. Common characteristic patterns of malignant lesions were focal or segmental hot uptake in the body, hot uptake in the body and pedicle, and cold defect with surrounding hot uptake in the vertebra. Whereas marginal protruding hot uptakes in endplate, and hot uptakes in facet joints were benign. The ROC analysis showed that SPECT improved the diagnostic performance (the area under the ROC curve of two observers for planar image 0.903 and 0.791, for the combination of planar and SPECT : 0.950 and 0.976). In conclusion, the uptake pattern recognition in spine SPECT provides useful information for differential diagnosis of malignant and benign lesions in vertebra. Spine SPECT is a valuable complement in cancer patients with inconclusive findings on planar bone scan.« less
Park, Jin Hoon; Kang, Dong-Ho; Lee, Moon Kyu; Yoo, Byoungwoo; Jung, Sang Ku; Hwang, Soo-Hyun; Kim, Jeoung Hee; Oh, Sunkyu; Lee, Eun Jung; Jeon, Sang Ryong; Roh, Sung Woo; Rhim, Seung Chul
2016-05-01
A retrospective cohort study. The aim of this study was to compare the anterior odontoid screw fixation (AOSF) with a guide tube or with a straight probe. AOSF associates with several complications, including malpositioning, fixation loss, and screw breakage. Screw pull-out from the C2 body is the most common complication. All consecutive patients with type II or rostral shallow type III odontoid fractures who underwent AOSFs during the study period were enrolled retrospectively. The guide-tube AOSF method followed the standard published method except C3 body and C2-3 disc annulus rimming was omitted to prevent disc injury; instead, the guide tube was anchored at the anterior inferior C2 vertebra corner. After 2 screw pull-outs, the guide-tube cohort was analyzed to identify the cause of instrument failure. Thereafter, the straight-probe method was developed. A guide tube was not used. A small pilot hole was made on the most anterior side of the inferior endplate, followed by insertion of a 2.5 mm straight probe through the C2 body. Non-union and instrument failure rates and screw-direction angles of the guide-tube and straight-probe groups were recorded. The guide-tube group (n = 13) had 2 screw pull-outs and 1 non-union. The straight-probe group (n = 8) had no complications and significantly larger screw-direction angles than the guide-tube group (60.5 ± 4.63 vs. 54.8 ± 3.82 degrees; P = 0.047). Straight-probe AOSF yielded larger direction angles without injuring bone and disc. Complications were absent. The procedure was easier than guide-tube AOSF and assured sufficient engagement, even in horizontal fracture orientation cases. 3.
Chance-type flexion-distraction injuries in the thoracolumbar spine: MR imaging characteristics.
Groves, Clare J; Cassar-Pullicino, Victor N; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W
2005-08-01
To evaluate retrospectively the magnetic resonance (MR) imaging features of Chance-type flexion-distraction injuries. The authors' institutional review board does not require its approval or patient informed consent for retrospective studies. Imaging data were reviewed retrospectively for 24 patients (15 male, nine female; mean age, 28 years; range, 9-71 years) who had sustained radiographically typical Chance-type flexion-distraction injuries. The posterior vertebral body height remained unchanged or was increased in these patients. Two radiologists recorded a variety of bone and soft-tissue abnormalities seen with MR imaging. Based on consensus, the documented findings were sequentially analyzed to determine their frequencies. Combined bone and soft-tissue injuries occurred in 23 (96%) of 24 patients, were more common than soft-tissue damage alone (one [4%] of 24 patients), and occurred primarily at the thoracolumbar junction. Contiguous vertebral injury was seen in 20 (83%) of 24 patients, usually in the form of anterosuperior vertebral endplate edema, while noncontiguous injury occurred in eight (33%) of 24 patients. Extensive subcutaneous and paraspinal muscle edema was seen in all patients and extended over several segments. Posterior osteoligamentous complex disruption also occurred in all patients. Horizontally oriented fractures of the posterior neural arches produced an MR imaging pattern that the authors call the sandwich sign, which consists of linear hemorrhage framed by marrow edema. This sign was seen in 12 (50%) of 24 patients. In seven (29%) of 24 patients, a fracture line extending from a damaged pedicle was seen to exit through the contralateral posterosuperior aspect of the vertebral body, with extension of the fracture fragments into the spinal canal. A spectrum of features is discernible with MR imaging in Chance-type injuries.
2013-01-01
Background Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers. Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI. Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points after gastrocnemius tenotomy (GA). Results ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-1ß mRNA levels. ES increased PGC-1α expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to ES, GA induced expression of genes related to oxidative phosphorylation. Conclusions Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle. Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally innervated muscle. PMID:23914941
Biomechanics of Thoracolumbar Burst and Chance-Type Fractures during Fall from Height
Ivancic, Paul C.
2014-01-01
Study Design In vitro biomechanical study. Objective To investigate the biomechanics of thoracolumbar burst and Chance-type fractures during fall from height. Methods Our model consisted of a three-vertebra human thoracolumbar specimen (n = 4) stabilized with muscle force replication and mounted within an impact dummy. Each specimen was subjected to a single fall from an average height of 2.1 m with average velocity at impact of 6.4 m/s. Biomechanical responses were determined using impact load data combined with high-speed movie analyses. Injuries to the middle vertebra of each spinal segment were evaluated using imaging and dissection. Results Average peak compressive forces occurred within 10 milliseconds of impact and reached 40.3 kN at the ground, 7.1 kN at the lower vertebra, and 3.6 kN at the upper vertebra. Subsequently, average peak flexion (55.0 degrees) and tensile forces (0.7 kN upper vertebra, 0.3 kN lower vertebra) occurred between 43.0 and 60.0 milliseconds. The middle vertebra of all specimens sustained pedicle and endplate fractures with comminution, bursting, and reduced height of its vertebral body. Chance-type fractures were observed consisting of a horizontal split fracture through the laminae and pedicles extending anteriorly through the vertebral body. Conclusions We hypothesize that the compression fractures of the pedicles and vertebral body together with burst fracture occurred at the time of peak spinal compression, 10 milliseconds. Subsequently, the onset of Chance-type fracture occurred at 20 milliseconds through the already fractured and weakened pedicles and vertebral body due to flexion-distraction and a forward shifting spinal axis of rotation. PMID:25083357
Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J
2016-02-01
Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (p<0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kalantar, Babak S; Hipp, John A; Reitman, Charles A; Dreiangel, Niv; Ben-Galim, Peleg
2010-10-01
The ability to detect damage to the intervertebral structures is critical in the management of patients after blunt trauma. A practical and inexpensive method to identify severe structural damage not clearly seen on computed tomography would be of benefit. The objective of this study was to assess whether ligamentous injury in the subaxial cervical spine can be reliably detected by analysis of lateral radiographs taken with and without axial traction. Twelve fresh, whole, postrigor-mortis cadavers were used for this study. Lateral cervical spine radiographs were obtained during the application of 0 N, 89 N, and 178 N of axial traction applied to the head. Progressive incremental sectioning of posterior structures was then performed at C4-C5 with traction imaging repeated after each intervention. Intervertebral distraction was analyzed using computer-assisted software. Almost imperceptible intervertebral separation was found when traction was applied to intact spines. In the subaxial cervical spine, the average posterior disc height consistently increased under traction in severely injured spines. The average disc height increase was 14% of the C4 upper endplate width, compared with an average of 2% in the noninjured spines. A change of more than 5% in posterior disc height under traction was above the 95% confidence interval for intact spines, with sensitivity of 83% and specificity of 80%. Applied force of 89 N (20 lb) was sufficient to demonstrate injury. The combination of assessing alignment and distraction under traction increased both the sensitivity and specificity to nearly 100%. This study supports further clinical investigations to determine whether low-level axial traction may be a useful adjunct for detecting unstable subaxial cervical spine injuries in an acute setting.
Therapeutic effects of dry needling in patients with upper trapezius myofascial trigger points
Abbaszadeh-Amirdehi, Maryam; Ansari, Noureddin Nakhostin; Naghdi, Soofia; Olyaei, Gholamreza; Nourbakhsh, Mohammad Reza
2017-01-01
Background Active myofascial trigger points (MTrPs) are major pain generators in myofascial pain syndrome. Dry needling (DN) is an effective method for the treatment of MTrPs. Objective To assess the immediate neurophysiological and clinical effects of DN in patients with upper trapezius MTrPs. Methods This was a prospective, clinical trial study of 20 patients with upper trapezius MTrPs and 20 healthy volunteers (matched for height, weight, body mass index and age), all of whom received one session of DN. Primary outcome measures were neuromuscular junction response (NMJR) and sympathetic skin response (SSR). Secondary outcomes were pain intensity (PI) and pressure pain threshold (PPT). Data were collected at baseline and immediately post-intervention. Results At baseline, SSR amplitude was higher in patients versus healthy volunteers (p<0.003). With respect to NMJR, a clinically abnormal increment and normal reduction was observed in patients and healthy volunteers, respectively. Moreover, PPT of patients was less than healthy volunteers (p<0.0001). After DN, SSR amplitude decreased significantly in patients (p<0.01), but did not change in healthy volunteers. A clinically important reduction in the NMJR of patients and increment in healthy volunteers was demonstrated after DN. PPT increased after DN in patients, but decreased in healthy volunteers (p<0.0001). PI improved after DN in patients (p<0.001). Conclusions The results of this study showed that one session of DN targeting active MTrPs appears to reduce hyperactivity of the sympathetic nervous system and irritability of the motor endplate. DN seems effective at improving symptoms and deactivating active MTrPs, although further research is needed. Trial registration number IRCT20130316128. PMID:27697768
Therapeutic effects of dry needling in patients with upper trapezius myofascial trigger points.
Abbaszadeh-Amirdehi, Maryam; Ansari, Noureddin Nakhostin; Naghdi, Soofia; Olyaei, Gholamreza; Nourbakhsh, Mohammad Reza
2017-04-01
Active myofascial trigger points (MTrPs) are major pain generators in myofascial pain syndrome. Dry needling (DN) is an effective method for the treatment of MTrPs. To assess the immediate neurophysiological and clinical effects of DN in patients with upper trapezius MTrPs. This was a prospective, clinical trial study of 20 patients with upper trapezius MTrPs and 20 healthy volunteers (matched for height, weight, body mass index and age), all of whom received one session of DN. Primary outcome measures were neuromuscular junction response (NMJR) and sympathetic skin response (SSR). Secondary outcomes were pain intensity (PI) and pressure pain threshold (PPT). Data were collected at baseline and immediately post-intervention. At baseline, SSR amplitude was higher in patients versus healthy volunteers (p<0.003). With respect to NMJR, a clinically abnormal increment and normal reduction was observed in patients and healthy volunteers, respectively. Moreover, PPT of patients was less than healthy volunteers (p<0.0001). After DN, SSR amplitude decreased significantly in patients (p<0.01), but did not change in healthy volunteers. A clinically important reduction in the NMJR of patients and increment in healthy volunteers was demonstrated after DN. PPT increased after DN in patients, but decreased in healthy volunteers (p<0.0001). PI improved after DN in patients (p<0.001). The results of this study showed that one session of DN targeting active MTrPs appears to reduce hyperactivity of the sympathetic nervous system and irritability of the motor endplate. DN seems effective at improving symptoms and deactivating active MTrPs, although further research is needed. IRCT20130316128. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Mesenchymal Stem Cell Levels of Human Spinal Tissues.
Harris, Liam; Vangsness, C Thomas
2018-05-01
Systematic review. The aim of this study was to investigate, quantify, compare, and compile the various mesenchymal stem cell (MSC) tissue sources within human spinal tissues to act as a compendium for clinical and research application. Recent years have seen a dramatic increase in academic and clinical understanding of human MSCs. Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta, and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. The PubMED, MEDLINE, EMBASE, and Cochrane databases were searched for articles relating to the harvest, characterization, isolation, and quantification of human MSCs from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. Human MSC levels varied widely between spinal tissues. Yields for intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500 to 61,875 cells/0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000 to 500,000 cells/g of tissue. Annulus fibrosus fluorescence activated cell sorting treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584 to 234,137 MSCs per gram of tissue. Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human MSCs. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of MSCs, and may prove comparable to that of bone marrow. 5.
Notochordal cells in the adult intervertebral disc: new perspective on an old question.
Risbud, Makarand V; Shapiro, Irving M
2011-01-01
The intervertebral disc is a tissue positioned between each of the vertebrae that accommodates applied biomechanical forces to the spine. The central compartment of the disc contains the nucleus pulposus (NP) which is enclosed by the annulus fibrosus and the endplate cartilage.The NP is derived from the notochord, a rod-like structure of mesodermal origin. Development of the notochord is tightly regulated by interactive transcription factors and target genes. Since a number of these molecules are unique they have be used for cell lineage and fate mapping studies of tissues of the intervertebral disc. These studies have shown that in a number of species including human, NP tissue retains notochordal cells throughout life. In the adult NP, there are present both large and small notochordal cells, as well as a progenitor cell population which can differentiate along the mesengenic pathway. Since tissue renewal in the intervertebral disc is dependent on the ability of these cells to commit to the NP lineage and undergo terminal differentiation, studies have been performed to assess which signaling pathways may regulate these activities. The notch signaling pathway is active in the intervertebral disc and is responsive to hypoxia, probably through HIF-1a. From a disease viewpoint, it is hypothesized that an oxemic shift, possibly mediated by alterations in the vascular supply to the tissues of the disc would be expected to lead to a failure in notochordal progenitor cell activation and a decrease in the number of differentiated cells. In turn, this would lead to decrements in function and enhancement of the effect of agents that are known to promote disc degeneration.
Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.
Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bhadra, Narendra; Foldes, Emily; Vrabec, Tina; Kilgore, Kevin; Bhadra, Niloy
2018-02-01
Objective. Application of kilohertz frequency alternating current (KHFAC) waveforms can result in nerve conduction block that is induced in less than a second. Conduction recovers within seconds when KHFAC is applied for about 5-10 min. This study investigated the effect of repeated and prolonged application of KHFAC on rat sciatic nerve with bipolar platinum electrodes. Approach. Varying durations of KHFAC at signal amplitudes for conduction block with intervals of no stimulus were studied. Nerve conduction was monitored by recording peak Gastrocnemius muscle force utilizing stimulation electrodes proximal (PS) and distal (DS) to a blocking electrode. The PS signal traveled through the block zone on the nerve, while the DS went directly to the motor end-plate junction. The PS/DS force ratio provided a measure of conduction patency of the nerve in the block zone. Main results. Conduction recovery times were found to be significantly affected by the cumulative duration of KHFAC application. Peak stimulated muscle force returned to pre-block levels immediately after cessation of KHFAC delivery when it was applied for less than about 15 min. They fell significantly but recovered to near pre-block levels for cumulative stimulus of 50 ± 20 min, for the tested On/Off times and frequencies. Conduction recovered in two phases, an initial fast one (60-80% recovery), followed by a slower phase. No permanent conduction block was seen at the end of the observation period during any experiment. Significance. This carry-over block effect may be exploited to provide continuous conduction block in peripheral nerves without continuous application of KHFAC.
Deng, Zhen; Wang, Huihao; Niu, Wenxin; Lan, Tianying; Wang, Kuan; Zhan, Hongsheng
2016-08-01
This study aims to develop and validate a three-dimensional finite element model of inferior cervical spinal segments C4-7of a healthy volunteer,and to provide a computational platform for investigating the biomechanical mechanism of treating cervical vertebra disease with Traditional Chinese Traumotology Manipulation(TCTM).A series of computed tomography(CT)images of C4-7segments were processed to establish the finite element model using softwares Mimics 17.0,Geromagic12.0,and Abaqus 6.13.A reference point(RP)was created on the endplate of C4 and coupled with all nodes of C4.All loads(±0.5,±1,±1.5and±2Nm)were added to the RP for the six simulations(flexion,extension,lateral bending and axial rotation).Then,the range of motion of each segment was calculated and compared with experimental measurements of in vitro studies.On the other hand,1Nm moment was loaded on the model to observe the main stress regions of the model in different status.We successfully established a detail model of inferior cervical spinal segments C4-7of a healthy volunteer with 591 459 elements and 121 446 nodes which contains the structure of the vertebra,intervertebral discs,ligaments and facet joints.The model showed an accordance result after the comparison with the in vitro studies in the six simulations.Moreover,the main stress region occurred on the model could reflect the main stress distribution of normal human cervical spine.The model is accurate and realistic which is consistent with the biomechanical properties of the cervical spine.The model can be used to explore the biomechanical mechanism of treating cervical vertebra disease with TCTM.
Landham, Priyan R; Don, Angus S; Robertson, Peter A
2017-11-01
To examine monosegmental lordosis after posterior lumbar interbody fusion (PLIF) surgery and relate lordosis to cage size, shape, and placement. Eighty-three consecutive patients underwent single-level PLIF with paired identical lordotic cages involving a wide decompression and bilateral facetectomies. Cage parameters relating to size (height, lordosis, and length) and placement (expressed as a ratio relative to the length of the inferior vertebral endplate) were recorded. Centre point ratio (CPR) was the distance to the centre of both cages and indicated mean position of both cages. Posterior gap ratio (PGR) was the distance to the most posterior cage and indicated position and cage length indirectly. Relationships between lordosis and cage parameters were explored. Mean lordosis increased by 5.98° (SD 6.86°). The cages used varied in length from 20 to 27 mm, in lordosis from 10° to 18°, and in anterior cage height from 10 to 17 mm. The mean cage placement as determined by CPR was 0.54 and by PGR was 0.16. The significant correlations were: both CPR and PGR with lordosis gain at surgery (r = 0.597 and 0.537, respectively, p < 0.001 both), cage lordosis with the final lordosis (r = 0.234, p < 0.05), and anterior cage height was negatively correlated with a change in lordosis (r = -0.297, p < 0.01). Cage size, shape, and position, in addition to surgical technique, determine lordosis during PLIF surgery. Anterior placement with sufficient "clear space" behind the cages is recommended. In addition, cages should be of moderate height and length, so that they act as an effective pivot for lordosis.
Livingston, Asher; Wang, Tian; Christou, Chris; Pelletier, Matthew H; Walsh, William R
2015-01-01
Decortication of bone with a high-speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability, which may negatively impact clinical outcome. Little data are available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high-speed burr. Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2 mm below the end plate surface and a thermal camera set up to measure surface temperature. A 3 mm high-pneumatic speed burr (Midas Rex, Medtronic, Fort Worth, TX, USA) was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30) with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data were compared between groups using a Student's t-test. Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2 mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high-speed burr provides a quick and an effective method of vertebral end plate preparation. Thermal damage to the bone can be minimized through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high-speed burr.
Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan
2014-10-01
In this study, sagittal vertebral inclination (SVI) was systematically evaluated for 28 vertebrae (segments between T4 and L5) in magnetic resonance (MR) images of one normal and one scoliotic subject to compare the performance of manual and computerized measurements, and identify the most reproducible and reliable measurements. Manual measurements were performed by three observers, who identified on two occasions the distinctive anatomical landmarks required to evaluate SVI by six measurement methods, i.e. the superior tangents, inferior tangents, anterior tangents, posterior tangents, mid-endplate lines and mid-wall lines. Computerized measurements were performed by automatically evaluating SVI from the symmetry of vertebral anatomical structures in two-dimensional (2D) sagittal cross-sections and in three-dimensional (3D) volumetric images. The mid-wall lines and posterior tangents proved to be the manual measurements with the lowest intra-observer (standard deviation, SD, of 1.4° and 1.7°, respectively) and inter-observer variability (SD of 1.9° and 2.4°, respectively). The strongest inter-method agreement was found between the mid-wall lines and posterior tangents (SD of 2.0°). Computerized measurements in 2D and in 3D resulted in intra-observer (SD of 2.8° and 3.1°, respectively) and inter-observer variability (SD of 3.8° and 5.2°, respectively) that were comparable to those of the superior tangents (SD of 2.6° and 3.7°) and inferior tangents (SD of 3.2° and 4.5°), which represent standard Cobb angle measurements. It can be concluded that computerized measurements of SVI should be based on the inclination of vertebral body walls. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of Axial Torsion on Disc Height Distribution: An In Vivo Study.
Espinoza Orías, Alejandro A; Mammoser, Nicole M; Triano, John J; An, Howard S; Andersson, Gunnar B J; Inoue, Nozomu
2016-05-01
Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positions on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. Eighty-one volunteers were computed tomography-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each "disc" set as the reference surface and separated into 5 anatomical zones: 4 peripheral and 1 central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions and were compared against each other with analysis of variance, with significance set at P < .05. Mean neutral disc height was 7.32 mm (1.59 mm). With 50° rotation, a small but significant increase to 7.44 mm (1.52 mm) (P < .0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (P < .0001), whereas the left, anterior, and central decreased. This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Pekmezci, Murat; Tang, Jessica A; Cheng, Liu; Modak, Ashin; McClellan, Robert T; Buckley, Jenni M; Ames, Christopher P
2016-11-01
In vitro cadaver biomechanics study. The goal of this study is to compare the in situ fatigue life of expandable versus fixed interbody cage designs. Expandable cages are becoming more popular, in large part, due to their versatility; however, subsidence and catastrophic failure remain a concern. This in vitro analysis investigates the fatigue life of expandable and fixed interbody cages in a single level human cadaver corpectomy model by evaluating modes of subsidence of expandable and fixed cages as well as change in stiffness of the constructs with cyclic loading. Nineteen specimens from 10 human thoracolumbar spines (T10-L2, L3-L5) were biomechanically evaluated after a single level corpectomy that was reconstructed with an expandable or fixed cage and anterior dual rod instrumentation. All specimens underwent 98 K cycles to simulate 3 months of postoperative weight bearing. In addition, a third group with hyperlordotic cages was used to simulate catastrophic failure that is observed in clinical practice. Three fixed and 2 expandable cages withstood the cyclic loading despite perfect sagittal and coronal plane fitting of the endcaps. The majority of the constructs settled in after initial subsidence. The catastrophic failures that were observed in clinical practice could not be reproduced with hyperlordotic cages. However, all cages in this group subsided, and 60% resulted in endplate fractures during deployment of the cage. Despite greater surface contact area, expandable cages have a trend for higher subsidence rates when compared with fixed cages. When there is edge loading as in the hyperlordotic cage scenario, there is a higher risk of subsidence and intraoperative fracture during deployment of expandable cages.
Colquhoun, D; Sakmann, B
1985-01-01
The fine structure of ion-channel activations by junctional nicotinic receptors in adult frog muscle fibres has been investigated. The agonists used were acetylcholine (ACh), carbachol (CCh), suberyldicholine (SubCh) and decan-1,10-dicarboxylic acid dicholine ester (DecCh). Individual activations (bursts) were interrupted by short closed periods; the distribution of their durations showed a major fast component ('short gaps') and a minor slower component ('intermediate gaps'). The mean duration of both short and intermediate gaps was dependent on the nature of the agonist. For short gaps the mean durations (microseconds) were: ACh, 20; SubCh, 43; DecCh, 71; CCh, 13. The mean number of short gaps per burst were: ACh, 1.9; SubCh, 4.1; DecCh, 2.0. The mean number of short gaps per burst, and the mean number per unit open time, were dependent on the nature of the agonist, but showed little dependence on agonist concentration or membrane potential for ACh, SubCh and DecCh. The short gaps in CCh increased in frequency with agonist concentration and were mainly produced by channel blockages by CCh itself. Partially open channels (subconductance states) were clearly resolved rarely (0.4% of gaps within bursts) but regularly. Conductances of 18% (most commonly) and 71% of the main value were found. However, most short gaps were probably full closures. The distribution of burst lengths had two components. The faster component represented mainly isolated short openings that were much more common at low agonist concentrations. The slower component represented bursts of longer openings. Except at very low concentrations more than 85% of activations were of this type, which corresponds to the 'channel lifetime' found by noise analysis. The frequency of channel openings increased slightly with hyperpolarization. The short gaps during activations were little affected when (a) the [H+]o or [Ca2+]o were reduced to 1/10th of normal, (b) when extracellular Ca2+ was replaced by Mg2+, (c) when the [Cl-]i was raised or (d) when, in one experiment on an isolated inside-out patch, the normal intracellular constituents were replaced by KCl. Reduction of [Ca2+]O to 1/10 of normal increased the single-channel conductance by 50%, and considerably increased the number of intermediate gaps. No temporal asymmetry was detectable in the bursts of openings. Positive correlations were found between the lengths of successive apparent open times at low SubCh concentrations, but no correlations between burst lengths were detectable. The component of brief openings behaves, at low concentrations, as though it originates from openings of singly occupied channels.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 11 Fig. 14 Plate 1 PMID:2419552
Rajasekaran, S; Kanna, Rishi Mugesh; Reddy, Ranjani Raja; Natesan, Senthil; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Kao, Patrick Y P; Yee, Anita; Shetty, Ajoy Prasad
2016-11-01
Prospective genetic association study. The aim of this study was to document the variations in the genetic associations, when different magnetic resonance imaging (MRI) phenotypes, age stratification, cohort size, and sequence of cohort inclusion are varied in the same study population. Genetic associations with disc degeneration have shown high inconsistency, generally attributed to hereditary factors and ethnic variations. However, the effect of different phenotypes, size of the study population, age of the cohort, etc have not been documented clearly. Seventy-one single-nucleotide polymorphisms (SNPs) of 41 candidate genes were correlated to six MRI markers of disc degeneration (annular tears, Pfirmann grading, Schmorl nodes, Modic changes, Total Endplate Damage score, and disc bulge) in 809 patients with back pain and/or sciatica. In the same study group, the correlations were then retested for different age groups, different sample, size and sequence of subject inclusion (first 404 and the second 405) and the differences documented. The mean age of population (M: 455, F: 354) was 36.7 ± 10.8 years. Different genetic associations were found with different phenotypes: disc bulge with three SNPs of CILP; annular tears with rs2249350 of ADAMTS5 and rs11247361 IGF1R; modic changes with VDR and MMP20; Pfirmann grading with three SNPs of MMP20 and Schmorl node with SNPs of CALM1 and FN1 and none with Total End Plate Score.Subgroup analysis based on three age groups and dividing the total population into two groups also completely changed the associations for all the six radiographic parameters. In the same study population, SNP associations completely change with different phenotypes. Variations in age, inclusion sequence, and sample size resulted in change of genetic associations. Our study questions the validity of previous studies and necessitates the need for standardizing the description of disc degeneration, phenotype selection, study sample size, age, and other variables in future studies. 4.
NASA Astrophysics Data System (ADS)
Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.
1998-08-01
The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes, formula B.2 is recommended for the evaluation of such conditions.
Wen, Junxiang; Xu, Jianwei; Li, Lijun; Yang, Mingjie; Pan, Jie; Chen, Deyu; Jia, Lianshun; Tan, Jun
2017-06-01
In vitro biomechanical study of cervical intervertebral distraction. To investigate the forces required for distraction to different heights in an in vitro C5-C6 anterior cervical distraction model, focusing on the influence of the intervertebral disk, posterior longitudinal ligament (PLL), and ligamentum flavum (LF). No previous studies have reported on the forces required for distraction to various heights or the factors resisting distraction in anterior cervical discectomy and fusion. Anterior cervical distraction at C5-C6 was performed in 6 cadaveric specimens using a biomechanical testing machine, under 4 conditions: A, before disk removal; B, after disk removal; C, after disk and PLL removal; and D, after disk and PLL removal and cutting of the LF. Distraction was performed from 0 to 10 mm at a constant velocity (5 mm/min). Force and distraction height were recorded automatically. The force required increased with distraction height under all 4 conditions. There was a sudden increase in force required at 6-7 mm under conditions B and C, but not D. Under condition A, distraction to 5 mm required a force of 268.3±38.87 N. Under conditions B and C, distraction to 6 mm required <15 N, and further distraction required dramatically increased force, with distraction to 10 mm requiring 115.4±10.67 and 68.4±9.67 N, respectively. Under condition D, no marked increase in force was recorded. Distraction of the intervertebral space was much easier after disk removal. An intact LF caused a sudden marked increase in the force required for distraction, possibly indicating the point at which the LF was fully stretched. This increase in resistance may help to determine the optimal distraction height to avoid stress to the endplate spacer.
Schultz, Randall; Steven, Andrew; Wessell, Aaron; Fischbein, Nancy; Sansur, Charles A; Gandhi, Dheeraj; Ibrahimi, David; Raghavan, Prashant
2017-06-01
OBJECTIVE Dorsal arachnoid webs (DAWs) and spinal cord herniation (SCH) are uncommon abnormalities affecting the thoracic spinal cord that can result in syringomyelia and significant neurological morbidity if left untreated. Differentiating these 2 entities on the basis of clinical presentation and radiological findings remains challenging but is of vital importance in planning a surgical approach. The authors examined the differences between DAWs and idiopathic SCH on MRI and CT myelography to improve diagnostic confidence prior to surgery. METHODS Review of the picture archiving and communication system (PACS) database between 2005 and 2015 identified 6 patients with DAW and 5 with SCH. Clinical data including demographic information, presenting symptoms and neurological signs, and surgical reports were collected from the electronic medical records. Ten of the 11 patients underwent MRI. CT myelography was performed in 3 patients with DAW and in 1 patient with SCH. Imaging studies were analyzed by 2 board-certified neuroradiologists for the following features: 1) location of the deformity; 2) presence or absence of cord signal abnormality or syringomyelia; 3) visible arachnoid web; 4) presence of a dural defect; 5) nature of dorsal cord indentation (abrupt "scalpel sign" vs "C"-shaped); 6) focal ventral cord kink; 7) presence of the nuclear trail sign (endplate irregularity, sclerosis, and/or disc-space calcification that could suggest a migratory path of a herniated disc); and 8) visualization of a complete plane of CSF ventral to the deformity. RESULTS The scalpel sign was positive in all patients with DAW. The dorsal indentation was C-shaped in 5 of 6 patients with SCH. The ventral subarachnoid space was preserved in all patients with DAW and interrupted in cases of SCH. In no patient was a web or a dural defect identified. CONCLUSIONS DAW and SCH can be reliably distinguished on imaging by scrutinizing the nature of the dorsal indentation and the integrity of the ventral subarachnoid space at the level of the cord deformity.
Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy.
Nicole, Sophie; Chaouch, Amina; Torbergsen, Torberg; Bauché, Stéphanie; de Bruyckere, Elodie; Fontenille, Marie-Joséphine; Horn, Morten A; van Ghelue, Marijke; Løseth, Sissel; Issop, Yasmin; Cox, Daniel; Müller, Juliane S; Evangelista, Teresinha; Stålberg, Erik; Ioos, Christine; Barois, Annie; Brochier, Guy; Sternberg, Damien; Fournier, Emmanuel; Hantaï, Daniel; Abicht, Angela; Dusl, Marina; Laval, Steven H; Griffin, Helen; Eymard, Bruno; Lochmüller, Hanns
2014-09-01
Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of rare diseases resulting from impaired neuromuscular transmission. Their clinical hallmark is fatigable muscle weakness associated with a decremental muscle response to repetitive nerve stimulation and frequently related to postsynaptic defects. Distal myopathies form another clinically and genetically heterogeneous group of primary muscle disorders where weakness and atrophy are restricted to distal muscles, at least initially. In both congenital myasthenic syndromes and distal myopathies, a significant number of patients remain genetically undiagnosed. Here, we report five patients from three unrelated families with a strikingly homogenous clinical entity combining congenital myasthenia with distal muscle weakness and atrophy reminiscent of a distal myopathy. MRI and neurophysiological studies were compatible with mild myopathy restricted to distal limb muscles, but decrement (up to 72%) in response to 3 Hz repetitive nerve stimulation pointed towards a neuromuscular transmission defect. Post-exercise increment (up to 285%) was observed in the distal limb muscles in all cases suggesting presynaptic congenital myasthenic syndrome. Immunofluorescence and ultrastructural analyses of muscle end-plate regions showed synaptic remodelling with denervation-reinnervation events. We performed whole-exome sequencing in two kinships and Sanger sequencing in one isolated case and identified five new recessive mutations in the gene encoding agrin. This synaptic proteoglycan with critical function at the neuromuscular junction was previously found mutated in more typical forms of congenital myasthenic syndrome. In our patients, we found two missense mutations residing in the N-terminal agrin domain, which reduced acetylcholine receptors clustering activity of agrin in vitro. Our findings expand the spectrum of congenital myasthenic syndromes due to agrin mutations and show an unexpected correlation between the mutated gene and the associated phenotype. This provides a good rationale for examining patients with apparent distal myopathy for a neuromuscular transmission disorder and agrin mutations. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F
2017-01-01
This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.
Peleg, Smadar; Dar, Gali; Steinberg, Nili; Peled, Nathan; Hershkovitz, Israel; Masharawi, Youssef
2007-07-01
A descriptive study of the sacral anatomic orientation (SAO) and its association with pelvic incidence (PI). To introduce the concept of SAO, establish a method for measuring it, and evaluate its association with pelvic orientation. Pelvic orientation (PO) is considered a key factor in spinal shape and balance. Sacral slope (SS), PI, and pelvic tilt (PT) are the most frequently used parameters for evaluating PO. Nevertheless, the association between the anatomic orientation of the sacrum and these parameters has never been established. The aim of the present study is to define the anatomic orientation of the sacrum, to establish a reliable method for measuring it, and to examine its association with PI. SAO was defined as the angle created between the intersection of a line running parallel to the superior endplate surface of the sacrum and a line running between the anterior superior iliac spine (ASIS) and the anterior-superior edge of the symphysis pubis. Methods for measuring SAO and PI on both skeletal populations and living individuals are described. The study was carried out on 424 skeletons (articulated pelves) using a three-dimensional digitizer and on 20 adult individuals using CT three-dimensional images (volume-rendering method). Reliability (intratester and intertester) was assessed using intraclass correlation test. A regression analysis was carried out to evaluate the association between the two measurements. The mean SAO and PI in the human skeletal population were found to be 48.46 degrees +/- 10.17 degrees and 54.08 degrees +/- 12.64 degrees , respectively and of the living individuals (CT) 52.76 degrees +/- 10.31 degrees and 57.14 degrees +/- 13.08 degrees , respectively. SAO and PI measurements were highly correlated (r = -0.824, and r = -0.828, P < 0.001 for skeletal material and living individuals, respectively). PI can be predicted via SAO, i.e., PI = [-0.971 x SAO] + 101.16 degrees . The newly suggested parameter (SAO) may be an important tool in defining the sagittal shape of the spine and understanding its association with spinal diseases.
Merceron, Christophe; Mangiavini, Laura; Robling, Alexander; Wilson, Tremika LeShan; Giaccia, Amato J; Shapiro, Irving M; Schipani, Ernestina; Risbud, Makarand V
2014-01-01
The intervertebral disc (IVD) is one of the largest avascular organs in vertebrates. The nucleus pulposus (NP), a highly hydrated and proteoglycan-enriched tissue, forms the inner portion of the IVD. The NP is surrounded by a multi-lamellar fibrocartilaginous structure, the annulus fibrosus (AF). This structure is covered superior and inferior side by cartilaginous endplates (CEP). The NP is a unique tissue within the IVD as it results from the differentiation of notochordal cells, whereas, AF and CEP derive from the sclerotome. The hypoxia inducible factor-1α (HIF-1α) is expressed in NP cells but its function in NP development and homeostasis is largely unknown. We thus conditionally deleted HIF-1α in notochordal cells and investigated how loss of this transcription factor impacts NP formation and homeostasis at E15.5, birth, 1 and 4 months of age, respectively. Histological analysis, cell lineage studies, and TUNEL assay were performed. Morphologic changes of the mutant NP cells were identified as early as E15.5, followed, postnatally, by the progressive disappearance and replacement of the NP with a novel tissue that resembles fibrocartilage. Notably, lineage studies and TUNEL assay unequivocally proved that NP cells did not transdifferentiate into chondrocyte-like cells but they rather underwent massive cell death, and were completely replaced by a cell population belonging to a lineage distinct from the notochordal one. Finally, to evaluate the functional consequences of HIF-1α deletion in the NP, biomechanical testing of mutant IVD was performed. Loss of the NP in mutant mice significantly reduced the IVD biomechanical properties by decreasing its ability to absorb mechanical stress. These findings are similar to the changes usually observed during human IVD degeneration. Our study thus demonstrates that HIF-1α is essential for NP development and homeostasis, and it raises the intriguing possibility that this transcription factor could be involved in IVD degeneration in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov; Pfister, James A.; Lima, Flavia G.
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscularmore » paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.« less
Daniels, David J; Luo, T David; Puffer, Ross; McIntosh, Amy L; Larson, A Noelle; Wetjen, Nicholas M; Clarke, Michelle J
2015-03-01
Motocross racing is a popular sport; however, its impact on the growing/developing pediatric spine is unknown. Using a retrospective cohort model, the authors compared the degree of advanced degenerative findings in young motocross racers with findings in age-matched controls. Patients who had been treated for motocross-related injury at the authors' institution between 2000 and 2007 and had been under 18 years of age at the time of injury and had undergone plain radiographic or CT examination of any spinal region were eligible for inclusion. Imaging was reviewed in a blinded fashion by 3 physicians for degenerative findings, including endplate abnormalities, loss of vertebral body height, wedging, and malalignment. Acute pathological segments were excluded. Spine radiographs from age-matched controls were similarly reviewed and the findings were compared. The motocross cohort consisted of 29 riders (mean age 14.7 years; 82% male); the control cohort consisted of 45 adolescents (mean age 14.3 years; 71% male). In the cervical spine, the motocross cohort had 55 abnormalities in 203 segments (average 1.90 abnormalities/patient) compared with 20 abnormalities in 213 segments in the controls (average 0.65/patient) (p = 0.006, Student t-test). In the thoracic spine, the motocross riders had 51 abnormalities in 292 segments (average 2.04 abnormalities/patient) compared with 25 abnormalities in 299 segments in the controls (average 1.00/patient) (p = 0.045). In the lumbar spine, the motocross cohort had 11 abnormalities in 123 segments (average 0.44 abnormalities/patient) compared with 15 abnormalities in 150 segments in the controls (average 0.50/patient) (p = 0.197). Increased degenerative changes in the cervical and thoracic spine were identified in adolescent motocross racers compared with age-matched controls. The long-term consequences of these changes are unknown; however, athletes and parents should be counseled accordingly about participation in motocross activities.
Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon
2015-11-01
Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method.
Grosheva, Maria; Nohroudi, Klaus; Schwarz, Alisa; Rink, Svenja; Bendella, Habib; Sarikcioglu, Levent; Klimaschewski, Lars; Gordon, Tessa; Angelov, Doychin N
2016-05-01
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates. Copyright © 2016 Elsevier Inc. All rights reserved.
Thyagarajan, Baskaran; Potian, Joseph G; McArdle, Joseph J; Baskaran, Padmamalini
2017-09-01
Botulinum neurotoxin A (BoNT/A) cleaves SNAP25 at the motor nerve terminals and inhibits stimulus evoked acetylcholine release. This causes skeletal muscle paralysis. However, younger neonatal mice (
Weiss, Bettina G; Bachmann, Lucas M; Pfirrmann, Christian W A; Kissling, Rudolf O; Zubler, Veronika
2016-02-01
Discrimination of diffuse idiopathic skeletal hyperostosis (DISH) and ankylosing spondylitis (AS) can be challenging. Usefulness of whole-body magnetic resonance imaging (WB-MRI) in diagnosing spondyloarthritis has been recently proved. We assessed the value of clinical variables alone and in combination with WB-MRI to distinguish between DISH and AS. Diagnostic case-control study: 33 patients with AS and 15 patients with DISH were included. All patients underwent 1.5 Tesla WB-MRI scanning. MR scans were read by a blinded radiologist using the Canadian-Danish Working Group's recommendation. Imaging and clinical variables were identified using the bootstrap. The most important variables from MR and clinical history were assessed in a multivariate fashion resulting in 3 diagnostic models (MRI, clinical, and combined). The discriminative capacity was quantified using the area under the receiver-operating characteristic (ROC) curve. The strength of diagnostic variables was quantified with OR. Forty-eight patients provided 1545 positive findings (193 DISH/1352 AS). The final MR model contained upper anterior corner fat infiltration (32 DISH/181 AS), ankylosis on the vertebral endplate (4 DISH/60 AS), facet joint ankylosis (4 DISH/49 AS), sacroiliac joint edema (11 DISH/91 AS), sacroiliac joint fat infiltration (2 DISH/114 AS), sacroiliac joint ankylosis (2 DISH/119 AS); area under the ROC curve was 0.71, 95% CI 0.64-0.78. The final clinical model contained patient's age and body mass index (area under the ROC curve 0.90, 95% CI 0.89-0.91). The full diagnostic model containing clinical and MR information had an area under the ROC curve of 0.93 (95% CI 0.92-0.95). WB-MRI features can contribute to the correct diagnosis after a thorough conventional workup of patients with DISH and AS.
Wen, Junxiang; Xu, Jianwei; Li, Lijun; Yang, Mingjie; Pan, Jie; Chen, Deyu; Jia, Lianshun; Tan, Jun
2017-06-01
In vitro biomechanical study of the cervical intervertebral distraction using a remodeled Caspar retractor. To investigate the torques required for distraction to different heights in an in vitro C3-C4 anterior cervical distraction model using a remodeled Caspar retractor, focusing on the influence of the intervertebral disk, posterior longitudinal ligament (PLL), and ligamentum flavum (LF). No previous studies have reported on the torques required for distraction to various heights or the factors resisting distraction in anterior cervical discectomy and fusion. Anterior cervical distractions at C3-C4 was performed in 6 cadaveric specimens using a remodeled Caspar retractor, under 4 conditions: A, before disk removal; B, after disk removal; C, after disk and PLL removal; and D, after disk and PLL removal and cutting of the LF. Distraction was performed for 5 teeth, and distractive torque of each tooth was recorded. The torque increased with distraction height under all conditions. There was a sudden increase in torque at the fourth tooth under conditions B and C, but not D. Under condition A, distraction to the third tooth required 84.8±13.3 cN m. Under conditions B and C, distraction to the third tooth required <13 cN m, and further distraction required dramatically increased torque. Under condition D, no marked increase in torque was recorded. Distraction of the intervertebral space was much easier after disk removal. An intact LF caused a sudden marked increase in the force required for distraction, possibly indicating the point at which the LF was fully stretched. This increase in resistance may help to determine the optimal distraction height to avoid excessive stress to the endplate spacer. The remodeled Caspar retractor in the present study may provide a feasible and convenient method for intraoperative measurement of distractive resistance.
Davies, B M; Atkinson, R A; Ludwinski, F; Freemont, A J; Hoyland, J A; Gnanalingham, K K
2016-08-01
Clinically, magnetic resonance (MR) imaging is the most effective non-invasive tool for assessing IVD degeneration. Histological examination of the IVD provides a more detailed assessment of the pathological changes at a tissue level. However, very few reports have studied the relationship between these techniques. Identifying a relationship may allow more detailed staging of IVD degeneration, of importance in targeting future regenerative therapies. To investigate the relationship between MR and histological grading of IVD degeneration in the cervical and lumbar spine in patients undergoing discectomy. Lumbar (N = 99) and cervical (N = 106) IVD samples were obtained from adult patients undergoing discectomy surgery for symptomatic IVD herniation and graded to ascertain a histological grade of degeneration. The pre-operative MR images from these patients were graded for the degree of IVD (MR grade) and vertebral end-plate degeneration (Modic Changes, MC). The relationship between histological and MR grades of degeneration were studied. In lumbar and cervical IVD the majority of samples (93%) exhibited moderate levels of degeneration (ie MR grades 3-4) on pre-operative MR scans. Histologically, most specimens displayed moderate to severe grades of degeneration in lumbar (99%) and cervical spine (93%). MR grade was weakly correlated with patient age in lumbar and cervical study groups. MR and histological grades of IVD degeneration did not correlate in lumbar or cervical study groups. MC were more common in the lumbar than cervical spine (e.g. 39 versus 20% grade 2 changes; p < 0.05), but failed to correlate with MR or histological grades for degeneration. In this surgical series, the resected IVD tissue displayed moderate to severe degeneration, but there is no correlation between MR and histological grades using a qualitative classification system. There remains a need for a quantitative, non-invasive, pre-clinical measure of IVD degeneration that correlates with histological changes seen in the IVD.
Hirst, Theodore C; Ribchester, Richard R
2013-01-01
Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition. PMID:23940381
Hasler, Carol C
2013-01-08
It is wrong to believe that back pain only burdens adults: the yearly incidence during growth ranges from 10-20%, continuously increasing from childhood to adolescence. Rapid growth-related muscular dysbalance and insufficiency, poor physical condition in an increasingly sedentary adolescent community or - vice versa - high level sports activities, account for the most prevalent functional pain syndromes. In contrast to adults the correlation of radiographic findings with pain is high: the younger the patient, the higher the probability to establish a rare morphologic cause such as benign or malignant tumours, congenital malformations and infections. In children younger than 5 years old, the likelihood is more than 50%. The following red flags should lower the threshold for a quick in-depth analysis of the problem: Age of the patient <5 years, acute trauma, functional limitation for daily activities, irradiating pain, loss of weight, duration >4 weeks, history of tumour, exposition to tuberculosis, night pain and fever. High level sport equals a biomechanical field test which reveals the biologic individual response of the growing spine to the sports-related forces. Symptomatic or asymptomatic inhibitory or stimulatory growth disturbances like Scheuermann disease, scoliosis or fatigue fractures represent the most frequent pathomorphologies. They usually occur at the disk-growth plate compound: intraspongious disk herniation, diminuition of anterior growth with vertebral wedging and apophyseal ring fractures often occur when the biomechanical impacts exceed the mechanical resistance of the cartilaginous endplates. Spondylolysis is a benign condition which rarely becomes symptomatic and responds well to conservative measures. Associated slippage of L5 on S1 is frequent but rarely progresses. The pubertal spinal growth spurt is the main risk factor for further slippage, whereas sports activity - even at a high level - is not. Therefore, the athlete should only be precluded from training if pain persists or in case of high grade slips. Perturbance of the sagittal profile with increase of lumbar lordosis, flattening of the thoracic spine and retroflexion of the pelvis with hamstrings contractures are strong signs for a grade IV olisthesis or spondyloptosis with subsequent lumbosacral kyphosis. Idiopathic scoliosis is not related to pain unless it is a marked (thoraco-) lumbar curve or if there is an underlying spinal cord pathology. Chronic back pain is an under recognised entity characterised by its duration (>3 months or recurrence within 3 months) and its social impacts such as isolation and absence from school or work. It represents an independent disease, uncoupled from any initial trigger. Multimodal therapeutic strategies are more successful than isolated, somatising orthopaedic treatment. Primary and secondary preventive active measures for the physically passive adolescents, regular sports medical check-up's for the young high level athletes, the awareness for the rare but potentially disastrous pathologies and the recognition of chronic pain syndromes are the cornerstones for successful treatment of back pain during growth.
Smith, J A; Deviren, V; Berven, S; Kleinstueck, F; Bradford, D S
2001-10-15
A clinical retrospective study was conducted. To evaluate the clinical and radiographic outcome of reduction followed by trans-sacral interbody fusion for high-grade spondylolisthesis. In situ posterior interbody fusion with fibula allograft has improved the fusion rates for patients with high-grade spondylolisthesis. The use of this technique in conjunction with partial reduction has not been reported. Nine consecutive patients underwent treatment of high-grade (Grade 3 or 4) spondylolisthesis with partial reduction followed by posterior interbody fusion using cortical allograft. The average age at the time of surgery was 27 years (range, 8-51 years), and the average follow-up period was 43 months (range, 24-72 months). Before surgery, eight patients had low back pain, seven patients had radiating leg pain, and five patients had hamstring tightness. The average grade of spondylolisthesis by Meyerding grading was 3.9 (range, 3-5). Charts and radiographs were evaluated, and outcomes were collected by use of the modified SRS outcomes instrument. Radiographic indexes demonstrated significant improvement with partial reduction and fusion. The slip angle, as measured from the inferior endplate of L5, improved from 41.2 degrees (range, 24-82 degrees ) before surgery to 21 degrees (range, 5-40 degrees ) after surgery. All the patients were extremely or somewhat satisfied with surgery. The two patients who underwent this operation without initial instrumentation experienced fractures of their interbody grafts. Both of these patients underwent repair of the pseudarthrosis with placement of trans-sacral pedicle screw instrumentation and subsequent fusion. Partial reduction followed by posterior interbody fusion is an effective technique for the management of high-grade spondylolisthesis in pediatric and adult patient populations, as assessed by radiographic and clinical criteria. Pedicle screw instrumentation with the sacral screws capturing L5 is recommended when this technique is used for the treatment of high-grade spondylolisthesis. According to the clinical and radiographic results from this study, partial reduction and posterior fibula interbody fusion supplemented with pedicle screw instrumentation is an effective technique for select patients with high-grade spondylolisthesis at L5-S1.
Susanna, Ivette; Alba, David M; Almécija, Sergio; Moyà-Solà, Salvador
2014-08-01
Here we describe the vertebral fragments from the partial skeleton IPS18800 of the fossil great ape Hispanopithecus laietanus (Hominidae: Dryopithecinae) from the late Miocene (9.6 Ma) of Can Llobateres 2 (Vallès-Penedès Basin, Catalonia, Spain). The eight specimens (IPS18800.5-IPS18800.12) include a fragment of thoracic vertebral body, three partial bodies and four neural arch fragments of lumbar vertebrae. Despite the retention of primitive features (moderately long lumbar vertebral bodies with slightly concave ventrolateral sides), these specimens display a suite of derived, modern hominoid-like features: thoracic vertebrae with dorsally-situated costal foveae; lumbar vertebrae with non-ventrally-oriented transverse processes originating from a robust pedicle, caudally-long laminae with caudally-oriented spinous process, elliptical end-plates, and moderately stout bodies reduced in length and with no ventral keel. These features, functionally related to orthograde behaviors, are indicative of a broad and shallow thorax with a moderately short and stiff lumbar region in Hispanopithecus. Despite its large body mass (ca. 39-40 kg), its vertebral morphology is more comparable to that of hylobatids and Ateles than to extant great apes. This is confirmed by our morphometric analyses, also indicating that Hispanopithecus most closely resembles Pierolapithecus and Morotopithecus among Miocene apes, whereas Proconsul and Nacholapithecus resemble pronograde monkeys. Only in a few features (craniocaudally short and transversely wide pedicles, transverse processes situated on the pedicle, and slight ventral wedging), Hispanopithecus is more derived towards the extant great ape condition than other Miocene apes. Overall, the vertebral morphology of Hispanopithecus supports previous inferences of an orthograde body plan with suspensory and climbing adaptations. However, given similarities with Ateles and the retention of a longer and more flexible spine than in extant great apes, the Hispanopithecus morphology is also consistent with some degree of above-branch quadrupedalism, as previously inferred from other anatomical regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lin, Hsi-Hsien; Chang, Ming-Chau; Wang, Shih-Tien; Liu, Chien-Lin; Chou, Po-Hsin
2018-06-01
Polymethylmethacrylate (PMMA) augmentation is a common method to increase pullout strength fixed for osteoporotic spines. However, few papers evaluated whether these pedicle screws migrated with time and functional outcome in these geriatrics following PMMA-augmented pedicle screw fixation. From March 2006 to September 2008, consecutive 64 patients were retrospectively enrolled. VAS and ODI were used to evaluate functional outcomes. Kyphotic angle at instrumented levels and horizontal and vertical distances (HD and VD) between screw tip and anterior and upper cortexes were evaluated. To avoid bias, we used horizontal and vertical migration index (HMI and VMI) to re-evaluate screw positions with normalization by the mean of superior and inferior endplates or anterior and posterior vertebral body height, respectively. Forty-six patients with 282 PMMA-augmented screws were analyzed with mean follow-up of 95 months. Nine patients were further excluded due to bed-ridden at latest follow-up. Twenty-six females and 11 males with mean T score of - 2.7 (range, - 2.6 to - 4.1) and mean age for operation of 77.6 ± 4.3 years (range, 65 to 86). The serial HD and kyphotic angle statistically progressed with time. The serial VD did not statistically change with time (p = 0.23), and neither HMI nor VMI (p = 0.772 and 0.631). Pre-operative DEXA results did not correlate with kyphotic angle. Most patients (80.4%) maintained similar functional outcomes at latest follow-up. The incidence of screws loosening was 2.7% of patients and 1.4% of screws, respectively. The overall incidences of systemic post-operative co-morbidities were 24.3% with overall 20.2 days for hospitalization. Most patients (80%) remained similar functional outcomes at latest follow-up in spite of kyphosis progression. The incidence of implant failure was not high, but the post-operative systemic co-morbidities were higher, which has to be informed before index surgery.
Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2014-10-01
Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding heights, widths and volumes, as well as of other geometric features that in detail describe the shape of intervertebral disc spaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement.
Calvo-Echenique, Andrea; Cegoñino, José; Chueca, Raúl; Pérez-Del Palomar, Amaya
2018-08-01
Spinal degeneration and instability are commonly treated with interbody fusion cages either alone or supplemented with posterior instrumentation with the aim to immobilise the segment and restore intervertebral height. The purpose of this work is to establish a tool which may help to understand the effects of intervertebral cage design and placement on the biomechanical response of a patient-specific model to help reducing post-surgical complications such as subsidence and segment instability. A 3D lumbar functional spinal unit (FSU) finite element model was created and a parametric model of an interbody cage was designed and introduced in the FSU. A Drucker-Prager Cap plasticity formulation was used to predict plastic strains and bone failure in the vertebrae. The effect of varying cage size, cross-sectional area, apparent stiffness and positioning was evaluated under 500 N preload followed by 7.5 Nm multidirectional rotation and the results were compared with the intact model. The most influential cage parameters on the FSU were size, curvature congruence with the endplates and cage placement. Segmental stiffness was higher when increasing the cross-sectional cage area in all loading directions and when the cage was anteriorly placed in all directions but extension. In general, the facet joint forces were reduced by increasing segmental stiffness. However, these forces were higher than in the intact model in most of the cases due to the displacement of the instantaneous centre of rotation. The highest plastic deformations took place at the caudal vertebra under flexion and increased for cages with greater stiffness. Thus, wider cages and a more anteriorly placement would increase the volume of failed bone and, therefore, the risk of subsidence. Cage geometry plays a crucial role in the success of lumbar surgery. General considerations such as larger cages may be applied as a guideline, but parameters such as curvature or cage placement should be determined for each specific patient. This model provides a proof-of-concept of a tool for the preoperative evaluation of lumbar surgical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Pitzen, Tobias; Kettler, Annette; Drumm, Joerg; Nabhan, Abdullah; Steudel, Wolf Ingo; Claes, Lutz; Wilke, Hans Joachim
2007-07-01
There is a gap between in vitro and clinical studies concerning performance of spinal disc prosthesis. Retrieval studies may help to bridge this gap by providing more detailed information about motion characteristics, wear properties and osseous integration. Here, we report on the radiographic, mechanical, histological properties of a cervical spine segment treated with a cervical spine disc prosthesis (Prodisc C, Synthes Spine, Paoli, USA) for 3 months. A 48-year-old male received the device due to symptomatic degenerative disc disease within C5-C6. The patient recovered completely from his symptoms. Twelve weeks later, he died from a subarachnoid hemorrhage. During routine autopsy, C3-T1 was removed with all attached muscles and ligaments and subjected to plain X-rays and computed tomography, three dimensional flexibility tests, shear test as well as histological and electronic microscopic investigations. We detected radiolucencies mainly at the cranial interface between bone and implant. The flexibility of the segment under pure bending moments of +/-2.5 Nm applied in flexion/extension, axial rotation and lateral bending was preserved, with, however, reduced lateral bending and enlarged neutral zone compared to the adjacent segments C4-C5, and C6-C7. Stepwise increase of loading in flexion/extension up to +/-9.5 Nm did not result in segmental destruction. A postero-anterior force of 146 N was necessary to detach the lower half of the prosthesis from the vertebra. At the polyethylene (PE) core, signs of wear were observed compared to an unused core using electronic microscopy. Metal and PE debris without signs of severe inflammatory reaction was found within the surrounding soft tissue shell of the segment. A thin layer of soft connective tissue covered the major part of the implant endplate. Despite the limits of such a case report, the results show: that such implants are able to preserve at least a certain degree of segmental flexibility, that direct bone implant contact is probably rare, and that debris may be found after 12 weeks.
A comparison study of size-specific dose estimate calculation methods.
Parikh, Roshni A; Wien, Michael A; Novak, Ronald D; Jordan, David W; Klahr, Paul; Soriano, Stephanie; Ciancibello, Leslie; Berlin, Sheila C
2018-01-01
The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ c ) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI vol, there was poor correlation, ρ c <0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide acceptable dose estimates for pediatric patients <30 cm in body width. Body weight provides a quick and practical method to identify conversion factors that can be used to estimate SSDE with reasonable accuracy in pediatric patients with body width ≥20 cm.
A classification of growth friendly spine implants.
Skaggs, David L; Akbarnia, Behrooz A; Flynn, John M; Myung, Karen S; Sponseller, Paul D; Vitale, Michael G
2014-01-01
Various types of spinal implants have been used with the objective of minimizing spinal deformities while maximizing the spine and thoracic growth in a growing child with a spinal deformity. The aim of this study was to describe a classification system of growth friendly spinal implants to allow researchers and clinicians to have a common language and facilitate comparative studies. Growth friendly spinal implant systems fall into 3 categories based upon the forces of correction the implants exert on the spine, which are as follows: Distraction-based systems correct spinal deformities by mechanically applying a distractive force across a deformed segment with anchors at the top and bottom of the implants, which commonly attach to the spine, rib, and/or the pelvis. The present examples of distraction-based implants are spine-based or rib-based growing rods, vertical expandable titanium rib prosthesis, and remotely expandable devices. Compression-based systems correct spinal deformities with a compressive force applied to the convexity of the curve causing convex growth inhibition. This compressive force may be generated both mechanically at the time of implantation, as well as over time resulting from longitudinal growth of vertebral endplates hindered by the spinal implants. Examples of compression-based systems are vertebral staples and tethers. Guided growth systems correct spinal deformity by anchoring multiple vertebrae (usually including the apical vertebrae) to rods with mechanical forces including translation at the time of the initial implant. The majority of the anchors are not rigidly attached to the rods, thus permitting longitudinal growth over time as the anchors slide over the rods. Examples of guided growth systems include the Luque trolley and Shilla. Each system has its benefits and shortcomings. Knowledge of the fundamental principles upon which these systems are based may aid the clinician to choose an appropriate treatment for patients. Having a common language for these systems may aid in comparative research. Vertical expandable titanium rib prosthesis is used with humanitarian exemption. The other devices mentioned in this manuscript are not approved for growing constructs by the Food and Drug Administration and are used off-label.
Brink, Rob C; Schlösser, Tom P C; Colo, Dino; Vincken, Koen L; van Stralen, Marijn; Hui, Steve C N; Chu, Winnie C W; Cheng, Jack C Y; Castelein, René M
2017-01-01
Cross-sectional. To quantify the asymmetry of the vertebral bodies and pedicles in the true transverse plane in adolescent idiopathic scoliosis (AIS) and to compare this with normal anatomy. There is an ongoing debate about the existence and magnitude of the vertebral body and pedicle asymmetry in AIS and whether this is an expression of a primary growth disturbance, or secondary to asymmetrical loading. Vertebral body asymmetry, defined as left-right overlap of the vertebral endplates (ie, 100%: perfect symmetry, 0%: complete asymmetry) was evaluated in the true transverse plane on CT scans of 77 AIS patients and 32 non-scoliotic controls. Additionally, the pedicle width, length, and angle and the length of the ideal screw trajectory were calculated. Scoliotic vertebrae were on average more asymmetric than controls (thoracic: AIS 96.0% vs. controls 96.4%; p = .005, lumbar: 95.8% vs. 97.2%; p < .001) and more pronounced around the thoracic apex (95.8%) than at the end vertebrae (96.3%; p = .031). In the thoracic apex; the concave pedicle was thinner (4.5 vs. 5.4 mm; p < .001) and longer (20.9 vs. 17.9 mm; p < .001), the length of the ideal screw trajectory was longer (43.0 vs. 37.3 mm; p < .001), and the transverse pedicle angle was greater (12.3° vs. 5.7°; p < .001) than the convex one. The axial rotation showed no clear correlation with the asymmetry. Even in non-scoliotic controls is a degree of vertebral body and pedicle asymmetry, but scoliotic vertebrae showed slightly more asymmetry, mostly around the thoracic apex. In contrast to the existing literature, there is no major asymmetry in the true transverse plane in AIS and no uniform relation between the axial rotation and vertebral asymmetry could be observed in these moderate to severe patients, suggesting that asymmetrical vertebral growth does not initiate rotation, but rather follows it as a secondary phenomenon. Level 4. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
[Usefullness of intrasacral fixation in an extremely unstable lumbosacral spine].
Nishiura, Tsukasa; Nishiguchi, Mitsuhisa; Kusaka, Noboru; Takayama, Kazuhiro; Maeda, Yasuhiko; Ogihara, Kotaro; Nakagawa, Minoru
2007-04-01
Intrasacral fixation technique devised by Jackson is said to provide rigid lumbosacral fixation. We treated 3 cases of lumbosacral lesions using this technique in which lumbosacral segment had become extremely unstable during surgical intervention adding to the effect of original lesions. In all cases, surgeries were performed in 2 stages, intrasacral fixation and anterior stabilization. Case 1: A 52-year-old male was diagnosed fungal discitis and spondylitis at L4 and L5. X-ray showed destruction of the vertebral bodies. L2, L3 and sacrum were fixed posteriorly using the intrasacral fixation technique. One week after the first operation, L4 and L5 vertebral bodies were replaced by long fibula grafts through the extraperitoneal approach. Case 2: A 25-year-old female with cauda equina syndrome and abnormal body form diagnosed as having spondyloptosis in which the entire vertebral body of L5 had descended below the endplate of S1. MR imaging revealed marked canal stenosis at the S1 level. In the first surgery, L5 vertebral body was resected through the transperitoneal approach. After 1 week of bed rest, posterior segments of L5 were resected, L4 was affixed to the sacrum and anterior stabilization was achieved with 2 mesh cages and lumbosacral spine was fixed using the intrasacral fixation technique. Case 3: A 64-year-old female was diagnosed as having pyogenic discitis and osteomyelitis at the L5-S1 level. In spite of successful medical treatment for infection, low back pain continued. Radiologically, L5 vertebral body was shown to have collapsed and slipped anteriorly over the sacrum. L3, L4 and sacrum were fixed by intrasacral fixation. One week after the first operation, the L5/S1 disc and the suppurtive vertebral bodies were resected through the extraperitoneal approach and anterior stabilization was performed with iliac bone grafts. At follow-up for a minimum of 6 months, initial fixation was maintained in all 3 cases and bony fusion was obtained. The intrasacral fixation technique was considered to be effective for extremely unstable lumbosacral lesions.
Acute arthropod envenomation. Incidence, clinical features and management.
Binder, L S
1989-01-01
Black widow spider (Latrodectus mactans) envenomation is found throughout both the temperate and tropical latitudes, and is one of the leading causes of death from arthropod envenomations worldwide. The venom is highly neurotoxic, affecting the presynaptic motor endplate to allow massive noradrenaline (norepinephrine) and acetylcholine release into synapses causing excessive stimulation and fatigue of the motor end plate and muscle. Clinically, patients develop a bite site lesion and pain, abdominal pain and tenderness, and lower extremity pain and weakness within minutes to hours of envenomation. Symptoms progress over several hours, then subside over 2 to 3 days. The recommended treatment of 'common' envenomation is calcium gluconate 10% intravenously, titrated to relief of symptoms; antivenin, although effective, may cause hypersensitivity and serum sickness reactions, and should be restricted to life-threatening envenomations only. Brown recluse spider (Loxosceles reclusa) envenomations are seen in the Americas and in Europe, and are endemic to the south and central United States. The venom contains at least 8 enzymes, consisting of various lysins (facilitating venom spread) and sphingomyelinase D, which causes cell membrane injury and lysis, thrombosis, local ischaemia, and chemotaxis. Local envenomations begin as pain and itching that progresses to vesiculation with violaceous necrosis and surrounding erythema, and ultimately ulcer formation. Systemic envenomations may be life threatening, and present with fever, constitutional symptoms, petechial eruptions, thrombocytopenia, and haemolysis with haemoglobinuric renal failure. Treatment of local envenomations is conservative (local wound care, cryotherapy, elevation, tetanus prophylaxis, and close follow-up); systemic envenomation requires supportive care and treatment of arising complications, corticosteroids to stabilise red blood cell membranes, and support of renal function. Dapsone 100mg daily has emerged as a promising therapeutic agent in both animal studies and clinical trials. Over 650 species of scorpions are known to cause envenomation (mostly in children under 10 years); they are endemic mostly in arid and tropical areas. Different venoms and clinical presentations are seen across the different species. Most commonly, an inflammatory local reaction occurs with envenomation, which is treated with wound debridement and cleaning, tetanus prophylaxis, and antihistamines. Occasionally the venom is allergenic, and the resultant allergic reaction is treated in a standard fashion.(ABSTRACT TRUNCATED AT 400 WORDS)
Charles, Y P; Pelletier, H; Hydier, P; Schuller, S; Garnon, J; Sauleau, E A; Steib, J-P; Clavert, P
2015-05-01
Vertebroplasty prefilling or fenestrated pedicle screw augmentation can be used to enhance pullout resistance in elderly patients. It is not clear which method offers the most reliable fixation strength if axial pullout and a bending moment is applied. The purpose of this study is to validate a new in vitro model aimed to reproduce a cut out mechanism of lumbar pedicle screws, to compare fixation strength in elderly spines with different cement augmentation techniques and to analyze factors that might influence the failure pattern. Six human specimens (82-100 years) were instrumented percutaneously at L2, L3 and L4 by non-augmented screws, vertebroplasty augmentation and fenestrated screws. Cement distribution (2 ml PMMA) was analyzed on CT. Vertebral endplates and the rod were oriented at 45° to the horizontal plane. The vertebral body was held by resin in a cylinder, linked to an unconstrained pivot, on which traction (10 N/s) was applied until rupture. Load-displacement curves were compared to simultaneous video recordings. Median pullout forces were 488.5 N (195-500) for non-augmented screws, 643.5 N (270-1050) for vertebroplasty augmentation and 943.5 N (750-1084) for fenestrated screws. Cement augmentation through fenestrated screws led to significantly higher rupture forces compared to non-augmented screws (P=0.0039). The pullout force after vertebroplasty was variable and linked to cement distribution. A cement bolus around the distal screw tip led to pullout forces similar to non-augmented screws. A proximal cement bolus, as it was observed in fenestrated screws, led to higher pullout resistance. This cement distribution led to vertebral body fractures prior to screw pullout. The experimental setup tended to reproduce a pullout mechanism observed on radiographs, combining axial pullout and a bending moment. Cement augmentation with fenestrated screws increased pullout resistance significantly, whereas the fixation strength with the vertebroplasty prefilling method was linked to the cement distribution. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Vanichkachorn, Jed; Peppers, Timothy; Bullard, Dennis; Stanley, Scott K; Linovitz, Raymond J; Ryaby, James T
2016-07-01
This multicenter clinical study was performed to assess the safety and effectiveness of Trinity Evolution(®) (TE), a viable cellular bone allograft, in combination with a PEEK interbody spacer and supplemental anterior fixation in patients undergoing anterior cervical discectomy and fusion (ACDF). In a prospective, multi-center study, 31 patients that presented with symptomatic cervical degeneration at one vertebral level underwent ACDF with a PEEK interbody spacer (Orthofix, Inc., Lewisville, TX, USA) and supplemental anterior fixation. In addition all patients had the bone graft substitute, Trinity Evolution (Musculoskeletal Transplant Foundation, Edison, NJ, USA), placed within the interbody spacer. At 6 and 12 months, radiographic fusion was evaluated as determined by independent radiographic review of angular motion (≤4°) from flexion/extension X-rays combined with presence of bridging bone across the adjacent endplates on thin cut CT scans. In addition other metrics were measured including function as assessed by the Neck Disability Index (NDI), and neck and arm pain as assessed by individual Visual Analog Scales (VAS). The fusion rate for patients using a PEEK interbody spacer in combination with TE was 78.6 % at 6 months and 93.5 % at 12 months. When considering high risk factors, 6-month fusion rates for patients that were current or former smokers, diabetic, overweight or obese/extremely obese were 70 % (7/10), 100 % (1/1), 70 % (7/10), and 82 % (9/11), respectively. At 12 months, the fusion rates were 100 % (12/12), 100 % (2/2), 100 % (11/11) and 85 % (11/13), respectively. Neck function, and neck/arm pain were found to significantly improve at both time points. No serious allograft related adverse events occurred and none of the 31 patients had subsequent additional cervical surgeries. Patients undergoing single-level ACDF with TE in combination with a PEEK interbody spacer and supplemental anterior fixation had a high rate of fusion success without serious allograft-related adverse events.
Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin
2016-07-01
Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense mutations V289L and A542V in the CLCN7 gene were responsible for ADO-II in the two Chinese families.
Sautet, P; Giorgi, H; Chabrand, P; Tropiano, P; Argenson, J-N; Parratte, S; Blondel, B
2018-05-01
Links between sagittal spinal alignment and acetabular orientation attract considerable research attention with the goal of optimising prosthetic cup position. However, whether pelvic incidence (PI) is related to anatomic acetabular orientation remains unknown. We therefore conducted a radiological study with the following objectives: to look for correlations between PI and anatomic acetabular parameters; to describe the sacro-pubic angle (SPA), defined by fixed bony pelvic landmarks, and its relations with acetabular anteversion; and to determine whether anatomical parameters (PI and SPA) correlate with demographic characteristics. PI correlates with anatomical acetabular parameters. We conducted a computed tomography (CT) study of the pelvises of 150 patients free of degenerative disease. Three parameters were measured: anatomic acetabular orientation in the Lewinnek reference plane, PI, and the SPA subtended by the line connecting the midpoint of the sacral endplate to the pubic symphysis and the anterior pelvic plane. Statistical tests were performed to look for correlations among these parameters. Intra-observer and inter-observer reproducibility was considered highly satisfactory (inter-class correlation coefficient, >86% and >82%, respectively). Mean PI was 58.6°±10.2° (range, 32.8°-97.6°), with no significant differences between genders or across age groups. Mean SPA was 34.7°±5.5° (range, 18.3°-49.8°). Mean anatomic acetabular anteversion (AAA) was greater in females (23.4°; range, 11.5°-34.5°) than in males (20°; range, 7.5°-34.5°) (P<0.001). PI did not correlate with any of the acetabular parameters (PI/AAA, r=0.8 and P=0.33; PI/acetabular inclination on the horizontal, r=-0.96 and P=0.24). SPA correlated significantly with both PI (r=0.33 and P<0.001) and AAA (r=0.33 and P<0.001). This CT study of normal pelvises showed that AAA was significantly greater in females and that SPA correlated significantly with both PI and acetabular anteversion. SPA could serve to define the "theoretical" AAA of each individual patient and could thus be incorporated into surgical planning protocols or intra-operative guidance methods for hip replacement surgery. IV, retrospective study with no control group. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Vibration and shock exposure of maintenance-of-way vehicles in the railroad industry.
Johanning, Eckardt
2011-05-01
The aim of this study is to investigate and compare vibration and shock measurements of maintenance-of-way vehicles used in the railroad industry for track maintenance and construction. Following international standards (i.e., ISO 2631-1: 1997) and professional guidelines the frequency weighted root-mean-square (r.m.s.) acceleration for each measurement axis, the vector sum, the seat effective amplitude transmissibility (SEAT), the crest factor (CF), the maximum transient vibration value (MTVV), the vibration dose value (VDV), the ratio and the newly proposed shock risk estimation factor 'R' for spinal injury according to ISO 2631-5:2004 were measured and calculated for seven different maintenance-of-way vehicles during revenue service. Furthermore, a proposed alternative spinal injury prediction method, the VibRisk model, which incorporates different typical driver postures and operator physical characteristics was included for comparison with the ISO 2631-5 risk prediction. The results of the vibration exposure measurements depended on vehicle type, track/surface conditions and seat properties, with the tamper and bulldozer showing the highest r.m.s. vibration values. The vector sum (a(v)) results ranged from 0.37 to 0.99 (m/s(2)). Five of seven track maintenance vehicles would exceed the current Whole-body Vibration ACGIH-TLV(®) guideline for an 8 h exposure duration in the vertical axis recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). The measured CF, MTVV/a(w) and VDV/(a(w)·T(1/4)) ratios were at or above the critical ratios in the majority of measurements given by the ISO 2631-1 (1997) and American industry guidelines by the American Conference of Governmental Industrial Hygienists (ACGIH-TLV). Comparing both prediction models for vibration shock risk for parts of the lumbar spine, different risk predictions and inconsistencies were found. The VibRisk model generally suggests different and higher risk of vertebral endplate failure for individual lumbar levels, whereas the ISO 2631-5 model indicated generally lower risks and did not differentiate between different disk levels and driver posture. Epidemiological studies validating the different shock risk models are lacking. Work modifications and adequate suspension seats would be beneficial for prevention of harmful exposure to vibration and shocks. Copyright © 2010 Elsevier Ltd and The Ergonomics society. All rights reserved.
Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A
2003-03-01
A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs, and, in this paper, we demonstrate that heater cells contain large 'endplate-like' clusters of acetylcholine receptors that appear to provide a mechanism for nervous control of thermogenesis.
Are linear AChR epitopes the real culprit in ocular myasthenia gravis?
Wu, Xiaorong; Tüzün, Erdem
2017-02-01
Extraocular muscle weakness occurs in most of the myasthenia gravis (MG) patients and it is often the initial complaint. Approximately 10-20% of MG patients with extraocular muscle weakness display only ocular symptoms and rest of the patients subsequently develop generalized muscle weakness. It is not entirely clear why some MG patients develop only ocular symptoms and why extraocular muscle weakness almost always precedes generalized muscle weakness. These facts are often explained by increased susceptibility of extraocular muscles due to their reduced endplate safety factor and lower complement inhibitor expression. Findings of a recently developed animal model of ocular MG suggest that additional factors might be in play. While immunization of HLA transgenic and wild-type (WT) mice with the native acetylcholine receptor (AChR) pentamer carrying conformational epitopes generates severe generalized muscle weakness, immunization of the same mouse strains with recombinant unfolded AChR subunits containing linear epitopes induces ptosis with or without mild generalized muscle weakness. Notably, immunization of mice with deficient T helper cell-mediated antigen presentation with recombinant AChR subunits or whole native AChR pentamer also induces ocular symptoms, AChR-reactive B cells and AChR antibodies. Based on these findings, we hypothesize that ocular symptoms observed in the earlier stages of MG might be triggered by linear and non-conformational AChR epitopes expressed by thymic cells or invading microorganisms. This initial AChR autoimmunity might be managed by T cell-independent and B cell mediated mechanisms yielding low affinity AChR antibodies. These antibodies are putatively capable of inducing muscle weakness only in extraocular muscles which have increased vulnerability due to their inherent biological properties. After this initial attack, as AChR bearing immune complexes form and the immune system gains access to the native AChR expressed by muscle and thymic myoid cells, a more robust anti-AChR autoimmunity develops giving way to high affinity AChR antibodies, thymic germinal center formation and severe generalized muscle weakness. Accurate characterization of chain if events leading to ocular and generalized symptoms in MG might enable development of novel therapeutics that might prevent the transition from mild ocular symptoms to severe generalized weakness in earlier stages of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Manthey, A A
1998-05-01
The possibility that increases in agonist concentration beyond threshold levels may force changes in the character of high-conductance open states of skeletal muscle nicotinic acetylcholine receptor channels (nAChR) was examined by seeing whether differences in several critical ionic properties of nAChR currents could be detected with changes in agonist level. Single- and bi-ionic whole-cell currents of Na+ and Li+ in voltage-clamped frog (Rana pipiens) muscle fibers were measured during local superfusion of endplates with carbamylcholine (carb) at concentrations of 54 microm (low-carb) and 270 microM (high-carb). Three ionic properties that would be affected by changes in the open-state configuration of channel subunits were tested. First, ion-saturation characteristics. Peak Na+ and Li+ currents in low-carb trials showed sublinear dependence on ion concentrations from 0 to 60 mM with Km values of 78 (Na+) and 49 (Li+) mM and a power function slope of 0. 75 on double-log plot. In contrast, the concentration dependence of Na+ and Li+ currents in high-carb tests was linear through the origin with a power function slope of 1.02. Second, Na+/Li+ selectivity. The ratio of peak Na+ and Li+ currents in low-carb tests varied from 1.86 to 2.28 for ion concentrations of from 20 to 60 mM [mean = 2.02 +/- 0.06 (SEM)] whereas the ratio for high-carb trials ranged from only 1.29 to 1.52 [mean = 1.42 +/- 0.40 (SEM)]. Third, competitive interactions of Na+ and Li+ currents. Equimolar mixtures of Na+ and Li+ in low-carb tests produced bi-ionic inward currents which were never larger than the single-ion Na+ current alone, but bi-ionic currents at the high-carb level were always greater than the single-ion Na+ current, approximating the sum of the single-ion Na+ and Li+ currents in most cases. The results are consistent with a decrease in ion-channel binding at the high-carb level and support the possibility of agonist-induced changes in the high-conductance open-state configuration of nAChR subunits which result in a weakening of constraints on cation movements through the channel.
Five-Year Outcomes of High-Dose Single-Fraction Spinal Stereotactic Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussazadeh, Nelson; Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York; Lis, Eric
Purpose: To characterize local tumor control and toxicity risk in very long-term survivors (>5 years) after high-dose spinal image guided, intensity modulated radiation therapy delivered as single-dose stereotactic radiosurgery (SRS). Previously published spinal SRS outcome analyses have included a heterogeneous population of cancer patients, mostly with short survival. This is the first study reporting the long-term tumor control and toxicity profiles after high-dose single-fraction spinal SRS. Methods and Materials: The study population included all patients treated from June 2004 to July 2009 with single-fraction spinal SRS (dose 24 Gy) who had survived at least 5 years after treatment. The endpoints examined included diseasemore » progression, surgical or radiation retreatment, in-field fracture development, and radiation-associated toxicity, scored using the Radiation Therapy Oncology Group radiation morbidity scoring criteria and the Common Terminology Criteria for Adverse Events, version 4.0. Local control and fracture development were assessed using Kaplan-Meier analysis. Results: Of 278 patients, 31 (11.1%), with 36 segments treated for spinal tumors, survived at least 5 years after treatment and were followed up radiographically and clinically for a median of 6.1 years (maximum 102 months). The histopathologic findings for the 5-year survivors included radiation-resistant metastases in 58%, radiation-sensitive metastases in 22%, and primary bone tumors in 19%. In this selected cohort, 3 treatment failures occurred at a median of 48.6 months, including 2 recurrences in the radiation field and 1 patient with demonstrated progression at the treatment margins. Ten lesions (27.8%) were associated with acute grade 1 cutaneous or gastrointestinal toxicity. Delayed toxicity ≥3 months after treatment included 8 cases (22.2%) of mild neuropathy, 2 (5.6%) of gastrointestinal discomfort, 8 (22.2%) of dermatitides, and 3 (8.3%) of myalgias/myositis. Thirteen treated levels (36.1%) in 12 patients demonstrated progressive vertebral body collapse or endplate fractures at a median of 25.7 months (range 11.6-76.0), of which 5 (14%) became symptomatic and subsequently required percutaneous cement augmentation or surgery. Conclusions: In the longest-term series to date, high-dose single-fraction spinal SRS retained an excellent safety profile among long-term survivors (>5 years)« less
Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Santafé, Manel; Tomàs, Josep
2016-06-23
The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. The three receptor sets considered (mAChR, AR and TrkB receptors) intervene in modulating the conditions of the competition between nerve endings, possibly helping to determine the winner or the lossers but, thereafter, the final elimination would occur with some autonomy and independently of postsynaptic maturation.
Feng, Chencheng; He, Jinyue; Zhang, Yang; Lan, Minghong; Yang, Minghui; Liu, Huan; Huang, Bo; Pan, Yong; Zhou, Yue
2017-07-01
N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the expression of pro-inflammatory cytokines and matrix catabolic enzymes in NP cells via the NF-κB and MAPK signaling pathways. N-Ac-PGP is a novel therapeutic target for intervertebral disc degeneration.
Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan
2009-03-01
Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0.78, 0.64-0.88). Surgeons as well as radiologists and seniors as well as juniors obtained excellent inter- and intra-rater agreement. The measurement error of the scoring system for cervical facet joint degeneration was 20.1 versus 24.2% of the subjective impression results. This scoring system showed good intra-rater agreement (ICC = 0.71, 0.42-0.89) and fair inter-rater agreement (ICC = 0.49, 0.26-0.74). Both scoring systems fulfilled the criteria for recommendation proposed by Kettler and Wilke. Our scoring systems can be reliable and objective tools for assessing cervical disc and facet joint degeneration. Moreover, the scoring system of cervical disc degeneration was shown to be experience- and discipline-independent.
Biomechanics of an Expandable Lumbar Interbody Fusion Cage Deployed Through Transforaminal Approach
Mica, Michael Conti; Voronov, Leonard I.; Carandang, Gerard; Havey, Robert M.; Wojewnik, Bartosz
2017-01-01
Introduction A novel expandable lumbar interbody fusion cage has been developed which allows for a broad endplate footprint similar to an anterior lumbar interbody fusion (ALIF); however, it is deployed from a minimally invasive transforaminal unilateral approach. The perceived benefit is a stable circumferential fusion from a single approach that maintains the anterior tension band of the anterior longitudinal ligament. The purpose of this biomechanics laboratory study was to evaluate the biomechanical stability of an expandable lumbar interbody cage inserted using a transforaminal approach and deployed in situ compared to a traditional lumbar interbody cage inserted using an anterior approach (control device). Methods Twelve cadaveric spine specimens (L1-L5) were tested intact and after implantation of both the control and experimental devices in two (L2-L3 and L3-L4) segments of each specimen; the assignments of the control and experimental devices to these segments were alternated. Effect of supplemental pedicle screw-rod stabilization was also assessed. Moments were applied to the specimens in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). The effect of physiologic preload on construct stability was evaluated in FE. Segmental motions were measured using an optoelectronic motion measurement system. Results The deployable expendable TLIF cage and control devices significantly reduced FE motion with and without compressive preload when compared to the intact condition (p<0.05). Segmental motions in LB and AR were also significantly reduced with both devices (p<0.05). Under no preload, the deployable expendable TLIF cage construct resulted in significantly smaller FE motion compared to the control cage construct (p<0.01). Under all other testing modes (FE under 400N preload, LB, and AR) the postoperative motions of the two constructs did not differ statistically (p>0.05). Adding bilateral pedicle screws resulted in further reduction of ROM for all loading modes compared to intact condition, with no statistical difference between the two constructs (p>0.05). Conclusions The ability of the deployable expendable interbody cage in reducing segmental motions was equivalent to the control cage when used as a stand-alone construct and also when supplemented with bilateral pedicle screw-rod instrumentation. The larger footprint of the fully deployed TLIF cage combined with preservation of the anterior soft-tissue tension band may provide a better biomechanical fusion environment by combining the advantages of the traditional ALIF and TLIF approaches. PMID:29372129
Klezl, Zdenek; Majeed, Haroon; Bommireddy, Rajendranath; John, Joby
2011-10-01
Vertebroplasty and balloon kyphoplasty have shown to improve pain and functional outcome in cases with symptomatic vertebral fractures. Although restoration of the vertebral body height and kyphosis seemed to be easier with balloon kyphoplasty, it became clear that some of the correction achieved by the balloon is lost once it was deflated. Vertebral body stent was developed to eliminate this phenomenon. To our knowledge this is the first study in describing this technique in clinical settings. Seventeen patients with 20 fractured vertebral bodies were included. All fractures were Type A1.3 or A3.1 (incomplete burst). Information about pain (visual analogue scale-VAS) and function (Oswestry disability index-ODI) and vertebral body deformity (vertebral angle-VA) was recorded in a prospective way at regular intervals. Patients were classified into osteoporotic group (7 patients) and traumatic groups (10 patients, younger than 60 years). There were 6 male and 11 female patients with mean age of 58.1 years (31-88 years). Mean follow up was 12 months. The preoperative pain level showed a mean VAS score of 8.9 in osteoporotic group and 9.7 in traumatic group. Postoperatively, in osteoporotic group, mean VAS was 4.8 at 6 weeks, 4.0 at 6 months and 2.5 at 12 months compared with traumatic fracture group where it was 2.7 at 6 weeks, 2.2 at 6 months and 1.6 at 12 months. Mean ODI in osteoporotic group was 41.7% (14-58%) and in traumatic group it was 20.4% (6-33%). Mean vertebral body angle prior to surgery in osteoporotic group was 9.7 whilst postoperatively it was 5.2°; so the mean correction achieved was 4.5°. In traumatic group preoperative VA was 13° whilst postoperatively it was 5.7°; therefore the mean correction achieved was 7.3°. None of the patients lost reduction at their last follow up. Vertebral body stenting leads to satisfactory improvement in pain, function and kyphosis correction in the treatment of osteoporotic and traumatic fractures. Anterior spinal column, especially the fragmented superior endplate is nicely reconstructed by the stent provided it is inserted accurately. With addition of posterior transpedicular instrumentation, indications for this technique may be wider covering some Type B and C fractures with similar vertebral body damage. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan
2011-08-23
To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.
Hong, Jae Young; Modi, Hitesh N.; Hur, Chang Yong; Song, Hae Ryong; Park, Jong Hoon
2010-01-01
Several methods are used to measure lumbar lordosis. In adult scoliosis patients, the measurement is difficult due to degenerative changes in the vertebral endplate as well as the coronal and sagittal deformity. We did the observational study with three examiners to determine the reliability of six methods for measuring the global lumbar lordosis in adult scoliosis patients. Ninety lateral lumbar radiographs were collected for the study. The radiographs were divided into normal (Cobb < 10°), low-grade (Cobb 10°–19°), high-grade (Cobb ≥ 20°) group to determine the reliability of Cobb L1–S1, Cobb L1–L5, centroid, posterior tangent L1–S1, posterior tangent L1–L5 and TRALL method in adult scoliosis. The 90 lateral radiographs were measured twice by each of the three examiners using the six measurement methods. The data was analyzed to determine the inter- and intra-observer reliability. In general, for the six radiographic methods, the inter- and intra-class correlation coefficients (ICCs) were all ≥0.82. A comparison of the ICCs and 95% CI for the inter- and intra-observer reliability between the groups with varying degrees of scoliosis showed that, the reliability of the lordosis measurement decreased with increasing severity of scoliosis. In Cobb L1–S1, centroid and posterior tangent L1–S1 methods, the ICCs were relatively lower in the high-grade scoliosis group (≥0.60). And, the mean absolute difference (MAD) in these methods was high in the high-grade scoliosis group (≤7.17°). However, in the Cobb L1–L5 and posterior tangent L1–L5 method, the ICCs were ≥0.86 in all groups. And, in the TRALL method, the ICCs were ≥0.76 in all groups. In addition, in the Cobb L1–L5 and posterior tangent L1–L5 method, the MAD was ≤3.63°. And, in the TRALL method, the MAD was ≤3.84° in all groups. We concluded that the Cobb L1–L5 and the posterior tangent L1–L5 methods are reliable methods for measuring the global lumbar lordosis in adult scoliosis. And the TRALL method is more reliable method than other methods which include the L5–S1 joint in lordosis measurement. PMID:20437183
Coric, Domagoj; Guyer, Richard D; Nunley, Pierce D; Musante, David; Carmody, Cameron; Gordon, Charles; Lauryssen, Carl; Boltes, Margaret O; Ohnmeiss, Donna D
2018-03-01
OBJECTIVE Seven cervical total disc replacement (TDR) devices have received FDA approval since 2006. These devices represent a heterogeneous assortment of implants made from various biomaterials with different biomechanical properties. The majority of these devices are composed of metallic endplates with a polymer core. In this prospective, randomized multicenter study, the authors evaluate the safety and efficacy of a metal-on-metal (MoM) TDR (Kineflex|C) versus anterior cervical discectomy and fusion (ACDF) in the treatment of single-level spondylosis with radiculopathy through a long-term (5-year) follow-up. METHODS An FDA-regulated investigational device exemption (IDE) pivotal trial was conducted at 21 centers across the United States. Standard validated outcome measures including the Neck Disability Index (NDI) and visual analog scale (VAS) for assessing pain were used. Patients were randomized to undergo TDR using the Kineflex|C cervical artificial disc or anterior cervical fusion using structural allograft and an anterior plate. Patients were evaluated preoperatively and at 6 weeks and 3, 6, 12, 24, 36, 48, and 60 months after surgery. Serum ion analysis was performed on a subset of patients randomized to receive the MoM TDR. RESULTS A total of 269 patients were enrolled and randomly assigned to undergo either TDR (136 patients) or ACDF (133 patients). There were no significant differences between the TDR and ACDF groups in terms of operative time, blood loss, or length of hospital stay. In both groups, the mean NDI scores improved significantly by 6 weeks after surgery and remained significantly improved throughout the 60-month follow-up (both p < 0.01). Similarly, VAS pain scores improved significantly by 6 weeks and remained significantly improved through the 60-month follow-up (both p < 0.01). There were no significant changes in outcomes between the 24- and 60-month follow-ups in either group. Range of motion in the TDR group decreased at 3 months but was significantly greater than the preoperative mean value at the 12- and 24-month follow-ups and remained significantly improved through the 60-month period. There were no significant differences between the 2 groups in terms of reoperation/revision surgery or device-/surgery-related adverse events. The serum ion analysis revealed cobalt and chromium levels significantly lower than the levels that merit monitoring. CONCLUSIONS Cervical TDR with an MoM device is safe and efficacious at the 5-year follow-up. These results from a prospective randomized study support that Kineflex|C TDR as a viable alternative to ACDF in appropriately selected patients with cervical radiculopathy. Clinical trial registration no.: NCT00374413 (clinicaltrials.gov).
Protopsaltis, Themistocles S; Lafage, Renaud; Smith, Justin S; Passias, Peter G; Shaffrey, Christopher I; Kim, Han Jo; Mundis, Gregory M; Ames, Christopher P; Burton, Douglas C; Bess, Shay; Klineberg, Eric; Hart, Robert A; Schwab, Frank J; Lafage, Virginie
2018-05-15
Prospective multicenter analysis of adult spinal deformity (ASD) patients. The aim of this study was to introduce the lumbar pelvic angle (LPA), a novel parameter of spinopelvic alignment. The T1 pelvic angle (TPA), a measure of global spinopelvic alignment, correlates with health-related quality of life (HRQOL), but it may not be measureable on all intraoperative x-rays. In patients with previous interbody fusion at L5-S1, the plane of the S1 endplate can be blurred, creating error in pelvic incidence and lumbar lordosis (PI-LL) measure. The LPA is more readily measured on intraoperative imaging than the TPA. ASD patients were included with either coronal Cobb angle >20°, sagittal vertical axis (SVA) >5 cm, thoracic kyphosis >60°, or pelvic tilt (PT) >25°. Measures of disability included Oswestry Disability Index (ODI), Scoliosis Research Society (SRS), and Short Form (SF)-36. Baseline and 2-year follow-up radiographic and HRQOL outcomes were evaluated. Linear regressions compared LPA with radiographic parameters and HRQOL. A total of 852 ASD patients (407 operative) were enrolled (mean age 53.7). Baseline LPA correlated with PI-LL (r = 0.79), PT (r = 0.78), TPA (r = 0.82), and SVA (r = 0.61) (all P < 0.001). PI-LL, LPA, and TPA correlated with ODI (r = 0.42/0.29/0.45), SF-36 physical component score (-0.43/-0.28/-0.45) SRS (-0.354/-0.23/-0.37) with all P < 0.001. At 2 years' follow-up, LPA correlated with PI-LL (r = 0.77), PT (r = 0.78), TPA (r = 0.83), and SVA (r = 0.57) (all P < 0.001). Categorizing patients by increasing LPA (<7°; 7°-15°; >15°) revealed progressive increases in all HRQOL, PI-LL (-3.2°/12.7°/32.4°), and TPA (9.7°/20.1°/34.6°) with all P < 0.001. Moderate disability (ODI = 40) corresponded to LPA 10.1°, PI-LL 12.6°, and TPA 20.6°. Mild disability (ODI = 20) corresponded to LPA 7.2°, PI-LL 4.2°, and TPA 14.7°. LPA correlates with TPA, PI-LL, and HRQOL in ASD patients. LPA can be used as an intraoperative tool to gauge correction with a target LPA of <7.2°. LPA predicts global alignment, as it correlates with baseline and 2-year TPA and SVA. Along with the cervical-thoracic pelvic angle and TPA, LPA completes the fan of spinopelvic alignment. 3.
Goel, Atul; Shah, Abhidha; Jadhav, Madan; Nama, Santhosh
2013-12-01
The authors report their experience in treating 21 patients by using a novel form of treatment of lumbar degenerative disease that leads to canal stenosis. The surgery involved distraction of the facets using specially designed Goel intraarticular spacers and was aimed at arthrodesis of the spinal segment in a distracted position. The operation is based on the premise that subtle and longstanding facet instability, joint space reduction, and subsequent facet override had a profound and primary influence in the pathogenesis of degenerative lumbar canal stenosis. The surgical technique and the rationale for treatment are discussed. Between April 2006 and January 2011, 21 cases of lumbar degenerative disease resulting in characteristic lumbar canal stenosis were treated in the authors' department with the proposed technique. The patients were prospectively analyzed. There were 15 men and 6 women who ranged in age from 48 to 71 years (mean 58 years). Nine patients underwent 1-level and 12 patients underwent 2-level treatment. Surgery involved wide opening of the articular joint, denuding of the articular capsule/endplate cartilage, distraction of the facets, and forced impaction of Goel intraarticular spacers. Bone graft pieces obtained by sectioning the spinous processes were placed within and over the joint and in the midline over the adequately prepared host area of laminae. The Oswestry Disability Index and visual analog scale were used to clinically assess the patients before and after surgery and at follow-up. The alterations in the physical architecture of spinal canal and intervertebral foramen dimensions were evaluated before and after placement of the intrafacet implant and after at least 6 months of follow-up. All patients had varying degrees of relief from symptoms of local back pain and radiculopathy. Impaction of spacers within the facet joints resulted in an increase in the spinal canal and intervertebral root canal dimensions (mean 2.33 mm), reduction of buckling of the ligamentum flavum, and reduction of the extent of bulge of the disc into the spinal canal. The procedure resulted in firm stabilization and fixation of the spinal segment and provided a ground for arthrodesis. No patient worsened neurologically after treatment. During the follow-up period, all patients had evidence of segmental bone fusion. No patient underwent reexploration or further surgery of the lumbar spine. Impaction of the spacers within the articular cavity after facet distraction resulted in reversal of several effects of spine degeneration that had caused spinal and root canal stenosis. The safe, firm, and secure stabilization at the fulcrum of lumbar spinal movements provided a ground for segmental spinal arthrodesis. The immediate postoperative and lasting recovery from symptoms suggests the validity of the procedure.
Posterior convex release and interbody fusion for thoracic scoliosis: technical note.
Mac-Thiong, Jean-Marc; Asghar, Jahangir; Parent, Stefan; Shufflebarger, Harry L; Samdani, Amer; Labelle, Hubert
2016-09-01
Anterior release and fusion is sometimes required in pediatric patients with thoracic scoliosis. Typically, a formal anterior approach is performed through open thoracotomy or video-assisted thoracoscopic surgery. The authors recently developed a technique for anterior release and fusion in thoracic scoliosis referred to as "posterior convex release and interbody fusion" (PCRIF). This technique is performed via the posterior-only approach typically used for posterior instrumentation and fusion and thus avoids a formal anterior approach. In this article the authors describe the technique and its use in 9 patients-to prevent a crankshaft phenomenon in 3 patients and to optimize the correction in 6 patients with a severe thoracic curve showing poor reducibility. After Ponte osteotomies at the levels requiring anterior release and fusion, intervertebral discs are approached from the convex side of the scoliosis. The annulus on the convex side of the scoliosis is incised from the lateral border of the pedicle to the lateral annulus while visualizing and protecting the pleura and spinal cord. The annulus in contact with the pleura and the anterior longitudinal ligament are removed before completing the discectomies and preparing the endplates. The PCRIF was performed at 3 levels in 4 patients and at 4 levels in 5 patients. Mean correction of the main thoracic curve, blood loss, and length of stay were 74.9%, 1290 ml, and 7.6 days, respectively. No neurological deficit, implant failure, or pseudarthrosis was observed at the last follow-up. Two patients had pleural effusion postoperatively, with 1 of them requiring placement of a chest tube. One patient had pulmonary edema secondary to fluid overload, while another patient underwent reoperation for a deep wound infection 3 weeks after the initial surgery. The technique is primarily indicated in skeletally immature patients with open triradiate cartilage and/or severe scoliosis. It can be particularly useful if there is significant vertebral rotation because access to the disc and anterior longitudinal ligament from the convex side will become safer. The PCRIF is an alternative to the formal anterior approach and does not require repositioning between the anterior and posterior stages, which prolongs the surgery and can be associated with an increased complication rate. The procedure can be done in the presence of preexisting pulmonary morbidity such as pleural adhesions and decreased pulmonary function because it does not require mobilization of the lung or single-lung ventilation. However, PCRIF can still be associated with pulmonary complications such as a pleural effusion, and care should be taken to avoid iatrogenic injury to the pleura. Placement of a deep wound drain at the level of the PCRIF is strongly recommended if postoperative bleeding is anticipated, to decrease the risk of pleural effusion.
Pressure Dome for High-Pressure Electrolyzer
NASA Technical Reports Server (NTRS)
Norman, Timothy; Schmitt, Edwin
2012-01-01
A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom segment and is trapped by the flange on the top dome segment when these components are bolted together with high-strength bolts. The pressure dome has several unique features. It is made (to ASME Pressure Vessel guidelines) in a high-strength aluminum alloy with the strength of stainless steel and the weight benefits of aluminum. The flange of the upper dome portion contains specially machined flats for mounting the dome, and other flats dedicated to the special feedthroughs for electrical connections. A pressure dome can be increased in length to house larger stacks (more cells) of the same diameter with the simple addition of a cylindrical segment. To aid in dome assembly, two stainless steel rings are employed. One is used beneath the heads of the high-strength bolts in lieu of individual hardened washers, and another is used instead of individual nuts. Like electrolyzers could be operated at low or high pressures simply by operating the electrolyzer outside or inside a pressurized dome.
Diaphragmatic height index: new diagnostic test for phrenic nerve dysfunction.
Pornrattanamaneewong, Chaturong; Limthongthang, Roongsak; Vathana, Torpon; Kaewpornsawan, Kamolporn; Songcharoen, Panupan; Wongtrakul, Saichol
2012-11-01
The diaphragmatic height index (DHI) was developed to measure the difference in diaphragm levels. The purpose of this study was to set definite DHI values and test the accuracy of these values for use as a new diagnostic test for phrenic nerve dysfunction. All data for this study were obtained from medical charts and retrospectively reviewed. One hundred sixty-five patients with brachial plexus injury who had undergone nerve transfers between 2005 and 2008 were divided into Groups A and B. Group A consisted of 40 patients (mean age 28.0 years) who had sustained concomitant injury of the brachial plexus and phrenic nerves. Patients in Group A1 had right phrenic nerve injury and those in Group A2 had left phrenic nerve injury. Intraoperative direct electrical stimulation of the phrenic nerve was considered the gold standard in assessing nerve function in all patients with brachial plexus injury. Group B consisted of 125 patients (mean age 28.7 years) with brachial plexus injury and normal phrenic nerve function. Group C, the control group, consisted of 80 patients with nonbrachial plexus injury (mean age 34.0 years) who had undergone other kinds of orthopedic operations between April and June 2009. Standard posteroanterior chest radiographs were blindly interpreted using the Siriraj inhouse picture archiving and communication system in all 245 patients in the study. First, a reference line (R line) was drawn along the inferior endplate of T-10. Then, 2 lines (lines A and B) were drawn through the highest point of each diaphragm and parallel to the R line. The difference between these 2 lines divided by the height of T-10 was defined as the DHI. The cutoff points of the DHI for diagnosing right and left phrenic nerve dysfunction were analyzed with a receiver operating characteristic curve. The accuracy of these DHI values was then evaluated. The DHI in Group C was 0.64 ± 0.44, slightly higher than the DHI in Group B, with no significant difference. Diaphragmatic height indexes in Groups A1 and A2 were 2.0 ± 0.99 and -1.04 ± 0.83, respectively, which were significantly different from those in Groups B and C (p < 0.05). The cutoff point of the DHI for diagnosing right phrenic nerve dysfunction was > 1.1, and that for left phrenic nerve dysfunction was < 0.2. The sensitivity and specificity of right and left DHI values were 90.5% and 86.3%, and 94.7 and 88.3%, respectively. Data in this study show that diaphragm paralysis can be simply and reliably predicted by the DHI. Diaphragmatic height index values > 1.1 and < 0.2 are proposed as the new diagnostic test for right and left phrenic nerve dysfunction with a high degree of accuracy. This index is applicable in diagnosing phrenic nerve dysfunction that occurs concomitantly with brachial plexus injury or from other etiologies.
Kääpä, Eeva; Luoma, Katariina; Pitkäniemi, Janne; Kerttula, Liisa; Grönblad, Mats
2012-01-15
Intensity of pain and level of disability (Oswestry Disability Index [ODI]) were compared with the relative size of Modic type 1 (M1) and Modic type 2 (M2) lesions. Clinical symptoms of patients having mixed M1-M2 lesion (n = 49) were compared with patients having a "pure" M1 lesion (n = 13). To determine the relation of the sizes of M1 and M2 lesions and the type of Modic lesion (mixed M1-M2 or pure M1 lesion) with intensity of low back pain and level of perceived disability. Endplate signal abnormalities, particularly M1 changes indicating edema and inflammation, have been suggested to play an important role in the etiopathogenesis of a subgroup of patients with nonspecific chronic low back pain (CLBP). However, their association with clinical symptoms has not been studied in detail previously. Sixty-two CLBP patients with a large M1 lesion were selected from CLBP patients who were sent for the first time for standard lumbar spine magnetic resonance imaging at a university hospital. To exclude other causes of CLBP, as far as possible, strict exclusion criteria were used: any specific back disease, even a slight nerve root compression, a recent or major spine operation, or age older than 65 years. The relative sizes of M1 and M2 lesions were visually estimated from sagittal images for comparison with clinical symptoms. The majority of patients (91.9%; 57 of 62) had an M1 lesion at a single level, 92% of the lesions being at L4-L5 or L5-S1 level. Forty-nine patients (79.0%) had a mixed M1-M2 lesion, and 13 (21.0%) had a pure M1 lesion. The mean of the pain intensity score was 6.2, and, correspondingly, the Oswestry Disability Index was 30.4. The mean relative sagittal area of the largest M1 lesion was 24.6% (SD = 16.2), and that of the M2 lesion was 10.9% (SD = 11.6). Neither the pain intensity nor the ODI scores were found to correlate with the largest relative size of the M1 lesion. The patients with "pure" M1 lesion had statistically significantly more clinical symptoms than patients having a mixed M1-M2 lesion. We conclude that the size of M1 lesion does not directly correlate with the clinical symptoms but that the type of Modic lesion is more important. This study supports the previous observations that when the inflammatory process turns to the mixed M1-M2 lesions, clinical symptoms decrease.
NASA Astrophysics Data System (ADS)
Alwood, Joshua Stewart
Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous bone in male mice. Mechanical unloading, by contrast, is shown to cause bone loss in the vertebrae via cancellous and cortical thinning that resulted in decreased whole-bone mechanical properties. The effects of mechanical unloading were altogether reversible in the vertebra after re-ambulation, though some residual alteration of trabecular morphology persisted. The combination of unloading and radiation exposure appeared to worsen the reductions of strength. Under either environmental condition, cancellous bone loss occurred near the vertebral endplates and at the centrum midplane. Finite element analysis suggested that tissue-level stresses increase in the centrum after either unloading or irradiation in agreement with the cellular-solid model of dense, plate-like trabeculae. Force-sharing between cancellous and cortical bone decreased after radiation, with stress concentrating on the cortex. In conclusion, acute exposure to spaceflight-relevant ionizing radiation altered trabecular microarchitecture and stress distribution, without a loss of whole-bone strength at the endpoints investigated, while unloading presented the greater immediate detriment to whole-bone mechanical properties. From a skeletal-health perspective, strategies to mitigate and counteract astronaut exposure to acute doses of radiation and mechanical unloading should be developed in preparation for long-term human spaceflight.
Oberkircher, Ludwig; Krüger, Antonio; Hörth, Dominik; Hack, Juliana; Ruchholtz, Steffen; Fleege, Christoph; Rauschmann, Michael; Arabmotlagh, Mohammad
2018-03-01
In the operative treatment of osteoporotic vertebral body fractures, a dorsal stabilization in combination with a corpectomy of the fractured vertebral body might be necessary with respect to the fracture morphology, whereby the osteoporotic bone quality may possibly increase the risk of implant failure. To achieve better stability, it is recommended to use cement-augmented screws for dorsal instrumentation. Besides careful end plate preparation, cement augmentation of the adjacent end plates has also been reported to lead to less reduction loss. The aim of the study was to evaluate biomechanically under cyclic loading whether an additional cement augmentation of the adjacent end plates leads to improved stability of the inserted cage. Methodical cadaver study. Fourteen fresh frozen human thoracic spines with proven osteoporosis were used (T2-T7). After removal of the soft tissues, the spine was embedded in Technovit (Kulzer, Germany). Subsequently, a corpectomy of T5 was performed, leaving the dorsal ligamentary structures intact. After randomization with respect to bone quality, two groups were generated: Dorsal instrumentation (cemented pedicle screws, Medtronic, Minneapolis, MN, USA)+cage implantation (CAPRI Corpectomy Cage, K2M, Leesburg, VA, USA) without additional cementation of the adjacent endplates (Group A) and dorsal instrumentation+cage implantation with additional cement augmentation of the adjacent end plates (Group B). The subsequent axial and cyclic loading was performed at a frequency of 1 Hz, starting at 400 N and increasing the load within 200 N after every 500 cycles up to a maximum of 2,200 N. Load failure was determined when the cages sintered macroscopically into the end plates (implant failure) or when the maximum load was reached. One specimen in Group B could not be clamped appropriately into the test bench for axial loading because of a pronounced scoliotic misalignment and had to be excluded. The mean strength for implant failure was 1,000 N±258.2 N in Group A (no cement augmentation of the adjacent end plates, n=7); on average, 1,622.1±637.6 cycles were achieved. In Group B (cement augmentation of the adjacent end plates, n=6), the mean force at the end of loading was 1,766.7 N±320.4 N; an average of 3,572±920.6 cycles was achieved. Three specimens reached a load of 2,000 N. The differences between the two groups were significant (p=.006 and p=.0047) regarding load failure and number of cycles. Additional cement augmentation of the adjacent end plates during implantation of a vertebral body replacement in osteoporotic bone resulted in a significant increased stability of the cage in the axial cyclic loading test. Copyright © 2017 Elsevier Inc. All rights reserved.
Sun, Hai-Bo; Jing, Xiao-Shan; Liu, Yu-Zeng; Qi, Ming; Wang, Xin-Kuan; Hai, Yong
2018-06-01
To probe the relationship among cement volume/fraction, imaging features of cement distribution, and pain relief and then to evaluate the optimal volume during percutaneous vertebroplasty. From January 2014 to January 2017, a total of 130 patients eligible for inclusion criteria were enrolled in this prospective cohort study. According to the different degrees of pain relief, cement leakage, and cement distribution, all patients were allocated to 2 groups. Clinical and radiologic characteristics were assessed to identify independent factors influencing pain relief, cement leakage, and cement distribution, including age, sex, fracture age, bone mineral density, operation time, fracture level, fracture type, modified semiquantitative severity grade, intravertebral cleft, cortical disruption in the vertebral wall, endplate disruption, type of nutrient foramen, fractured vertebral body volume, intravertebral cement volume, and volume fraction. A receiver operating characteristic curve was used to analyze the diagnostic value of the cement volume/fraction and then to obtain the optional cut-off value. The preoperative visual analog scale scores in the responders versus nonresponders patient groups were 7.37 ± 0.61 versus 7.87 ± 0.92 and the postoperative VAS scores in the responders versus nonresponders were 2.04 ± 0.61 versus 4.33 ± 0.49 at 1 week. There were no independent factors influencing pain relief. There were 95 (73.08%) patients who experienced cement leakage, and cortical disruption in the vertebral wall and cement fraction percentage were identified as independent risk factors by binary logistic regression analysis (adjusted odds ratio [OR] 2.935, 95% confidence interval [95% CI] 1.214-7.092, P = 0.017); (adjusted OR 1.134, 95% CI 1.026-1.254, P = 0.014). The area under the receiver-operating characteristic curve of volume fraction (VF%) was 0.658 (95% CI 0.549-0.768, P = 0.006 < 0.05). The cut-off value of VF% for cement leakage was 21.545%, with a sensitivity of 69.50% and a specificity of 60.00%. The incidence of favorable cement distribution was 74.62% (97/130), and VF% were identified as independent protective factors (adjusted OR 1.185, 95% CI 1.067-1.317, P = 0.002) The area under the receiver-operating characteristic curve of VF% was 0.686 (95% CI 0.571-0.802, P = 0.001 < 0.05). The cut-off value of VF% to reach a favorable cement distribution was 19.78%, with a sensitivity of 86.60% and a specificity of 51.50%. In osteoporotic vertebral compression fracture with mild/moderate fracture severity at the single thoracolumbar level, the intravertebral cement volume of 4-6 mL could relieve pain rapidly. The optimal VF% was 19.78%, which could achieve satisfactory cement distribution. With the increase of VF%, the incidence of cement leakage would also increase. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Javadi, H.; Blaes, B.; Boehm, M.; Boykins, K.; Gibbs, J.; Goodman, W.; Lieneweg, U.; Lux, J.; Lynch, K.; Narvaez, P.
2000-01-01
The sub-orbital rocket mission was a collaborative project between the University of New Hampshire, Cornell University, and the Jet Propulsion Laboratory (JPL) to study filamentation phenomena in the northern Auroral zone. The Enstrophy mission test flies the JPL Free-Flying Magnetometer (FFM) concept. The FFM technology development task has been funded by NASA develop miniaturized, low-power, integrated "sensorcrafts". JPL's role was to design, integrate, test, and deliver four FFMs for deployment from the sounding rocket, allowing a unique determination of curl-B. This provides a direct measurement of magnetic-field-aligned current density along the rocket trajectory. A miniaturized three-axis fluxgate magnetometer was integrated with a 4-channel 22-bit sigma-delta Analog to Digital Converter (ADC), four temperature sensors, digital control electronics, seven (Li-SOCl2) batteries, two (4 deg x 170 deg field of view) sun-sensors, a fan-shaped-beam laser diode beacon, a (16 MHz) stable Temperature Compensated Crystal Oscillator (TCXO) clock, Radio Frequency (RF) communication subsystem, and an antenna for approximately 15 minutes of operation where data was collected continuously and transmitted in three (3) bursts (approximately 26 seconds each) to ground station antennas at Poker Flat, Alaska. FFMs were stowed within two trays onboard the rocket during the rocket launch and were released simultaneously using the spinning action of the rocket at approximately 300 km altitude (approximately 100 sec. into the flight). FFMs were deployed with spin rate of approximately 17 Hz and approximately 3 m/sec linear velocity with respect to the rocket. For testing purposes while the rocket was in the launch pad and during flight prior to release of FFMs from the rocket, commands (such as "power on", "test", "flight", "power off', and clock "Reset" signal) were transmitted via a infrared Light Emitting Diode to an infrared detector in the FFM. Special attention was paid to low magnetic signature electronic design and choice of materials in packaging. The miniaturized fluxgate magnetometers had a range of 1-60000 nT with 0.1% full-scale linearity. The frequency range of interest for magnetic measurement was 10 mHz - 50 Hz. Digital data from the magnetometer's three axes were placed in a 4MB Static Random Access Memory (SRAM) in data packages (frames) formatted together with time tags and frame ID. After a specified time was elapsed, the data were Viterbi encoded and transmitted at a rate of 100 kbps (BPSK). Each of the four FFMs transmitted at different frequency. These carrier frequencies were in the range of 2200-2300 MHz. The antenna was a single patch on a high dielectric constant substrate covering one end-plate of the hockey-puck-sized unit. The local clocks aboard the FFMs were reset at the start of the mission and stayed synchronized within 3 msec during the mission. Position of each FFM with respect to the rocket is calculated by the knowledge of its release velocity (measured at exit point of the FFM launcher tract) providing an accuracy of 1 m over the maximum range of 3 km. Spatial and temporal nature of observants can be separated to within 3 m in space or 3 msec time interval.
Bostelmann, Richard; Keiler, Alexander; Steiger, Hans Jakob; Scholz, Armin; Cornelius, Jan Frederick; Schmoelz, Werner
2017-01-01
Augmentation of pedicle screws is recommended in selected indications (for instance: osteoporosis). Generally, there are two techniques for pedicle screw augmentation: inserting the screw in the non cured cement and in situ-augmentation with cannulated fenestrated screws, which can be applied percutaneously. Most of the published studies used an axial pull out test for evaluation of the pedicle screw anchorage. However, the loading and the failure mode of pullout tests do not simulate the cranio-caudal in vivo loading and failure mechanism of pedicle screws. The purpose of the present study was to assess the fixation effects of different augmentation techniques (including percutaneous cement application) and to investigate pedicle screw loosening under physiological cyclic cranio-caudal loading. Each of the two test groups consisted of 15 vertebral bodies (L1-L5, three of each level per group). Mean age was 84.3 years (SD 7.8) for group 1 and 77.0 years (SD 7.00) for group 2. Mean bone mineral density was 53.3 mg/cm 3 (SD 14.1) for group 1 and 53.2 mg/cm 3 (SD 4.3) for group 2. 1.5 ml high viscosity PMMA bone cement was used for all augmentation techniques. For test group 1, pedicles on the right side of the vertebrae were instrumented with solid pedicle screws in standard fashion without augmentation and served as control group. Left pedicles were instrumented with cannulated screws (Viper cannulated, DePuy Spine) and augmented. For test group 2 pedicles on the left side of the vertebrae were instrumented with cannulated fenestrated screws and in situ augmented. On the right side solid pedicle screws were augmented with cement first technique. Each screw was subjected to a cranio-caudal cyclic load starting at 20-50 N with increasing upper load magnitude of 0.1 N per cycle (1 Hz) for a maximum of 5000 cycles or until total failure. Stress X-rays were taken after cyclic loading to evaluate screw loosening. Test group 1 showed a significant higher number of load cycles until failure for augmented screws compared to the control (4030 cycles, SD 827.8 vs. 1893.3 cycles, SD 1032.1; p < 0.001). Stress X-rays revealed significant less screw toggling for the augmented screws (5.2°, SD 5.4 vs. 16.1°, SD 5.9; p < 0.001). Test group 2 showed 3653.3 (SD 934) and 3723.3 (SD 560.6) load cycles until failure for in situ and cement first augmentation. Stress X-rays revealed a screw toggling of 5.1 (SD 1.9) and 6.6 (SD 4.6) degrees for in situ and cement first augmentation techniques (p > 0.05). Augmentation of pedicle screws in general significantly increased the number of load cycles and failure load comparing to the nonaugmented control group. For the augmentation technique (cement first, in situ augmented, percutaneously application) no effect could be exhibited on the failure of the pedicle screws. By the cranio-caudal cyclic loading failure of the pedicle screws occurred by screw cut through the superior endplate and the characteristic "windshield-wiper effect", typically observed in clinical practice, could be reproduced.
Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.
Siskey, Ryan; Ciccarelli, Lauren; Lui, Melissa K C; Kurtz, Steven M
2016-11-01
Most contemporary total disc replacements (TDRs) use conventional orthopaedic bearing couples such as ultrahigh-molecular-weight polyethylene (polyethylene) and cobalt-chromium (CoCr). Cervical total disc replacements incorporating polyetheretherketone (PEEK) bearings (specifically PEEK-on-PEEK bearings) have been previously investigated, but little is known about PEEK-on-ceramic bearings for TDR. (1) What is the tribologic behavior of a PEEK-on-ceramic bearing for cervical TDR under idealized, clean wear test conditions? (2) How does the PEEK-on-ceramic design perform under impingement conditions? (3) How is the PEEK-on-ceramic bearing affected by abrasive wear? (4) Is the particle morphology from PEEK-on-ceramic bearings for TDRs affected by adverse wear scenarios? PEEK-on-ceramic cervical TDR bearings were subjected to a 10 million cycle ideal wear test based on ASTM F2423 and ISO 181912-1 using a six-station spine wear simulator (MTS, Eden Prairie, MN, USA) with 5 g/L bovine serum concentration at 23° ± 2° C (ambient temperature). Validated 1 million cycle impingement and 5 million cycle abrasive tests were conducted on the PEEK-on-ceramic bearings based, in part, on retrieval analysis of a comparable bearing design as well as finite element analyses. The ceramic-on-PEEK couple was characterized for damage modes, mass and volume loss, and penetration and the lubricant was subjected to particle analysis. The resulting mass wear rate, volumetric wear rate, based on material density, and particle analysis were compared with clinically available cervical disc bearing couples. The three modes of wear (idealized, impingement, and abrasive) resulted in mean mass wear rates of 0.9 ± 0.2 mg/MC, 1.9 ± 0.5 mg/MC, and 2.8 ± 0.6 mg/MC, respectively. The mass wear rates were converted to volumetric wear rates using density and found to be 0.7 ± 0.1 mm 3 /MC, 1.5 ± 0.4 mm 3 /MC, and 2.1 ± 0.5 mm 3 /MC, respectively. During each test, the PEEK endplates were the primary sources of wear and demonstrated an abrasive wear mechanism. Under idealized and impingement conditions, the ceramic core also demonstrated slight polishing of the articulating surface but the change in mass was unmeasurable. During abrasive testing, the titanium transfer on the core was shown to polish over 5 MC of testing. In all cases and consistent with previous studies of other PEEK bearing couples, the particle size was primarily < 2 µm and morphology was smooth and spheroidal. Overall, the idealized PEEK-on-ceramic wear rate (0.7 ± 0.1 mm 3 /MC) appears comparable to the published wear rates for other polymer-on-hard bearing couples (0.3-6.7 mm 3 /MC) and within the range of 0.2 to 1.9 mm 3 /MC reported for PEEK-on-PEEK cervical disc designs. The particles, based on size and morphology, also suggest the wear mechanism is comparable between the PEEK-on-ceramic couple and other polymer-on-ceramic orthopaedic couples. The PEEK-on-ceramic bearing considered in this study is a novel bearing couple for use in total disc arthroplasty devices and will require clinical evaluation to fully assess the bearing couple and total disc design. However, the wear rates under idealized and adverse conditions, and particle size and morphology, suggest that PEEK-on-ceramic bearings may be a reasonable alternative to polyethylene-on-CoCr and metal-on-metal bearings currently used in cervical TDRs.
Effect of Ex Vivo Ionizing Radiation on Static and Fatigue Properties of Mouse Vertebral Bodies
NASA Technical Reports Server (NTRS)
Emerzian, Shannon R.; Pendleton, Megan M.; Li, Alfred; Liu, Jennifer W.; Alwood, Joshua S.; O’Connell, Grace D.; Keaveny, Tony M.
2018-01-01
For a variety of medical and scientific reasons, human bones can be exposed to a wide range of ionizing radiation levels. In vivo radiation therapy (0.05 kGy) is used in cancer treatment, and ex vivo irradiation (25-35 kGy) is used to sterilize bone allografts. Ionizing radiation in these applications has been shown to increase risk of fracture, decrease bone quality and degrade collagen integrity. Past studies have investigated the deleterious effects of radiation on cortical or trabecular bone specimens individually, but to date no studies have examined whole bones containing both cortical and trabecular tissue. Furthermore, a clear relationship between the dose and the mechanical and biochemical response of bone's extracellular matrix has yet to be established for doses ranging from cancer therapy to allograft sterilization (0.05-35 kGy). To gain insight into these issues, we conducted an ex vivo radiation study to investigate non-cellular (i.e. matrix) effects of ionizing radiation dose on vertebral whole bone mechanical properties, over a range of radiation doses (0.05-35 kGy), with a focus on any radiation-induced changes in collagen. With underlying mechanisms of action in mind, we hypothesized that any induced reductions in mechanical properties would be associated with changes in collagen integrity. METHODS: 20-week old female mice were euthanized and the lumbar spine was dissected using IACUC approved protocols. The lumbar vertebrae (L1- S1) were extracted from the spine via cuts through adjacent intervertebral discs, and the endplates, posterior processes, surrounding musculature, and soft tissues were removed (approx. 1.5mm diameter, approx. 2mm height). Specimens were randomly assigned to one of five groups for ex vivo radiation exposure: x-ray irradiation at 0.05, 1, 17, or 35 kGy, or a 0 kGy control. Following irradiation, the vertebrae were imaged using microcomputed tomography (micro-CT) and then subjected to either monotonic compressive loading to failure or uniform cyclic compressive loading. During cyclic testing, samples were loaded in force control to a force level that corresponded to a strain of 0.46%, as determined in advance by a linearly elastic micro-CT-based finite element analysis for each specimen. Tests were stopped at imminent fracture, defined as a rapid increase in strain. The main outcome for the monotonic test was the strength (maximum force); for cyclic testing it was the fatigue life (log of the number of cycles of loading at imminent failure). A fluorometric assay was used on the S1 vertebrae to measure the number of non-enzymatic collagen crosslinks[4]. A one-way ANOVA was performed on mechanical properties and collagen crosslinks; means were compared with controls using Dunnett's method, with a Tukey-Kramer post-hoc analysis when significance was found (p < or = 0.05). RESULTS: Compared to the unirradiated control group, the concentration of non-enzymatic collagen crosslinks was significantly increased for all irradiated groups (p < 0.0001), and being higher by at least 50% (Figure 1a). By contrast, the radiation effects on the collagen were only evident at the higher doses. For irradiation exposures of 17 kGy or more, strength decreased substantially as the radiation level was increased, but no effect was evident below 17 kGy (Figure 1b). There was no significant change in the stiffness or maximum displacement for any radiation dose (p>0.05). The finite element analysis prescribed force level for cyclic loading exceeded the measured (monotonic) strength of the 17 and 35 kGy irradiated groups (mean +/- SD, 20.6 +/- 5.6 N; 13.2 +/- 3.7 N, respectively) and therefore these groups were eliminated from the fatigue study. The fatigue life for the 0.05 and 1 kGy groups were similar to each other and were not statistically significantly different from the control group (Figure 1c).
Analytical solutions of the Dirac equation under Hellmann–Frost–Musulin potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onate, C.A., E-mail: oaclems14@physicist.net; Onyeaju, M.C.; Ikot, A.N.
2016-12-15
The approximate analytical solutions of the Dirac equation with Hellmann–Frost–Musulin potential have been studied by using the generalized parametric Nikiforov–Uvarov (NU) method for arbitrary spin–orbit quantum number k under the spin and pseudospin symmetries. The Hellmann–Frost–Musulin potential is a superposition potential that consists of Yukawa potential, Coulomb potential, and Frost–Musulin potential. As a particular case, we found the energy levels of the non-relativistic limit of the spin symmetry. The energy equation of Yukawa potential, Coulomb potential, Hellmann potential and Frost–Musulin potential are obtained. Energy values are generated for some diatomic molecules.
Novel nonlinear knowledge-based mean force potentials based on machine learning.
Dong, Qiwen; Zhou, Shuigeng
2011-01-01
The prediction of 3D structures of proteins from amino acid sequences is one of the most challenging problems in molecular biology. An essential task for solving this problem with coarse-grained models is to deduce effective interaction potentials. The development and evaluation of new energy functions is critical to accurately modeling the properties of biological macromolecules. Knowledge-based mean force potentials are derived from statistical analysis of proteins of known structures. Current knowledge-based potentials are almost in the form of weighted linear sum of interaction pairs. In this study, a class of novel nonlinear knowledge-based mean force potentials is presented. The potential parameters are obtained by nonlinear classifiers, instead of relative frequencies of interaction pairs against a reference state or linear classifiers. The support vector machine is used to derive the potential parameters on data sets that contain both native structures and decoy structures. Five knowledge-based mean force Boltzmann-based or linear potentials are introduced and their corresponding nonlinear potentials are implemented. They are the DIH potential (single-body residue-level Boltzmann-based potential), the DFIRE-SCM potential (two-body residue-level Boltzmann-based potential), the FS potential (two-body atom-level Boltzmann-based potential), the HR potential (two-body residue-level linear potential), and the T32S3 potential (two-body atom-level linear potential). Experiments are performed on well-established decoy sets, including the LKF data set, the CASP7 data set, and the Decoys “R”Us data set. The evaluation metrics include the energy Z score and the ability of each potential to discriminate native structures from a set of decoy structures. Experimental results show that all nonlinear potentials significantly outperform the corresponding Boltzmann-based or linear potentials, and the proposed discriminative framework is effective in developing knowledge-based mean force potentials. The nonlinear potentials can be widely used for ab initio protein structure prediction, model quality assessment, protein docking, and other challenging problems in computational biology.
Poles of the S-matrix in Woods-Saxon and Salamon-Vertse potentials
NASA Astrophysics Data System (ADS)
Vertse, T.; Lovas, R. G.; Salamon, P.; Rácz, A.
2012-10-01
The motions of the l = 0 poles of the S-matrix with varying potential strength is calculated in a cut-off Woods-Saxon (CWS) potential and in the Salamon-Vertse (SV) potential [3]. Both potentials are zero beyond a certain finite distance but the CWS potential has a jump at the cut while the SV potential goes to zero smoothly. The jump of the CWS potential might cause a strange circling of the trajectories at their starting region. This feature does not appear with the SV potential. Starting points of the trajectories depend on the ranges of the potentials. For CWS these points do depend on the unphysical cut-off radius. In this respect the SV potential seems to be superior to the CWS potential.
Some remarks concerning the centrifugal term approximation
NASA Astrophysics Data System (ADS)
Ferreira, F. J. S.; Bezerra, V. B.
2017-10-01
We generalize the Pekeris approximation for the centrifugal term potential, l/(l +1 ) r2 , and use this to obtain the solutions of the radial Schrödinger equation for the arbitrary angular quantum number, l, of the Hulthén potential. We also obtain the expressions for the bound state energies corresponding to this potential and calculate their values for different states and compare with other results presented in the literature. We also consider some models of physical potentials, namely, the Eckart potential, the Poschl-Teller potentials, the Rosen-Morse potential, the Woods-Saxon potential, and the Manning-Rosen potential. Thus, following straightforward the example corresponding to the Hulthén potential, we show what the radial solutions and the energy spectra for these potentials are.
Symmetric and anti-symmetric LS hyperon potentials from lattice QCD
NASA Astrophysics Data System (ADS)
Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; Inoue, Takashi; HAL QCD Collaboration
2014-09-01
We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. This work is supported by JSPS KAKENHI Grant Number 25400244.
Exchange repulsive potential adaptable for electronic structure changes during chemical reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp
2015-04-28
Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less
NASA Astrophysics Data System (ADS)
Suparmi; Cari, C.; Wea, K. N.; Wahyulianti
2018-03-01
The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.
NASA Astrophysics Data System (ADS)
Russel, Fhillipo; Damayanti, Astrid; Pin, Tjiong Giok
2018-02-01
This research is about geothermal potential of Mount Karang, Banten Province which is based on the characteristics of the region. This research method used is geochemistry sample of hot springs and integrated with GIS method for spatial of geothermal potential. Based on the geothermal potential, Mount Karang is divided into three regions, ie high potential, normal potential, and low potential. The high geothermal potential region covers an area of 24.16 Km2 and which there are Cisolong and Banjar 2 hot springs. The normal potential covers Kawah hot spring. Index of the fault of Mount Karang region is one of the significant physical characteristics to determine geothermal potential.
Miscellaneous methods for measuring matric or water potential
Scanlon, Bridget R.; Andraski, Brian J.; Bilskie, Jim; Dane, Jacob H.; Topp, G. Clarke
2002-01-01
A variety of techniques to measure matric potential or water potential in the laboratory and in the field are described in this section. The techniques described herein require equilibration of some medium whose matric or water potential can be determined from previous calibration or can be measured directly. Under equilibrium conditions the matric or water potential of the medium is equal to that of the soil. The techniques can be divided into: (i) those that measure matric potential and (ii) those that measure water potential (sum of matric and osmotic potentials). Matric potential is determined when the sensor matrix is in direct contact with the soil, so salts are free to diffuse in or out of the sensor matrix, and the equilibrium measurement therefore reflects matric forces acting on the water. Water potential is determined when the sensor is separated from the soil by a vapor gap, so salts are not free to move in or out of the sensor, and the equilibrium measurement reflects the sum of the matric and osmotic forces acting on the water.Seven different techniques are described in this section. Those that measure matric potential include (i) heat dissipation sensors, (ii) electrical resistance sensors, (iii) frequency domain and time domain sensors, and (iv) electro-optical switches. A method that can be used to measure matric potential or water potential is the (v) filter paper method. Techniques that measure water potential include (vi) the Dew Point Potentiameter (Decagon Devices, Inc., Pullman, WA1) (water activity meter) and (vii) vapor equilibration.The first four techniques are electronically based methods for measuring matric potential. Heat dissipation sensors and electrical resistance sensors infer matric potential from previously determined calibration relations between sensor heat dissipation or electrical resistance and matric potential. Frequency-domain and timedomain matric potential sensors measure water content, which is related to matric potential of the sensor through calibration. Electro-optical switches measure changes in light transmission through thin, nylon filters as they absorb or desorb water in response to changes in matric potential. Heat dissipation sensors and electrical resistance sensors are used primarily in the field to provide information on matric potential. Frequency domain matric potential sensors are new and have not been widely used. Time domain matric potential sensors and electro-optical switches are new and have not been commercialized. For the fifth technique, filter paper is used as the standard matrix. The filter paper technique measures matric potential when the filter paper is in direct contact with soil or water potential when separated from soil by a vapor gap. The Dew Point Potentiameter calculates water potential from the measured dew point and sample temperature. The vapor equilibration technique involves equilibration of soil samples with salt solutions of known osmotic potential. The filter paper, Dew Point Potentiameter, and vapor equilibration techniques are generally used in the laboratory to measure water potential of disturbed field samples or to measure water potential for water retention functions.
Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia.
Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi; Arai, Yoshifumi
2016-02-01
We have previously reported that transesophageal motor evoked potential is feasible and more stable than transcranial motor evoked potential. This study aimed to investigate the efficacy of transesophageal motor evoked potential to monitor spinal cord ischemia. Transesophageal and transcranial motor evoked potentials were recorded in 13 anesthetized dogs at the bilateral forelimbs, anal sphincters, and hindlimbs. Spinal cord ischemia was induced by aortic balloon occlusion at the 8th to 10th thoracic vertebra level. In the 12 animals with motor evoked potential disappearance, occlusion was maintained for 10 minutes (n = 6) or 40 minutes (n = 6) after motor evoked potential disappearance. Neurologic function was evaluated by Tarlov score at 24 and 48 hours postoperatively. Time to disappearance of bilateral motor evoked potentials was quicker in transesophageal motor evoked potentials than in transcranial motor evoked potentials at anal sphincters (6.9 ± 3.1 minutes vs 8.3 ± 3.4 minutes, P = .02) and hindlimbs (5.7 ± 1.9 minutes vs 7.1 ± 2.7 minutes, P = .008). Hindlimb function was normal in all dogs in the 10-minute occlusion group, and motor evoked potentials recovery (>75% on both sides) after reperfusion was quicker in transesophageal motor evoked potentials than transcranial motor evoked potentials at hindlimbs (14.8 ± 5.6 minutes vs 24.7 ± 8.2 minutes, P = .001). At anal sphincters, transesophageal motor evoked potentials always reappeared (>25%), but transcranial motor evoked potentials did not in 3 of 6 dogs. In the 40-minute occlusion group, hindlimb motor evoked potentials did not reappear in 4 dogs with paraplegia. Among the 2 remaining dogs, 1 with paraparesis (Tarlov 3) showed delayed recovery (>75%) of hindlimb motor evoked potentials without reappearance of anal sphincter motor evoked potentials. In another dog with spastic paraplegia, transesophageal motor evoked potentials from the hindlimbs remained less than 20%, whereas transcranial motor evoked potentials showed recovery (>75%). Transesophageal motor evoked potentials may be superior to transcranial motor evoked potentials in terms of quicker response to spinal cord ischemia and better prognostic value. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Programmable Potentials: Approximate N-body potentials from coarse-level logic.
Thakur, Gunjan S; Mohr, Ryan; Mezić, Igor
2016-09-27
This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the "coefficients" of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.