Striding Towards Better Physical Therapy
NASA Technical Reports Server (NTRS)
2003-01-01
This paper presents a discussion on a new rehabilitative device that promises to improve physical therapy for patients working to regain the ability to walk after facing traumatic injuries or a degenerative illness. Produced by Enduro Medical Technology, of East Hartford, Connecticut, the Secure Ambulation Module (S.A.M.) creates a stable and secure environment for patients as they stand during ambulation therapy.
Value of Impedance Cardiography during 6‐Minute Walk Test in Pulmonary Hypertension
Alkukhun, Laith; Arelli, Vineesha; Ramos, José; Newman, Jennie; McCarthy, Kevin; Pichurko, Bohdan; Minai, Omar A.; Dweik, Raed A.
2013-01-01
Abstract Background Methods that predict prognosis and response to therapy in pulmonary hypertension (PH) are lacking. We tested whether the noninvasive estimation of hemodynamic parameters during 6‐minute walk test (6MWT) in PH patients provides information that can improve the value of the test. Methods We estimated hemodynamic parameters during the 6MWT using a portable, signal‐morphology‐based, impedance cardiograph (PhysioFlow Enduro) with real‐time wireless monitoring via a bluetooth USB adapter. Results We recruited 48 subjects in the study (30 with PH and 18 healthy controls). PH patients had significantly lower maximum stroke volume (SV) and CI and slower cardiac output (CO) acceleration and decelerations slopes during the test when compared with healthy controls. In PH patients, CI change was associated with total distance walked (R = 0.62; P < 0.001) and percentage of predicted (R = 0.4, P = 0.03), HR recovery at 1 minute (0.57, P < 0.001), 2 minutes (0.65, P < 0.001), and 3 minutes (0.66, P < 0.001). Interestingly, in PH patients CO change during the test was predominantly related to an increase in SV instead of HR. Conclusions Estimation of hemodynamic parameters such as cardiac index during 6‐minute walk test is feasible and may provide useful information in patients with PH. Clin Trans Sci 2013; Volume #: 1–7 PMID:24330692
Sports injury or trauma? Injuries of the competition off-road motorcyclist.
Colburn, Nona T; Meyer, Richard D
2003-03-01
A prospective analysis of the injuries of off-road competition motorcyclist at four International Six Day Enduro (ISDE) events was performed utilizing the injury severity score (ISS) and the abbreviated injury scale (AIS). Of the 1787 participants, approximately 10% received injuries that required attention from a medical response unit. The majority (85%) sustained a mild injury (mean ISS 3.9). Loss of control while jumping and striking immovable objects were important risk determinants for serious injury. Although seasoned in off-road experiences, mean 15.3 years, 54% of those injured were first year rookies to the ISDE event. Speeds were below 50 km/h in the majority of accidents (80%), and were not statistically correlated with severity. The most frequently injured anatomical regions were the extremities (57%). The most common types of injury were ligamentous (50%). Seventy-seven percent of all fractures were AIS grades 1 and 2. The most common fractures were those of the foot and ankle (36%). Multiple fractures involving different anatomical regions, or a combination of serious injuries was seen with only one rider. When compared to the injuries of the street motorcyclist, competition riders had lower AIS grades of head and limb trauma. Off-road motorcycle competition is a relatively safe sport with injury rates comparably less than those of contact sports such as American football and hockey.
Tonelli, Adriano R; Wang, Xiao-Feng; Alkukhun, Laith; Zhang, Qi; Dweik, Raed A; Minai, Omar A
2014-06-01
Six-minute walk test (6MWT) continues to be a useful tool to determine the functional capacity in patients with vascular and other lung diseases; nevertheless, it has a limited ability to predict prognosis in this context. We tested whether the heart rate (HR) acceleration and decay slopes during the 6-m walk test are different in patients with pulmonary arterial hypertension (PAH), other lung diseases, and healthy controls. In addition, we assessed whether the HR slopes are associated with clinical worsening. Using a portable, signal-morphology-based, impedance cardiograph (PhysioFlow Enduro, Paris, France) with real-time wireless monitoring via a Bluetooth USB adapter we determined beat-by-beat HR. We included 50 subjects in this pilot study, 20 with PAH (all on PAH-specific treatment), 17 with other lung diseases (obstructive [n = 12, 71%] or restrictive lung diseases [5, 29%]), and 13 healthy controls. The beat-by-beat HR curves were significantly different among all three groups of subjects either during the activity or recovery of the 6MWT. HR curves were less steep in PAH than the other two groups (P < 0.001). HR acceleration rates were slower in patients with PAH or other lung diseases with progression of their disease (P < 0.001). In conclusion, the acceleration and decay slopes during 6MWT are different among patients with PAH, other lung diseases, and healthy controls. The HR slopes during 6MWT were steeper in patients without clinical worsening. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Vertical Structure and Sources of Aerosols in the Mediterranean Region (VESSAER)
NASA Astrophysics Data System (ADS)
Roberts, G. C.; Junkermann, W.; Leon, J.; Pont, V.; Mallet, M.; Augustin, P.; Dulac, F.
2012-12-01
The Mediterranean region has been identified as one of the most prominent global "Hot-Spots" in future climate change projections [Giorgi and Lionello, 2008] and is particularly characterized by its vulnerability to changes in the water cycle. To this end, the VESSAER campaign (VErtical Structure and Sources of AERosols in the Mediterranean Region) was designed to characterize the different sources of aerosol in the Mediterranean Basin and assess their regional impact on cloud microphysical and radiative properties. VESSAER was conducted on the ENDURO-KIT ultra-light aircraft [W. Junkermann, 2001] in late June-early July 2012. Activities include ground observations as well as aerosol lidar and sunphotometer measurements in conjunction with the airborne measurements. The VESSAER campaign complements existing ChArMEx (http://charmex.lsce.ipsl.fr/ ; PI: F. Dulac) and HyMeX (http://www.hymex.org/ ; PI: V. Ducroc and P. Drobinski) activities, which are the target of many European research institutes in 2012 and 2013. The main scientific goals during VESSAER are to investigate local versus long-range sources of aerosol and cloud condensation nuclei (CCN) and their vertical stratification in the lower troposphere, use aerosol hygroscopicity to study their evolution due to atmospheric processes, and couple in-situ airborne measurements with ground-based remote sensing to determine aerosol direct radiative impacts over a larger spatial scale. The background aerosol concentrations within the boundary layer (BL) in Corsica are nearly 2000 cm-3 (Dp > 10 nm); 50 cm-3 (Dp > 300 nm). We were surprised to find that nearly all of these particles are CCN-active at 0.3% supersaturation and presume that ageing and/or cloud processing play a role in rendering the aerosol in the Mediterranean Basin more hygroscopic. The vertical profiles during VESSAER clearly show the long-range transport of dust from the Saharan Desert and pollution from the European continent -- which were the two major sources of aerosol during the campaign. Two of the research flights coincided with CALIPSO overpasses. During both dust events, Saharan Dust layers are transported within the lower 5 km. Concentrations of large particles (Dp > 0.3 um) show a corresponding increase throughout the troposphere, and aerosol optical depth increased up to 0.7 (at 440 nm). Comparisons of the overpass with the in-situ measurements and ground-based lidar will be presented. In addition, layers of pollution above the BL show higher number concentrations (up to 6000 cm-3) and lower hygroscopicity than in the BL. These results suggest that downward mixing of European continental pollution contribute to the elevated background aerosol concentrations found throughout the Mediterranean Basin. Giorgi, F. and Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change 63: 90-104. Junkermann, W. (2001). An ultralight aircraft as platform for research in the lower troposphere: System performance and first results from radiation transfer studies in stratiform aerosol layers and broken cloud conditions. Journal of Atmospheric and Oceanic Technology 18: 934 - 946. ---------------- This work was supported by the European Facility for Airborne Research (EUFAR), Météo-France, CEA, ADEME, COST Action ES0802 (Unmanned Aerial Systems in Atmospheric Research).