Science.gov

Sample records for energetic ion-atom collisions

  1. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  2. Newly appreciated roles for electrons in ion-atom collisions

    SciTech Connect

    Sellin, I.A. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies.

  3. Storage rings for investigation of ion-atom collisions

    SciTech Connect

    Schuch, R.

    1987-08-01

    In this survey, we give a brief description of synchrotron storage rings for heavy ions, and examples for their use in ion-atom collision physics. The compression of the phase space distribution of the ions by electron cooling, and the gain factors of in-ring experiments compared to single-pass experiments are explained. Some examples of a new generation of ion-atom collision experiments which may become feasible with storage rings are given. These include the studies of angular differential single- and double-electron capture cross sections, the production of slow highly charged recoil ions, and atomic collision processes using decelerated and crossed beam. 30 refs.

  4. Multiple-electron processes in fast ion-atom collisions

    SciTech Connect

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs.

  5. Manipulating ion-atom collisions with coherent electromagnetic radiation.

    PubMed

    Kirchner, Tom

    2002-08-26

    Laser-assisted ion-atom collisions are considered in terms of a nonperturbative quantum mechanical description of the electronic motion. It is shown for the system He(2+) - H at 2 keV/amu that the collision dynamics depend strongly on the initial phase of the laser field and the applied wavelength. Whereas electronic transitions are caused by the concurrent action of the field and the projectile ion at relatively low frequencies, they can be separated into modified collisional capture and field ionization events in the region above the one-photon ionization threshold.

  6. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  7. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  8. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  9. High charge state, ion-atom collision experiments using accel-decel

    SciTech Connect

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.

    1987-01-01

    Recent studies of /sub 16/S/sup 13 +/ + He collisions between 2.5 and 200 MeV, which were made using the accel-decel technique with the Brookhaven National Laboratory coupled MP tandem Van de Graaff accelerators, are discussed. Cross sections were measured for single electron-capture and -loss as well as K x rays correlated to electron-capture. Other planned ion-atom collision experiments requiring accel-decel are also presented. 18 refs., 3 figs.

  10. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  11. Metal vapor target for precise studies of ion-atom collisions

    SciTech Connect

    Chen, W. Vorobyev, G.; Herfurth, F.; Hillenbrand, P.-M.; Spillmann, U.; Guo, D.; Trotsenko, S.; Gumberidze, A.; Stöhlker, Th.

    2014-05-15

    Although different ion-atom collisions have been studied in various contexts, precise values of cross-sections for many atomic processes were seldom obtained. One of the main uncertainties originates from the value of target densities. In this paper, we describe a unique method to measure a target density precisely with a combination of physical vapor deposition and inductively coupled plasma optical emission spectrometry. This method is preliminarily applied to a charge transfer cross-section measurement in collisions between highly charged ions and magnesium vapor. The final relative uncertainty of the target density is less than 2.5%. This enables the precise studies of atomic processes in ion-atom collisions, even though in the trial test the deduction of precise capture cross-sections was limited by other systematic errors.

  12. Screening-Antiscreening Effect in Ion-Atom Collisions.

    NASA Astrophysics Data System (ADS)

    Hulskotter, Hans-Peter G.

    1990-01-01

    In a collision between an atomic projectile carrying one or more electrons and a target atom, one of the events that may occur is the ionization of a projectile electron. Projectile ionization, usually called electron loss, is normally attributed to the Coulomb interaction between the target nucleus and projectile electron. The effect of the target electrons can be accounted for partially by introducing a screened Coulomb interaction between the target and the projectile electron. However, the target electrons can not only act coherently as screening agents, but may also act incoherently as ionizing (antiscreening) agents. We have measured the cross sections for projectile K-shell ionization for 0.75 - 3.5 MeV/Nucleon Li^{2+ }, C^{5+}, and O^{7+} projectiles, for projectile electron loss of 100 and 380 MeV/Nucleon Au^{52+} projectiles in collisions with H_2, He, and N _2, and for 380 MeV/N Au^ {75+} projectiles in collisions with H _2 and N_2 targets. We unambiguously demonstrate that for energies where the target electrons have sufficient kinetic energy in the projectile frame to ionize the projectile electron, the electron-electron interaction can lead to a significant increase in the total ionization cross section. The largest relative increase we have been able to observe is 76%. The experimental results generally agree with plane-wave Born approximation calculations by Bates and Griffing and modified by Anholt which take into account the interaction between projectile and target electrons. We also describe the properties of a new target gas cell which has been designed and built for the use at the relativistic heavy-ion accelerator at Lawrence Berkeley Laboratory.

  13. Coherence and correlations in fast ion-atom collisions

    SciTech Connect

    Burgdoerfer, J.

    1987-01-01

    This paper focusses on the description, classification and interpretation of coherent excitation of atomic or ionic systems with Coulombic two-body final state interactions. A group-theoretical approach is used to classify and interpret coherent excitation. The most significant result is that the state of excitation represented by a density operator can be mapped one to one onto expectation values of a set of operators. Examples are used to illustrate what can be learned about the collision process from investigations of coherent excitation. (JDH)

  14. Numerical calculation of ionization in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Horbatsch, Marko; Chassid, Michal

    1996-05-01

    Numerical solutions of the time-dependent Schrödinger equation in a 1D model and in a realistic 3D setting^1,2 are analyzed to calculate excitation probabilities and differential electron emission probabilities for collisions of fast bare projectiles with hydrogen atoms. The results are tested for the expected scaling behaviour with projectile charge and collision energy. The ionization probabilities are calculated by first projecting out the bound-state contributions from the time-evolved wavefunction and then performing a discrete Fourier transform. Comparison is provided with recent experiments for helium targets using cold target recoil ion momentum spectroscopy^3. For fast (v=12 au) and highly charged projectiles (Z_p=24) bound-state excitations are dominantly produced at much larger impact parameters than b >= 3 au for which the ionization channel receives its largest contribution. ^1 M. Horbatsch, Phys. Rev. A 44, R5346 (1991) ^2 M. Chassid and M. Horbatsch, J. Phys. B 28,L621 (1995) ^3 R. Moshammer, J. Ullrich, et. al. Phys. Rev. Lett. 73, 3371 (1994).

  15. Correlated eikonal initial state in ion-atom collisions

    SciTech Connect

    Ciappina, M.F.; Otranto, S.; Garibotti, C.R.

    2002-11-01

    An approximation is developed to deal with the ionization of atoms by bare charged ions. In this method the transition amplitude describing the three-body final state is evaluated using a continuum correlated wave and that for the initial state by an analytical continuation of the {phi}{sub 2} model to complex momenta. This procedure introduces in the atomic bound state a kinematical correlation with the projectile motion. Doubly differential cross sections (DDCS's) are computed for collisions of H{sup +} and F{sup 9+} ions with He atoms. Results for the DDCS's in the forward direction are compared with experimental data and other theoretical models. We find an enhancement of the distribution for low energy electrons and that the asymmetry of the electron capture to the continuum (ECC) peak is correctly described.

  16. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  17. One and a half centered expansion for ion-atom collisions

    SciTech Connect

    Reading, J.F.; Ford, A.L.; Becker, R.L.

    1980-01-01

    Fast ion-atom collisions in which charge transfer plays a dominant role have been traditionally treated by a two center expansion (TCE): the state wavefunction is approximated by a truncated set of Hilbert states centered on the target and projectile. This method is accurate but expensive in the use of computer time. A new method which allows charge transfer through variational time independent amplitudes, and target excitation and ionization through variational time dependent amplitudes is presented. The method retains the efficiency of a single centered expansion and yet reproduces the conventional TCE results in situations where charge transfer is dominant. Comparison to experiment is made.

  18. Coordinate space translation technique for simulation of electronic process in the ion-atom collision.

    PubMed

    Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S

    2011-04-21

    Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.

  19. Forward electron production in heavy ion-atom and ion-solid collisions

    SciTech Connect

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.

  20. Recent Applications of the Lattice, Time-Dependent Schr dinger Equation Approach for Ion-Atom Collisions

    SciTech Connect

    Schultz, David Robert; Ovchinnikov, S. Yu.; Sternberg, J. B.; Macek, J. H.

    2011-01-01

    Contemporary computational methods, such as the lattice, time-dependent Schroedinger equation (LTDSE) approach, have opened opportunities to study ion-atom collisions at a new level of detail and to uncover unexpected phenomena. Such interactions within gaseous, plasma, and material environments are fundamental to diverse applications such as low temperature plasma processing of materials, magnetic confinement fusion, and astrophysics. Results are briefly summarized here stemming from recent use of the LTDSE approach, with particular emphasis on elucidation of unexpected vortices in the ejected electron spectrum in ion-atom collisions and for an atom subject to an electric field pulse.

  1. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  2. Effect of electron-nuclei interaction on internuclear motions in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Tolstikhina, Inga Yu.; Tolstikhin, Oleg I.

    2015-10-01

    The electron-nuclei interaction affects the internuclear motion in slow ion-atom collisions, which in turn affects theoretical results for the cross sections of various collision processes. The results are especially sensitive to the details of the internuclear dynamics in the presence of a strong isotope effect on the cross sections, as is the case, e.g., for the charge transfer in low-energy collisions of He2+ with H, D, and T. By considering this system as an example, we show that internuclear trajectories defined by the Born-Oppenheimer (BO) potential in the entrance collision channel, which effectively accounts for the electron-nuclei interaction, are in much better agreement with trajectories obtained in the ab initio electron-nuclear dynamics approach [R. Cabrera-Trujillo et al., Phys. Rev. A 83, 012715 (2011), 10.1103/PhysRevA.83.012715] than the corresponding Coulomb trajectories. We also show that the use of the BO trajectory instead of the Coulomb trajectory in the calculations of the charge-transfer cross sections within the adiabatic approach improves the agreement of the results with ab initio calculations.

  3. Wave-packet continuum-discretization approach to ion-atom collisions: Nonrearrangement scattering

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Kadyrov, A. S.; Bray, I.

    2016-08-01

    A general single-center close-coupling approach based on a continuum-discretization procedure is developed to calculate excitation and ionization processes in ion-atom collisions. The continuous spectrum of the target is discretized using stationary wave packets constructed from the Coulomb wave functions, the eigenstates of the target Hamiltonian. Such continuum discretization allows one to generate pseudostates with arbitrary energies and distribution. These features are ideal for detailed differential ionization studies. The approach starts from the semiclassical three-body Schrödinger equation for the scattering wave function and leads to a set of coupled differential equations for the transition probability amplitudes. To demonstrate its utility the method is applied to calculate collisions of antiprotons with atomic hydrogen. A comprehensive set of benchmark results from integrated to fully differential cross sections for antiproton-impact ionization of hydrogen in the energy range from 1 keV to 1 MeV is provided. Contrary to previous predictions, we find that at low incident energies the singly differential cross section has a maximum away from the zero emission energy. This feature could not be seen without a fine discretization of the low-energy part of the continuum.

  4. Hybrid ion-atom trap for studying ultra-cold collisions

    NASA Astrophysics Data System (ADS)

    Makarov, Oleg P.; Lin, Jian; Smith, W. W.

    2003-05-01

    We built an apparatus for studying ultra-cold collisions between atoms and atomic or molecular ions. Atomic sodium vapor is produced from getters in the ultra-high vacuum chamber. The atoms are trapped in a vapor-cell magneto-optical trap (MOT) by capturing a low-velocity component of a thermal distribution into the region between two anti-Helmholtz coils. A localized cloud of cold Na atoms was successfully generated for MOT types I and II. The cooling transitions were stimulated by the red-detuned Na D2 line emission from a single-frequency stabilized ring-dye laser. The repumping frequency was generated by an electro-optical modulator (EOM) at 1.712 GHz. The loading time constant, ˜ 500 ms, was measured from the fluorescence intensity increase when the magnetic field is suddenly turned on. A linear Paul ion trap, centered on the MOT, is designed to trap Ca^+ ions, produced by electronic bombardment of neutral calcium atoms from a tube oven. A detector is provided for product ions from charge-transfer collisions or photoassociative ionization. We are testing the various components of the completed apparatus. This work is supported by NSF grant # PHY-9988215 and in part by the University of CT Research Foundation.

  5. Correlated charge-changing ion-atom collisions. Progress report, February 16, 1990--February 15, 1993

    SciTech Connect

    Tanis, J.A.

    1993-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from February 16, 1990 through February 15, 1993. This work involves the experimental investigation of atomic interactions in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron-correlation effects. The processes studied are of interest both from fundamental and applied points of view. In the latter case, results are obtained which are relevant to the understanding of laboratory and astrophysical plasmas, highly-excited (Rydberg) and continuum states of atoms and ions, atomic structure effects, the interaction of ions with surfaces, and the development of heavy-ion storage-rings. The results obtained have provided the basis for several M.A. thesis projects at Western Michigan and several Ph.D. dissertation projects are currently underway. Summaries of work completed and work in progress are given below in Section II. This research has resulted in 26 papers (in print and in press), 12 invited presentations at national and international meetings, and 28 contributed presentations as detailed in Section III.

  6. Vortices Associated with the Wave Function of a Single Electron Emitted in Slow Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Schmidt, L. Ph. H.; Goihl, C.; Metz, D.; Schmidt-Böcking, H.; Dörner, R.; Ovchinnikov, S. Yu.; Macek, J. H.; Schultz, D. R.

    2014-02-01

    We present measurements and calculations of the momentum distribution of electrons emitted during the ion-atom collision 10 keV/u He2++He→He++He2++e-, which show rich structures for ion scattering angles above 2 mrad arising dominantly from two-electron states. Our calculations reveal that minima in the measured distributions are zeros in the electronic probability density resulting from vortices in the electronic current.

  7. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    PubMed

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  8. Multiple ionization and capture in relativistic heavy-ion atom collisions

    SciTech Connect

    Meyerhof, W.E.; Anholt, R.; Xu, Xiang-Yuan; Gould, H.; Feinberg, B.; McDonald, R.J.; Wegner, H.E.; Thieberger, P.

    1987-02-01

    We show that in relativistic heavy-ion collisions the independent electron model can be used to predict cross sections for multiple inner-shell ionization and capture in a single collision. Charge distributions of 82- to 200-MeV/amu Xe and 105- to 955-MeV/amu U ion beams emerging from thin solid targets were used to obtain single- and multiple-electron stripping and capture cross sections. The probabilities of stripping electrons from the K, L, or M shells were calculated using the semiclassical approximation and Dirac hydrogenic wavefunctions. For capture, a simplified model for electron capture was uded. The data generally agree with theory.

  9. Single ionization in highly charged ion-atom collisions at low to intermediate velocities

    NASA Astrophysics Data System (ADS)

    Abdallah, Mohammad Abdallah

    1998-11-01

    Single electron ejection from neutral targets (He and Ne) by the impact of low to highly charged ions (p, He+,/ Ne+,/ He2+,/ C6+,/ O8+, and Ne10+) at low to intermediate impact velocities is studied. A novel technique of electron momentum imaging is implemented. In this technique two-dimensional electron momentum distributions are produced in coincidence with recoil ions and projectile ions. In first generation experiments we studied the ejected electron momentum distributions without analyzing recoil ions momentum. This series of experiments revealed a charge-state dependence and velocity dependence that are contradictory to a dominant saddle point ionization mechanism at intermediate velocities. It showed a possibility of an agreement with a saddle centered distributions for low charge states at low collision velocities. To pursue the problem in more detail, we developed a second generation spectrometer which allowed us to fully determine the recoil ions momentum. This allowed us to determine the collision plane, energy loss (Q-value), and impact parameter for every collision that resulted in a single (target) electron ejection. This series of experiments revealed for the first time very marked structure in electron spectra that were impossible to observe in other experiments. These structures indicate the quasi-molecular nature of the collision process even at velocities comparable to the electron 'classical' orbital velocity. For the collisions of p, He+, and He2+ with He, a π-orbital shape of the electron momentum distribution is observed. This indicates the importance of the rotational coupling 2p/sigma/to2p/pi in the initial promotion of the ground state electron. This is followed by further promotions to the continuum. This agrees with the 'classical' description implied by the saddle-point ionization mechanism picture.

  10. Time-Dependent Lattice Methods for Ion-Atom Collisions in Cartesian and Cylindrical Coordinate Systems

    SciTech Connect

    Pindzola, Michael S; Schultz, David Robert

    2008-01-01

    Time-dependent lattice methods in both Cartesian and cylindrical coordinates are applied to calculate excitation cross sections for p+H collisions at 40 keV incident energy. The time-dependent Schroedinger equation is solved using a previously formulated Cartesian coordinate single-channel method on a full 3D lattice and a newly formulated cylindrical coordinate multichannel method on a set of coupled 2D lattices. Cartesian coordinate single-channel and cylindrical coordinate five-channel calculations are found to be in reasonable agreement for excitation cross sections from the 1s ground state to the 2s, 2p, 3s, 3p, and 3d excited states. For extension of the time-dependent lattice method to handle the two electron dynamics found in p+He collisions, the cylindrical coordinate multichannel method appears promising due to the reduced dimensionality of its lattice.

  11. Improved atomic model for charge transfer in multielectron ion-atom collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Lin, C. D.; Tunnell, L. N.

    1980-07-01

    Electron capture to the K shell of projectiles from the K and other subshells of multielectron target atoms is studied in the intermediate energy region using the single-active-electron approximation and the two-state, two-center atomic eigenfunction expansion method. It is concluded that the theoretical capture cross section is not sensitive to the atomic models used at high collision energies where the projectile velocity v is near or greater than the orbital velocity ve of the active electron. For vcollision systems are obtained and compared with experimental data when available to illustrate the reliability of the present model.

  12. Classical-quantum correspondence for ionization in fast ion-atom collisions

    SciTech Connect

    Burgdoerfer, J. |; Reinhold, C.O.

    1994-10-01

    We analyze the interplay between classical and quantum dynamics in ionization of atoms by fast charged particles The convergence to the classical limit is studied as a function of the momentum transferred to the electron during the collision, the impact parameter. the energy and angle of the emitted electron, and the initial state of the target. One goal is to assess the validity of exact classical (CTMC) methods and approximate classical models such as the Thomson model. Applications to data for electron ejection at large angles are presented. The connection between collisional ionization by charged particles and ionization by half-cycle pulses is discussed.

  13. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  14. Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Y. |; Solovev, E.A.

    1999-08-01

    Electron energy and angular distributions are computed for a model of atom{endash}negative-ion collisions. In this model, electron-atom interactions are represented by zero-range potentials in an approximation where two identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high velocity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the ungerade distribution at low and intermediate velocities. {copyright} {ital 1999} {ital The American Physical Society}

  15. Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Y. Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 ); Solovev, E.A. )

    1999-08-01

    Electron energy and angular distributions are computed for a model of atom[endash]negative-ion collisions. In this model, electron-atom interactions are represented by zero-range potentials in an approximation where two identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high velocity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the ungerade distribution at low and intermediate velocities. [copyright] [ital 1999] [ital The American Physical Society

  16. Quantum fluid density functional theory of time-dependent phenomena: Ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Deb, B. M.; Chattaraj, P. K.

    1988-07-01

    Using a recently proposed kinetic energy density functional and an amalgamation of density functional theory with quantum fluid dynamics, a time-dependent Kohn-Sham-type equation in three-dimensional space, which is a new non-linear Schrödinger equation, has been derived. The equation is also derived through the stochastic interpretation of quantum mechanics. A molecular "thermodynamic" viewpoint is suggested in terms of space-time-dependent quantities. Numerical solution of the above equation yields the time-dependent charge density, current density, effective potential and chemical potential. Perspective plots of these quantities for the proton-neon 25 keV head-on collision are presented.

  17. Electron-Electron Interaction in Ion-Atom Collisions Studied by Projectile State-Resolved Auger Electron Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lee, Do-Hyung

    1990-01-01

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KLL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O^{q+} and F^ {q+} incident on H_2 and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionized by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180^circ Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross sections of the electron -electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron -electron ionization (eeI) were determined. Projectile 2l capture with 1s to 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory. Projectile 1s to 2p excitation by a target electron was observed an an eeE process with Li-like projectiles. Projectile 1s ionization by a target electron was observed as an eeI process with Be-like projectiles

  18. State selective Rydberg charge transfer and ionization in low energy ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Perumal, A. N.; Tripathi, D. N.

    1998-10-01

    The Classical Trajectory Monte Carlo (CTMC) simulation method with a core modified interaction potential has been used to study the single charge transfer in Na +and Ar + ions colliding with a variety of state selected Na Rydberg atom targets ( n=24, 28, 33, 40 and l=2) in the reduced velocity region v=0.2-2.0. The experimentally observed structures in the total capture cross section versus reduced velocity curves are reproduced by CTMC method. The n-distribution of final capture state has got two peaks viz. first one at nf= ni and the second one at a higher nf depending on the initial angular momentum in the velocity regime 0.4-0.6. These structures have been explained in terms of quasimolecular-ion formation and a classical model proposed by Roy et al. (B.N. Roy, D.N. Tripathi, D.K. Rai, Phys. Rev. A 5 (1972) 1252). The CTMC ionization cross section results are benchmarked with the recent experimental measurement of Makarov et al. (O.P. Makarov, D.M. Homan, O.P. Sorokina, K.B. MacAdam, in: F. Aumayr, G. Betz, H.P. Winter (Eds.), Proceedings of the 20th International Conference on the Physics of Electronics and Atomic Collisions, Vienna, 1997, p. FR052) for Na +-Na(24 d).

  19. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.

    PubMed

    Delcorte, Arnaud

    2005-10-07

    This article reviews the recent progress in the understanding of kiloelectronvolt particle interactions with organic solids, including atomic displacements in a light organic medium, vibrational excitation and desorption of fragments and entire molecules. This new insight is the result of a combination of theoretical and experimental approaches, essentially molecular dynamics (MD) simulations and secondary ion mass spectrometry (SIMS). Classical MD simulations provide us with a detailed microscopic view of the processes occurring in the bombarded target, from the collision cascade specifics to the scenarios of molecular emission. Time-of-flight SIMS measures the mass and energy distributions of sputtered ionized fragments and molecular species, a precious source of information concerning their formation, desorption, ionization and delayed unimolecular dissociation in the gas phase. The mechanisms of energy transfer and sputtering are compared for bulk molecular solids, organic overlayers on metal and large molecules embedded in a low-molecular weight matrix. These comparisons help understand some of the beneficial effects of metal substrates and matrices for the analysis of molecules by SIMS. In parallel, I briefly describe the distinct ionization channels of molecules sputtered from organic solids and overlayers. The specific processes induced by polyatomic projectile bombardment, especially fullerenes, are discussed on the basis of new measurements and calculations. Finally, the perspective addresses the state-of-the-art and potential developments in the fields of surface modification and analysis of organic materials by kiloelectronvolt ion beams.

  20. The Role of High-Energy Ion-Atom/Molecule Collisions in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    2014-12-01

    The need for ions in radiotherapy stems from the most favorable localization of the largest energy deposition, precisely at the tumor site with small energy losses away from the target. Such a dose conformity to the target is due to heavy masses of ions that scatter predominantly in the forward direction and lose maximal energy mainly near the end of their path in the vicinity of the Bragg peak. The heavy masses of nuclei preclude noticeable multiple scattering of the primary ion beam. This occurrence is responsible for only about 30% of ion efficiency in killing tumor cells. However, ionization of targets by fast ions yields electrons that might be of sufficient energy to produce further radiation damage. These δ-electrons, alongside radicals produced by ion-water collisions, can accomplish the remaining 70% of tumor cell eradication. Electrons achieve this chiefly through multiple scattering due to their small mass. Therefore, energy depositions by both heavy (nuclei) and light (electrons) particles as well as highly reactive radicals need to be simultaneously transported in Monte Carlo simulations. This threefold transport of particles is yet to be developed for the existing Monte Carlo codes. Critical to accomplishing this key goal is the availability of accurate cross section databases. To this end, the leading continuum distorted wave methodologies are poised to play a pivotal role in predicting energy losses of ions in tissue as discussed in this work.

  1. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    SciTech Connect

    Kvale, T.J.

    1994-09-27

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS).

  2. Fraunhofer-type diffraction patterns of matter-wave scattering of projectiles: Electron transfer in energetic ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Agueny, Hicham

    2015-07-01

    We present results for single and double electron captures in intermediate energies H+ and 2H+ projectiles colliding with a helium target. The processes under investigations are treated using a nonperturbative semiclassical approach in combination with Eikonal approximation to calculate the scattering differential cross sections. The latter reveals pronounced minima and maxima in the scattering angles, in excellent agreement with the recent experimental data. It turns out that the present structure depends strongly on the projectile energy and shows only slight variations with different capture channels. The observed structure demonstrates the analogy of atomic de Broglie's matter-wave scattering with λd B=1.3 -3.2 ×10-3 a.u. and Fraunhofer-type diffraction of light waves.

  3. Many-electron aspects of molecular promotion in ion-atom collisions - Production of core-excited states of Li in Li/+/-He collisions

    NASA Technical Reports Server (NTRS)

    Elston, S. B.; Vane, C. R.; Schumann, S.

    1979-01-01

    Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.

  4. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision

  5. Dynamics of the sputtering of water from ice films by collisions with energetic xenon atoms.

    PubMed

    Killelea, Daniel R; Gibson, K D; Yuan, Hanqiu; Becker, James S; Sibener, S J

    2012-04-14

    The flow of energy from the impact site of a heavy, translationally energetic xenon atom on an ice surface leads to several non-equilibrium events. The central focus of this paper is on the collision-induced desorption (sputtering) of water molecules into the gas-phase from the ice surface. Sputtering is strongly activated with respect to xenon translational energy, and a threshold for desorption was observed. To best understand these results, we discuss our findings in the context of other sputtering studies of molecular solids. The sputtering yield is quite small; differential measurements of the energy of xenon scattered from ice surfaces show that the ice efficiently accommodates the collisional energy. These results are important as they quantitatively elucidate the dynamics of such sputtering events, with implications for energetic non-equilibrium processes at interfaces.

  6. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  7. JPL Ultrastable Trapped Ion Atomic Frequency Standards.

    PubMed

    Burt, Eric A; Yi, Lin; Tucker, Blake; Hamell, Robert; Tjoelker, Robert L

    2016-07-01

    Recently, room temperature trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on three directions: 1) ultrastable atomic clocks, usually for terrestrial applications emphasizing ultimate stability performance and autonomous timekeeping; 2) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements; and 3) miniature clocks. In this paper, we concentrate on the first direction and present a design and the initial results from a new ultrastable clock referred to as L10 that achieves a short-term stability of 4.5 ×10(-14)/τ(1/2) and an initial measurement of no significant drift with an uncertainty of 2.4 ×10(-16) /day over a two-week period.

  8. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  9. Energetics of midvelocity emissions in peripheral heavy ion collisions at Fermi energies.

    PubMed

    Mangiarotti, A; Maurenzig, P R; Olmi, A; Piantelli, S; Bardelli, L; Bartoli, A; Bini, M; Casini, G; Coppi, C; Gobbi, A; Pasquali, G; Poggi, G; Stefanini, A A; Taccetti, N; Vanzi, E

    2004-12-03

    Peripheral and semiperipheral collisions have been studied in the system 93Nb+93Nb at 38A MeV. The evaporative and midvelocity components of the light charged particle and intermediate mass fragment emissions have been carefully disentangled. In this way it was possible to obtain the average amount not only of charge and mass, but also of energy, pertaining to the midvelocity emission, as a function of an impact parameter estimator. This emission has a very important role in the overall balance of the reaction, as it accounts for a large fraction of the emitted mass and for more than half of the dissipated energy. As such, it may give precious clues on the microscopic mechanism of energy transport from the interaction zone toward the target and projectile remnants.

  10. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect

  11. Bonding energetics in clusters formed by cesium salts: a study by collision-induced dissociation and density functional theory.

    PubMed

    Maria, Pierre-Charles; Massi, Lionel; Box, Natzaret Sindreu; Gal, Jean-François; Burk, Peeter; Tammiku-Taul, Jaana; Kutsar, Martin

    2006-01-01

    In relation to the interaction between (137)Cs and soil organic matter, electrospray mass spectrometry experiments and density functional theory (DFT) calculations were carried out on the dissociation of positively charged adducts formed by cesium nitrate and cesium organic salts attached to a cesium cation [Cs(CsNO(3))(CsA)](+) (A = benzoate, salicylate, hydrogen phthalate, hydrogen maleate, hydrogen fumarate, hydrogen oxalate, and hydrogen malonate ion). These mixed clusters were generated by electrospray from methanol solutions containing cesium nitrate and an organic acid. Collision-induced dissociation of [Cs(CsNO(3))(CsA)](+) in a quadrupole ion trap gave [Cs(CsNO(3))](+) and [Cs(CsA)](+) as major product ions. Loss of HNO(3) was observed, and also CO(2) loss in the case of A = hydrogen malonate. Branching ratios for the dissociation into [Cs(CsNO(3))](+) and [Cs(CsA)](+) were treated by the Cooks' kinetic method to obtain a quantitative order of bonding energetics (enthalpies and Gibbs free energies) between Cs(+) and the molecular salt (ion pair) CsA, and were correlated with the corresponding values calculated using DFT. The kinetic method leads to relative scales of Cs(+) affinities and basicities that are consistent with the DFT-calculated values. This study brings new data on the strong interaction between the cesium cation and molecular salts CsA.

  12. Molecular-dynamics simulations of collisions between energetic clusters of atoms and metal substrates

    SciTech Connect

    Hsieh, H.; Averback, R.S. ); Sellers, H. ); Flynn, C.P. )

    1992-02-15

    The collisional dynamics between clusters of Cu, Ni, or Al atoms, with energies of 92 eV to 1.0 keV and sizes of 4 to 92 atoms, and substrates of these same metals were studied using molecular-dynamics computer simulations. A diverse behavior was observed, depending sensitively on the size and energy of the cluster, the elastic and chemical properties of the cluster-substrate combination, and the relative mass of the cluster and substrate atoms. For the 92-atom Cu clusters impacting a Cu substrate, the cluster can form a glob'' on the surface at low energy, while penetrating the substrate and heavily deforming it at high energies. When the cluster energy exceeds {approx}25 eV/atom, the substrate suffers radiation damage. The 92-atom Al clusters do not much deform Ni substrates, but rather tend to spread epitaxially over the surface, despite the 15% lattice mismatch. For 1-keV collisions, several Al atoms dissociate from the cluster, either reflecting into the vacuum or scattering over the surface. 326-eV Ni clusters embed themselves almost completely within Al substrates and form localized amorphous zones. The potentials for these simulations were derived from the embedded-atom method, although modified to treat the higher-energy events. IAb initioP linear-combination-of-atomic-orbitals--molecular-orbitals calculations were employed to test these potentials over a wide range of energies. A simple model for the expected macroscopic behavior of cluster-solid interactions is included as an appendix for a comparison with the atomistic description offered by the simulations.

  13. Collisions of energetic particles with atoms, molecules & solids: A theoretical study

    NASA Astrophysics Data System (ADS)

    Quashie, Edwin Exam

    used in studying the ion-molecule interactions at lower ion velocities. We reported here H+ + CH4 collision dynamics at E = 30 eV. Different exchange-correlation (XC) approximations were implemented and their important roles are studied systematically. For a single orientation of CH4 our rainbow angle at E = 30 eV agrees well with experimental and other theoretical values.

  14. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  15. Scaling Cross Sections for Ion-atom Impact Ionization

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  16. Design of a versatile pressure control system for gas targets in ion-atom collision studies

    NASA Astrophysics Data System (ADS)

    Fuelling, S.; Bruch, R.

    1993-06-01

    In this work, a unique gas target pressure control system is described which has been developed to measure state selective absolute EUV cross sections subsequent to electron and ion impact on gaseous targets. This system can be used in any type of gas phase experiment using positively or negatively charged and neutral particle beams interacting with atomic and molecular targets.

  17. Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip

    2012-01-01

    The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.

  18. Kuang's Semi-Classical Formalism for Electron Capture Cross-Sections in Ion-Ion Collisions at Approximately to MeV/amu: Application to ENA Modeling

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2012-01-01

    Recent discovery by STEREO A/B of energetic neutral hydrogen is spurring an interest and need for reliable estimates of electron capture cross sections at few MeVs per nucleon as well as for multi-electron ions. Required accuracy in such estimates necessitates detailed and involved quantum-mechanical calculations or expensive numerical simulations. For ENA modeling and similar purposes, a semi-classical approach offers a middle-ground approach. Kuang's semiclassical formalism to calculate electron-capture cross sections for single and multi-electron ions is an elegant and efficient method, but has so far been applied to limited and specific laboratory measurements and at somewhat lower energies. Our goals are to test and extend Kuang s method to all ion-atom and ion-ion collisions relevant to ENA modeling, including multi-electron ions and for K-shell to K-shell transitions.

  19. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in p p collisions at √{s }=13 TeV using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.

    2016-08-01

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 3.2 fb-1 at √{s }=13 TeV collected in 2015 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons. Several signal regions are considered with increasing missing-transverse-momentum requirements between ETmiss>250 GeV and ETmiss>700 GeV . Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with large extra spatial dimensions, pair production of weakly interacting dark-matter candidates, and the production of supersymmetric particles in several compressed scenarios.

  20. Femtosecond laser field induced modifications of electron-transfer processes in Ne{sup +}-He collisions

    SciTech Connect

    Lu Zhenzhong; Chen Deying; Fan Rongwei; Xia Yuanqin

    2012-01-02

    We demonstrate the presence of femtosecond laser induced charge transfer in Ne{sup +}-He collisions. Electron transfer in ion-atom collisions is considerably modified when the collision is embedded in a strong laser field with the laser intensity of {approx}10{sup 15} W/cm{sup 2}. The observed anisotropy of the He{sup +} angular distribution confirms the prediction of early work that the capture probability varies significantly with the laser polarization angle.

  1. Theory of inelastic ion-atom scattering at low and intermediate energies

    NASA Technical Reports Server (NTRS)

    Schmid, G. B.; Garcia, J. D.

    1977-01-01

    Ab initio calculations are presented of inelastic energy loss and ionization phenomena associated with Ar(+)-Ar collisions at small distances of closest approach and for laboratory collision energies ranging from several keV to several hundred keV. Outer-shell excitations are handled statistically; inner-shell excitations are calculated from the viewpoint of quasidiabatic molecular orbital promotion. Auger electron yield, average state of ionization, and average inelastic energy loss are calculated per collision as a function of distance of closest approach of the collision partners for several laboratory collision energies. Average charge-state probabilities per collision partner are calculated as a function of the average inelastic energy loss per atom. It is shown that the structure in the data is due to the underlying structure in the inner-shell independent-electron quasimolecular promotion probabilities.

  2. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.

    PubMed

    Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J

    2001-11-26

    The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

  3. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  4. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  5. Origin, evolution, and imaging of vortices in proton-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Schultz, D. R.; Macek, J. H.; Sternberg, J. B.; Ovchinnikov, S. Yu; Lee, T.-G.

    2009-11-01

    Using a novel computational approach, we have elucidated the origin of unexpected vortices in the electronic wavefunction during ion-atom collisions. It is shown how they could be observed in experiments and how they play a new and wide ranging role in angular momentum transfer and other atomic processes.

  6. Energetic neutral atoms: Imaging the magnetospheric ring current

    NASA Technical Reports Server (NTRS)

    Roelof, Edmond C.

    1990-01-01

    Magnetospheric imaging is a new discipline whose goal is to make pictures of the energetic particle populations trapped in the magnetic field of Earth (or any other planet). This project demonstrated the technical feasibility and scientific validity of magnetospheric imaging using energetic neutral atoms (ENA) with the publication and quantitative analysis of the first ENA images ever obtained from space. ENA's are produced when singly-charged energetic (approximately 100 keV) trapped ions make an atomic collision with the neutral hydrogen atoms which boil of the top of the Earth's atmosphere. These hydrogen atoms suffuse the entire trapping volume of the magnetosphere. The energetic ion steals the electron from the atmospheric hydrogen, so the energetic ion is transformed into an energetic neutral atom with a velocity of several thousands of kilometers/second. Moreover, the new-born ENA preserves the velocity that the trapped ion had at the time of the collision. Consequently, any population of energetic ions emits ENA's.

  7. Flare energetics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  8. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  9. Ion-Atom/Argon—Calculation of ionization cross sections by fast ion impact for neutral target atoms ranging from hydrogen to argon

    NASA Astrophysics Data System (ADS)

    McSherry, D. M.; O'Rourke, S. F. C.; Crothers, D. S. F.

    2003-10-01

    A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published codes for single ionization of target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Program summaryTitle of program: ARGON Catalogue identifier: ADSE Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the

  10. Inelastic transitions in slow heavy-particle atomic collisions

    SciTech Connect

    Krstic, P. S.; Reinhold, C. O.; Burgdo''rfer, J.

    2001-05-01

    It is a generally held belief that inelastic transition probabilities and cross sections in slow, nearly adiabatic atomic collisions decrease exponentially with the inverse of the collision velocity v [i.e., {sigma}{proportional_to}exp(-const/v)]. This notion is supported by the Landau-Zener approximation and the hidden crossings approximation. We revisit the adiabatic limit of ion-atom collisions and show that for very slow collisions radial transitions are dominated by the topology of the branch points of the radial velocity rather than the branch points of the energy eigensurface. This can lead to a dominant power-law dependence of inelastic cross sections, {sigma}{proportional_to}v{sup n}. We illustrate the interplay between different contributions to the transition probabilities in a one-dimensional collision system for which the exact probabilities can be obtained from a direct numerical solution of the time-dependent Scho''dinger equation.

  11. Heliospheric Observations of Energetic Particles

    NASA Technical Reports Server (NTRS)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  12. Path Integral Approach to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Harris, Allison

    2016-09-01

    The Path Integral technique is an alternative formulation of quantum mechanics that is based on a Lagrangian approach. In its exact form, it is completely equivalent to the Hamiltonian-based Schrödinger equation approach. Developed by Feynman in the 1940's, following inspiration from Dirac, the path integral approach has been widely used in high energy physics, quantum field theory, and statistical mechanics. However, only in limited cases has the path integral approach been applied to quantum mechanical few-body scattering. We present a theoretical and computational development of the path integral method for use in the study of atomic collisions. Preliminary results are presented for some simple systems. Ultimately, this approach will be applied to few-body ion-atom collisions. Work supported by NSF grant PHY-1505217.

  13. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  14. Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like ion beams in collisions with H2 targets

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Zouros, T. J. M.

    2016-12-01

    New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in energetic ion-atom collisions by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like ion beam. Spin statistics predict a value of R m = 2 independent of the collision system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like ion collisions with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon collisions on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.

  15. Energetics and reaction mechanisms of SiH/sup +/ + D/sub 2/ and SiD/sup +/ + H/sub 2/ and collision-induced dissociation of SiD/sub 3//sup +/

    SciTech Connect

    Boo, B.H.; Armentrout, P.B.

    1987-10-22

    The title reactions are investigated by guided ion beam mass spectrometry. Absolute cross sections are determined as a function of the relative collision energy. In the reaction of SiH/sup +/ with D/sub 2/, the lowest energy process is the near thermoneutral H/D exchange reaction. At energies above about 2 eV, several minor processes are observed: deuterium atom transfer to form SiHD/sup +/, H/D/sub 2/ exchange to yield SiD/sub 2//sup +/, and collision-induced dissociation into Si/sup +/ and H. The reaction of SiD/sup +/ + H/sub 2/ is observed to have analogous product channels with nearly identical energy behaviors. The translational energy dependence of the collision-induced dissociation of SiD/sub 3//sup +/ is shown to correlate well with the reaction of SiH/sup +/ (SiD/sup +/) + D/sub 2/ (H/sub 2/). This supports the intermediacy of SiHD/sub 2//sup +/ (SiH/sub 2/D/sup +/) for the H/D isotope exchange reaction. The thermochemistry of all these reactions is in good agreement with previous studies indicates that there are no activation barriers in excess of the endothermicities.

  16. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  17. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  18. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  19. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-07-01

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb-1 of \\(\\sqrt{s{\\mathrm{}}} = 8\\) TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. Results are translated into exclusion limits on models with either largemore » extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.« less

  20. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-07-01

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb-1 of \\(\\sqrt{s{\\mathrm{}}} = 8\\) TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. Results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

  1. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at [Formula: see text]TeV with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Simone, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Ecker, K M; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Martinez, P; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goussiou, A G; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jacques, T D; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O M; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kosek, T; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Mi Guens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Naranjo Garcia, R F; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, J; Price, L E; Primavera, M; Price, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Riotto, A W; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinksa, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smith, M N K; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb[Formula: see text] of [Formula: see text] TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with [Formula: see text] GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between [Formula: see text] GeV and [Formula: see text] GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

  2. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s=13TeV using the ATLAS detector

    SciTech Connect

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.

    2016-08-01

    We report results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum. The search uses proton-proton collision data corresponding to an integrated luminosity of 3.2 fb$-$1 at $\\sqrt{s}$ = 13 TeV collected in 2015 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons. Several signal regions are considered with increasing missing-transverse-momentum requirements between E$miss\\atop{T}$ > 250 GeV and E$miss\\atop{T}$ > 700 GeV . Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with large extra spatial dimensions, pair production of weakly interacting dark-matter candidates, and the production of supersymmetric particles in several compressed scenarios.

  3. Coulomb path'' interference in low energy He sup + + He collisions

    SciTech Connect

    Swenson, J.K. ); Burgdoerfer, J. ); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. )

    1990-01-01

    A new interference mechanism, analogous to classic'' double-slit electron scattering, has been identified in low energy ion-atom collisions. This Coulomb path'' interference results from the existence of two trajectories, indistinguishable with respect to laboratory energy and emission angle, along which ejected autoionizing electrons may be scattered by the attractive Coulomb potential of the slowly receding spectator ion. We present a simple semi-classical model for this effect in which we account for the path dependence of the amplitude of the ejected electron following decay of the autoionizing state. Calculated model lineshapes are found to be in excellent agreement with strong angular dependence of the interference structure observed in the He target 2s{sup 2} {sup 1}S autoionizing lineshape measured near 0{degree} following 10 keV He{sup +} + He collisions.

  4. Electron removal from H0(n) in fast collisions with multiply charged ions

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Meyer, F. W.

    1982-09-01

    The cross sections for electron removal from highly excited (n=9-24) hydrogen atoms in fast collisions with multiply charged (q=1-5) N, O, and Ar ions were investigated in an ion-atom crossed-beams experiment. The ion-atom collisions occurred inside a deflector where a moderate electrostatic field of up to 1.8 kV/cm was applied. The range of collision velocity (vc) investigated is vc=1.0v1-2.0v1, where v1=2.2×108 cm/s is the Bohr velocity. The electron-removal cross section was found to be independent of ion species for a given q and vc, to increase as q2 for a given vc, and to decrease as v-2c for a given q. These q and vc dependences of the experimental cross section are in accord with classical Coulomb ionization theories. The experimental n dependence of the cross section differs significantly from the theoretically predicted dependence, but the difference can be accounted for if we assume the presence of the external electric field in the collision volume reduces the ionization energy.

  5. Cookoff of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.; Schmitt, R.G.

    1998-09-01

    An overview of cookoff modeling at Sandia National Laboratories is presented aimed at assessing the violence of reaction following cookoff of confined energetic materials. During cookoff, the response of energetic materials is known to involve coupled thermal/chemical/mechanical processes which induce thermal damage to the energetic material prior to the onset of ignition. These damaged states enhance shock sensitivity and lead to conditions favoring self-supported accelerated combustion. Thus, the level of violence depends on the competition between pressure buildup and stress release due to the loss of confinement. To model these complex processes, finite element-based analysis capabilities are being developed which can resolve coupled heat transfer with chemistry, quasi-static structural mechanics and dynamic response. Numerical simulations that assess the level of violence demonstrate the importance of determining material damage in pre- and post-ignition cookoff events.

  6. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  7. Nanostructured Energetic Materials

    DTIC Science & Technology

    2006-11-01

    for the nanoenergetic composites prepared using mesoporous Fe2O3 gel, nanoparticles of WO3, MoO3, Bi2O3 , and CuO mixed with Al-nanoparticles and...used in the energetic composite. For example, in the energetic reactions of the composites containing Fe2O3, WO3, MoO3, Bi2O3 , and CuO, combined...MA), WO3 (Aldrich, WI), MoO3 and Bi2O3 (Accumet Materials, NY) and nanoparticles of Al (avg. size 80 nm with 2 nm passivation layer from

  8. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    -coincidence technique / T. Kaneyasu, T. Azuma and K. Okuno. Recent developments in proton-transfer-reaction mass spectrometry / A. Wisthaler ... [et al.]. Interferences in electron emission from H[symbol] induced by fast ions / N. Stolterfoht. Atomic realization of the young single electron interference process in individual autoionization collisions / R. O. Barrachina and M. Šitnik. Multiple ionization processes related to irradiation of biological tissue / M. E. Galassi ... [et al.]. Atom-diatom collisions at cold and ultra-cold temperatures / F. D. Colavecchia, G. A. Parker and R. T. Pack. Interactions of ions with hydrogen atoms / A. Luca, G. Borodi and D. Gerlich. Analysis of all structures in the elastic and charge transfer cross sections for proton-hydrogen collisions in the range of 10[symbol]-10øeV / P. S. Krstić ... [et al.]. Ab-initio ion-atom collision calculations for many-electron systems / J. Anton and B. Fricke. Fully differential studies on single ionization of helium by slow proton impact / A. Hasan ... [et al.]. Dipole polarization effects on highly-charged-ion-atom electron capture / C. C. Havener ... [et al.]. Proton-, antiproton-, and photon-he collisions in the context of ultra fast processes / T. Morishita ... [et al.]. Impact parameter dependent charge exchange studies with channeled heavy ions / D. Dauvergne ... [et al.]. Crystal assisted atomic physics experiments using heavy ions / K. Komaki -- Collisions involving clusters and surfaces. Structure and dynamics of Van der Waal complexes: from triatomic to medium size clusters / G. Delgado Barrio ... [et al.]. Evaporation, fission and multifragmentation processes of multicharged C[symbol] ions versus excitation energies / S. Martin ... [et al.]. Fragmentation of collisionally excited fullerenes / M. Alcami, S. Diaz-Tendero and F. Martín. Lifetimes of C[symbol] and C[symbol] dianions in a storage ring / S. Tomita ... [et al.]. Clusters and clusters of clusters in collisions / B. Manil ... [et al

  9. Benchtop Energetics Progress

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario

    2011-06-01

    We have constructed an apparatus for investigating the reactive chemical dynamics of mg-scale energetic materials samples. We seek to advance the understanding of the reaction kinetics of energetic materials, and of the chemical influences on energetic materials sensitivity. We employ direct laser irradiation, and indirect laser-driven shock, techniques to initiate thin-film explosive samples contained in a high-vacuum chamber. Expansion of the reacting flow into vacuum quenches the chemistry and preserves reaction intermediates for interrogation via time-of-flight mass spectrometry (TOFMS). By rastering the sample coupon through the fixed laser beam focus, we generate hundreds of repetitive energetic events in a few minutes. A detonation wave passing through an organic explosive, such as pentaerythritol tetranitrate (PETN, C5H4N4O12) , is remarkably efficient in converting the solid explosive into final thermodynamically-stable gaseous products (e . g . N2, CO2, H2O...). Termination of a detonation at an explosive-to-vacuum interface produces an expanding pulse of hyperthermal molecular species, with leading-edge velocities ~10 km/s. In contrast, deflagration (subsonic combustion) of PETN in vacuum produces mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities; consistent with expansion-quenched thermal decomposition of PETN. We propose to exploit these differences in product chemical identities and molecular species velocities to provide a chemically-based diagnostic for distinguishing between detonation and deflagration events. In this talk we also report recent progress towards the quantitative detection of hyperthermal neutral species produced by direct laser ablation of aluminum metal and of organic energetic materials, as a step towards demonstrating the ability to discriminate slow reaction intermediates from fast thermodynamically-stable final products. Work done in collaboration with Emily Fossum, Christopher Molek, and

  10. Nano Engineered Energetic Materials (NEEM)

    DTIC Science & Technology

    2011-01-12

    REPORT Nano Engineered Energetic Materials (NEEM) 14 . ABSTRACT 16. SECURITY CLASSIFICATION OF: The ARO Nano Engineered Energetic Materials (NEEM) MURI...PROPELLANTS EXPLOSIVES PYROTECHNICS 34, 5, 385-393, 2009. 14 . Sabourin, JL; Yetter, RA; Parimi, S, Exploring the Effects of High Surface Area Metal...Energetic Materials, Aberdeen, MD, June 2010, "Fundamental Processes and Properties of Insensitive Energetic Materials". 14 . UIUC group (Dlott

  11. Effect of energetic oxygen atoms on neutral density models.

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, R. P.; Nisbet, J. S.

    1973-01-01

    The dissociative recombination of O2(+) and NO(+) in the F region results in the production of atomic oxygen and atomic nitrogen with substantially greater kinetic energy than the ambient atoms. In the exosphere these energetic atoms have long free paths. They can ascend to altitudes of several thousand kilometers and can travel horizontally to distances of the order of the earth's radius. The distribution of energetic oxygen atoms is derived by means of models of the ion and neutral densities for quiet and disturbed solar conditions. A distribution technique is used to study the motion of the atoms in the collision-dominated region. Ballistic trajectories are calculated in the spherical gravitational field of the earth. The present calculations show that the number densities of energetic oxygen atoms predominate over the ambient atomic oxygen densities above 1000 km under quiet solar conditions and above 1600 km under disturbed solar conditions.

  12. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-15

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.

  13. Impact Collision Ion Scattering Spectroscopy Applied to the Determination of Atomic Surface Structure

    NASA Astrophysics Data System (ADS)

    Daley, Richard Stephen

    1990-08-01

    The technique of impact collision ion scattering spectroscopy (ICISS) was used to investigate the atomic structure and low energy ion scattering dynamics from various surfaces. A new formalism for calculating the three-dimensional cross section for an ion to scatter sequentially and classically from two atoms has been developed. This method can be used to assist in the interpretation of ICISS data in terms of quantitative surface-structure models. Shadowing and blocking effects for energetic ions scattering from more than one atom are shown to be special cases of rainbow scattering. Even at keV energies and above, the cross section at the critical angle for scattering must be evaluated by quantum or semi-classical means to avoid the singularity in the classically calculated cross sections. In an ICISS investigation of the Ag(110) surface, a surface flux peak analysis demonstrated that the surface was not a complete monolayer, but rather contained 10-15% random vacancies. Subsurface Li^+ scattering results confirmed the oscillatory relaxation of the first two atomic layers of the surface, with Delta_{12} = -7.5% and Delta_{23} = 4.0%. Modeling of the neutralization mechanism for the He^+ scattering gave a best fit time-dependent Auger neutralization time constant of 0.84 +/- 0.08 fs. A neutralization study of 5 keV He^+ ions scattered from Au adatoms on the Si(111)- sqrt{3} x sqrt {3}-Au surface showed the He^+ ICISS data contained false shadowing features that were actually the result of local neutralization effects. Good agreement was obtained for a radially dependent ion-atom neutralization theory with rate R = Aexp (-ar) , where A and a are 15.5 fs^{ -1} and 1.94 A^{-1} , respectively. A detailed examination of the Si(111)- sqrt{3} x sqrt{3 })-Ag surface was also made. The 5 keV Li ^+ ICISS data gave evidence for Ag island formation at single monolayer coverages of silver, while the LEED, AES and LEIS data showed that at relatively high coverages of Ag (35 ML

  14. Polymorphism in Energetic Materials

    DTIC Science & Technology

    2008-01-01

    2008 NRL REVIEW 71 Polymorphism in Energetic Materials J.R. Deschamps,1 D.A. Parrish,1 and R.J. Butcher2 1Laboratory for Structure of Matter...can lead to substantial alterations in stability and performance. The authors recently reported on the crystal structures of five polymorphs of picryl...cally distinct forms. Since the properties of a solid sub- stance are determined by its composition and structure , polymorphs, although chemically

  15. Energetics of tropical hibernation.

    PubMed

    Dausmann, K H; Glos, J; Heldmaier, G

    2009-04-01

    In this field study, the energetic properties of tropical hibernation were investigated by measuring oxygen consumption and body temperature of the Malagasy primate Cheirogaleus medius in their natural hibernacula. These lemurs use tree holes with extremely varying insulation capacities as hibernacula. In poorly insulated tree holes, tree hole temperature and body temperature fluctuated strongly each day (between 12.8 and 34.4 degrees C). The metabolic rate under these conditions also showed large daily fluctuations between about 29.0 ml O(2)/h and 97.9 ml O(2)/h in parallel with changes in body temperature. In well insulated tree holes in very large trees on the other hand, tree hole temperature and body temperature remained relatively constant at about 25 degrees C. Lemurs hibernating in these tree holes showed a more constant metabolic rate at an intermediate level, but hibernation was interrupted by repeated arousals with peak metabolic rates up to 350 ml O(2)/h. The occurrence of these spontaneous arousals proved that the ability for thermoregulation persists during hibernation. Arousals were energetically costly, but much less so than in temperate and arctic hibernators. Despite the decisive influence of tree hole properties on the pattern of body temperature and metabolic rate during hibernation, the choice of the hibernaculum does not seem to be of energetic importance. The overall energetic savings by tropical hibernation amounted to about 70% as compared to the active season (31.5 vs. 114.3 kJ/d). Therefore, tropical hibernation in C. medius is an effective, well-regulated adaptive response to survive unfavourable seasons.

  16. Synthesis of Energetic Materials.

    DTIC Science & Technology

    1986-03-31

    1 ) ................... 2 2 GPC of Polyformal of Decafluorodiol ( 2 ) .......................... 4 3 GPC of Polyformal of...turn: ( 1 ) synthesis of energetic monomers and polymers, and ( 2 ) synthesis of polycyclic and adamantoid nitramines. Both tasks were continuations of...preparation of 2,2,3,3,4,4-hexafluoropentane-l,lidiol polyformal (FPF- 1 ) by the 2 step sequence shown below was reported. " HOCH2 (CF2 )3CH20H + (CH20) 3

  17. Energetic component treatability study

    SciTech Connect

    Gildea, P.D.; Brandon, S.L.; Brown, B.G.

    1997-11-01

    The effectiveness of three environmentally sound processes for small energetic component disposal was examined experimentally in this study. The three destruction methods, batch reactor supercritical water oxidation, sodium hydroxide base hydrolysis and calcium carbonate cookoff were selected based on their potential for producing a clean solid residue and minimum release of toxic gases after component detonation. The explosive hazard was destroyed by all three processes. Batch supercritical water oxidation destroyed both the energetics and organics. Further development is desired to optimize process parameters. Sodium hydroxide base hydrolysis and calcium carbonate cookoff results indicated the potential for scrubbing gaseous detonation products. Further study and testing are needed to quantify the effectiveness of these later two processes for full-scale munition destruction. The preliminary experiments completed in this study have demonstrated the promise of these three processes as environmentally sound technologies for energetic component destruction. Continuation of these experimental programs is strongly recommended to optimize batch supercritical water oxidation processing, and to fully develop the sodium hydroxide base hydrolysis and calcium carbonate cookoff technologies.

  18. Hadron thermodynamics in relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Ammiraju, P.

    1985-01-01

    Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.

  19. Monopole pair creation in energetic collisions: Is it possible

    SciTech Connect

    Drukier, A.K.; Nussinov, S.

    1982-07-12

    It is suggested that monopole-antimonopole pair production initiated by pointlike particles (electrons, quarks) has widely different cross sections in the two cases of ''pointlike'' and composite monopoles, respectively. Production of 't Hooft--Polyakov monopoles is expected to be suppressed by a hugh factor, > or =10/sup 30/. Furthermore, astrophysical evidence is presented suggesting that monopoles with m/sub m/roughly-equal10/sup 4/ GeV/c/sup 2/ cannot be pointlike.

  20. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-30

    Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  1. The kinetics of energetic O‑ ions in oxygen discharge plasmas

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. A.; Aleksandrov, N. L.

    2017-04-01

    Monte Carlo simulation was used to study the translational relaxation of energetic O‑ ions produced by dissociative electron attachment to O2 molecules in oxygen plasmas in a strong electric field. Initial O‑ ions have rather high energies and are more reactive than the ions reaching equilibrium with the electric field. Therefore, there is a noticeable probability that the energetic O‑ ions participate in endothermic reactions prior to energy relaxation of these ions. The probabilities of charge exchange, electron detachment and ion impact vibrational excitation of O2 molecules were calculated versus the reduced electric field. It was shown that up to 6% of energetic O‑ ions produced in oxygen by dissociative electron attachment to O2 molecules are rapidly transformed to {{{{O}}}2}- ions due to charge exchange collisions. The probability of electron detachment from energetic O‑ ions and the probability of vibrational excitation were smaller that the probability of charge exchange. Estimates showed that the increase in the effective rates of the ion–molecule reactions due to high reactivity of energetic O‑ ions can be important in oxygen plasmas for reduced electric fields of 50–100 Td.

  2. Energetics of Nanomaterials

    SciTech Connect

    Alexandra Navrotsky; Brian Woodfield; Juliana Boerio-Goates; Frances Hellman

    2005-01-28

    This project, "Energetics of Nanomaterials," represents a three-year collaboration among Alexandra Navrotsky (UC Davis), Brian Woodfield and Juliana Boerio-Goates (BYU), and Frances Hellman (UC Berkeley). It's purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in term of their thermodynamic properties, with an emphasis on heat capaacities and entropies, as well as enthalpies. the three groups have brought very different expertise and capabilities to the project. Navrotsky is a solid-state chemist and geochemist, with a unique Thermochemistry Facility emphasizing enthalpy of formation measurements by high temperature oxide melt and room temperatue acid solution calorimetry. Boerio-Goates and Woodfield are calorimetry. Hellman is a physicist with expertise in magnetism and heat capacity measurements using microscale "detector on a chip" calorimetric technology that she pioneered. The overarching question of our work is "How does the free energy play out in nanoparticles?", or "How do differences in free energy affect overall nanoparticle behavior?" Because the free energy represents the temperature-dependent balance between the enthalpy of a system and its entropy, there are two separate, but related, components to the experimental investigations: Solution calorimetric measurements provide the energetics and two types of heat capacity measurements the entropy. We use materials that are well characterized in other ways (structurally, magnetically, and chemically), and samples are shared across the collaboration.

  3. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    SciTech Connect

    Winter, T.G.; Alston, S.G.

    1995-08-01

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during the collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.

  4. Puck collisions

    NASA Astrophysics Data System (ADS)

    Hauge, E. H.

    2012-09-01

    Collisions between two ice hockey pucks sliding on frictionless ice are studied, with both inelasticity and frictional contact between the colliding surfaces of the two pucks taken into account. The latter couples translational and rotational motion. The full solution depends on the sign and magnitude of the initial mismatch between the surface velocities at the point of contact. The initial state defines two physically distinct regimes for the friction coefficient. To illustrate the complexities, we discuss at length the typical situation (well known from curling) when puck number 1 is initially at rest, and is hit by puck number 2 with an arbitrary impact parameter, velocity and angular velocity. We find that the total outgoing angle between the pucks exceeds \\frac{1}{2}\\pi if and only if the collision leads to a net increase in the translational part of the kinetic energy. The conditions for this to happen are scrutinized, and the results are presented both analytically and numerically by a set of representative curves. This paper is written with an ambitious undergraduate, and her teacher, in mind.

  5. Exit charge state dependence of convoy electron production in heavy-ion solid collisions

    SciTech Connect

    Huelskoetter, H.P.; Burgdoerfer, J.; Sellin, I.A.

    1986-01-01

    The dependence of the yield of convoy electrons emitted near the forward direction in collisions involving fast ions and thin solid targets on the emergent projectile charge state is presented and described in terms of primary electron loss events in the solid. The data include a large array of projectiles, projectile energies and charge states, as well as targets ranging in thickness from the non-equilibrium well into the equilibrium thickness region. The description presented is consistent with other experimental and theoretical results indicating that the convoy electron production is closely linked to the ELC process observed in binary ion-atom collisions, with the dominant contribution to the convoy yield stemming from excited states of the projectiles. 22 refs., 3 figs.

  6. Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.

    PubMed

    Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong

    2013-08-28

    Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.

  7. New energetic epoxy binders

    SciTech Connect

    Jain, S.R.; Amanulla, S.

    1996-07-01

    A new class of epoxy resins having N{single_bond}N bonds in the backbone has been synthesized with a view to explore their properties as energetic binders. The N-epoxidation of bis-dicarbonylhydrazones of adipic, azelaic and sebacic dihydrazides results in the formation of viscous resins having epoxide end groups. The resins have been characterized by the elemental and end group analyses, IR and NMR spectra. Relevant properties for their use as binders in solid propellants, such as thermal stability, heat of combustion, burn rate and performance parameters of AP-based propellant systems, have been evaluated. A significant increase in the burn rate of AP-based propellants noticed, is perhaps related to the exothermicity of the binder decomposition and the reactivity of N{single_bond}N bonds with perchloric acid formed during the combustion of AP.

  8. Energetics of Nanomaterials

    SciTech Connect

    Hellman, Frances

    2004-12-13

    This project, ''Energetics of Nanomaterials'', represents a three-year collaboration among Alexandra Navrotsky (University of California at Davis), Brian Woodfield and Juliana Boerio-Goates (Brigham Young University) and Frances Hellman (University of California at San Diego). Its purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in terms of their thermodynamic properties, with an emphasis on heat capacities and entropies, as well as enthalpies. We used our combined experimental techniques to address the following questions: How does energy and entropy depend on particle size and crystal structure? Do entropic differences have their origins in changes in vibrational densities of states or configurational (including surface configuration) effects? Do material preparation and sample geometry, i.e., nanoparticles versus thin films, change these quantities? How do the thermodynamics of magnetic and structural transitions change in nanoparticles and thin films? Are different crystal structures stabilized for a given composition at the nanoscale, and are the responsible factors energetic, entropic, or both? How do adsorption energies (for water and other gases) depend on particle size and crystal structure in the nanoregime? What are the energetics of formation and strain energies in artificially layered thin films? Do the differing structures of grain boundaries in films and nanocomposites alter the energetics of nanoscale materials? Of the several directions we first proposed, we initially concentrated on a few systems: TiO(sub 2), CoO, and CoO-MgO. In these systems, we were able to clearly identify particle size-dependent effects on energy and vibrational entropy, and to separate out the effect of particle size and water content on the enthalpy of formation of the various TiO(sub 2) polymorphs. With CoO, we were able to directly compare nanoparticle films and bulk materials; this comparison is important because films can

  9. Utilization of FEP energetics

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Abbassi, P.; Afifi, F.; Khandhar, P. K.; Ono, D. Y.; Chen, W. E. W.

    1987-01-01

    The research and development work on Fountain Effect Pump Systems (FEP systems) has been of interest in the competition between mechanical pumps for He II and FEP units. The latter do not have moving parts. In the course of the work, the energetics have been addressed using one part of a simple four-changes-of-state cycle. One option is the FEP ideal change of state at constant chemical potential (mu). The other option is the two-state sequence mu-P with a d mu=0 state change followed by an isobar. Questions of pump behavior, of flow rate response to temperature difference at the hot end, and related questions of thermodynamic cycle completion and heat transfer have been addressed. Porous media data obtained elucidate differences between vapor-liquid phase separation (VLPS) and Zero Net Mass Transfer (ZNMF).

  10. Electrical initiation of an energetic nanolaminate film

    DOEpatents

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  11. Stab Sensitivity of Energetic Nanolaminates

    SciTech Connect

    Gash, A; Barbee, T; Cervantes, O

    2006-05-22

    This work details the stab ignition, small-scale safety, and energy release characteristics of bimetallic Al/Ni(V) and Al/Monel energetic nanolaminate freestanding thin films. The influence of the engineered nanostructural features of the energetic multilayers is correlated with both stab initiation and small-scale energetic materials testing results. Structural parameters of the energetic thin films found to be important include the bi-layer period, total thickness of the film, and presence or absence of aluminum coating layers. In general the most sensitive nanolaminates were those that were relatively thick, possessed fine bi-layer periods, and were not coated. Energetic nanolaminates were tested for their stab sensitivity as freestanding continuous parts and as coarse powders. The stab sensitivity of mock M55 detonators loaded with energetic nanolaminate was found to depend strongly upon both the particle size of the material and the configuration of nanolaminate material, in the detonator cup. In these instances stab ignition was observed with input energies as low as 5 mJ for a coarse powder with an average particle dimension of 400 {micro}m. Selected experiments indicate that the reacting nanolaminate can be used to ignite other energetic materials such as sol-gel nanostructured thermite, and conventional thermite that was either coated onto the multilayer substrate or pressed on it. These results demonstrate that energetic nanolaminates can be tuned to have precise and controlled ignition thresholds and can initiate other energetic materials and therefore are viable candidates as lead-free impact initiated igniters or detonators.

  12. ENERGETICS, EPIGENETICS, MITOCHONDRIAL GENETICS

    PubMed Central

    Wallace, Douglas C.; Fan, Weiwei

    2011-01-01

    The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism’s energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), S-adenosyl-methionine (SAM), and reduced NAD+. When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylaton via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases. PMID:19796712

  13. "Energetics of Nanomaterials"

    SciTech Connect

    Professor Alexandra Navrotsky

    2005-01-31

    This project represents a three-year collaboration among Alexandra Navrotsky, Brian Woodfield, Juliana Bocrio-Goates and Frances Hellman. It's purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in terms of their thermodynamic properties, with an emphasis on heat capacities and entropies, as well as enthalpies. The three groups have brought very different expertise and capabilities to the project. Navrotsky is a solid-state chemist and geochemist, with a unique Thermochemistry Facility emphasizing enthalpy of formation measurements by high temperature oxide melt and room temperature acid solution calorimetry. Bocrio-Goates and Woodfield are physical chemists with unique capabilities in accurate cryogenic heat capacity measurements using adiabatic calorimetry. Hellman is a physicist with expertise in magnetism and heat capacity measurements using microscale ''detector on a chip'' calorimetric technology that she pioneered. The overarching question of the work is ''How does the free energy play out in nanoparticles''? or ''How do differences in free energy affect overall nanoparticle behavior''? Because the free energy represents the temperature-dependent balance between the enthalpy of a system and its entropy, there are two separate, but related, components to the experimental investigations: Solution calorimetric measurements provide the energetics and two types of heat capacity measurements the entropy. They use materials that are well characterized in other ways (structurally, magnetically, and chemically), and samples are shared across the collaboration.

  14. Energetic Atomic Oxygen in the Region of the Terrestrial Exobase

    NASA Astrophysics Data System (ADS)

    Shizgal, B.; Sospedra-Alfonso, R.

    2012-12-01

    Translationally energetic atoms in the terrestrial exosphere with energies considerably above thermal energies are responsible for nonthermal emissions and enhanced nonthermal escape of atmospheric species. These escape mechanisms play an important role in the evolution of Earth's atmosphere. The existence of an extended coronae of translationally energetic oxygen atoms O* has been firmly established [1]. One mechanism to produce energetic oxygen atoms is the dissociative recombination reaction, O2+ + e- -> O* + O*. There is a continued interest in a better understanding of the physics of this process for the terrestrial exosphere. The terrestrial atmosphere can be divided into three main regions characterized by their relaxation properties [1]. The lower thermosphere (200-250 km), the upper exosphere (700-800 km) and the transition region (300-700). The lower thermosphere has a predominance of elastic collisions and therefore the particles are essentially in local equilibrium. In contrast, the thermalization in the upper exosphere is less predominant, although the production rate of nonthermal particles is also low. In the transition region, the production rate of nonthermal particles is significant and there is a decrease in the thermalization rate. This region is the main source of the nonthermal geocorona [1]. The relaxation properties of this region implies that the particle distribution can deviate from statistical equilibrium, and the distribution of nonthermal particles can be described with kinetic theory. In [2], we modeled the energetic oxygen distribution with a linear Boltzmann equation that included a source term for the production of hot oxygen owing to dissociative recombination. The distribution function was assumed to be isotropic and the objective was to determine the departure of the distribution function from Maxwellian and the departure of the density profile from barometric. In the present work, we consider a two component system of

  15. Method for forming energetic nanopowders

    DOEpatents

    Lee, Kien-Yin; Asay, Blaine W.; Kennedy, James E.

    2013-10-15

    A method for the preparation of neat energetic powders, having nanometer dimensions, is described herein. For these neat powder, a solution of a chosen energetic material is prepared in an aprotic solvent and later combined with liquid hexane that is miscible with such solvent. The energetic material chosen is less soluble in the liquid hexane than in the aprotic solvent and the liquid hexane is cooled to a temperature that is below that of the solvent solution. In order to form a precipitate of said neat powders, the solvent solution is rapidly combined with the liquid hexane. When the resulting precipitate is collected, it may be dried and filtered to yield an energetic nanopowder material.

  16. Voyager 2 Observes Energetic Electrons

    NASA Video Gallery

    This animation shows the Voyager 2 observations of energetic electrons. Voyager 2 detected a dramatic drop of the flux of electrons as it left the sector region. The intense flux came back as soon ...

  17. Photodecomposition of energetic nitro compounds

    SciTech Connect

    Mialocq, J.C.

    1989-03-14

    The photodecomposition of energetic nitrocompounds depends on the excitation energy, the light intensity which determines the mono-, bi- or multiphotonic character of the initial process and their gaseous, liquid or solid state. The initial processes of the photodecomposition of nitromethane and nitroalcanes are reviewed and their relevance to the initiation of energetic nitrocompounds detonation is discussed. The case of nitramines (dimethylnitramine and tutorial) is also briefly introduced.

  18. Design of Energetic Ionic Liquids

    DTIC Science & Technology

    2009-05-12

    effectiveness of the FMO method in both providing accurate results and reducing computational requirements, timings were performed for the ionic liquid ...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Design of Energetic Ionic Liquids 5b. GRANT NUMBER 5c...Design of Energetic Ionic Liquids challenge project is to address several key technical issues and challenges associated with the characterization

  19. Solar Energetic Particle Variations

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    2003-01-01

    In the largest solar energetic-particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). In fact, the highest proton intensities directly measured near Earth at energies up to approximately 1 GeV occur at the time of passage of shocks, which arrive about a day after the CMEs leave the Sun. CME-driven shocks expanding across magnetic fields can fill over half of the heliosphere with SEPs. Proton-generated Alfven waves trap particles near the shock for efficient acceleration but also throttle the intensities at Earth to the streaming limit early in the events. At high energies, particles begin to leak from the shock and the spectrum rolls downward to form an energy-spectral 'knee' that can vary in energy from approximately 1 MeV to approximately 1 GeV in different events. All of these factors affect the radiation dose as a function of depth and latitude in the Earth's atmosphere and the risk to astronauts and equipment in space. SEP ionization of the polar atmosphere produces nitrates that precipitate to become trapped in the polar ice. Observations of nitrate deposits in ice cores reveal individual large SEP events and extend back approximately 400 years. Unlike sunspots, SEP events follow the approximately 80-100-year Gleissberg cycle rather faithfully and are now at a minimum in that cycle. The largest SEP event in the last 400 years appears to be related to the flare observed by Carrington in 1859, but the probability of SEP events with such large fluences falls off sharply because of the streaming limit.

  20. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  1. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona.

  2. Comparing Fragmentation Functions in Pb-Pb Collisions using JEWEL

    NASA Astrophysics Data System (ADS)

    Davis, Harrison

    2016-09-01

    Collisions between lead nuclei at relativistic speeds create a hot, dense state of deconfined quark matter called the quark gluon plasma (QGP). Due to its extreme density, temperature, and abundance of color charge, the QGP gives us a unique opportunity to study strong interactions and test the limits of QCD. Collisions between nuclei produce jets, clusters of particles hadronized from an energetic parton. Jets produced in heavy ion collisions must travel through the energetic and dense QGP, which changes the structure and momenta of the jets, a phenomenon known as jet quenching. By analyzing the changes in hadron fragmentation and momenta, we probe the properties and structure of the QGP. To analyze the jet fragmentation, we simulated lead-lead collisions with JEWEL, a modification to the Monte-Carlo (MC) generator PYTHIA6, and compared the results with ATLAS data at 2.76 TeV and 5 TeV. These comparisons between the ATLAS data and the MC simulation are important for understanding jet quenching in heavy ion collisions. This poster gives an overview of the results of the simulation and how they compare with ATLAS data on fragmentation.

  3. Particle-in-Cell simulation of energetic particles driven instabilities

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott E.; Lang, Jianying; Fu, Guoyong

    2009-11-01

    We present simulations of the evolution of energetic particles driven modes with the gyrokinetic turbulence code GEMfootnotetextY. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007), except that kinetic electrons are replaced by a mass-less fluid model. PIC simulations of energetic particles use either the conventional full-f method or the δ method. The latter is adequate for low-amplitude fluctuation amplitudes. The collisional δ -methodfootnotetextY. Chen and R. White, Phys. Plasmas 4, 3591 (1997) is used to systematically account for collisions and particle source and sink. Steady state saturation amplitudes are benchmarked with predictions of analytic theory. We also employ full-f simulationsfootnotetextY. Todo et. al, Phys. Plasmas 10, 2888 (2003) to study bursty events in which the instabilities reach large amplitudes and cause macroscopic redistribution or loss of the particles. With full-f it is easy to retain all the nonlinear effects and treat accurately discontinuities in the distribution function at phase-space boundaries. Whereas the energetic particle current is neglegible in the Ampere's law in δ simulations, it is important in full-f simulations. Thermal ion kinetic effects are observed to be important.

  4. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  5. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  6. Ultra-relativistic heavy ion collisions in a multi-string model

    SciTech Connect

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e/sup +/e/sup -/ or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs.

  7. Multi-phase hybrid simulation of energetic particle driven magnetohydrodynamic instabilities in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Todo, Y.

    2016-11-01

    Magnetohydrodynamic (MHD) instabilities driven by energetic particles in tokamak plasmas and the energetic particle distribution formed with the instabilities, neutral beam injection, and collisions are investigated with hybrid simulations for energetic particles and an MHD fluid. The multi-phase simulation, which is a combination of classical simulation and hybrid simulation, is applied to examine the distribution formation process in the collisional slowing-down time scale of energetic ions for various beam deposition power ({P}{NBI}) and slowing-down time ({τ }{{s}}). The physical parameters other than {P}{NBI} and {τ }{{s}} are similar to those of a Tokamak Fusion Test Reactor (TFTR) experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874). For {P}{NBI} = 10 MW and {τ }{{s}} = 100 ms, which is similar to the TFTR experiment, the bursts of toroidal Alfvén eigenmodes take place with a time interval 2 ms, which is close to that observed in the experiment. The maximum radial velocity amplitude (v r) of the dominant TAE at the bursts in the simulation is {v}{{r}}/{v}{{A}}∼ 3× {10}-3 where v A is the Alfvén velocity at the plasma center. For {P}{NBI} = 5 MW and {τ }{{s}} = 20 ms, the amplitude of the dominant TAE is kept at a constant level {v}{{r}}/{v}{{A}}∼ 4× {10}-4. The intermittency of TAE rises with increasing {P}{NBI} and increasing {τ }{{s}} (= decreasing collision frequency). With increasing volume-averaged classical energetic ion pressure, which is well proportional to {P}{NBI}{τ }{{s}}, the energetic ion confinement degrades monotonically due to the transport by the instabilities. The volume-averaged energetic ion pressure depends only on the volume-averaged classical energetic ion pressure, not independently on {P}{NBI} or {τ }{{s}}. The energetic ion pressure profile resiliency, where the increase in energetic ion pressure profile is saturated, is found for the cases with the highest {P}{NBI}{τ }{{s}} where the TAE bursts take place.

  8. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Wang, Linghua; Li, Gang; Shih, Albert Y.; Lin, Robert P.; Wimmer-Schweingruber, Robert F.

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  9. Energetic costs of cellular computation.

    PubMed

    Mehta, Pankaj; Schwab, David J

    2012-10-30

    Cells often perform computations in order to respond to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds, it is expected that such computations require cells to consume energy. In particular, Landauer's principle states that energy must be consumed in order to erase the memory of past observations. Here, we explicitly calculate the energetic cost of steady-state computation of ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg-Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments, such as the spore germination networks of bacteria.

  10. Energetic costs of cellular computation

    PubMed Central

    Mehta, Pankaj; Schwab, David J.

    2012-01-01

    Cells often perform computations in order to respond to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds, it is expected that such computations require cells to consume energy. In particular, Landauer’s principle states that energy must be consumed in order to erase the memory of past observations. Here, we explicitly calculate the energetic cost of steady-state computation of ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg–Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments, such as the spore germination networks of bacteria. PMID:23045633

  11. Cardiac energetics: sense and nonsense.

    PubMed

    Gibbs, Colin L

    2003-08-01

    1. The background to current ideas in cardiac energetics is outlined and, in the genomic era, the need is stressed for detailed knowledge of mouse heart mechanics and energetics. 2. The mouse heart is clearly different to the rat in terms of its excitation-contraction (EC) coupling and the common assumption that heart rate difference between mice and humans will account for the eightfold difference in myocardial oxygen consumption is wrong, because the energy per beat of the mouse heart is approximately one-third that of the human heart. 3. In vivo evidence suggests that there may well be an eightfold species difference in the non-beating metabolism of mice and human hearts. It is speculated that the magnitude of basal metabolism in the heart is regulatable and that, in the absence of perfusion, it falls to approximately one-quarter of its in vivo rate and that in clinical conditions, such as hibernation, it probably decreases; its magnitude may be controlled by the endothelium. 4. The active energy balance sheet is briefly discussed and it is suggested that the activation heat accounts for 20-25% of the active energy per beat and cross-bridge turnover accounts for the balance. It is argued that force, not shortening, is the major determinant of cardiac energy usage. 5. The outcome of recent cardiac modelling with variants of the Huxley and Hill/Eisenberg models is described. It has been necessary to invoke 'loose coupling' to replicate the low cardiac energy flux measured at low afterloads (medium to high velocities of shortening). 6. Lastly, some of the unexplained or 'nonsense' energetic data are outlined and eight unsolved problems in cardiac energetics are discussed.

  12. Process for preparing energetic materials

    DOEpatents

    Simpson, Randall L [Livermore, CA; Lee, Ronald S [Livermore, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA; Swansiger, Rosalind W [Livermore, CA; Fox, Glenn A [Livermore, CA

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  13. Energetic Neutral Atom Precipitation (ENAP)

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1988-01-01

    The Energetic Neutral Atom Precipitation experiment is scheduled to be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission. The objective of this experiment is to measure very faint emissions at nighttime arising from fluxes of energetic neutral atoms in the thermosphere. These energetic atoms have energies ranging up to about 50 keV, and arise from ions of hydrogen, helium, and oxygen trapped in the inner magnetosphere. Some of these ions become neutralized in charge exchange reactions with neutral hydrogen in the hydrogen geocorona that extends through the region. The ions are trapped on magnetic field lines which cross the equatorial plane at 2 to 6 earth radii distance, and they mirror at a range of heights on these field lines, extending down to the thermosphere at 500 km altitude. The ATLAS 1 measurements will not be of the neutral atoms themselves but of the optical emission produced by those on trajectories that intersect the thermosphere. The ENAP measurements are to be made using the Imaging Spectrometric Observatory (ISO) which is being flown on the ATLAS mission primarily for daytime spectral observations, and the ENAP measurements will all be nighttime measurements because of the faintness of the emissions and the relatively low level of magnetic activity expected.

  14. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Energetic Charged Particles Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Diver, Declan; Pinçon, Jean-Louis; Phelps, Alan D. R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Harrison, R. Giles; Sauvaud, Jean-André; Renard, Jean-Baptiste; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stéphane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C.T.R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized.

  16. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  17. Cold ion-atom chemistry driven by spontaneous radiative relaxation: a case study for the formation of the YbCa+ molecular ion

    NASA Astrophysics Data System (ADS)

    Zygelman, B.; Lucic, Zelimir; Hudson, Eric R.

    2014-01-01

    Using both quantum and semi-classical methods, we calculate the rates for radiative association and charge transfer in cold collisions of Yb+ with Ca. We demonstrate the fidelity of the local optical potential method in predictions for the total radiative relaxation rates. We find a large variation in the isotope dependence of the cross sections at ultra-cold gas temperatures. However, at cold temperatures, 1 mK < T < 1 K, the effective spontaneous radiative rates for the different isotopes share a common value of about 1.5 × 10-15 cm3 s-1. It is about five orders of magnitude smaller than the chemical reaction rate measured in Rellergert et al (2011 Phys. Rev. Lett. 107 243201).

  18. Collision-induced dissociation (CID) of peptides and proteins.

    PubMed

    Wells, J Mitchell; McLuckey, Scott A

    2005-01-01

    The most commonly used activation method in the tandem mass spectrometry (MS) of peptides and proteins is energetic collisions with a neutral target gas. The overall process of collisional activation followed by fragmentation of the ion is commonly referred to as collision-induced dissociation (CID). The structural information that results from CID of a peptide or protein ion is highly dependent on the conditions used to effect CID. These include, for example, the relative translational energy of the ion and target, the nature of the target, the number of collisions that is likely to take place, and the observation window of the apparatus. This chapter summarizes the key experimental parameters in the CID of peptide and protein ions, as well as the conditions that tend to prevail in the most commonly employed tandem mass spectrometers.

  19. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  20. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  1. Collision-induced migration of adsorbates on solid surfaces: an experimental approach.

    PubMed

    Danziger, I M; Asscher, M

    2006-07-13

    Collision-induced migration (CIM) is a process in which energetic gas-phase atoms or molecules at the tail of the Boltzmann distribution enhance surface migration of adsorbates upon collision. It is believed to exist and play an important role in any realistic high pressure-high-temperature heterogeneous catalytic system. Combining supersonic beam-surface collision setup with in-situ optical second harmonic generation diffraction technique from a coverage grating, we have shown, for the first time, that indeed energetic collisions (Kr seeded in He) promote surface mobility of CO-K surface complex on Ru(001) with a threshold total kinetic energy of 3 eV. An average migration distance/collision of more than 30 adsorption sites was estimated from the experimental data at Kr total energy of 3.8 eV. This long-range migration distance per collision is understood in terms of a cascade migration mechanism, where adsorbed CO molecules collide and push their neighbors from high to low coverage areas, in a direction dictated by the collision momentum vector. A similar mechanism has recently been suggested to explain adsorbate mobility at high coverage induced by an STM tip.

  2. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  3. Energetic Particles in Saturn's Magnetotail

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Carbary, J. F.; Krupp, N.; Krimigis, S. M.; Hamilton, D. C.; Kane, M.

    2007-12-01

    Energetic particle measurements in Saturn's magnetotail reveal a magnetotail dominated by Saturn's rotational dynamics as far back in the tail as 60 Rs, rarely but sometimes spectacularly disrupted by tail reconnection events. Although Cassini spent little time in the tail, and even less at the location of the tail current sheet, the time spent there revealed a pattern of very regular encounters with the energetic particles that fill the current sheet, usually once every Saturn rotation. Carbary et al. 2007a, b show that energetic electrons reappear every rotation when the spacecraft is sufficiently close to the current sheet location, and further that they lie along a spiral in longitude when mapped into the SKR coordinate system (Kurth et al., 2007). Energetic ions are also observed in the same locations, with a mix of hydrogen and oxygen not very different from that observed in the magnetosphere between 10 and 20 Rs. These ions generally display velocities approximately in the corotation direction, but with magnitudes well below rigid corotation (Kane et al., 2007, manuscript in preparation). Two other classes of energetic particle events are also seen in the magnetotail. The first consists of energetic ion and electron beams, likely accelerated in the auroral zone over downward current regions. The second are those generated in tail reconnection events (e.g., Jackman et al., 2007; Hill et al. 2007). We will give examples of all of these phenomena, including both in situ measurements and ENA images/movies. Carbary, J.~F., Mitchell, D.~G., Krimigis, S.~M., Hamilton, D.~C., Krupp, N., Charged particle periodicities in Saturn's outer magnetosphere, Journal of Geophysical Research (Space Physics) 112, 6246 {2007JGRA..11206246C} 2007a Carbary, J. F., D. G. Mitchell, S. M. Krimigis, and N. Krupp (2007), Evidence for spiral pattern in Saturn's magnetosphere using the new SKR longitudes, Geophys. Res. Lett., 34, L13105, doi:10.1029/2007GL030167 2007b Kurth, W. S., A

  4. Mesoscale Modeling of Energetic Materials

    DTIC Science & Technology

    2014-10-23

    This briefing represents interim progress towards these goals. 15. SUBJECT TERMS Heterogeneous explosives , Mesoscale dynamics, Level set method...High  Explosives  Research and Development Branch (RWME) – Damage Mechanisms Branch (RWMW) • Goal: Predict survivability of energetic payload of high...the mechanical  behavior of simple  explosive – Pristine – Damaged • Performed simulations on mechanical RVE’s – From XCMT – Idealized • Developed and

  5. Method for calculating alloy energetics

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1992-01-01

    A semiempirical method for the computation of alloy energies is introduced. It is based on the equivalent-crystal theory of defect-formation energies in elemental solids. The method is both simple and accurate. Heats of formation as a function of composition are computed for some binary alloys of Cu, Ni, Al, Ag, Pd, Pt, and Au using the heats of solution in the dilute limit as experimental input. The separation of heats into strain and chemical components helps in understanding the energetics. In addition, lattice-parameter contractions seen in solid solutions of Ag and Au are accurately predicted. Good agreement with experiment is obtained in all cases.

  6. Interactions of energetic particles and clusters with solids

    SciTech Connect

    Averback, R.S.; Hsieh, Horngming . Dept. of Materials Science and Engineering); Diaz de la Rubia, T. ); Benedek, R. )

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs.

  7. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2002-12-01

    the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size on the...study of the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size...qualitative only. 33 5. DEFLAGRATION-TO- DETONATION (DDT) STUDIES As part of an on-going programme to investigate the properties of ultrafine energetic

  8. Multiphase Combustion of Metalized Nanocomposite Energetic Materials

    DTIC Science & Technology

    2014-12-19

    2013 08/21/2013 08/21/2013 12/19/2014 12/19/2014 Received Paper Shawn C. Stacy, Michelle L. Pantoya. Laser Ignition of Nano -Composite Energetic Loose...Chaudhuri. Linking Molecular Level Chemistry to Macroscopic Combustion Behavior for Nano -energetic Materials with Halogen Containing Oxides, Journal...Keerti Kappagantula, Michelle L. Pantoya, Emily M. Hunt. Impact ignition of aluminum-teflon based energetic materials impregnated with nano

  9. Solar Energetic Particle Spectrometer (SEPS)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    2009-01-01

    An outstanding problem of solar and heliospheric physics is the transport of solar energetic particles. The more energetic particles arriving early in the event can be used to probe the transport processes. The arrival direction distribution of these particles carries information about scattering during their propagation to Earth that can be used to test models of interplanetary transport. Also, of considerable importance to crewed space missions is the level of ionizing radiation in the interplanetary medium, and the dose that the crew experiences during an intense solar particle event, as well as the risk to space systems. A recent study concludes that 90% of the absorbed dose results from particles in the energy range 20-550 MeV. We will describe a new compact instrument concept, SEPS, that can cover the energy range from 50-600 MeV with a single compact detector. This energy range has been difficult to cover. There are only limited data, generally available only in broad energy bins, from a few past and present instruments outside Earth s magnetosphere. The SEPS concept can provide improved measurements for this energy range and its simple light-weight design could be easily accommodated on future missions.

  10. National Ignition Campaign Hohlraum Energetics

    SciTech Connect

    Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

    2009-11-16

    The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

  11. Hosting anions. The energetic perspective.

    PubMed

    Schmidtchen, Franz P

    2010-10-01

    Hosting anions addresses the widely spread molecular recognition event of negatively charged species by dedicated organic compounds in condensed phases at equilibrium. The experimentally accessible energetic features comprise the entire system including the solvent, any buffers, background electrolytes or other components introduced for e.g. analysis. The deconvolution of all these interaction types and their dependence on subtle structural variation is required to arrive at a structure-energy correlation that may serve as a guide in receptor construction. The focus on direct host-guest interactions (lock-and-key complementarity) that have dominated the binding concepts of artificial receptors in the past must be widened in order to account for entropic contributions which constitute very significant fractions of the total free energy of interaction. Including entropy necessarily addresses the ambiguity and fuzziness of the host-guest structural ensemble and requires the appreciation of the fact that most liquid phases possess distinct structures of their own. Apparently, it is the perturbation of the intrinsic solvent structure occurring upon association that rules ion binding in polar media where ions are soluble and abundant. Rather than specifying peculiar structural elements useful in anion binding this critical review attempts an illumination of the concepts and individual energetic contributions resulting in the final observation of specific anion recognition (95 references).

  12. Low-Altitude Emission of Energetic Neutral Atoms: A New Diagnostic of the Energetics of Ion Precipitation

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Nair, H.

    2010-12-01

    We describe a new theoretical understanding of the emission of energetic neutral atoms (ENAs) generated by the precipitation of energetic magnetospheric ions into the Earth’s monatomic oxygen (O) exosphere (200-800 km). This low altitude emission (LAE) is the brightest ENA source in images obtained from Astrid-1/PIPPI, IMAGE/MENA/HENA, and TWINS1/2. The upward ENA “albedo” from the precipitating protons in the energy range 1-100 keV can approach 50% of the incident proton intensity. Unlike FUV imaging, ENA imaging of the LAE allows us to extract the detailed (not integrated) energy spectrum of the precipitating protons. We have verified this claim by comparing ENA images from TWINS 1/2 with in situ ion spectra measured by DMSP spacecraft (~825 km altitude) flying simultaneously under the ENA LAE regions (Bazell et al., J. Geophys. Res., in press 2010, and also this Conference). Quantitative extraction of proton spectra from the ENA images requires a “thick-target” theory that treats properly the multiple atomic collisions (charge exchange of protons, stripping ENA H-atoms) and associated energy losses (including ionization and excitation). Analytic solutions to the coupled proton/H-atom transport equations have been obtained, and they provide quantitative insight into the strong dependence of the ENA LAE upon the pitch angle and the energy of the precipitating protons. Since global ENA images of LAE can be obtained with exposure times of a minute or so during large geomagnetic storms, the distribution in magnetic latitude and local time of their evolving spectra contain critical diagnostics of the physics of not only the precipitation process, but also of the acceleration of the energetic ions themselves. Simulated 24 keV ENA low altitude emission viewed from TWINS-2 generated by precipitating protons below a DMSP pass (Bazell et al., JGR, in press, 2010).

  13. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  14. Asteroidal collision probabilities

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Greenberg, R.

    1993-05-01

    Several past calculations of collision probabilities between pairs of bodies on independent orbits have yielded inconsistent results. We review the methodologies and identify their various problems. Greenberg's (1982) collision probability formalism (now with a corrected symmetry assumption) is equivalent to Wetherill's (1967) approach, except that it includes a way to avoid singularities near apsides. That method shows that the procedure by Namiki and Binzel (1991) was accurate for those cases where singularities did not arise.

  15. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  16. Atomistic Simulation of Collision Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-09-01

    Defect production in energetic collision cascades in zircon has been studied by molecular dynamics simulation using a partial charge model combined with the Ziegler-Biersack-Littmark potential. Energy dissipation, defect accumulation, Si-O-Si polymerization, and Zr coordination number were examined for 10 keV and 30 keV U recoils simulated in the constant NVE ensemble. For both energies an amorphous core was produced with features similar to that of melt quenched zircon. Disordered Si ions in this core were polymerized with an average degree of polymerization of 1.5, while disordered Zr ions showed a coordination number of about 6 in agreement with EXAFS results. These results suggest that nano-scale phase separation into silica- and zirconia-rich regions occurs in the amorphous core.

  17. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  18. Anisotropic decomposition of energetic materials

    SciTech Connect

    Pravica, Michael; Quine, Zachary; Romano, Edward; Bajar, Sean; Yulga, Brian; Yang Wenge; Hooks, Daniel

    2007-12-12

    Using a white x-ray synchrotron beam, we have dynamically studied radiation-induced decomposition in single crystalline PETN and TATB. By monitoring the integrated intensity of selected diffraction spots via a CCD x-ray camera as a function of time, we have found that the decomposition rate varies dramatically depending upon the orientation of the crystalline axes relative to polarized x-ray beam and for differing diffracting conditions (spots) within the same crystalline orientation. We suggest that this effect is due to Compton scattering of the polarized x-rays with electron clouds that is dependent upon their relative orientation. This novel effect may yield valuable insight regarding anisotropic detonation sensitivity in energetic materials such as PETN.

  19. Extreme solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Afanasiev, Alexandr; Battarbee, Markus

    2016-04-01

    Properties of extreme solar energetic particle (SEP) events, here defined as those leading to ground level enhancements (GLEs) of cosmic rays, are reviewed. We review recent efforts on modeling SEP acceleration to relativistic energies and present simulation results on particle acceleration at shocks driven by fast coronal mass ejections (CMEs) in different types of coronal magnetic structures and turbulent downstream compression regions. Based on these modeling results, we discuss the possible role of solar and CME parameters in the lack of GLEs during the present sunspot cycle. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support.

  20. Destruction of Energetic Materials in Supercritical Water

    DTIC Science & Technology

    2002-06-25

    THERMOCHEMISTRY OF ENERGETIC MATERIALS IN SUPERCRITICAL WATER...fringe spacing is 13.5 µm and the acoustic signal period is 28.3 ns. 138 SECTION VI THERMOCHEMISTRY OF ENERGETIC MATERIALS IN...validation calculation studied the solvation free energies of alkali–chloride ion pairs in liquid water. Such information can teach us about the

  1. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  2. Energetics and the immune system

    PubMed Central

    Reiches, Meredith W.; Prentice, Andrew M.; Moore, Sophie E.; Ellison, Peter T.

    2017-01-01

    Abstract Background and objectives: The human immune system is an ever-changing composition of innumerable cells and proteins, continually ready to respond to pathogens or insults. The cost of maintaining this state of immunological readiness is rarely considered. In this paper we aim to discern a cost to non-acute immune function by investigating how low levels of C-reactive protein (CRP) relate to other energetic demands and resources in adolescent Gambian girls. Methodology: Data from a longitudinal study of 66 adolescent girls was used to test hypotheses around investment in immune function. Non-acute (under 2 mg/L) CRP was used as an index of immune function. Predictor variables include linear height velocity, adiposity, leptin, and measures of energy balance. Results: Non-acute log CRP was positively associated with adiposity (β = 0.16, P < 0.001, R2 = 0.17) and levels of the adipokine leptin (β = 1.17, P = 0.006, R2 = 0.09). CRP was also negatively associated with increased investment in growth, as measured by height velocity (β = −0.58, P < 0.001, R2 = 0.13) and lean mass deposition β = −0.42, P = 0.005, R2 = 0.08). Relationships between adiposity and growth explained some, but not all, of this association. We do not find that CRP was related to energy balance. Conclusions and implications: These data support a hypothesis that investment in non-acute immune function is facultative, and sensitive to energetic resources and demands. We also find support for an adaptive association between the immune system and adipose tissue. PMID:28003312

  3. Femtosecond laser interaction with energetic materials

    NASA Astrophysics Data System (ADS)

    Roos, Edward V.; Benterou, Jerry J.; Lee, Ronald S.; Roseke, Frank; Stuart, Brent C.

    2002-09-01

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  4. Energetic Particle Influence on the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank; Bazilevskaya, Galina A.; Harrison, R. Giles; Krivolutsky, Alexei A.; Nicoll, Keri A.; Rozanov, Eugene V.; Turunen, Esa; Usoskin, Ilya G.

    2015-11-01

    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth's atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

  5. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  6. Observations and Modeling of Geospace Energetic Particles

    NASA Astrophysics Data System (ADS)

    Li, Xinlin

    2016-07-01

    Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.

  7. Interchange mode excited by trapped energetic ions

    SciTech Connect

    Nishimura, Seiya

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might be associated with the fishbone mode in helical systems.

  8. Interchange mode excited by trapped energetic ions

    NASA Astrophysics Data System (ADS)

    Nishimura, Seiya

    2015-07-01

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might be associated with the fishbone mode in helical systems.

  9. Energetic Fermi/LAT GRB 100414A: Energetic and Correlations

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamaoka, Kazutaka; Tsai, Patrick P.; Tashiro, Makoto S.

    2012-03-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7+132.6 - 106.6 keV and E iso of 34.5+2.0 - 1.8 × 1052 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = -2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5fdg8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak-E iso and E src peak-E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  10. Global Energetics of Solar Flares. IV. Coronal Mass Ejection Energetics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2016-11-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme, kinetic energy E kin, and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  11. Energetics and Dynamics of Fragmentation of Protonated Leucine Enkephalin from Time- and Energy-Resolved Surface-Induced Dissociation Studies

    SciTech Connect

    Laskin, Julia

    2006-07-01

    Dissociation of singly protonated leucine enkephalin (YGGFL) was studied using surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer specially configured for studying ion activation by collisions with surfaces. The energetics and dynamics of seven primary dissociation channels were deduced from modeling the time- and energy-resolved fragmentation efficiency curves for different fragment ions using an RRKM-based approach developed at the Environmental Molecular Sciences Laboratory (EMSL).

  12. A gravitational impulse model predicts collision impulse and mechanical work during a step-to-step transition.

    PubMed

    Yeom, Jin; Park, Sukyung

    2011-01-04

    The simplest walking model, which assumes an instantaneous collision with negligible gravity effect, is limited in its representation of the collision mechanics of human gaits because the actual step-to-step transition occurs over a finite duration of time with finite impulsive ground reaction forces (GRFs) that have the same order of magnitude as the gravitational force. In this study, we propose a new collision model that includes the contribution of the gravitational impulse to the momentum change of the center of mass (COM) during a step-to-step transition. To validate the model, we measured the GRFs of six subjects' over-ground walking at five different gait speeds and calculated the collision impulses and mechanical work. The data showed a significant contribution of the gravitational impulse to the momentum change during collision. To compensate for the gravity, the magnitudes of collision impulse and COM work were estimated to be much greater than in previous predictions. Consistent with the model prediction, push-off propulsion fully compensated for the collision loss, implying the step-to-step transition occurred in an energetically optimal manner. The new model predicted a moderate change in the collision mechanics with gait speed, which seems to be physiologically achievable. The gravitational collision model enables us to better understand collision dynamics during a step-to-step transition.

  13. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  14. Paleo Mars energetic particle precipitation

    NASA Astrophysics Data System (ADS)

    Alho, Markku; McKenna-Lawlor, Susan; Kallio, Esa

    2015-12-01

    A young Mars may well have possessed a global dipolar magnetic field that provided protection for the planet's atmosphere from the space weather environment. Against this background, we study in the present paper the effect of various dipole magnetic fields on particle precipitation (range 10 keV-4.5 MeV) on the upper Martian atmosphere as the magnetosphere gradually declined to become an induced magnetosphere. We utilized a hybrid plasma model to provide, in a self-consistent fashion, simulations (that included ion-kinetic effects) of the interaction between the Martian obstacle (magnetized or otherwise) and the solar wind. Besides the intrinsic dipole, with field strengths of ~100 nT and below, we assume modern solar and atmospheric parameters to examine the effect of the single variable, that is the dipole strength. We thereby investigated the precipitation of solar energetic particles on the upper atmosphere of the planet in circumstances characterized by the evolution of a diminishing Martian dynamo that initially generated an ideal dipolar field. It is demonstrated that an assumed Martian dipole would have provided, in the energy range investigated, significant shielding against proton impingement and that the interaction between the solar wind and the assumed Martian magnetic dipole would have been responsible for generating the shielding effect identified.

  15. The Galileo Energetic Particles Detector

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mcentire, R. W.; Jaskulek, S.; Wilken, B.

    1992-01-01

    Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4pi angular coverage and spectral measurements for Z greater than or equal to 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to greater than 11 MeV, and for the elemental species helium through iron from approximately 10 keV/nucl to 15 MeV/nucl. Two bidirectional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The instrument and its operation are described.

  16. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2014-08-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for ~161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from ~ 10^10 to > 10^14 eV at an average altitude of ~38.5 km with ~3.9 g/cm2 atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  17. POET: POlarimeters for Energetic Transients

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; McConnell, M. L.; Bloser, P.; Legere, J.; Macri, J.; Ryan, J.; Barthelmy, S.; Angelini, L.; Sakamoto, T.; Black, J. K.; Hartmann, D. H.; Kaaret, P.; Zhang, B.; Ioka, K.; Nakamura, T.; Toma, K.; Yamazaki, R.; Wu, X.

    2008-01-01

    POET (Polarimeters for Energetic Transients) is a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The POET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. POET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  18. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    SciTech Connect

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  19. Interparticle collision mechanism in turbulence.

    PubMed

    Choi, Jung-Il; Park, Yongnam; Kwon, Ohjoon; Lee, Changhoon

    2016-01-01

    Direct numerical simulations of particle-laden homogeneous isotropic turbulence are performed to investigate interparticle collisions in a wide range of Stokes numbers. Dynamics of the particles are described by Stokes drag including particle-particle interactions via hard-sphere collisions, while fluid turbulence is solved using a pseudospectral method. Particular emphasis is placed on interparticle-collision-based conditional statistics of rotation and dissipation rates of the fluid experienced by heavy particles, which provide essential information on the collision process. We also investigate the collision statistics of collision time interval and angle. Based on a Lamb vortex model for a vortex structure, we claim that collision events occur in the edge region for vortical structures in the intermediate-Stokes-number regime, suggesting that the sling effect enhances collision as well as clustering.

  20. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  1. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  2. Applications and implications of ecological energetics.

    PubMed

    Tomlinson, Sean; Arnall, Sophie G; Munn, Adam; Bradshaw, S Don; Maloney, Shane K; Dixon, Kingsley W; Didham, Raphael K

    2014-05-01

    The ecological processes that are crucial to an animal's growth, survival, and reproductive fitness have energetic costs. The imperative for an animal to meet these costs within the energetic constraints of the environment drives many aspects of animal ecology and evolution, yet has largely been overlooked in traditional ecological paradigms. The field of 'ecological energetics' is bringing comparative physiology out of the laboratory and, for the first time, is becoming broadly accessible to field ecologists addressing real-world questions at many spatial and temporal scales. In an era of unprecedented global environmental challenges, ecological energetics opens up the tantalising prospect of a more predictive, mechanistic understanding of the drivers of threatened species decline, delivering process-based modelling approaches to natural resource management.

  3. Energetic particle characteristics of magnetotail flux ropes

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1985-01-01

    During the recent ISEE-3 Geotail Mission three events have been identified from the magnetometer data which are consistent with a spacecraft crossing of a magnetotail flux rope. Energetic electron and proton observations obtained by the Max-Planck-Institut/University of Maryland sensor system during two of the possible flux rope events are presented. During one event remote sensing of the flux rope with energetic protons reveals that the flux rope is crossed by the spacecraft from south to north. This allows determination of the bandedness of the magnetic field twist and of the flux rope velocity relative to the spacecraft. A minimal flux rope radius of 3 earth radii is derived. Energetic proton intensity is highest just inside of the flux rope and decreases towards the core. Energetic electrons are streaming tailward near the outer boundary, indicating openness of the field lines, and are isotropic through the inner part of the flux rope.

  4. Energetic salt of trinitrophloroglucinol and melamine

    NASA Astrophysics Data System (ADS)

    Bowden, Patrick R.; Leonard, Philip W.; Lichthardt, Joseph P.; Tappan, Bryce C.; Ramos, Kyle J.

    2017-01-01

    We hope to harness the field of energetic co-crystals for development of insensitive, high-performing explosives. As demonstrated by other groups, co-crystals of energetic materials are diverse in their resultant properties versus the native materials. Herein, we discuss the synthesis, characterization, and testing of an energetic co-crystal of trinitrophloroglucinol (1,3,5-trihydroxy-2,4,6-trinitrobenzene) and melamine. Although melamine is not an energetic material, high nitrogen content and insensitivity can be of benefit in a co-crystal. Currently, trinitrophloroglucinol (TNPG) and melamine have been found to exist as a 1:1 ionic co-crystal. Characterization by NMR, IR, small-scale sensitivity, thermal stability and powder X-ray diffraction have all been used to characterize the individual compounds as well as the co-crystals developed.

  5. New Trends in Research of Energetic Materials

    DTIC Science & Technology

    2007-11-02

    material costs) recycling liquidation by combustion liquidation costs " safe " material usage safe disarming cost decreasing about 60-80...4. TITLE AND SUBTITLE New Trends in Research of Energetic Materials 5. FUNDING NUMBERS FA8655-04-1-5001 6. AUTHOR(S) Prof Zvatopluk Zeman...Affairs Office) 12b. DISTRIBUTION CODE A ABSTRACT (Maximum 200 words) The Final Proceedings for New Trends in Research of Energetic Materials , 20

  6. Size distributions of solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Cliver, E.; Reames, D.; Kahler, S.; Cane, H.

    1991-01-01

    NASA particle detectors on the IMP-8 are employed to determine the size distributions of the peak fluxes of events related to solar-energetic particles including protons and electrons. The energetic proton events show a flatter size distribution which suggests that not all flares are proton flares. Both the electron and proton events are classified as either 'impulsive' or 'gradual', and the impulsive events tend to have a steeper power-law distribution.

  7. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  8. The energetics of Titan's ionosphere

    NASA Technical Reports Server (NTRS)

    Roboz, A.; Nagy, A. F.

    1994-01-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  9. Solar Energetic Particle Spectral Breaks

    NASA Astrophysics Data System (ADS)

    Mewaldt, R.; Cohen, C.; Mason, G.; Desai, M.; Labrador, A.; Lee, M.; Li, G.

    2008-05-01

    A new generation of instruments during solar cycle 23 made it possible to measure solar energetic particle (SEP) energy spectra for many species over a broad energy interval (~0.1 to ~100 MeV/nucleon). These observations revealed that most large SEP events have power-law spectra below a few MeV/nucleon with rather hard spectral indices, followed by spectral steepening at higher energies. These spectral breaks are ordered by species - the spectra of lighter elements break at higher energy/nucleon than those for heavier species. To understand the charge-to-mass (Q/M) dependence of these spectral breaks, we have located the breaks for a range of species (e.g., H, He, C, N, O, Ne, Mg, Si, and Fe) and correlated the break locations with either measured or average Q/M ratios. As of this writing there are results for 13 large SEP events, based on data from ACE, GOES, SAMPEX, and STEREO, and charge state data from SAMPEX and ACE. We find that the location of the breaks is generally well-represented by a power-law in Q/M. This power-law fit can be related to the Q/M- dependence of the interplanetary diffusion coefficient and to the turbulence spectrum of the interplanetary magnetic field. We find that the slope of the deduced turbulence spectra are correlated with Fe/O and the proton fluence. These results support the idea that proton-amplified Alfven waves are generated in large SEP events, as expected for acceleration at parallel shocks.

  10. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  11. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  12. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  13. Effective collision strengths for transitions in Fe XV.

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Msezane, A. Z.

    2003-10-01

    Collision strengths for transitions among the energetically lowest 53 fine-structure levels belonging to the (1s22s22p6) 3{l}2, 3{l}3{l}', 3s4{l} and 3p4s configurations of Fe XV are computed, over an electron energy range below 160 Ryd, using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (\\cite{Norrington03}). Effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron energies, have also been calculated. These results of effective collision strengths are tabulated for all 1378 inelastic transitions over a wide temperature range of 105 to 107 K. Comparisons are also made with other R-matrix calculations and the accuracy of the results is assessed. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/349

  14. Theoretical studies on nitrogen rich energetic azoles.

    PubMed

    Ghule, Vikas Dasharath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2011-06-01

    Different nitro azole isomers based on five membered heterocyclics were designed and investigated using computational techniques in order to find out the comprehensive relationships between structure and performances of these high nitrogen compounds. Electronic structure of the molecules have been calculated using density functional theory (DFT) and the heat of formation has been calculated using the isodesmic reaction approach at B3LYP/6-31G* level. All designed compounds show high positive heat of formation due to the high nitrogen content and energetic nitro groups. The crystal densities of these energetic azoles have been predicted with different force fields. All the energetic azoles show densities higher than 1.87 g/cm(3). Detonation properties of energetic azoles are evaluated by using Kamlet-Jacobs equation based on the calculated densities and heat of formations. It is found that energetic azoles show detonation velocity about 9.0 km/s, and detonation pressure of 40GPa. Stability of the designed compounds has been predicted by evaluating the bond dissociation energy of the weakest C-NO(2) bond. The aromaticity using nucleus independent chemical shift (NICS) is also explored to predict the stability via delocalization of the π-electrons. Charge on the nitro group is used to assess the impact sensitivity in the present study. Overall, the study implies that all energetic azoles are found to be stable and expected to be the novel candidates of high energy density materials (HEDMs).

  15. Energetic neutral particles from Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.

    1986-01-01

    The Voyager 1 spacecraft has detected energetic neutral particles escaping from the magnetospheres of Jupiter and Saturn. These energetic neutrals are created in charge exchange reactions between radiation belt ions and ambient atoms or molecules in the magnetosphere. If the Io torus is assumed to be the dominant Jovian source region for energetic neutrals, the Voyager observations can be used to infer upper limits to the average ion intensities there below about 200 keV. No readily interpretable in-situ measurements are available in the Io torus at these energies. The middle and outer Jovian magnetospheres may also be a significant source of energetic neutrals. At Saturn, the observed neutral particle count rates are too high to be explained by charge exchange between fast protons and H atoms of the Titan torus. Most of the energetic neutrals may be produced by charge exchanges between heavy ions and a neutral cloud containing H2O in Saturn's inner magnetosphere. If so, the Voyager measurements of energetic neutral fluxes would be the first detected emissions from this region of Saturn's magnetosphere.

  16. Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy

    The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which

  17. Measurement of inclusive jet spectra in pp, p–Pb, and Pb–Pb collisions with the ALICE detector

    NASA Astrophysics Data System (ADS)

    Haake, Rüdiger; ALICE Collaboration

    2017-02-01

    Highly energetic jets are sensitive probes of the kinematic properties and the topology of high energy hadron collisions. Jets are collimated sprays of charged and neutral particles, which are produced in fragmentation of hard scattered partons from an early stage of the collision. In ALICE, jets have been measured in pp, p–Pb, and Pb–Pb collisions at several collision energies. While analyses of Pb–Pb events unveil properties of the hot and dense medium formed in heavy-ion collisions, pp and p–Pb collisions can shed light on hadronization and cold nuclear matter effects in jet production. Additionally, pp and p–Pb collisions serve as a baseline for disentangling hot and cold nuclear matter effects. A possible modification of the initial state is tested in p–Pb analyses. For the extraction of a jet signal, the exact evaluation of the background from the underlying event is an especially important ingredient. Due to the different nature of underlying events, each collision system requires a different analysis technique for removing the effect of the background on the jet sample. The focus of this publication is on the ALICE measurements of nuclear modification factors connecting p–Pb and Pb–Pb events to pp collisions. Furthermore, the radial jet structure is explored by comparing jet spectra reconstructed with different resolution parameters.

  18. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  19. Collision Dynamics of Decimeter Bodies

    NASA Astrophysics Data System (ADS)

    Deckers, Johannes; Teiser, J.

    2013-10-01

    The collision dynamics of decimeter bodies are important for the early phase of planet formation. Planets form by accretion of km-sized objects, the so called planetesimals. These planetesimals evolve from small grains, but their formation process is not yet understood entirely. Two groups of models try to explain the formation process. Decimeter bodies and their collision behavior play a vital role in both groups. The threshold between bouncing and fragmentation is especially interesting for coagulation models, as decimeter bodies are the direct precursors to meter sized bodies. But the collision dynamics are also relevant for the models, which describe planetesimal formation by gravitational collapse in dense regions of the protoplanetary disk. We will present preliminary results of our collision experiments. Previous experiments on mutual collisions of decimeter dust agglomerates showed that the threshold between bouncing and fragmentation lies at a collision velocity of 16.2 cm/s, which corresponds to a specific kinetic energy of 5 mJ/kg. We expand these experiments to investigate the conditions for “catastrophic disruption” of decimeter dust bodies. Here, “catastrophic disruption” means that the largest fragment of a collision partner has only half the mass of the original body. Furthermore, we extend the parameter range to ice aggregates. We will present first experimental results of collisions of ice aggregates in the decimeter range. In these first experiments we will analyze the threshold conditions for solid ice. We will investigate the collision dynamics for both central and non-central collisions.

  20. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  1. A TPC detector for the study of high multiplicity heavy ion collisions

    SciTech Connect

    Rai, G.; Arthur, A.; Beiser, F.; Harnden, C.W.; Jones, R.; Kleinfelder, S.; Lee, K.; Matis, H.S.; Nakamura, M.; McParland, C.; Nesbitt, D.; Odyniec, G.; Olson, D.; Pugh, H.G.; Ritter, H.G.; Symons, T.J.M.; Weiman, H.; Wright, R. ); Rudge, A. )

    1990-04-01

    The design of the time projection chamber (TPC) detector with complete pad coverage is presented. The TPC will allow the measurements of high multiplicity ({approx}200 tracks) relativistic nucleus-nucleus collisions initiated with the heaviest, most energetic projectiles available at the LBL BEVALAC accelerator facility. The front end electronics, composed of over 15,000 time sampling channels, will be located on the chamber. The highly integrated, custom designed, electronics and the VME based data acquisition system are described.

  2. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    SciTech Connect

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  3. Laser Ignition of Energetic Materials Workshop

    NASA Astrophysics Data System (ADS)

    Devries, Nora M.; Oreilly, John J.; Forch, Brad E.

    1993-11-01

    Lasers inherently possess many desirable attributes making them excellent igniters for a wide range of energetic materials such as pyrotechnics, explosives, and gun propellants. Lasers can be made very small, have modest powereD requirements, are invulnerable to external stimuli, are very reliable, and can deliver radiative energy to remote locations through optical fibers. Although the concept of using lasers for the initiation of energetic materials is not new, successful integration of laser technology into military systems has the potential to provide significant benefits. In order to efficiently expedite the evolution of the laser ignition technology for military applications, it was desirable to coordinate the effort with the JANNAF combustion community. The laser ignition of Energetic Materials Workshop was originated by Brad Forch, Austin Barrows, Richard Beyer and Arthur Cohen of the Army Research Laboratory (ARL).

  4. Sol-gel processing of energetic materials

    SciTech Connect

    Tillotson, T.M.; Hrubesh, L.H.; Fox, G.L.; Simpson, R.L.; Lee, R.W.; Swansiger, R.W.; Simpson, L.R.

    1997-08-18

    As part of a new materials effort, we are exploring the use of sol- gel chemistry to manufacture energetic materials. Traditional manufacturing of energetic materials involves processing of granular solids. One application is the production of detonators where powders of energetic material and a binder are typically mixed and compacted at high pressure to make pellets. Performance properties are strongly dependent on particle size distribution, surface area of its constituents, homogeneity of the mix, and void volume. The goal is to produce detonators with fast energy release rate the are insensitive to unintended initiation. In this paper, we report results of our early work in this field of research, including the preparation of detonators from xerogel molding powders and aerogels, comparing the material properties with present state-of-the-art technology.

  5. Viewing perspective in energetic neutral atom intensity

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Lui, Anthony T. Y.; Fok, Mei-Ching

    2008-09-01

    Through interspacecraft comparison of energetic neutral oxygen (ENO) intensity from two different vantage points provided by IMAGE and Geotail, Lui et al. (2005) showed that viewing perspective plays a very important role in the observed ENO intensity level during a magnetic storm period. Motivated by the findings of Lui et al. (2005), we investigate how viewing perspective influences energetic neutral atom emissions from a modeling perspective. The main results of this paper are that (1) our simulation results, based upon O+ ion fluxes from the Comprehensive Ring Current Model and the subsequent ENO calculation, reproduce the total differential ENO intensity obtained from two spacecraft to a reasonable degree and (2) further analysis of our results indicates that pitch angle anisotropy in ring current ion flux, a crucial physical quantity in ring current dynamics, is one major contributor to the difference in energetic neutral atom intensity from different viewing perspectives.

  6. Novel Energetic Materials for Counter WMD Applications

    DTIC Science & Technology

    2011-09-01

    derivatives Dense high nitrogen molecular and ionic materials A. Structure and synthesis of energetic salts ofN, N’ -dinitrourea (DNU) B. Impact...Engineering Data, 2008, 53(2), 520-524. Ye, C.; Gao, H.; Twamley, B.; Shreeve, J. M. " Structure and Synthesis of Energetic Salts ofN, N’ -dinitrourea...N Y (~+ ~SFs 2a-c NH2 N y ~ " N-N~ \\-sFs 4a-c Q y- N ~SFs 6a Structure and Properties ofSFs-containing Salts Cation Anion No. Td d 6

  7. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  8. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2016-07-12

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  9. [Electron transfer, ionization, and excitation in atomic collisions]. Final technical report, June 15, 1986--June 14, 1998

    SciTech Connect

    1998-12-31

    The research on theoretical atomic collisions that was funded at The Pennsylvania State University`s Wilkes-Barre Campus by DOE from 1986 to 1998 was carried out by Winger from 1986 to 1989 and by Winter and Alston from 1989 to 1998. The fundamental processes of electron transfer, ionization, and excitation in ion-ion, ion-atom, and, more recently, ion-molecule collisions were addressed. These collision processes were treated in the context of simple one-electron, quasi-one-electron, or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. Winter`s work generally focused on the intermediate projectile-energy range corresponding to proton energies from about ten to a few hundred keV. In this velocity-matching energy range, the electron-transfer cross section reaches a peak, and many states, including electron-transfer and ionization states, contribute to the overall electron-cloud distribution and transition probabilities; a large number of states are coupled, and therefore perturbative approaches are generally inappropriate. These coupled-state calculations were sometimes also extended to higher energies to join with perturbative results. Alston concentrated on intermediate-energy asymmetric collision systems, for which coupling with the projectile is weaker, but many target states are included, and on high energies (MeV energies). Thus, while perturbation theory for electron transfer is valid, it is not adequate to first order. The studies by Winter and Alston described were often done in parallel. Alston also developed formal perturbative approaches not tied to any particular system. Materials studied included He{sup +}, Li{sup 2+}, Be{sup 3+}, B{sup 4+}, C{sup 5+}, and the H{sup +} + Na system.

  10. Energetics of the Semiconductor-Electrolyte Interface.

    ERIC Educational Resources Information Center

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  11. Energetics of geostrophic adjustment in rotating flow

    NASA Astrophysics Data System (ADS)

    Fang, J.; Wu, R. S.

    2002-09-01

    Energetics of geostrophic adjustment in rotating how is examined in detail with a linear shallow water model. The Initial Unbalanced flow considered first falls under two classes. The first is similar to that adopted by Gill and is here referred to as it mass imbalance model, for the flow is initially motionless but with a sea surface displacement. The other is the same as that considered by Rossby and is referred to as I momentum imbalance model since there is only a velocity perturbation in the initial field. The significant feature of the energetics of geostrophic adjustment for the above two extreme models is that althongh the energy conversion ratio has a large case-to-case variability for different initial conditions, Its value is bounded below by 0 and above by 1 / 2. Based on the discussion of the above extreme models, the energetics of adjustment for an arbitrary initial condition is investigated. It is found that the characteristics of the energetics of geostrophic adjustment mentioned above are also applicable to adjustment of the general unbalanced flow under the condition that the energy conversion ratio is redefined as the conversion ratio between the change of kinetic energy and potential energy of the deviational fields.

  12. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1989-01-01

    A large area, high flux beam of energetic oxygen atoms, E about 5 eV, has been developed to study the interaction of atomic oxygen with materials appropriate for spacecraft in low earth orbit. A description of the operating conditions and characteristics of the beam along with typical sample irradiation results are provided.

  13. Chapter 4: Measuring Energetics of Biological Processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of the energetics of biological processes is the key component in understanding the thermodynamic responses of homoeothermic animals to the environment. For these animals to achieve body temperature control, they must adapt to thermal-environmental conditions and variations caused by wea...

  14. Estimating Instantaneous Energetic Cost During Gait Adaptation

    DTIC Science & Technology

    2014-08-31

    Energetic cost, in this context, refers to the input energy required to 23   power the cellular processes underlying the body’s movement. This energy is...entering the body is allowed to reach equilibrium with the rate at which cellular 57   processes are consuming it. By averaging over minutes of data

  15. Cryocycling of energetic materials. Final report

    SciTech Connect

    Griffiths, S.; Nilson, R.; Handrock, J.; Revelli, V.; Weingarten, L.

    1997-08-01

    The Cryocycling of Energetic Materials Project was executed in the period FY`94-96 as a Life Cycle Engineering activity in the Memorandum of Understanding (MOU) on advanced conventional munitions. This MOU is an agreement between the Departments of Energy and Defense (Office of Munitions) that facilitates the development of technologies of mutual interest to the two Departments. The cryocycling process is a safe, environmentally friendly, and cost effective means of rubblizing bulk energetic materials so that they can be easily reused in a variety of new products. For this reason, cryocycling of excess solid energetic materials is one of the recycle/reuse strategies under study for demilitarized munitions in the Departments of Energy and Defense. These strategies seek to minimize the environmental damage associated with disposal of decommissioned energetic materials. In addition, they encourage technologies that can be used to derive economic benefit from reuse/reapplication of materials that would otherwise be treated as hazardous wastes. 45 refs., 38 figs., 7 tabs.

  16. The Energetic Brain: Understanding and Managing ADHD

    ERIC Educational Resources Information Center

    Reynolds, Cecil R.; Vannest, Kimberly J.; Harrison, Judith R.

    2012-01-01

    ADHD affects millions of people-some 3 to 5% of the general population. Written by a neuroscientist who has studied ADHD, a clinician who has diagnosed and treated it for 30 years, and a special educator who sees it daily, "The Energetic Brain" provides the latest information from neuroscience on how the ADHD brain works and shows how to harness…

  17. The energetics of low browsing in sauropods

    PubMed Central

    Ruxton, Graeme D.; Wilkinson, David M.

    2011-01-01

    It has recently been argued that the probable high cost of travel for sauropod dinosaurs would have made exploiting high forage energetically attractive, if this reduced the need to travel between food patches. This argument was supported by simple calculations. Here, we take a similar approach to evaluate the energetics of foraging close to the ground. We predict that small extensions of the neck beyond the minimum required for the mouth to reach the ground bring substantial energetic savings. Each increment of length brings a further saving, but the sizes of such benefits decrease with increasing neck length. However, the observed neck length of around 9 m for Brachiosaurus (for example) is predicted to reduce the overall cost of foraging by 80 per cent, compared with a minimally necked individual. We argue that the long neck of the sauropods may have been under positive selection for low foraging (instead of, or as well as, exploitation of high foraging), if this long neck allowed a greater area of food to be exploited from a given position and thus reduced the energetically expensive movement of the whole animal. PMID:21429913

  18. Energy Harvesting from Energetic Porous Silicon

    DTIC Science & Technology

    2016-07-01

    ARL-TR-7719 ● JULY 2016 US Army Research Laboratory Energy Harvesting from Energetic Porous Silicon by Louis B Levine, Matthew...it is no longer needed. Do not return it to the originator. ARL-TR-7719 ● JULY 2016 US Army Research Laboratory Energy ...

  19. Error propagation in energetic carrying capacity models

    USGS Publications Warehouse

    Pearse, Aaron T.; Stafford, Joshua D.

    2014-01-01

    Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.

  20. Energetic electrons generated during solar flares

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried

    2015-12-01

    > electrons are accelerated up to energies beyond 30 keV is one of the open questions in solar physics. A flare is considered as the manifestation of magnetic reconnection in the solar corona. Which mechanisms lead to the production of energetic electrons in the magnetic reconnection region is discussed in this paper. Two of them are described in more detail.

  1. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  2. Energetic particle physics issues for ITER

    SciTech Connect

    Cheng, C.Z.; Budny, R.; Fu, G.Y.

    1996-12-31

    This paper summarizes our present understanding of the following energetic/alpha particle physics issues for the 21 MA, 20 TF coil ITER Interim Design configuration and operational scenarios: (a) toroidal field ripple effects on alpha particle confinement, (b) energetic particle interaction with low frequency MHD modes, (c) energetic particle excitation of toroidal Alfven eigenmodes, and (d) energetic particle transport due to MHD modes. TF ripple effects on alpha loss in ITER under a number of different operating conditions are found to be small with a maximum loss of 1%. With careful plasma control in ITER reversed-shear operation, TF ripple induced alpha loss can be reduced to below the nominal ITER design limit of 5%. Fishbone modes are expected to be unstable for {beta}{sub {alpha}} > 1%, and sawtooth stabilization is lost if the ideal kink growth rate exceeds 10% of the deeply trapped alpha precessional drift frequency evaluated at the q = 1 surface. However, it is expected that the fishbone modes will lead only to a local flattening of the alpha profile due to small banana size. MHD modes observed during slow decrease of stored energy after fast partial electron temperature collapse in JT-60U reversed-shear experiments may be resonant type instabilities; they may have implications on the energetic particle confinement in ITER reversed-shear operation. From the results of various TAE stability code calculations, ITER equilibria appear to lie close to TAE linear stability thresholds. However, the prognosis depends strongly on q profile and profiles of alpha and other high energy particles species. If TAE modes are unstable in ITER, the stochastic diffusion is the main loss mechanism, which scales with ({delta}B{sub r}/B){sup 2}, because of the relatively small alpha particle banana orbit size. For isolated TAE modes the particle loss is very small, and TAE modes saturate via the resonant wave-particle trapping process at very small amplitude.

  3. Spin Changing Collisions of Hydrogen

    NASA Technical Reports Server (NTRS)

    Zygelman, Bernard

    2006-01-01

    We discuss spin changing collisions of hydrogen atoms. Employing a fully quantal theory we calculate and present new collision data. We discuss the respective roles of spin exchange and long range magnetic interactions in collisonal redistribution of sub-level populations. The calculated atomic data is needed for accurate modeling of 21 cm line emission/absorption by primordial hydrogen in the early universe.

  4. Electron Collisions with Hydrogen Fluoride

    NASA Astrophysics Data System (ADS)

    Itikawa, Yukikazu

    2017-03-01

    Cross section data are reviewed for electron collisions with hydrogen fluoride. Collision processes considered are total scattering, elastic scattering, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature, recommended values of the cross sections are determined, as far as possible.

  5. Collision in space

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  6. Collision in space.

    PubMed

    Ellis, S R

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  7. Heavy-particle collisions and quantum optics: The parabolic noncrossing model

    SciTech Connect

    Nesbitt, B.S.; Crothers, D.S.; ORourke, S.F.; Berman, P.R.

    1997-08-01

    The problem of deriving analytic formulas for transition probabilities in two-level systems is studied. The two-level systems are described by a pair of first-order differential equations coupled by a time-dependent potential. One such model is given by da{sub m}/dt={minus}i{beta}f(t)a{sub n}e{sup ({minus}1){sup n}i{alpha}t} (m,n=1,2; m{ne}/n), which describes certain types of ion-atom collisions and some quantum-optics two-level problems. It will be shown that the correct approach in solving the coupled equations is to adopt a Zwaan-Stueckelberg phase-integral analysis of the four-transition-point problem based on the parabolic noncrossing model of Crothers [J. Phys. B {bold 9}, 635 (1976)]. Alternatively, one may obtain an approximation by employing adiabatic perturbation theory, but such an approach can at best provide only weak-coupling solutions and can never guarantee unitarity in the probability amplitudes. The advantage of the phase-integral method is that it produces a strong-coupling approximation by embracing the appropriate asymptotic expansions for cylinder functions of large order and argument [D. S. F. Crothers, J. Phys. A {bold 5}, 1680 (1972)] and it also ensures analyticity, unitarity, and symmetry. {copyright} {ital 1997} {ital The American Physical Society}

  8. Exploring Ultrafast Structural Dynamics for Energetic Enhancement or Disruption

    DTIC Science & Technology

    2016-03-01

    indirect laser heating and on-resonant optical pumping, to excite/perturb the energetic material to observe changes in the electronic and molecular...time scales necessary to monitor early times of energetic events. 15. SUBJECT TERMS ultrafast, energetic, femtosecond, TATB, flash heating , transient...absorption spectra of RDX after flash heating (left) Raman spectra of RDX after flash heating (right) .............................................7

  9. Laser-induced reactions in energetic materials

    NASA Astrophysics Data System (ADS)

    Ling, Ping

    1999-07-01

    Several energetic materials have been investigated under shock wave loading, heating, and photodissociation. This dissertation highlights some efforts to understand energetic material from an angle of basic physical processes and elementary chemical reactions. The first series of experiments was performed to study laser-generated shock waves in energetic materials. Shock waves are generated by pulsed laser vaporization of thin aluminum films. The rapidly expanding aluminum plasma launches a shock wave into the adjacent layer of energetic material, initiating chemical reactions. The shock velocity has been measured by a velocity interferometer. Shock pressures as high as 8 GPa have been generated in this manner. A simple model is proposed to predict laser-generated shock pressure. Several energetic materials have been studied under laser- generated shock wave. The second series of experiments was conducted to study thermal decomposition and photodissociation of energetic materials. Glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (PGN) have been investigated by pulsed infrared laser pyrolysis and ultraviolet laser photolysis of thin films at 17-77 K. Reactions are monitored by transmission infrared spectroscopy. Photolysis of GAP at 266 nm shows that the initial reaction steps are elimination of molecular nitrogen with subsequent formation of imines. Thermal decomposition of GAP by infrared laser pyrolysis reveals products similar to the UV experiments after warming. Laser pyrolysis of PGN indicated that the main steps of decomposition are elimination of NO2 and CH2O from the nitrate ester functional group. It seems that the initial thermal decomposition mechanism of GAP and PGN are the same from heating rate of several degrees per second to 107 oC/s. The third series of experiments is about detailed study of photodissociation mechanism of methyl nitrate. Photodissociation of methyl nitrate isolated in an argon matrix at 17 K has been investigated by 266 nm

  10. Energetic negative ion and neutral atom beam generation at passage of laser accelerated high energy positive ions through a liquid spray

    NASA Astrophysics Data System (ADS)

    Abicht, F.; Prasad, R.; Priebe, G.; Braenzel, J.; Ehrentraut, L.; Andreev, A.; Nickles, P. V.; Schnürer, M.; Tikhonchuk, V.; Ter-Avetisyan, Sargis

    2013-05-01

    Beams of energetic negative ions and neutral atoms are obtained from water and ethanol spray targets irradiated by high intensity (5×1019 W/cm2) and ultrashort (50 fs) laser pulses. The resulting spectra were measured with the Thomson parabola spectrometer, which enabled absolute measurements of both: positive and negative ions. The generation of a beam of energetic neutral hydrogen atoms was confirmed with CR-39 track detectors and their spectral characteristics have been measured using time of flight technique. Generation is ascribed to electron-capture and -loss processes in the collisions of laser-accelerated high-energy protons with spray of droplets. The same method can be applied to generate energetic negative ions and neutral atoms of different species.

  11. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  12. The Production of Energetic Atomic Beams via Charge Exchange for the Simulation of the Low-Earth Orbit Environment.

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew David

    The interactions of energetic atoms with solid materials and other gases are important to a wide range of engineering disciplines. The interactions between low -Earth orbit (LEO) atomic oxygen and spacecraft surfaces, outgassed molecules, rocket exhaust plume species and other atmospheric gases are of great interest to the aerospace engineering community. The approach taken in this study was to design a facility which can be used to understand the physics of energetic gas-gas and gas-surface collisions. The type of facility needed to accomplish this requires a continuous, high energy (5-100eV) atomic beam with a low energy spread and a moderate flux. The flux of atoms from this facility, although estimated to be several orders of magnitude lower than LEO conditions, is sufficient to gain qualitative and quantitative insight into LEO environmental interactions. In the pilot scale true energy atmospheric simulator (TEAS) developed in this research, ion engine technology is incorporated to produce a beam of energetic ions. Because the ion source discharges can be operated on several gases, simulation of any atmospheric species can be achieved; however, atomic oxygen is the species of interest in this study. The ions are accelerated to the desired energy range and undergo a charge exchange process in molecular hydrogen to produce the energetic atomic beam Molecular hydrogen is chosen as the charge exchange gas because of the relatively large cross section for the reaction and the small scattering angle per collision. An electrostatic energy analyzer, a mass spectrometer and thin silver reaction films are used to diagnose the beams produced by the TEAS.

  13. Collision avoidance sensor skin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was to totally eliminate the possibility of a robot (or any mechanism for that matter) inducing a collision in space operations. We were particularly concerned that human beings were safe under all circumstances. This was apparently accomplished, and it is shown that GSFC has a system that is ready for space qualification and flight. However, it soon became apparent that much more could be accomplished with this technology. Payloads could be made invulnerable to collision avoidance and the blind spots behind them eliminated. This could be accomplished by a simple, non-imaging set of 'Capaciflector' sensors on each payload. It also is evident that this system could be used to align and dock the system with a wide margin of safety. Throughout, lighting problems could be ignored, and unexpected events and modeling errors taken in stride. At the same time, computational requirements would be reduced. This can be done in a simple, rugged, reliable manner that will not disturb the form factor of space systems. It will be practical for space applications. The lab experiments indicate we are well on the way to accomplishing this. Still, the research trail goes deeper. It now appears that the sensors can be extended to end effectors to provide precontact information and make robot docking (or any docking connection) very smooth, with minimal loads impacted back into the mating structures. This type of ability would be a major step forward in basic control techniques in space. There are, however, baseline and restructuring issues to be tackled. The payloads must get power and signals to them from the robot or from the astronaut servicing tool. This requires a standard electromechanical interface. Any of several could be used. The GSFC prototype shown in this presentation is a good one. Sensors with their attendant electronics must be added to the payloads, end effectors, and robot arms and integrated into the system.

  14. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  15. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  16. Probing the heliosphere with energetic hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Shih, K. L.; Jokipii, J. R.; Grzedzielski, S.

    1992-01-01

    The idea of using energetic neutral atoms (ENAs), produced by charge exchange between energetic ions and ambient neutral atoms, as a diagnostic tool to investigate planetary magnetospheres from a distance has been extended to the investigation of the heliosphere. The paper explores what one can reasonably expect of the heliospheric ENA (HSENA) and what criteria would be imposed on HSENA instruments by concentrating on 10-10 exp 3 keV protons in quiet-time interplanetary space, solar-flare events, corotating interaction regions, and populations have distinctive signatures and that the detection of these particles can reveal energy spatial and propagation of ions in 3D interplanetary space, including the solar-wind termination shock. Such breadth of information could not be gained by in situ means.

  17. Kinetic versus Energetic Discrimination in Biological Copying

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2013-05-01

    We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and cannot be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the other hand, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Polγ, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway.

  18. Energetics of compost production and utilization

    SciTech Connect

    Diaz, L.F.; Golueke, C.G.; Savage, G.M.

    1986-09-01

    Developments during the past decade have led to a fairly clear delineation of the role of composting in municipal solid waste (MSW) management. However, before that role can be accepted and implemented on a practical scale, certain important environmental and economic factors must be resolved. Of the economic factors, the energetics of composting in waste management is in urgent need of further elaboration and exploration. This need prompted an attempt on the part of the authors of this paper to resolve basic questions regarding the energetics involved in the production and utilization of compost from urban solid waste and municipal sludges, and peripherally, the applicability of these findings to the management of other wastes (e.g., agricultural). Progress made in pursuing this attempt is described in the present paper.

  19. Exploratory analysis of Spanish energetic mining accidents.

    PubMed

    Sanmiquel, Lluís; Freijo, Modesto; Rossell, Josep M

    2012-01-01

    Using data on work accidents and annual mining statistics, the paper studies work-related accidents in the Spanish energetic mining sector in 1999-2008. The following 3 parameters are considered: age, experience and size of the mine (in number of workers) where the accident took place. The main objective of this paper is to show the relationship between different accident indicators: risk index (as an expression of the incidence), average duration index for the age and size of the mine variables (as a measure of the seriousness of an accident), and the gravity index for the various sizes of mines (which measures the seriousness of an accident, too). The conclusions of this study could be useful to develop suitable prevention policies that would contribute towards a decrease in work-related accidents in the Spanish energetic mining industry.

  20. Energetic protons from a disappearing solar filament

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Stone, R. G.; Sheeley, N. R., Jr.

    1985-01-01

    A solar energetic (E 50 MeV) particle (SEP) event observed at 1 AU began about 15000 UT on 1981 December 5. This event was associated with a fast coronal mass ejection observed with the Solwind coronagraph on the P78-1 satellite. No metric type 2 or type 4 burst was observed, but a weak interplanetary type 2 burst was observed with the low frequency radio experiment on the International Sun-Earth Explorer-3 satellite. The mass ejection was associated with the eruption of a large solar quiescent filament which lay well away from any active regions. The eruption resulted in an H alpha double ribbon structure which straddled the magnetic inversion line. No impulsive phase was obvious in either the H alpha or the microwave observations. This event indicates that neither a detectable impulsive phase nor a strong or complex magnetic field is necessary for the production of energetic ions.

  1. Assessment of CRBR core disruptive accident energetics

    SciTech Connect

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

  2. Energetics in robotic flight at small scales.

    PubMed

    Karydis, Konstantinos; Kumar, Vijay

    2017-02-06

    Recent advances in design, sensing and control have led to aerial robots that offer great promise in a range of real-world applications. However, one critical open question centres on how to improve the energetic efficiency of aerial robots so that they can be useful in practical situations. This review paper provides a survey on small-scale aerial robots (i.e. less than 1 m(2) area foot print, and less than 3 kg weight) from the point of view of energetics. The paper discusses methods to improve the efficiency of aerial vehicles, and reports on recent findings by the authors and other groups on modelling the impact of aerodynamics for the purpose of building energy-aware motion planners and controllers.

  3. Mitochondrial network energetics in the heart.

    PubMed

    Aon, Miguel A; Cortassa, Sonia

    2012-01-01

    At the core of eukaryotic aerobic life, mitochondrial function like 'hubs' in the web of energetic and redox processes in cells. In the heart, these networks-extending beyond the complex connectivity of biochemical circuit diagrams and apparent morphology-exhibit collective dynamics spanning several spatiotemporal levels of organization, from the cell, to the tissue, and the organ. The network function of mitochondria, i.e., mitochondrial network energetics, represents an advantageous behavior. Its coordinated action, under normal physiology, provides robustness despite failure in a few nodes, and improves energy supply toward a swiftly changing demand. Extensive diffuse loops, encompassing mitochondrial-cytoplasmic reaction/transport networks, control and regulate energy supply and demand in the heart. Under severe energy crises, the network behavior of mitochondria and associated glycolytic and other metabolic networks collapse, thereby triggering fatal arrhythmias.

  4. The energetic basis of acoustic communication.

    PubMed

    Gillooly, James F; Ophir, Alexander G

    2010-05-07

    Animals produce a tremendous diversity of sounds for communication to perform life's basic functions, from courtship and parental care to defence and foraging. Explaining this diversity in sound production is important for understanding the ecology, evolution and behaviour of species. Here, we present a theory of acoustic communication that shows that much of the heterogeneity in animal vocal signals can be explained based on the energetic constraints of sound production. The models presented here yield quantitative predictions on key features of acoustic signals, including the frequency, power and duration of signals. Predictions are supported with data from nearly 500 diverse species (e.g. insects, fishes, reptiles, amphibians, birds and mammals). These results indicate that, for all species, acoustic communication is primarily controlled by individual metabolism such that call features vary predictably with body size and temperature. These results also provide insights regarding the common energetic and neuromuscular constraints on sound production, and the ecological and evolutionary consequences of producing these sounds.

  5. Streaming energetic electrons in reconnection events

    NASA Astrophysics Data System (ADS)

    Bieber, John W.

    Energetic electrons can be used to probe the large-scale topology of magnetic fields in Earth's magnetotail. In the plasma sheet region near the tail's midplane, these particles normally exhibit the trapped or isotropic angular distributions characteristic of closed magnetic field lines, but brief intervals of intense tailward streaming, indicative of open field lines, are occasionally observed. Such streaming events occur preferentially near the time of substorm onset as the observing spacecraft exits the thinning plasma sheet, and they are usually preceded by a 5-10 minute interval of fast tailward plasma flow and southward magnetic field. These correlated phenomena have been interpreted as evidence for magnetic reconnection at a transient magnetic X-line located ˜15 RE tailward of Earth. Recent studies of energetic electron streaming events report novel reconnection-related phenomena, including heating of plasma electrons, bump-in-tail electron velocity distributions, and possible rotational and tangential magnetic discontinuities.

  6. Streaming energetic electrons in reconnection events

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.

    Energetic electrons can be used to probe the large-scale topology of magnetic fields in earth's magnetotail. In the plasma sheet region near the tail's midplane, these particles normally exhibit the trapped or isotropic angular distributions characteristic of closed magnetic field lines, but brief intervals of intense tailward streaming, indicative of open field lines, are occasionally observed. Such streaming events occur preferentially near the time of substorm onset as the observing spacecraft exits the thinning plasma sheet, and they are usually preceded by a 5-10 minute interval of fast tailward plasma flow and southward magnetic field. These correlated phenomena have been interpreted as evidence for magnetic reconnection at a transient magnetic X-line located at 15 earth radii tailward of earth. Recent studies of energetic electron streaming events report novel reconnection-related phenomena, including heating of plasma electrons, bump-in-tail electron velocity distributions, and possible rotational and tangential magnetic discontinuities.

  7. HAWC and Solar Energetic Transient Events

    NASA Astrophysics Data System (ADS)

    Lara, A.; Ryan, J. M.

    2013-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC's primary purpose is the study of both galactic and extra-galactic sources of high energy gamma rays. The HAWC instrument will consist of 300 large water Cherenkov detectors whose counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site ( ˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effect of Coronal Mass Ejections on the galactic cosmic rays, known as Forbush Decreases (FDs). The Milagro experiment, the HAWC predecessor, successfully observed GLEs and the HAWC engineering array "VAMOS" already observed a FD. HAWC will be sensitive to γ rays and neutrons produced during large solar flares. In this work, we present the instrument and discuss its capability to observe solar energetic events. i. e., flares and CMEs.

  8. Mitochondrial network energetics in the heart

    PubMed Central

    Aon, Miguel A.; Cortassa, Sonia

    2012-01-01

    At the core of eukaryotic aerobic life, mitochondria function like “hubs” in the web of energetic and redox processes in cells. In the heart, these networks - extending beyond the complex connectivity of biochemical circuit diagrams and apparent morphology - exhibit collective dynamics spanning several spatio-temporal levels of organization, from the cell, to the tissue, and the organ. The network function of mitochondria, i.e. mitochondrial network energetics, represents an advantageous behaviour. Its coordinated action, under normal physiology, provides robustness despite failure in a few nodes, and improves energy supply toward a swiftly changing demand. Extensive diffuse loops, encompassing mitochondrialcytoplasmic reaction/transport networks, control and regulate energy supply and demand in the heart. Under severe energy crises, the network behaviour of mitochondria and associated glycolytic and other metabolic networks collapse, thereby triggering fatal arrhythmias. PMID:22899654

  9. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  10. Measurement System for Energetic Materials Decomposition

    DTIC Science & Technology

    2015-01-05

    Measurement System for Energetic Materials Decomposition This DURIP grant was used to purchase: 1. Q600 SDT Simultaneous DSC-TGA 2... Decomposition Report Title This DURIP grant was used to purchase: 1. Q600 SDT Simultaneous DSC-TGA 2. Pfeiffer Vacuum Benchtop Thermostar Mass...Spectrometer 3. Vision Research Phantom V12.1-8G-M high speed camera These instruments have been used to evaluate and study decomposition and

  11. Energetic and Structural Study of Diphenylpyridine Isomers

    NASA Astrophysics Data System (ADS)

    Rocha, Marisa A. A.; Gomes, Lígia R.; Low, John N.; Santos, Luís M. N. B. F.

    2009-09-01

    The energetic and structural study of three diphenylpyridine isomers is presented in detail. The three isomers, 2,6-, 2,5-, and 3,5-diphenylpyridines, were synthesized via Suzuki-Miyaura methodology based on palladium catalysis, and the crystal structures of the isomers were obtained by X-ray diffraction. The relative energetic stabilities in the condensed and gaseous phases as well as volatilities and structures of the three studied isomers were evaluated, regarding the position of the phenyl groups relative to the nitrogen atom of the pyridine ring. The temperature, standard molar enthalpies, and entropies of fusion were measured and derived by differential scanning calorimetry. The vapor pressures of the considered isomers were determined by a static apparatus based on a MKS capacitance diaphragm manometer. The standard molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived, and the phase diagram near the triple point coordinates were determined for all isomers. The standard (p° = 0.1 MPa) molar enthalpies of combustion of all crystalline isomers were determined, at T = 298.15 K, by static bomb combustion calorimetry. The standard molar enthalpies of formation, in the crystalline and gaseous phases, at T = 298.15 K, were derived. The experimental results for the energetics in the gaseous phase of the three compounds were compared and assessed with the values obtained by ab initio calculations at different levels of theory (DFT and MP2) showing that, at this level of theory, the computational methods underestimate the energetic stability, in the gaseous phase, for these molecules. In order to understand the aromaticity in the central ring of each isomer, calculations of NICS (B3LYP/6-311G++(d,p) level of theory) values on the pyridine ring were also performed.

  12. Composition of energetic particles from solar flares.

    PubMed

    Garrard, T L; Stone, E C

    1994-10-01

    We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.

  13. The energetic alpha particle transport method EATM

    SciTech Connect

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets.

  14. Energetic ion composition of the plasma sheet

    SciTech Connect

    Peterson, W.K.; Sharp, R.D.; Shelley, E.G.; Johnson, R.G.; Balsiger, H.

    1981-02-01

    Data obtained from the energetic ion mass spectrometer experiment on Isee 1 in the distant plasma sheet are presented. These data show that (1) the plasma sheet has a significant and variable ionospheric component (H/sup +/ and O/sup +/) representing from 10% to more than 50% of the total number density and (2) there is more than one process responsible for the energization of solar wind plasma (H/sup +/ and He/sup + +/) to plasma sheet energies.

  15. Energetic ion composition of the plasma sheet

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.

    1981-01-01

    Data obtained from the energetic ion mass spectrometer experiment on Isee 1 in the distant plasma sheet are presented. These data show that (1) the plasma sheet has a significant and variable ionospheric component (H(+) and O(+)) representing from 10% to more than 50% of the total number density and (2) there is more than one process responsible for the energization of solar wind plasma (H(+) and He(++)) to plasma sheet energies.

  16. Radiation Hydrodynamics Modeling of Hohlraum Energetics

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.

    2015-11-01

    Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  18. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  19. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  20. Fundamental energetic limits of radio communication systems

    NASA Astrophysics Data System (ADS)

    Baudais, Jean-Yves

    2017-02-01

    The evaluation of the energy consumption of a radiocommunication requires to analyse the life cycle of the elements used. However, this analysis does not specify the energetic limits. Theoretical approaches allow one to draw these limits, which are known in multiple cases of information transmission. However, the answers are not always satisfactory, in particular in the case of time-varying channels. After a brief presentation of the notion of energetic limits of a radiocommunication, and beginning with a global approach, we show that, contrary to the published results, the energetic limits always differ from zero if the physical constraints are correctly expressed. xml:lang="fr" Cependant, les réponses ne sont pas toujours satisfaisantes, particulièrement dans le cas de canaux variants dans le temps. Après une rapide présentation des notions d'énergie limite d'une radiocommunication, et en commençant par une approche globale du problème, nous montrons que, contrairement aux résultats publiés, les limites énergétiques sont toujours différentes de zéro si les contraintes physiques sont correctement exprimées.

  1. Energetic Particles Dynamics in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  2. Collisions in the Oort Cloud

    SciTech Connect

    Stern, S.A.

    1988-03-01

    The present assessment of the consequentiality of physical collisions between Oort Cloud objects by a first-generation model indicates that natural power-law population structures produce significant numbers of collisions between each comet and smaller objects over the age of the solar system. These collisions are held to constitute a feedback mechanism for small debris production. The impacts yield extensive comet surface evolution in the cloud, in conditions where the number of small orbiting objects conforms to the standard power-law populations. 16 references.

  3. A collision tumor of esophagus.

    PubMed

    Yao, Bin; Guan, Shanghui; Huang, Xiaochen; Su, Peng; Song, Qingxu; Cheng, Yufeng

    2015-01-01

    The collision tumor is defined by Meyer as that arisen from the accidental meeting and eventual intermingling of two independent neoplasms, which is quite rare. Most of them occur in the junction of different epithelial types of tissue such as oral cavity, esophagogastric junction, anorectaljunction and cervix, while collision tumors occurring in the liver, gallbladder, pancreatic, urinary bladder also have been reported. Here we present a case of 55-year-old Chinese man diagnosed as a collision tumor composed of leiomyosarcoma and squamous cell carcinoma (SqCC) in the lower third part of esophagus with 6 years survival after surgery and radiotherapy.

  4. Theoretical studies of molecular collisions

    NASA Technical Reports Server (NTRS)

    Kouri, Donald J.

    1991-01-01

    The following subject areas are covered: (1) total integral reactive cross sections and vibrationally resolved reaction probabilities for F + H2 = HF + H; (2) a theoretical study of inelastic O + N2 collisions; (3) body frame close coupling wave packet approach to gas phase atom-rigit rotor inelastic collisions; (4) wave packet study of gas phase atom-rigit motor scattering; (5) the application of optical potentials for reactive scattering; (6) time dependent, three dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction; (7) a time dependent wave packet approach to atom-diatom reactive collision probabilities; (8) time dependent wave packet for the complete determination of s-matrix elements for reactive molecular collisions in three dimensions; (9) a comparison of three time dependent wave packet methods for calculating electron-atom elastic scattering cross sections; and (10) a numerically exact full wave packet approach to molecule-surface scattering.

  5. Continental collisions and seismic signature

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Wever, Th.; Sadowiak, P.

    1991-04-01

    Reflection seismics in compressional belts has revealed the structure of crustal shortening and thickening processes, showing complex patterns of indentation and interfingering of colliding crusts and subcrustal lithospheres. Generally, in the upper crust large zones of detachments develop, often showing duplexes and 'crocodile' structures. The lower crust from zones of active collision (e.g. Alps, Pyrenees) is characterized by strongly dipping reflections. The base of the crust with the Moho must be continuously equilibrating after orogenic collapse as areas of former continental collision exhibit flat Mohos and subhorizontal reflections. The depth to the Moho increases during collision and decreases after the onset of post-orogenic extension, until finally the crustal root disappears completely together with the erosion of the mountains. Processes, active during continental collisions and orogenic collapse, create distinct structures which are imaged by reflection seismic profiling. Examples are shown and discussed.

  6. Collisions of Vortex Filament Pairs

    NASA Astrophysics Data System (ADS)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  7. Milky Way's Head On Collision

    NASA Video Gallery

    This animation depicts the collision between our Milky Way galaxy and the Andromeda galaxy. Hubble Space Telescope observations indicate that the two galaxies, pulled together by their mutual gravi...

  8. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    PubMed

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability.

  9. Mammalian energetics. Instantaneous energetics of puma kills reveal advantage of felid sneak attacks.

    PubMed

    Williams, Terrie M; Wolfe, Lisa; Davis, Tracy; Kendall, Traci; Richter, Beau; Wang, Yiwei; Bryce, Caleb; Elkaim, Gabriel Hugh; Wilmers, Christopher C

    2014-10-03

    Pumas (Puma concolor) live in diverse, often rugged, complex habitats. The energy they expend for hunting must account for this complexity but is difficult to measure for this and other large, cryptic carnivores. We developed and deployed a physiological SMART (species movement, acceleration, and radio tracking) collar that used accelerometry to continuously monitor energetics, movements, and behavior of free-ranging pumas. This felid species displayed marked individuality in predatory activities, ranging from low-cost sit-and-wait behaviors to constant movements with energetic costs averaging 2.3 times those predicted for running mammals. Pumas reduce these costs by remaining cryptic and precisely matching maximum pouncing force (overall dynamic body acceleration = 5.3 to 16.1g) to prey size. Such instantaneous energetics help to explain why most felids stalk and pounce, and their analysis represents a powerful approach for accurately forecasting resource demands required for survival by large, mobile predators.

  10. Airborne Collision Avoidance System X

    DTIC Science & Technology

    2015-06-01

    avoidance system on behalf of the Federal Aviation Adminis- tration (FAA). The current Traffic Alert and Collision Avoidance System II (TCAS II...which are used on board an aircraft. The tables provide a cost for each action—no alert , a traffic advisory alerting pilots about nearby aircraft, or a...suitabil- ity than does TCAS II; studies show that ACAS X reduces mid-air collision risk by 59% and unnecessary disruptive alerts by 25% when

  11. Do speed cameras reduce collisions?

    PubMed

    Skubic, Jeffrey; Johnson, Steven B; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods - before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions.

  12. Radii broadening due to molecular collision in focused ion beams

    NASA Astrophysics Data System (ADS)

    Komuro, Masanori

    1988-01-01

    Point exposures of poly(methyl methacrylate) resist are carried out with focused ion beams of Si++ and Au++ from a liquid AuSi ion source in order to obtain a current density distribution in the probe. All the distributions are composed of a main Gaussian distribution and a long tail dependent on r-3.3 (r means radial distance). The magnitude of this tail increases with the increase in ambient pressure of the ion-drifting space. When the probe is steered at the corner of deflection field, two types of clear ghost patterns appear: (1) circular patterns and (2) lines trailing from the main spot toward the deflection center. It is revealed that they are produced by exposures to ions or energetic neutrals generated with charge transfer collision of the primary ions with residual gas molecules. It is shown that the long tail in the current density distribution is also due to scattering with the residual gas molecules.

  13. Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.

    1993-03-01

    Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.

  14. Observation of self-sputtering in energetic condensation of metal ions

    SciTech Connect

    Anders, Andre

    2004-06-16

    The condensation of energetic metal ions on a surface may cause self-sputtering even in the absence of substrate bias. Charge-state-averaged self-sputtering yields were determined for both zirconium and gold ions generated by a cathodic vacuum arc. Films were deposited on differently biased substrates exposed to streaming Zr and Au vacuum arc plasma. The self-sputtering yields for both metals were estimated to be about 0.05 in the absence of bias, and exceeding 0.5 when bias reached-50 V. These surprisingly high values can be reconciled with binary collision theory and molecular dynamics calculations taking high the kinetic and potential energy of vacuum arc ions into account.

  15. Magnetic states controlled by energetic ion irradiation in FeRh thin films

    SciTech Connect

    Fujita, Nao.; Kosugi, S.; Matsui, T.; Iwase, A.; Saitoh, Y.; Kaneta, Y.; Kume, K.; Batchuluun, T.; Ishikawa, N.

    2010-05-15

    Changes in magnetic properties and lattice structure of FeRh films by 180 keV-10 MeV ion (H, He, and I) irradiation are studied. In spite of the irradiation with different ion species and wide range of energies, the changes in magnetization are dominated by solely a single parameter; the density of energy which is deposited through elastic collision between the ions and the samples. For the low deposition energy density, the magnetization increases with increasing the deposition energy density, while the lattice structure remains unchanged. When the deposition energy density becomes larger, however, the magnetization decreases after reaching the maximum value. The decrease in the magnetization accompanies the crystal structure change from B2 to A1. The present results imply that the magnetic state of FeRh films can be designedly controlled by the energetic ion irradiations.

  16. The MAVEN Solar Energetic Particle instrument

    NASA Astrophysics Data System (ADS)

    Dunn, P.; Lillis, R. J.; Larson, D. E.; Lin, R. P.; Jakosky, B. M.

    2012-12-01

    The Solar Energetic Particle (SEP) instrument will travel to Mars onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission, launching in November 2013. In order for MAVEN to determine the role that loss of volatiles to space has played through time, solar energy input to the Martian system must be characterized. An important (if infrequent and episodic) portion of this input is in the form of solar energetic particle (SEP) events. Understanding the relationship between SEP events and atmospheric escape is crucial to understanding the climate history of Mars. The SEP instrument will characterize such events at Mars by measuring energetic protons and electrons in the energy range absorbed by the upper atmosphere. SEP takes much of its heritage from the Solid State Telescope (SST) on the THEMIS mission, consisting of 2 orthogonal dual double-ended solid-state telescopes. Proton spectra from 25 keV to 6 MeV and electron spectra from 25 keV to 1 MeV will be collected in 4 look directions at 3 measurement cadences over MAVEN's 4.5-hour elliptical orbit: 32s far from the planet, 8s between 300 and 800 km altitude and 2s below 300 km. SEP will measure particle fluxes from ~20 to ~107 cm-2s-1sr-1. Here we present a full description of the instrument, as well as GEANT4 simulations of the detailed detector response.; Cross-section view of SEP sensor. Collimators are shown in yellow, baffles are in black. The sweep magnet (blue and brown) prevents electrons < 350 keV from reaching the detector stack (mounted on circuit board shown in green) from the left. A Kapton foil (not visible) prevent ions < 250 keV from reaching the stack from the right.

  17. Solar Energetic Particle Studies with PAMELA

    NASA Technical Reports Server (NTRS)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  18. Energetic constraints on monsoonal Hadley circulations

    NASA Astrophysics Data System (ADS)

    Merlis, T. M.; Schneider, T.; Bordoni, S.; Eisenman, I.

    2011-12-01

    The strength of monsoons is believed to have varied in the past in response to changes in the seasonal shortwave radiation distribution associated with orbital precession and is expected to vary during the coming century due to increases in greenhouse gas concentrations. Here, we examine the constraint that the moist static energy budget imposes on the response to radiative perturbations of the cross-equatorial, or monsoonal, Hadley circulations. Changes in the strength of the mass transport can occur in response to radiative perturbations, which has been frequently discussed in the past. An additional factor in the energetic balance, however, is the atmosphere's energy stratification, which is commonly known as the gross moist stability in tropical meteorology. Therefore, changes in the atmosphere's gross moist stability can play a fundamental role in determining changes in the mass transport of mean circulations. Also, the influence of spatial variations in surface heat capacity on the top-of-the-atmosphere energy balance, rather than its widely discussed role in determining surface temperature, is important in determining how radiative perturbations are energetically balanced by monsoonal Hadley circulations. We examine the importance of energetic constraints on monsoonal Hadley circulations in idealized general circulation model simulations that have either an aquaplanet slab-ocean boundary condition or a zonally symmetric subtropical continent. The radiative balance in the simulations is perturbed first by insolation variations associated with orbital precession and then by increased carbon dioxide concentration. The simulation results demonstrate that summertime changes in gross moist stability are important for understanding past and future monsoon variations.

  19. Energetic Ion Interactions with the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2000-01-01

    The principal research tasks of this investigation are: (1) specification of the energetic (keV to MeV) ion environments upstream of the four Galilean satellites and (2) data analysis and numerical modeling of observed ion interactions with the satellites. Differential flux spectra are being compiled for the most abundant ions (protons, oxygen, and sulfur) from measurements at 20 keV to 100 MeV total energy by the Energetic Particle Detector (EPD) experiment and at higher ion energies by the Heavy Ion Counter (HIC) experiment. Runge-Kutta and other numerical techniques are used to propagate test particles sampled from the measured upstream spectra to the satellite surface or spacecraft through the local magnetic and corotational electric field environment of each satellite. Modeling of spatial variations in directional flux anisotropies measured during each close flyby provides limits on atomic charge states for heavy (O, S) magnetospheric ions and on internal or induced magnetic fields of the satellites. Validation of models for magnetic and electric field configurations then allows computation of rates for ion implantation, sputtering, and energy deposition into the satellite surfaces for further modeling of observable chemical changes induced by irradiation. Our ongoing work on production of oxidants and other secondary species by ice irradiation on Europa's surface has significant applications, already acknowledged in current literature, to astrobiological evolution. Finally, the work will improve understanding of energetic ion sources and sinks at the satellite orbits for improved modeling of magnetospheric transport processes. The scope of the research effort mainly includes data from the primary Galileo mission (1995-1997) but may also include some later data where directly relevant (e.g., comparison of J0 and I27 data for Io) to the primary mission objectives. Funding for this contract also includes partial support for our related education and public

  20. Synthesis of a new energetic nitrate ester

    SciTech Connect

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  1. Energetics of hydrogen storage in organolithium nanostructures

    SciTech Connect

    Namilae, Sirish; Fuentes-Cabrera, Miguel A; Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Nicholson, Don M

    2007-01-01

    Ab-initio calculations based on the second order Moller-Plesset perturbation theory (MP2) were used to investigate the interaction of molecular hydrogen with alkyl lithium organometallic compounds. It is found that lithium in organolithium structures attracts two hydrogen molecules with a binding energy of about 0.14 eV. The calculations also show that organolithium compounds bind strongly with graphitic nanostructures. Therefore, these carbon based nanostructures functionalized with organolithium compounds can be effectively used for storage of molecular hydrogen. Energetics and mechanisms for achieving high weight percent hydrogen storage in organolithium based nanostructures are discussed.

  2. Nonlinear electromagnetic interactions in energetic materials

    DOE PAGES

    Wood, Mitchell Anthony; Dalvit, Diego Alejandro; Moore, David Steven

    2016-01-12

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. Finally, we discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.

  3. A chondrule - Evidence of energetic impact unlikely

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.; Gault, D. E.

    1974-01-01

    It had been concluded by Lange and Larimer (1973) that the morphology and mineralogy of an unusual chondrule from the Ngawi meteorite are the results of a highly energetic impact within the solar nebula. The evidence for this conclusion is examined. It is found that the chondrule does not show evidence of high relative velocities in the solar nebula. It is pointed out that arguments against chondrule production by impact on planetary surfaces on the basis of ejection velocities are not supported by laboratory experiments.

  4. Stimulated Emission of Energetic Particles (SEEP).

    DTIC Science & Technology

    1987-11-30

    a.... W W w w w w w I I li IJr Ir % i "f J2 I l AD-A 188 724 MLMSCD068456 For Period Ending 30 September 1987 CD Contract N00014-79-C4824 0 IC FILE...CLASSIFICATION 0 -UNCLASSIFIED/UNLIMITED [ SAME AS RPT C:" DTIC USERS UNCLASSIFIED 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c O...34---" ,. LMSC/D068456 . 0 SEEP FINAL REPORT I. OBJECTIVES OF THE SEEP PROGRAM The SEEP (Stimulated Emission of Energetic Particles) program had important

  5. Solar Energetic Particles: Acceleration and Observations

    NASA Astrophysics Data System (ADS)

    Sako, Takashi

    Research of solar energetic particles (SEPs) is important in understanding particle acceleration, transport and interactions taking place in the universe. The importance of space weather to modern human life is also increasing. In this lecture, I introduce a selected subset of SEP observations together with observation techniques and future plans. The aim is to connect these SEP observations with associated particle acceleration mechanisms and the subsequent transport and interaction processes. Because the observational properties are determined by different processes, a wide range of observations is necessary in order to fully understand the phenomena taking place. I will also give an overview of the role of the SEP studies in general astrophysics.

  6. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  7. Synthesis and Characterization of Energetic Plasticizer AMDNNM

    NASA Astrophysics Data System (ADS)

    Schulze, Maxwell C.; Chavez, David E.

    2016-04-01

    The synthesis of room temperature liquid azidomethyl-dinitroxydimethyl-nitromethane (AMDNNM, 5) in 57% overall yield and its formulation with nitrocellulose (AMDNNM/NC) are described. The small-scale explosive sensitivity of neat AMDNNM was determined to be slightly more sensitive than PETN, whereas AMDNNM/NC is significantly less sensitive. Both neat AMDNNM and AMDNNM/NC have thermal stabilities similar to that of pentaerythritol tetranitrate (PETN). The explosive and chemical properties of this novel material make it a good candidate for an energetic plasticizer.

  8. Simmer analysis of prompt burst energetics experiments

    SciTech Connect

    Hitchcock, J.T.

    1982-03-01

    The Prompt Burst Energetics experiments are designed to measure the pressure behavior of fuel and coolant as working fluids during a hypothetical prompt burst disassembly in an LMFBR. The work presented in this report consists of a parametric study of PBE-5S, a fresh oxide fuel experiment, using SIMMER-II. The various pressure sources in the experiment are examined, and the dominant source identified as incondensable contaminant gasses in the fuel. The important modeling uncertainties and limitations of SIMMER-II as applied to these experiments are discussed.

  9. R&D of Energetic Ionic Liquids

    DTIC Science & Technology

    2011-11-01

    Ammonia 3-6 H2O balance Properties LMP - 103S AF-M315E Hydrazine Ispvac,lbf sec/lbm (e = 50:1 Pc = 300 psi) 252 (theor.) 235 (del) 266...92oC) is also an Energetic Ionic Liquid • ADN-based monopropellant ( LMP - 103S ) from ECAPS, Swedish Space Corporation • High performance „green...Much Effort Required in Small- Scale Safety/Hazard Evaluations Propellant AF-M315E* LMP - 103S ** Unconfined Burn Test 1 and 3: No reaction Test 2

  10. Electron-impact excitation of Ni II. Collision strengths and effective collision strengths for low-lying fine-structure forbidden transitions

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Ramsbottom, C. A.; Scott, M. P.; Burke, P. G.

    2010-04-01

    Context. Considerable demand exists for electron excitation data for ion{Ni}{ii}, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims: In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of ion{Ni}{ii}. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of ion{Ni}{ii}. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30-100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date. Methods: The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model - 3d9, 3d84s, 3d84p, 3d74s2 and 3d74s4p - giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering problem. Results: Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A55

  11. Environmentally compatible next generation green energetic materials (GEMs).

    PubMed

    Talawar, M B; Sivabalan, R; Mukundan, T; Muthurajan, H; Sikder, A K; Gandhe, B R; Rao, A Subhananda

    2009-01-30

    This paper briefly reviews the literature work reported on the environmentally compatible green energetic materials (GEMs) for defence and space applications. Currently, great emphasis is laid in the field of high-energy materials (HEMs) to increase the environmental stewardship along with the deliverance of improved performance. This emphasis is especially strong in the areas of energetic materials, weapon development, processing, and disposal operations. Therefore, efforts are on to develop energetic materials systems under the broad concept of green energetic materials (GEMs) in different schools all over the globe. The GEMs program initiated globally by different schools addresses these challenges and establishes the framework for advances in energetic materials processing and production that promote compliance with environmental regulations. This review also briefs the principles of green chemistry pertaining to HEMs, followed by the work carried out globally on environmentally compatible green energetic materials and allied ingredients.

  12. Trapped energetic ion dynamics affected by localized electric field perturbations

    NASA Astrophysics Data System (ADS)

    Nishimura, Seiya

    2016-01-01

    Trapped energetic ion orbits in helical systems are numerically simulated using the Lorentz model. Simulation results of precession drift frequencies of trapped energetic ions are benchmarked by those of analytic solutions. The effects of the electric field perturbation localized at the rational surface on trapped energetic ions are examined, where the perturbation has an arbitrary rotation frequency and an amplitude fixed in time. It is found that the trapped energetic ions resonantly interact with the perturbation, when the rotation frequency of the perturbation is comparable to the precession drift frequencies of trapped energetic ions. The simulation results are suggestive to a mechanism of the energetic-ion-induced interchange mode, which might be associated with the fishbone mode observed in helical systems.

  13. Atmospheric Effects of Solar Energetic Particle Events In Magnetized and Non-Magnetized Regions of Mars

    NASA Astrophysics Data System (ADS)

    Jolitz, R.; Dong, C.; Lillis, R. J.; Curry, S.; Brain, D. A.; Larson, D. E.

    2015-12-01

    Solar and shock-accelerated heliospheric energetic charged particles represent an important if irregular source of energy to the Martian upper atmosphere. A Monte Carlo code has been developed to track a population of protons in an atmosphere and account for energy loss to collisional processes including heating, ionization, excitation, and charge transfer. The model framework is open to multiple planetary-specific inputs (e.g. three-dimensional neutral densities, electric and magnetic fields) and uses an adaptive trace algorithm to accurately model collisions in dense and sparse atmospheric regions. Applying 3-D models of electric and magnetic fields from the Michigan Mars MHD code and 1-D neutral densities from the Mars Global Thermosphere Ionosphere Model (M-GITM), we use this model to calculate volume rates of relevant proton-mediated energy loss processes in the Martian upper atmosphere. The model will be improved to generate ionization and heating rates in areas of strong and weak crustal magnetic fields for solar energetic particle events observed by the SEP instrument on MAVEN. Ultimately this will form part of a comprehensive model of solar wind interactions with Mars.

  14. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    SciTech Connect

    D. S. Darrow; A. Werner; A. Weller

    2000-12-07

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported.

  15. Segregation and redistribution of end-of-process energetic materials

    SciTech Connect

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ``want ads.`` The system was developed and implemented to promote waste minimization and pollution prevention at LLNL.

  16. Multidimensional DDT modeling of energetic materials

    SciTech Connect

    Baer, M.R.; Hertel, E.S.; Bell, R.L.

    1995-07-01

    To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibrium mixture theory has been developed and incorporated into the shock physics code, CTH. The foundation for this multiphase model is based on a continuum mixture formulation given by Baer and Nunziato. This multiphase mixture model provides a thermodynamic and mathematically-consistent description of the self-accelerated combustion processes associated with deflagration-to-detonation and delayed detonation behavior which are key modeling issues in safety assessment of energetic systems. An operator-splitting method is used in the implementation of this model, whereby phase diffusion effects are incorporated using a high resolution transport method. Internal state variables, forming the basis for phase interaction quantities, are resolved during the Lagrangian step requiring the use of a stiff matrix-free solver. Benchmark calculations are presented which simulate low-velocity piston impact on a propellant porous bed and experimentally-measured wave features are well replicated with this model. This mixture model introduces micromechanical models for the initiation and growth of reactive multicomponent flow that are key features to describe shock initiation and self-accelerated deflagration-to-detonation combustion behavior. To complement one-dimensional simulation, two-dimensional numerical calculations are presented which indicate wave curvature effects due to the loss of wall confinement. This study is pertinent for safety analysis of weapon systems.

  17. How do energetic ions damage metallic surfaces?

    DOE PAGES

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films withmore » (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.« less

  18. Energetic photoelectrons and the polar rain

    NASA Technical Reports Server (NTRS)

    Decker, Dwight T.; Jasperse, J. R.; Winningham, J. D.

    1990-01-01

    In the daytime midlatitudes, the Low Altitude Plasma Instrument (LAPI) on board the Dynamics Explorer 2 satellite has observed photoelectrons with energies as high as 850 eV. These energetic photoelectrons are an extension of the 'classical' photoelectrons (less than 60 eV) and result from photoionization of neutrals by soft solar X-rays. Since these photoelectrons are produced wherever the solar flux is incident on the earth's atmosphere, they should be present in sunlit polar cap. But in the polar cap, over these same energies, there is a well-known electron population: the polar rain, a low intensity electron flux of magnetospheric origin. Thus, in the sunlit polar cap, an energetic population of electrons should consist of both an ionospheric (photoelectron) and a magnetospheric (polar rain) component. Using numerical solutions of an electron transport equation with appropriate boundary conditions and sunlit polar cap LAPI data, it is shown that the two populations (photoelectron and polar rain) are indeed present and are both needed to explain polar cap observations.

  19. Energetic Constraints on Species Coexistence in Birds

    PubMed Central

    Pigot, Alexander L.

    2016-01-01

    The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other’s closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity–richness relationship underlying global gradients in biodiversity. PMID:26974194

  20. Solar filament eruptions and energetic particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Stone, R. G.

    1986-01-01

    The 1981 December 5 solar filament eruption that is associated with an energetic (E greater than 50 MeV) particle event observed at 1 AU. The eruption was photographed in H-alpha and was observed by the Solwind whitelight coronagraph on P78-1. It occurred well away from any solar active region and was not associated with an impulsive microwave burst, indicating that magnetic complexity and a detectable impulsive phase are not required for the production of a solar energetic particle (SEP) event. No metric type II or IV emission was observed, but an associated interplanetary type II burst was detected by the low-frequency radio experiment on ISEE 3. The December 5 and two other SEP events lacking evidence for low coronal shocks had unusually steep energy spectra (gamma greater than 3.5). In terms of shock acceleration, this suggests that shocks formed relatively high in the corona may produce steeper energy spectra than those formed at lower altitudes. It is noted that the filament itself maybe one source of the ions accelerated to high energies, since it is the only plausible coronal source of the He(+) ions observed in SEP events.

  1. Energetic Supernovae from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2013-04-01

    We present the results from our 3D supernova simulations by using CASTRO, a new radiation-hydrodynamics code. The first generation of stars in the universe ended the cosmic dark age by shining the first light. But what was the fate of these stars? Based on the stellar evolution models, the fate of stars depends on their masses. Modern cosmological simulations suggest that the first stars could be very massive, with a typical mass scale over 50 solar masses. We look for the possible supernovae from the death of the first stars with masses over 50 solar masses. Besides the iron-core collapse supernovae, we find energetic thermonuclear supernovae, including two types of pair-instability supernovae and one type of general-relativity instability supernovae. Our models capture all explosive burning and follow the explosion until the shock breaks out from the stellar surface. We will discuss the energetics, nucleosynthesis, and possible observational signatures for these primordial supernovae that will be the prime targets for future large telescopes such as the James Webb Space Telescope (JWST).

  2. Energetic particle effects on global magnetohydrodynamic modes

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.

    1990-06-01

    The effects of energetic particles on magnetohydrodynamic (MHD) type modes are studied using analytical theories and the nonvariational kinetic-MHD stability code (nova-k) [Workshop on Theory of Fusion Plasmas, (Societa Italiana di Fisica, Bologna, 1987), p. 185]. In particular, the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ``fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfvén eigenmodes (TAE) via transit resonances are addressed. Analytical theories are presented to help explain the nova-k results. For energetic trapped particles generated by neutral beam injection or ion cyclotron resonant heating, a stability window for the n=1 internal kink mode in the hot particle beta space exists even in the absence of core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha-particle pressure.

  3. Energetic solar electrons in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1985-01-01

    Results are given of ISEE-3 measurements of energetic solar electrons extending down to 2 keV energy. Such measurements have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on the average, several times a day near solar maximum, with about 40 percent detected only below about 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above about 10 keV with a break near 100 keV and flattening from about 10-100 keV. Solar type-III radio bursts are produced by the escaping 2-100 keV electrons through a beam-plasma instability.

  4. Energetics and mechanics for partial gravity locomotion.

    PubMed

    Newman, D J; Alexander, H L; Webbon, B W

    1994-09-01

    The role of gravitational acceleration on human locomotion is not clearly understood. It is hypothesized that the mechanics and energetics of locomotion depend upon the prevailing gravity level. A unique human-rated underwater treadmill and an adjustable ballasting harness were used to stimulate partial gravity environments. This study has two research aspects, biomechanics and energetics. Vertical forces which are exerted by subjects on the treadmill-mounted, split-plate force platform show that peak vertical force and stride frequency significantly decrease (p < 0.05) as the gravity level is reduced, while ground contact time is independent of gravity level. A loping gait is employed over a wide range of speeds (approximately 1.5 m/s to approximately 2.3 m/s) suggesting a change in the mechanics for lunar (1/6 G) and Martian (3/8 G) locomotion. As theory predicts, locomotion energy requirements for partial gravity levels are significantly less than at 1 G (p < 0.05).

  5. Synthesis and evaluation of energetic materials

    NASA Astrophysics Data System (ADS)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  6. Temperature dependent terahertz properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Whitley, Von H.; Brown, Kathryn E.; Ahmed, Towfiq; Sorensen, Christian J.; Moore, David S.

    2016-04-01

    Reliable detection of energetic materials is still a formidable challenge which requires further investigation. The remote standoff detection of explosives using molecular fingerprints in the terahertz spectral range has been an evolving research area for the past two decades. Despite many efforts, identification of a particular explosive remains difficult as the spectral fingerprints often shift due to the working conditions of the sample such as temperature, crystal orientation, presence of binders, etc. In this work, we investigate the vibrational spectrum of energetic materials including RDX, PETN, AN, and 1,3-DNB diluted in a low loss PTFE host medium using terahertz time domain spectroscopy (THz-TDS) at cryogenic temperatures. The measured absorptions of these materials show spectral shifts of their characteristic peaks while changing their operating temperature from 300 to 7.5 K. We have developed a theoretical model based on first principles methods, which is able to predict most of the measured modes in 1, 3-DNB between 0.3 to 2.50 THz. These findings may further improve the security screening of explosives.

  7. How do energetic ions damage metallic surfaces?

    SciTech Connect

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films with (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.

  8. Synthesis of dense energetic materials. Annual report

    SciTech Connect

    Coon, C.

    1982-07-01

    The objective of the research described in the report is to synthesize new, dense, stable, highly energetic materials which will ultimately be a candidates for improved explosive and propellant formulations. Following strict guidelines pertaining to energy, density, stability, etc. Specific target molecules were chosen that appear to possess the improved properties desired for new energetic materials. This report summarizes research on the synthesis of these target materials from February 1981 to January 1982. The following compounds were synthesized: 5,5'-diamino-3,3'-bioxadiazole(1,2,4); 5,5'-bis(trichloromethyl)-3,3'-di(1,2,4-oxadiazole); 3,3'-bi(1,2,4-oxadiazole); ethylene tetranitramine (ETNA); N,N-bis(methoxymethyl)acetamide; N,N-bis(chloromethyl)acetamide; 7,8-dimethylglycoluril; Synthesis of 3,9-Di(t-butyl)-13,14-dimethyl-tetracyclo-(5,5,2,0/sup 5/ /sup 13/ 0/sup 11/ /sup 14/)-1,3,5,7,9,11-hexaaza-6,12-dioxotetradecane.

  9. Energetics of water permeation through fullerene membrane

    PubMed Central

    Isobe, Hiroyuki; Homma, Tatsuya; Nakamura, Eiichi

    2007-01-01

    Lipid bilayer membranes are important as fundamental structures in biology and possess characteristic water-permeability, stability, and mechanical properties. Water permeation through a lipid bilayer membrane occurs readily, and more readily at higher temperature, which is largely due to an enthalpy cost of the liquid-to-gas phase transition of water. A fullerene bilayer membrane formed by dissolution of a water-soluble fullerene, Ph5C60K, has now been shown to possess properties entirely different from those of the lipid membranes. The fullerene membrane is several orders of magnitude less permeable to water than a lipid membrane, and the permeability decreases at higher temperature. Water permeation is burdened by a very large entropy loss and may be favored slightly by an enthalpy gain, which is contrary to the energetics observed for the lipid membrane. We ascribe this energetics to favorable interactions of water molecules to the surface of the fullerene molecules as they pass through the clefts of the rigid fullerene bilayer. The findings provide possibilities of membrane design in science and technology. PMID:17846427

  10. Solar Energetic Particle Events Observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Halekas, J. S.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Epavier, F.; Thiemann, E.; Zeitlin, C.; Jakosky, B. M.

    2015-12-01

    We present observations of solar energetic particle (SEP) events made by the Mars Atmosphere and Volatile EvolutioN (MAVEN) SEP instrument, which measures energetic ions and electrons impacting the upper Martian atmosphere. Since the arrival of the MAVEN spacecraft at Mars, a large number of solar flares and a few major coronal mass ejections (CMEs) erupted from the Sun. The SEPs are accelerated by the related shock in the solar corona or by the propagating interplanetary shock ahead of the CME ejecta. Mixed in with these SEPs are particles accelerated by the shocks of corotating streams, some of which have recurred for several solar cycles due to the persistent coronal hole sources. The SEP events are analyzed together with the upstream solar wind observations from the MAVEN Solar Wind Ion Analyzer (SWIA) and magnetometer (MAG). The sources of the SEP events are determined from Earth-based solar imagery and the MAVEN Extreme Ultra-violet Monitor (EUVM) together with numerical simulations of the inner heliospheric conditions. A comparison with the radiation dose rate measurements from the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) reveals a lack of ground signatures during the onset of the highest energy SEPs for the events observed by MAVEN, indicating that the SEPs fully deposit their energies into the Martian atmosphere. Using measurements made from the ensemble of instruments onboard MAVEN, we investigate the consequences of SEPs at Mars for a number of events observed during the primary science mapping phase of the MAVEN mission.

  11. Energetic particle effects on global magnetohydrodynamic modes

    SciTech Connect

    Cheng, C.Z. )

    1990-06-01

    The effects of energetic particles on magnetohydrodynamic (MHD) type modes are studied using analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K) ({ital Workshop} {ital on} {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, (Societa Italiana di Fisica, Bologna, 1987), p. 185). In particular, the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances are addressed. Analytical theories are presented to help explain the NOVAresults. For energetic trapped particles generated by neutral beam injection or ion cyclotron resonant heating, a stability window for the {ital n}=1 internal kink mode in the hot particle beta space exists even in the absence of core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to resonantly excite instability of the {ital n}=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha-particle pressure.

  12. Energetics of calcium-rich dolomite

    SciTech Connect

    Chai, L.; Navrotsky, A.; Reeder, R.J.

    1995-03-01

    The enthalpy of formation of sedimentary Ca-rich dolomite has been determined by oxide melt calorimetry. The results show that Ca-rich dolomite is energetically different from well-ordered stoichiometric dolomite. The enthalpy of formation from calcite and magnesite becomes strongly more endothermic with increasing excess Ca content. This supports the idea that the substitution of Ca in the Mg layer of dolomite is energetically unfavorable. Ca-rich dolomite is unstable relative to well-ordered stoichiometric dolomite and calcite. The enthalpy behavior for excess Ca substitution in dolomite is different from that of Mg substitution in calcite; the enthalpy change is much larger in magnitude in dolomite and is more strongly dependent on composition. Differences in cation order as well as the presence of a modulated structure and low-symmetry domains in Ca-rich dolomite cannot be discerned from the enthalpy data. The findings confirm that the growth and occurrence of Ca-rich dolomite in sedimentary environments must be attributed to kinetic factors rather than to equilibrium. 47 refs., 2 figs., 1 tab.

  13. Automatic Collision Avoidance Technology (ACAT)

    NASA Technical Reports Server (NTRS)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  14. Quasi-Periodic Flares From Star-Accretion Disc Collisions

    NASA Astrophysics Data System (ADS)

    Dai, Lixin; von Fuerst, S.; Blandford, R.

    2008-03-01

    We propose a theory relating the observed quasi-periodoic IR/X-ray signals at the Galactic center and from other massive black holes to collisions between the accretion disc and stars orbiting around the black hole. When an orbiting star passes through the black hole's accretion disc, part of the star's orbital energy is lost in the collision and transformed to radiation as a flare. As the star continues to orbit around the black hole, it hits the disc and produces these energetic flares repeatedly. Due the to precession of the stellar orbit and the bending of light near black hole, these signals will not be periodic but quasi-periodic. The features of the signals, such as the patten of time divisions between consecutive signals and their intensity profiles, can be affected by the mass and spin of the black hole, the disc structure, and the orbital elements of the stellar orbit. We present simulated stellar orbits, disc images, and lightcurves. By comparing different stellar orbits around a Schwarzschild or a Kerr metric black hole and the corresponding lightcurves, we examine how the paramters of the star and black hole result in different features of the signals. Furthermore, we study how the observed quasi-periodic signals can be used to probe the black hole.

  15. Variation of flow properties during a collision event of two mesoscale eddies in the Gulf Stream region from numerical simulation

    NASA Astrophysics Data System (ADS)

    Chang, Yeon S.; Park, Young-Gyu

    2015-09-01

    The temporal variation of the flow structure and consequent mixing process during the collision of two counter-rotating mesoscale eddies are investigated by analyzing the HYbrid Coordinate Ocean Model simulation for the Gulf Stream region using Eulerian parameters—Okubo-Weiss parameters and horizontal kinetic energy ( KE)—and Lagrangian parameters—finite-size Lyapunov exponent (FSLE) and relative dispersion coefficients ( K r ). During the collision process, a transport barrier constructed by FSLE ridges develops between the two eddies and hyperbolic points are formed at both ends of the barrier. High values of the shear components of strain (> mean + standard deviation) are observed around the hyperbolic points, indicating possible deformation of the eddy. The magnitudes of spatially averaged KE and FSLE values increase (~20% and ~25%, respectively) during the collision as the flows around the main eddy become more energetic and dispersive. The Eulerian measures—the relative vorticity and the shear components of strain—show different temporal evolutions. The former does not significantly vary (~3%) while the latter has a peak value (~34%) at the time of maximum impact of the collision. In contrast, the Lagrangian measures show a similar pattern of temporal variations as both FSLE and K r values generally increase (~25% and ~35%, respectively) during the collision, which indicates increased mixing due to the collision.

  16. Collision-induced dissociation products of the protonated dipeptide carnosine: structural elucidation, fragmentation pathways and potential energy surface analysis.

    PubMed

    Moustafa, Eslam M; Ritacco, Ida; Sicilia, Emilia; Russo, Nino; Shoeib, Tamer

    2015-05-21

    Collision-induced dissociation (CID) experiments on protonated carnosine, [carnosine + H](+), with several collision energies were shown to yield eleven different fragment ions with the generation of product ions [carnosine-H2O + H](+) and [carnosine-NH3 + H](+) being the lowest energy processes. Energy-resolved CID showed that at slightly higher collision energies the ions [histidine + H](+) and [histidine-H2O-CO + H](+) are formed. At even higher energies four other product ions were observed, however, attained relatively lower abundances. Quantum chemistry calculations, carried out at different levels of theory, were employed to probe fragmentation mechanisms that account for all the experimental data. All the adopted computational protocols give similar energetic trends, and the range of the calculated free energy barrier values for the generation of all the observed product ions is in agreement with the fragmentation mechanisms offered here.

  17. Nuclear stopping in heavy-ion collisions at 100 MeV/nucleon from inclusive and exclusive neutral pion measurements

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Russo, G.; Turrisi, R. ||

    1996-04-01

    Inclusive and exclusive measurements of neutral pions in heavy-ion collisions around 100 MeV/nucleon, carried out in a near 4{pi} geometry, have been analyzed to obtain information on the nuclear stopping of the projectile. Stopping of the projectile has been investigated by the analysis of the source velocity, of the distribution of the energetic products of the collisions, and of the associated rapidity distribution of the baryon matter. Collisions were classified according to their centrality by the charged particle multiplicity. Clear evidence for this phenomenon has been obtained by the study of different observables. Both stopping and reabsorption effects play an essential role in the interpretation of the results. {copyright} {ital 1996 The American Physical Society.}

  18. Semiholography for heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  19. POLARIZED PROTON COLLISIONS AT RHIC.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  20. A problem of collision avoidance

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Cliff, E. M.; Grantham, W. J.; Peng, W. Y.

    1972-01-01

    Collision avoidance between two vehicles of constant speed with limited turning radii, moving in a horizontal plane is investigated. Collision avoidance is viewed as a game by assuming that the operator of one vehicle has perfect knowledge of the state of the other, whereas the operator of the second vehicle is unaware of any impending danger. The situation envisioned is that of an encounter between a commercial aircraft and a small light aircraft. This worse case situation is examined to determine the conditions under which the commercial aircraft should execute a collision avoidance maneuver. Three different zones of vulnerability are defined and the boundaries, or barriers, between these zones are determined for a typical aircraft encounter. A discussion of the methods used to obtain the results as well as some of the salient features associated with the resultant barriers is included.

  1. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  2. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking

    PubMed Central

    Huang, Tzu-wei P.; Shorter, Kenneth A.; Adamczyk, Peter G.; Kuo, Arthur D.

    2015-01-01

    ABSTRACT The human ankle produces a large burst of ‘push-off’ mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s−1, using ankle–foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. PMID:26385330

  3. ACAT Ground Collision Avoidance Flight Tests Over

    NASA Video Gallery

    NASA's Dryden Flight Research Center has concluded flight tests of an Automatic Ground Collision Avoidance System (Auto GCAS) under the joint U.S. Air Force/NASA F-16D Automatic Collision Avoidance...

  4. Outreach Materials for the Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  5. The Energetics of Gravity Driven Faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.

    2007-12-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In displacement-bounded faulting, locked-in elastic strain energy is transformed into seismic waves plus work done in the fault zone. Elastic rebound is an example of displacement-bounded faulting. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into seismic waves plus work done in the fault zone and half goes into an increase in locked-in elastic strain. In displacement-bounded faulting the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the topography and internal stress-causing density variations is equally split between the seismic waves plus work done in the fault zone and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are a little more

  6. Solar Energetic Particle Trapping During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Hudson, M.; Kress, B.; Blake, J. B.; Mazur, J.

    2007-12-01

    The prompt trapping of Solar Energetic Particles (SEPs) in the inner magnetosphere inside of L = 4 has been reported, including protons and heavier ions, in association with high speed interplanetary shocks and Storm Sudden Commencements (SSCs). These observations include the Bastille Day 2000 CME-driven storm as well as two in November 2001, which produced a long-lived new proton belt, as well as trapping of heavy ions up to Fe in all three cases. A survey of such events around the most recent solar maximum, including high altitude measurements from Polar, HEO and ICO satellites along with low altitude measurements from SAMPEX, indicates similarities to the well-studied March 24, 1991 SSC event. In this event, electrons and protons in drift resonance with a magnetosonic impulse were transported radially inward, requiring a source population which is multi-MeV at geosynchronous. A requirement for such shock-induced acceleration is a high-speed CME- shock at 1 AU, which launches a perturbation with comparable velocity inside the magnetosphere. Secondly, there must be a source population which is drift-resonant with the impulse. The CME-shock itself is a source of solar energetic particles, both protons and heavy ions, with higher fluxes and harder spectra associated with faster moving CMEs. A 3D Lorentz integration of SEP trajectories in electric and magnetic fields taken from the Lyon-Fedder-Mobarry (LFM) global MHD model, using solar wind input parameters from spacecraft measurements upstream from the bow shock, has been carried out for two November, 2001 SEP trapping events, and a CME-shock associated with the Halloween 2003 storm period, 29 October, which transported outer zone electrons and trapped solar energetic electrons into around L = 2.5, with little effect on SEPs. These results indicate that an enhancement in solar wind dynamic pressure for these events plays a role in the observed injection of ions (and electrons) to low L-values, as does the extent of

  7. Dissipative heavy-ion collisions

    SciTech Connect

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs. (WRF)

  8. Do Speed Cameras Reduce Collisions?

    PubMed Central

    Skubic, Jeffrey; Johnson, Steven B.; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods – before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions. PMID:24406979

  9. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  10. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, Jicai; Hwa, Rudolph C.

    1992-12-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ecco is extended to three-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in lnpT, and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle φ. The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent ν=1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  11. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, J.; Hwa, R. C.

    1992-06-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ECCO is extended to 3-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in 1np(sub T), and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle (phi). The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent nu = 1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  12. A TPC (Time Projection Chamber) detector for the study of high multiplicity heavy ion collisions

    SciTech Connect

    Rai, G.; Arthur, A.; Bieser, F.; Harnden, C.W.; Jones, R.; Klienfelder, S.; Lee, K.; Matis, H.S.; Nakamura, M.; McParland, C.; Nesbitt, D.; Odyniec, G.; Olson, D.; Pugh, H.G.; Ritter, H.G.; Symons, T.J.M.; Wieman, H.; Wright, M.; Wright, R. ); Rudge, A. )

    1990-01-01

    The design of a Time Projection Chamber (TPC) detector with complete pad coverage is presented. The TPC will allow the measurements of high multiplicity ({approx} 200 tracks) relativistic nucleus-nucleus collisions initiated with the heaviest, most energetic projectiles available at the LBL BEVALAC accelerator facility. The front end electronics, composed of over 15,000 time sampling channels, will be located on the chamber. The highly integrated, custom designed, electronics and the VME based data acquisition system are described. 10 refs., 8 figs., 1 tab.

  13. Measurement of the low-energy Na+-Na total collision rate in an ion-neutral hybrid trap

    NASA Astrophysics Data System (ADS)

    Goodman, D. S.; Wells, J. E.; Kwolek, J. M.; Blümel, R.; Narducci, F. A.; Smith, W. W.

    2015-01-01

    We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient kia of cold sodium (Na) with optically dark low-energy Na+ ions in a hybrid ion-neutral trap. To determine kia, we measured the trap loading and loss rates from both a Na magneto-optical trap (MOT) and a linear radio-frequency quadrupole Paul trap. We found the total rate coefficient to be 7.4 ±1.9 ×10-8 cm3/s for the type-I Na MOT immersed within an ≈140 -K ion cloud and 1.10 ±0.25 ×10-7 cm3/s for the type-II Na MOT within an ≈1070 -K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal ab initio calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

  14. Nutrition and energetics in rodent longevity research.

    PubMed

    Gibbs, Victoria K; Smith, Daniel L

    2016-12-15

    The impact of calorie amount on aging has been extensively described; however, variation over time and among laboratories in animal diet, housing condition, and strains complicates discerning the true influence of calories (energy) versus nutrients on lifespan. Within the dietary restriction field, single macronutrient manipulations have historically been researched as a means to reduce calories while maintaining adequate levels of essential nutrients. Recent reports of nutritional geometry, including rodent models, highlight the impact macronutrients have on whole organismal aging outcomes. However, other environmental factors (e.g., ambient temperature) may alter nutrient preferences and requirements revealing context specific outcomes. Herein we highlight factors that influence the energetic and nutrient demands of organisms which oftentimes have underappreciated impacts on clarifying interventional effects on health and longevity in aging studies and subsequent translation to improve the human condition.

  15. Energetics and stochastic dynamics of intraneuron transport

    NASA Astrophysics Data System (ADS)

    Romanovsky, Yu M.; Trifonenkov, V. P.

    2016-02-01

    Walking molecular motors performing various functions in living cells are reviewed, including kinesin, myosin V, and dynein. These motors ensure the transport of neuromediators in neurons and are therefore crucial for interaction among the hundred billion brain cells. Functional schemes based on these motors are presented, and corresponding mathematical models are constructed as systems of two coupled FitzHugh-Nagumo equations. However, polynomials describing the moments of force are of high order and nearly N-shaped. Model parameters are determined from motor functional schemes that are based on observed data from X-ray structural analysis, cryogenic electron microscopy, laser tweezer measurements, and fast point marker-based videomicroscopy. Basic data on neuron energetics are summarized.

  16. Very energetic protons in Saturn's radiation belt

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Mcilwain, C.

    1980-01-01

    Very energetic protons are trapped in the inner Saturnian radiation belt. The University of California at San Diego instrument on Pioneer 11 has definitely identified protons of energy greater than 80 MeV on channel M3 and has tentatively detected protons of energy greater than 600 MeV on channel C3. The spatial distribution of the protons is distinct from that of the trapped electrons, the main difference being that the protons are strongly absorbed by the innermost moons and that the electrons are not. The source strength for injecting protons by the decay of cosmic ray albedo neutrons generated in the rings of Saturn has been estimated. The required proton lifetime is approximately 20 years.

  17. Steering the potential barriers: entropic to energetic.

    PubMed

    Burada, P S; Schmid, G

    2010-11-01

    We propose a mechanism to alter the nature of the potential barriers when a biased brownian particle undergoes a constrained motion in narrow periodic channel. By changing the angle of the external bias, the nature of the potential barriers changes from purely entropic to energetic, which in turn affects the diffusion process in the system. At an optimum angle of the bias, the nonlinear mobility exhibits a striking bell-shaped behavior. Moreover, the enhancement of the scaled effective diffusion coefficient can be efficiently controlled by the angle of the bias. This mechanism enables the proper design of channel structures for transport of molecules and small particles. The approximate analytical predictions have been verified by precise brownian dynamics simulations.

  18. Terahertz absorption spectra of highly energetic chemicals

    NASA Astrophysics Data System (ADS)

    Slingerland, E. J.; Vallon, M. K.; Jahngen, E. G. E.; Giles, R. H.; Goyette, T. M.

    2010-04-01

    Research into absorption spectra is useful for detecting chemicals in the field. Each molecule absorbs a set of specific frequencies, which are dependent on the molecule's structure. While theoretical models are available for predicting the absorption frequencies of a particular molecule, experimental measurements are a more reliable method of determining a molecule's actual absorption behavior. The goal of this research is to explore chemical markers (absorption frequencies) that can be used to identify highly energetic molecules of interest to the remote sensing community. Particular attention was paid to the frequency ranges located within the terahertz transmission windows of the atmosphere. In addition, theoretical derivations, with the purpose of calculating the detection limits of such chemicals, will also be presented.

  19. Effect of Sawtooth Oscillations on Energetic Ions

    SciTech Connect

    R.B. White; V.V. Lutsenko; Ya. I. Kolesnichenko; Yu. V. Yakovenko

    1999-12-10

    The work summarizes results of the authors' studies on the energetic ion transport induced by sawtooth oscillations in tokamaks. The main attention is paid to description of physical mechanisms responsible for the transport. In addition to overview, the work contains new material. The new results concern the resonant interaction of the particles and the electromagnetic field of the sawtooth crash. In particular, it is discovered that the dominant harmonic of the crash (m = n = 1) can lead to stochastic motion of particles having large orbit width (potatoes). Regular motion of potatoes and quasi-stagnation particles in the presence of an n = 1 mode is studied, and their characteristic displacements associated with quick switching on/off the mode are found.

  20. Sodium Pentazolate: a Nitrogen Rich Energetic Material

    NASA Astrophysics Data System (ADS)

    Oleynik, Ivan; Steele, Brad

    Sodium pentazolates NaN5 and Na2N5, new energetic materials, are discovered using first principles crystal structure search for the compounds of varying amounts of elemental sodium and nitrogen. The pentazole anion (N5-s)i stabilized in the condensed phase by sodium Na+ cations at pressures exceeding 20 GPa, and becomes metastable upon release of pressure, i.e. at ambient conditions. The sodium azide (NaN3) precursor for the new compounds is predicted to undergo a chemical transformation above 50 GPa into sodium pentazolates NaN5 and Na2N5. The calculated Raman spectrum of NaN5 is in agreement with the experimental Raman spectrum of a previously unidentified substance appearing upon compression and heating of NaN3 precursor, thus confirming the appearance of the new compound.

  1. Energetic Compounds for Future Space Applications

    NASA Astrophysics Data System (ADS)

    Davenas, A.; Jacob, G.; Longevialle, Y.; Pérut, C.

    2004-10-01

    The need for new rocket propellants to improve or replace those in use today has led during the past ten years to studies of various, ancient or relatively new, energetic ingredients. The most often mentioned compounds for solid propellants are ADN (ammonium dinitramide), the nitramines RDX and HMX, HNIW (hexanitro hexaaza isowurtzitane), HNF (hydrazinum nitroformate), GAP (glycidyl azide polymer), and high nitrogen compounds. ADN, HNF, HAN (hydroxylammonium nitrate) are mentioned as possible ingredients in liquid mono and bi propellants for the future. A review of the work being conducted in the development and testing of the candidate propellants as well as an analysis of the general constraints of the industrial use and handling of these propellants and of their basic ingredients allows for a first tentative selection of the most promising ingredients. The possible synthesis routes, main characteristics, production and cost perspectives of these compounds are summarized and discussed.

  2. Tutorial on Solar Energetic-Particle Events

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, Tycho T.

    2004-01-01

    Particles from the Sun at energies above approx. 1 MeV/nucleon have been studied in space for over 35 years. There have been major advances in instrumentation for studying elemental and isotopic composition, kinetic energy, charge states, time intensity histories, and anisotropies of energetic particles. There have also been extensive improvements in the observations of solar phenomena, including radio bursts, Coronal Mass Ejections (CMEs), and solar photons from soft X-ray to gamma-ray energies. Despite these advances, there is a lack of agreement as to the acceleration processes responsible for the particles seen in space shortly after the solar event. In particular, the relative importance of solar flares and CME-driven shocks is disputed for events of moderate to larger size. The reasons for this will be reviewed, and the prospects for resolving this issue will be evaluated.

  3. Access of energetic particles to Titan's exobase

    NASA Astrophysics Data System (ADS)

    Regoli, L.; Roussos, E.; Feyerabend, M.; Jones, G.; Krupp, N.; Coates, A.; Simon, S.; Motschmann, U.

    2015-10-01

    In this contribution we use a particle tracing code to trace energetic particles close to Titan in the specific magnetospheric conditions of the Cassini T9 flyby. The particles simulated are H+and O+ions with energies ranging from 1 keV to 1 MeV and the background electromagnetic field is represented by the output of the A.I.K.E.F. hybrid code for that specific flyby. These tools are used to generate 2D maps showing the access of the particles to the moon's exobase and those maps are subsequently used to normalize the fluxes measured by the Cassini MIMI/CHEMS instrument and estimate the energy deposition at specific positions around the moon.With this, we are able to estimate the importance that the asymmetries in the access of particles to the exobase has in the dynamics of Titan's ionosphere.

  4. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1983-01-01

    Electron beam experiments using rocket-borne instrumentation confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes were observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Of these, 102 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection.

  5. Energetic materials destruction using molten salt

    SciTech Connect

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-04-29

    The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. LLNL has built a small-scale unit to test the destruction of HE using the Molten Salt Destruction (MSD) Process. In addition to the high explosive HMX, destruction has been carried out on RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. Also destroyed was a liquid gun propellant comprising hydroxyammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, destruction has been carried out on a number of commonly used formulations, such as LX-10, LX-16, LX-17, and PBX-9404.

  6. Tackling radio polarization of energetic pulsars

    SciTech Connect

    Craig, H. A.

    2014-08-01

    The traditional, geometrical rotating vector model (RVM) has proved particularly poor at capturing the polarization sweeps of the young energetic and millisecond pulsars detected by Fermi. We augment this model by including finite altitude effects using a swept back vacuum dipole geometry. By further including the effects of orthogonal mode jumps, multiple emission altitudes, open zone growth via y-point lowering, and interstellar scattering, we show that a wide range of departures from RVM can be modeled well while retaining a geometrical picture. We illustrate these effects by fitting six Fermi-detected pulsars (J0023+0923, J1024–0719, J1744–1134, J1057–5226, J1420–6048, and J2124–3358) and we describe how such modeling can improve our understanding of their emission geometry.

  7. Towards coherent control of energetic material initiation

    SciTech Connect

    Greenfield, Margo T; Mcgrane, Shawn D; Scharff, R Jason; Moore, David S

    2009-01-01

    Direct optical initiation (DOI) of energetic materials using coherent control of localized energy deposition requires depositing energy into the material to produce a critical size hot spot, which allows propagation of the reaction and thereby initiation, The hot spot characteristics needed for growth to initiation can be studied using quantum controlled initiation (QCI). Achieving direct quantum controlled initiation (QCI) in condensed phase systems requires optimally shaped ultrafast laser pulses to coherently guide the energy flow along the desired paths. As a test of our quantum control capabilities we have successfully demonstrated our ability to control the reaction pathway of the chemical system stilbene. An acousto-optical modulator based pulse shaper was used at 266 nm, in a shaped pump/supercontinuum probe technique, to enhance and suppress th relative yields of the cis- to trans-stilbene isomerization. The quantum control techniques tested in the stilbene experiments are currently being used to investigate QCI of the explosive hexanitroazobenzene (HNAB).

  8. STEREO Observations of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, Tycho; Christian, Eric; Cohen, Christina; Leske, Richard; Mewaldt, Richard; Stone, Edward; Wiedenbeck, Mark

    2011-01-01

    We report on observations of Solar Energetic Particle (SEP) events as observed by instruments on the STEREO Ahead and Behind spacecraft and on the ACE spacecraft. We will show observations of an electron event observed by the STEREO Ahead spacecraft on June 12, 2010 located at W74 essentially simultaneously with electrons seen at STEREO Behind at E70. Some similar events observed by Helios were ascribed to fast electron propagation in longitude close to the sun. We will look for independent verification of this possibility. We will also show observations of what appears to be a single proton event with very similar time-history profiles at both of the STEREO spacecraft at a similar wide separation. This is unexpected. We will attempt to understand all of these events in terms of corresponding CME and radio burst observations.

  9. Energetics and Dynamics of Electron Transfer and Proton Transfer in Dissociation of Metal III (salen)-Peptide Complexes in the Gas Phase

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Chu, Ivan K.

    2008-03-12

    Time- and collision energy-resolved surface-induced dissociation (SID) of ternary complexes of CoIII(salen)+, FeIII(salen)+, and MnIII(salen)+ with several angiotensin peptide analogs was studied using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to perform SID experiments. Time-resolved fragmentation efficiency curves (TFECs) were modeled using an RRKM-based approach developed in our laboratory. The approach utilizes a very flexible analytical expression for the internal energy deposition function that is capable of reproducing both single-collision and multiple-collision activation in the gas phase and excitation by collisions with a surface. The energetics and dynamics of competing dissociation pathways obtained from the modeling provides important insight on the competition between proton transfer, electron transfer, loss of neutral peptide ligand, and other processes that determine gas-phase fragmentation of these model systems. Similar fragmentation behavior was obtained for various CoIII(salen)-peptide systems of different angiotensin analogs. In contrast, dissociation pathways and relative stabilities of the complexes changed dramatically when cobalt was replaced with trivalent iron or manganese. We demonstrate that the electron transfer efficiency is correlated with redox properties of the metalIII(salen) complexes (Co > Fe > Mn), while differences in the types of fragments formed from the complexes reflect differences in the modes of binding between the metal-salen complex and the peptide ligand. RRKM modeling of time- and collision energy-resolved SID data suggests that the competition between proton transfer and electron transfer during dissociation of CoIII(salen)-peptide complexes is mainly determined by differences in entropy effects while the energetics of these two pathways are very similar.

  10. Energetic particle physics with applications in fusion and space plasmas

    SciTech Connect

    Cheng, C.Z.

    1997-05-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma.

  11. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  12. Energetic adaptations persist after bariatric surgery in severely obese adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energetic adaptations induced by bariatric surgery have not been studied in adolescents or for extended periods postsurgery. Energetic, metabolic, and neuroendocrine responses to Roux-en-Y gastric bypass (RYGB) surgery were investigated in extremely obese adolescents. At baseline and at 1.5, 6, and...

  13. Novel Theory of Energetic-Ion-Induced Interchange Mode

    NASA Astrophysics Data System (ADS)

    Nishimura, Seiya

    2015-06-01

    On the basis of a kinetic energy principle, it is shown that the interchange mode in helical systems is excited by trapped energetic ions, where the ideal interchange mode is stable. The mode has a rotation frequency comparable to precession drift frequencies of trapped energetic ions. The theory explains how to apply the fishbone mode theory originally developed in tokamaks to helical systems.

  14. Energetics of RHESSI X-Class Flares

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Haga, Leah; Holman, Gordon D.; Hudson, Hugh

    2005-01-01

    The thermal and nonthermal energies of several X-class flares seen with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) will be presented. The same techniques described by Emslie et al. (JGR, 109, A10104, 2004) are used to take the RHESSI imaging spectroscopic observations and compute the energies in the thermal plasma and in the nonthermal electrons as a function of time throughout the flares. Radiative and conductive cooling rates are estimated and total thermal and nonthermal energies are computed for each flare. Typically, the energy in nonthermal electrons integrated up to the time of peak soft X-ray emission is equal to or exceeds the energy in the thermal plasma at that time. This suggests that energy must have been converted into a form not visible with RHESSI and that the total energy released by the flares may be significantly greater than the sum of energies calculated from the RHESSI observations alone. This conclusion is supported by the high radiative energy seen with SORCE during the impulsive phase of the 28 October 2003 flare. The peak increase in total solar irradiance of 270 mW per square meters measured with SORCE was over two orders of magnitude higher than the peak soft X-ray flux seen with GOES or RHESSI. The implications of this new observation as compared to the energetics derived from the X-ray observations of that flare will be discussed along with the energetics analysis of most of the other X- class flares in October/November 2003.

  15. Energetic dose: Beyond fire and flint?

    USGS Publications Warehouse

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  16. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Collision bulkhead. 171.085 Section 171.085 Shipping... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.085 Collision bulkhead... portion of the collision bulkhead that is below the bulkhead deck must be watertight. (c) Each portion...

  17. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Collision bulkhead. 179.210 Section 179.210 Shipping....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a...

  18. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Collision bulkhead. 174.340 Section 174.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than...

  19. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Collision bulkhead. 171.085 Section 171.085 Shipping... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.085 Collision bulkhead... portion of the collision bulkhead that is below the bulkhead deck must be watertight. (c) Each portion...

  20. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Collision bulkhead. 171.085 Section 171.085 Shipping... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.085 Collision bulkhead... portion of the collision bulkhead that is below the bulkhead deck must be watertight. (c) Each portion...

  1. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Collision bulkhead. 174.340 Section 174.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than...

  2. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Collision bulkhead. 174.340 Section 174.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than...

  3. 46 CFR 174.190 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Collision bulkhead. 174.190 Section 174.190 Shipping... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.190 Collision bulkhead. (a) Each OSV must have a collision bulkhead in compliance with §§ 171.085(c)(1), (d), (e)(2),...

  4. 46 CFR 174.190 - Collision bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Collision bulkhead. 174.190 Section 174.190 Shipping... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.190 Collision bulkhead. (a) Each OSV must have a collision bulkhead in compliance with §§ 171.085(c)(1), (d), (e)(2),...

  5. 46 CFR 179.310 - Collision bulkheads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Collision bulkheads. 179.310 Section 179.310 Shipping...) SUBDIVISION, DAMAGE STABILITY, AND WATERTIGHT INTEGRITY Watertight Integrity Requirements § 179.310 Collision bulkheads. (a) Each collision bulkhead required by § 179.210, must be constructed in accordance with §...

  6. 46 CFR 179.310 - Collision bulkheads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Collision bulkheads. 179.310 Section 179.310 Shipping...) SUBDIVISION, DAMAGE STABILITY, AND WATERTIGHT INTEGRITY Watertight Integrity Requirements § 179.310 Collision bulkheads. (a) Each collision bulkhead required by § 179.210, must be constructed in accordance with §...

  7. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Collision bulkhead. 179.210 Section 179.210 Shipping....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a...

  8. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Collision bulkhead. 179.210 Section 179.210 Shipping....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a...

  9. 46 CFR 174.190 - Collision bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Collision bulkhead. 174.190 Section 174.190 Shipping... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.190 Collision bulkhead. (a) Each OSV must have a collision bulkhead in compliance with §§ 171.085(c)(1), (d), (e)(2),...

  10. 46 CFR 179.310 - Collision bulkheads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Collision bulkheads. 179.310 Section 179.310 Shipping...) SUBDIVISION, DAMAGE STABILITY, AND WATERTIGHT INTEGRITY Watertight Integrity Requirements § 179.310 Collision bulkheads. (a) Each collision bulkhead required by § 179.210, must be constructed in accordance with §...

  11. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Collision bulkhead. 174.340 Section 174.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than...

  12. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Collision bulkhead. 174.340 Section 174.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than...

  13. 46 CFR 174.190 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Collision bulkhead. 174.190 Section 174.190 Shipping... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.190 Collision bulkhead. (a) Each OSV must have a collision bulkhead in compliance with §§ 171.085(c)(1), (d), (e)(2),...

  14. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Collision bulkhead. 179.210 Section 179.210 Shipping....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a...

  15. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Collision bulkhead. 171.085 Section 171.085 Shipping... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.085 Collision bulkhead... portion of the collision bulkhead that is below the bulkhead deck must be watertight. (c) Each portion...

  16. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Collision bulkhead. 179.210 Section 179.210 Shipping....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a...

  17. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Collision bulkhead. 171.085 Section 171.085 Shipping... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.085 Collision bulkhead... portion of the collision bulkhead that is below the bulkhead deck must be watertight. (c) Each portion...

  18. 46 CFR 179.310 - Collision bulkheads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Collision bulkheads. 179.310 Section 179.310 Shipping...) SUBDIVISION, DAMAGE STABILITY, AND WATERTIGHT INTEGRITY Watertight Integrity Requirements § 179.310 Collision bulkheads. (a) Each collision bulkhead required by § 179.210, must be constructed in accordance with §...

  19. 46 CFR 174.190 - Collision bulkhead.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Collision bulkhead. 174.190 Section 174.190 Shipping... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.190 Collision bulkhead. (a) Each OSV must have a collision bulkhead in compliance with §§ 171.085(c)(1), (d), (e)(2),...

  20. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications.

    PubMed

    Zhou, Xiang; Torabi, Mohsen; Lu, Jian; Shen, Ruiqi; Zhang, Kaili

    2014-03-12

    Nanotechnology has stimulated revolutionary advances in many scientific and industrial fields, particularly in energetic materials. Powder mixing is the simplest and most traditional method to prepare nanoenergetic composites, and preliminary findings have shown that these composites perform more effectively than their micro- or macro-sized counterparts in terms of energy release, ignition, and combustion. Powder mixing technology represents only the minimum capability of nanotechnology to boost the development of energetic material research, and it has intrinsic limitations, namely, random distribution of fuel and oxidizer particles, inevitable fuel pre-oxidation, and non-intimate contact between reactants. As an alternative, nanostructured energetic composites can be prepared through a delicately designed process. These composites outperform powder-mixed nanocomposites in numerous ways; therefore, we comprehensively discuss the preparation strategies adopted for nanostructured energetic composites and the research achievements thus far in this review. The latest ignition and reaction models are briefly introduced. Finally, the broad promising applications of nanostructured energetic composites are highlighted.

  1. High velocity collisions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  2. Sequential binary collision ionization mechanisms

    NASA Astrophysics Data System (ADS)

    van Boeyen, R. W.; Watanabe, N.; Doering, J. P.; Moore, J. H.; Coplan, M. A.; Cooper, J. W.

    2004-03-01

    Fully differential cross sections for the electron-impact ionization of the magnesium 3s orbital have been measured in a high-momentum-transfer regime wherein the ionization mechanisms can be accurately described by simple binary collision models. Measurements where performed at incident-electron energies from 400 to 3000 eV, ejected-electron energies of 62 eV, scattering angle of 20 °, and momentum transfers of 2 to 5 a.u. In the out-of-plane geometry of the experiment the cross section is observed far off the Bethe ridge. Both first- and second-order processes can be clearly distinguished as previously observed by Murray et al [Ref. 1] and Schulz et al [Ref. 2]. Owing to the relatively large momentum of the ejected electron, the second order processes can be modeled as sequential binary collisions involving a binary elastic collision between the incident electron and ionic core and a binary knock-out collision between the incident electron and target electron. At low incident-electron energies the cross section for both first and second order processes are comparable, while at high incident energies second-order processes dominate. *Supported by NSF under grant PHY-99-87870. [1] A. J. Murray, M. B. J. Woolf, and F. H. Read J. Phys. B 25, 3021 (1992). [2] M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D. H. Madison. S. Jones and J. Ullrich, Nature 422, 48 (2003).

  3. Duration of an Elastic Collision

    ERIC Educational Resources Information Center

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  4. Quarkonium production in hadronic collisions

    SciTech Connect

    Gavai, R.; Schuler, G.A.; Sridhar, K.

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  5. Probing GPDs in ultraperipheral collisions

    SciTech Connect

    Ivanov, D.Yu.; Pire, B.; Szymanowski, L.; Wagner, J.

    2015-04-10

    Ultraperipheral collisions in hadron colliders give new opportunities to investigate the hadron structure through exclusive photoproduction processes. We describe the possibility of measuring the Generalized Parton Distributions in the Timelike Compton Scattering process and in the production of heavy vector meson.

  6. Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, Mieszko

    2017-01-01

    In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.

  7. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  8. The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics.

    PubMed

    McCaffery, Anthony J; Osborne, Mark A; Marsh, Richard J; Lawrance, Warren D; Waclawik, Eric R

    2004-07-01

    Vibrational relaxation of the 6(1) level of S(1)((1)B(2u)) benzene is analyzed using the angular momentum model of inelastic processes. Momentum-(rotational) angular momentum diagrams illustrate energetic and angular momentum constraints on the disposal of released energy and the effect of collision partner on resultant benzene rotational excitation. A kinematic "equivalent rotor" model is introduced that allows quantitative prediction of rotational distributions from inelastic collisions in polyatomic molecules. The method was tested by predicting K-state distributions in glyoxal-Ne as well as J-state distributions in rotationally inelastic acetylene-He collisions before being used to predict J and K distributions from vibrational relaxation of 6(1) benzene by H(2), D(2), and CH(4). Diagrammatic methods and calculations illustrate changes resulting from simultaneous collision partner excitation, a particularly effective mechanism in p-H(2) where some 70% of the available 6(1)-->0(0) energy may be disposed into 0-->2 rotation. These results support the explanation for branching ratios in 6(1)-->0(0) relaxation given by Waclawik and Lawrance and the absence of this pathway for monatomic partners. Collision-induced vibrational relaxation in molecules represents competition between the magnitude of the energy gap of a potential transition and the ability of the colliding species to generate the angular momentum (rotational and orbital) needed for the transition to proceed. Transition probability falls rapidly as DeltaJ increases and for a given molecule-collision partner pair will provide a limit to the gap that may be bridged. Energy constraints increase as collision partner mass increases, an effect that is amplified when J(i)>0. Large energy gaps are most effectively bridged using light collision partners. For efficient vibrational relaxation in polyatomics an additional requirement is that the molecular motion of the mode must be capable of generating molecular

  9. Environmentally Responsible Energetic Materials: Another Look at the Styphnates

    NASA Astrophysics Data System (ADS)

    Collins, Adam; Angliss, Timothy; Proud, William

    2009-06-01

    Lead Styphnate (lead 2,4,6-trinitroresorcinate) has many applications as a primary explosive, most notably in priming compositions. Its largest drawback, however, is the toxicity of lead. Heavy metals often feature in primary explosives, providing favourable density, bonding, and reaction products; but, the toxic nature of heavy metals makes these explosives of limited use. Current research efforts are being made to design new energetic materials (such as those based around the 5-nitrotetrazole molecule), but familiar energetics can still be of use. The styphnate anion provides many favourable energetic qualities (such as a ring structure and nitro groups), and while the lead salt has proven its usefulness, other metallic styphnates also provide a range of energetic qualities. This paper reports on ignition thresholds, energetic output, and thermal properties of the following salts of trinitroresorcinol: Barium, Bismuth, Calcium, Copper, Lithium, and Lead. Such information provides a list of characterized energetic materials, but also insight into how metal cations can control measurable energetic effects at the molecular and crystal level.

  10. The energetics of lanthanum tantalate materials

    SciTech Connect

    Forbes, Tori Z.; Nyman, May; Rodriguez, Mark A.; Navrotsky, Alexandra

    2010-11-15

    Lanthanum tantalates are important refractory materials with application in photocatalysis, solid oxide fuel cells, and phosphors. Soft-chemical synthesis utilizing the Lindqvist ion, [Ta{sub 6}O{sub 19}]{sup 8-}, has yielded a new phase, La{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2}. Using the hydrated phase as a starting material, a new lanthanum orthotantalate polymorph was formed by heating to 850 {sup o}C, which converts to a previously reported LaTaO{sub 4} polymorph at 1200 {sup o}C. The stabilities of La{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2} (LaTa-OH), the intermediate LaTaO{sub 4} polymorph (LaTa-850), and the high temperature phase (LaTa-1200) were investigated using high-temperature oxide melt solution calorimetry. The enthalpy of formation from the oxides were calculated from the enthalpies of drop solution to be -87.1{+-}9.6, -94.9{+-}8.8, and -93.1{+-}8.7 kJ/mol for LaTa-OH, LaTa-850, and LaTa-1200, respectively. These results indicate that the intermediate phase, LaTa-850, is the most stable. This pattern of energetics may be related to cation-cation repulsion of the tantalate cations. We also investigated possible LnTaO{sub 4} and Ln{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2} analogues of Ln=Pr, Nd to examine the relationship between cation size and the resulting phases. - Graphical abstract: The energetics of three lanthanum tantalates were investigated by the high-temperature oxide melt solution calorimetry. The enthalpies of formation from the oxides were calculated from the enthalpies of drop solution to be -87.1{+-}9.6, -94.9{+-}8.8, and -93.1{+-}8.7 kJ/mol for La{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2}, LaTaO{sub 4} (850 {sup o}C), and LaTaO{sub 4} (1200 {sup o}C), respectively. These results indicate that the intermediate phase, LaTaO{sub 4} (850 {sup o}C), is the most stable in energy. Display Omitted

  11. Energetics of the Ocean's Infrasonic Sound Field.

    NASA Astrophysics Data System (ADS)

    D'Spain, Gerald Lynden

    1990-01-01

    Simultaneous measurements of infrasonic (0.5-20 Hz) particle velocity and pressure made by the Marine Physical Laboratory's freely drifting, independent, and neutrally buoyant Swallow floats are analyzed in terms of the energetics of acoustic fields. The theory of acoustic field energetics is presented and compared to standard data analysis techniques. The properties of the potential and kinetic energy density spectra, and the active and reactive intensity spectra from two deep ocean deployments are discussed. Results indicate that for most of the background sound field data in the midwater column above 1.7 Hz, the potential and kinetic energy density spectra are approximately equal. In one experiment, this is a consequence of the fact that, away from the ocean boundaries, the sound field is locally spatially homogeneous. Spatial homogeneity also implies that the particle velocity cross spectral density matrix is purely real. Near the ocean bottom, the vertical spatial inhomogeneity is statistically significant between 0.6 Hz to 1.4 Hz and 7 Hz to 20 Hz. In the lower band, the pressure autospectrum decreases with increasing distance from the ocean bottom, whereas in the upper band, it increases due to the deep sound channel's ability to trap acoustic energy at the higher infrasonic frequencies. For ship signals, the signal-to-noise ratio in the active intensity magnitude spectrum is 3 to 6 dB greater than in either of the two energy density spectra due to the vector nature of acoustic intensity. Although smaller than the net horizontal flux density above a few hertz, a statistically significant net vertical flux density of energy occurs across the whole frequency band, from the ocean surface into the bottom. The net horizontal flux density for various discrete sources, e.g., a magnitude 4.1 earthquake, a blue whale, and ship -generated harmonic line sets, is discussed. The net horizontal flux density of the background sound field between 5 and 12 Hz may have been

  12. Energetics of Al13 Keggin cluster compounds

    PubMed Central

    Armstrong, Christopher R.; Casey, William H.; Navrotsky, Alexandra

    2011-01-01

    The ϵ-Al13 Keggin aluminum hydroxide clusters are essential models in establishing molecular pathways for geochemical reactions. Enthalpies of formation are reported for two salts of aluminum centered ϵ-Keggin clusters, Al13 selenate, (Na(AlO4)Al12(OH)24(SeO4)4•12H2O) and Al13 sulfate, (NaAlO4Al12(OH)24(SO4)4•12H2O). The measured enthalpies of solution, ΔHsol, at 28 °C in 5 N HCl for the ε-Al13 selenate and sulfate are −924.57 (± 3.83) and −944.30 ( ± 5.66) kJ·mol-1, respectively. The enthalpies of formation from the elements, ΔHf,el, for Al13 selenate and sulfate are −19,656.35 ( ± 67.30) kJ·mol-1, and −20,892.39 ( ± 70.01) kJ·mol-1, respectively. In addition, ΔHf,el for sodium selenate decahydrate was calculated using data from high temperature oxide melt solution calorimetry measurements: −4,006.39 ( ± 11.91) kJ·mol-1. The formation of both ε-Al13 Keggin cluster compounds is exothermic from oxide-based components but energetically unfavorable with respect to a gibbsite-based assemblage. To understand the relative affinity of the ϵ-Keggin clusters for selenate and sulfate, the enthalpy associated with two S-Se exchange reactions was calculated. In the solid state, selenium is favored in the Al13 compound relative to the binary chalcogenate, while in 5 N HCl, sulfur is energetically favored in the cluster compound compared to the aqueous solution. This contribution represents the first thermodynamic study of ε-Al13 cluster compounds and establishes a method for other such molecules, including the substituted versions that have been created for kinetic studies. Underscoring the importance of ε-Al13 clusters in natural and anthropogenic systems, these data provide conclusive thermodynamic evidence that the Al13 Keggin cluster is a crucial intermediate species in the formation pathway from aqueous aluminum monomers to aluminum hydroxide precipitates. PMID:21852572

  13. CUSP Energetic Particles: Confinement, Acceleration and Implications

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng

    1999-01-01

    The cusp energetic particle (CEP) event is a new magnetospheric phenomenon. The events were detected in the dayside cusp for hours, in which the measured helium ions had energies up to 8 MeV. All of these events were associated with a dramatic decrease and large fluctuations in the local magnetic field strength. During January 1999 - December 1999 covered by this report, I have studied the CEP events by analyzing the POLAR, GEOTAIL, and WIND particle and magnetic field data measured during the geomagnetic quiet periods in 1996 and one geomagnetic storm period in 1998. The simultaneous observations indicated that the ion fluxes in the CEP events were higher than that in both the upstream and the downstream from the bow shock. The pitch angle distribution of the helium ions in the CEP events was found to peak around 90 deg. It was found that the mirror parameter, defined as the ratio of the square root of the integration of the parallel turbulent power spectral component over the ultra-low frequency (ULF) ranges to the mean field in the cusp, is correlated with the intensity of the cusp MeV helium flux, which is a measure of the influence of mirroring interactions and an indication of local effect. It was also found that the turbulent power of the local magnetic field in the ultra-low frequency (ULF) ranges is correlated with the intensity of the cusp energetic helium ions. Such ULF ranges correspond to periods of about 0.33-500 seconds that cover the gyroperiods, the bounce periods, and the drift periods of the tens keV to MeV charged particles when they are temporarily confined in the high-altitude dayside cusp. These observations represent a discovery that the high-altitude dayside cusp is a new acceleration and dynamic trapping region of the magnetosphere. The cusp geometry is connected via gradient and curvature drift of these energized ions to the equatorial plasma sheet as close as the geostationary orbit at local midnight. It implies that the dayside cusp is

  14. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    SciTech Connect

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  15. Elemental composition of solar energetic particles in 1977 and 1978

    NASA Technical Reports Server (NTRS)

    Cook, W. R.; Stone, E. C.; Vogt, R. E.; Trainor, J. H.; Webber, W. R.

    1979-01-01

    The elemental composition of energetic nuclei from seven major solar flare events were measured wit the cosmic ray detector systems aboard the Voyager 1 and 2 spacecraft. The energetic nuclei abundances differ significantly from those of photospheric material. They are enhanced relative to the photonsphere by a factor which is the ratio of abundance of an energetic nuclei species (relative to oxygen) over the corresponding abundance of photospheric material. This factor is common to all events and has a nonmonochromatic characteristic dependence on nuclear charge. This factor is roughly ordered by first ionization potential into two groups of elements, metallics and volatiles.

  16. Chemical Conversion of Energetic Materials to Higher Value Products

    SciTech Connect

    Mitchell, A R; Hsu, P C; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S

    2005-04-19

    The objective of this program is to develop new processes for the disposal of surplus energetic materials. Disposal through open burning/open detonation (OB/OD) is considered less attractive today due to environmental, cost and safety concerns. The use of energetic materials as chemical feedstocks for higher value products can provide environmentally sound and cost-effective alternatives to OB/OD. Our recent studies on the conversion of surplus energetic materials (Explosive D, TNT) to higher value products will be described.

  17. Energetics diagnosis of numerical simulation of atmospheric blocking

    NASA Technical Reports Server (NTRS)

    Kung, Ernest C.

    1990-01-01

    A series of systematic comprehensive diagnoses of Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM) simulation experiments was performed in reference to predictability and energetics of the Northern Hemisphere blocking circulation. The simulation experiments were performed. The following subject areas are also covered: an analysis of simulated summer blocking episodes; energetics examination of winter blocking simulations in the Northern Hemisphere; normal mode energetic and error analysis of GLA GCM simulations with the different horizontal resolutions during a winter month; and simulations of winter blocking episodes using observed sea surface temperatures.

  18. Galactic substructure and energetic neutrinos from the sun and earth.

    PubMed

    Koushiappas, Savvas M; Kamionkowski, Marc

    2009-09-18

    We consider the effects of Galactic substructure on energetic neutrinos from annihilation of weakly interacting massive particles that have been captured by the Sun and Earth. Substructure gives rise to a time-varying capture rate and thus to time variation in the annihilation rate and resulting energetic-neutrino flux. However, there may be a time lag between the capture and annihilation rates. The energetic-neutrino flux may then be determined by the density of dark matter in the Solar System's past trajectory, rather than the local density. The signature of such an effect may be sought in the ratio of the direct- to indirect-detection rates.

  19. Voyager 1: energetic ions and electrons in the jovian magnetosphere.

    PubMed

    Vogt, R E; Cook, W R; Cummings, A C; Garrard, T L; Gehrels, N; Stone, E C; Trainor, J H; Schardt, A W; Conlon, T; Lal, N; McDonald, F B

    1979-06-01

    The observations of the cosmic-ray subsystem have added significantly to our knowledge of Jupiter's magnetosphere. The most surprising result is the existence of energetic sulfur, sodium, and oxygen nuclei with energies above 7 megaelectron volts per nucleon which were found inside of Io's orbit. Also, significant fluxes of similarly energetic ions reflecting solar cosmic-ray composition were observed throughout the magnetosphere beyond 11 times the radius of Jupiter. It was also found that energetic protons are enhanced by 30 to 70 percent in the active hemisphere. Finally, the first observations were made of the magnetospheric tail in the dawn direction out to 160 Jupiter radii.

  20. Large gradual solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Giacalone, Joe

    2016-12-01

    Solar energetic particles, or SEPs, from suprathermal (few keV) up to relativistic (˜ few GeV) energies are accelerated near the Sun in at least two ways: (1) by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs, and (2) at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy ({>}10s MeV) protons pose serious radiation threats to human explorers living and working beyond low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of these large SEP events has eluded us primarily because their properties, as observed in Earth orbit, are smeared due to mixing and contributions from many important physical effects. This paper provides a comprehensive review of the current state of knowledge of these important phenomena, and summarizes some of the key questions that will be addressed by two upcoming missions—NASA’s Solar Probe Plus and ESA’s Solar Orbiter. Both of these missions are designed to directly and repeatedly sample the near-Sun environments where interplanetary scattering and transport effects are significantly reduced, allowing us to discriminate between different acceleration sites and mechanisms and to isolate the contributions of numerous physical processes occurring during large SEP events.

  1. Energetic characteristics of transition metal complexes.

    PubMed

    Wojewódka, Andrzej; Bełzowski, Janusz; Wilk, Zenon; Staś, Justyna

    2009-11-15

    Ten transition metal nitrate and perchlorate complexes of hydrazine and ethylenediamine were synthesized, namely [Cu(EN)(2)](ClO(4))(2), [Co(EN)(3)](ClO(4))(3), [Ni(EN)(3)](ClO(4))(2), [Hg(EN)(2)](ClO(4))(2), [Cr(N(2)H(4))(3)](ClO(4))(3), [Cd(N(2)H(4))(3)](ClO(4))(2), [Ni(N(2)H(4))(3)](NO(3))(2), [Co(N(2)H(4))(3)](NO(3))(3), [Zn(N(2)H(4))(3)](NO(3))(2), and [Cd(N(2)H(4))(3)](NO(3))(2) based on the lines of the literature reported methods. All of them were tested with applying underwater detonation test and further compared to the typical blasting explosives: RDX, HMX, TNT and PETN. From the above presented complexes [Ni(N(2)H(4))(3)](NO(3))(2) (called NHN) and [Co(N(2)H(4))(3)](NO(3))(3) (called CoHN) are known as primary explosives and can be used as the standard explosives. Explosion parameters, such as shock wave overpressure, shock wave energy equivalent and bubble energy equivalent, were determined. Evaluated energetic characteristics of the tested compounds are comparable to those of the classic high explosives and are even enhanced in some cases.

  2. Linking energetics and overwintering in temperate insects.

    PubMed

    Sinclair, Brent J

    2015-12-01

    Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment.

  3. Update on Saturn's energetic electron periodicities

    NASA Astrophysics Data System (ADS)

    Carbary, James F.

    2017-01-01

    The periodicities in fluxes of energetic electrons (110-365 keV) in Saturn's magnetosphere were determined from late 2004 to mid-2016. The electron periods were calculated using Lomb periodogram analyses within windows of 200 days at sliding intervals of 10 days, which tracked changes in the periodicity. Sometimes the periodicity showed a clear duality, as in 2007-2008, while at other times the two periods came together so closely as to be indistinguishable, as after equinox in 2010 and in 2015. At still other times, the periodicity apparently vanished altogether, as in 2014. These periodicities generally agreed with those of other phenomena such as the magnetic field and radio emissions. Whether dual or mono, the periods generally remained between 10.58 h and 10.84 h, with two statistical peaks at 10.68 h and 10.81 h. This observation suggests that magnetospheric periodicities at Saturn lie within a limited range of values, which places constraints on the generative mechanism for the phenomena.

  4. Energetic molding of chiral magnetic bubbles

    NASA Astrophysics Data System (ADS)

    Lau, Derek; Sundar, Vignesh; Zhu, Jian-Gang; Sokalski, Vincent

    2016-08-01

    Topologically protected magnetic structures such as skyrmions and domain walls (DWs) have drawn a great deal of attention recently due to their thermal stability and potential for manipulation by spin current, which is the result of chiral magnetic configurations induced by the interfacial Dzyaloshinskii-Moriya interaction (DMI). Designing devices that incorporate DMI necessitates a thorough understanding of how the interaction presents and can be measured. One approach is to measure growth asymmetry of chiral bubble domains in perpendicularly magnetized thin films, which has been described elsewhere by thermally activated DW motion. Here, we demonstrate that the anisotropic angular dependence of DW energy originating from the DMI is critical to understanding this behavior. Domains in Co/Ni multilayers are observed to preferentially grow into nonelliptical teardrop shapes, which vary with the magnitude of an applied in-plane field. We model the domain profile using energetic calculations of equilibrium shape via the Wulff construction, which serves as a new paradigm for describing chiral domains that explains both the teardrop shape and the reversal of growth symmetry at large fields.

  5. Energetics of solar coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Subramanian, P.; Vourlidas, A.

    2007-05-01

    Aims:We investigate whether solar coronal mass ejections are driven mainly by coupling to the ambient solar wind or through the release of internal magnetic energy. Methods: We examine the energetics of 39 flux-rope like coronal mass ejections (CMEs) from the Sun using data in the distance range ~2-20 R⊙ from the Large Angle Spectroscopic Coronograph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). This comprises a complete sample of the best examples of flux-rope CMEs observed by LASCO in 1996-2001. Results: We find that 69% of the CMEs in our sample experience a clearly identifiable driving power in the LASCO field of view. For those CMEs that are driven, we examine if they might be deriving most of their driving power by coupling to the solar wind. We do not find conclusive evidence in favor of this hypothesis. On the other hand, we find that their internal magnetic energy is a viable source of the required driving power. We have estimated upper and lower limits on the power that can possibly be provided by the internal magnetic field of a CME. We find that, on average, the lower limit to the available magnetic power is around 74% of what is required to drive the CMEs, while the upper limit can be as much as an order of magnitude larger.

  6. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    SciTech Connect

    Berk, Herbert L.

    2014-05-23

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  7. Excitation-contraction coupling and mitochondrial energetics

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    Cardiac excitation-contraction (EC) coupling consumes vast amounts of cellular energy, most of which is produced in mitochondria by oxidative phosphorylation. In order to adapt the constantly varying workload of the heart to energy supply, tight coupling mechanisms are essential to maintain cellular pools of ATP, phosphocreatine and NADH. To our current knowledge, the most important regulators of oxidative phosphorylation are ADP, Pi, and Ca2+. However, the kinetics of mitochondrial Ca2+-uptake during EC coupling are currently a matter of intense debate. Recent experimental findings suggest the existence of a mitochondrial Ca2+ microdomain in cardiac myocytes, justified by the close proximity of mitochondria to the sites of cellular Ca2+ release, i. e., the ryanodine receptors of the sarcoplasmic reticulum. Such a Ca2+ microdomain could explain seemingly controversial results on mitochondrial Ca2+ uptake kinetics in isolated mitochondria versus whole cardiac myocytes. Another important consideration is that rapid mitochondrial Ca2+ uptake facilitated by microdomains may shape cytosolic Ca2+ signals in cardiac myocytes and have an impact on energy supply and demand matching. Defects in EC coupling in chronic heart failure may adversely affect mitochondrial Ca2+ uptake and energetics, initiating a vicious cycle of contractile dysfunction and energy depletion. Future therapeutic approaches in the treatment of heart failure could be aimed at interrupting this vicious cycle. PMID:17657400

  8. Observed deep energetic eddies by seamount wake.

    PubMed

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-11-30

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

  9. Energetics of syntrophic cooperation in methanogenic degradation.

    PubMed Central

    Schink, B

    1997-01-01

    Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms. PMID:9184013

  10. Intense and energetic radiation from crystalline undulators

    NASA Astrophysics Data System (ADS)

    Uggerhøj, U. I.; Wistisen, T. N.

    2015-07-01

    With the recent experimental confirmation of the existence of energetic radiation from a Small Amplitude, Small Period (SASP) crystalline undulator (Wistisen et al., 2014), the field of specially manufactured crystals, from which specific radiation characteristics can be obtained, has evolved substantially. In the present paper we show how the radiation spectra can be tuned, using electrons and positrons of energies from 100 MeV up to 20 GeV. The latter energy is relevant for possible experiments at the FACET facility at Stanford Linear Accelerator Center (SLAC), whereas 100 MeV has been chosen to show the potentialities connected to using crystalline undulators as radiation targets for Nuclear Waste Transmutation (NWT). Energies in the few hundred MeV range are relevant for the facilities at the MAinzer MIcrotron (MAMI). For the 20 GeV case we show explicitly that quantum corrections to the emission spectrum become very significant, an effect that may be observed in the near future using the FACET beam at SLAC.

  11. Energetic Particles in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2016-07-01

    Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  12. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  13. Ion energetics in the Venus nightside ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Whitten, R. C.

    1980-01-01

    Consideration is given to the energetics of the ion gas flowing across the terminator into the Venus nightside ionosphere. Expressions are derived for the transport time of the ion gas (through 1 radian in solar zenith angle), the heat transfer time from the hot electron gas to the ions of an amount equal to the ion thermal energy), and the time required for vertical heat conduction to remove the internal energy of the ion column above a reference altitude, and it is shown that the time constant for transport is an order of magnitude smaller than the electron heat transfer time and comparable to the conduction time, and thus the ion gas is not a vertical conductive steady state. The conversion of bulk flow ion kinetic energy into heat is suggested as the mechanism responsible for the maintenance of the nightside ion temperatures at their observed values. It is thus concluded that the flow of the ion gas is quasi-adiabatic, and that steady-state, vertical, one dimensional energy balance models must be used with caution in the Venus ionosphere.

  14. PoET: Polarimeters for Energetic Transients

    NASA Technical Reports Server (NTRS)

    McConnell, Mark; Barthelmy, Scott; Hill, Joanne

    2008-01-01

    This presentation focuses on PoET (Polarimeters for Energetic Transients): a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The PoET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. PoET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  15. A novel tomographic technique for energetic materials

    NASA Astrophysics Data System (ADS)

    Stennett, C. C.; Stennett, S. E.; Rau, Christoph; McDonald, S. A.; Bourne, N. K.; Withers, P. J.; Cranfield-Manchester Collaboration

    2015-06-01

    It is a pressing matter to understand microstructural details within polymer matrix composites with energetic filler particles within. The generation of three-dimensional microstructure, using a noninvasive method of high resolution will advance knowledge in a range of fields. A range of inert composites analogous to plastic bonded explosives (PBXs) with crystalline and amorphous phases have been studied, and X-ray microtomography for microstructural investigation on the Diamond-Manchester I13 beamline. One of the compositions had crystal densities close to the binder and the other very different so that particles could be resolved easily in the one case and with great difficulty, even with phase contrast techniques in the other. Improvements int eh imaging made it possible to adequately define the bulk morphology, to determine the geometry of defects that might lead to sites for accidental ignition within the material and to demonstrate a direct linkage into the finite element predictions of mechanical response. Once demonstrated, the damage in a real loaded HE was assessed and quantified.

  16. Shock Initiation Thresholds of Various Energetic Materials

    NASA Astrophysics Data System (ADS)

    Damm, David; Welle, Eric; Yarrington, Cole

    2013-06-01

    Shock initiation threshold data for several energetic materials has been analyzed for both short-pulses and long, sustained shocks. In the limit of long duration shocks, the critical pressure for initiation is governed by the balance between chemical energy release in the vicinity of hotspots and thermal dissipation which cools the hotspot and can quench reactions. The observed trends in critical pressure from one material to the next are related to the thermophysical properties and chemical reaction kinetics of each material. Scaling analysis, combined with hydrocode simulations of collapsing pores has confirmed these trends; however large uncertainty in the reaction kinetics under shock loading prevents an accurate quantitative description of hotspot ignition. For a given pore diameter, scaling analysis allows a quick estimate of the temperature at which the reaction rate will exceed the rate of thermal dissipation. Using published thermophysical property data and reaction kinetics we found that the trend in critical hotspot temperatures for several common materials (e.g. PETN, HMX, HNS, and TATB) matches the observed trend in initiation sensitivity. The hydrocode simulations of pore collapse provide a link between the critical temperature and the initial shock pressure. For these simulations we have used recently published QMD-based equations of state for the fully-dense, crystalline phase and have included the effects of variable specific heat, viscous dissipation, and plastic work. These results will be presented and the need for physically-meaningful reaction rates will be emphasized.

  17. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  18. Energetics of Boron Doping of Carbon Pores

    NASA Astrophysics Data System (ADS)

    Wexler, Carlos; St. John, Alexander; Connolly, Matthew

    2014-03-01

    Carbon-based materials show promise, given their light weight, large surface areas and low cost for storage of hydrogen and other gases, e.g., for energy applications. Alas, the interaction of H2 and carbon, 4-5kJ/mol, is insufficient for room-temperature operation. Boron doping of carbon materials could raise the binding energy of H2 to 12-15kJ/mol. The nature of the incorporation of boron into a carbon structure has not been studied so far. In this talk we will address the energetics of boron incorporation into a carbon matrix via adsorption and decomposition of decaborane by first principles calculations. These demonstrate: (a) A strong adsorption of decaborane to carbon (70-80kJ/mol) resulting in easy incorporation of decaborane, sufficient for up to 10-20% B:C at low decaborane vapour pressures. (b) Identification that boron acts as an electron acceptor when incorporated substitutionally into a graphene-like material, as expected due to its valence. (c) The electrostatic field near the molecule is responsible for ca. 2/3 of the enhancement of the H2-adsorbent interaction in aromatic compounds such as pyrene, coronene and ovalene. Supported by DOE DE-FG36-08GO18142, ACS-PRF 52696-ND5, and NSF 1069091.

  19. Observed deep energetic eddies by seamount wake

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-11-01

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

  20. The energetic characterization of pineapple crown leaves.

    PubMed

    Braga, R M; Queiroga, T S; Calixto, G Q; Almeida, H N; Melo, D M A; Melo, M A F; Freitas, J C O; Curbelo, F D S

    2015-12-01

    Energetic characterization of biomass allows for assessing its energy potential for application in different conversion processes into energy. The objective of this study is to physicochemically characterize pineapple crown leaves (PC) for their application in energy conversion processes. PC was characterized according to ASTM E871-82, E1755-01, and E873-82 for determination of moisture, ash, and volatile matter, respectively; the fixed carbon was calculated by difference. Higher heating value was determined by ASTM E711-87 and ash chemical composition was determined by XRF. The thermogravimetric and FTIR analyses were performed to evaluate the thermal decomposition and identify the main functional groups of biomass. PC has potential for application in thermochemical processes, showing high volatile matter (89.5%), bulk density (420.8 kg/m(3)), and higher heating value (18.9 MJ/kg). The results show its energy potential justifying application of this agricultural waste into energy conversion processes, implementing sustainability in the production, and reducing the environmental liabilities caused by its disposal.

  1. MEMEX: Mechanisms of Energetic Mass Ejection Explorer

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chappell, C. R.; Clemmons, J. H.; Cully, C. M.; Donovan, E.; Earle, G. D.; Heelis, R. A.; Kistler, L. M.; Kepko, L.; Khazanov, G. V.; Knudsen, D. J.; Lessard, M.; McFadden, J. P.; Nicolls, M. J.; Pollock, C. J.; Pfaff, R. F.; Rankin, R.; Rowland, D. E.; Semeter, J. L.; Thayer, J. P.; Winglee, R.

    2013-12-01

    MEMEX is designed to find out how gravitationally-trapped volatile matter is being lost from atmospheres by energetic processes, depleting them of key constituents, as has occurred most dramatically at Mars. This process is exemplified in geospace by the dissipation of solar energy to produce ionospheric outflows that feed back on dynamics of the solar wind interaction with Earth's magnetosphere. Kinetic and electromagnetic energy flow from the Sun into the coupled (auroral) ionosphere, where resultant electron, ion, and gas heating give rise to upwelling, ionization, and mass ejection. Proposed mechanisms involve wave-particle heating interactions, upward ambipolar electric fields, or ponderomotive forces. A large number of free energy sources have been identified, but empirical guidance remains weak concerning their relative importance. Moreover, it is unclear if the waves interact with particles primarily in a cyclotron resonant mode, or in a lower hybrid exchange of electron (parallel) and ion (perpendicular) energy, or in a bulk ponderomotive mode. MEMEX will answer the questions raised by these issues: Where do the waves that produce mass ejection grow? How do they propagate and transport energy? How can wave amplitudes, heating, and escape rates be derived from solar wind conditions? Is the heating a cyclotron resonant process or a bulk ponderomotive forcing process? To obtain answers, MEMEX will for the first time simultaneously observe the magnetospheric and atmospheric boundary conditions applied to the topside or exobase layer, and the response of ions and electrons to the ensuing battle between electrodynamic forcing and collisional damping.

  2. Energetic electrons in the magnetosphere of jupiter.

    PubMed

    Van Allen, J A; Baker, D N; Randall, B A; Thomsen, M F; Sentman, D D; Flindt, H R

    1974-01-25

    Observations of energetic electrons ( greater, similar 0.07 million electron volts) show that the outer magnetosphere of Jupiter consists of a thin disklike, quasitrapping region extending from about 20 to 100 planetary radii (R(J)). This magnetodisk is confined to the vicinity of the magnetic equatorial plane and appears to be an approximate figure of revolution about the magnetic axis of the planet. Hard trapping is observed within a radial distance of about 20 R(J). The omnidirectional intensity J(0) of electrons with energy greater, similar 21 million electron volts within the region 3 r 20 R(J) is given by the following provisional expression in terms of radial distance r and magnetic latitude theta: J(0) = 2.1 x 10(8) exp[-(r/a) - (theta/b)(2)]. In this expression J(0) is particles per square centimeter per second; a = 1.52 R(J) for 3

  3. Energetic charged particles in the uranian magnetosphere.

    PubMed

    Stone, E C; Cooper, J F; Cummings, A C; McDonald, F B; Trainor, J H; Lal, N; McGuire, R; Chenette, D L

    1986-07-04

    During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.

  4. Advanced Energetics for Aeronautical Applications. Volume II

    NASA Technical Reports Server (NTRS)

    Alexander, David S.

    2005-01-01

    NASA has identified water vapor emission into the upper atmosphere from commercial transport aircraft, particularly as it relates to the formation of persistent contrails, as a potential environmental problem. Since 1999, MSE has been working with NASA-LaRC to investigate the concept of a transport-size emissionless aircraft fueled with liquid hydrogen combined with other possible breakthrough technologies. The goal of the project is to significantly advance air transportation in the next decade and beyond. The power and propulsion (P/P) system currently being studied would be based on hydrogen fuel cells (HFCs) powering electric motors, which drive fans for propulsion. The liquid water reaction product is retained onboard the aircraft until a flight mission is completed. As of now, NASA-LaRC and MSE have identified P/P system components that, according to the high-level analysis conducted to date, are light enough to make the emissionless aircraft concept feasible. Calculated maximum aircraft ranges (within a maximum weight constraint) and other performance predictions are included in this report. This report also includes current information on advanced energy-related technologies, which are still being researched, as well as breakthrough physics concepts that may be applicable for advanced energetics and aerospace propulsion in the future.

  5. Intensity Variation of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    This paper updates the influence of environmental and source factors of shocks driven by corona) mass ejections (CMEs) that are likely to influence the intensity of solar energetic particle (SEP) events. The intensity variation due to CME interaction reported in Gopalswamy et al. (2004, JGR 109, Al2105) is confirmed by expanding the investigation to all the large SEP events of solar cycle 23. The large SEP events are separated into two groups, one associated with CMEs running into other CMEs, and the other with CMEs running into the ambient solar wind. SEP events with CME interaction generally have a higher intensity. New possibilities such as the influence of corona) holes on the SEP intensity are also discussed. For example, the presence of a large coronal hole between a well-connected eruption and the solar disk center may render the shock poorly connected because of the interaction between the CME and the coronal hole. This point is illustrated using the 2004 December 3 SEP event delayed by about 12 hours from the onset of the associated CME. There is no other event at the Sun that can be associated with the SEP onset. This event is consistent with the possibility that the coronal hole interaction influences the connectivity of the CMEs that produce SEPs, and hence the intensity of the SEP event.

  6. ENERGETIC PARTICLE DIFFUSION IN CRITICALLY BALANCED TURBULENCE

    SciTech Connect

    Laitinen, T.; Dalla, S.; Kelly, J.; Marsh, M.

    2013-02-20

    Observations and modeling suggest that the fluctuations in magnetized plasmas exhibit scale-dependent anisotropy, with more energy in the fluctuations perpendicular to the mean magnetic field than in the parallel fluctuations and the anisotropy increasing at smaller scales. The scale dependence of the anisotropy has not been studied in full-orbit simulations of particle transport in turbulent plasmas so far. In this paper, we construct a model of critically balanced turbulence, as suggested by Goldreich and Sridhar, and calculate energetic particle spatial diffusion coefficients using full-orbit simulations. The model uses an enveloped turbulence approach, where each two-dimensional wave mode with wavenumber k is packed into envelopes of length L following the critical balance condition, L{proportional_to}k {sup -2/3} , with the wave mode parameters changing between envelopes. Using full-orbit particle simulations, we find that both the parallel and perpendicular diffusion coefficients increase by a factor of two, compared to previous models with scale-independent anisotropy.

  7. Temporal Evolution of Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Doran, Donald J.; Dalla, Silvia

    2016-08-01

    During solar flares and coronal mass ejections, Solar Energetic Particles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this article we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an "arch" shape that then straightens into a power law later in the event, after times on the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution.

  8. Efficient laser production of energetic neutral beams

    NASA Astrophysics Data System (ADS)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  9. Observed deep energetic eddies by seamount wake

    PubMed Central

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-01-01

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport. PMID:26617343

  10. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  11. Newton's cradle versus nonbinary collisions.

    PubMed

    Sekimoto, Ken

    2010-03-26

    Newton's cradle is a classical example of a one-dimensional impact problem. In the early 1980s the naive perception of its behavior was corrected: For example, the impact of a particle does not exactly cause the release of the farthest particle of the target particle train, if the target particles have been just in contact with their own neighbors. It is also known that the naive picture would be correct if the whole process consisted of purely binary collisions. Our systematic study of particle systems with truncated power-law repulsive force shows that the quasibinary collision is recovered in the limit of hard core repulsion, or a very large exponent. In contrast, a discontinuous steplike repulsive force mimicking a hard contact, or a very small exponent, leads to a completely different process: the impacting cluster and the targeted cluster act, respectively, as if they were nondeformable blocks.

  12. Central collisions of heavy ions

    SciTech Connect

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  13. QCD studies in ep collisions

    SciTech Connect

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  14. Strategies of locomotor collision avoidance.

    PubMed

    Basili, Patrizia; Sağlam, Murat; Kruse, Thibault; Huber, Markus; Kirsch, Alexandra; Glasauer, Stefan

    2013-03-01

    Collision avoidance during locomotion can be achieved by a variety of strategies. While in some situations only a single trajectory will successfully avoid impact, in many cases several different strategies are possible. Locomotor experiments in the presence of static boundary conditions have suggested that the choice of an appropriate trajectory is based on a maximum-smoothness strategy. Here we analyzed locomotor trajectories of subjects avoiding collision with another human crossing their path orthogonally. In such a case, changing walking direction while keeping speed or keeping walking direction while changing speed would be two extremes of solving the problem. Our participants clearly favored changing their walking speed while keeping the path on a straight line between start and goal. To interpret this result, we calculated the costs of the chosen trajectories in terms of a smoothness-maximization criterion and simulated the trajectories with a computational model. Data analysis together with model simulation showed that the experimentally chosen trajectory to avoid collision with a moving human is not the optimally smooth solution. However, even though the trajectory is not globally smooth, it was still locally smooth. Modeling further confirmed that, in presence of the moving human, there is always a trajectory that would be smoother but would deviate from the straight line. We therefore conclude that the maximum smoothness strategy previously suggested for static environments no longer holds for locomotor path planning and execution in dynamically changing environments such as the one tested here.

  15. Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Lester, M.

    2016-01-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximately 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 R(sub E) using combined Super Dual Auroral Radar Network radar and EPD observations.

  16. The effect of solar energetic particles on the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Darwish, Omar Hussain Al; Lillis, Robert; Fillingim, Matthew; Lee, Christina

    2016-10-01

    The precipitation of Solar Energetic Particles (SEP) into the Martian atmosphere causes several effects, one of the most important of which is ionization. However, the importance of this process to the global structure and dynamics for the Martian ionosphere is currently not well understood. The MAVEN spacecraft carries instrumentation which allow us to examine this process. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measures the densities of planetary ions in the Mars ionosphere (O+,CO2+ and O2+). The Solar Energetic Particle (SEP) detector measures the fluxes of energetic protons and electrons. In this project, we examine the degree to which the density of ions in the Martian ionosphere is affected by the precipitation of energetic particles, under conditions of different SEP ion and electron fluxes and at various solar zenith angles. We will present statistical as well as case studies.

  17. Use of energetic ion beams in materials synthesis and processing

    SciTech Connect

    Appleton, B R

    1991-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage.

  18. Energetic ion transport by microturbulence is insignificant in tokamaks

    SciTech Connect

    Pace, D. C.; Petty, C. C.; Staebler, G. M.; Van Zeeland, M. A.; Waltz, R. E.; Austin, M. E.; Bass, E. M.; Budny, R. V.; Gorelenkova, M.; Grierson, B. A.; McCune, D. C.; Yuan, X.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Hillesheim, J. C.; Rhodes, T. L.; Wang, G.; Holcomb, C. T.; McKee, G. R.; and others

    2013-05-15

    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of E{sub b}/T{sub e}, where E{sub b} is the energetic ion energy and T{sub e} the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.

  19. Effect of Energetic Ion on Spatial Distribution of Recombining Plasma

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Daibo, A.; Kitajima, S.; Kumagai, T.; Takahashi, H.; Takahashi, T.; Tsubota, S.

    Spatial distribution of electron density is considered. By using a one-dimensional recombining plasma model, effects of transient energetic ion flux are investigated. The time response of the system against the transient flux is dominated by the recombination frequency. The magnitude of modification of the spatial distribution is determined by the ratio between the ionization due to the energetic ion and the recombination of the bulk plasma.

  20. Stability of AN Axisymmetric Mirror with AN Energetic Ion Component.

    NASA Astrophysics Data System (ADS)

    Krall, Jonathan Francis

    We examine the stability of an axisymmetric mirror with an energetic ion component to finite azimuthal mode number (m) interchange modes, using a dispersion functional in which the energetic ions are described by the Vlasov equation and the background plasma is described by the magnetohydrodynamic (MHD) equations. A separate analysis is presented for the Vlasov- fluid case Freidberg, 1972 , where the background consists of fluid electrons. Stability is addressed first for an elongated equilibrium with a specific class of energetic ion orbits in the Vlasov-MHD case and then for both cases with more general equilibria and orbits. With the elongated mirror, we suppose that the axis-encircling ions have orbits that reside on flux surfaces, obtaining a sufficient condition for stability on each flux surface. Numerical evaluation of the stability condition indicates that the energetic ion component is highly stabilizing in regions where the energetic ion density increases outward and highly destabilizing where the density decreases outward. The more general problem is considered by representing the displacement in terms of a complete set of global basis functions, giving a necessary and sufficient condition for stability for each case. In each of the two cases, kinetic effects enter into the analysis through phase-space autocorrelation functions Lewis et al., 1985 . We find that in the Vlasov-MHD case, where we use a rigid-rotor distribution for the energetic ions, the net rotation of the energetic ions is destabilizing and dominates the stabilizing influence of the energetic ion current. In the Vlasov-fluid case, finite Larmor radius (FLR) effects were recovered, with growth rates reduced when ((rho)(,i)/L)('2) >(, )(gamma)(,MHD)/(OMEGA)(,i), where (rho)(,i) is the Larmor radius of the Vlasov ions, L is the plasma radius, (gamma)(,MHD) is the growth rate with FLR effects excluded and (OMEGA)(,i) is the ion gyrofrequency. These effects are discussed in terms of phase

  1. Global Energetics of Thirty-Eight Large Solar Eruptive Events

    DTIC Science & Technology

    2012-10-17

    ejection (CME), (7) the energy in solar energetic particles (SEPs) observed in interplanetary space, and ( 8 ) the amount of free (non-potential) magnetic ...the energy in solar energetic particles (SEPs) observed in interplanetary space, and ( 8 ) the amount of free (non-potential) magnetic energy estimated...as they scatter on the diverging interplanetary magnetic field . For this work, we corrected for both multiple 1 AU crossings and energy loss using

  2. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  3. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  4. Energetics and Cooling in Urban Parks

    NASA Astrophysics Data System (ADS)

    Spronken-Smith, Rachel Anne

    While there has been a long tradition for the integration of architecture and landscape to improve the urban environment, little is known about the effect of urban parks on local climate. In this study the park effect is determined through an integrated research approach incorporating field measurements of the thermal regime and energetics of urban parks, together with scale modelling of nocturnal cooling in urban parks. The research is limited to consideration of the park effect in two cities with different summer climates: Sacramento, California (hot summer Mediterranean) and Vancoucer, British Columbia (cool summer Mediterranean). In both these cities, surveys of summer-time air temperature patterns associated with urban parks confirm and extend previous findings. In temperate Vancouver, the park effect is typically 1-2^circC, rarely more than 3^circC, although it can be higher under ideal conditions. However, in a hot, dry city, the effect is considerably enhanced with parks as much as 5-7^circC cooler than their urban surrounds. A comparison of the surface energy balance of small open, grassed parks in these two cities demonstrated the importance of evapotranspiration in park energetics. In hot, dry Sacramento, evaporation in the park was advectively -assisted and exceeded that at an irrigated rural site. Strong advective edge effects on evaporation were observed in this wet park. These decayed approximately exponentially with distance into the park. The urban park in Vancouver was moist, but unirrigated. While evaporation dominated the surface energy balance, the sensible heat flux was positive through most of the day, and evaporation was not strongly influenced by advection. The evaporation trend in the park probably reflected the turbulence and soil moisture regimes. However, an irrigated lawn in Vancouver did exhibit edge-type advection. This suggests the soil moisture regime may be critical in determining whether evaporation exceeds the potential rate

  5. African easterly wave energetics on intraseasonal timescales

    NASA Astrophysics Data System (ADS)

    Alaka, Ghassan J., Jr.

    African easterly waves (AEWs) are synoptic-scale eddies that dominate North African weather in boreal summer. AEWs propagate westward with a maximum amplitude near 700 hPa and a period of 2.5-6-days. AEWs and associated perturbation kinetic energy (PKE) exhibit significant intraseasonal variability in tropical North Africa during boreal summer, which directly impacts local agriculture and tropical cyclogenesis. This study performs a comprehensive analysis of the 30-90-day variability of AEWs and associated energetics using both reanalysis data and model output. Specifically, the PKE and perturbation available potential energy (PAPE) budgets are used to understand the factors that contribute to PKE maxima in West Africa and the extent to which these surges of AEW activity are modulated by the Madden-Julian oscillation (MJO). The role of the MJO in the intraseasonal variability of AEWs is assessed by comparing PKE sources as a function of an MJO index and a local 30-90-day West African PKE index. Since East Africa is an initiation zone for AEW activity and is modulated by the MJO, the relationship between this region and West Africa is a primary focus in this study. The intraseasonal variability of AEW energetics is first investigated in reanalysis products. While reanalysis data depicts a similar evolution of 30-90-day PKE anomalies in both the MJO and a local PKE index, the MJO index describes only a small (yet still significant) fraction of the local 30-90-day variance. In boreal summers with more significant MJO days, the correlation between the two indices is higher. Baroclinic energy conversions are important for the initiation of 30-90-day West African PKE events east of Lake Chad. In West Africa, both barotropic and baroclinic energy conversions maintain positive PKE anomalies before they propagate into the Atlantic. The primary role of diabatic heating is to destroy PAPE in a negative feedback to baroclinic energy conversions in West Africa. More frequent

  6. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the

  7. Octree Bin-to-Bin Fractional-NTC Collisions

    DTIC Science & Technology

    2015-09-17

    Problem Particle Methods VDF to Delta Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic... Delta Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra...Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta Function Set Collisions

  8. Fraction of space debris collisions that are catastrophic

    SciTech Connect

    Canavan, G.H.

    1996-08-01

    Analytic calculations estimate the fraction of catalog collisions that are catastrophic by a modification of collision rates. Most catalog collisions are catastrophic. Impactors of 60 kg or larger participate in about half of the catastrophic collisions. Analytic estimates give accurate values for catastrophic collisions, which are complicated numerically.

  9. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  10. Telemetered cephalopod energetics: swimming, soaring, and blimping.

    PubMed

    O'Dor, Ron

    2002-11-01

    Cephalopods are uniquely suited to field energetic studies. Their hollow mantles that pump water for respiration and jetting also can accommodate differential transducer-transmitters. These transmitters indicate pressure-flow power output, which can be calibrated against oxygen consumption by swim-tunnel respirometry. Radio-acoustic positioning telemetry (RAPT) records pressure-flow power and animal movements with meter accuracy in nature. Despite inherent inefficiencies, jetting is the primary mode of locomotion for both primitive nautilus and powerful, migratory oceanic squids. In between, large-finned squid and cuttlefish mix jetting with fin undulation in complex gaits that increase locomotor efficiency. Our studies show that the complex nervous systems cephalopods evolved to control mixed gaits are also sensitive to flow and density fields in nature and that they use these to further reduce locomotion costs. Buoyed up by evacuated shells, nautilus and cuttlefish live in boundary layers and navigate cheaply through them like balloonists. Large-finned, negatively buoyant squid soar like eagles in rising currents, but lose control in currents above one body length per second. Many muscular squids have life histories linked to current systems. Neutrally buoyant ammoniacal cephalopods in the mesopelagic are a limiting case in need of study. The small density differential between seawater and isotonic ammonium chloride trebles their volume, making them blimp-like with very low power densities. Some species live entirely in this restricted habitat, but most become ammoniacal late in ontogeny, as they approach semelparous reproduction. Ammonium retained for buoyancy as carbon is terminally mobilized from muscle protein for gametes and energy, compensates for lost muscle power.

  11. The Cosmic Ray Energetics And Mass Project

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk; Iss-Cream Collaboration

    2017-01-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica, the longest known exposure for a single balloon project. Elemental spectra were measured for Z = 1- 26 nuclei over a wide energy range from 1010 to >1014 eV. Building on the success of those balloon flights, one of the two balloon payloads was transformed for exposure on the International Space Station (ISS) Japanese Experiment Module Exposed Facility (JEM-EF). This ISS-CREAM instrument is configured with redundant and complementary particle detectors. The four layers of its finely segmented Silicon Charge Detector provide precise charge measurements, and its ionization calorimeter provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors and the Boronated Scintillator Detector distinguish electrons from nuclei. An order of magnitude increase in data collecting power is expected to reach the highest energies practical with direct measurements. Following completion of its qualification tests at NASA Goddard Space Flight Center, the ISS-CREAM payload was delivered to NASA Kennedy Space Center in August 2015 to await its launch to the ISS. While waiting for ISS-CREAM to launch, the other balloon payload including a Transition Radiation Detector, which is too large for the JEM-EF envelope, has been prepared for another Antarctic balloon flight in 2016. This so-called Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload will investigate cosmic ray propagation history. The overall project status and future plans will be presented.

  12. Solar Energetic Particles and Space Weather

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-01-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.

  13. Comparative primate energetics and hominid evolution.

    PubMed

    Leonard, W R; Robertson, M L

    1997-02-01

    There is currently great interest in developing ecological models for investigating human evolution. Yet little attention has been given to energetics, one of the cornerstones of modern ecosystem ecology. This paper examines the ecological correlates of variation in metabolic requirements among extant primate species, and uses this information to draw inferences about the changes in energy demands over the course of human evolution. Data on body size, resting metabolism, and activity budgets for selected anthropoid species and human hunter-gatherers are used to estimate total energy expenditure (TEE). Analyses indicate that relative energy expenditure levels and day ranges are positively correlated with diet quality; that is, more active species tend to consume more energy-rich diets. Human foragers fall at the positive extremes for modern primates in having high expenditure levels, large ranges, and very high quality diets. During hominid evolution, it appears that TEE increased substantially with the emergence of Homo erectus. This increase is partly attributable to larger body size as well as likely increases in day range and activity level. Assuming similar activity budgets for all early hominid species, estimated TEE for H. erectus is 40-45% greater than for the australopithecines. If, however, it is assumed that the evolution of early Homo was also associated with a shift to a more "human-like" foraging strategy, estimated expenditure levels for H. erectus are 80-85% greater than in the australopithecines. Changing patterns of resource distribution associated with the expansion of African savannas between 2.5 and 1.5 mya may been the impetus for a shift in foraging behavior among early members of the genus Homo. Such ecological changes likely would have made animal foods a more attractive resource. Moreover, greater use of animal foods and the resulting higher quality diet would have been important for supporting the larger day ranges and greater energy

  14. Cavitation Bubble Nucleation by Energetic Particles

    SciTech Connect

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  15. Green primaries: Environmentally friendly energetic complexes

    PubMed Central

    Huynh, My Hang V.; Hiskey, Michael A.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    Primary explosives are used in small quantities to generate a detonation wave when subjected to a flame, heat, impact, electric spark, or friction. Detonation of the primary explosive initiates the secondary booster or main-charge explosive or propellant. Long-term use of lead azide and lead styphnate as primary explosives has resulted in lead contamination at artillery and firing ranges and become a major health hazard and environmental problem for both military and civilian personnel. Devices using lead primary explosives are manufactured by the tens of millions every year in the United States from primers for bullets to detonators for mining. Although substantial synthetic efforts have long been focused on the search for greener primary explosives, this unresolved problem has become a “holy grail” of energetic materials research. Existing candidates suffer from instability or excessive sensitivity, or they possess toxic metals or perchlorate. We report here four previously undescribed green primary explosives based on complex metal dianions and environmentally benign cations, (cat)2[MII(NT)4(H2O)2] (where cat is NH4+ or Na+, M is Fe2+ or Cu2+, and NT− is 5-nitrotetrazolato-N2). They are safer to prepare, handle, and transport than lead compounds, have comparable initiation efficiencies to lead azide, and offer rapid reliable detonation comparable with lead styphnate. Remarkably, they possess all current requirements for green primary explosives and are suitable to replace lead primary explosives in detonators. More importantly, they can be synthesized more safely, do not pose health risks to personnel, and cause much less pollution to the environment. PMID:16567623

  16. Spectral energetics of the lower thermosphere

    SciTech Connect

    Raskin, R.G.

    1992-01-01

    A spectral energetics analysis of the lower thermosphere is carried out using simulated data from the NCAR Thermosphere-Ionosphere General Circulation Model (TIGCM). The results clarify the physical processes through which upwardly propagating semidiurnal tides dissipate and release their energy into the lower thermosphere. Energy residing within the study region is partitioned into reservoirs of available potential energy, irrotational kinetic energy, and nondivergent kinetic energy at four vertical levels. A definition of available potential energy is used that is appropriate for regions of variable mean molecular weight. The reservoirs are further subdivided by vector spherical harmonic wave numbers, and an energy budget is computed for each mode. The source, sink, and transformation terms are obtained using a post-processor that reproduces the contribution of each term in the momentum and thermodynamic equations. The loss terms for the zonal wave number two modes represent the dissipating forces for the semidiurnal tides. Viscosity, heat conduction, and ion drag represent the primary dissipative forces. Numerical smoothing within the TIGCM, representing the subgrid-scale diffusion, is found to have a non-negligible contribution to the tidal dissipation. A small terdiurnal tide that is excited by ion drag is also observed in the model. A sensitivity analysis is carried out to ascertain the effects of the seasonal cycle, solar cycle, UT, and geomagnetic activity. At solar maximum, solar heating at the trough of the tide is an important dissipative force; the altitude of tidal dissipation is correspondingly lower. At high values of geomagnetic forcing, the propagating semidiurnal tide is completely dissipated within the study region.

  17. The adolescent transition under energetic stress

    PubMed Central

    Reiches, Meredith W.; Moore, Sophie E.; Prentice, Andrew M.; Prentice, Ann; Sawo, Yankuba; Ellison, Peter T.

    2013-01-01

    Background and objectives: Life history theory predicts a shift in energy allocation from growth to reproductive function as a consequence of puberty. During adolescence, linear growth tapers off and, in females, ovarian steroid production increases. In this model, acquisition of lean mass is associated with growth while investment in adiposity is associated with reproduction. This study examines the chronological and developmental predictors of energy allocation patterns among adolescent women under conditions of energy constraint. Methodology: Fifty post-menarcheal adolescent women between 14 and 20 years old were sampled for weight and body composition at the beginning and end of 1 month in an energy-adequate season and 1 month in the subsequent energy-constrained season in a rural province of The Gambia. Results: Chronologically and developmentally younger adolescent girls gain weight in the form of lean mass in both energy-adequate and energy-constrained seasons, whereas older adolescents lose lean mass under conditions of energetic stress (generalized estimating equation (GEE) Wald chi-square comparing youngest tertile with older two tertiles 9.750, P = 0.002; GEE Wald chi-square comparing fast- with slow-growing individuals for growth rate 19.806, P < 0.001). When energy is limited, younger adolescents lose and older adolescents maintain fat (GEE Wald chi-square for interaction of age and season 6.568, P = 0.010; GEE Wald chi-square comparing fast- with slow-growing individuals for interaction of growth rate and season 7.807, P = 0.005). Conclusions and implications: When energy is constrained, the physiology of younger adolescents invests in growth while that of older adolescent females privileges reproductively valuable adipose tissue. PMID:24481188

  18. Mitochondria and Energetic Depression in Cell Pathophysiology

    PubMed Central

    Seppet, Enn; Gruno, Marju; Peetsalu, Ants; Gizatullina, Zemfira; Nguyen, Huu Phuc; Vielhaber, Stefan; Wussling, Manfred H.P.; Trumbeckaite, Sonata; Arandarcikaite, Odeta; Jerzembeck, Doreen; Sonnabend, Maria; Jegorov, Katharina; Zierz, Stephan; Striggow, Frank; Gellerich, Frank N.

    2009-01-01

    Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell’s ability to do work and control the intracellular Ca2+ homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis. PMID:19564950

  19. Analyzing Collisions in Terms of Newton's Laws

    NASA Astrophysics Data System (ADS)

    Roeder, John L.

    2003-02-01

    Although the principle of momentum conservation is a consequence of Newton's second and third laws of motion, as recognized by Newton himself, this principle is typically applied in analyzing collisions as if it is a separate concept of its own. This year I sought to integrate my treatment of collisions with my coverage of Newton's laws by asking students to calculate the effect on the motion of two particles due to the forces they exerted for a specified time interval on each other. For example, "A 50-kg crate slides across the ice at 3 m/s and collides with a 25-kg crate at rest. During the collision process the 50-kg crate exerts a 500 N time-averaged force on the 25 kg for 0.1 s. What are the accelerations of the crates during the collision, and what are their velocities after the collision? What are the momenta of the crates before and after collision?"

  20. A Collective Collision Operator for DSMC

    SciTech Connect

    GALLIS,MICHAIL A.; TORCZYNSKI,JOHN R.

    2000-06-21

    A new scheme to simulate elastic collisions in particle simulation codes is presented. The new scheme aims at simulating the collisions in the highly collisional regime, in which particle simulation techniques typically become computationally expensive.The new scheme is based on the concept of a grid-based collision field. According to this scheme, the particles perform a single collision with the background grid during a time step. The properties of the background field are calculated from the moments of the distribution function accumulated on the grid. The collision operator is based on the Langevin equation. Based on comparisons with other methods, it is found that the Langevin method overestimates the collision frequency for dilute gases.

  1. The Modeling of Pickup Ion or Energetic Particle Mediated Plasmas

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Mostafavi, P.; Hunana, P.

    2016-05-01

    Suprathermal energetic particles, such as solar energetic particles (SEPs) in the inner heliosphere and pickup ions (PUIs) in the outer heliosphere and the very local interstellar medium, often form a thermodynamically dominant component in their various environments. In the supersonic solar wind beyond > 10 AU, in the inner heliosheath (IHS), and in the very local interstellar medium (VLISM), PUIs do not equilibrate collisionally with the background plasma. Similarly, SEPs do not equilibrate collisionally with the background solar wind in the inner heliosphere. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. Using a collisionless Chapman-Enskog expansion, we derive a closed system of multi-component equations for a plasma comprised of thermal protons and electrons, and suprathermal particles (SEPs, PUIs). The energetic particles contribute an isotropic scalar pressure to leading order, a collisionless heat flux at the next order, and a collisionless stress tensor at the second-order. The collisionless heat conduction and viscosity in the multi-fluid description results from a nonisotropic energetic particle distribution. A simpler single-fluid MHD-like system of equations with distinct equations of state for both the background plasma and the suprathermal particles is derived. We note briefly potential pitfalls that can emerge in the numerical modeling of collisionless plasma flows that contain a dynamically important energetic particle component.

  2. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  3. Modeling thermally driven energetic response of high explosives

    SciTech Connect

    Couch, R; McCallen, R C; Nichols III, A L; Otero, I; Sharp, R

    1998-08-17

    We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  4. Modeling thermally driven energetic response of high explosives

    SciTech Connect

    Sharp, R; Couch, R; McCallen, R C; Nichols III, A L; Otero, I

    1998-02-01

    We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  5. Helicon wave excitation to produce energetic electrons for manufacturing semiconductors

    DOEpatents

    Molvik, A.W.; Ellingboe, A.R.

    1998-10-20

    A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18--0.35 mm or less. 16 figs.

  6. Helicon wave excitation to produce energetic electrons for manufacturing semiconductors

    DOEpatents

    Molvik, Arthur W.; Ellingboe, Albert R.

    1998-01-01

    A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18-0.35 mm or less.

  7. MESSENGER observations of energetic electron acceleration in Mercury's magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, Ryan; Slavin, James A.; Baker, Daniel; Raines, Jim; Lawrence, David

    2016-10-01

    Energetic particle bursts within Mercury's magnetosphere have been a source of curiosity and controversy since Mariner 10's flybys. Unfortunately, instrumental effects prevent an unambiguous determination of species, flux, and energy spectrum for the Mariner 10 events. MESSENGER data taken by the Energetic Particle Spectrometer (EPS) have now shown that these energetic particle bursts are composed entirely of electrons. EPS made directional measurements of these electrons from ~30 to 300 keV at 3 s resolution, and while the energy of these electrons sometimes exceeded 200 keV, the energy distributions usually exhibited a cutoff near 100 keV. The Gamma Ray Spectrometer (GRS) has also provided measurements of these electron events, at higher time resolution (10 ms) and energetic threshold (> 50 keV) compared to EPS. We focus on GRS electron events near the plasma sheet in Mercury's magnetotail to identify reconnection-associated acceleration mechanisms. We present observations of acceleration associated with dipolarization events (betratron acceleration), flux ropes (Fermi acceleration), and tail loading/unloading (X-line acceleration). We find that the most common source of energetic electron events in Mercury's magnetosphere are dipolarization events similar to those first observed by Mariner 10. Further, a significant dawn-dusk asymmetry is found with dipolarization-associated energetic particle bursts being more common on the dawn side of the magnetotail.

  8. A Study of Energetic Neutral Oxygen Emissions and its Implications

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Lui, A. T.; Fok, M.

    2008-05-01

    Energetic Neutral Atom (ENA) emission detection serves as an innovative diagnostic tool for detailed investigations of energetic particles and has contributed greatly in addressing key issues of storm and substorm dynamics. ENAs, which are products of charge exchange between singly charged energetic ions and neutrals of the geocorona, carry not only spectral information but also composition of source plasma and therefore enable global imaging of ring current ions. An inter-spacecraft comparison of energetic neutral oxygen (ENO) intensity from two different vantage points, provided by IMAGE and Geotail, showed that viewing perspective plays a very important role in the observed ENO intensity level during a magnetic storm period [Lui et al., 2005]. Motivated by the findings, we investigate how viewing perspective influences energetic neutral atom emissions from a modeling perspective. Our simulation results, based upon O+ ion fluxes from the Comprehensive Ring Current Model (CRCM) and the subsequent ENO calculation, reproduce the total differential ENO intensity obtained from two spacecraft to a reasonable degree. Further analysis of our results indicates that pitch angle anisotropy in ring current ion flux, a crucial physical quantity in ring current and radiation belt dynamics, is one major contributor to the difference in energetic neutral atom intensity from different viewing perspectives. Using the CRCM, we will also examine the role of O+ in the storm-time ring current dynamics. Lui, A. T. Y. et al., Geophys. Res. Lett., 32, L13104, doi:10.1029/2005GL022851 (2005).

  9. Flight Tests Validate Collision-Avoidance System

    NASA Video Gallery

    Flights tests of a smartphone-assisted automatic ground collision avoidance system at NASA's Dryden Flight Research Center consistently commanded evasive maneuvers when it sensed that the unmanned ...

  10. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  11. Origin of collision-induced molecular orientation.

    PubMed

    Brouard, M; Hornung, B; Aoiz, F J

    2013-11-01

    Collision-induced rotational angular momentum orientation is a fundamental property of molecular scattering, which is sensitive to the balance between attractive and repulsive forces at play during collision. Here, we quantify a new mechanism leading to orientation, which is purely quantum mechanical in origin. Although the new mechanism is quite general, and will operate more widely in atomic and molecular scattering, it is observed here for impulsive hard shell collisions, for which the orientation vanishes classically. The quantum mechanism can thus be studied in isolation from other processes. The orientation is proposed to originate from the nonlocal nature of the quantum mechanical collision encounter.

  12. Telerobotics with whole arm collision avoidance

    SciTech Connect

    Wilhelmsen, K.; Strenn, S.

    1993-09-01

    The complexity of teleorbotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection (VFR) is desirable. With this goal in mind, Lawrence Livermore National Laboratory (LLNL) has installed a kinematically master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  13. Energetics and Dynamics of the Reactions of O(3P) with Dimethyl Methylphosphonate and Sarin

    NASA Astrophysics Data System (ADS)

    Conforti, Patrick F.; Braunstein, Matthew; Dodd, James A.

    2009-10-01

    Electronic structure and molecular dynamics calculations were performed on the reaction systems O(3P) + sarin and O(3P) + dimethyl methylphosphonate (DMMP), a sarin simulant. Transition state geometries, energies, and heats of reaction for the major reaction pathways were determined at several levels of theory, including AM1, B3LYP/6-311+G(d,p), and CBS-QB3. The major reaction pathways for both systems are similar and include H-atom abstraction, H-atom elimination, and methyl elimination, in rough order from low to high energy. The H-atom abstraction channels have fairly low barriers (˜10 kcal mol-1) and are close to thermoneutral, while the other channels have relatively high energy barriers (>40 kcal mol-1) and a wide range of reaction enthalpies. We have also found a two-step pathway leading to methyl elimination through O-atom attack on the phosphorus atom for DMMP and sarin. For sarin, the two-step methyl elimination pathway is significantly lower in energy than the single-step pathway. We also present results of O(3P) + sarin and O(3P) + DMMP reaction cross sections over a broad range of collision energies (2-10 km s-1 collision velocities) obtained using the direct dynamics method with an AM1 semiempirical potential. These excitation functions are intended as an approximate guide to future hyperthermal measurements, which to our knowledge have not yet examined either of these systems. The reaction barriers, reaction enthalpies, transition state structures, and excitation functions are generally similar for DMMP and sarin, with some moderate differences for methyl elimination energetics, which indicates DMMP will likely be a good substitute for sarin in many O(3P) chemical investigations.

  14. Energetics and dynamics of the reactions of O(3P) with dimethyl methylphosphonate and sarin.

    PubMed

    Conforti, Patrick F; Braunstein, Matthew; Dodd, James A

    2009-12-10

    Electronic structure and molecular dynamics calculations were performed on the reaction systems O((3)P) + sarin and O((3)P) + dimethyl methylphosphonate (DMMP), a sarin simulant. Transition state geometries, energies, and heats of reaction for the major reaction pathways were determined at several levels of theory, including AM1, B3LYP/6-311+G(d,p), and CBS-QB3. The major reaction pathways for both systems are similar and include H-atom abstraction, H-atom elimination, and methyl elimination, in rough order from low to high energy. The H-atom abstraction channels have fairly low barriers (approximately 10 kcal mol(-1)) and are close to thermoneutral, while the other channels have relatively high energy barriers (>40 kcal mol(-1)) and a wide range of reaction enthalpies. We have also found a two-step pathway leading to methyl elimination through O-atom attack on the phosphorus atom for DMMP and sarin. For sarin, the two-step methyl elimination pathway is significantly lower in energy than the single-step pathway. We also present results of O((3)P) + sarin and O((3)P) + DMMP reaction cross sections over a broad range of collision energies (2-10 km s(-1) collision velocities) obtained using the direct dynamics method with an AM1 semiempirical potential. These excitation functions are intended as an approximate guide to future hyperthermal measurements, which to our knowledge have not yet examined either of these systems. The reaction barriers, reaction enthalpies, transition state structures, and excitation functions are generally similar for DMMP and sarin, with some moderate differences for methyl elimination energetics, which indicates DMMP will likely be a good substitute for sarin in many O((3)P) chemical investigations.

  15. Energetics, molecular electronic structure, and spectroscopy of forming Group IIA dihalide complexes

    NASA Astrophysics Data System (ADS)

    Devore, T. C.; Gole, J. L.

    1999-02-01

    Multiple-collision relaxed (helium) chemiluminescence and laser-induced fluorescent spectroscopy have been used to demonstrate the highly efficient collisional stabilization of electronically excited Group IIA dihalide collision complexes formed in M (Ca,Sr)+X 2 (XY) (Cl 2, Br 2, ICl, IBr, I 2) reactive encounters. The first discrete emission spectra for the CaCl 2, CaBr 2, SrCl 2, SrBr 2, and SrICl dihalides are observed and evaluated; however, the low-pressure `continuous' chemiluminescent emission observed for forming barium dihalide (BaX 2) complexes is quenched under these experimental conditions. The reactions of the Group IIA metals with molecular fluorine do not readily produce the corresponding dihalide. While the lowest-lying observed dihalide visible transition is, as predicted, found to result in an extended progression in a dihalide complex bending mode (SrCl 2), the observed progression suggests the presence of a residual halogen (Cl-Cl) bond. Two higher-lying transitions are dominated by a vibrational mode structure corresponding to progressions in the symmetric stretching mode or, for nominally forbidden electronic transitions, odd quanta of the asymmetric stretching mode. Some evidence for sequence structure associated with the dihalide bending mode is also obtained. These observations are consistent with complex formation as it is coupled with a modified valence electron structure (correlation diagram) associated with the highly ionic nature of the dihalides. The bonding in the Group IIA dihalides (and their complexes), whose atomization energies are more than twice the metal monohalide bond energy, strongly influences the evaluation of energetics and the determination of monohalide bond energies from chemiluminescent processes. Discrepancies between those bond strengths determined by mass spectrometry and chemiluminescence are discussed with a focus on energy partitioning in dihalide complex formation and its influence on chemical vapor

  16. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  17. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  18. Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Spong, Donald A.; Osakabe, Masaki; Yamamoto, Satoshi; the LHD Experiment Group

    2014-09-01

    Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfvén eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high β plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure.

  19. Energetic Trend in Explosive Activity of Stromboli

    NASA Astrophysics Data System (ADS)

    Coltelli, M.; Cristaldi, A.; Mangiagli, S.; Nunnari, G.; Pecora, E.

    2003-12-01

    increasing its activity and when it declined the paroxysmal explosion occurred suddenly at the former site. From September 2001 an on-line image analyzer called VAMOS (Volcanic Activity MOnitoring System) operates detection and classification of explosive events in real-time. The system has automatically recorded and analyzed the change in the energetic trend that preceded the 20 October 2001 paroxysmal explosion that killed a woman and the strong explosive activity that preceded the onset of 28 December 2002 lava flow eruption.

  20. Top physics: measurement of the cross section for ttbar production in ppbar collisions using the kinematics of lepton + jets events

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-04-27

    We present a measurement of the top pair production cross section in p{bar p} collisions at {radical}s = 1.96 TeV. We collect a data sample with an integrated luminosity of 194 {+-} 11 pb{sup -1} with the CDF II detector at the Fermilab Tevatron. We use an artificial neural network technique to discriminate between top pair production and background processes in a sample of 519 lepton+jets events, which have one isolated energetic charged lepton, large missing transverse energy and at least three energetic jets. We measure the top pair production cross section to be {sigma}{sub t{bar t}} = 6.6 {+-} 1.1 {+-} 1.5 pb, where the first uncertainty is statistical and the second is systematic.

  1. An introductory analysis of satellite collision probabilities

    NASA Astrophysics Data System (ADS)

    Carlton-Wippern, Kitt C.

    This paper addresses a probailistic approach in assessing the probabilities of a satellite collision occurring due to relative trajectory analyses and probability density functions representing the satellites' position/momentum vectors. The paper is divided into 2 parts: Static and Dynamic Collision Probabilities. In the Static Collision Probability section, the basic phenomenon under study is: given the mean positions and associated position probability density functions for the two objects, calculate the probability that the two objects collide (defined as being within some distance of each other). The paper presents the classic Laplace problem of the probability of arrival, using standard uniform distribution functions. This problem is then extrapolated to show how 'arrival' can be classified as 'collision', how the arrival space geometries map to collision space geometries and how arbitrary position density functions can then be included and integrated into the analysis. In the Dynamic Collision Probability section, the nature of collisions based upon both trajectory and energy considerations is discussed, and that energy states alone cannot be used to completely describe whether or not a collision occurs. This fact invalidates some earlier work on the subject and demonstrates why Liouville's theorem cannot be used in general to describe the constant density of the position/momentum space in which a collision may occur. Future position probability density functions are then shown to be the convolution of the current position and momentum density functions (linear analysis), and the paper further demonstrates the dependency of the future position density functions on time. Strategies for assessing the collision probabilities for two point masses with uncertainties in position and momentum at some given time, and thes integrated with some arbitrary impact volume schema, are then discussed. This presentation concludes with the formulation of a high level design

  2. Synthesis of Energetic Nitrocarbamates from Polynitro Alcohols and Their Potential as High Energetic Oxidizers.

    PubMed

    Axthammer, Quirin J; Krumm, Burkhard; Klapötke, Thomas M

    2015-06-19

    A new synthesis strategy for the preparation of energetic carbamates and nitrocarbamates starting from readily available polynitro alcohols is introduced. The efficient synthesis of mainly new carbamates was performed with the reactive chlorosulfonyl isocyanate (CSI) reagent. The carbamates were nitrated using mixed acid to form the corresponding primary nitrocarbamates. The thermal stability of all synthesized compounds was studied using differential scanning calorimetry, and the energies of formation were calculated on the CBS-4 M level of theory. Detonation parameters and propulsion properties were determined with the software package EXPLO5 V6.02. Furthermore, for all new substances single-crystal X-ray diffraction studies were performed and are presented and discussed as Supporting Information.

  3. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  4. Mechanical Energy Changes in Perfectly Inelastic Collisions

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  5. Oblique and Head-On Elastic Collisions

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2008-01-01

    When a moving ball collides elastically with an identical, initially stationary ball, the incident ball will either come to rest (head-on collision; see Fig. 1) or will acquire a velocity that is perpendicular to that acquired by the target ball (oblique collision; see Fig. 2). These two possible outcomes are related in an interesting way, which…

  6. Positron collisions with alkali-metal atoms

    NASA Technical Reports Server (NTRS)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  7. Cultural Collisions in L2 Academic Writing.

    ERIC Educational Resources Information Center

    Steinman, Linda

    2003-01-01

    Reviews research on writing and culture, focusing on the collisions of cultures when discourse practices second language writers are expected to reproduce clash with what they know, believe, and value in their first language writing. Describes collisions of culture in writing regarding voice, organization, reader/writer responsibility, topic, and…

  8. Variation of transverse momentum in hadronic collisions

    NASA Technical Reports Server (NTRS)

    Saint Amand, J.; Uritam, R. A.

    1975-01-01

    The paper presents a detailed parameterization of the transverse momentum in hadronic collisions on multiplicity and on beam momentum. Hadronic collisions are considered at energies below the ultra-high energy domain, on the basis of an uncertainty relation and a naive eikonal model with an impact-parameter-dependent multiplicity.

  9. Energy coupling in catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.; Choe, K. Y.

    1991-01-01

    The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported.

  10. Fixed Target Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Meehan, Kathryn C.

    2016-12-01

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. Previous results have been used to claim that the onset of deconfinement occurs at a center-of-mass energy of 7 GeV. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies of 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb potential analysis of Au + Au fixed-target collisions are presented and are found to be consistent with results from previous experiments. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared to published results from the AGS.

  11. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  12. Molecular collisions coming into focus.

    PubMed

    Onvlee, Jolijn; Vogels, Sjoerd N; von Zastrow, Alexander; Parker, David H; van de Meerakker, Sebastiaan Y T

    2014-08-14

    The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce beams of neutral polar molecules with an almost perfect quantum state purity, a tunable velocity and a narrow velocity distribution. These monochromatic molecular beams offer interesting perspectives for precise studies of molecular scattering processes, in particular when used in conjunction with state-of-the-art laser-based detection techniques such as velocity map imaging. Here, we describe crossed beam scattering experiments in which the Stark deceleration method is combined with the velocity map imaging technique. The narrow velocity spread of Stark-decelerated molecular beams results in scattering images with unprecedented velocity and angular resolution. We demonstrate this by resolving quantum diffraction oscillations in state-to-state inelastic differential scattering cross sections for collisions between NO radicals and rare gas atoms. We describe the future prospects of this "best-of-two-worlds" combination, ranging from scattering studies at low collision energies to bimolecular scattering using two decelerators, and discuss the challenges that lie ahead to achieve these goals.

  13. Highly energetic compositions based on functionalized carbon nanomaterials.

    PubMed

    Yan, Qi-Long; Gozin, Michael; Zhao, Feng-Qi; Cohen, Adva; Pang, Si-Ping

    2016-03-07

    In recent years, research in the field of carbon nanomaterials (CNMs), such as fullerenes, expanded graphite (EG), carbon nanotubes (CNTs), graphene, and graphene oxide (GO), has been widely used in energy storage, electronics, catalysts, and biomaterials, as well as medical applications. Regarding energy storage, one of the most important research directions is the development of CNMs as carriers of energetic components by coating or encapsulation, thus forming safer advanced nanostructures with better performances. Moreover, some CNMs can also be functionalized to become energetic additives. This review article covers updated preparation methods for the aforementioned CNMs, with a more specific orientation towards the use of these nanomaterials in energetic compositions. The effects of these functionalized CNMs on thermal decomposition, ignition, combustion and the reactivity properties of energetic compositions are significant and are discussed in detail. It has been shown that the use of functionalized CNMs in energetic compositions greatly improves their combustion performances, thermal stability and sensitivity. In particular, functionalized fullerenes, CNTs and GO are the most appropriate candidate components in nanothermites, solid propellants and gas generators, due to their superior catalytic properties as well as facile preparation methods.

  14. Thermal safety characterization and explosion violence of energetic materials

    NASA Astrophysics Data System (ADS)

    Hsu, Peter; Hust, Gary; Pagoria, Philip; Fried, Larry

    2015-06-01

    Some energetic materials could thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus understanding the response of energetic material to thermal events is very important for the storage and handling of energetic materials. Over the last few decades, there has been considerable research effort on the thermal decomposition and thermal explosion violence of energetic materials at elevated temperatures in different sample geometries and confinements. Among them, the ODTX system is an interesting option due to its sample requirement and easiness for data modeling. It has been used since 1970s for cook-off study at LLNL. It generates 3 technical data: (1) lowest temperature at which thermal explosion would occur (threshold temperature, Til) , (2) times to thermal explosion at temperature above Til, for the calculation of activation energy and frequency factor; and (3) thermal explosion violence. In this paper, we will present some recent ODTX experimental data of several new energetic materials as well as gas pressure data at elevated temperature.

  15. Highly energetic compositions based on functionalized carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Yan, Qi-Long; Gozin, Michael; Zhao, Feng-Qi; Cohen, Adva; Pang, Si-Ping

    2016-02-01

    In recent years, research in the field of carbon nanomaterials (CNMs), such as fullerenes, expanded graphite (EG), carbon nanotubes (CNTs), graphene, and graphene oxide (GO), has been widely used in energy storage, electronics, catalysts, and biomaterials, as well as medical applications. Regarding energy storage, one of the most important research directions is the development of CNMs as carriers of energetic components by coating or encapsulation, thus forming safer advanced nanostructures with better performances. Moreover, some CNMs can also be functionalized to become energetic additives. This review article covers updated preparation methods for the aforementioned CNMs, with a more specific orientation towards the use of these nanomaterials in energetic compositions. The effects of these functionalized CNMs on thermal decomposition, ignition, combustion and the reactivity properties of energetic compositions are significant and are discussed in detail. It has been shown that the use of functionalized CNMs in energetic compositions greatly improves their combustion performances, thermal stability and sensitivity. In particular, functionalized fullerenes, CNTs and GO are the most appropriate candidate components in nanothermites, solid propellants and gas generators, due to their superior catalytic properties as well as facile preparation methods.

  16. Energetic consequences of being a Homo erectus female.

    PubMed

    Aiello, Leslie C; Key, Cathy

    2002-01-01

    Body size is one of the most important characteristics of any animal because it affects a range of behavioral, ecological, and physiological traits including energy requirements, choice of food, reproductive strategies, predation risk, range size, and locomotor style. This article focuses on the implications of being large bodied for Homo erectus females, estimated to have been over 50% heavier than average australopithecine females. The energy requirements of these hominins are modeled using data on activity patterns, body mass, and life history from living primates. Particular attention is given to the inferred energetic costs of reproduction for Homo erectus females based on chimpanzee and human reproductive scheduling. Daily energy requirements during gestation and lactation would have been significantly higher for Homo erectus females, as would total energetic cost per offspring if the australopithecines and Homo erectus had similar reproductive schedules (gestation and lactation lengths and interbirth intervals). Shortening the interbirth interval could considerably reduce the costs per offspring to Homo erectus and have the added advantage of increasing reproductive output. The mother would, however, incur additional daily costs of caring for the dependent offspring. If Homo erectus females adopted this reproductive strategy, it would necessarily imply a revolution in the way in which females obtained and utilized energy to support their increased energetic requirements. This transformation is likely to have occurred on several levels involving cooperative economic division of labor, locomotor energetics, menopause, organ size, and other physiological mechanisms for reducing the energetic load on females.

  17. Search for the Top Quark in Antiproton-Proton Collisions at SQRT.S = 1.8 Tev

    NASA Astrophysics Data System (ADS)

    Walsh, John Joseph

    1990-01-01

    A search for the top quark in | p p collisions at a center of mass energy of 1.8 TeV using the Collider Detector at Fermilab is described. A study of events selected by requiring an energetic electron, missing transverse energy, and two or more jets excludes at 95% confidence level the Standard Model production and decay of t| t pairs if the top quark mass is between 40 and 77 GeV/c^2 . The observed electron + multijet data are consistent with W boson production.

  18. Search for New Physics with a Monojet and Missing Transverse Energy in 7 TeV pp collisions at CMS

    NASA Astrophysics Data System (ADS)

    Vergili, Mehmet

    2012-03-01

    We present a search for new physics in events with a single energetic jet and large missing energy in proton-proton collisions at a center-of-mass energy of 7 TeV. The search is performed using data collected by the CMS detector and corresponding to an integrated luminosity of 4.7 fb-1. The topology is a signature of many new physics models, including large extra dimensions in the framework of ADD, Unparticle production and several dark matter scenarios. Results are interpreted within the context of each of these models, including the production of dark matter.

  19. Search for New Physics with a Monojet and Missing Transverse Energy in pp Collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Benucci, L.; de Wolf, E. A.; Janssen, X.; Maes, J.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; de Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; McCartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Cortina Gil, E.; de Favereau de Jeneret, J.; Delaere, C.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; Brito, L.; de Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; da Costa, E. M.; de Oliveira Martins, C.; Fonseca de Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Awad, A.; Khalil, S.; Radi, A.; Hektor, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Azzolini, V.; Eerola, P.; Fedi, G.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Lomidze, D.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Bontenackels, M.; Davids, M.; Duda, M.; Flügge, G.; Geenen, H.; Giffels, M.; Haj Ahmad, W.; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.; Aldaya Martin, M.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Raval, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Görner, M.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schröder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; de Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Stiliaris, E.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.; Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.; Ahuja, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Jain, S.; Kumar, A.; Kumar, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Khurana, R.; Sarkar, S.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Mondal, N. K.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Benaglia, A.; de Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; de Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zumerle, G.; Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.; Biasini, M.; Bilei, G. M.; Caponeri, B.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.; Heo, S. G.; Nam, S. K.; Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D.; Son, D. C.; Son, T.; Kim, Zero; Kim, J. Y.; Song, S.; Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Sim, K. S.; Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Tam, J.; Butler, P. H.; Doesburg, R.; Silverwood, H.; Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Curé, B.; D'Enterria, D.; de Roeck, A.; di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gomez-Reino Garrido, R.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Racz, A.; Rodrigues Antunes, J.; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Bäni, L.; Bortignon, P.; Caminada, L.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Martinez Ruiz Del Arbol, P.; Milenovic, P.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M.-C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.; Aguilo, E.; Amsler, C.; Chiochia, V.; de Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.; Deliomeroglu, M.; Demir, D.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Özbek, M.; Ozkorucuklu, S.; Sonmez, N.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Macevoy, B. C.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.; Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.; Hatakeyama, K.; Liu, H.; Henderson, C.; Bose, T.; Carrera Jarrin, E.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; McColl, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.; Agostino, L.; Alexander, J.; Cassel, D.; Chatterjee, A.; Das, S.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Nicolas Kaufman, G.; Patterson, J. R.; Puigh, D.; Ryd, A.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Biselli, A.; Cirino, G.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; de Gruttola, M.; di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.; Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.; Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y.-J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Cushman, P.; Dahmes, B.; de Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Zennamo, J.; Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.; Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Lopes Pegna, D.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; de Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Jindal, P.; Parashar, N.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Yan, M.; Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Mattson, M.; Milstène, C.; Sakharov, A.; Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Flood, K.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Palmonari, F.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.

    2011-11-01

    A study of events with missing transverse energy and an energetic jet is performed using pp collision data at a center-of-mass energy of 7 TeV. The data were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 36pb-1. An excess of these events over standard model contributions is a signature of new physics such as large extra dimensions and unparticles. The number of observed events is in good agreement with the prediction of the standard model, and significant extension of the current limits on parameters of new physics benchmark models is achieved.

  20. A high-charge-state plasma neutralizer for an energetic H/sup -/ beam

    SciTech Connect

    Schlachter, A.S.; Leung, K.N.; Stearns, J.W.; Olson, R.E.

    1986-10-01

    A high-charge-state plasma neutralizer for a beam of energetic H/sup -/ ions offers the potential of high optimum neutralization efficiency (approx.85%) relative to a gas target (50 to 60%), and considerably reduced target thickness. We have calculated cross sections for charge-changing interactions of fast H/sup -/ and H/sup 0/ in collision with highly charged ions using a semiclassical model for H/sup -/, and the Classical-Trajectory Monte Carlo method plus Born calculations, to obtain correct asymptotic cross sections in the high-energy limit. Charge-state fractions as a function of plasma line density, and f/sub 0//sup max/, the maximum H/sup 0/ fraction, are calculated using these cross sections; we find that f/sub 0//sup mx/ approx. = 85% for ion charge states in the range 1+ to 10+, and that target ion line density for f/sub 0//sup max/ decreases approximately as the square of the plasma ion charge state. The maximum neutral fraction is also high for a partially ionized plasma. We have built a small multicusp plasma generator to use a a plasma neutralizer; preliminary results show that the plasma contains argon ions with an average charge state between 2+ and 3+ for a steady-state discharge.