Science.gov

Sample records for energetic particle instability

  1. Energetic particle instabilities in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA

    2013-10-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  2. Magnetohydrodynamic ballooning instabilities excited by energetic trapped particles

    SciTech Connect

    Weiland, J.; Chen, L.

    1985-05-01

    A new branch of magnetohydrodynamic ballooning modes is shown to be destabilized by energetic trapped particles. Both the real frequencies and growth rates of the instabilities are comparable to the trapped-particle precession frequencies. The theoretical results are also shown to be consistent with the high-frequency (approx.100 kHz) oscillations observed during the high-power beam-injection experiments in the tokamak experiment PDX.

  3. Magnetohydrodynamic ballooning instabilities excited by energetic trapped particles

    SciTech Connect

    Weiland, J.; Chen, L.

    1984-09-01

    A new branch of magnetohydrodynamic ballooning modes is shown to be destabilized by energetic trapped particles. Both the real frequencies and growth rates of the instabilities are comparable to the trapped-particle precession frequencies. The theoretical results are also shown to be consistent with the high-frequency (approx. 100 kHz) oscillations observed during the high-power beam-injection experiments in PDX.

  4. Magnetohydrodynamic ballooning instabilities excited by energetic trapped particles

    NASA Astrophysics Data System (ADS)

    Weiland, J.; Chen, L.

    1985-05-01

    A new branch of magnetohydrodynamic ballooning modes is shown to be destabilized by energetic trapped particles. Both the real frequencies and growth rates of the instabilities are comparable to the trapped-particle precession frequencies. The theoretical results are also shown to be consistent with the high-frequency (˜100 kHz) oscillations observed during the high-power beam-injection experiments in the tokamak experiment PDX.

  5. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  6. Suppression of energetic particle driven instabilities with HHFW heating

    DOE PAGES

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore » Wave heating.« less

  7. Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas

    SciTech Connect

    Heidbrink, W. W.

    2008-05-15

    Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety

  8. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.

    2016-11-01

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.

  9. Edge plasma responses to energetic-particle-driven MHD instability in Heliotron J

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Kobayashi, S.; Yamamoto, S.; Nagasaki, K.; Mizuuchi, T.; Okada, H.; Minami, T.; Hashimoto, K.; Shi, N.; Zang, L.; Kasajima, K.; Kenmochi, N.; Ohtani, Y.; Nagae, Y.; Mukai, K.; Lee, H. Y.; Matsuura, H.; Takeuchi, M.; Konoshima, S.; Sano, F.

    2016-01-01

    Two different responses to an energetic-particle-driven magnetohydrodynamic (MHD) instability, modulation of the turbulence amplitude associated with the MHD instability and dynamical changes in the radial electric field (Er) synchronized with bursting MHD activities, are found around the edge plasma in neutral beam injection (NBI) heated plasmas of the Heliotron J device using multiple Langmuir probes. The nonlinear phase relationship between the MHD activity and broadband fluctuation is found from bicoherence and envelope analysis applied to the probe signals. The structural changes of the Er profile appear in perfect synchronization with the periodic MHD activities, and radial transport of fast ions are observed around the last closed flux surface as a radial delay of the ion saturation current signals. Moreover, distortion of the MHD mode structure is clarified in each cycle of the MHD activities using beam emission spectroscopy diagnostics, suggesting that the fast ion distribution in real and/or velocity spaces is distorted in the core plasma, which can modify the radial electric field structure through a redistribution process of the fast ions. These observations suggest that such effects as a nonlinear coupling with turbulence and/or the modification of radial electric field profiles are important and should be incorporated into the study of energetic particle driven instabilities in burning plasma physics.

  10. Effect of Energetic Trapped Particles Produced by ICRF Wave Heating on Sawtooth Instability in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Chu, M. S.; Jeon, Y. M.; Lao, L. L.; Li, G.; Pinsker, R. I.; Ren, Q.; Turnbull, A. D.

    2007-09-01

    We evaluate the accuracy of the Porcelli sawtooth model using more realistic numerical models from the ORBIT-RF and GATO codes in DIII-D fast wave heating experiments. Simulation results confirm that the fast wave-induced energetic trapped particles may stabilize the sawtooth instability. The crucial kinetic stabilizing contribution strongly depends on both the experimentally reconstructed magnetic shear at the q = 1 surface and the calculated poloidal beta of energetic trapped particles inside the q = 1 surface.

  11. Theory of Resistive Magnetohydrodynamic Instabilities Excited by Energetic Trapped Particles in Large-Size Tokamaks.

    NASA Astrophysics Data System (ADS)

    Biglari, Hamid

    1987-09-01

    A theory describing excitation of resistive magnetohydrodynamic instabilities due to a population of energetic particles, trapped in region of adverse curvature in tokamaks, is presented. Theory's principal motivation is observation that high magnetic field strengths and large geometric dimensions characteristic of present-generation thermonuclear fusion devices, places them in a frequency regime whereby precessional drift frequency of auxiliary hot ion species, in order of magnitude, falls below a typical inverse resistive interchange time scale, so that inclusion of resistive dissipation effects becomes important. Destabilization of resistive internal kink mode by these suprathermal particles is first topic under investigation. Using variational techniques, generalized dispersion relation governing such modes, which recovers ideal theory in its appropriate limit, is derived and analyzed using Nyquist diagrammatic techniques. Important implication of theory for present-generation fusion devices is that they will be stable to "fishbone" activity. Interaction of energetic particles with resistive interchange-ballooning modes is taken up. A population of hot particles, deeply -trapped on adverse curvature side in tokamaks, can resonantly destabilize resistive interchange mode, which is stable in their absence because of favorable average curvature. Both modes are different from their usual resistive magnetohydrodynamic counterparts in their destabilization mechanism, and in that they have a real component to their frequency comparable to drift frequency of rapidly-precessing energetic species. Corresponding growth rates and threshold conditions for this trapped -particle driven instability are then derived, and finite banana width effects are shown to have a stabilizing influence on mode. Ballooning/tearing dispersion relation is generalized to include hot particles, so that both the ideal and resistive modes are derivable in the appropriate limits. Linear picture

  12. One-dimensional energetic particle quasilinear diffusion for realistic TAE instabilities

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Ghantous, Katy; Berk, Herbert; Gorelenkov, Nikolai

    2014-10-01

    Owing to the proximity of the characteristic phase (Alfvén) velocity and typical energetic particle (EP) superthermal velocities, toroidicity-induced Alfvén eigenmodes (TAEs) can be resonantly destabilized endangering the plasma performance. Thus, it is of ultimate importance to understand the deleterious effects on the confinement resulting from fast ion driven instabilities expected in fusion-grade plasmas. We propose to study the interaction of EPs and TAEs using a line broadened quasilinear model, which captures the interaction in both regimes of isolated and overlapping modes. The resonance particles diffuse in the phase space where the problem essentially reduces to one dimension with constant kinetic energy and the diffusion mainly along the canonical toroidal angular momentum. Mode structure and wave particle resonances are computed by the NOVA code and are used in a quasilinear diffusion code that is being written to study the evolution of the distribution function, under the assumption that they can be considered virtually unalterable during the diffusion. A new scheme for the resonant particle diffusion is being proposed that builds on the 1-D nature of the diffusion from a single mode, which leads to a momentum conserving difference scheme even when there is mode overlap.

  13. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  14. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  15. Global Hybrid Simulations of Energetic Particle Effects on the n=1 Mode in Tokamaks: Internal Kink and Fishbone Instability

    SciTech Connect

    G.Y. Fu; W. Park; H.R. Strauss; J. Breslau; J. Chen; S. Jardin; L.E. Sugiyama

    2005-08-09

    Global hybrid simulations of energetic particle effects on the n=1 internal kink mode have been carried out for tokamaks. For the International Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis Editors et al., Nucl. Fusion 39:2137 (1999)], it is shown that alpha particle effects are stabilizing for the internal kink mode. However, the elongation of ITER reduces the stabilization effects significantly. Nonlinear simulations of the precessional drift fishbone instability for circular tokamak plasmas show that the mode saturates due to flattening of the particle distribution function near the resonance region. The mode frequency chirps down rapidly as the flattening region expands radially outward. Fluid nonlinearity reduces the saturation level.

  16. The Energetics of Centrifugal Instability

    NASA Astrophysics Data System (ADS)

    Dewar, W. K.; Jiao, Y.

    2014-12-01

    A recent study has argued that the California Undercurrent, and poleward eastern boundary currents in general, generate mixing events through centrifugal instability (CI). Conditions favorable for CI are created by the strong horizontal shears developed in turbulent bottom layers of currents flowing in the direction of topographic waves. At points of abrupt topographic change, like promontories and capes, the coastal current separates from the boundary and injects gravitationally stable but dynamically unstable flow into the interior. The resulting finite amplitude development of the instability involves overturnings and diabatic mixing. The purpose of this study is to examine the energetics of CI in order to characterize it as has been done for other instabilities and develop a framework in which to estimate its regional and global impacts. We argue that CI is roughly twice as efficient at mixing as is Kelvin-Helmholtz instability, and that roughly 10% of the initial energy in a CUC-like current is lost to either local mixing or the generation of unbalanced flows. The latter probably leads to non-local mixing. Thus centrifugal instability is an effective process by which energy is lost from the balanced flow and spent in mixing neighboring water masses. We argue the importance of the mixing is regional in nature, but of less importance to the global budgets given its regional specificity.

  17. Energetic particles at Uranus

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.; Krimigis, S. M.; Lanzerotti, L. J.

    1991-01-01

    The energetic particle measurements by the low-energy charged-particle and cosmic-ray instruments on the Voyager 2 spacecraft in the magnetosphere of Uranus are reviewed. Upstream events were observed outside the Uranian bow shock, probably produced by ion escape from the magnetosphere. Evidence of earthlike substorm activity was discovered within the Uranian magnetosphere. A proton injection event was observed within the orbit of Umbriel and proton events were observed in the magnetotail plasma-sheet boundary layer that are diagnostic of earthlike substorms. The magnetospheric composition is totally dominated by protons, with only a trace abundance of H(2+) and no evidence for He or heavy ions; the Uranian atmophere is argued to be the principal plasma source. Phase-space densities of medium energy protons show inward radial diffusion and are quantitatively similar to those observed at the earth, Jupiter, and Saturn. These findings and plasma wave data suggest the existence of structures analogous to the earth's plasmasphere and plasmapause.

  18. Solar Energetic Particle Variations

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    2003-01-01

    In the largest solar energetic-particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). In fact, the highest proton intensities directly measured near Earth at energies up to approximately 1 GeV occur at the time of passage of shocks, which arrive about a day after the CMEs leave the Sun. CME-driven shocks expanding across magnetic fields can fill over half of the heliosphere with SEPs. Proton-generated Alfven waves trap particles near the shock for efficient acceleration but also throttle the intensities at Earth to the streaming limit early in the events. At high energies, particles begin to leak from the shock and the spectrum rolls downward to form an energy-spectral 'knee' that can vary in energy from approximately 1 MeV to approximately 1 GeV in different events. All of these factors affect the radiation dose as a function of depth and latitude in the Earth's atmosphere and the risk to astronauts and equipment in space. SEP ionization of the polar atmosphere produces nitrates that precipitate to become trapped in the polar ice. Observations of nitrate deposits in ice cores reveal individual large SEP events and extend back approximately 400 years. Unlike sunspots, SEP events follow the approximately 80-100-year Gleissberg cycle rather faithfully and are now at a minimum in that cycle. The largest SEP event in the last 400 years appears to be related to the flare observed by Carrington in 1859, but the probability of SEP events with such large fluences falls off sharply because of the streaming limit.

  19. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona.

  20. Major minority: energetic particles in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Breizman, B. N.; Sharapov, S. E.

    2011-05-01

    This paper describes advances made in the field of energetic-particle physics since the topical review of Alfvén eigenmode observations in toroidal plasmas (Wong 1999 Plasma Phys. Control. Fusion 41 R1-R56). The development of plasma confinement scenarios with reversed magnetic shear and significant population of energetic particles, and the development of novel energetic-particle diagnostics were the main milestones in the past decade, and these are the main experimental subjects of this review. The theory of Alfvén cascade eigenmodes in reversed-shear tokamaks and its use in magnetohydrodynamic spectroscopy are presented. Based on experimental observations and nonlinear theory of energetic-particle instabilities in the near-threshold regime, the frequency-sweeping events for spontaneously formed phase-space holes and clumps and the evolution of the fishbone oscillations are described. The multi-mode scenarios of enhanced particle transport are discussed and a brief summary is given of several engaging research topics that are beyond the authors' direct involvement.

  1. EDITORIAL: Energetic particles in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    Toi, K.

    2006-10-01

    Energetic alpha particle physics plays an obviously crucial role in burning fusion plasmas. Good confinement of them is required to sustain fusion burn and to avoid damage of the first wall. Because of this importance for nuclear fusion research, Y. Kolesnichenko and the late D. Sigmar initiated a series of IAEA technical (committee) meetings (TCM, since the 8th meeting TM) in order to exchange information on the behaviour of energetic particles in magnetic confinement devices. The role of the TMs has become increasingly important since burning plasma projects such as ITER are in preparation. After every TM, invited speakers are encouraged to publish an adapted and extended version of their contributions to the meeting as an article in a special issue of Nuclear Fusion. An exception was the 8th TM the articles of which were published in a special issue of Plasma Physics and Controlled Fusion (2004 46 S1-118). These special issues attract much interest in the subject. The 9th IAEA TM of this series was held in Takayama, Japan, 9-11 November 2005, and 53 papers including 16 invited talks were presented. A total of 11 papers based on these invited talks are included in this special issue of Nuclear Fusion and are preceded by a conference summary. Experimental results of energetic ion driven global instabilities such as Alfvén eigenmodes (AEs), energetic particle modes (EPMs) and fishbone instabilities were presented from several tokamaks (JET, JT-60U, DIII-D and ASDEX Upgrade), helical/stellarator devices (LHD and CHS) and spherical tori (NSTX and MAST). Experimental studies from JET and T-10 tokamaks on the interaction of ion cyclotron waves with energetic ions and runaway electrons were also presented. Theoretical works on AEs, EPMs and nonlinear phenomena induced by energetic particles were presented and compared with experimental data. Extensive numerical codes have been developed and applied to obtain predictions of energetic particle behaviour in future ITER

  2. Multiphase Instabilities in Explosive Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''

    2015-11-01

    Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Energetic particle effects on global MHD modes

    SciTech Connect

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite {omega}{sub *i}). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs.

  4. Virtual Energetic Particle Observatory (VEPO)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Lal, N.; McGuire, R. E.; Szabo, A.; Narock, T. W.; Armstrong, T. P.; Manweiler, J. W.; Patterson, J. D.; Hill, M. E.; Vandergriff, J. D.; McKibben, R. B.; Lopate, C.; Tranquille, C.

    2008-12-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  5. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  6. Heliospheric Observations of Energetic Particles

    NASA Technical Reports Server (NTRS)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  7. Solar Energetic Particle Spectrometer (SEPS)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    2009-01-01

    An outstanding problem of solar and heliospheric physics is the transport of solar energetic particles. The more energetic particles arriving early in the event can be used to probe the transport processes. The arrival direction distribution of these particles carries information about scattering during their propagation to Earth that can be used to test models of interplanetary transport. Also, of considerable importance to crewed space missions is the level of ionizing radiation in the interplanetary medium, and the dose that the crew experiences during an intense solar particle event, as well as the risk to space systems. A recent study concludes that 90% of the absorbed dose results from particles in the energy range 20-550 MeV. We will describe a new compact instrument concept, SEPS, that can cover the energy range from 50-600 MeV with a single compact detector. This energy range has been difficult to cover. There are only limited data, generally available only in broad energy bins, from a few past and present instruments outside Earth s magnetosphere. The SEPS concept can provide improved measurements for this energy range and its simple light-weight design could be easily accommodated on future missions.

  8. CORSAIR Solar Energetic Particle Model

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-05-01

    Acceleration of particles in coronal mass ejection (CME) driven shock waves is the most commonly accepted and best developed theory of the genesis of gradual solar energetic particle (SEP) events. The underlying acceleration mechanism is the diffusive shock acceleration (DSA). According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. Currently STEREO and near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than reported in earlier studies. These findings have important consequences on SEP modeling. It is important to extend the present models into two or three spatial coordinates to properly take into account the effects of coronal and interplanetary (IP) magnetic geometry, and evolution of the CME and the associated shock, on the acceleration and transport of SEPs. We give a status update on CORSAIR project, which is an effort to develop a new self-consistent (total energy conserving) DSA acceleration model that is capable of modeling energetic particle acceleration and transport in IP space in two or three spatial dimensions. In the new model particles are propagated using guiding center approximation. Waves are modeled as (Lagrangian) wave packets propagating (anti)parallel to ambient magnetic field. Diffusion coefficients related to scattering from the waves are calculated using quasilinear theory. State of ambient plasma is obtained from an MHD simulation or by using idealized analytic models. CORSAIR is an extension to our earlier efforts to model the effects of magnetic geometry on SEP acceleration (Sandroos & Vainio, 2007,2009).

  9. Energetic Particles in Saturn's Magnetotail

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Carbary, J. F.; Krupp, N.; Krimigis, S. M.; Hamilton, D. C.; Kane, M.

    2007-12-01

    Energetic particle measurements in Saturn's magnetotail reveal a magnetotail dominated by Saturn's rotational dynamics as far back in the tail as 60 Rs, rarely but sometimes spectacularly disrupted by tail reconnection events. Although Cassini spent little time in the tail, and even less at the location of the tail current sheet, the time spent there revealed a pattern of very regular encounters with the energetic particles that fill the current sheet, usually once every Saturn rotation. Carbary et al. 2007a, b show that energetic electrons reappear every rotation when the spacecraft is sufficiently close to the current sheet location, and further that they lie along a spiral in longitude when mapped into the SKR coordinate system (Kurth et al., 2007). Energetic ions are also observed in the same locations, with a mix of hydrogen and oxygen not very different from that observed in the magnetosphere between 10 and 20 Rs. These ions generally display velocities approximately in the corotation direction, but with magnitudes well below rigid corotation (Kane et al., 2007, manuscript in preparation). Two other classes of energetic particle events are also seen in the magnetotail. The first consists of energetic ion and electron beams, likely accelerated in the auroral zone over downward current regions. The second are those generated in tail reconnection events (e.g., Jackman et al., 2007; Hill et al. 2007). We will give examples of all of these phenomena, including both in situ measurements and ENA images/movies. Carbary, J.~F., Mitchell, D.~G., Krimigis, S.~M., Hamilton, D.~C., Krupp, N., Charged particle periodicities in Saturn's outer magnetosphere, Journal of Geophysical Research (Space Physics) 112, 6246 {2007JGRA..11206246C} 2007a Carbary, J. F., D. G. Mitchell, S. M. Krimigis, and N. Krupp (2007), Evidence for spiral pattern in Saturn's magnetosphere using the new SKR longitudes, Geophys. Res. Lett., 34, L13105, doi:10.1029/2007GL030167 2007b Kurth, W. S., A

  10. Extreme solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Afanasiev, Alexandr; Battarbee, Markus

    2016-04-01

    Properties of extreme solar energetic particle (SEP) events, here defined as those leading to ground level enhancements (GLEs) of cosmic rays, are reviewed. We review recent efforts on modeling SEP acceleration to relativistic energies and present simulation results on particle acceleration at shocks driven by fast coronal mass ejections (CMEs) in different types of coronal magnetic structures and turbulent downstream compression regions. Based on these modeling results, we discuss the possible role of solar and CME parameters in the lack of GLEs during the present sunspot cycle. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support.

  11. The Energetic Assessment of Frictional Instability Based on Rowe's Theory

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Muto, J.; Nagahama, H.

    2015-12-01

    Frictional instability that controls the occurrence of unstable slips has been related to (1) rate and state dependent friction law (Dieterich, 1979; Ruina, 1983) and (2) shear localization in a gouge layer (e.g., Byerlee et al., 1978; Logan et al., 1979). Ikari et al. (2011) indicated that the transitions of frictional parameters obtained from the rate and state dependent friction law involve shear localization. However, the underlining theoretical background for their link has been unknown. Therefore, in this study, we investigate their relation theoretically and experimentally based on Rowe's theory on constant minimum energy ratio (Rowe, 1962) describing particle deformations quantitatively by energetic analysis. In theoretical analysis using analytical dynamics and irreversible thermodynamics, the energetic criterion about frictional instability is obtained; unstable slip occurs at energy ratios below 1. In friction experiments using a gas medium apparatus, simulated fault gouge deforms obeying the Rowe's theory. Additionally, the energy ratios change gradually with shear and show below 1 before the occurrence of unstable slip. Moreover, energy ratios are derived from volume changes. Transition of energy ratios from increase to decrease, which has been confirmed at the end of compaction, indicates the onset of volume increase toward the occurrence of unstable slip. The volume increases likely correspond to the formation of R1-shears with open mode character, which occurs prior to the unstable slip. Shear localization leads to a change in internal friction angle which is a statistical parameter to constitute a energy ratio. In short, changes in internal friction angle play an important role in evolving from being frictionally stable to unstable. From these results, the physical and energetic background for their link between the frictional parameter and shear localization becomes clear.

  12. The Galileo Energetic Particles Detector

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mcentire, R. W.; Jaskulek, S.; Wilken, B.

    1992-01-01

    Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4pi angular coverage and spectral measurements for Z greater than or equal to 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to greater than 11 MeV, and for the elemental species helium through iron from approximately 10 keV/nucl to 15 MeV/nucl. Two bidirectional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The instrument and its operation are described.

  13. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  14. Paleo Mars energetic particle precipitation

    NASA Astrophysics Data System (ADS)

    Alho, Markku; McKenna-Lawlor, Susan; Kallio, Esa

    2015-12-01

    A young Mars may well have possessed a global dipolar magnetic field that provided protection for the planet's atmosphere from the space weather environment. Against this background, we study in the present paper the effect of various dipole magnetic fields on particle precipitation (range 10 keV-4.5 MeV) on the upper Martian atmosphere as the magnetosphere gradually declined to become an induced magnetosphere. We utilized a hybrid plasma model to provide, in a self-consistent fashion, simulations (that included ion-kinetic effects) of the interaction between the Martian obstacle (magnetized or otherwise) and the solar wind. Besides the intrinsic dipole, with field strengths of ~100 nT and below, we assume modern solar and atmospheric parameters to examine the effect of the single variable, that is the dipole strength. We thereby investigated the precipitation of solar energetic particles on the upper atmosphere of the planet in circumstances characterized by the evolution of a diminishing Martian dynamo that initially generated an ideal dipolar field. It is demonstrated that an assumed Martian dipole would have provided, in the energy range investigated, significant shielding against proton impingement and that the interaction between the solar wind and the assumed Martian magnetic dipole would have been responsible for generating the shielding effect identified.

  15. Observations and Modeling of Geospace Energetic Particles

    NASA Astrophysics Data System (ADS)

    Li, Xinlin

    2016-07-01

    Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.

  16. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  17. Migrational Instabilities in Particle Suspensions

    NASA Technical Reports Server (NTRS)

    Goddard, Joe D.

    1996-01-01

    This work deals with an instability arising from the shear-induced migration of particles in dense suspensions coupled with a dependence of viscosity on particle concentration. The analysis summarized here treats the inertialess (Re = O) linear stability of homogeneous simple shear flows for a Stokesian suspension model of the type proposed by Leighton and Acrivos (1987). Depending on the importance of shear-induced migration relative to concentration-driven diffusion, this model admits short-wave instability arising from wave-vector stretching by the base flow and evolving into particle-depleted shear bands. Moreover, this instability in the time-dependent problem corresponds to loss of ellipticity in the associated static problem (Re = O, Pe = O). While the isotropic version of the Leighton-Acrivos model is found to be stable with their experimentally determined parameters for simple shear, it is known that the stable model does not give a good quantitative description of particle clustering in the core of pipe flow (Nott and Brady 1994). This leads to the conjecture that an appropriate variant on the above model could explain such clustering as a two-phase bifurcation in the base flow.

  18. Fast excitation of geodesic acoustic mode by energetic particle beams

    SciTech Connect

    Cao, Jintao; Qiu, Zhiyong; Zonca, Fulvio

    2015-12-15

    A new mechanism for geodesic acoustic mode (GAM) excitation by a not fully slowed down energetic particle (EP) beam is analyzed to explain experimental observations in Large Helical Device. It is shown that the positive velocity space gradient near the lower-energy end of the EP distribution function can strongly drive the GAM unstable. The new features of this EP-induced GAM (EGAM) are: (1) no instability threshold in the pitch angle; (2) the EGAM frequency can be higher than the local GAM frequency; and (3) the instability growth rate is much larger than that driven by a fully slowed down EP beam.

  19. Isomon instabilities driven by energetic ions in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Ya. I.; Könies, A.; Lutsenko, V. V.; Drevlak, M.; Turkin, Yu.; Helander, P.

    2016-06-01

    It is found that modes of Alfvénic character affected by plasma compressibility and having equal poloidal and toroidal mode numbers (named ‘isomon modes’) can exist in W7-X. These modes, and the conditions under which they arise, are sensitive to the magnitude of the rotational transform of the field lines and the presence of energetic ions. The energetic ions produced by neutral-beam injection (having the energy 55–60 keV) interact resonantly with large-scale isomon modes (m=n\\ll 10 ), which tends to lead to instabilities extending over a large part of the plasma cross section.

  20. Energetic particle pressure in intense ESP events

    NASA Astrophysics Data System (ADS)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  1. Energetic Particles Dynamics in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  2. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Wang, Linghua; Li, Gang; Shih, Albert Y.; Lin, Robert P.; Wimmer-Schweingruber, Robert F.

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  3. The energetic alpha particle transport method EATM

    SciTech Connect

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets.

  4. Composition of energetic particles from solar flares.

    PubMed

    Garrard, T L; Stone, E C

    1994-10-01

    We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.

  5. On the sources of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Cane, H. V; Reames, D. V.; Vonrosenvinge, T. T.

    1987-01-01

    We have examined the time histories of energetic (greater than 1 MeV) particles as detected by instruments in the earth's neighborhood over an 18 year period commencing mid-1967. The majority (greater than 75 percent) of the events extending to proton energies above 20 MeV have their origins in a flare event which includes H-alpha emission, soft x rays, and metric radio bursts of Type 2 and/or Type 4. We have assembled a list of 241 events for which the sources are thus well identified. Two further particle increases have been associated with nonflare events. Of the 82 events originating in regions to the east of central meridian, the sources of 68 (83 percent) were sufficiently energetic that they also generated interplanetary shocks detected at earth. We suggest that shocks are responsible for particles being detectable from source regions not magnetically connected to earth.

  6. The composition of corotating energetic particle streams

    NASA Technical Reports Server (NTRS)

    Mcguire, R. E.; Von Renvinge, T. T.; Mcdonald, F. B.

    1978-01-01

    The relative abundances of 1.5 to 23 MeV/nucleon ions in corotating nucleon streams were compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios were found to be a factor of the order two to three times greater in corotating streams than in flare associated events. The distribution of H/He ratios in corotating streams was found to be much narrower and of lower average value than in flare associated events. H/He in corotating energetic particle streams compared favorably both in lack of variability and numerical value to H/He in high speed solar wind plasma streams. This comparison suggested that the source population for the corotating energetic particles was the solar wind.

  7. The Energetic Particle Experiment (EPE) on THOR

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert; Vainio, Rami; Steinhagen, Jan

    2016-07-01

    THOR is one of the remaining three candidate mission for ESA's M4 launch in 2026. The Energetic Particle Experiment (EPE) will measure electrons (ions) from 20 keV (20 keV/nuc) to 700 keV (20 MeV) with excellent pitch-angle resolution and a very high cadence. This will allow us to understand how turbulence dissipates and how particles are energized in this process, thus shedding light on this ubiquitous astrophysical process. We will present the design and current status of EPE.

  8. Solar Energetic Particle Studies with PAMELA

    NASA Technical Reports Server (NTRS)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  9. Dose spectra from energetic particles and neutrons

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  10. Solar energetic particle transport in the heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, Chunsheng

    2007-08-01

    The transport of solar energetic particles (SEPs) in the inner heliosphere is a very important issue which can affect our daily life. For example, large SEP events can lead to the failure of power grids, interrupt communications, and may participate in global climate change. The SEPS also can harm humans in space and destroy the instruments on board spacecraft. Studying the transport of SEPs also helps us understand remote regions of space which are not visible to us because there are not enough photons in those places. The interplanetary magnetic field is the medium in which solar energetic particles travel. The Parker Model of the solar wind and its successor, the Weber and Davis model, have been the dominant models of the solar wind and the interplanetary magnetic field since 1960s. In this thesis, I have reviewed these models and applied an important correction to the Weber and Davis model Various solar wind models and their limitations are presented. Different models can affect the calculation of magnetic field direction at 1 AU by as much as about 30%. Analysis of the onset of SEP events could be used to infer the release time of solar energetic particles and to differentiate between models of particle acceleration near the Sun. It is demonstrated that because of the nature of the stochastic heliospheric magnetic field, the path length measured along the line of force can be shorter than that of the nominal Parker spiral. These results help to explain recent observations. A two dimensional model and a fully three dimensional numerical model for the transport of SEPs has been developed based on Parker's transport equation for the first time. ''Reservoir'' phenomenon, which means the inner heliosphere works like a reservoir for SEPs during large SEP events, and multi-spacecraft observation of peak intensities are explained by this numerical model.

  11. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY

    SciTech Connect

    Florinski, V.; Le Roux, J. A.; Jokipii, J. R.; Alouani-Bibi, F.

    2013-10-20

    In 2012 August the Voyager 1 space probe entered a distinctly new region of space characterized by a virtual absence of heliospheric energetic ions and magnetic fluctuations, now interpreted as a part of the local interstellar cloud. Prior to their disappearance, the ion distributions strongly peaked at a 90° pitch angle, implying rapid escape of streaming particles along the magnetic field lines. Here we investigate the process of particle crossing from the heliosheath into the interstellar space, using a kinetic approach that resolves scales of the particle's cyclotron radius and smaller. It is demonstrated that a 'pancake' pitch-angle distribution naturally arises at a tangential discontinuity separating a weakly turbulent plasma from a laminar region with a very low pitch-angle scattering rate. The relatively long persistence of gyrating ions is interpreted in terms of field line meandering facilitating their cross-field diffusion within the depletion region.

  12. COSTEP - Comprehensive Suprathermal and Energetic Particle Analyser

    NASA Astrophysics Data System (ADS)

    Müller-Mellin, R.; Kunow, H.; Fleißner, V.; Pehlke, E.; Rode, E.; Röschmann, N.; Scharmberg, C.; Sierks, H.; Rusznyak, P.; McKenna-Lawlor, S.; Elendt, I.; Sequeiros, J.; Meziat, D.; Sanchez, S.; Medina, J.; Del Peral, L.; Witte, M.; Marsden, R.; Henrion, J.

    1995-12-01

    The COSTEP experiment on SOHO forms part of the CEPAC complex of instruments that will perform studies of the suprathermal and energetic particle populations of solar, interplanetary, and galactic origin. Specifically, the LION and EPHIN instruments are designed to use particle emissions from the Sun for several species (electrons, protons, and helium nuclei) in the energy range 44 keV/particle to > 53 MeV/n as tools to study critical problems in solar physics as well as fundamental problems in space plasma and astrophysics. Scientific goals are presented and a technical description is provided of the two sensors and the common data processing unit. Calibration results are presented which show the ability of LION to separate electrons from protons and the ability of EPHIN to obtain energy spectra and achieve isotope separation for light nuclei. A brief description of mission operations and data products is given.

  13. Satellite sweeping of energetic particles at Neptune

    NASA Technical Reports Server (NTRS)

    Paranicas, C. P.; Cheng, A. F.

    1991-01-01

    The calculation of the absorption rate of charged particles by planetary satellites introduced by Paonessa and Cheng (1987) is generalized to include an arbitrary offset of the dipole center from the planet center, appropriate for Neptune. The absorption rates calculated for particles of fixed L shell, energy, and pitch angle reflect the features of the complicated geometry of the dipole and the moons. This absorption probability is found to be insignificant compared with that of the rings at L shells to which both sets of absorbers map. However, at larger radii the sweeping rate is controlled by the moons, and the corresponding absorption features provide a starting point for understanding the Voyager energetic particle observations.

  14. Coronal abundances determined from energetic particles

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    1995-01-01

    Solar energetic particles (SEPs) provide a measurement of coronal element abundances that is highly independent of the ionization states and temperature of the ions in the source plasma. The most complete measurements come from large 'gradual' events where ambient coronal plasma is swept up by the expanding shock wave from a coronal mass ejection. Particles from 'impulsive' flares have a pattern of acceleration-induced enhancements superimposed on the coronal abundances. Particles accelerated from high-speed solar wind streams at corotating shocks show a different abundance pattern corresponding to material from coronal holes. Large variations in He/O in coronal material are seen for both gradual and impulsive-flare events but other abundance ratios, such as Mg/Ne, are remarkably constant. SEP measurements now include hundreds of events spanning 15 years of high-quality measurement.

  15. Tutorial on Solar Energetic-Particle Events

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, Tycho T.

    2004-01-01

    Particles from the Sun at energies above approx. 1 MeV/nucleon have been studied in space for over 35 years. There have been major advances in instrumentation for studying elemental and isotopic composition, kinetic energy, charge states, time intensity histories, and anisotropies of energetic particles. There have also been extensive improvements in the observations of solar phenomena, including radio bursts, Coronal Mass Ejections (CMEs), and solar photons from soft X-ray to gamma-ray energies. Despite these advances, there is a lack of agreement as to the acceleration processes responsible for the particles seen in space shortly after the solar event. In particular, the relative importance of solar flares and CME-driven shocks is disputed for events of moderate to larger size. The reasons for this will be reviewed, and the prospects for resolving this issue will be evaluated.

  16. The MAVEN Solar Energetic Particle instrument

    NASA Astrophysics Data System (ADS)

    Dunn, P.; Lillis, R. J.; Larson, D. E.; Lin, R. P.; Jakosky, B. M.

    2012-12-01

    The Solar Energetic Particle (SEP) instrument will travel to Mars onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission, launching in November 2013. In order for MAVEN to determine the role that loss of volatiles to space has played through time, solar energy input to the Martian system must be characterized. An important (if infrequent and episodic) portion of this input is in the form of solar energetic particle (SEP) events. Understanding the relationship between SEP events and atmospheric escape is crucial to understanding the climate history of Mars. The SEP instrument will characterize such events at Mars by measuring energetic protons and electrons in the energy range absorbed by the upper atmosphere. SEP takes much of its heritage from the Solid State Telescope (SST) on the THEMIS mission, consisting of 2 orthogonal dual double-ended solid-state telescopes. Proton spectra from 25 keV to 6 MeV and electron spectra from 25 keV to 1 MeV will be collected in 4 look directions at 3 measurement cadences over MAVEN's 4.5-hour elliptical orbit: 32s far from the planet, 8s between 300 and 800 km altitude and 2s below 300 km. SEP will measure particle fluxes from ~20 to ~107 cm-2s-1sr-1. Here we present a full description of the instrument, as well as GEANT4 simulations of the detailed detector response.; Cross-section view of SEP sensor. Collimators are shown in yellow, baffles are in black. The sweep magnet (blue and brown) prevents electrons < 350 keV from reaching the detector stack (mounted on circuit board shown in green) from the left. A Kapton foil (not visible) prevent ions < 250 keV from reaching the stack from the right.

  17. Solar Energetic Particle Events Observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Halekas, J. S.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Epavier, F.; Thiemann, E.; Zeitlin, C.; Jakosky, B. M.

    2015-12-01

    We present observations of solar energetic particle (SEP) events made by the Mars Atmosphere and Volatile EvolutioN (MAVEN) SEP instrument, which measures energetic ions and electrons impacting the upper Martian atmosphere. Since the arrival of the MAVEN spacecraft at Mars, a large number of solar flares and a few major coronal mass ejections (CMEs) erupted from the Sun. The SEPs are accelerated by the related shock in the solar corona or by the propagating interplanetary shock ahead of the CME ejecta. Mixed in with these SEPs are particles accelerated by the shocks of corotating streams, some of which have recurred for several solar cycles due to the persistent coronal hole sources. The SEP events are analyzed together with the upstream solar wind observations from the MAVEN Solar Wind Ion Analyzer (SWIA) and magnetometer (MAG). The sources of the SEP events are determined from Earth-based solar imagery and the MAVEN Extreme Ultra-violet Monitor (EUVM) together with numerical simulations of the inner heliospheric conditions. A comparison with the radiation dose rate measurements from the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) reveals a lack of ground signatures during the onset of the highest energy SEPs for the events observed by MAVEN, indicating that the SEPs fully deposit their energies into the Martian atmosphere. Using measurements made from the ensemble of instruments onboard MAVEN, we investigate the consequences of SEPs at Mars for a number of events observed during the primary science mapping phase of the MAVEN mission.

  18. Testing Transport Theories with Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Dröge, W.; Kartavykh, Y. Y.

    2009-03-01

    The detailed modeling of solar particle events offers the possibility of deriving coefficients describing the propagation of energetic particles in the inner heliosphere such as scattering mean free paths and thus to test the validity of different theories for the interaction of the particles with magnetic field fluctuations. In addition, information about the three-dimensional structure and the dynamical properties of the fluctuations can be obtained and compared with results from direct magnetic field observations. We apply different methods to numerically solve the focused transport equation for pitch angle diffusion coefficients calculated from standard and dynamical quasi-linear theory, and investigate the resulting pitch angle distributions for 100 keV electrons and for MeV protons. We find that pitch angle distributions predicted for electrons from a model comprising dynamical quasi-linear theory and the assumption that the fluctuations are composed of a 20% slab and an 80% two-dimensional component differ significantly from those predicted for protons. A comparison with particle observations from the solar event of 2000 February 18 reveals that these predictions are also in strong disagreement with the observed electron pitch angle distributions. Our findings indicate that the above model, inspite of its recent success in making quantitatively correct predictions for the particle's scattering mean free path parallel to the average magnetic field from observations of solar wind turbulence, is still not complete.

  19. The Energetic Particle Experiment EPE for THOR

    NASA Astrophysics Data System (ADS)

    Steinhagen, Jan; Wimmer-Schweingruber, Robert F.; Vainio, Rami; Valtonen, Eino; Eronen, Timo; Riihonen, Esa; Palmroth, Minna; Vaivads, Andris; Federica Marcucci, Maria

    2016-04-01

    The Turbulence Heating ObserveR THOR is a candidate for ESA's next M4 mission, aimed to fly in 2026. Its mission purpose is to reveal how turbulent energy dissipation heats and energizes particles on kinetic scales in the solar wind as well as Earth's magnetosheath and bowshock. The Energetic Particle Experiment EPE on THOR has heritage from Solar Orbiter's EPT and SOHO's ERNE and will provide particle measurements of electrons between 20 and 700 keV and ions from 20 to 8000 keV/n. Two sensor units with two double-ended telescopes each yield eight viewcones in total, four of which are dedicated to electrons and the other four to ions. In combination with the rotation of the spacecraft the full sky will be covered, generating unique 3D measurements of the suprathermal particle population. The particle velocity distribution functions obtained this way are a key ingredient for understanding how anisotropies, resonances and plasma beams are formed through the dissipation of plasma waves, structures, interaction with shocks and reconnection phenomena.

  20. STEREO Observations of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, Tycho; Christian, Eric; Cohen, Christina; Leske, Richard; Mewaldt, Richard; Stone, Edward; Wiedenbeck, Mark

    2011-01-01

    We report on observations of Solar Energetic Particle (SEP) events as observed by instruments on the STEREO Ahead and Behind spacecraft and on the ACE spacecraft. We will show observations of an electron event observed by the STEREO Ahead spacecraft on June 12, 2010 located at W74 essentially simultaneously with electrons seen at STEREO Behind at E70. Some similar events observed by Helios were ascribed to fast electron propagation in longitude close to the sun. We will look for independent verification of this possibility. We will also show observations of what appears to be a single proton event with very similar time-history profiles at both of the STEREO spacecraft at a similar wide separation. This is unexpected. We will attempt to understand all of these events in terms of corresponding CME and radio burst observations.

  1. Energetic particles in the jovian magnetotail.

    PubMed

    McNutt, R L; Haggerty, D K; Hill, M E; Krimigis, S M; Livi, S; Ho, G C; Gurnee, R S; Mauk, B H; Mitchell, D G; Roelof, E C; McComas, D J; Bagenal, F; Elliott, H A; Brown, L E; Kusterer, M; Vandegriff, J; Stern, S A; Weaver, H A; Spencer, J R; Moore, J M

    2007-10-12

    When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ. PMID:17932283

  2. CUSP Energetic Particles: Confinement, Acceleration and Implications

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng

    1999-01-01

    The cusp energetic particle (CEP) event is a new magnetospheric phenomenon. The events were detected in the dayside cusp for hours, in which the measured helium ions had energies up to 8 MeV. All of these events were associated with a dramatic decrease and large fluctuations in the local magnetic field strength. During January 1999 - December 1999 covered by this report, I have studied the CEP events by analyzing the POLAR, GEOTAIL, and WIND particle and magnetic field data measured during the geomagnetic quiet periods in 1996 and one geomagnetic storm period in 1998. The simultaneous observations indicated that the ion fluxes in the CEP events were higher than that in both the upstream and the downstream from the bow shock. The pitch angle distribution of the helium ions in the CEP events was found to peak around 90 deg. It was found that the mirror parameter, defined as the ratio of the square root of the integration of the parallel turbulent power spectral component over the ultra-low frequency (ULF) ranges to the mean field in the cusp, is correlated with the intensity of the cusp MeV helium flux, which is a measure of the influence of mirroring interactions and an indication of local effect. It was also found that the turbulent power of the local magnetic field in the ultra-low frequency (ULF) ranges is correlated with the intensity of the cusp energetic helium ions. Such ULF ranges correspond to periods of about 0.33-500 seconds that cover the gyroperiods, the bounce periods, and the drift periods of the tens keV to MeV charged particles when they are temporarily confined in the high-altitude dayside cusp. These observations represent a discovery that the high-altitude dayside cusp is a new acceleration and dynamic trapping region of the magnetosphere. The cusp geometry is connected via gradient and curvature drift of these energized ions to the equatorial plasma sheet as close as the geostationary orbit at local midnight. It implies that the dayside cusp is

  3. Solar Energetic Particles and Space Weather

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-01-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.

  4. Energetic-particle stabilization of ballooning modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engguist, M. G.

    1983-07-01

    Introduction of an anisotropic, highly energetic trapped-particle species into a Tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent fishbone observations on PDX.

  5. Energetic Particle Stabilization of Ballooning Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engquist, M. G.

    1983-11-01

    Introduction of an anisctropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent "fishbone" observations on PDX.

  6. Energetic particle stabilization of ballooning modes in tokamaks

    SciTech Connect

    Rosenbluth, M.N.; Tsai, S.T.; Van Dam, J.W.; Engquist, M.G.

    1983-11-21

    Introduction of an anisotropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent ''fishbone'' observations on PDX.

  7. Energetic Particle Observations Near the Termination Shock

    SciTech Connect

    Krimigis, Stamatios M.; Decker, Robert B.; Roelof, Edmond C.; Hill, Matthew E.

    2004-09-15

    The most recent data from Voyager 1 (V1) show that a second event (TS2), apparently associated with the termination shock (TS), is in progress, with spectral characteristics similar to the energetic particle increase observed from 2002.4-2003.1 (TS1). We concentrate on the pressure, composition, and anisotropy profiles of TS1. The magnetic field pressure is significantly smaller than the particle pressure perpendicular to the interplanetary magnetic field (IMF) in the 40-4000 keV range. The composition during the interplanetary shock event (ISE) observed by V1 during 1991 is drastically different from that during TS1 (C/O {approx}0.2 for ISE, {approx}0.02 for TS1). The dominant anisotropy during TS1 is azimuthally in the outward direction for a Parker spiral field, suggesting a source inward of the spacecraft, while the radial anisotropy is consistent with zero (-0.024 {+-} 0.02), implying a slow (<50 km/s) plasma flow speed. We conclude that the totality of the data is consistent with V1 being in the heliosheath during TS1.

  8. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  9. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    SciTech Connect

    Berk, Herbert L.

    2014-05-23

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  10. Effect of dynamical friction on nonlinear energetic particle modes

    SciTech Connect

    Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.

    2010-09-15

    A fully nonlinear model is developed for the bump-on-tail instability including the effects of dynamical friction (drag) and velocity space diffusion on the energetic particles driving the wave. The results show that drag provides a destabilizing effect on the nonlinear evolution of waves. Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario of the wave evolution, leading to the creation of phase space holes and clumps that move away from the original eigenfrequency. Later in time, the electric field associated with a hole is found to be enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the frequency evolution between holes and clumps. The combined effect of drag and diffusion produces a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady state regimes. An analytical model is presented, which explains the aforementioned diversity. A continuous production of hole-clump pairs in the absence of collisions is also observed.

  11. Energetic ions upstream of the earth's bow shock during an energetic storm particle event

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Ipavich, F. M.

    1983-01-01

    Simultaneous observations of low-energy protons and alpha particles from ISEE 3 far upstream and from ISEE 1 close to the earth's bow shock during the passage of an interplanetary shock wave with its associated energetic storm particles are presented. Intensities, spectra, and anisotropies of the energetic storm particles are modified due to the interaction of these particles with the earth's bow shock. An intensity spike observed at ISEE 1 during the passage of the interplanetary shock is interpreted as being due to postacceleration of energetic storm particles at the bow shock by the first-order Fermi mechanism. The spikes observed at ISEE 1 after the passage of the interplanetary shock are most probably due to reflection of the energetic storm particles at the bow shock.

  12. Rocket measurements of energetic particles in the midlatitude precipitation zone

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  13. Temporal Evolution of Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Doran, Donald J.; Dalla, Silvia

    2016-08-01

    During solar flares and coronal mass ejections, Solar Energetic Particles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this article we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an "arch" shape that then straightens into a power law later in the event, after times on the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution.

  14. Intensity Variation of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    This paper updates the influence of environmental and source factors of shocks driven by corona) mass ejections (CMEs) that are likely to influence the intensity of solar energetic particle (SEP) events. The intensity variation due to CME interaction reported in Gopalswamy et al. (2004, JGR 109, Al2105) is confirmed by expanding the investigation to all the large SEP events of solar cycle 23. The large SEP events are separated into two groups, one associated with CMEs running into other CMEs, and the other with CMEs running into the ambient solar wind. SEP events with CME interaction generally have a higher intensity. New possibilities such as the influence of corona) holes on the SEP intensity are also discussed. For example, the presence of a large coronal hole between a well-connected eruption and the solar disk center may render the shock poorly connected because of the interaction between the CME and the coronal hole. This point is illustrated using the 2004 December 3 SEP event delayed by about 12 hours from the onset of the associated CME. There is no other event at the Sun that can be associated with the SEP onset. This event is consistent with the possibility that the coronal hole interaction influences the connectivity of the CMEs that produce SEPs, and hence the intensity of the SEP event.

  15. Energetic Particles in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2016-07-01

    Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  16. Elemental composition of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Cook, W. R.; Stone, E. C.; Vogt, R. E.

    1984-01-01

    The Low Energy Telescopes on the Voyager spacecraft have been used to measure the elemental composition (Z = 2-28) and energy spectra (5-15 MeV per nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events were selected which have SEP abundance ratios approximately independent of energy per nucleon. For these selected flare events, SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. The four-flare average SEP composition is systematically different from the solar composition determined by photospheric spectroscopy. These systematic composition differences are apparently not due to SEP propagation or acceleration effects. In contrast, the four-flare average SEP composition is in agreement with measured solar wind abundances and with a number of recent spectroscopic coronal abundance measurements. These findings suggest that SEPs originate in the corona, and that both SEPs and the solar wind sample a coronal composition which is significantly and persistently different from that measured for the photosphere.

  17. The Two Sources of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2012-05-01

    The identification of two different physical mechanisms for acceleration of solar energetic particles (SEPs) began nearly 50 years ago with the radio observations of type III bursts produced by outward streaming electrons and type II bursts from coronal (and interplanetary) shock waves. Since that time we have found that the former are related to “impulsive” SEP events from flares or jets where resonant stochastic acceleration, probably related to magnetic reconnection, can produce 1000-fold enhancements of 3He/4He and of (Z>50)/O, for example, while the latter “gradual” SEP events sample ion abundances democratically and are used to measure the coronal abundances of the elements. Sometimes, unfortunately, residual impulsive suprathermal ions can also contribute to the seed population for shock acceleration, complicating the picture, but this process can now be modeled theoretically. Initially, impulsive events behave like a point source on the Sun, while multi-spacecraft observations of gradual events show extensive acceleration that can span half of the inner heliosphere, beginning when the shock reaches 2 solar radii. Acceleration occurs as ions are scattered back and forth across the shock by proton-generated resonant Alfven waves. These waves also define a streaming-limited maximum intensity or plateau region prior to arrival of the shock. Behind the shock lies an extensive “reservoir” region of spatially uniform SEP intensity that decreases with time as the “magnetic bottle” enclosing it expands.

  18. Energetic charged particles in the uranian magnetosphere.

    PubMed

    Stone, E C; Cooper, J F; Cummings, A C; McDonald, F B; Trainor, J H; Lal, N; McGuire, R; Chenette, D L

    1986-07-01

    During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.

  19. Cavitation Bubble Nucleation by Energetic Particles

    SciTech Connect

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  20. The Two Sources of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2013-06-01

    Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to "impulsive" SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of ( Z>50)/O. Alternatively, in "gradual" SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ˜2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the "reservoir", a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing "magnetic bottle" expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow

  1. The effects of sloshing energetic particles on ballooning modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Berk, H. L.

    1987-05-01

    Distributions that give rise to energetic trapped particle pressures peaked in the ``good curvature'' region of a tokamak (sloshing distributions) are examined in an attempt to find stable regimes for both the magnetohydrodynamic (MHD) and precessional modes. It is the precessional drift destabilization of ballooning modes that inhibits bridging the unstable gap to second stability by the use of deeply trapped energetic particles unless the hot particles have an extremely large energy (˜0.35 MeV for a tokamak like PDX [Phys. Rev. Lett. 49, 326 (1982)]). Unfortunately, our calculations indicate that the sloshing particles do not have a significant stabilizing effect. An analytic treatment shows that stability for the precessional mode can be found only if the sign of the energetic particle magnetic drift frequency can be reversed from its value in vacuum bad curvature without hot species diamagnetism. This is difficult to do in a tokamak because of the destabilizing contribution of the geodesic curvature to the drift frequency. Furthermore, for each of the two sloshing distributions employed (one contains only trapped particles; the other includes trapped and passing particles), a new ``continuum instability'' (where asymptotically along the field line the mode is a propagating plane wave) is found to be driven by geodesic curvature. These results indicate that energetic sloshing particles are not able to bridge the unstable gap to second stability.

  2. Diagnostics of Solar Flare Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mallik, Procheta; Brown, J. C.; MacKinnon, A. L.

    2009-05-01

    For work on my thesis dissertation, we have been studying some energetic processes in solar flares. On our work on Hard X-ray (HXR) emission from flares, we have shown that recombination emission can exceed the bremsstrahlung HXR flux for certain flare conditions. We will show some spectral features characteristic of non-thermal recombination HXR emission and will suggest how it plays a significant role in the flare HXR continuum, something that has been ignored in the past. It is important to note that these results could demand a reconsideration of the numbers of accelerated electrons since recombination can be much more efficient in producing HXR photons than bremsstrahlung. In related work on diagnosing particle acceleration in flares, we also have an interest in studying solar neutrons. To this end, we will present our work done with new-age neutron detectors developed by our colleagues at the University of New Hampshire. Using laboratory and simulated data from the detector to produce its response matrix, we then employ regularisation and deconvolution techniques to produce encouraging results for data inversion. As a corollary, we have also been reconsidering the role of inverse Compton (IC) scattering of photospheric photons. Gamma-ray observations clearly show the presence of 100 MeV electrons and positrons in the solar corona, by-products of GeV energy ions. Here we will present results of IC scattering of such photons taking proper account of radiation field geometry near the solar surface. If observed, such radiation would let us determine the number of secondary positrons produced in large flares, contributing to a full picture of ion acceleration and to predicting neutron fluxes to be encountered by future inner heliosphere space missions. This work is supported by a UK STFC Rolling Grant and a Dorothy Hodgkin's Scholarship (PM).

  3. Energetic particle characteristics of magnetotail flux ropes

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1985-01-01

    During the recent ISEE-3 Geotail Mission three events have been identified from the magnetometer data which are consistent with a spacecraft crossing of a magnetotail flux rope. Energetic electron and proton observations obtained by the Max-Planck-Institut/University of Maryland sensor system during two of the possible flux rope events are presented. During one event remote sensing of the flux rope with energetic protons reveals that the flux rope is crossed by the spacecraft from south to north. This allows determination of the bandedness of the magnetic field twist and of the flux rope velocity relative to the spacecraft. A minimal flux rope radius of 3 earth radii is derived. Energetic proton intensity is highest just inside of the flux rope and decreases towards the core. Energetic electrons are streaming tailward near the outer boundary, indicating openness of the field lines, and are isotropic through the inner part of the flux rope.

  4. The acceleration and propagation of solar flare energetic particles

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Ramaty, R.; Zweibel, E. G.; Holzer, T. E. (Editor); Mihalas, D. (Editor); Sturrock, P. A. (Editor); Ulrich, R. K. (Editor)

    1982-01-01

    Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented.

  5. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    SciTech Connect

    Wang, Lumin; Lu, Wei

    2013-01-31

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the

  6. Compositions of energetic particle populations in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1979-01-01

    Observations of helium and heavier particles with energies below about 10 to 20 MeV/nucleon are discussed with emphasis on the composition of solar flare particles, corotating energetic particle streams, and the anomalous cosmic ray component. Future advances expected from results obtained from ISEE -3, Voyager, and the international solar polar spacecraft are reviewed.

  7. The effect of solar energetic particles on the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Darwish, Omar Hussain Al; Lillis, Robert; Fillingim, Matthew; Lee, Christina

    2016-10-01

    The precipitation of Solar Energetic Particles (SEP) into the Martian atmosphere causes several effects, one of the most important of which is ionization. However, the importance of this process to the global structure and dynamics for the Martian ionosphere is currently not well understood. The MAVEN spacecraft carries instrumentation which allow us to examine this process. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measures the densities of planetary ions in the Mars ionosphere (O+,CO2+ and O2+). The Solar Energetic Particle (SEP) detector measures the fluxes of energetic protons and electrons. In this project, we examine the degree to which the density of ions in the Martian ionosphere is affected by the precipitation of energetic particles, under conditions of different SEP ion and electron fluxes and at various solar zenith angles. We will present statistical as well as case studies.

  8. Nuclear gamma-rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1979-01-01

    Gamma-ray line emission due to nuclear deexcitation following energetic particle interactions with abundant constituents of cosmic matter is studied. Reactions induced by energetic protons and alpha particles in ambient nuclei (He, C, N, O, Ne, Mg, Al, Si, S, Ca, and Fe) are considered, along with inverse reactions in which energetic nuclei interact with ambient H and He. Line-production cross sections are evaluated by analyzing a large body of laboratory nuclear data. Both prompt gamma rays, produced by direct excitation of nuclear levels and by spallation reactions that leave the secondary nucleus in an excited state, and delayed emission from long-lived radioactive nuclei also produced in the energetic particle reactions are investigated. A line list is provided, and the shapes of the gamma-ray lines are determined. Gamma-ray line production in the interstellar medium is evaluated in detail.

  9. Resistance probe for energetic particle dosimetry

    DOEpatents

    Wampler, William R.

    1988-01-01

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film havinmg an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current through the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  10. Resistance probe for energetic particle dosimetry

    DOEpatents

    Wampler, W.R.

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film having an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current throught the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  11. Stochastic Particle Acceleration in Turbulence Generated by Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2016-05-01

    We investigate stochastic particle acceleration in accretion flows. It is believed that magnetorotational instability (MRI) generates turbulence inside accretion flows and that cosmic rays (CRs) are accelerated by the turbulence. We calculate equations of motion for CRs in the turbulent fields generated by MRI with the shearing box approximation and without back reaction to the field. Our results show that the CRs randomly gain or lose their energy through interaction with the turbulent fields. The CRs diffuse in the configuration space anisotropically: the diffusion coefficient in the direction of the unperturbed flow is about 20 times higher than the Bohm coefficient, while those in the other directions are only a few times higher than the Bohm. The momentum distribution is isotropic and its evolution can be described by the diffusion equation in momentum space where the diffusion coefficient is a power-law function of the CR momentum. We show that the shear acceleration works efficiently for energetic particles. We also cautiously note that in the shearing box approximation, particles that cross the simulation box many times along the radial direction undergo unphysical runaway acceleration by the Lorentz transformation, which needs to be taken into account with special care.

  12. Multipoint measurements of energetic particles in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Baker, D. N.

    1988-01-01

    The benefits of energetic-particle measurements in the study of magnetospheric physics are reviewed, including the particles' relative ease of detection, their high rectilinear speed, their range of gyroradii, and their immunity to large-scale electric fields. With such particles, it is possible to observationally separate distinctive plasma regions, uniquely assess field-line topologies, examine connectivity from the magnetospheric equator to the ionosphere, and sense global changes in magnetospheric configuration. Multipoint measurements of energetic particles have contributed substantially to the understanding of the earth magnetopause, the leakage of particles into the upstream region, the effect of sudden storm compressions, the global nature of substorm dynamics, and the location and character of high-energy acceleration processes.

  13. Testing Transport Theories with Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Dröge, W.; Kartavykh, Y. Y.

    Based on numerical solutions of the focused transport equation we study the question whether pitch angle diffusion coefficients calculated from various suggested models for wave-particle interactions and different assumptions about the nature of magnetic fluctuations in the solar wind can lead to measurable differences in observables such as the rigidity dependence of the mean free path and the angular distributions of solar particles.

  14. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    SciTech Connect

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J.; Dresing, N.; Klassen, A.; Heber, B.; Banjac, S.; Lario, D.; Agueda, N.; Malandraki, O. E.

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  15. Sawtooth stabilization by energetic trapped particles

    SciTech Connect

    White, R.B.; Rutherford, P.H.; Colestock, P.; Bussac, M.N.

    1988-03-01

    Recent experiments involving high power radio-frequency heating of a tokamak plasma show strong suppression of the sawtooth oscillation. A high energy trapped particle population is shown to have a strong stabilizing effect on the internal resistive kink mode. Numerical calculations are in reasonable agreement with experiment. 13 refs., 2 figs.

  16. Space weather near Earth and energetic particles: selected results

    NASA Astrophysics Data System (ADS)

    Kudela, K.

    2013-02-01

    Space weather effects have two links to research of energetic particles in space. First, the direct one, connected with the interaction of high energy cosmic particles including galactic, solar cosmic rays, as well as magnetospheric particles, with various materials as satellite systems, atmosphere, ionosphere, airplane systems, human body at high altitudes and in space. Second one, the indirect relations, is checking the relevance of possible forecasts of space weather phenomena according to the data of energetic particles both on the ground and on the satellites and space probes. We review few selected aspects of the second type of relations with references mainly to recent studies, namely (i) progress in description of selected quasi-periodicities in cosmic ray time series which are of potential use for space weather studies, (ii) status in the forecast of geoeffective and radiation storm alerts using signatures of ground-based observations, (iii) problem of relativistic electrons in the vicinity of Earth.

  17. Connecting Shock Parameters to the Radiation Hazard from Energetic Particles

    NASA Technical Reports Server (NTRS)

    Berdichevsky, Daniel B.; Reames, Donald V.; Lepping, Ronald P.; Schwenn, Rainer W.

    2004-01-01

    We use data from Helios, IMP-8, and other spacecraft (e.g. ISEE) to systematically investigate solar energetic particle (SEP) events from different longitudes and distances in the heliosphere. The purpose of the project is to assess empirically the connection between the morphology of the travelling shock and strength with observed enhancements in the flow of energized particles in shock accelerated particle (SEP) events (also often identified as "gradual" solar energetic particle events). Activities during this first year centered on the organization of the SEPs events and their correlation with solar wind observations at multiple spacecraft locations. From an identified list of more than 30 SEPs events at multiple spacecraft locations, currently four single cases for detailed study were selected and are in an advance phase of preparation for publication. Preliminary results of these four cases were presented at AGU Spring and Fall 2003 meetings, and other meetings on SEPs.

  18. Radio Tracking of Solar Energetic Particles through Interplanetary Space.

    PubMed

    Fainberg, J; Evans, L G; Stone, R G

    1972-11-17

    Energetic particles ejected from the sun generate radio waves as they travel out through the interplanetary medium. Satellite observations of this emission at long radio wavelengths provide a means of investigating properties of the interplanetary medium, including the gross magnetic field configuration over distances of 1 astronomical unit. Results of such observations are illustrated.

  19. Observations of solar energetic particles at a synchronous orbit

    NASA Technical Reports Server (NTRS)

    Takenaka, T.; Ohi, Y.; Yanagimachi, T.; Ito, K.; Kohno, T.; Sakurai, K.

    1985-01-01

    The Space Environment Monitors (SEM) on board the Japanese geostationary meteorological satellites (GMS-1 and GMS-2) observed energetic protons, alpha particles and electrons continuously for February 1978 to September 1984. The satellites were at 6.6 Earth radii above 140 deg E equator.

  20. Energetic particles flux experiment for ISEE mother/daughter spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1981-01-01

    The history of the energetic particle experiments on the International Sun Earth Explorer 1 and 2 spacecraft is outlined, and descriptions of the instruments are given. The inflight performance and data analysis are summarized. The research is completed and ongoing are described and a bibliography is included.

  1. The Energetic Particles in Shock-ICME Interaction Structures

    NASA Astrophysics Data System (ADS)

    Shen, C.

    2015-12-01

    Previous results show that the energetic particles intensity will decreased in the ICMEs. But, in the year of 2008, Shen et al. reported a definite case that the intensity of solar energetic particles (SEP) in the shock-MC interaction structure increase greatly. They further found that such enhancement is the main cause of the largest SEP event in solar cycle 23. The questions remained are: Did all the shock-ICME(MC) structure cause the enhancement of the SEP intensity? If not, why it only happened in some events? Is there any other mechanism which can make the energetic particle intensity in ICME enhanced? To answer these questions, the SEP signatures in all ICMEs including the shock-ICME interaction structures from 1996 to 2014 are studied detail. It is found that the SEP intensities enhanced in about half of the shock-ICME interaction events. Meanwhile, large fraction of energetic particles intensity enhanced ICMEs are interacted with shocks. To find the possible condition and physical mechanismof such enhancement, the parameters of the shock, ICME(MC) and etc. are detailed analyzed.

  2. Detection of Energetic Particle Events with SOHO Space Observatory

    NASA Astrophysics Data System (ADS)

    Rodríguez Frías, D.; Gómez Herrero, R.; Gutiérrez, J.; Del Peral, L.

    2004-09-01

    An analysis of eighteen solar energetic particle (SEP) events measured with the EPHIN instrument on board the SOHO spacecraft has been performed. Via parametrization of temporal profiles, differences among events have been shown by the temporal profile parameters obtained. The detected differences are found to depend on the particle acceleration, the magnetic connection with the acceleration zone and the interplanetary physical characteristics transport to the observing point.

  3. Virtual Energetic Particle Observatory for the Heliospheric Data Environment

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.

    2007-01-01

    The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.

  4. DIFFUSION OF ENERGETIC PARTICLES IN TURBULENT MAGNETOHYDRODYNAMIC PLASMAS

    SciTech Connect

    Wisniewski, M.; Spanier, F.; Kissmann, R.

    2012-05-10

    In this paper, we investigate the transport of energetic particles in turbulent plasmas. A numerical approach is used to simulate the effect of the background plasma on the motion of energetic protons. The background plasma is in a dynamically turbulent state found from numerical magnetohydrodynamic simulations, where we use parameters typical for the heliosphere. The implications for the transport parameters (i.e., pitch-angle diffusion coefficients and mean free path) are calculated and deviations from the quasi-linear theory are discussed.

  5. Solar Energetic Particle Precipitation Effects on the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Larson, Davin; Luhmann, Janet; Lee, Christina; Jakosky, Bruce

    2016-10-01

    Solar Energetic Particles (SEPs) are an important, if irregular, source of ionization and energy input to the Martian atmosphere. As is the case for much-studied Polar Cap precipitation events on the earth, when SEPs precipitate into the Mars atmosphere, they cause heating, ionization, excitation and dissociation, leading to altitude-dependent changes in chemistry. We present a study of the effects of SEP ionization in the Martian atmosphere using data from the Mars Atmosphere and Volatile Evolution (MAVEN) mission. Specifically, we will correlate altitude profiles of thermal planetary ions (O+, CO2+ and O2+) and electrons measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS) and Langmuir Probe on the MAVEN spacecraft with fluxes of energetic protons and electrons measured by the Solar Energetic Particle (SEP) detector. First, we will present case studies of this correlation, before and during SEP events to examine short-term effects of SEP ionization. We will also examine SEP ionization under different heliospheric conditions, leading to different SEP shadowing geometries and ionization rates. Second, we will present a statistical study showing the degree to which ionospheric densities are affected by the presence of energetic particles, as a function of altitude, SEP spectrum flux and solar zenith angle. This work will provide a better understanding of this important source of ionization in the Martian upper atmosphere and hence, how more frequent and more intense SEP events in Mars' past may have affected the structure of the Martian upper atmosphere and hence atmospheric escape.

  6. Space Weather Research in Greece: The Solar Energetic Particle Perspective

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga E.

    2015-03-01

    Space Weather Research carried out in the National Observatory of Athens (NOA), within the SEPServer and COMESEP projects under the Seventh Framework Programme (FP7-SPACE) of the European Union (EU) is presented. Results and services that these projects provide to the whole scientific community as well as stakeholders are underlined. NOA strongly contributes in terms of crucial Solar Energetic Particle (SEP) dataset provided, data analysis and SEP catalogue items provided as well as comparative results of the various components of the project server, greatly facilitating the investigation of SEPs and their origin. SEP research highlights carried out at NOA are also presented, used to test and validate the particle SEP model developed and incorporated within the SEP forecasting tools of the COronal Mass Ejections and Solar Energetic Particles (COMESEP) Space Weather Alert System, i.e. the First European Alert System for geomagnetic storms and SEP radiation hazards.

  7. The effects of Interplanetary Shocks on Energetic Storm Particle Events

    NASA Astrophysics Data System (ADS)

    Preisser, L.; Blanco-Cano, X.; Kajdic, P.

    2015-12-01

    Solar Energetic particles (SEPs) travel across the interplanetary medium with energies of the order of MeV. These events can be classified as impulsive or gradual depending on some characteristics of the flux spectra profile. Impulsive events are commonly associated to flares, and gradual SEPs are commonly associated to Interplanetary Coronal Mass Ejection (ICME) driving shocks. The physical process by which these particles are accelerated is not completely understood. A subset of gradual SEP events, known as Energetic Storm Particle (ESP) show flux enhancements near the time of shock crossing. In this work we use STEREO plasma and magnetic field data from 2011-2014 to study ESP characteristics and relate them to the parameters of the associated shock. We also study the properties of the waves observed upstream and downstream of the shocks.

  8. Erosion tests of materials by energetic particle beams

    SciTech Connect

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  9. Studies of modern and ancient solar energetic particles.

    NASA Astrophysics Data System (ADS)

    Reedy, R.

    1998-12-01

    Modern solar energetic particles (SEPs) have been studied for about 50 years by satellites and ground-based observations. These measurements indicate much about the nature of SEPs but cover too short a period to quantify the probabilities of very large solar particle events. Many SEPs have high enough energies to make nuclides in material in which they interact. Radionuclides measured in lunar samples have been used to extend the record about SEPs back several million years. Some new measurements of modern SEPs during the last solar cycle and new results for nuclides made by SEPS in lunar samples are presented and their implications discussed. Both the modern and ancient records need to be improved, and methods to get a better understanding of solar energetic particles discussed. The fluxes of SEPs during the last million years show an increasing trend when averaged over shorter radionuclide half-lives.

  10. Studies of modern and ancient solar energetic particles

    SciTech Connect

    Reedy, R.C.

    1998-10-01

    Modern solar energetic particles (SEPs) have been studied for about 50 years by satellites and ground-based observations. These measurements indicate much about the nature of SEPs but cover too short a period to quantify the probabilities of very large solar particle events. Many SEPs have high enough energies to make nuclides in material in which they interact. Some nuclides measured in lunar samples have been used to extend the record about SEPs back several million years. Some new measurements of modern SEPs during the last solar cycle and new results for nuclides made by SEPs in lunar samples are presented and their implications discussed. Both the modern and ancient records need to be improved, and methods to get a better understanding of solar energetic particles are discussed. The SEP average fluxes from both sets of records are similar, and both sets can be used to show that huge fluxes of SEPs are very rare.

  11. Effects of interplanetary transport on derived energetic particle source strengths

    NASA Astrophysics Data System (ADS)

    Chollet, E. E.; Giacalone, J.; Mewaldt, R. A.

    2010-06-01

    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon-1 to 100 MeV nucleon-1. Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account.

  12. Energetic Particle Pressure at Interplanetary Shocks: STEREO-A Observations

    NASA Astrophysics Data System (ADS)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-11-01

    We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (≥83 keV) protons (PEP) is larger than the pressure exerted by the interplanetary magnetic field (PB). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when PEP exceeds PB by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, PEP also exceeds the pressure exerted by the solar wind thermal population (PTH). Prolonged periods (>12 hr) with both PEP > PB and PEP > PTH may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum PSUM = PB + PTH + PEP are observed in the immediate upstream region of the shocks regardless of individual changes in PEP, PB, and PTH, indicating a coupling between PEP and the pressure of the background medium characterized by PB and PTH. The quasi-exponential increase of PSUM implies a radial gradient ∂PSUM/∂r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.

  13. The Space Radiation Environment in Energetic Particles at the Earth

    NASA Astrophysics Data System (ADS)

    Zank, Gary

    2012-02-01

    Understanding the radiation environment in energetic particles at the Earth is critical to the stability, integrity, and longevity of satellite subsystems. The radiation environment comprises particles trapped in the Earth's radiation belts and magnetosphere, those generated by solar energetic particle events (SEPs), and galactic and anomalous cosmic rays. Of these different populations, the most highly variable, and consequently difficult to anticipate, is the SEP population. This is also the population that can often cause the most damaging effects. SEP events can be either impulsive or gradual (sometimes a mixture of the two) with the gradual events being larger, much longer lasting, and often with higher particle energies. Diffusive shock acceleration at a coronal mass ejection driven shock wave is generally invoked to explain gradual SEP events. The detailed [plasma] physics of the acceleration mechanism remains to be elucidated. We are fortunate in that very detailed observations of particle acceleration at shock waves, particularly in the guise of Space Weather, are providing considerable experimental insight into the basic physics of particle acceleration at a shock wave. Detailed interplanetary observations are not easily interpreted in terms of simple steady-state models of particle acceleration at shock waves. Three fundamental aspects make the interplanetary problem much more complicated than the typical astrophysical problem: the time dependence of the acceleration and the solar wind background; the geometry of the shock; and the long mean free path for particle transport away from the shock wave. An interplanetary shock is not steady, as it decelerates and expands into an expanding, temporal solar wind. Furthermore, the shock geometry varies from quasi-parallel to quasi-perpendicular along a shock front, and multiple shocks can be present simultaneously in the solar wind. Consequently, the shock itself introduces a multiplicity of time scales, ranging

  14. Energetic Particles at High Latitudes of the Heliosphere

    SciTech Connect

    Zhang Ming

    2004-09-15

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk.

  15. COSTEP: A comprehensive suprathermal and energetic particle analyzer for SOHO

    NASA Technical Reports Server (NTRS)

    Kunow, Horst; Fischer, Harald; Green, Guenter; Mueller-Mellin, Reinhold; Wibberenz, Gerd; Holweger, Hartmut; Evenson, Paul; Meyer, Jean-Paul; Hasebe, Nabuyuki; Vonrosenvinge, Tycho

    1988-01-01

    The group of instruments involved in the COSTEP (comprehensive suprathermal and energetic particle analyzer) project are described. Three sensors, the LION (low energy ion and electron) instrument, the MEICA (medium energy ion composition analyzer) and the EPHIN (electron proton helium instrument) are described. They are designed to analyze particle emissions from the sun over a wide range of species (electrons through iron) and energies (60 KeV/particle to 500 MeV/nucleon). The data collected is used in studying solar and space plasma physics.

  16. COSTEP: A comprehensive suprathermal and energetic particle analyzer for SOHO

    NASA Astrophysics Data System (ADS)

    Kunow, Horst; Fischer, Harald; Green, Guenter; Mueller-Mellin, Reinhold; Wibberenz, Gerd; Holweger, Hartmut; Evenson, Paul; Meyer, Jean-Paul; Hasebe, Nabuyuki; von Rosenvinge, Tycho

    1988-11-01

    The group of instruments involved in the COSTEP (comprehensive suprathermal and energetic particle analyzer) project are described. Three sensors, the LION (low energy ion and electron) instrument, the MEICA (medium energy ion composition analyzer) and the EPHIN (electron proton helium instrument) are described. They are designed to analyze particle emissions from the sun over a wide range of species (electrons through iron) and energies (60 KeV/particle to 500 MeV/nucleon). The data collected is used in studying solar and space plasma physics.

  17. Fractional resonances between waves and energetic particles in tokamak plasmas.

    PubMed

    Kramer, G J; Chen, L; Fisher, R K; Heidbrink, W W; Nazikian, R; Pace, D C; Van Zeeland, M A

    2012-07-20

    From numerical simulation and analytical modeling it is shown that fast ions can resonate with plasma waves at fractional values of the particle drift-orbit transit frequency when the plasma wave amplitude is sufficiently large. The fractional resonances, which are caused by a nonlinear interaction between the particle orbit and the wave, give rise to an increased density of resonances in phase space which reduces the threshold for stochastic transport. The effects of the fractional resonances on spatial and energy transport are illustrated for an energetic particle geodesic acoustic mode but they apply equally well to other types of MHD activity.

  18. Energetic helium particles trapped in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Sang, Yeming; Wefel, John P.; Cooper, John F.

    1994-01-01

    High energy (approximately 40-100 MeV/nucleon) geomagnetically trapped helium nuclei have been measured, for the first time, by the ONR-604 instrument during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission. The helium events observed at L less than 2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field and are contained in peaks located at L = 1.2 and 1.9. The events in each peak can be characterized by power law energy spectra with indices of 10.0 +/- 0.7 for L = 1.9-2.3 and 6.8 +/- 1.0 for L = 1.15-1.3, before the large storm of 24 March 1991. CRRES was active during solar maximum when the anomalous component is excluded from the inner heliosphere, making it unlikely that the observed events derived from the anomalous component. The trapped helium counting rates decrease gradually with time indicating that these high energy ions were not injected by flares during the 1990/91 mission. Flare injection prior to mid-1990 may account for the highest energy particles, while solar wind injection during magnetic storms and subsequent acceleration could account for the helium at lower energies.

  19. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Sauer, H H; Smart, D F

    1996-01-01

    Galactic cosmic rays, which are thought to be produced and accelerated by a variety of mechanisms in the Milky Way galaxy, interact with the solar wind, the earth's magnetic field, and its atmosphere to produce hadron, lepton, and photon fields at aircraft altitudes that are quite unlike anything produced in the laboratory. The energy spectra of these secondary particles extend from the lowest possible energy to energies over an EeV. In addition to cosmic rays, energetic particles, generated on the sun by solar flares or coronal mass ejections, bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as cosmic rays. The authors have calculated atmospheric cosmic-ray angular fluxes, spectra, scalar fluxes, and ionization, and compared them with experimental data. Agreement with these data is seen to be good. These data have been used to calculate equivalent doses in a simplified human phantom at aircraft altitudes and the estimated health risks to aircraft crews. The authors have also calculated the radiation doses from several large solar energetic particle events (known as GLEs, or Ground Level Events), which took place in 1989, including the very large event known as GLE 42, which took place on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory. Unfortunately, there are essentially no experimental data with which to compare these calculations.

  20. New Energetic Particle Data and Products from the GOES Program

    NASA Astrophysics Data System (ADS)

    Onsager, Terrance; Rodriguez, Juan

    The NOAA Geostationary Operational Environmental Satellite (GOES) program has provided continuous, real-time measurements of the near-Earth space environment for decades. In addition to their scientific value, the GOES energetic particle measurements are the basis for a variety of space weather products and services, including the forecasting of elevated energetic particle levels, real-time knowledge of the satellite environment at geostationary orbit, and data to allow post-event analyses when satellite anomalies occur. The GOES satellites have traditionally provided measurements of high-energy electrons, protons, and alpha particles (100s of keV to 100s of MeV). Beginning with the launch of GOES-13 in 2006, the measurement capabilities were expanded to include medium-energy electrons and protons (10s to 100s of keV) with pitch angle resolution. The next generation of GOES satellites, starting with GOES-R in 2016, will include low-energy electrons and ions (10s of eV to 10s of keV) as well as energetic heavy ions. In this presentation, we will overview the GOES particle measurements available now and in the future and describe the space weather services and scientific investigations that these data support.

  1. The Solar Energetic Particle Event of 14 December 2006

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, T. T.; Richardson, I. G.; Reames, D. V.; Cohen, C. M. S.; Cummings, A. C.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Wiedenbeck, M. E.

    2009-05-01

    The solar energetic particle event on 14 December 2006 was observed by several near-Earth spacecraft including the Advanced Composition Explorer (ACE), STEREO A and B, SOHO and Wind. An interesting feature of this event is a series of unusual fluctuations in the particle intensity that occurred during the first few hours. These fluctuations were observed inside a magnetic cloud that originated in a solar event on 13 December and show both similarities and variations at the different spacecraft. Interestingly, the most striking difference is between observations at the two closely-separated STEREO spacecraft. In particular, large fluctuations in the proton intensity were seen by the High Energy Telescope (HET) on STEREO A, and to a lesser extent at Wind and ACE, but not by the STEREO B HET. We conclude that the differences in intensity-time profiles were caused by anisotropies in the particle distribution and the different viewing directions of the individual particle telescopes. The intensity/anisotropy variations suggest that flux tubes with different particle propagation conditions existed within this magnetic cloud despite the absence of local magnetic field signatures associated with these regions. The intensity fluctuations are similar to those occasionally seen in impulsive particle events. There were also spacecraft-to-spacecraft differences during the onset of the particle event. An initial rapid onset of energetic (> 40 MeV) protons was observed by the STEREO A and B spacecraft outside the magnetic cloud, but not by spacecraft such as SOHO that were already inside the magnetic cloud at this time. The latter spacecraft observed a slower, lower intensity increase. Evidently, energetic proton propagation from the solar event to the vicinity of Earth was inhibited within the magnetic cloud compared to outside.

  2. Pioneer 11 observations of energetic particles in the jovian magnetosphere.

    PubMed

    Van Allen, J A; Randall, B A; Baker, D N; Goertz, C K; Sentman, D D; Thomsen, M F; Flindt, H R

    1975-05-01

    Knowledge of the positional distributions, absolute intensities, energy spectra, and angular distributions of energetic electrons and protons in the Jovian magnetosphere has been considerably advanced by the planetary flyby of Pioneer 11 in November-December 1974 along a quite different trajectory from that of Pioneer 10 a year earlier. (i) The previously reported magnetodisc is shown to be blunted and much more extended in latitude on the sunward side than on the dawn side. (ii) Rigid corotation of the population of protons E(p) approximately 1 million electron volts in the magnetodisc is confirmed. (iii) Angular distributions of energetic electrons E(e) > 21 million electron volts in the inner magnetosphere are shown to be compatible with the Kennel-Petschek whistler-mode instability. (iv) A diverse body of magnetospheric effects by the Jovian satellites is found. (v) Observations of energetic electrons in to a radial distance of 1.59 Jovian radii provide a fresh basis for the interpretation of decimetric radio noise emission.

  3. EPD: the energetic particle instrumentation aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Rodriguez-Pacheco, Javier; Ho, George; Boettcher, Stephan; Martin, Cesar; Sánchez Prieto, Sebastián; Kulkarni, Shrinivasrao; Prieto, Manuel; Panitzsch, Lauri; Gomez-Herrero, Raul; Mason, Glenn M.; Wimmer-Schweingruber, Robert

    2016-07-01

    Solar Orbiter is the first mission of ESA's Cosmic Vision program. Its launch is scheduled for October 2018. After a cruise phase and once in its nominal orbit, it will approach the Sun as close as 0.28 AU. Solar Orbiter has a comprehensive scientific instrumentation that can be divided into two categories: remote sensing and in situ instruments. Within the latter category, the Energetic Particle Detector (EPD) will be responsible for providing data on solar energetic particles (SEP) including its suprathermal population with a temporal and spectral resolutions never achieved in previous missions focused in the inner Heliosphere. We will present the mission instrumentation; its scientific highlights and then describe EPD and its science.

  4. Rocket observations of energetic particles at the geomagnetic equator

    NASA Technical Reports Server (NTRS)

    Smith, L. G.; Houshmand, B.

    1985-01-01

    Energetic particle detectors were included in the payloads of two rockets launched in Peru during the Condor campaign of 1983. These night-time flights reached altitudes of 587 and 535 km, respectively. The pitch-angle distribution is anisotropic with the maximum at 90 deg. Each payload included two solid-state detectors differing in the thickness of the aluminum coating. Comparison of the fluxes measured by the two detectors leads to the conclusion that, on both occasions, the energetic particles are predominantly helium ions. The flux is small below 200 km, increases linearly to 350 km, and then more slowly to apogee. The east-west asymmetry of flux, noted at 200 km in a previous equatorial launch, is not seen at greater altitudes, consistent with the flux profile and the large gyroradius of the ions.

  5. Type 2 radio bursts, interplanetary shocks and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1982-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  6. Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Liu, Y. Q.; Xu, X. Y.; Wang, Z. R.

    2016-07-01

    Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.

  7. Energetic particle acceleration at corotating interaction regions: Ulysses results

    SciTech Connect

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Gosling, J.T.

    1997-07-01

    We present here statistical properties of energetic ions (tilde 1 MeV) accelerated by corotating interaction regions observed at the Ulysses spacecraft. We have correlated the tilde 1 MeV proton intensity measured near the trailing edges of the interaction regions with their compression ratio. We interpret our results in terms of the plasma conditions experienced at Ulysses and identify a likely source of the low energy seed particles accelerated at the interaction regions.

  8. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    SciTech Connect

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  9. Solar energetic particle events: Statistical modelling and prediction

    NASA Technical Reports Server (NTRS)

    Gabriel, S. B.; Feynman, J.; Spitale, G.

    1996-01-01

    Solar energetic particle events (SEPEs) can have a significant effect on the design and operation of earth orbiting and interplanetary spacecraft. In relation to this, the calculation of proton fluences and fluxes are considered, describing the current state of the art in statistical modeling. A statistical model that can be used for the estimation of integrated proton fluences for different mission durations of greater than one year is reviewed. The gaps in the modeling capabilities of the SEPE environment, such as a proton flux model, alpha particle and heavy ion models and solar cycle variations are described together with the prospects for the prediction of events using neural networks.

  10. Effects of Interplanetary Transport on Derived Energetic Particle Source Strengths

    NASA Astrophysics Data System (ADS)

    Chollet, E. E.; Giacalone, J.; Mewaldt, R. A.

    2009-12-01

    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the total energy content of particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch-angle scattering and adiabatic cooling of energetic ions with energies from 50 keV/nucleon to 100 MeV/nucleon. Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer due to adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient, a wide range of scattering mean-free paths, and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. Our results are used to estimate the total energy needed to accelerate particles for an event on 20 February 2002 based on observations made at 1 AU. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to mean free path and scattering scheme.

  11. Energetic particle environment in near-Earth orbit.

    PubMed

    Klecker, B

    1996-01-01

    The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment. PMID:11540369

  12. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    SciTech Connect

    Giacalone, J.; Jokipii, J. R.

    2004-09-15

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration.

  13. Optimizing Stellarators for Energetic Particle Confinement using BEAMS3D

    NASA Astrophysics Data System (ADS)

    Bolgert, Peter; Drevlak, Michael; Lazerson, Sam; Gates, David; White, Roscoe

    2015-11-01

    Energetic particle (EP) loss has been called the ``Achilles heel of stellarators,'' (Helander, Rep. Prog. Phys. 77 087001 (2014)) and there is a great need for magnetic configurations with improved EP confinement. In this study we utilize a newly developed capability of the stellarator optimization code STELLOPT: the ability to optimize EP confinement via an interface with guiding center code BEAMS3D (McMillan et al., Plasma Phys. Control. Fusion 56, 095019 (2014)). Using this new tool, optimizations of the W7-X experiment and ARIES-CS reactor are performed where the EP loss fraction is one of many target functions to be minimized. In W7-X, we simulate the experimental NBI system using realistic beam geometry and beam deposition physics. The goal is to find configurations with improved neutral beam deposition and energetic particle confinement. These calculations are compared to previous studies of W7-X NBI deposition. In ARIES-CS, we launch 3.5 MeV alpha particles from a near-axis flux surface using a uniform grid in toroidal and poloidal angle. As these particles are born from D-T reactions, we consider an isotropic distribution in velocity space. This research is supported by DoE Contract Number DE-AC02-09CH11466.

  14. Solar Flares, Type III Radio Bursts, CMEs, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2004-01-01

    Despite the fact that it has been well known since the earliest observations that solar energetic particle events are well associated with solar flares it is often considered that the association is not physically significant. Instead, in large events, the particles are considered to be only accelerated at a shock driven by the coronal mass ejection (CME) that is also always present. If particles are accelerated in the associated flare, it is claimed that such particles do not find access to open field lines and therefore do not escape from the low corona. However recent work has established that long lasting type III radio bursts extending to low frequencies are associated with all prompt solar particle events. Such bursts establish the presence of open field lines. Furthermore, tracing the radio bursts to the lowest frequencies, generated near the observer, shows that the radio producing electrons gain access to a region of large angular extent. It is likely that the electrons undergo cross field transport and it seems reasonable that ions do also. Such observations indicate that particle propagation in the inner heliosphere is not yet fully understood. They also imply that the contribution of flare particles in major particle events needs to be properly addressed.

  15. Energetic Particle Measurements on Mars and in Lunar Orbit

    NASA Astrophysics Data System (ADS)

    Zeitlin, C. J.; Hassler, D.; Schwadron, N.; Spence, H. E.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. S.; Brinza, D. E.; Burmeister, S.; Ehresmann, B.; Guo, J.; Kohler, J.; Lohf, H.; Martin-Garcia, C.; Posner, A.; Rafkin, S. C.; weigle, G., II; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Radiation Assessment Detector (RAD) aboard the Curiosity rover has been making measurements of energetic particles on the surface of Mars since the rover landed in August 2012. RAD also acquired data for most of the cruise to Mars, from Dec. 2011 through July 2012. In both cruise and on the surface, RAD is under considerable shielding, averaging 22 g cm-2 of CO2 during the surface mission, and ~ 16 g cm-2 during cruise. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the LRO spacecraft in lunar orbit has been making measurements since mid-2009. CRaTER contains three sets of detectors, of which one is unshielded, one is under 6 g cm-2 of tissue-equivalent plastic (TEP) shielding, and one is under 9 g cm-2 of TEP. Taken together, the two experiments provide a wealth of data concerning the effects of shielding on Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Comparison of data from the two instruments is complicated by their different locations in the heliosphere, which at most times causes them to be magnetically connected to different regions on the Sun. Variability of the atmospheric shielding above RAD, which is both diurnal and seasonal, also influences the comparison. During solar quiet time, when the energetic particle flux is due to GCRs, many similarities - and some small but significant differences - are seen in detailed time series data. In contrast, during SEP events, both the shielding and location disparities cause large differences in the measured particle fluxes.

  16. ENERGETIC CHARGED PARTICLES ASSOCIATED WITH STRONG INTERPLANETARY SHOCKS

    SciTech Connect

    Giacalone, Joe

    2012-12-10

    We analyze observations of energetic charged particles associated with many strong interplanetary shocks seen by Advanced Composition Explorer. We focus primarily on 47-187 keV suprathermal protons and restrict our analysis to strong interplanetary shocks (Alfven Mach number >3 and the shock density compression >2.5). Eighteen shocks meeting this criterion from 1998 to 2003 were analyzed. All 18 had enhancements of the 47-65 keV proton intensity above the intensity seen one day before the shock. In 17 events, the particle intensity either rose to a quasi-plateau or peaked within 10 minutes of the shock. Most had intensities at the shock exceeding 100 times more than that seen the day before the shock arrived. The time-intensity profiles of the energetic proton events in many cases reveal a rise before the shock passage reaching a quasi-plateau or local peak at the shock, followed by a gradual decline. This suggests that the shock itself is the source of energetic particles. Energy spectra behind the shock were fit to an assumed power law over the interval from 46 to 187 keV, and the resulting spectral index was compared to the plasma density jump across each shock. Most events agree with the prediction of diffusive shock acceleration theory to within the observational uncertainties. We also analyzed a few selected events to determine the particle spatial diffusion coefficients and acceleration timescales. We find that the time to accelerate protons to {approx}50 keV is of the order of an hour.

  17. Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Hussein, M.; Shalchi, A.

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.

  18. Energetic particle flux experiment (IMP F and G)

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1973-01-01

    The data reduction procedures and programs for analysis of the IMP F and G energetic particle flux experiments are summarized. The IMP-F experiment contained two thin-window Geiger-Mueller detectors and an ionization chamber. There were two IMP-G experiments: one with six Geiger-Mueller detectors and an ionization chamber, and the other with two funnel mouthed channeltrons in a parallel plate electrostatic analyzer. These experiments measured particles in the energy range above 20 keV (IMP-F) and above approximately 5 keV (IMP-G). A bibliography is presented of papers containing the scientific results. These data were predominantly used for the study of low energy solar particles from flares.

  19. Modulational instability of a Langmuir wave in plasmas with energetic tails of superthermal electrons

    SciTech Connect

    Timofeev, I. V.

    2013-01-15

    The impact of superthermal electrons on dispersion properties of isotropic plasmas and on the modulational instability of a monochromatic Langmuir wave is studied for the case when the power-law tail of the electron distribution function extends to relativistic velocities and contains most of the plasma kinetic energy. Such an energetic tail of electrons is shown to increase the thermal correction to the Langmuir wave frequency, which is equivalent to the increase of the effective electron temperature in the fluid approach, and has almost no impact on the dispersion of ion-acoustic waves, in which the role of temperature is played by the thermal spread of low-energy core electrons. It is also found that the spectrum of modulational instability in the non-maxwellian plasma narrows significantly, as compared to the equilibrium case, without change of the maximum growth rate and the corresponding wavenumber.

  20. Energetic Geodesic Acoustic Modes Associated with Two-Stream-like Instabilities in Tokamak Plasmas.

    PubMed

    Qu, Z S; Hole, M J; Fitzgerald, M

    2016-03-01

    An unstable branch of the energetic geodesic acoustic mode (EGAM) is found using fluid theory with fast ions characterized by their narrow width in energy distribution and collective transit along field lines. This mode, with a frequency much lower than the thermal GAM frequency ω_{GAM}, is now confirmed as a new type of unstable EGAM: a reactive instability similar to the two-stream instability. The mode can have a very small fast ion density threshold when the fast ion transit frequency is smaller than ω_{GAM}, consistent with the onset of the mode right after the turn-on of the beam in DIII-D experiments. The transition of this reactive EGAM to the velocity gradient driven EGAM is also discussed.

  1. The "Puck" energetic charged particle detector: Design, heritage, and advancements

    NASA Astrophysics Data System (ADS)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  2. The Solar Energetic Particle experiment on MAVEN: First Results

    NASA Astrophysics Data System (ADS)

    Larsen, Davin; Lillis, Robert J.; Rahmati, Ali; Dunn, Patrick; Cravens, Tom; Curtis, David; Hatch, Ken; Robinson, Miles; Glaser, David; Halekas, Jasper; Jakosky, Bruce; Luhmann, Janet; McFadden, James P.; Connerney, Jack

    2015-04-01

    The Solar Energetic Particle (SEP) instrument arrived at Mars onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission on September 22, 2014. In order for MAVEN to determine the role that loss of volatiles to space has played through time, solar energy input to the Martian system must be characterized. An important (if infrequent and episodic) portion of this input is in the form of solar energetic particle (SEP) events. Understanding the relationship between SEP events and atmospheric escape is crucial to understanding the climate history of Mars. The SEP instrument characterizes such events at Mars by measuring energetic protons and electrons in the energy range absorbed by the upper atmosphere. Additionally, under certain conditions, SEP directly measures the flux of escaping Oxygen that has been picked up by the Solar Wind and can provide limits on this important escape mechanism [1]. The implications of the model comparison with SEP data for the escape of neutral oxygen from Mars will be discussed. SEP takes much of its heritage from the Solid State Telescope (SST) on the THEMIS mission, consisting of 2 orthogonal dual double-ended solid-state telescopes. Proton spectra from 25 keV to 6 MeV and electron spectra from 25 keV to 1 MeV will be collected in 4 look directions at 3 measurement cadences over MAVEN’s 4.5-hour elliptical orbit: 32s far from the planet, 8s between 300 and 800 km altitude and 2s below 300 km. SEP measures particle fluxes from ~20 to ~107 cm-2 s -1 sr-1. We will present results from the first 5 months of the MAVEN science mission.References: [1] Rahmati A. et al. (2014) GRL 41(14) , 4812-481

  3. Initial Time Dependence of Abundances in Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ny, C. K.; Tylka, A. J.

    1999-01-01

    We compare the initial behavior of Fe/O and He/H abundance ratios and their relationship to the evolution of the proton energy spectra in "small" and "large" gradual solar energetic particle (SEP) events. The results are qualitatively consistent with the behavior predicted by the theory of Ng et al. (1999a, b). He/H ratios that initially rise with time are a signature of scattering by non-Kolmogorov Alfven wave spectra generated by intense beams of shock-accelerated protons streaming outward in large gradual SEP events.

  4. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H. H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with Z = 6-30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  5. Solar Coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 Z or = 30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  6. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 = or Z or = 30. The ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  7. Beam ion losses due to energetic particle geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Fisher, R. K.; Pace, D. C.; Kramer, G. J.; Van Zeeland, M. A.; Nazikian, R.; Heidbrink, W. W.; García-Muñoz, M.

    2012-12-01

    We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.

  8. Turbulence Evolution and Shock Acceleration of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Chee, Ng K.

    2007-01-01

    We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.

  9. Precision Measurements of Solar Energetic Particle Elemental Composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spaceraft were used to determined, solar energetic particle abundances or upper limits for all elements with Z 30 from a combined set of 10 solar flares during the 1977 to 1982 time period. Statistically meaningful abundances were determined for several rare elements including P, C1, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements was proved. When compared to solar photospheric spectroscopic abundances, these new SEP abundances more clearly exhibit the step-function dependence on first ionization potential previously reported.

  10. Temporal profiles of solar energetic particle events from SOHO/EPHIN data

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; Peral, L. Del; Rodríguez-Frías, M. D.; Gutiérrez, J.; Muller-Mellin, R.; Kunow, H.

    Temporal profiles of energetic ions and electrons observed at 1 AU during solar energetic particle events are mainly determined by particle injection features, the observer location relative to the source region at the Sun, and the interplanetary space plasma and field conditions during particle transport. In this work, temporal profiles of 18 solar energetic particle events have been analyzed by fitting a pulse function to them in order to find a set of parameters which can be used to characterize the events.

  11. Experimental investigation of the radial structure of energetic particle driven modes

    NASA Astrophysics Data System (ADS)

    Horváth, L.; Papp, G.; Lauber, Ph.; Por, G.; Gude, A.; Igochine, V.; Geiger, B.; Maraschek, M.; Guimarais, L.; Nikolaeva, V.; Pokol, G. I.; the ASDEX Upgrade Team

    2016-11-01

    Alfvén eigenmodes (AEs) and energetic particle modes (EPMs) are often excited by energetic particles (EPs) in tokamak plasmas. One of the main open questions concerning EP driven instabilities is the non-linear evolution of the mode structure. The aim of the present paper is to investigate the properties of beta-induced AEs (BAEs) and EP driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated ASDEX Upgrade (AUG) discharges. This paper focuses on the changes in the mode structure of BAEs/EGAMs during the non-linear chirping phase. Our investigation has shown that in the case of the observed down-chirping BAEs the changes in the radial structure are smaller than the uncertainty of our measurement. This behaviour is most probably the consequence of the fact that BAEs are normal modes, thus their radial structure strongly depends on the background plasma parameters rather than on the EP distribution. In the case of rapidly upward chirping EGAMs the analysis consistently shows shrinkage of the mode structure. The proposed explanation is that the resonance in the velocity space moves towards more passing particles which have narrower orbit widths.

  12. PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK

    SciTech Connect

    Hoshino, Masahiro

    2013-08-20

    Particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk was investigated by using a particle-in-cell simulation. We discuss the important role that magnetic reconnection plays not only on the saturation of MRI but also on the relativistic particle generation. The plasma pressure anisotropy of p > p{sub ||} induced by the action of MRI dynamo leads to rapid growth in magnetic reconnection, resulting in the fast generation of nonthermal particles with a hard power-law spectrum. This efficient particle acceleration mechanism involved in a collisionless accretion disk may be a possible model to explain the origin of high-energy particles observed around massive black holes.

  13. A statistical study of plasmawaves and energetic particles in the outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk

    The Earth magnetosphere contains energetic particles undergoing specific motions around Earth's magnetic field, and interacting with a variety of waves. The dynamics of energetic particles are often described in terms of three kinds of adiabatic invariants. Energetic electrons are often unstable to the whistler-mode chorus waves, and ions, to the electromagnetic ion cyclotron (EMIC) instability. These waves play an important role in the dynamics of the magnetosphere by energizing electrons to form a radiation belt, extracting energy from the hot, anisotropic ions and causing pitch angle scattering of energetic ions and relativistic electrons into the loss cone. EMIC waves correspond to the highest frequency waves in the ultra-low frequency (ULF) spectral regime, and field line resonances at the lower frequency may serve as diagnostics for the plasma distribution in the magnetosphere. This dissertation investigates (1) a rapid, efficient way of specifying particle's adiabatic motion in the magnetosphere, (2) source of the whistler-mode chorus waves, (3) physical properties and coherent spatial dimensions of the EMIC waves and (4) a diagnostic use of the toroidal mode Alfven waves on the plasma density distribution in the Earth magnetosphere. The studies presented in this dissertation have significantly been benefited from the comprehensive data obtained by several space missions, including the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, Cluster mission, the Geostationary Operational Environment Satellites (GOES), Los Alamos National Laboratory (LANL) satellites, the Polar spacecraft and the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Charge Composition Explorer (CCE), and from ground-based Automatic Geophysical Observatories (AGO). The main findings and achievements in this dissertation are as follows: (1) A method of rapidly and efficiently computing the magnetic drift invariant (L*) was developed. This new

  14. Perpendicular diffusion of energetic particles in noisy reduced magnetohydrodynamic turbulence

    SciTech Connect

    Shalchi, A.; Hussein, M. E-mail: m_hussein@physics.umanitoba.ca

    2014-10-10

    A model for noisy reduced magnetohydrodynamic turbulence was recently proposed. This model was already used to study the random walk of magnetic field lines. In the current article we use the same model to investigate the diffusion of energetic particles across the mean magnetic field. To compute the perpendicular diffusion coefficient, two analytical theories are used, namely, the Non-Linear Guiding Center theory and the Unified Non-Linear Transport (UNLT) theory. It is shown that the two theories provide different results for the perpendicular diffusion coefficient. We also perform test-particle simulations for the aforementioned turbulence model. We show that only the UNLT theory describes perpendicular transport accurately, confirming that this is a powerful tool in diffusion theory.

  15. Perpendicular diffusion of energetic particles in collisionless plasmas

    SciTech Connect

    Shalchi, A.

    2015-01-15

    A fundamental problem in plasma and astrophysics is the interaction between energetic particles and magnetized plasmas. In the current paper, we focus on particle diffusion across the guide magnetic field. It is shown that the perpendicular diffusion coefficient depends only on the parallel diffusion coefficient and the Kubo number. Therefore, one can find four asymptotic limits depending on the values of these two parameters. These regimes are the quasilinear limit, the Kadomtsev and Pogutse limit, the scaling of Rechester and Rosenbluth, and the scaling found by Zybin and Istomin. In the current article, we focus on the Rechester and Rosenbluth scenario because this was not discovered before in the context of collisionless plasmas. Examples and applications are discussed as well. We show that an energy independent ratio of perpendicular and parallel diffusion coefficients can be found and that this ratio can be very small but also close to unity. This is exactly what one observes in the solar wind.

  16. Interaction between solar energetic particles and interplanetary grains

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Calcagno, L.; Foti, G.; Sheng, K. L.

    Some laboratory-studied effects induced by the fluence of fast ions on frosts of astrophysical interest are summarized. The results are applied to the interaction between energetic solar ions and interplanetary dust grains assumed to be cometary debris which spends about one-million yr before being collected in the earth's atmosphere or colliding on the moon's surface. The importance of erosion by particles to the stability of ice grains is confirmed. The build up of carbonaceous material by ion fluence on hydrocarbon containing grains is discussed. It is suggested that these new materials could be the glue which cements submicron silicate particles to form a complex agglomeration whose density increases with increasing proton fluence (packing effect). The IR spectra of laboratory synthesized carbonaceous material are compared with those observed in some carbonaceous meteoritic extracts.

  17. Probabilistic Assessment of Risks from Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.

    2010-01-01

    Solar energetic particle events pose a radiation hazard for space crews and a risk of harmful radiation effects in spacecraft electronics. To assess these risks, engineers need to know the worst-case environment that they must plan for or design to withstand. Depending on the application, engineers may need to know the instantaneous worst-case environment, the radiation environment that accumulates during one solar particle event or the cumulative worst-case environment for their entire mission. Also, depending on their application, they will need to know this environment at a confidence level which they will specify. We will present a probabilistic model for the peak fluxes, event-integrated fluences and mission-integrated fluences for solar protons and heavy ions. The model will provide these worst-case environments at user-specified confidence levels. Examples of the use of this model will also be shown.

  18. Multi-spacecraft observations of solar energetic particles with STEREO

    NASA Astrophysics Data System (ADS)

    Dresing, Nina; Klassen, Andreas; Gomez-Herrero, Raul; Heber, Bernd

    2016-07-01

    The growing longitudinal separation of the two STEREO spacecraft improved the ability to investigate the longitudinal distribution of solar energetic particle (SEP) events and to detect widespread events unambiguously. Focusing on near-relativistic electrons, several of those events show longitudinal SEP distributions of up to all around the Sun. The strongly varying characteristics of those events suggest that there must be various mechanisms, which can contribute to the wide angular particle spreads. Among these mechanisms i) strong cross-field transport in the interplanetary medium and ii) extended injection regions close to the Sun are proposed. It is not clear yet if these extended injection regions at the Sun are formed by coronal transport, shocks, EIT waves or other processes. We will present case studies as well as statistical results of SEP events observed by multiple spacecraft well separated in space.

  19. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  20. Perpendicular diffusion of energetic particles in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Shalchi, A.

    2015-01-01

    A fundamental problem in plasma and astrophysics is the interaction between energetic particles and magnetized plasmas. In the current paper, we focus on particle diffusion across the guide magnetic field. It is shown that the perpendicular diffusion coefficient depends only on the parallel diffusion coefficient and the Kubo number. Therefore, one can find four asymptotic limits depending on the values of these two parameters. These regimes are the quasilinear limit, the Kadomtsev and Pogutse limit, the scaling of Rechester and Rosenbluth, and the scaling found by Zybin and Istomin. In the current article, we focus on the Rechester and Rosenbluth scenario because this was not discovered before in the context of collisionless plasmas. Examples and applications are discussed as well. We show that an energy independent ratio of perpendicular and parallel diffusion coefficients can be found and that this ratio can be very small but also close to unity. This is exactly what one observes in the solar wind.

  1. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  2. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    SciTech Connect

    Berk, H.L.; Ye, Huanchun . Inst. for Fusion Studies); Breizman, B.N. . Inst. Yadernoj Fiziki)

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width {triangle}{sub b} is much larger than the mode thickness {triangle}{sub m}, we obtain a new compact expression for the linear power transfer. When {triangle}{sub m}/{triangle}{sub b} {much lt} 1, the banana orbit effect reduces the power transfer by a factor of {triangle}{sub m}/{triangle}{sub b} from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances ({vert bar}{upsilon}{sub {parallel}}{vert bar} = {upsilon}{sub A} is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands ({vert bar}{upsilon}{sub {parallel}}{vert bar}) = {upsilon}{sub A}/(2{ell} {minus} 1) with {ell} {ge} 2) is substantially reduced. 10 refs.

  3. Neptune's inner magnetosphere and aurora: Energetic particle constraints

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Krimigis, S. M.; Acuna, M. H.

    1994-01-01

    A dramatic and peculiar dropout of greater than 500-keV ions (but not electrons) was observed within Neptune's inner magnetosphere near 2 R(sub N) as the Voyager 2 spacecraft approached the planet. Unlike a number of other energetic particle features this feature could not be accounted for by known material bodies in the context of the most utilized magnetic field models (neither the offset tilted dipole models nor the spehrical harmonic model 'O8'). However, the configuration of Neptune's inner magnetosphere is highly uncertain. By applying a novel technique, utilizing energetic particle measurements, to constrain the magnetic field configuration of the inner regions, we show that appeals to unobserved materials within Neptune's system are unnecessary, and that the ion dropout feature was, in all likelihood, the result of ion interactions with maximum L excursions of the ring 1989N1R. The constraints also favor the se of the M2 magnetic field model (Selesnick, 1992) over the previous models. An electron feature was probably absent because the electron interactions with the ring occurred substantially before the ion interactions (about 2 hours for the electrons versus a few minutes for the ions). Pitch-angle scattering apparently eliminated the electron signature. Minimum scattering rates determined based on this premise yield enough electron precipitation power to explain the brightest component of Neptune's aurora. We propose that this bright component is analogous to the Earth's diffuse aurora.

  4. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  5. Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Ye, Huanchun.

    1992-03-01

    Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.

  6. Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Ye, Huanchun

    1992-03-01

    Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.

  7. Interactions of energetic particles and clusters with solids

    SciTech Connect

    Averback, R.S.; Hsieh, Horngming . Dept. of Materials Science and Engineering); Diaz de la Rubia, T. ); Benedek, R. )

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs.

  8. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  9. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1984-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production. Previously announced in STAR as N83-20886

  10. Anisotropy-driven collective instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-12-01

    The classical electrostatic Harris instability is generalized to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space charge. For a long, coasting beam, the eigenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A simple theoretical model is developed which describes the essential features of the linear stage of the instability. Both the simulations and the analytical theory clearly show that moderately intense beams are linearly unstable to short-wavelength perturbations provided the ratio of the longitudinal temperature to the transverse temperature is smaller than some threshold value. The delta-f particle-in-cell code BEST has been used to study the detailed nonlinear evolution and saturation of the instability.

  11. Long-lived energetic particle source regions on the Sun

    NASA Astrophysics Data System (ADS)

    Bučík, R.; Innes, D. E.; Chen, N. H.; Mason, G. M.; Gómez-Herrero, R.; Wiedenbeck, M. E.

    2015-09-01

    Discovered more than 40 years ago, impulsive solar energetic particle (SEP) events are still poorly understood. The enormous abundance enhancement of the rare 3He isotope is the most striking feature of these events, though large enhancements in heavy and ultra-heavy nuclei are also observed. Recurrent 3He-rich SEPs in impulsive events have only been observed for limited time periods, up to a few days which is typically the time that a single stationary spacecraft is magnetically connected to the source active regions on the Sun. With the launch of the two STEREO spacecraft we now have the possibility of longer connection time to solar active regions. We examined the evolution of source regions showing repeated 3He-rich SEP emissions for relatively long time periods. We found that recurrent 3He-rich SEPs in these long-lived sources occur after the emergence of magnetic flux.

  12. Energetic charged particle beams for disablement of mines

    SciTech Connect

    Wuest, C.R.

    1995-03-27

    LLNL has an ongoing program of weapons disablement using energetic charged particle beams; this program combines theoretical and experimental expertise in accelerators, high-energy and nuclear physics, plasma physics and hydrodynamics to simulate/measure effects of electron and proton beams on weapons. This paper reviews work by LLNL, LANL and NSWC on detonating sensitive and insensitive high explosives and land mines using high-current electron beams. Computer simulations are given. 20--160 MeV electron beams incident on wet/dry soils are being studied, along with electron beam propagation in air. Compact high current, high energy accelerators are being developed for mine clearing. Countermine missions of interest are discussed. 25 refs., 9 figs.

  13. Solar abundances as derived from solar energetic particles

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1989-01-01

    Recent studies have shown that there are well defined average abundances of heavy (Z above 2) solar energetic particles (SEPs), with variations in the acceleration and propagation producing a systematic flare-to-flare fractionation that depends on the charge per unit mass of the ion. Correcting the average SEP abundances for this fractionation yields SEP-derived coronal abundances for 20 elements. High-resolution SEP studies have also provided isotopic abundances for five elements. SEP-derived abundances indicate that elements with high first ionization potentials (greater than 10 eV) are depleted in the corona relative to the photosphere and provide new information on the solar abundance of C and Ne-22.

  14. Energetic Charged Particles in Saturn's Magnetosphere: Voyager 1 Results.

    PubMed

    Vogt, R E; Chenette, D L; Cummings, A C; Garrard, T L; Stone, E C; Schardt, A W; Trainor, J H; Lal, N; McDonald, F B

    1981-04-10

    Voyager 1 provided the first look at Saturn's magnetotail and magnetosphere during relatively quiet interplanetary conditions. This report discusses the energetic particle populations of the outer magnetosphere of Saturn and absorption features associated with Titan and Rhea, and compares these observations with Pioneer 11 data of a year earlier. The trapped proton fluxes had soft spectra, represented by power laws E(-gamma) in kinetic energy E, with gamma approximately 7 in the outer magnetosphere and gamma approximately 9 in the magnetotail. Structure associated with the magnetotial was observed as close as 10 Saturn radii (R(s)) on the outbound trajectory. The proton and electron fluxes in the outer magnetosphere and in the magnetotail were variable and appeared to respond to changes in interplanetary conditions. Protons with energies >/= 2 million electron volts had free access to the magnetosphere from interplanetary space and were not stably trapped outside approximately 7.5 R(s).

  15. Rocket observation of soft energetic particles at the magnetic equator

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.

    1974-01-01

    Results from a rocket-borne ion mass spectrometer flown near the magnetic equator at 0108 LMT, March 10, 1970, exhibit an unusual background current above 200 km. This current is observed to increase 3.5 orders of magnitude between 200 and 260 km before maximizing to a fixed value from 260 km to the 295 km apogee of the flight. Properties of the background combined with laboratory measurements have permitted probable identification of the background source as 2-20 keV electrons or protons. Maximum electron fluxes have been estimated to be of the order 10 to the 10th power particles/sq cm-sec-ster in accord with ISIS-1 satellite measurements at higher altitudes. The background was not observed on an earlier flight at 1938 LMT, suggesting the particles to be trapped in a blet which drifted below 300 km between the two flights. The low altitude penetration of these fluxes may have been related to the great magnetic storm of March 8. Simultaneous measurements of the thermal ion distribution are compared with these results and qualitatively suggest that the soft energetic particles are responsible for an observed O2(+) and NO(+) enhancement.

  16. Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence

    NASA Astrophysics Data System (ADS)

    Heusen, M.; Shalchi, A.

    2016-09-01

    We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.

  17. Solar energetic particle interactions with the Venusian atmosphere

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Paschalis, Pavlos; Grassi, Davide; Mavromichalaki, Helen; Andriopoulou, Maria

    2016-07-01

    In the context of planetary space weather, we estimate the ion production rates in the Venusian atmosphere due to the interactions of solar energetic particles (SEPs) with gas. The assumed concept for our estimations is based on two cases of SEP events, previously observed in near-Earth space: the event in October 1989 and the event in May 2012. For both cases, we assume that the directional properties of the flux and the interplanetary magnetic field configuration would have allowed the SEPs' arrival at Venus and their penetration to the planet's atmosphere. For the event in May 2012, we consider the solar particle properties (integrated flux and rigidity spectrum) obtained by the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al., 2010, 2014) applied previously for the Earth case and scaled to the distance of Venus from the Sun. For the simulation of the actual cascade in the Venusian atmosphere initiated by the incoming particle fluxes, we apply the DYASTIMA code, a Monte Carlo (MC) application based on the Geant4 software (Paschalis et al., 2014). Our predictions are afterwards compared to other estimations derived from previous studies and discussed. Finally, we discuss the differences between the nominal ionization profile due to galactic cosmic-ray-atmosphere interactions and the profile during periods of intense solar activity, and we show the importance of understanding space weather conditions on Venus in the context of future mission preparation and data interpretation.

  18. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    SciTech Connect

    Wang, Hao Ido, Takeshi; Osakabe, Masaki; Todo, Yasushi

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  19. Acceleration of energetic charged particles: Shocks, reconnection or turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.

    2012-05-01

    Acceleration of energetic charged charged particles, most-often with power-law energy spectra occurs everywhere is space where particle-particle collision mean free paths are significantly larger than their gyro-radii. Shocks, reconnection events and turbulence have variously been proposed as acceleration mechanisms, and each must currently be considered a viable mechanism. Shocks have the advantage that they produce naturally power-law spectra in the observed range which are not very sensitive to the parameters. They are usually also fast accelerators. I first discuss the constraints which observations place on the acceleration mechanisms and show that there are both temporal and spatial constraints. Stochastic acceleration tends to be slow, so the rate of acceleration is important. In the inner heliosphere, this rate must exceed the rate of adiabatic cooling ~ 2Vw/r, where Vw is the radial solar-wind velocity. Acceleration of anomalous cosmic rays (ACR) in the heliosheath must occur on a time scale of on year to avoid producing too many multiply charged ACR. It is shown that here, stochastic acceleration has difficulties in the inner heliosheath. Reconnection events are essentially incompressible, so the divergence of the flow velocity is nearly zero, and the Parker equation would give little acceleration. Acceleration at reconnection therefore must go beyond the Parker equation - either by invoking large pitch-angle anisotropies or by extending the equation to higher order in the flow speed relative to the particle speed. An approach to using an extension of Parker's equation is discussed. Diffusive shock acceleration at the heliospheric termination shock is also discussed. It is suggested that inclusion of upstream turbulence and shock geometry provides reasonable solutions to the perceived problems with this mechanism. Finally, observation evidence is presented which suggests, strongly, that the acceleration of the ACR occurs in the inner heliosphere, not far

  20. Energetic particle stabilization of m=1 internal kink mode in tokamaks

    NASA Astrophysics Data System (ADS)

    R, J. Hastie; Yanping, Chen; Fujiu, Ke; Shidong, Cai; S, T. Tsai; L, Chen

    1987-12-01

    The stability of m=1 internal kink mode in a tokamak plasma with an anisotropic energetic particle component has been analyzed using the generalized energy principle. It is found that employing barely trapped energetic particles can significantly improve the stability properties.

  1. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution. PMID:17846031

  2. Solar Sources of Earth-affecting Energetic Particles

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Particle radiation from the Sun is one of the most important sources of hazardous space weather in the vicinity of Earth. Detailed studies of the origin of the so-called large solar energetic particle (SEP) events became possible only during the solar cycle 23, thanks to the availability of nearly continuous observation of the solar sources ofthese events. In particular, coronal mass ejections (CMEs), which are found to be a key requirement for the occurrence of an SEP event, have been recorded continuously only starting in the 1990s. The physical connection between CMEs and SEPs is that the CMEs drive a fast-mode MHD shock, which accelerates SEPs in the corona and interplanetary medium. The earliest indication of a shock is the occurrence of a type II radio burst at frequencies anywhere from more than a hundred MHz to a few MHz. Recent investigations using STEREO observations have revealed that the shock forms very close to the Sun - a mere 100,000 km above the surface. The shock formation depends not only on the CME properties, but also on the physical conditions in the ambient medium that supports shock propagation. This paper considers extreme cases of SEP events and the associated CMEs and type II radio bursts to illustrate the variability observed in SEP event properties. Comparison will be made between the events of solar cycles 23 and 24.

  3. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  4. Developing an Empirical Model for Predicting Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Quinn, R. A.; Winter, L. M.; Ledbetter, K.; Ashley, S. F.

    2014-12-01

    Solar energetic particle (SEP) events are powerful enhancements in the particle flux received at Earth. These events, often related to coronal mass ejections, can be disruptive to ionospheric communications, destructive to satellites, and pose a health risk to astronauts. To develop a useful forecast for the onset time and peak flux of SEP events, we are examining the radio burst, proton, and electron properties associated with the SEPs of the current solar cycle. Using the Wind/WAVES radio observations from 2010-2013, we analyzed the 123 decametric-hectometric type II solar radio burst properties, the associated type III burst properties, and their correlation with SEP properties determined from analysis of the Geostationary Operational Environmental Satellite (GOES) observations. Through a principal component and logistic regression analyses, we find that the radio properties alone can be used to predict the occurrence of an SEP event with a false alarm rate of 17%, a probability of detection of 65%, and with 88% of the classifications correct. We also explore the use of the > 2 MeV electron flux to forecast proton peak flux and event onset time, with preliminary results suggesting a correlation between the peak electron and proton flux.

  5. Energetic Particles in the far and near Environment of Pluto

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Hill, M. E.; McNutt, R. L., Jr.; Brown, L. E.; Kusterer, M. B.; Vandegriff, J. D.; Smith, H. T.; Mitchell, D. G.; Haggerty, D. K.; Bagenal, F.; Krimigis, S. M.; Lisse, C. M.; Delamere, P. A.; Elliott, H. A.; Horanyi, M.; McComas, D. J.; Piquette, M. R.; Poppe, A. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Valek, P. W.; Weidner, S.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, A.

    2015-12-01

    The New Horizons spacecraft was launched in 2006, passed Jupiter and its magnetotail, took continuous measurements in the solar wind throughout the recent years, and flew by Pluto in July 2015. The onboard PEPSSI instrument measures ion and electron intensities, masses, and energies in the keV to MeV range. The closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. Data taken near Pluto is downlinked throughout August. We will present analysis of this data and set it into context with previous measurements. We expect a number of interesting particle structures around Pluto. Parts of Pluto's molecular nitrogen atmosphere is escaping and will co-orbit with Pluto, potentially forming a partial gas torus. This torus can be additionally sourced by other Kuiper belt objects. The neutrals are eventually ionized and pick-up by the solar wind brings them into the PEPSSI energy range. The measured ion densities can be used to constrain the Pluto torus. Pluto is not expected to have an intrinsic magnetic field, but the energetic particle data can be used to infer its properties, if any. Pluto interacts instead with the solar wind via the pick-up of its ions and the magnetic fields created by currents in its ionosphere. The relative role of these mechanisms can be revealed by the flyby data and directly compared to data that was taken at Jupiter with identical instrumentation.

  6. Characterization of Mono-Energetic, Charged-Particle Radiography for HEDP Experiments

    NASA Astrophysics Data System (ADS)

    Manuel, M.; Seguin, F. H.; Li, C. K.; Casey, D.; Frenje, J.; Rygg, J.; Petrasso, R.; Gotchev, O.; Betti, R.; Knauer, J.; Smalyuk, V.

    2008-11-01

    Charged-particle radiography, which utilizes mono-energetic protons and alphas, has been used to image various High-Energy-Density Physics (HEDP) phenomena of interest, including capsule implosions, laser-plasma interactions, and Rayleigh-Taylor-instability growth. An imploded D^3He- filled glass capsule -- the backlighter -- provides mono-energetic 15-MeV and 3-MeV protons and 3.6-MeV alphas for radiographing these various phenomena. This technique provides simultaneously information about areal density and electromagnetic fields in the imaged systems. For successful study of these phenomena, the backlighter yield and size need to be optimized for the imaging geometry and detector used. Understanding the experimental parameters that affect it is therefore essential. Empirical studies of backlighter performance under a variety of conditions are presented. GEANT4 is used as well to investigate the limits and capabilities of this technique. This work was performed in part at the LLE National Laser User's Facility (NLUF), and was supported in part by US DOE, LLNL, LLE and the Fusion Science Center at Univ. Rochester. *Currently at LLNL.

  7. Energetic particle energy deposition in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Westlake, J. H.; Smith, H. T.; Mitchell, D. G.; Paranicas, C. P.; Rymer, A. M.; Bell, J. M.; Waite, J. H., Jr.; Mandt, K. E.

    2012-04-01

    Titan’s upper atmosphere has been observed to be variable on a pass-by-pass basis. During the nominal mission where the Cassini Ion and Neutral Mass Spectrometer (INMS) only sampled the northern hemisphere this variability was initially believed to be tied to solar drivers manifest in latitudinal variations in the thermal structure of the upper atmosphere. However, when Cassini delved into the southern hemisphere the latitudinal dependence was not present in the data. Recently, Westlake et al. (2011) showed that the pass-by-pass variability is correlated with the deviations in the plasma environment as identified by Rymer et al. (2009) and Simon et al. (2010). Furthermore, the studies of Westlake et al. (2011) and Bell et al. (2011) showed that Titan’s upper atmosphere responds to changes in the ambient magnetospheric plasma on timescales of roughly one Titan day (16 Earth days). We report on recent studies of energy deposition in Titan’s upper atmosphere. Previous studies by Smith et al. (2009), Cravens et al. (2008), Tseng et al. (2008), and Shah et al. (2009) reported on energetic proton and oxygen ion precipitation. Back of the envelope calculations by Sittler et al. (2009) showed that magnetospheric energy inputs are expected to be of the order of or greater than the solar processes. We report on further analysis of the plasma environment around Titan during the flybys that the INMS has good data. We utilize data from the Magnetospheric Imaging Instrument to determine how the magnetospheric particle population varies from pass to pass and how this influences the net magnetospheric energy input prior to the flyby. We also report on enhanced energetic neutral atom emissions during select highly energetic passes. References: Bell, J., et al.: “Simulating the time-dependent response of Titan's upper atmosphere to periods of magnetospheric forcing”. Geophys. Res. Lett., Vol. 38, L06202, 2011. Rymer, A. M., et al.: “Discrete classification and electron

  8. Coordinated Energetic Particle Measurements Using Chandra, Cluster, and Polar

    NASA Astrophysics Data System (ADS)

    Mueller-Mellin, R.; Blake, J. B.; Baker, D.

    2003-12-01

    It is not well known in the magnetospheric physics community that the Chandra spacecraft carries a multi-element energetic particle telescope called EPHIN (Electron Proton Helium Instrument) fielded by the University of Kiel. For present purposes we are interested in electrons that are measured from greater than 30 keV to greater than 10 MeV. Chandra is in a highly elliptical orbit with a perigee of 16000 km, and apogee of 133,000 km and an inclination of 28 degrees. Fortuitously the line of apsides is relatively close to that of the Cluster constellation. A first use of the Chandra data has been a further examination of a substorm onset that occurred = 0408 UT on 27 August 2001, discussed in a publication by Baker et al. (2002). At that time the s/c coordinates in GSM were Chandra (-6.64, 16.15, 12.82); Cluster 3 (-19.15, -1.40, 1.54); Polar (-7.71, -4.50, 3.32). It can be seen that whereas Cluster and Polar were a bit post midnight and roughly radially aligned, Chandra was well pre-midnight at around 20 hrs. Yet the onset time of energetic electrons at Chandra was very close to that observed at Cluster and Polar. Furthermore, some pre-substorm bursts were also seen to be closely time coincident at Chandra and the other spacecraft. These observations give additional evidence about the scale size of the phenomena and will be discussed in detail along with other coordinated measurements. Baker et al. GRL 29, no. 24, 2190, 2002

  9. Energetic particle physics in fusion research in preparation for burning plasma experiments

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Pinches, S. D.; Toi, K.

    2014-12-01

    The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium-tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the ‘sea’ of Alfvén eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  10. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  11. Solar Energetic Particle Research within SEPServer - a Space Weather Perspective

    NASA Astrophysics Data System (ADS)

    Malandraki, O. E.

    2012-04-01

    SEPServer is a three year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. One of the primary goals of the project is to lead to novel knowledge on the source, acceleration and transport of Solar Energetic Particles (SEPs) during solar eruptions, a topic directly related to progress on Space Weather. This latter goal will be accomplished by both the extensive data analysis of energetic particle measurements hosted at SEPServer and the simulation-based data analysis methods capable of deconvolving the effects of interplanetary transport and solar injection from SEP observations. SEPServer focuses on the implementation of a comprehensive and up to date SEP event analysis service including scientific data driven analysis both for 1 AU and for > 1 AU using data from the SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, ACE/SIS, WIND/3DP, Ulysses/HISCALE, Ulysses/COSPIN/LET, Ulysses/COSPIN/KET, STEREO/LET and STEREO/SEPT experiments. SEPServer will also provide for the first time the release of the HELIOS data set in a reasonable format and in full time resolution, thus making available data also for orbits inside 1 AU (down to 0.3 AU). During the first year of the project a novel SEP event list, including 114 cases, based on SOHO/ERNE high energy protons (~70 MeV) was produced. In parallel, the systematic scanning of electrons from SOHO/EPHIN (0.25-3.0 MeV) and ACE/EPAM (45-312 keV) was also performed for all SEP cases. The corresponding EM emissions were also delivered and catalogued. Plots of SEP fluxes for electrons and ions in different energy channels from different instruments (SOHO/ERNE, SOHO/EPHIN, ACE/EPAM), onset time determination and time shifting analysis for the identification of the solar release times of electrons from SOHO/EPHIN and ACE/EPAM, and velocity dispersion analysis of protons observed by SOHO/ERNE were performed, together with a first comparison with the associated solar electromagnetic emissions. SEPServer is

  12. SEPServer's added value to Solar Energetic Particle (SEP) Research

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga; Vainio, Rami; Papaioannou, Athanasios; Agueda, Neus; Klein, Karl-Ludwig; Heber, Bernd; Valtonen, Eino; Nindos, Alexander; Dröge, Wolfgang; Kartavykh, Yulia; Rodriguez-Gasén, Rosa; Vimer, Nicole; Heynderickx, Daniel; Braune, Stephan

    2014-05-01

    SEPServer brings together a wealth of SEP data, analysis methods and diverse but at the same time interconnected solar and heliospheric communities. It thus provides an open tool that advances our understanding of SEP propagation and acceleration. The scientific conclusions of this effort are drawn with the implementation and release to the SEP community of multiple SEP event catalogs based on different spacecrafts and instruments, covering a broad timescale from 1975 to 2013 as well as a variety of distances from 0.3 to ~5 AU within the heliosphere. SEP events from Helios A & B missions, going back to 1975, at distances 0.3-1 AU, together with their Electromagnetic (EM) counterpart from OSRA data (from Leibniz Institut für Astrophysik Potsdam) are being released for the first time. A catalog covering solar cycle 23 based upon the Solar and Heliospheric Observatory (SOHO)/ Energetic and Relativistic Nuclei and Electron (ERNE) high-energy (~68 MeV) protons at 1 AU with parallel analysis of SOHO/ Electron Proton Helium Instrument (EPHIN) and Advanced Composition Explorer (ACE) / Electron, Proton and Alpha Monitor (EPAM) data, including the relevant EM associations has also been delivered. Furthermore, the first complete Solar TErrestrial RElations Observatory (STEREO) SEP catalog based on the Low Energy Telescope (LET) protons (6-10 MeV) and the Solar Electron Proton Telescope (SEPT) electrons (55-85 keV) from 2007 to 2012 has been implemented. Moreover, the Cosmic Ray and Solar Particle Investigation (COSPIN) Kiel Electron Telescope (KET) data of 38-125 MeV has been used to identify a new catalog of SEP events observed in and out of the ecliptic plane over solar cycle 23, with simultaneous analysis of electrons recorded by the Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies (HISCALE). For selected cases simulation based analysis has been applied in order to identify the timing of the injection history and to provide a cross reference

  13. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  14. Observations of energetic particle escape at the magnetopause: Early results from the MMS Energetic Ion Spectrometer (EIS)

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, D. G.; Giles, B. L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Jaynes, A. N.; Baker, D. N.; Craft, J. V.; Spence, H. E.; Niehof, J. T.; Reeves, G. D.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Magnes, W.; Trattner, K. J.; Fuselier, S. A.; Burch, J. L.

    2016-06-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  15. The Solar Energetic Particle Event of December 14, 2006

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, T. T.; Richardson, I. G.; Cohen, C. M. S.; Cummings, A. C.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Widenbeck, M. E.

    2008-01-01

    We report on observations of a solar energetic particle event by instruments on five different spacecraft: the Advanced Composition Explorer (ACE), STEREO A and B, WIND, and GOES II. The event began with a class X1.5 .soft x-ray flare in AR930 on December 14 at 22:15 UT. At this time the two STEREO spacecraft were located outside the Earth's magnetosphere and were heading for their first lunar swing-by on December 15. The x-ray event was located on the sun at W46, a longitude which is nominally well-connected magnetically to the Earth. An interplanetary shock, associated with an earlier X3.4 event on December 13 (also from AR930), passed the Earth on December 14 at approx.13:56 (time at ACE). The corresponding magnetic cloud arrived at approx.22 UT on December 14, close to the time of the onset of the particle event associated with the X1.5 flare, and extended until approx.08 UT on December 15. The intensity of approx.14 MeV protons at STEREO A shows three dips by factors of approx.10 or more during the early stages of this event while the spacecraft was within the magnetic cloud. Similar dips are seen for protons to at least 100 MeV. In principle, these dips could have been caused by changes in the magnetic field direction with respect to the particle telescope's field of view while viewing a beamed particle distribution. However, this possibility can be ruled out because the magnetic field at the spacecraft shows no evidence of such directional variations, and similar particle intensity dips were seen by instruments on other spacecraft in the near-Earth solar wind. We shall present evidence that the dips were actually associated with varying magnetic connection to the Sun within the magnetic cloud. These dips were not observed at GOES II, suggesting they were somehow smoothed out by passage into the magnetosphere.

  16. EDITORIAL: Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Ya.

    2010-08-01

    The history of fusion research resembles the way in which one builds skyscrapers: laying the first foundation stone, one thinks about the top of the skyscraper. At the early stages of fusion, when it became clear that the thermonuclear reactor would operate with DT plasma confined by the magnetic field, the study of the `top item'—the physics of 3.5 MeV alpha particles produced by the DT fusion reaction—was initiated. The first publications on this topic appeared as long ago as the 1960s. At that time, because the physics of alpha particles was far from the experimental demand, investigations were carried out by small groups of theoreticians who hoped to discover important and interesting phenomena in this new research area. Soon after the beginning of the work, theoreticians discovered that alpha particles could excite various instabilities in fusion plasmas. In particular, at the end of the 1960s an Alfvén instability driven by alpha particles was predicted. Later it turned out that a variety of Alfvén instabilities with very different features does exist. Instabilities with perturbations of the Alfvénic type play an important role in current experiments; it is likely that they will affect plasma performance in ITER and future reactors. The first experimental manifestation of instabilities excited by superthermal particles in fusion devices was observed in the PDX tokamak in 1983. In this device a large-scale instability—the so called `fishbone instability'—associated with ions produced by the neutral beam injection resulted in a loss of a large fraction of the injected energy. Since then, the study of energetic-ion-driven instabilities and the effects produced by energetic ions in fusion plasmas has attracted the growing attention of both experimentalists and theorists. Recognizing the importance of this topic, the first conference on fusion alpha particles was held in 1989 in Kyiv under the auspices of the IAEA. The meeting in Kyiv and several

  17. Elemental composition of solar energetic particles. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cook, W. R., III

    1981-01-01

    The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 or = Z or = 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements. The four flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy. The average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggest that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.

  18. Energetic Particle Abundances as Probes of an Interplanetary Shock Wave

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Tylka, A. J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the unique abundance variations of Fe/O and He/H in solar energetic particles from a W09 event of 2001 April 10, that have leaked through the flank of an interplanetary shock launched from W04 on April 9. Shock waves from both events reach the Wind spacecraft on April 11. During the second event, both Fe/O and He/H begin at low values and rise to maxima near the time of passage of the shock waves, indicating greater scattering for the species with the highest rigidity at a given velocity. Strong modulation of Fe/O suggests preferential scattering and trapping of Fe by the wave spectrum near and behind the intermediate shock. A significant factor may be the residual proton-generated waves from the very hard proton spectrum accelerated by the early shock wave prior to the onset of the second event. Thus, ion abundances from the later event probe the residual wave spectrum at the earlier shock.

  19. Calibration of the Solar Orbiter Energetic Particle Detector Suite

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Martin-Garcia, C.; Kulkarni, S. R.; Panitzsch, L.; Boettcher, S.; Mason, G. M.; Kohler, J.; Ho, G. C.; Boden, S.; Grunau, J.; Steinhagen, J.; Terasa, C.; Yu, J.; Prieto, M.; Gomez-Herrero, R.; Blanco, J.

    2013-12-01

    We present the current status and plans for the calibration of the Energetic Particle Detector (EPD) suite on ESA's Solar Orbiter mission. Solar Orbiter is scheduled to launch in January 2017, instrument delivery in January 2015. EPD consists of four sensors: the SupraThermal Electron and Proton (STEP) sensor covers electrons (protons) from 2 (3) keV up to 100 keV, the Electron Proton Telescope (EPT) from 20 to 300 (7000) keV, the Suprathermal Ion Spectrograph (SIS) determines the ionic composition from ~0.05 to ~10 MeV/nuc (species dependent), and the High Energy Telescope (HET) measures electrons and protons (ions) from 0.3 to 30 and 10 to >100 MeV/nuc (20 - 200 MeV/nuc species dependent). EPT, HET, and SIS have two approximately opposite-facing fields of view, EPT, and HET share a common electronics box, two EPT/HET sensors allow the determination of second-order anisotropies (a total of 4 FoVs). Apart from the use of radioactive sources, STEP will be calibrated at the Kiel calibration facilities, EPT both at Kiel (electrons and low-energy protons) as well as at PTB in Braunschweig. SIS will undergo calibration at the LBL 88' cyclotron, HET at HIMAC in Chiba, Japan. Tests of the electron/protons discrimination of EPT show the expected behavior, HET prototypes have already been calibrated and the results will be shown.

  20. Factors Affecting the Intensity of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    This paper updates the influence of environmental and source factors of shocks driven by coronal mass ejections (CMEs) that are likely to influence the solar energetic particle (SEP) events. The intensity variation due to CME interaction reported that is confirmed by expanding the investigation to all the large SEP events of solar cycle 23. The large SEP events are separated into two groups, one associated with CMEs running into other CMEs, and the other with CMEs running into the ambient solar wind. SEP events with CME interaction generally have a higher intensity. New possibilities such as the influence of coronal holes on the SEP intensity are also discussed. For example, the presence of a large coronal hole between a well-connected eruption and the solar disk center may render the shock poorly connected because of the interaction between the CME and the coronal hole. This point is illustrated using the 2004 December 3 SEP event delayed by about 12 hours from the onset of the associated CME. There is no other event at the Sun that can be associated with the SEP onset. This event is consistent with the possibility that the coronal hole interaction influences the connectivity of the CMEs that produce SEPs, and hence the intensity of the SEP event.

  1. Solar energetic particle events in different types of solar wind

    SciTech Connect

    Kahler, S. W.; Vourlidas, A.

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  2. Associations of Accelerating CMEs with Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Kahler, S.; Sheeley, N.; Reames, D.

    2001-05-01

    Gradual solar energetic particle (SEP) events are well associated with fast coronal mass ejections (CMEs). The times of significant E > 10 MeV SEP events observed with the Goddard Space Flight Center EPACT detector on the Wind spacecraft have been compared with CME observations from the Lasco coronagraph on the SOHO spacecraft. As earlier studies have shown, a correlation exists between peak SEP intensities and the measured speeds of associated CMEs. Of the CMEs associated with SEP events in the period 1996 to 2000, we find 9 CMEs for which the height-time plots of the leading edges show accelerations of at least 13 m/s/s. The heights at which those CMEs attained speeds of 600 km/s ranged from 7 to 20 Ro. The peak 20 MeV intensities of the 9 SEP events are relatively low compared with all gradual SEP events of the same period. We compare the energy spectra and solar event associations of these 9 SEP events with those of the SEP events associated with CMEs of uniform speeds.

  3. {Interball-1 Plasma, Magnetic Field, and Energetic Particle Observations}

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    1998-01-01

    Funding from NASA was received in two installments. The first installment supported research using Russian/Czech/Slovak/French Interball-1 plasma, magnetic field, and energetic particles observations in the vicinity of the magnetopause. The second installment provided salary support to review unsolicited proposals to NASA for data recovery and archiving, and also to survey ISTP data provision efforts. Two papers were published under the auspices of the grant. Sibeck et al. reported Interball-1 observations of a wave on the magnetopause with an amplitude in excess of 5 R(sub E), the largest ever reported to date. They attributed the wave to a hot flow anomaly striking the magnetopause and suggested that the hot flow anomaly itself formed during the interaction of an IMF discontinuity with the bow shock. Nemecek et al. used Interball-1's VDP Faraday cup to identify large transient increases in the magnetosheath density. They noted large variations in simultaneous Wind observations of the IMF cone angle, but were unable to establish any relationship between the cone angle variations at Wind and the density variations at Interball-1. Funds from the second installment were used to review over 20 proposals from various researchers in the scientific community who sought NASA support to restore or archive past observations. It also supported a survey of ISTP data provisions which was used as input to a Senior Review of ongoing NASA ISTP programs.

  4. Solar Energetic Particle Events in Different Types of Solar Wind

    NASA Astrophysics Data System (ADS)

    Kahler, Stephen W.; Vourlidas, Angelos

    2014-06-01

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar winds (SWs) as classified by Richardson and Cane (2012). Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V > 900 km/s) and wide (W > 60 deg) coronal mass ejections (CMEs). We find no differences between transient and fast or slow SW streams for SEP 20-MeV event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ~ 2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  5. Solar Energetic Particle Events in Different Types of Solar Wind

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Vourlidas, A.

    2014-08-01

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V >~ 900 km s-1) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ~2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  6. The Origin of Element Abundance Variations in Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2016-08-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio [A/Q] of the ions. Since the Q-values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element-abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller magnetic reconnections, "nanojets", produce suprathermal seed ions, thus averaging over varying abundances, while an impulsive SEP event only samples one local region of abundance variations. Evidence for a reference He/O-abundance ratio of 91, rather than 57, is also found for the hotter plasma. However, while this is similar to the solar-wind abundance of He/O, the solar-wind abundances otherwise provide an unacceptably poor reference for the SEP-abundance enhancements, generating extremely large errors.

  7. Solar Energetic Particles within the STEREO era: 2007-2012

    NASA Astrophysics Data System (ADS)

    Papaioannou, A.; Malandraki, O. E.; Heber, B.; Dresing, N.; Klein, K. L.; Vainio, R.; Rodriguez-Gasen, R.; Klassen, A.; Gomez-Herrero, R.; Vilmer, N.; Mewaldt, R. A.; Tziotziou, K.; Tsiropoula, G.

    2013-09-01

    STEREO (Solar TErrestrial RElations Observatory) recordings provide an unprecedented opportunity to identify the evolution of Solar Energetic Particles (SEPs) at different observing points in the heliosphere, which is expected to provide new insight on the physics of solar particle genesis, propagation and acceleration as well as on the properties of the interplanetary magnetic field that control these acceleration and propagation processes. In this work, two instruments onboard STEREO have been used in order to identify all SEP events observed within the rising phase of solar cycle 24 from 2007 to 2011, namely: the Low Energy Telescope (LET) and the Solar Electron Proton Telescope (SEPT). A scan over STEREO/LET protons within the energy range 6-10 MeV has been performed for each of the two STEREO spacecraft. We have tracked all enhancements that have been observed above the background level of this particular channel and cross checked with available lists on STEREO/ICMEs, SIRs and shocks as well as with the reported events in literature. Furthermore, parallel scanning of the STEREO/SEPT electrons in order to pinpoint the presence (or not) of an electron event has been performed in the energy range of 55-85 keV, for all of the aforementioned proton events, included in our lists. We provide the onset of all events for both protons and electrons, time-shifting analysis for near relativistic electrons which lead to the inferred solar release time and the relevant solar associations from radio spectrographs (Nancay Decametric Array; STEREO/WAVES) to GOES Soft X-rays and coronal mass ejections spotted by both SOHO/LASCO and STEREO Coronographs

  8. SOLAR ENERGETIC PARTICLE EVENTS AND THE KIPLINGER EFFECT

    SciTech Connect

    Kahler, S. W.

    2012-03-01

    The Kiplinger effect is an observed association of solar energetic (E > 10 MeV) particle (SEP) events with a 'soft-hard-harder' (SHH) spectral evolution during the extended phases of the associated solar hard (E > 30 keV) X-ray (HXR) flares. Besides its possible use as a space weather predictor of SEP events, the Kiplinger effect has been interpreted as evidence of SEP production in the flare site itself, contradicting the widely accepted view that particles of large SEP events are predominately or entirely accelerated in shocks driven by coronal mass ejections (CMEs). We review earlier work to develop flare soft X-ray (SXR) and HXR spectra as SEP event forecast tools and then examine recent Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) evidence supporting the association of SHH HXR flares with large SEP events. We point out that ad hoc prediction criteria using the CME widths and SXR flare durations of associated RHESSI hard X-ray bursts (HXBs) can yield results comparable to those of the SHH prediction criteria. An examination of the RHESSI dynamic plots reveals several ambiguities in the determination of whether and when the SHH criteria are fulfilled, which must be quantified and applied consistently before an SHH-based predictive tool can be made. A comparative HXR spectral study beginning with the large population of relatively smaller SEP events has yet to be done, and we argue that those events will not be so well predicted by the SHH criteria. SHH HXR flares and CMEs are both components of large eruptive flare events, which accounts for the good connection of the SHH HXR flares with SEP events.

  9. Solar Energetic Particle transport along meandering interplanetary magnetic field lines

    NASA Astrophysics Data System (ADS)

    Laitinen, Timo; Kopp, Andreas; Effenberger, Frederic; Dalla, Silvia; Marsh, Mike

    2016-04-01

    Recent multi-spacecraft Solar Energetic Particle (SEP) observations have challenged the traditional view of SEP production and interplanetary transport. In several events, the SEP intensities rise fast even at 180 degree longitudinal distance from the flare location. For many events the anisotropy of the SEPs has been found to depend on the observer's longitude, being stronger at locations that are well magnetically connected to the assumed SEP source region, as compared to wider longitudinal reaches. This suggests that interplanetary transport is an important factor for the SEP cross-field extent. The traditional modelling approach, with diffusive cross-field propagation, however, requires diffusion across the mean magnetic field much faster than that supported by current theories. We study the temporal and spatial evolution of SEP intensities and anisotropy using a new SEP transport model, FP+FLRW, which incorporates field-line random walk (FLRW) into the Fokker-Planck (FP) transport modelling framework. The FP+FLRW model was introduced by Laitinen et al (2013), who found using full-orbit simulations that the cross-field propagation of particles early in an SEP event is not diffusive, but dominated by deterministic propagation along stochastically meandering turbulent field-lines. We have extended the FP+FLRW model to a Parker spiral geometry, and show that it is able to reproduce the observed fast access of SEPs to a wide range of longitudes. The observed Gaussian shaped distribution of peak intensities versus longitude, having a sigma=30-50 degrees, is reproduced already for a narrow source region, while using realistic interplanetary transport conditions. We compare the anisotropy evolution of an SEP event given by the FP+FLRW model to that given by the traditional FP approach, and discuss the implications of our findings for the SEP event origins, source width and the role of interplanetary turbulence in the interpretation of the SEP observations.

  10. The Detection of Coronal Suprathermal Particles Required to Seed Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Moses, J.; Laming, J. M.; Tylka, A.; Ko, Y.; Rakowski, C.; Ng, C. K.

    2012-12-01

    An extensive body of evidence identifies shocks driven by very fast coronal mass ejections (CMEs) starting within a few solar radii of the Sun as the primary particle accelerators in large, gradual solar energetic particles (SEP) events. These large SEP events are major radiation hazards for astronauts and for space borne instrumentation, making a reliable SEP predictive capability a high priority for Heliophysics research. Diverse lines of evidence indicate that the rapid production of large intensities of high-energy particles is greatly enhanced when the pre-event environment has been primed with a population of suprathermal ions having energies well above the typical thermal particle energy, usually in the range from a few to tens of keV in the solar corona. However, at present we have no direct evidence that suprathermal ions actually exist in the corona in numbers sufficient to serve as "seed particles" for diffusive shock acceleration (DSA). We will review the evidence indicating seed particles are required to produce energetic SEPs on the observed time scales. One technique with the potential for directly observing these seed particles is the use of high-throughput UV spectroscopy to quantify broadening of the Ly-α line resulting from charge exchange between suprathermal protons and neutral atoms in the corona. Attempts to use this technique with SOHO UVCS have not produced clear evidence for the detection of coronal suprathermals. We will present revised spectroscopic computations of the influence of seed particles on the Ly-α line spectrum and describe the instrumental requirements for observing this line broadening.

  11. Using ACE and Ulysses to investigate the heliographic transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Robinson, Ian M.

    2002-03-01

    The Advanced Composition Explorer (ACE) and the Ulysses spacecraft follow radically different trajectories, allowing the Sun to be simultaneously studied from 2 different perspectives. Data from the low energy particle instruments carried by these spacecraft reveals energetic particles accelerated at the Sun can access large angular extents of the interplanetary medium. We look at a rare case when the heliographic transport of energetic electrons was apparently prevented and speculate upon the ability of the corona to inhibit the propagation of these particles.

  12. Velocity space evolution of a minority energetic electron population undergoing the anomalous Doppler instability

    SciTech Connect

    Lai, W. N.; Chapman, S. C.; Dendy, R. O.

    2015-11-15

    The kinetic evolution in velocity space of a minority suprathermal electron population that is undergoing the anomalous Doppler instability (ADI) is investigated using the results from fully nonlinear numerical simulations that self-consistently evolve particles and fields in a plasma. Electron trajectories in phase space during different stages of the ADI are captured, and are analysed in relation to the characteristics of the excited electric fields and of the overall distribution of particles. For some electrons, trapping and mirroring effects are observed during the saturation phase. A relationship between the second order moments of the perpendicular electron distribution function and time is established, and is used to investigate the range of applicability of analytical approximations drawn from classical theory, that involve a quasilinear wave-driven diffusion operator.

  13. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the

  14. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the

  15. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    SciTech Connect

    Matteini, L.; Schwartz, S. J.; Hellinger, P.; Landi, S.

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  16. Fire Hose Instability Driven by Alpha Particle Temperature Anisotropy

    NASA Astrophysics Data System (ADS)

    Matteini, L.; Hellinger, P.; Schwartz, S. J.; Landi, S.

    2015-10-01

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  17. Multi-Spacecraft Analysis of Energetic Heavy Ions and Interplanetary Shock Properties in Energetic Storm Particle Events at 1 AU

    NASA Astrophysics Data System (ADS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; Li, G.; Mason, G. M.

    2015-12-01

    Energetic storm particle (ESP) events are believed to occur as a result of diffusive shock acceleration at coronal mass ejection (CME)-driven interplanetary (IP) shocks. In situ observations of ESPs provide an excellent tool to study the physics of shock acceleration and the mechanisms that energize particles in events where the IP shock is remote (e.g. solar energetic particles - SEPs - that are accelerated in the solar corona). In this study, we use 1 AU observations during solar cycle 24 from ACE, STEREO-A, and STEREO-B during several ESP events observed at two or more spacecraft to examine the relationship between IP shocks and their associated energetic particles. Specifically, we examine the connection between variations in the properties of ~0.1 - 5 MeV/nucleon heavy ions (e.g. peak intensities, energy spectra, abundances) and IP shock parameters (e.g. shock obliquity, compression ratio, Mach number) that are observed at different points along the same CME-driven shock front. These results will be compared with theoretical predictions for heavy ion energy spectra and abundances in ESP events and could provide important additional constraints for particle acceleration in the inner heliosphere.

  18. A major shock-associated energetic storm particle event wherein the shock plays a minor role

    NASA Astrophysics Data System (ADS)

    van Nes, P.; Reinhard, R.; Sanderson, T. R.; Wenzel, K.-P.; Roelof, E. C.

    1985-05-01

    Two prominent phenomena observed during the course of a major solar flare are related to the injection of energetic particles over a wide range of energies into the interplanetary medium and the production of a shock wave. The present paper provides a detailed description of a quasiperpendicular shock event with energetic particle intensities which are among the highest observed at 1 AU. There is evidence that the bulk of the particles pass adiabatically through the shock without any appreciable acceleration. A shock-associated energetic particle enhancement, known as ESP event, is studied. The ESP event has several signatures which have not been reported earlier for other events. One of the discussed features is related to a jump in the energetic particle intensity by a factor of 2.7 at the shock over the full energy range of the instrument.

  19. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability

    NASA Astrophysics Data System (ADS)

    Dehnen, Walter; Aly, Hossam

    2012-09-01

    The numerical convergence of smoothed particle hydrodynamics (SPH) can be severely restricted by random force errors induced by particle disorder, especially in shear flows, which are ubiquitous in astrophysics. The increase in the number NH of neighbours when switching to more extended smoothing kernels at fixed resolution (using an appropriate definition for the SPH resolution scale) is insufficient to combat these errors. Consequently, trading resolution for better convergence is necessary, but for traditional smoothing kernels this option is limited by the pairing (or clumping) instability. Therefore, we investigate the suitability of the Wendland functions as smoothing kernels and compare them with the traditional B-splines. Linear stability analysis in three dimensions and test simulations demonstrate that the Wendland kernels avoid the pairing instability for all NH, despite having vanishing derivative at the origin (disproving traditional ideas about the origin of this instability; instead, we uncover a relation with the kernel Fourier transform and give an explanation in terms of the SPH density estimator). The Wendland kernels are computationally more convenient than the higher order B-splines, allowing large NH and hence better numerical convergence (note that computational costs rise sublinear with NH). Our analysis also shows that at low NH the quartic spline kernel with NH ≈ 60 obtains much better convergence than the standard cubic spline.

  20. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, J. L.; Kalamas, J.

    1993-01-01

    A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.

  1. Elemental composition of solar energetic particles in 1977 and 1978

    NASA Technical Reports Server (NTRS)

    Cook, W. R.; Stone, E. C.; Vogt, R. E.; Trainor, J. H.; Webber, W. R.

    1979-01-01

    The elemental composition of energetic nuclei from seven major solar flare events were measured wit the cosmic ray detector systems aboard the Voyager 1 and 2 spacecraft. The energetic nuclei abundances differ significantly from those of photospheric material. They are enhanced relative to the photonsphere by a factor which is the ratio of abundance of an energetic nuclei species (relative to oxygen) over the corresponding abundance of photospheric material. This factor is common to all events and has a nonmonochromatic characteristic dependence on nuclear charge. This factor is roughly ordered by first ionization potential into two groups of elements, metallics and volatiles.

  2. Dione flybys in the view of energetic particles

    NASA Astrophysics Data System (ADS)

    Krupp, Norbert; Roussos, Elias; Kriegel, Henrik; Kollmann, Peter; Kivelson, Margaret G.; Kotova, Anna; Regoli, Leonardo; Paranicas, Christopher P.; Mitchell, Don; Krimigis, Stamatios M.; Khurana, Krishan

    2016-10-01

    We report on the results of energetic electron measurements above 15 keV from the Low Energy Magnetospheric Measurement System LEMMS, part of the Magnetospheric Imaging Instrument MIMI onboard Cassini during the five close Dione flybys combined with measurements of the magnetometer instrument MAG - an update of the paper by Krupp et al. 2013. We found particles in the vicinity of Dione bouncing and drifting in Saturn's magnetosphere and eventually are lost onto the surface of the moon. The location and depth of the absorption signature depends on species, their energy and on the geometry of the flyby. For the upstream encounter D1 energy-dependent ion absorption signatures were measured with the evidence that protons present in the upstream region can explain the observed dropout features. The flybys D2 and D3 went through the moon's geometrical wake and we observed energy dependent asymmetric absorption signatures in the fluxes of electrons between the planetward and anti-planetward sectors of the moon's wake at energies above about 100 keV. The most recent flybys D4 and D5 went directly over the north pole of the moon and showed absorption signatures when connected with the moon's flux tube. Trajectory tracings in a simulated environment of Dione's magnetospheric interaction using the Adaptive hybrid model for space plasma simulations (A.I.K.E.F.) indicate that the magnetic and electric field perturbations in Dione's interaction region, as well as magnetospheric diffusion need to be taken into account in order to explain the features in the data.

  3. Solar magnetic connections in gradual solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Kahler, S.; Arge, C.

    2003-04-01

    Gradual solar energetic particle (SEP) events are assumed to be produced in coronal and interplanetary shocks driven by fast coronal mass ejections (CMEs). Most of these SEP-associated fast CMEs are large in angular extent and intersect the ecliptic plane. In some cases, however, their angular extents lie completely outside the ecliptic plane. If we assume that the associated coronal shocks share the CME angular extents, the magnetic field lines connecting the Earth with the solar source surface (positioned at 2.5 Rs from Sun center) are confined to the ecliptic plane, and SEPs undergo no cross-field diffusion, then such SEP events should not be observed. One explanation for these observed SEP events is that the solar coronal connection of the field lines at Earth does not lie in the ecliptic plane in the solar coronal regions where shock acceleration takes place, which is thought to occur between ~2-10 Rs. To test this idea, the interplanetary magnetic field must be traced from Earth back to these coronal regions. A simple way to do this is to use the potential source surface and Schatten current sheet models in combination along with the assumption of constant solar wind flow speed along magnetic field lines. This approach allows interplanetary field lines to be traced from 1 AU back to coronal regions and therefore determine whether high latitudinal connections can explain the SEPs from high-latitude CMEs. We select Wind EPACT SEP events and associated narrow or high-latitude Lasco CMEs to test for high-latitude connections using the magnetic field model.

  4. Heavy-Element Abundances in Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Ng, C. K.

    2004-01-01

    We survey the relative abundances of elements with 1 < or equal to Z < or equal to 82 in solar energetic particle (SEP) events observed at 2-10 MeV/amu during nearly 9 years aboard the Wind spacecraft, with special emphasis on enhanced abundances of elements with Z > or equal to 34. Abundances of Fe/O again show a bimodal distribution with distinct contributions from impulsive and gradual SEP events as seen in earlier solar cycles. Periods with greatly enhanced abundances of (50 < or equal to Z < or equal to 56)/O, like those with enhanced (3)He/(4)He, fall prominently in the Fe-rich population of the impulsive SEP events. In a sample of the 39 largest impulsive events, 25 have measurable enhancements in (50 < or equal to z < or equal to 56)/O and (76 < or equal to Z < or equal to 82)/O, relative to coronal values, ranging from approx. 100 to 10,000. By contrast, in a sample of 45 large gradual events the corresponding enhancements vary from approx. 0.2 to 20. However, the magnitude of the heavy-element enhancements in impulsive events is less striking than their strong correlation with the Fe spectral index and flare size, with the largest enhancements occurring in flares with the steepest Fe spectra, the smallest Fe fluence, and the lowest X-ray intensity, as reported here for the first time. Thus it seems that small events with low energy input can produce only steep spectra of the dominant species but accelerate rare heavy elements with great efficiency, probably by selective absorption of resonant waves in the flare plasma. With increased energy input, enhancements diminish, as heavy ions are depleted, and spectra of the dominant species harden.

  5. Forecasting the Solar Drivers of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region's magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, maps of the measured field in the photosphere, and (2) an active region's rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region's present measured value of the free-energy proxy give the active region's expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region's recent productivity of major flares; specifically, whether the active region has produced a major flare (GOES class M or X) during the past 24 hours before the time of the measured magnetogram.

  6. Regimes of Pulsar Pair Formation and Particle Energetics

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.

  7. Particles Generation and Bose Instability in Primordial Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    Black Hole's angular momentum (Instability) will be a Bose Instablity of Black Holes. It is mentioned that the Black Holes rotation does not change drastically the Levels real part of the Energy, but only the imaginary part of the Energy. The problem of motion of quantum particles in the gravitational field of a Black Hole presents a didactical interest, at least. It is showing at the same time the evolution of concepts in Science, since Kepler to Ours days.

  8. EFFECT OF COHERENT STRUCTURES ON ENERGETIC PARTICLE INTENSITY IN THE SOLAR WIND AT 1 AU

    SciTech Connect

    Tessein, Jeffrey A.; Matthaeus, William H.; Wan, Minping; Ruffolo, David; Giacalone, Joe; Neugebauer, Marcia

    2015-10-10

    We present results from an analysis of Advanced Composition Explorer (ACE) observations of energetic particles in the 0.047–4.78 MeV range associated with shocks and discontinuities in the solar wind. Previous work found a strong correlation between coherent structures and energetic particles measured by ACE/EPAM. Coherent structures are identified using the Partial Variance of Increments (PVI) method, which is essentially a normalized vector increment. The correlation was based on a superposed epoch analysis using over 12 years of data. Here, we examine many individual high-PVI events to better understand this association emphasizing intervals selected from data with shock neighborhoods removed. We find that in many cases the local maximum in PVI is in a region of rising or falling energetic particle intensity, which suggests that magnetic discontinuities may act as barriers inhibiting the motion of energetic particles across them.

  9. Effect of Coherent Structures on Energetic Particle Intensity in the Solar Wind at 1 AU

    NASA Astrophysics Data System (ADS)

    Tessein, Jeffrey A.; Ruffolo, David; Matthaeus, William H.; Wan, Minping; Giacalone, Joe; Neugebauer, Marcia

    2015-10-01

    We present results from an analysis of Advanced Composition Explorer (ACE) observations of energetic particles in the 0.047–4.78 MeV range associated with shocks and discontinuities in the solar wind. Previous work found a strong correlation between coherent structures and energetic particles measured by ACE/EPAM. Coherent structures are identified using the Partial Variance of Increments (PVI) method, which is essentially a normalized vector increment. The correlation was based on a superposed epoch analysis using over 12 years of data. Here, we examine many individual high-PVI events to better understand this association emphasizing intervals selected from data with shock neighborhoods removed. We find that in many cases the local maximum in PVI is in a region of rising or falling energetic particle intensity, which suggests that magnetic discontinuities may act as barriers inhibiting the motion of energetic particles across them.

  10. Effect of Coherent Structures on Energetic Particle Intensity in the Solar Wind at 1 AU

    NASA Astrophysics Data System (ADS)

    Tessein, J.; Ruffolo, D. J.; Matthaeus, W. H.; Wan, M.; Giacalone, J.; Neugebauer, M.

    2015-12-01

    We present results from an analysis of ACE observations of energetic particles in the 0.047-4.78MeV range associated with shocks and discontinuities in the solar wind. Previous work (Tesseinet al. 2013) found a strong correlation between discontinuities, identified using a normalized vectorincrement and the intensity of energetic particles measured by ACE/EPAM, based on a superposedepoch analysis using over 12 years of data. Here, we examine many individual high-PVI eventsto better understand this association emphasizing intervals selected from data with shockneighborhoods removed. We find that in many cases the local maximum in PVI is in a region ofrising or falling energetic particle intensity, which suggests that magnetic discontinuities may act asbarriers inhibiting the motion of energetic particles across them.

  11. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, Jack L.

    1993-01-01

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded

  12. Loss-cone instability: Wave saturation by particle trapping

    SciTech Connect

    Zaslavsky, A.; Krafft, C.; Volokitin, A.

    2007-12-15

    The nonlinear mechanisms governing the interactions between whistler or lower hybrid waves and loss-cone type particles' distributions in magnetized plasmas are of great importance if one considers the major role that waves of frequency below the electron cyclotron frequency play in space and thermonuclear fusion plasmas. Up to now, most of the numerical simulations have been devoted to study the nonlinear processes at work when the plasma is weakly relativistic and when the anisotropy of the particles' distributions leads to the so-called maser instability. However, in many interesting cases, the particles' energies are sufficiently weak to ensure the validity of the nonrelativistic approximation. In this framework, the paper studies the interaction at normal cyclotron resonances between lower hybrid waves and electron distributions presenting loss-cone like features. A theoretical Hamiltonian model and a corresponding numerical symplectic code are used to evidence and to explain the nonlinear mechanisms at work at the saturation stage of the loss-cone instability. Moreover, simple analytical expressions and scaling laws have been derived for the linear growth rates and the wave amplitude at saturation.

  13. Particle Energization via Tearing Instability with Global Self-Organization Constraints

    SciTech Connect

    Sarff, John; Guo, Fan

    2015-07-21

    The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and other features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).

  14. Gyrokinetic particle simulation of ion temperature gradient drift instabilities

    SciTech Connect

    Lee, W.W.; Tang, W.M.

    1987-04-01

    Ion temperature gradient drift instabilities have been investigated using gyrokinetic particle simulation techniques for the purpose of identifying the mechanisms responsible for their nonlinear saturation as well as the associated anomalous transport. For simplicity, the simulation has been carried out in a shear-free slab geometry, where the background pressure gradient is held fixed in time to represent quasistatic profiles typical of tokamak discharges. It is found that the nonlinearly generated zero-frequency responses for the ion parallel momentum and pressure are the dominant mechanisms giving rise to saturation. This is supported by the excellent agreement between the simulation results and those obtained from mode coupling calculations.

  15. TRANSMISSION AND EMISSION OF SOLAR ENERGETIC PARTICLES IN SEMI-TRANSPARENT SHOCKS

    SciTech Connect

    Kocharov, Leon; Usoskin, Ilya; Laitinen, Timo; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  16. SEPServer advances overview on Solar Energetic Particle events

    NASA Astrophysics Data System (ADS)

    Malandraki, O.

    2013-09-01

    SEPServer hosted activities related to the scientific analysis of SEP event observations, including data analysis using both data-driven and simulation-based methods. The scientific conclusions of this effort are drawn with the implementation and release to the SEP community of multiple SEP event catalogs based on different spacecrafts and instruments, covering a broad timescale from 1975 to 2013 as well as a variety of distances from 0.3 to ~5 AU in the heliosphere. SEP events from Helios A & B missions, going back to 1975, at distances 0.3-1 AU, together with their Electromagnetic (EM) counterpart from OSRA data are being released for the first time. A catalog covering solar cycle 23 based upon the Solar and Heliospheric Observatory (SOHO)/ Energetic and Relativistic Nuclei and Electron (ERNE) highenergy (~68 MeV) protons at 1 AU with parallel analysis of SOHO/ Electron Proton Helium Instrument (EPHIN) and Advanced Composition Explorer (ACE) / Electron, Proton and Alpha Monitor (EPAM) data, including the relevant EM associations has also been delivered. Furthermore, the first complete Solar TErrestrial RElations Observatory (STEREO) SEP catalog based on the Low Energy Telescope (LET) protons (610 MeV) and the Solar Electron Proton Telescope (SEPT) electrons (65-105 keV) covering the rising phase of solar cycle 24 has been implemented. Moreover, the Cosmic Ray and Solar Particle Investigation (COSPIN) Kiel Electron Telescope (KET) data of 38-125 MeV has been used to identify a new catalog of SEP events observed in and out of the ecliptic plane over solar cycle 23, with simultaneous analysis of electrons recorded by the Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies (HISCALE). For selected cases simulation based analysis has been applied in order to identify the timing of the injection history and to provide a cross reference to the EM emissions, leading to a comprehensive treatment of these events and to the corresponding testing of

  17. Hybrid simulation of energetic particle effects on tearing modes in tokamak plasmas

    SciTech Connect

    Cai Huishan; Fu Guoyong

    2012-07-15

    The effects of energetic ions on stability of tearing mode are investigated by global kinetic/MHD hybrid simulations in a low beta tokamak plasma. The kinetic effects of counter circulating energetic ions from the non-adiabatic response are found to be strongly destabilizing while the effects from the adiabatic response are stabilizing. The net effect with both adiabatic and non-adiabatic contributions is destabilizing. On the other hand, the kinetic effects of co-circulating energetic ions from the non-adiabatic response are calculated to be weakly stabilizing while the corresponding adiabatic contribution is destabilizing for small energetic ion beta. The net effect is weakly stabilizing. The dependence of kinetic effects on energetic ion beta, gyroradius, and speed is studied systematically and the results agree in large part with the previous analytic results for the kinetic effects of circulating particles. For trapped energetic ions, their effects on tearing mode stability are dominated by the adiabatic response due to large banana orbit width and strong poloidal variation of particle pressure. The net effect of trapped energetic particles on tearing modes is much more destabilizing as compared to that of counter circulating particles at the same beta value.

  18. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  19. 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    SciTech Connect

    Berk, Herbert L.; Breizman, Boris N.

    2014-02-21

    The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self

  20. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    SciTech Connect

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs.

  1. Fluid electrons with kinetic closure for long wavelength energetic particles driven modes

    SciTech Connect

    Chen Yang; Parker, Scott E.

    2011-05-15

    A kinetic electron closure scheme is presented for the fluid electron model that has been implemented in the GEM code [J. Lang, Y. Chen, S. E. Parker, and G.-Y. Fu, Phys. Plasmas 16, 102101 (2009)]. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E{sub ||}, derived by combining the quasineutrality condition, the Ampere's equation and the v{sub ||} moment of the gyrokinetic equations. A discretization method for the closure scheme is presented and studied in detail for a three-dimensional shearless slab plasma. It is found that for long wavelength shear Alfven waves the kinetic closure scheme is both more accurate and more robust than the previous GEM algorithm [Y. Chen and S. E. Parker, J. Comput. Phys. 189, 463 (2003)], whereas for the ion-gradient-driven instability the previous algorithm is more efficient. The fluid electron model with kinetic electron closure is useful for studying energetic particles driven modes with electron kinetic damping effects.

  2. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    SciTech Connect

    Cole, Michael Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias

    2014-07-15

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  3. Factors Affecting the Occurrence of Large Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Yashiro, S.; Akiyama, S.; Xie, H.; Makela, P. A.; Thakur, N.

    2014-12-01

    In order to understand the paucity of high-energy solar energetic particle (SEP) events in solar cycle 24, we examined all major eruptions (soft X-ray flare size ≥M5.0) on the front side of the Sun during the period from December 1, 2008 to January 31, 2014. There were 59 such eruptions that were associated with CMEs. When a flux rope was fitted to the white-light CMEs observed by SOHO and STEREO it was found that the CME sources were on the disk only for 55 eruptions. There were 16 large SEP events (proton intensity ≥10 pfu in the >10 MeV channel) detected by GOES and 4 by STEREO-B in association with these eruptions. When the CMEs were grouped according to their speeds (<1500 km/s and ≥ 1500 km/s) it was found that only three of the <1500 km/s CMEs (or 11%) were associated with large SEP events compared to 17 or (61%) of the ≥ 1500 km/s CMEs. This result confirms the importance of CME speed for SEP association. In fact there were ten other large SEP events with flare size

  4. Early Energetic Particle Irradiation of the HED Parent Body Regolith

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Garrison, D. H.; Rao, M. N.

    1996-01-01

    Previous studies have shown that many individual grains within the dark phase of the Kapoeta howardite were irradiated with energetic particles while residing on the surface of the early HED regolith. Particle tracks in these grains vary in density by more than an order of magnitude and undoubtedly were formed by energetic heavy (Fe) ions associated with early solar flares. Early Irradiation of HED Regolith: Concentrations of excess Ne alone are not sufficient to decide between competing galactic and solar irradiation models. However, from recent studies of depth samples of oriented lunar rocks, we have shown that the cosmogenic 21-Ne/22-Ne ratio produced in feldspar differs substantially between Galactic Cosmic Radiation (GCR) and solar protons, and that this difference is exactly that predicted from cross-section data. Using Ne literature data and new isotopic data we obtained on acid-etched, separated feldspar from both the light and dark phases of Kapoeta, we derive 21-Ne/22-Ne = 0.80 for the recent GCR irradiation and 21-Ne/22-Ne = 0.68 for the early regolith irradiation. This derived ratio indicates that the early Ne production in the regolith occurred by both galactic and solar protons. If we adopt a likely one-component regolith model in which all grains were exposed to galactic protons but individual grains had variable exposure to solar protons, we estimate that this early GCR irradiation lasted for about 3-6 m.y. More complex two-component regolith models involving separate solar and galactic irradiation would permit this GCR age to be longer. Higher-energy solar protons would permit the GCR to be longer. Higher-energy solar protons would permit the GCR age to be shorter. Further, cosmogenic 126(Xe) in Kapoeta dark is no more than a factor of about 2 higher than that observed in Kapoeta light. Because 126(Xe) can only be formed by galactic protons and not solar protons, these data support a short GCR irradiation for the HED regolith. This would also be

  5. Wear particles: Influence on local stress and dynamical instabilities

    NASA Astrophysics Data System (ADS)

    Nhu, Viet-Hung; Renouf, Mathieu; Massi, Francesco; Saulot, Aurélien

    2013-06-01

    When two continuous bodies are in contact and subjected to relative motion, both particle detachment and dynamic instabilities naturally occur. To properly model such interacting phenomena, it is required to take account for the discontinuity of the interfacial layer (usually modeled with Discrete Element Model) as well as the continuity of the bodies in contact (usually modeled with Finite Element Model). For that, the present paper aims at validating experimentally the coupled FEM-DEM method. The experimental set-up aims at modeling the frictional behavior between a holed disk, tied on its exterior side and made of transparent polymer with birefringence property, and an inner rotating cylinder, made of steel. This last is statically enlarged to reach the wanted contact pressure and then animated with constant angular velocity. The birefringence property of the disk is used to dynamically visualize the evolution of stresses in the disk at both contact scale and body scale. Based on the same principle with the same boundary conditions, the numerical model coupled the modeling of a deformable disk, a pseudo-rigid cylinder and wear particles by a combination of a finite element method and a discrete element method. Parametrical study has been numerically made to study the influence of particle morphology on stress evolution in the disk. A good agreement is showed between the numerical results obtained with particles artificially introduced in the contact and the experimental results obtained with wear particles naturally produced in the contact.

  6. Energetic Particles Measured in and out of the Ecliptic Plane During the Last Gnevyshev Gap

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pacheco, J.; Blanco, J. J.; Heber, B.; Gómez-Herrero, R.

    2012-11-01

    We analyzed the temporal variation of energetic particles measured by the Low Energy Telescope (LET), the Kiel Electron Telescope (KET), and the High Energy Telescope (HET) instruments aboard Ulysses and the Electron Proton Helium Instrument (EPHIN) aboard SOHO during the last solar magnetic field polarity reversal in 2001. We have found two periods with anomalous low fluxes during that time that are present both at low and high heliolatitudes. We compared the energetic particle fluxes with solar energetic phenomena that traditionally have been associated with solar energetic particle (SEP) events at 1 AU. Our results show that these periods are related to relative minima in the number of X-ray flares and CMEs. Since Ulysses scanned the whole latitude range from 80 °S to 80 °N, we conclude that this process affects the inner three-dimensional heliosphere globally.

  7. Charged Particle Energization and Transport in Reservoirs throughout the Heliosphere: 1. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-09-01

    “Reservoirs” of energetic charged particles are regions where the particle population is quasi-trapped in large-scale (relative to the gyroradii) magnetic field structures. Reservoirs are found throughout the heliosphere: the huge heliosheath (90particles within these reservoirs is produced by the interaction when the particle magnetic drifts have a component along the large-scale electric fields produced by plasma convection. The appropriate description of this transport is “weak scattering”, in which the particle's first adiabatic invariant (magnetic moment) is approximately conserved while the particle itself moves rather freely along magnetic field lines. Considerable insight into the observed properties of energization processes can be gained from a remarkably simple equation that describes the particle's fractional time-rate-of-change of momentum (dlnp/dt) which depends only upon its pitch angle, the divergence of the plasma velocity (V⊥) transverse to the magnetic field), and the inner product of (V⊥) with the curvature vector of the field lines. The possibilities encompassed in this simple (but general) equation are quite rich, so we restrict our application of it in this paper to the compressive acceleration of SEPs within CMEs.

  8. A cosmic ray driven instability

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves.

  9. The Origin of Negative Energetic Particles at 67P/C-G

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Burch, James; Horanyi, Mihaly

    2015-04-01

    The RPC/IES sensor on the Rosetta observed two distinct populations of negatively charged energetic particles: (i) a nearly monoenergetic beam of particles in the 200-500 eV range and (ii) an occasional appearance of 1 to 20 keV particles following a power-law energy distribution. This talk will offer theoretical explanations for the origin of these negative particle populations.

  10. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    NASA Astrophysics Data System (ADS)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David; Lillis, Robert J.; Mitchell, David L.; Mewaldt, Richard A.; Falkenberg, Thea Vilstrup

    2012-06-01

    We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron Reflectometer also measured particles with energies >30 MeV that penetrated the aluminum housing of the instrument and were detected directly by microchannel plates in the instrument interior. Using a combination of theoretical and experimental results, we show how the Electron Reflectometer microchannel plates recorded high energy galactic cosmic rays with ˜45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar energetic particles were detected by the same mechanism as galactic cosmic rays; however, their flux levels are far more uncertain due to shielding effects and the energy-dependent response of the microchannel plates. Using the solar energetic particle data, we have developed a catalog of energetic particle events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique data set for use by the heliophysics modeling community.

  11. Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.

    2001-12-01

    Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).

  12. Filamentation Instability of Counterpropagating Charged Particle Beams: Statistical Properties

    SciTech Connect

    Dieckmann, M. E.

    2008-10-15

    The filamentation instability (FI) driven by beams of counter-propagating electrons is examined with one-dimensional (1D) and two-dimensional (2D) particle-in-cell (PIC) simulations. The 1D simulation reveals the saturation mechanism of the FI. The magnetic pressure gradient displaces the electrons. The resulting electrostatic field inhibits together with the magnetic field a further growth of the filaments by suppressing the electron motion. The FI evolves into a stationary equilibrium in 1D, which shows a statistical distribution of the filament sizes that resembles a Gumbel distribution. The 2D PIC simulation allows the filaments to move around each other and filaments carrying currents of equal polarity can merge. The time-evolution of the characteristic size of the filaments in the 2D simulation is measured. It increases linearly with the time.

  13. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    SciTech Connect

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-10-10

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72{sup 0}S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  14. Effect of coherent structures on energetic particle intensity in the solar wind

    NASA Astrophysics Data System (ADS)

    Tessein, Jeffrey A.

    Solar energetic particles in the solar wind are accelerated in both solar flares and shocks assocated with fast coronal mass ejections. They follow the interplanetary magnetic field and, upon reaching Earth, have implications for space weather. Space weather affects astronaut health and orbiting equipment through radiation hazard and electrical infrastructure on the ground with ground induced currents. Economic im- pacts include disruption of GPS and redirection of commercial polar flights due to a dangerous radiation environment over the poles. By studying how these particles interact with the magnetic fields we can better predict onset times and diffusion of these events. We find, using superposed epoch analysis and conditional statisitics from spacecraft observations that there is a strong association between energetic particles in the solar wind and magnetic discontinuities. This may be related to turbulent dissipa- tion mechanisms in which coherent structures in the solar wind seem to be preferred sites of heating, plasma instabilites and dissipation. In the case of energetic particles, magnetic reconnection and transport in flux tubes are likely to play a role. Though we focus on data away from large shocks, trapping can occur in the downstream region of shocks due to the preponderance of compressive turbulence in these areas. This thesis lays the ground work for the results described above with an intro- duction to solar wind and heliospheric physics in Chapter 1. Chapter 2 is an intro- duction to the acceleration mechanisms that give rise to observed energetic particle events. Chapter 3 describes various data analysis techniques and statistics that are bread and butter when analyzing spacecraft data for turbulence and energetic particle studies. Chapter 4 is a digression that covers preliminary studies that were done on the side; scale dependent kurtosis, ergodic studies and initial conditions for simulations. Chapter 5 contains that central published

  15. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  16. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  17. Energetic particles in the pre-dawn magnetotail of Jupiter

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Mcdonald, F. B.; Trainor, J. H.

    1980-01-01

    A detailed account is given of the energetic electron and proton populations as observed with Voyagers 1 and 2 during their passes through the dawn magnetotail of Jupiter. The region between 20 and 150 R sub J is dominated by a thin plasma sheet, where trapped energetic electron and proton fluxes reach their maximum. Proton spectra can be represented by an exponential in rigidity with a characteristic energy of approximately 50 keV. Proton anisotropies were consistent with corotation even at 100 R sub J. A major proton acceleration event as well as several cases of field aligned proton streaming were observed. The flux of 0.4 MeV protons decreases by three orders of magnitude between 30 and 90 R sub J and then remains relatively constant to the magnetopause. Fine structure in the data indicate longitudinal asymmetries with respect to the dipole orientation. Electron spectra in the magnetosheath and interplanetary space are modulated by the Jovian longitude relative to the subsolar point.

  18. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Smart, D F; Sauer, H H

    1998-01-01

    Galactic cosmic rays interact with the solar wind, the earth's magnetic field and hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.

  19. Ionization states of helium in He-3-rich solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Hovestadt, D.; Moebius, E.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1983-01-01

    Results of a systematic study of the ionic charge state of helium in the energy range 0.6-1.0 MeV/nucleon for He-3-rich solar energetic particle events during the time period August 1978 to October 1979 are reported. The data have been obtained with the Max-Planck-Institut/University of Maryland experiment on ISEE-3. Whereas for solar energetic particle events with no enrichment of He-3 relative to He-4 surprisingly large abundances of singly ionized helium have been reported recently, He-3-rich solar energetic particle events do not show significant abundances of He-3(+). This result is consistent with current theories explaining large compositional anomalies by mass per charge dependent selective heating of the minor ion species.

  20. Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J. M.; Burnham, J. A.; Christian, E. R.; Shuman, S.; von Rosenvinge, T. T.

    2014-01-01

    The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun's surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins-defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration-determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport-revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from approx. 20 keV/nucleon-15 MeV total energy and electrons from approx.25-1000 keV. EPI-Hi measures ions from approx. 1-200 MeV/nucleon and electrons from approx. 0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will

  1. The high energetic particles released during the decline phases of last five solar cycles

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    During the decline phases of the last five solar cycles, new peak has appeared releasing high energetic particles. During October 2003 (so-called Halloween storms), a sudden increase of the solar activity occurred during the decline phase which has bigger than that occurred during the main peak of that Solar cycle 23. The same situation was repeated again for the solar cycle 24, during its decline phase, giving a new peak during January 2014 and release high energetic particles, which was bigger than that occurred during the mean peak of cycle 24. This means that the solar cycles starting from the cycle 20 have two peaks, the second peak always producing higher energetic flares which affects the Earth's magnetic field. The same situation happened in the cycles 21, and 22, but with lower release of energetic particle, compared with cycles 23 and 24. We will do descriptive studies of these events, according to data analysis, and compare the results. Keywords: Solar cycles; solar activities; solar energetic particles, Halloween storms, January 2014 storms.

  2. M3D Simulations of Energetic Particle-driven MHD Mode with Unstructured Mesh

    NASA Astrophysics Data System (ADS)

    Fu, G. Y.; Park, W.; Strauss, H. R.

    2001-10-01

    The energetic particle-driven MHD modes are studied using a multi-level extended MHD code M3D(W. Park et al., Phys. Plasmas 6, 1796 (1999)). In a Extended-MHD model, the plasma is divided into the bulk part and the energetic particle component. The bulk plasma is treated as either a single fluid or two fluids. The energetic particles are described by gyrokinetic particles following the self-consistent electromagnetic field. The model is self-consistent, including nonlinear effects of hot particles on the MHD dynamics and the nonlinear MHD mode coupling. Previously we had shown the results of nonlinear saturation of TAEfootnote G.Y. Fu and W. Park, Phys. Rev. Lett. 74, 1594 (1995), energetic particle stabilization of an internal kink and excitation of fishbone^2, and nonlinear saturation of fishbone in circular tokamaks (G.Y. Fu et al, 2000 Sherwood Meeting, Paper 2C2.). In this work, we extend the simulations to general geometry using unstructured mesh(H.R. Strauss and W. Park, Phys. Plasmas 5, 2676 (1998). We also use a gyrofluid model for fishbone in order to study the role of MHD nonlinearity in saturation near the marginal stability. Results of applications to tokamaks and spherical tokamaks will be presented.

  3. The trapped-particle instability in the Boeing 1kW FEL oscillator

    SciTech Connect

    Ramos, L.; Blau, J.; Colson, W.B.

    1995-12-31

    The new design for the Boeing High Average Power Free Electron Laser will operate at 1KW average power (0.63 {mu}m) with a peak current of 132A. Simulations are used to investigate the trapped-particle instability and diffraction effects. Incorporating large desynchronism may prove to be a useful method of controlling the trapped-particle instability.

  4. Energetic charged particle sources in Saturn's and Jupiter's magnetoshperes

    NASA Astrophysics Data System (ADS)

    Roussos, Elias

    2015-04-01

    In this talk we review observations of high energy particle sources in the jovian and saturnian magnetospheres. We focus on both direct sources (e.g. CRAND, direct CME particle entry) and acceleration mechanisms (e.g. adiabatic heating, centrifugal interchange injections, wave particle interactions, impulsive events/transient radiation belts, reconnection etc.), using data mostly from Cassini, Galileo and Ulysses. We use a comparative approach, theoretical context and references to Earth observations to understand which of the sources and acceleration processes are fundamental for fast-rotating magnetospheres with internal plasma sources and which ones can be attributed to the specifics of each system.

  5. Long-term containment of energetic particles in coronal loops

    NASA Technical Reports Server (NTRS)

    Lau, Yun-Tung; Northrop, Theodore G.; Finn, John M.

    1993-01-01

    Recent observation from the Compton Gamma-Ray Observatory shows that gamma-ray emission after a solar flare can last for as long as 8 hours. There is also evidence that electrons and protons are accelerated only during the impulsive phase of the flare and are subsequently mirror trapped in coronal magnetic loops. This poses the following dilemma: if the magnetic field lines in the loop are simple plane arches, the protons will drift across the cross section of the loop in seconds to minutes, rather than hours. To solve the dilemma, we use guiding center theory to show that long-term containment of energetic protons in a coronal loop is possible if magnetic field lines have enough twist. We also find that in the trapped region of the loop, the twist angle of field lines between the mirror points of a bounce orbit is approximately 2 pi.

  6. Investigating the relationship between cusp energetic particle events and cusp diamagnetic cavities

    NASA Astrophysics Data System (ADS)

    Trattner, K. J.; Petrinec, S. M.; Fuselier, S. A.; Friedel, R.

    2012-10-01

    The magnetospheric cusps in the high latitude magnetosphere are characterized by open field lines and precipitating magnetosheath ions. Contrary to the well-understood precipitating thermal magnetosheath ion population, the origins of energetic ions in the cusp regions are still a matter of controversy. It has been suggested that these cusp energetic particles (CEP) with significant fluxes up to several hundred keV/e are accelerated in the cusp by local magnetic turbulence in strongly depressed magnetic field regions called cusp diamagnetic cavities (CDC). Alternative explanations for these CEP events suggest the magnetosphere and also the quasi-parallel bow shock from where energetic ions are transported downstream and enter the cusp along newly reconnected field lines. Composition and energy spectra of these CEPs resemble those of bow shock energetic diffuse ions and support this model.In this study we investigate the relationship between CEP events and CDCs. The survey contains 822 high altitude cusp crossings observed by the TIMAS instrument on the Polar spacecraft for which we document local magnetic field conditions and the flux of energetic ions at 102 keV and 191 keV. We find that high fluxes of energetic ions are independent of the local magnetic field conditions. This lack of correlation between CEP and CDCs suggests that the source of these energetic ions is not local acceleration in the cusp.

  7. Pitch-angle scattering of energetic particles with adiabatic focusing

    SciTech Connect

    Tautz, R. C.; Shalchi, A.; Dosch, A. E-mail: andreasm4@yahoo.com

    2014-10-20

    Understanding turbulent transport of charged particles in magnetized plasmas often requires a model for the description of random variations in the particle's pitch angle. The Fokker-Planck coefficient of pitch-angle scattering, which is used to describe scattering parallel to the mean magnetic field, is therefore of central importance. Whereas quasi-linear theory assumes a homogeneous mean magnetic field, such a condition is often not fulfilled, especially for high-energy particles. Here, a new derivation of the quasi-linear approach is given that is based on the unperturbed orbit found for an adiabatically focused mean magnetic field. The results show that, depending on the ratio of the focusing length and the particle's Larmor radius, the Fokker-Planck coefficient is significantly modified but agrees with the classical expression in the limit of a homogeneous mean magnetic field.

  8. Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013) Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013)

    NASA Astrophysics Data System (ADS)

    Lin, Z.

    2014-10-01

    In magnetic fusion plasmas, a significant fraction of the kinetic pressure is contributed by superthermal charged particles produced by auxiliary heating (fast ions and electrons) and fusion reactions (a-particles). Since these energetic particles are often far away from thermal equilibrium due to their non-Maxwellian distribution and steep pressure gradients, the free energy can excite electromagnetic instabilities to intensity levels well above the thermal fluctuations. The resultant electromagnetic turbulence could induce large transport of energetic particles, which could reduce heating efficiency, degrade overall plasma confinement, and damage fusion devices. Therefore, understanding and predicting energetic particle confinement properties are critical to the success of burning plasma experiments such as ITER since the ignition relies on plasma self-heating by a-particles. To promote international exchanges and collaborations on energetic particle physics, the biannual conference series under the auspices of the International Atomic Energy Agency (IAEA) were help in Kyiv (1989), Aspenas (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007), Kyiv (2009), and Austin (2011). The papers in this special section were presented at the most recent meeting, the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was hosted by the Fusion Simulation Center, Peking University, Beijing, China (17-20 September 2013). The program of the meeting consisted of 71 presentations, including 13 invited talks, 26 oral contributed talks, 30 posters, and 2 summary talks, which were selected by the International Advisory Committee (IAC). The IAC members include H. Berk, L.G. Eriksson, A. Fasoli, W. Heidbrink, Ya. Kolesnichenko, Ph. Lauber, Z. Lin, R. Nazikian, S. Pinches, S. Sharapov, K. Shinohara, K. Toi, G. Vlad, and X.T. Ding. The conference program

  9. Investigating The Ionization of The Earth's Atmosphere At Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.-B.; von König, M.; Künzi, K. F.; Quack, M.

    To investigate the influence of energetic particle events on the terrestrial atmosphere (e.g. due to ionization and/or hadronic interaction) a number of aspects are under consideration, such as the species of the precipitating particles, their energies, fluences as well as a repetition rate of events. In preparation of a refined model of precipitating charged particle interactions with the atmosphere, we calculate the ionization in the earth's atmosphere for well- known recent events (e.g. the Bastille Day event on July 14, 2000) of high particle fluences by using computer simulations of the earth's atmosphere and in situ measured particle intensities. The changes in atmospheric chemistry derieved from this ionization are described in the accompanying contribution of M. von König et al. (Modelling the influence of large energetic particle events on the chemical composition of the middle and upper atmosphere). Although very effective for atmospheric chemistry, these events are too rare and too short-lived to contribute significantly to the atmospheric NOx budget on a long-time basis. However, McCracken et al. (2001) suggests from nitrate depositions in ice- cores that solar particle events have occured more frequently and with a higher in- tensity in historical times, and thus may have led to a greater impact than the events discussed above. Therefore, we evaluate the influence of large historical energetic particle events, such as NOx and Ozone behaviour due to atmospheric ionization at Carrington's white light flare in 1859.

  10. THE POWER-LAW SPECTRA OF ENERGETIC PARTICLES DURING MULTI-ISLAND MAGNETIC RECONNECTION

    SciTech Connect

    Drake, J. F.; Swisdak, M.; Fermo, R. E-mail: swisdak@umd.edu

    2013-01-20

    Power-law distributions are a near-universal feature of energetic particle spectra in the heliosphere. Anomalous cosmic rays (ACRs), super-Alfvenic ions in the solar wind, and the hardest energetic electron spectra in flares all have energy fluxes with power laws that depend on energy E approximately as E {sup -1.5}. We present a new model of particle acceleration in systems with a bath of merging magnetic islands that self-consistently describes the development of velocity-space anisotropy parallel and perpendicular to the local magnetic field and includes the self-consistent feedback of pressure anisotropy on the merging dynamics. By including pitch-angle scattering we obtain an equation for the omnidirectional particle distribution f (v, t) that is solved in closed form to reveal v {sup -5} (corresponding to an energy flux varying as E {sup -1.5}) as a near-universal solution as long as the characteristic acceleration time is short compared with the characteristic loss time. In such a state, the total energy in the energetic particles reaches parity with the remaining magnetic free energy. More generally, the resulting transport equation can serve as the basis for calculating the distribution of energetic particles resulting from reconnection in large-scale inhomogeneous systems.

  11. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    NASA Astrophysics Data System (ADS)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level (< 1 pfu, particle flux unit = particle cm-2sr-1s-1) to several orders of magnitude in the MeV range, and lasting from several hours to a few days. Intense SEPEs can reach fluence values as high as 1010 protons cm-2 for E > 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of

  12. Modeling of long range frequency sweeping for energetic particle modes

    SciTech Connect

    Nyqvist, R. M.; Breizman, B. N.

    2013-04-15

    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

  13. A New Multiphase Model for Simulating Energetically Driven Particles

    SciTech Connect

    Stevens, D E; Murphy, M J

    2010-02-02

    The proper representation of particulate phenomena is important for the simulation of many non-ideal particle loaded explosives. These explosives present severe numerical difficulties to simulate because numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This paper presents a multiphase framework for the simulation of these non-ideal explosives that accurately accounts for the particulate behavior in both of these regimes. The capability of this framework is enhanced by the use of prescribed PDF methods for both particle size distributions and the representation of chemical processes. We have validated this framework using several experimental methods that accommodate the separation of momentum flux measurements in two-phase blast flows.

  14. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  15. Energetic particles in the vicinity of a possible neutral line in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Scholer, M.; Hovestadt, D.; Paschmann, G.; Gloeckler, G.

    1983-01-01

    Combined plasma, magnetic field, and energetic particle data obtained from ISEE-1 in the geomagnetic tail during two successive energetic particle burst events are presented. The behavior of protons with energies of more than about 100 keV is very different from that of the 30-100 keV protons which represent the suprathermal tail of the plasma sheet distribution. The more energetic ions appear on a time scale of several minutes following a northward turning of the tail magnetic field. At about the same time the plasma measurements show a velocity of about 200 km/s in the tailward direction. From these results, it is argued that two successive magnetic neutral lines are created well within the plasma sheet and move close to the satellite position in the earthward direction. The extent of the neutral line is then limited to the dusk side of the tail.

  16. Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave

    SciTech Connect

    Bellan, P. M.

    2013-04-15

    The interaction between a circularly polarized wave and an energetic gyrating particle is described using a relativistic pseudo-potential that is a function of the frequency mismatch. Analysis of the pseudo-potential provides a means for interpreting numerical results. The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves show that the energetic electron pitch angle can be deflected 5 Degree-Sign towards the loss cone when transiting a 10 ms long coherent wave packet having realistic parameters.

  17. Energetic particle sounding of the magnetopause: A contribution by Cluster/RAPID

    NASA Astrophysics Data System (ADS)

    Zong, Q.-G.; Fritz, T. A.; Spence, H.; Oksavik, K.; Pu, Z.-Y.; Korth, A.; Daly, P. W.

    2004-04-01

    In this paper we present new results using Cluster/Research with Adaptive Particle Imaging Detectors (RAPID) energetic particle observations to remotely sound the high-latitude magnetopause in three dimensions. We demonstrate that energetic particle flux variations in the vicinity of the magnetopause (inside the magnetosphere) are mainly modulated by the absorbing magnetopause during quiet geomagnetic conditions. Less than two gyro radii from an absorbing boundary a trapped particle distribution becomes nongyrotropic, as particles start to encounter the boundary. Knowing the magnetic field and the particle mass and energy, the direction and distance to the magnetopause can be derived by examining the azimuthal distribution of locally mirroring particles. Combining observations from three nearby spacecraft gives a three-dimensional, local picture of the magnetopause surface. We exploit anisotropic ion distributions to determine magnetopause distances, orientations, and structures in the interval from 1320 to 1420 UT on 14 January 2001 for the three Cluster spacecraft (Rumba, Samba, and Tango) located on the duskside (at ˜1700 MLT) high-latitude region. The results clearly illustrate that the magnetopause ion sounding technique as proposed by [1979], [1982], and [2000] can be used to remotely study the three-dimensional orientation and location of the magnetopause surface and the gradient variation of the plasma parameters. Intercomparison between energetic particle sounding distance and simultaneous plasma and magnetic field measurements suggests that solar wind plasma can penetrate more than ≈1000 km deeper than the trapping boundary. The fluxes of different ion species are proportional to the distance from the magnetopause, with a correlation coefficient of 0.7 to 0.8. The energetic proton flux gradient as a function of distance from the magnetosphere is about 100 particles cm-2 s-1 sr-1 per kilometer. In contrast, the solar wind plasma density is found to be

  18. Cluster Observations of Energetic Particles at the Reconnecting Magnetopause

    NASA Astrophysics Data System (ADS)

    Lee, S.; Zhang, H.; Glassmeier, K.; Daly, P. W.; Reme, H.

    2011-12-01

    We present preliminary results on a magnetic reconnection event observed by the Cluster spacecraft at the dayside magnetopause. Cluster 3 crossed the magnetopause at (X, Y, Z) = (8.3, 1.3, 4.5) RE GSM while travelling outbound in the northern hemisphere on March 5, 2007. Bursty high speed flows (Vz~250 km/s, Vx~-200 km/s) were observed from 18:55 UT to 19:10 UT. Meanwhile, energetic protons (> 30 keV) and Oxygen ions were observed by the RAPID instrument. During this time interval, the IMF was southward with (Bx, By, Bz) = (-4, 0, -4) nT GSM and the solar wind speed was -400 km/s. Cold plasmashperic materials were accelerated by the magnetic reconnection. The ion pitch angle measured by the CIS instrument changed from 0 to 180 degree, indicating that the direction of the magnetic field changed from northward to southward, i.e., the spacecraft passed the reconnection outflow region from the magnetospheric side to the magnetosheath side. The energy spectra of ions before and during the outflow region crossing have been investigated. The role played by cold ions in the reconnection process has been discussed.

  19. Energetic charged particles in the magnetosphere of neptune.

    PubMed

    Stone, E C; Cummings, A C; Loooper, M D; Selesnick, R S; Lal, N; McDonald, F B; Trainor, J H; Chenette, D L

    1989-12-15

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [>/=1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.

  20. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  1. The Energetic Particle Detector (EPD) for Solar Orbiter - Sensor Status and Calibration

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Mason, G. M.; Martin-Garcia, C.; Prieto, M.; Böttcher, S. I.; Kulkarni, S. R.; Panitzsch, L.; Sanchez, S.; Ho, G. C.; Kohler, J.; Gomez-Herrero, R.; Blanco, J. J.

    2014-12-01

    Solar Orbiter will solve the puzzle how the Sun creates and controls the heliosphere, the giant plasma bubble which forms as a result of the interaction of the solar wind with the local interstellar medium. Energetic particles are part of this puzzle and help understand the various driving forces and energy release processes in the solar corona. The Energetic Particle Detector (EPD) will determine how the Sun energizes particles to very high energies and sometimes fills the heliosphere with particle radiation. It consists of a suite of sensors which will measure protons (electrons) from 3 (2) keV up to 100 (20) MeV and ions from few tens of keV/nuc to 200 MeV/nuc. We will discuss the scientific aims of EPD as well as the current status and calibration of the EPD sensor (STEP, EPT, SIS, HET).

  2. Possible leakage of energetic particles from the magnetosphere into the upstream region on June 7, 1985

    NASA Technical Reports Server (NTRS)

    Kudela, K.; Sibeck, D. G.; Belian, R. D.; Fischer, S.; Lutsenko, V.

    1990-01-01

    Prognoz 10 observed a series of energetic ion (E not less than 10 KeV) and electron (E not less than 30 KeV) bursts whilst upstream of the dusk bow shock from 2000-2200 UT on June 7, 1985. The particles streamed away from the bow shock along the interplanetary magnetic field (IMF) during periods when the IMF connected the spacecraft to the bow shock/magnetosphere. Both ions and electrons were observed when the IMF connected the spacecraft to the subsolar bow shock, but only ions were observed when the IMF connected the spacecraft to the dusk bow shock. Simultaneous ground and magnetospheric observations are presented which indicate the onset of geomagnetic activity and an increase in magnetospheric energetic particle flux levels just prior to the series of particle bursts observed by Prognoz 10 upstream of the bow shock. The combined observations are consistent with a magnetospheric source for these upstream particle events.

  3. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  4. Gradual solar energetic particle events observed by SOHO/EPHIN on November 4 and 6, 1997

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; del Peral, L.; Rodríguez-Frías, M. D.; Sequeiros, J.; Müller-Mellin, R.; Kunow, H.

    2002-03-01

    In November 1997, EPHIN (Electron, Proton, Helium Instrument) aboard Solar and Heliospheric Observatory (SOHO) detected Solar Energetic Particles (SEP) from a multiple large event. Composition, temporal profiles, and energy spectra of electrons, hydrogen and helium have been analysed. The SEP events show, in general, gradual characteristics related to acceleration in the shocks driven by the associated Coronal Mass Ejections (CMEs).

  5. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  6. User's guide to data obtained by the Aerospace Corporation energetic particle spectrometer on ATS-6

    NASA Technical Reports Server (NTRS)

    Paulikas, G. A.; Hilton, H. H.

    1977-01-01

    Descriptions of the energetic particle detector are offered with calibration data, as part of a user's guide to the data obtained by ATS 6. Information on instrumental and operational anomalies and a description of the procedures used to reduce the data are also presented along with a description of the format of the data.

  7. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  8. Energetic particles and coronal mass ejections in the high latitude heliosphere: Ulysses-LET observations

    SciTech Connect

    Bothmer, V.; Marsden, R. G.; Sanderson, T. R.; Trattner, K. J.; Wenzel, K.-P.; Balogh, A.; Forsyth, R. J.; Goldstein, B. E.; Uchida, Y.; Hudson, H. S.

    1996-07-20

    We have investigated energetic ions of non-corotating nature in the high latitude heliosphere. Major particle events were observed by Ulysses up to latitudes of 60 deg. S. All were associated with passage of coronal mass ejections (CMEs) over the spacecraft. The relationship of these events with solar activity was investigated using Yohkoh soft X-ray images.

  9. Distribution of energetic particles and secondary radiation according to orbital station "MIR" data obtained in 1991.

    PubMed

    Dmitriev, A; Kuznetsov, S; Shavrin, P; Lyagushin, V; Nechaev, O; Panasyuk, M; Tolstaya, E; Nikiforova, M

    1998-01-01

    A set of instruments for measuring energetic particle fluxes, containing two neutron detectors under different plexiglas shielding thicknesses, a scintillation detector, measuring energy release >0.1 MeV and 0.5 MeV and a Geiger counter were launched onboard OS 'MIR'. The latitude dependencies of the cosmic ray measurements were obtained and studied. The distributions of primary particle fluxes (protons and elections) as well as secondary particle fluxes (bremsstrahlung gamma-rays and neutrons) produced in interactions of radiation belt particles with the station materials were obtained. The electron belt, generated during the storm of March 24 1991, is studied.

  10. Erosion processes due to energetic particle-surface interaction

    SciTech Connect

    Schmid, K.; Roth, J.

    2010-05-20

    The interaction of the fast particles from the hot plasma of a magnetic confinement fusion experiment with the first wall is one of the most challenging problems toward the realization of a fusion power plant. The erosion of the first wall by the fast particles leads to life time limitations and the radiative cooling of the plasma by the eroded impurity species lowers the energy confinement. Apart from these obvious consequences also the trapping of large quantities of the fuelling species (deuterium and tritium) in re-deposited layers of the eroded species poses a problem due to accumulation of large radiative inventories and plasma fuelling inefficiency. The source of all these challenges is the erosion of first wall components due to physical sputtering, chemical erosion and radiation enhanced sublimation. This paper will give an overview about the physical principles behind these erosion channels.

  11. RAPID: The imaging energetic particle spectrometer on Cluster

    NASA Technical Reports Server (NTRS)

    Wilken, B.; Guettler, W.; Korth, A.; Livi, S.; Weiss, W.; Gliem, F.; Muellers, A.; Rathje, R.; Fritz, T. A.; Fennell, J. F.

    1993-01-01

    The RAPID spectrometer for the Cluster mission, an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20 to 400 keV and from 2 keV/nuc to 1500 keV for electrons and ions, respectively, is presented. Novel detector concepts in combination with pinhole acceptance permit the measurement of angular distributions over a range of 180 deg in polar angle for either species. The detection principle for the ionic component is based on a two dimensional analysis of a particle's velocity and energy. Electrons are identified by the well known energy range relationship. The detection techniques are described and selected areas in geospace are used to highlight the scientific objectives of this investigation.

  12. Energetic particle drift motions in the outer dayside magnetosphere

    SciTech Connect

    Buck, R.M.

    1987-12-01

    Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B ''pockets'' in the geomagnetic field. Drift-shell branching caused by the minimum-B pockets is analyzed and interpreted in terms of an adiabatic shell branching and rejoining process. We examine the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field model. We find that shell branching annd rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. We determine the spatial extent of the stable trapping regions for the Choe-Beard model. We develop an adiabatic branching map methodology which completely identifies and describes the location of shell-branching points and the adiabatic trajectories of particles on branched shells, for any model field. We employ the map to develop synthetic pitch angle distributions near the dayside magnetopause by adiabatically transforming observed midnight distributions to the dayside. We find that outer dayside lines contain particles moving on branched and unbranched shells, giving rise to distinctive pitch angle distribution features. We find a good correlation between the pitch angles which mark the transition from branched to unbranched shells in the model, and the distinctive features of the OGO-5 distributions. In the morning sector, we observe large flux changes at critical pitch angles which correspond to B-pocket edges in the model. Measurements on inbound passes in the afternoon sector show first the adiabatic particle shadow, then the arrival of fluxes on rejoined shells, then fluxes on unbranced shells - in accord with model predictions. 204 refs., 138 figs., 2 tabs.

  13. Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment

    NASA Astrophysics Data System (ADS)

    Chou, Yi-Ju; Shao, Yun-Chuan

    2016-04-01

    In this study, we investigate Rayleigh-Taylor instability in which the density stratification is caused by the suspension of particles in liquid flows using the conventional single-phase model and Euler-Lagrange (EL) two-phase model. The single-phase model is valid only when the particles are small and number densities are large, such that the continuum approximation applies. The present single-phase results show that the constant settling of the particle concentration restricts the lateral development of the vortex ring, which results in a decrease of the rising speed of the Rayleigh-Taylor bubbles. The EL model enables the investigation of particle-flow interaction and the influence of particle entrainment, resulting from local non-uniformity in the particle distribution. We compare bubble dynamics in the single-phase and EL cases, and our results show that the deviation between the two cases becomes more pronounced when the particle size increases. The main mechanism responsible for the deviation is particle entrainment, which can only be resolved in the EL model. We provide a theoretical argument for the small-scale local entrainment resulting from the local velocity shear and non-uniformity of the particle concentration. The theoretical argument is supported by numerical evidence. Energy budget analysis is also performed and shows that potential energy is released due to the interphase drag and buoyant effect. The buoyant effect, which results in the transformation of potential energy into kinetic energy and shear dissipation, plays a key role in settling enhancement. We also find that particle entrainment increases the shear dissipation, which in turn enhances the release of potential energy.

  14. The Sun as a particle accelerator: hard X-ray and γ-ray diagnostics of energetic particles

    NASA Astrophysics Data System (ADS)

    Vilmer, N.

    2010-12-01

    Explosive phenomena of magnetic energy conversion in the solar corona lead to the production of energetic particles at all energies. While some fast particles (electrons and ions) produce high energy radiation when interacting with the solar atmosphere (X-rays,γ-rays), others escape in the corona and interplanetary medium, produce radio emission and may eventually reach the Earth's orbit. I shall illustrate here with some high-energy observations the properties that can be derived on energetic particles. I will concentrate on some of the observations obtained in the last years at high spectral resolution with RHESSI and INTEGRAL/SPI and on the spatially resolved observations provided by RHESSI. I shall present some open questions still being discussed and give a brief overview of future observations in the field of high energy solar physics.

  15. Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Zimbardo, Gaetano; Effenberger, Frederic; Fichtner, Horst

    2015-06-01

    Context. In-situ spacecraft observations recently suggested that the transport of energetic particles accelerated at heliospheric shocks can be anomalous, i.e. the mean square displacement can grow non-linearly in time. In particular, a new analysis technique has permitted the study of particle transport properties from energetic particle time profiles upstream of interplanetary shocks. Indeed, the time/spatial power laws of the differential intensity upstream of several shocks are indicative of superdiffusion. Aims: A complete determination of the key parameters of superdiffusive transport comprises the power-law index, the superdiffusion coefficient, the related transition scale at which the energetic particle profiles turn to decay as power laws, and the energy spectral index of the shock accelerated particles. Methods: Assuming large-scale spatial homogeneity of the background plasma, the power-law behaviour can been derived from both a (microscopic) propagator formalism and a (macroscopic) fractional transport equation. We compare the two approaches and find a relation between the diffusion coefficients used in the two formalisms. Based on the assumption of superdiffusive transport, we quantitatively derive these parameters by studying energetic particle profiles observed by the Ulysses and Voyager 2 spacecraft upstream of shocks in the heliosphere, for which a superdiffusive particle transport has previously been observed. Further, we have jointly studied the electron energy spectra, comparing the values of the spectral indices observed with those predicted by the standard diffusive shock acceleration theory and by a model based on superdiffusive transport. Results: For a number of interplanetary shocks and for the solar wind termination shock, for the first time we obtain the anomalous diffusion constants and the scale at which the probability of particle free paths changes to a power-law. The investigation of the particle energy spectra indicates that a

  16. High resolution, position sensitive detector for energetic particle beams

    NASA Astrophysics Data System (ADS)

    Marsh, E. P.; Strathman, M. D.; Reed, D. A.; Morse, D. H.; Pontau, A. E.; Odom, R. W.

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates over a wide dynamic range (> 10 10), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported [R.W. Odom, M.D. Strathman, S.E. Buttrill, Jr., and S.M. Bauman, Nucl. Instr. and Meth. B44 (1990) 465]. A higher resolution detector for imaging small beams (< 50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented.

  17. A filament of energetic particles near the high-latitude dawn magnetopause

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Williams, D. J.; Mcentire, R. W.; Christon, S. P.; Jacquey, C.; Angelopoulos, V.; Yamamoto, T.; Kokubun, S.; Frank, L. A.; Ackerson, K. L.

    1994-01-01

    The Geotail satelite detected a filament of tailward-streaming energetic particles spatially separated from the boundary layer of energetic particles at the high-latitude dawn magnetopause at a downstream distance of approximately 80 R(sub E) on October 27, 1992. During this event, the composition and charge states of energetic ions at energies above approximately 10 keV show significant intermix of ions from solar wind and ionospheric sources. Detailed analysis leads to the deduction that the filament was moving southward towards the neutral sheet at an average speed of approximately 80 km/s, implying an average duskward electric field of approximately 1 mV/m. Its north-south dimension was approximately 1 R(sub E) and it was associated with an earthward directed field-aligned current of approximately 5 mA/m. The filament was separated from the energetic particle boundary layer straddling the magnetopause by approximately 0.8 R(sub E) and was inferred to be detached from the boundary layer at downstream distance beyond approximately 70 R(sub E) in the distant tail.

  18. Interaction between Two Coronal Mass Ejections in the 2013 May 22 Large Solar Energetic Particle Event

    NASA Astrophysics Data System (ADS)

    Ding, Liu-Guan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao; Xu, Fei; Gu, Bin; Zhang, Ya-Nan

    2014-10-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ~08:48 UT and ~13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ~6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ~20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.

  19. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    SciTech Connect

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-10-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.

  20. Quantitative study of the trapped particle bunching instability in Langmuir waves

    SciTech Connect

    Hara, Kentaro Boyd, Iain D.; Chapman, Thomas; Joseph, Ilon; Berger, Richard L.; Banks, Jeffrey W.; Brunner, Stephan

    2015-02-15

    The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.

  1. Solar energetic particle arrival at Mars due to the 27 January 2012 solar storm

    NASA Astrophysics Data System (ADS)

    Frahm, R. A.; Sharber, J. R.; Winningham, J. D.; Elliott, H. A.; Howard, T. A.; DeForest, C. E.; Odstrĉil, D.; Kallio, E.; McKenna-Lawlor, S.; Barabash, S.

    2013-06-01

    On January 27, 2012, an X-class flare brightened on the Sun at 18:15 UT. This event was associated with the generation of a high-energy stream of Solar Energetic Particles (SEPs) advancing along the Interplanetary Magnetic Field (IMF) which arrived at Mars in about 39 minutes. A Coronal Mass Ejection (CME) arrived at Mars several days later. The Electron Spectrometer (ELS), a part of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment on the European Mars Express (MEx) Spacecraft, associatively detected elevated background levels of penetrating particle radiation which abruptly increased above the baseline level by two orders of magnitude within several hours after first arrival, allowing the particle arrival time to be accurately determined from this gradual SEP. As Mars reacted to the SEP, the atmosphere heated driving expansion of the ionosphere.

  2. Effects of The Encounter of A Solar Energetic Particle Event With Mercury

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Luhmann, J. G.; Johnson, R. E.; Chassefiere, E.

    In this work, we use a typical Solar Energetic Particles event observed at the Earth orbit and scaled to Mercury's orbit. We follow these energetic particles inside the Hermean magnetosphere. The model for the magnetosphere is deduced from Tsyga- nenko's Earth model (Tsyganenko, JGR 1996) extrapolated to Mercury following the measurements of the Hermean magnetosphere made by Mariner 10 (Luhmann et al., JGR 1998). For each of the four main species of ions which usually composed a SEP event, that is H+, He2+, O7+ and C6+, and for the electrons we follow inside the Her- mean magnetosphere thousands of particles launched from the magnetopause as far as either they leave the Hermean magnetosphere or reach the Hermean surface. From this calculation, we deduce the lifetime of these particles inside the magnetosphere and therefore confirm the existence of transfer radial ion and electron pockets (Luh- mann DPS 2001). We also estimate the flux of energetic particles reaching the surface in particular with respect to the Interplanetary Magnetic Field. We then calculate the importance of such encounter among the processes which contribute to generate the Hermean sodium neutral exosphere (Potter et al. 1986). We show in particular that most of the unexplained casual characteristics of this exosphere - peaks of emission on North and South daylight hemispheres (Killen et al. JGR 2001) and dawn/dusk asymmetries (Sprague et al. JGR 1998) - can be explained by such a type of encounter.

  3. Energetic charged particles in Saturn's magnetosphere: Voyager 2 results

    SciTech Connect

    Vogt, R.E.; Chenette, D.L.; Cummings, A.C.; Garrard, T.L.; Stone, E.C.; Schardt, A.W.; Trainor, J.H.; Lal, N.; McDonald, F.B.

    1982-01-29

    Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the greater than or equal to 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more varible, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0-million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approx. 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

  4. Energetic Charged Particles in Saturn's Magnetosphere: Voyager 2 Results.

    PubMed

    Vogt, R E; Chenette, D L; Cummings, A C; Garrard, T L; Stone, E C; Schardt, A W; Trainor, J H; Lal, N; McDonald, F B

    1982-01-29

    Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the >/= 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

  5. Cosmic Ray and Solar Energetic Particle Observations In The 3-d Heliosphere Near Solar Maximum

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Connell, J. J.; Lopate, C.

    Observations from the COSPIN High Energy Telescope during Ulysses recent fast lat- itude scan have provided the first latitudinal survey of intensities of cosmic rays and solar energetic particles near solar maximum. During the previous fast latitude scan near solar minimum, no significant solar energetic particle events were observed, but the galactic and anomalous component cosmic ray intensities showed small positive latitudinal gradients organized around a southwardly displaced heliospheric current sheet. The small size of the gradients, together with observation near the poles of 26-day intensity variations impressed by near-equatorial CIR-structures, led to the conclusion that latitudinal transport across the mean Parker spiral magnetic fields was much easier than had been expected prior to Ulysses observations. During the recently completed fast latitude scan near solar maximum, galactic cosmic rays could be ob- served only occasionally in the quiet times between frequent solar energetic particle events. When cosmic ray intensities could be observed, no measurable latitude gradi- ents were found, implying that modulation became much more spherically symmetric near solar maximum. From observations of the solar energetic particle intensities, we found that almost all large gradual events produced intensity increases both at Ulysses and at IMP-8 near Earth, regardless of the latitude or longitude of the spacecrafts relative to the initiating event in the corona. Most often the intensities at Ulysses and IMP-8 became comparable a few days after the onset of the event and remained nearly equal for the rest of the decay, which in some cases lasted as much as a full solar rota- tion. Both the cosmic ray and the solar energetic particle observations imply efficient latitudinal and cross-field transport of energetic particles even in the complex inter- planetary magnetic fields of solar maximum. Recent observations suggest that the solar polar coronal holes have

  6. Multispacecraft observations of the east-west asymmetry of solar energetic storm particle events

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Krimigis, S. M.

    1985-01-01

    Energetic proton observations have been obtained by instruments aboard the IMP-7 and -8 spacecraft and Voyager-1 and -2 deep space probes, in order to study the generation of solar flare Energetic Storm Particle Events (ESP) events at widely separated locations on the same shock front which are presumably characterized, on average, by different IMF shock front configurations for solar flare sites. Energetic proton observations indicate that substantial differences in the ESP proton intensity enhancements are detected at these energies for locations on the shock front with wide heliolongitude separations. The present results indicate that acceleration of ESP protons to more than 500 keV takes place at the quasi-perpendicular shock front domain, consistent with the 'shock drift' acceleration mechanism.

  7. Energetic particle diffusion and the A ring: Revisiting noise from Cassini's orbital insertion

    NASA Astrophysics Data System (ADS)

    Crary, Frank; Kollmann, Peter

    2016-04-01

    Immediately following Cassini's orbital insertion on July 1, 2004 the Cassini spacecraft passed over the Saturn's main rings. In anticipation of the final phase of the Cassini mission, with orbits inside and over the main rings, we have re-examined data from the CAPS instrument taken during the orbital insertion period. One previously-neglected feature is the detector noise in the ELS sensor. This has proven to be a sensitive, relative measure of omni-directional energetic (>5 MeV) electron flux. The data are obtained at 31.25 ms time resolution, corresponding to 0.46 km spatial resolution. Over the A ring, the energetic electron flux was essentially zero (~3 counts per sample.) At the edge of the A ring, this dramatically increased to approximately 2500 counts per sample in the space of 17.5 km. We use these results to derive the energetic particle diffusion rate and the absorption (optical depth) of the ring.

  8. Simple analytical solutions for spherically symmetric production and modulation of energetic solar particles

    NASA Technical Reports Server (NTRS)

    Gross, M. W.; Lee, M. A.; Lerche, I.

    1977-01-01

    Exact analytical solutions are presented for the standard time-independent spherically symmetric convection-diffusion-adiabatic deceleration equation governing the transport of cosmic rays in the interplanetary medium for the case in which particles are produced with spherical symmetry at the sun. It is assumed that the solar-wind speed is constant and radial, and that the spatial diffusion coefficient has a power-law dependence on momentum. The Green's function describing the modulation of a monoenergetic production of particles is presented. The solutions provide a useful basis for the study of time-integrated properties of energetic solar-flare particle spectra.

  9. The Energetic Particle Populations of the Distant Heliosphere

    SciTech Connect

    McDonald, F.B.; Cummings, A.C.; Stone, E.C.; Heikkila, B.C.; Lal, N.

    2004-09-15

    In late 2003 as Voyager 1 moves beyond 90 AU in the recovery phase of solar cycle 23, the effects of the termination shock (TS) and the heliosheath on particle transport are becoming more evident. There are now detectable fluxes of 2.5 - 70 MeV electrons but at low intensity levels that suggest they are heavily modulated in the heliosheath. The modulation of galactic and anomalous cosmic rays is significant but much smaller than observed at 1 AU. At V1 a large increase of MeV ions was observed with a flat energy spectra which persisted over a period of 6.5 months. A second event has now been in progress for some eight months. These ions appear to originate at the TS. At V2, 17 AU behind V1, there are a series of 8 increases of low energy ions that occur approximately every 140 days starting in late 2000. Many of these increases can be related to specific periods of high solar activity that occurred some 6 months earlier.

  10. Fragmentation energetics of clusters relevant to atmospheric new particle formation.

    PubMed

    Bzdek, Bryan R; DePalma, Joseph W; Ridge, Douglas P; Laskin, Julia; Johnston, Murray V

    2013-02-27

    The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation (NPF), but basic species such as ammonia are also important. Few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation to investigate time- and collision-energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/quasi-equilibrium theory modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: (1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and (2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e., diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.

  11. Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation

    SciTech Connect

    Bzdek, Bryan R.; Depalma, Joseph W.; Ridge, Douglas P.; Laskin, Julia; Johnston, Murray V.

    2013-02-27

    The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation, but basic species such as ammonia are also important. However, few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation (FTICR-SID) to investigate time- and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: 1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and 2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e. diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.

  12. SIMULATIONS OF THE SPATIAL AND TEMPORAL INVARIANCE IN THE SPECTRA OF GRADUAL SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Wang, Yang; Qin, Gang E-mail: gqin@spaceweather.ac.cn

    2015-06-20

    The spatial and temporal invariance in the spectra of energetic particles in gradual solar events is reproduced in simulations. Based on a numerical solution of the focused transport equation, we obtain the intensity time profiles of solar energetic particles (SEPs) accelerated by an interplanetary shock in three-dimensional interplanetary space. The shock is treated as a moving source of energetic particles with a distribution function. The time profiles of particle fluxes with different energies are calculated in the ecliptic at 1 AU. According to our model, we find that shock acceleration strength, parallel diffusion, and adiabatic cooling are the main factors in forming the spatial invariance in SEP spectra, and perpendicular diffusion is a secondary factor. In addition, the temporal invariance in SEP spectra is mainly due to the effects of adiabatic cooling. Furthermore, a spectra invariant region, which agrees with observations but is different from the one suggested by Reames et al. is proposed based on our simulations.

  13. Effect of Coherent Structures on Energetic Particle Intensity in the Solar Wind at 1 AU

    NASA Astrophysics Data System (ADS)

    Tessein, J.; Ruffolo, D. J.; Wan, M.; Matthaeus, W. H.; Neugebauer, M.; Giacalone, J.

    2014-12-01

    We present results from an analysis of ACE observations of energeticparticles in the 0.047-4.75 MeV range associated with shocks and discontinuities in the solar wind. Inour previous work, Tessein et al. 2013, we found a high correlation between discontinuities, identified using the PVI statistic (essentially a normalized vectorincrement) and the intensity of energetic particles measured by ACE/EPAM. Our previous study was primarily a superposed epoch analysis using 12 years worth of data. In this study we look more closely at what causesthis correlation by examining individual events to determine whatcauses the association between the intensity and the location of the discontinuity. We find that in many cases the discontinuity is located at the rising or trailingedge of an energetic particle peak which revealsthat the discontinuities may act as barriers which inhibit the motion ofenergetic particles across the boundaries, rather than as sources of particleacceleration. We also find that the energetic particle peak is often associatedwith strong interplanetary shocks that are not documented in the ACE shocklist. The distinction between weak shocks and other discontinuities, which can appearsimilar in the observations, is a further complication that we address in this study.

  14. Energetic particles and waves in the Jupiter's and Saturn's radiation belts

    NASA Astrophysics Data System (ADS)

    Krupp, Norbert; Roussos, Elias; Paranicas, Chris; Sicard, Angelica; Hospodarsky, George; Shprits, Yuri

    2016-04-01

    The radiation belts of Jupiter and Saturn are among the harshest environments in our solar system. In extremely strong internal closed magnetic field configurations energetic particles up to several hundred MeV energies are trapped and bounce back and forth along the magnetic field lines emitting waves in a whole variety of frequencies. Charged particle drift paths in the rotationally-dominated magnetospheres close around the whole planet to substantial planetary distances, unlike in the case of Earth. The combination of a strong internal magnetic field and quasi-stable trapping allows the fluxes of energetic ions and electrons to become very large. In this presentation the available in-situ measurements of Jupiter's and Saturn's radiation belts are reviewed as well as current modelling approaches. In addition some aspects of the expected measurements of the Jovian radiation belts from the upcoming JUNO mission will be discussed.

  15. Case studies of multi-day 3He-rich solar energetic particle periods

    NASA Astrophysics Data System (ADS)

    Chen, Nai-hwa; Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.

    2015-08-01

    Context. Impulsive solar energetic particle events in the inner heliosphere show the long-lasting enrichment of 3He. Aims: We study the source regions of long-lasting 3He-rich solar energetic particle (SEP) events Methods: We located the responsible open magnetic field regions, we combined potential field source surface extrapolations with the Parker spiral, and compared the magnetic field of the identified source regions with in situ magnetic fields. The candidate open field regions are active region plages. The activity was examined by using extreme ultraviolet images from the Solar Dynamics Observatory (SDO) and STEREO together with radio observations from STEREO and WIND. Results: Multi-day periods of 3He-rich SEP events are associated with ion production in single active region. Small flares or coronal jets are their responsible solar sources. We also find that the 3He enrichment may depend on the occurrence rate of coronal jets.

  16. Bulk Flow Velocity and First-Order Anisotropy of Solar Energetic Particles Observed on Wind Spacecraft

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Reames, D. V.; Ng, C. K.

    2006-12-01

    We have developed a technique to calculate the bulk flow velocity and first-order anisotropy of solar energetic particles (SEPs) with MeV per nucleon energies. Using the technique we have selected and analyzed three "gradual" SEP events recorded by the Low-Energy Matrix Telescope (LEMT) of the Energetic Particles: Acceleration, Composition, and Transport experiment (EPACT) on the Wind spacecraft. Since in our selected events, the interplanetary magnetic field upstream of interplanetary (IP) shock is nearly perpendicular to the solar-wind velocity, the effect of SEP scattering centers can be clearly discerned. From the observations of H, He, O, and Fe ions at different energies, we find that upstream of IP shock the bulk flow direction of heavy ions is opposite to that of protons. In addition, the ion velocity/rigidity dependence of the first-order anisotropy of SEPs is different between the onset and the upstream region. The implication of our observations will be discussed.

  17. Detection of lower tropospheric responses to solar energetic particles at midlatitudes.

    PubMed

    Nicoll, K A; Harrison, R G

    2014-06-01

    Solar energetic particles (SEPs) occasionally contribute additional atmospheric ionization beyond that arising from the usual galactic cosmic ray background. During an SEP event associated with a solar flare on April 11, 2013, the vertical ionization rate profile obtained using a balloon-borne detector showed enhanced ionization with a 26% increase at 20 km, over Reading, United Kingdom. Fluctuations in atmospheric electrical parameters were also detected at the surface, beneath the balloon's trajectory. As no coincident changes in geomagnetism occurred, the electrical fluctuations are very likely to be associated with increased ionization, as observed by the balloon measurements. The lack of response of surface neutron monitors during this event indicates that energetic particles that are not detected at the surface by neutron monitors can nevertheless enter and influence the atmosphere's weather-generating regions. PMID:24949773

  18. A rocket-borne electrostatic analyzer for measurement of energetic particle flux

    NASA Technical Reports Server (NTRS)

    Pozzi, M. A.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight.

  19. Manned Mars mission solar physics: Solar energetic particle prediction and warning

    NASA Technical Reports Server (NTRS)

    Suess, S. T.

    1986-01-01

    There are specific risks to the crew of the manned Mars mission from energetic particles generated by solar activity. Therefore, mission planning must provide for solar monitoring and solar activity forecasts. The main need is to be able to anticipate the energetic particle events associated with some solar flares and, occasionally, with erupting filaments. A second need may be for forecasts of solar interference with radio communication between the manned Mars mission (during any of its three phases) and Earth. These two tasks are compatible with a small solar observatory that would be used during the transit and orbital phases of the mission. Images of the Sun would be made several times per hour and, together with a solar X-ray detector, used to monitor for the occurrence of solar activity. The data would also provide a basis for research studies of the interplanetary medium utilizing observations covering more of the surface of the Sun than just the portion facing Earth.

  20. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  1. Local and global scattering properties of the interplanetary medium obtained from Solar Energetic Particles (SEPs)

    NASA Technical Reports Server (NTRS)

    Wibberenz, G.; Hatzky, R.; Bieber, J. W.

    1995-01-01

    Solar energetic particles can be used as probes for the turbulence level in the interplanetary medium. It is of general interest to compare the LOCAL scattering properties near an observer with GLOBAL properties which characterize the average scattering along the magnetic field. We discuss various methods by which the scattering conditions can be determined: (1) overall fits of observed particle intensities and anisotropies to a transport model; (2) evaluation of the steady-state pitch angle distribution; and (3) suitably normalized angular distributions during the intensity maximum of a particle event. Energetic particle data from HELIOS 1/2 are analyzed, and the mean free paths obtained with the different methods are compared with each other. As a result one can state: (1) for a number of solar particle events the radial mean free path is essentially constant between the Sun and Helios; and (2) large variations in the degree of scattering exist from one event to the other. These results indicate the existence of 'regimes' where the amount of particle scattering is relatively constant over extended regions in radius and azimuth, but with marked differences from one regime to the other.

  2. Geosynchronous Energetic Particle (EP) Data Plots from Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    Belian, Dick; Reeves, Geoff; Dors, Eric

    LANL's Geosynchronous Energetic Particle activities include collecting and analyzing data from ten satellites in an ongoing program sponsored by DOE.  Data acquisition has been continuous since 1976 and is received in real time 24 hours a day.  The website provides access to Low Energy proton and electron summary plots, showing spin-averaged fluxes from each satellite for each day since July 4, 1976.

  3. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  4. Solar energetic particles as probes of the structures of magnetic clouds

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1990-01-01

    Two possible closed magnetic topologies are considered for clouds: an elongated bottle with field lines rooted at both ends in the sun and a magnetic bubble or plasmoid consisting of closed field lines. Solar energetic particles (SEPs) are used as probes of the cloud topologies. The rapid access of SEPs to clouds in many events indicates that the cloud field lines extend back to the sun.

  5. Solar energetic particle events and coronal mass ejections: New insights from SOHO

    NASA Technical Reports Server (NTRS)

    Bothmer, V.; Posner, A.; Kunow, H.; Mueller-Mellin, R.; Heber, B.; Pick, M.; Thompson, B. J.; Delaboudiniere, J.-P.; Brueckner, G. E.; Howard, R. A.; Michels, D. J.; St.Cyr, C.; Szabo, A.; Hudson, H. S.; Mann, G.; Classen, H.-T.; McKenna-Lawlor, S.

    1997-01-01

    The scientific payload of SOHO, launched in December 1995, enables comprehensive studies of the sun from its interior, to the outer corona and solar wind. In its halo orbit around the Lagrangian point of the sun-earth system, the comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic partiles in the energy range 44 keV/particle to greater than 53 MeV/n. Although solar activity was at minimum, COSTEP detected from mid December 1995 until the end of July 1997, 30 solar energetic particle (SEP) events, including both gradual and implusive type SEPs. These minimum phase SEP events are unique in the sense that their associated solar source phenomena can be investigated in detail without interference by other simultaneous solar events as is usually the case at times around solar activity maximum. Simultaneous observations of the solar corona are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). From the correlated SOHO observations, a one to one correspondence of SEP events with coronal mass ejections (CMEs) was found. Most of the SEP events were associated with west-limb CMEs, some with halo CMEs that later passed the SOHO spacecraft and with Moreton-like disturbances in the lower solar atmosphere as observed by the EIT. Many SEP events were detected at sector boundaries of the interplanetary magnetic field (IMF) suggesting a magnetic connection to coronal streamers at the sun as supported by LASCO observations of mass ejections at the base of helmet streamers. Energetic particle and LASCO white-light observations yield evidence that CMEs often lead to large-scale disturbances of the sun's corona, probably affecting at times areas all around the sun.

  6. Longitudinal asymmetry of the Jovian magnetosphere and the periodic escape of energetic particles

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Dessler, A. J.

    1976-01-01

    An earlier model of the Jovian magnetosphere is utilized in which the centrifugal stress of corotating plasma distends the outer magnetosphere and opens the tail field. Because of a longitudinal asymmetry in the ionospheric plasma source strength, caused principally by the nonaxisymmetric surface field, the closed-field region in the tail expands and contracts with the rotation period, resulting in a 10-hour modulation of the flux of energetic particles escaping from the magnetosphere into interplanetary space.

  7. Diagnostics for energetic particle studies on the HL-2A tokamak

    SciTech Connect

    Yang, Q. W. Zhou, H. Y.; Yang, J. W.; Shi, Z. B.; Ji, X. Q.; Yuan, G. L.; Zhang, Y. P.; Yu, D. L.; Jiang, M.; Li, W.; Ding, X. T.; Yin, Z. J.; Cao, H. R.

    2014-11-15

    About 13 kinds of diagnostics for energetic particle physics studied on the HuanLiuqi-2A (commonly referred to as HL-2A) tokamak are described in this paper. Their measurement ranges, resolutions, and arrangement are presented. Three under-construction diagnostics including imaging fast ion D-alpha, scintillator matrix (for hard X-ray detection), and bundle fission chamber are described in detail.

  8. Diagnostics for energetic particle studies on the HL-2A tokamak.

    PubMed

    Yang, Q W; Yin, Z J; Zhou, H Y; Yang, J W; Shi, Z B; Ji, X Q; Yuan, G L; Zhang, Y P; Yu, D L; Jiang, M; Li, W; Ding, X T; Cao, H R

    2014-11-01

    About 13 kinds of diagnostics for energetic particle physics studied on the HuanLiuqi-2A (commonly referred to as HL-2A) tokamak are described in this paper. Their measurement ranges, resolutions, and arrangement are presented. Three under-construction diagnostics including imaging fast ion D-alpha, scintillator matrix (for hard X-ray detection), and bundle fission chamber are described in detail.

  9. Neutralized solar energetic particles in the inner heliosphere: a parameter study

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Klecker, Berndt; Futaana, Yoshifumi; Cipriani, Fabrice; Barabash, Stas; Wieser, Martin

    2016-04-01

    The large fluxes of solar energetic particles (SEPs) in Gradual Events, dominated by protons, are believed to be produced by the acceleration of shocks driven by coronal mass ejections (CMEs). As SEPs propagate in the lower corona, there is a chance for them to be neutralized via the charge exchange and/or recombination processes and become energetic neutral atoms (ENAs). These ENAs retain the velocity of their parent SEPs and propagate in straight lines without the influence of the interplanetary magnetic field, and therefore might potentially serve as a new window to observe the particle acceleration processes in the solar corona. STEREO/Low Energy Telescope reported the first probable observation of hydrogen ENAs between 1.6 MeV - 5 MeV from the Sun prior to an X-class flare/CME [Mewaldt et al., 2009]. While such observations were somehow controversial, Wang et al. [2014] simulated the neutralization of solar energetic protons in the corona lower than 40 RS, and the result agreed with the STEREO observation. In this work, we further developed a production model of the ENA near the sun together with a transport model toward the inner planets, and explore the dependences of the ENA characteristics against the model parameters. These parameters include the angular width of the CME, its propagation direction with respect to the Sun-observer line, the propagation speed, the particle density in the corona, the abundances of O6+ and C4+, and the reaction rate of electron impact ionization in the loss of ENAs, and the heliospheric distance of the observer. The calculated ENA flux shows that at lower energy the expected ENA flux depends most sensitively on the CME apex angle and the CME propagation direction. At higher energy the dependence on the coronal density is more prominent. References Mewaldt, R. A., R. A. Leske, E. C. Stone, A. F. Barghouty, A. W. Labrador, C. M. S. Cohen, A. C. Cummings, A. J. Davis, T. T. von Rosenvinge, and M. E. Wiedenbeck (2009), STEREO

  10. Investigating the Causes of Solar-Cycle Variations in Solar Energetic Particle Fluences and Composition

    NASA Astrophysics Data System (ADS)

    Mewaldt, Richard; Cohen, Christina; Mason, Glenn M.; von Rosenvinge, Tycho; Li, Gang; Smith, Charles; Vourlidas, Angelos

    2015-04-01

    Measurements with ACE, STEREO, and GOES show that the number of large Solar Energetic Particle (SEP) events in solar cycle 24 is reduced by a factor of ~2 compared to this point of cycle 23, while the fluences of >10 MeV/nuc ions from H to Fe are reduced by factors ranging from ~4 to ~10. We investigate the origin of these cycle-to-cycle differences by evaluating possible factors that include properties of the associated CMEs, seed particle densities, and the interplanetary magnetic field strength and turbulence levels. These properties will be evaluated in the context of existing SEP acceleration models.

  11. Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.

    2007-11-01

    The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.

  12. Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas

    SciTech Connect

    G.Y. Fu; J. Breslau; E. Fredrickson; W. Park; H.R. Strauss

    2004-12-14

    Global hybrid simulations of energetic particle-driven MHD modes have been carried out for tokamaks and spherical tokamaks using the hybrid code M3D. The numerical results for the National Spherical Tokamak Experiments (NSTX) show that Toroidal Alfven Eigenmodes are excited by beam ions with their frequencies consistent with the experimental observations. Nonlinear simulations indicate that the n=2 mode frequency chirps down as the mode moves out radially. For ITER, it is shown that the alpha-particle effects are strongly stabilizing for internal kink mode when central safety factor q(0) is sufficiently close to unity. However, the elongation of ITER plasma shape reduces the stabilization significantly.

  13. Solar energetic particle track densities as an indicator of the origin of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1994-01-01

    An examination of the relation of track densities from solar energetic particles in interplanetary dust grains (IDP's) to the orbital elements of source bodies is made and the positive and negative aspects of using track densities to determine the origin of IDP's are reported. It is found from calculations that predicted track densities for a particle of given size are related logarithmically to the minimum semimajor axis of the source body. Consequently, although track densities measurements may not be capable of distinguishing cometary from asteroidal sources, they should give information on the minimum semimajor axis of the originating bodies.

  14. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    PubMed

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  15. OT2_cceccare_4: Searching for the onset of energetic particle irradiation in Class 0 protostars

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.

    2011-09-01

    Several evidences tell us that the first stages of low mass star formation are very violent, characterized by, among other phenomena, an intense irradiation of energetic (MeV) particles. The goal of this proposal is to search for signs of MeV particle irradiation in a sample of low to intermediate mass Class 0 protostars. At this end, we propose to observe a selected list of high J HCO+ and N2H+ lines in a selected sample of sources. Based on the observations obtained within the KP CHESS, we estimate a total observing time of 20.5 hours.

  16. Subcyclotron Instability of Alfven Eigenmodes due to Energetic Ions in Low Aspect Ratio Plasmas

    SciTech Connect

    N.N. Gorelenko; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; R. White

    2003-08-21

    High-frequency modes with frequencies below the fundamental cyclotron frequency of thermal ions were observed in the National Spherical Torus Experiment (NSTX). Based on the measured spectrum of high-frequency modes they are identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs). CAEs have similar time evolution as plasma parameters change, while GAEs may intersect due to q-profile relaxation. A theory has been developed to study the properties of these modes. Both types of instabilities are driven by the tangential neutral-beam injection in NSTX. Beam ions excite CAEs/GAEs through the Doppler-shifted cyclotron resonance. The main source for the drive is the velocity space anisotropy of the beam ion distribution function. Simulations of the effect CAEs/GAEs may have on plasma ions indicate that these modes may provide a channel for efficient energy transfer from fast ions directly to thermal ions.

  17. Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Liu, Ying D.; Luhmann, Janet G.; Hu, Huidong; Wang, Rui; Yang, Zhongwei

    2016-08-01

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A, was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory, suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

  18. Solar energetic particles inside magnetic clouds observed with the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Mason, G. M.; Dwyer, J. R.; von Rosenvinge, T. T.

    Solar energetic particles can be used to probe the structure of magnetic clouds. Since impulsive flare particles are accelerated within active regions, their presence inside a magnetic cloud implies that the cloud's magnetic field connects to an active region at the sun. We report on the fluxes and composition of low energy ions inside 13 magnetic clouds observed with instrumentation on the Wind spacecraft from November 1994 to February 1997. The STEP subsystem of the EPACT experiment on Wind resolves ³He and 4He and the most abundant heavy ion species from ∼20 keV/nucleon to ∼1 MeV/nucleon. Using STEP, we are able to measure the energetic particle composition in an energy range previously unexplored in the context of magnetic clouds. We find that when STEP measured significant ion fluxes inside a cloud, they were most likely from impulsive solar flares; this was the case in 4 events. We find that the 1/10/97 magnetic cloud decreased the interplanetary fluxes of ∼100 keV/nucleon ions by a factor of ∼10² this was probably because the cloud disconnected Wind from the interplanetary particle source beyond 1 AU. In contrast, we observed particles from several impulsive solar flares inside the 10/18/95 event with fluxes ∼10³ higher than the fluxes measured inside the 1/10/97 cloud.

  19. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  20. Statistical analysis of solar energetic particle events and related solar activity

    NASA Astrophysics Data System (ADS)

    Dierckxsens, Mark; Patsou, Ioanna; Tziotziou, Kostas; Marsh, Michael; Lygeros, Nik; Crosby, Norma; Dalla, Silvia; Malandraki, Olga

    2013-04-01

    The FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Here we present preliminary results on a statistical analysis of SEP events and their parent solar activity during Solar Cycle 23. The work aims to identify correlations between solar events and SEP events relevant for space weather, as well as to quantify SEP event probabilities for use within the COMESEP alert system. The data sample covers the SOHO era and is based on the SEPEM reference event list [http://dev.sepem.oma.be/]. Events are subdivided if separate enhancements are observed in higher energy channels as defined for the list of Cane et al (2010). Energetic Storm Particle (ESP) enhancements during these events are identified by associating ESP-like increases in the proton channels with shocks detected in ACE and WIND data. Their contribution has been estimated and subtracted from the proton fluxes. Relationships are investigated between solar flare parameters such as X-ray intensity and heliographic location on the one hand, and the probability of occurrence and strength of energetic proton flux increases on the other hand. The same exercise is performed using the velocity and width of coronal mass ejections to examine their SEP productiveness. Relationships between solar event characteristics and SEP event spectral indices and fluences are also studied, as well as enhancements in heavy ion fluxes measured by the SIS instrument on board the ACE spacecraft during the same event periods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  1. Perpendicular diffusion of energetic particles: Numerical test of the theorem on reduced dimensionality

    SciTech Connect

    Qin, G.; Shalchi, A.

    2015-01-15

    A fundamental statement in diffusion theory is provided by the so-called theorem on reduced dimensionality. The latter theorem is saying that if the dimensionality of the turbulence is reduced, charged particles are tied to a single magnetic field line. If there is pitch-angle scattering and therewith parallel diffusion, this usually means that perpendicular transport is subdiffusive. Subdiffusive transport was found in numerous simulations for slab turbulence. However, it was unclear whether the theorem is valid for other models with reduced dimensionality such as the two-dimensional model. In the current paper, we simultaneously trace magnetic field lines and energetic particles and we compute the distance between the particle and the initial field line. We confirm the aforementioned theorem for slab turbulence but we cannot confirm it for two-dimensional turbulence. We also show that particles are not tied to field lines for two-component turbulence.

  2. Observations of energetic particles with EPAC on Ulysses in polar latitudes of the heliosphere.

    PubMed

    Keppler, E; Fränz, M; Korth, A; Reuss, M K; Blake, J B; Seidel, R; Quenby, J J; Witte, M

    1995-05-19

    Measurements with the Energetic Particle Composition instrument (EPAC) aboard Ulysses show particles from near the ecliptic that were apparently accelerated by shocks associated with a corotating interaction region. The particles were detected together with the shocks and even when shocks no longer arrived at Ulysses up to -65 degrees of heliographic latitude but not beyond. Particles could have reached these latitudes along magnetic fields; such connections to the outer lower latitude heliosphere evidently do not exist above that latitude. The accelerated streams have composition similar to solar wind abundances, no dispersion, and a net inward anisotropy. The underlying composition between the recurrent stream is similar to the anomalous component of cosmic rays. The channel sensitive to high-energy protons (> 230 megaelectron volts) shows a 26-day variation of the flux superimposed on the heliospheric modulation of galactic ions.

  3. Focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Lee, M. A.; Klecker, B.; Ipavich, F. M.

    1992-01-01

    Evidence is presented for focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection. This evidence was obtained with the University of Maryland/Max-Planck-Institute experiment on the ISEE-3 spacecraft during the decay phase of the June 6, 1979, solar particle event. During the early portion of the decay phase of this event, interplanetary magnetic field lines were apparently draped around a coronal mass ejection, leading to a small focusing length on the western flank where ISEE 3 was located. A period of very slow decrease of particle intensity was observed, along with large sunward anisotropy in the solar wind frame, which is inconsistent with predictions of the standard Fokker-Planck equation models for diffusive transport. It was found possible to fit the observations, assuming that focused transport dominates and that the particle pitch angle scattering is isotropic.

  4. NONRESONANT INTERACTION OF CHARGED ENERGETIC PARTICLES WITH LOW-FREQUENCY NONCOMPRESSIVE TURBULENCE: NUMERICAL SIMULATION

    SciTech Connect

    Ragot, B. R.

    2012-10-20

    A new method for simulating the three-dimensional dynamics of charged energetic particles in very broadband noncompressive magnetic turbulence is introduced. All scales within the primary inertial range of the turbulence observed in the solar wind near 1 AU are now included for the independent computations of both the particle dynamics and the turbulent magnetic field lines (MFLs). While previous theories of resonant particle pitch-angle (PA) scattering and transport in interplanetary magnetic fields had favored interpreting the observed depletions in the electron PA distributions (PADs) around 90 Degree-Sign PA as evidence of poor scattering at low PA cosines, the computed particle dynamics reveal a very different reality. The MFL directions now vary on many scales, and the PADs are depleted around 90 Degree-Sign PA due to nonresonant filtering of the particles that propagate at too large an angle to the local magnetic field. Rather than being too weak, the scattering through 90 Degree-Sign PA is actually so strong that the particles (electrons and protons/ions) are reflected and trapped in the turbulent magnetic fields. While the low-frequency nonresonant turbulence produces ubiquitous magnetic traps that only let through particles with the most field-aligned velocities, higher-frequency near-gyroscale turbulence, when present, enhances particle transport by allowing the particles to navigate between magnetic traps. Finally, visualizing both particle trajectories and MFLs in the very same turbulence reveals a powerful tool for understanding the effects of the turbulent fields on the particle dynamics and cross-field transport. Some cross-field-line scattering, strongly amplified by MFL dispersal, results in a strong cross-field scattering of the particles. From this visualization, it also appears that near-gyroscale turbulence, previously known as gyroresonant turbulence, does not resonantly interact with the particles. The interaction between particles and

  5. Instability of dusty particle system in gas-discharge plasma

    SciTech Connect

    Filinov, V.S.; Petrov, O.F.; Fortov, V.E.; Molotkov, V.I.

    2005-10-31

    An effective anisotropic potential is proposed for the interaction between dust particles in a gas-discharge plasma. In addition to the Coulomb repulsion this potential takes into account attraction due to the spatial positive plasma charge originating from focusing of the ionic fluxes by dusty particles. The time evolution of the dust particle kinetic and potential energies from random initial configurations have been investigated by the Brownian dynamics method. Results of our simulation showed that the attraction between dusty particles can be the main physical reason of formation and decay of classical bound dust particle pairs and many particle complexes with low potential energy, while the kinetic energy (temperature) of unbound dust particles and particle oscillating in bound complexes may increase on three order as observed in experiments.

  6. Large solar energetic particle event that occurred on 2012 March 7 and its VDA analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liu-Guan; Cao, Xin-Xin; Wang, Zhi-Wei; Le, Gui-Ming

    2016-08-01

    On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (SEP) event in Solar Cycle 24. Two successive coronal mass ejections (CMEs) have been detected close in time. From the multi-point in-situ observations, it can be found that this SEP event was caused by the first CME, but the second one was not involved. Using velocity dispersion analysis (VDA), we find that for a well magnetically connected point, the energetic protons and electrons are released nearly at the same time. The path lengths to STEREO-B (STB) for protons and electrons have a distinct difference and deviate remarkably from the nominal Parker spiral path length, which is likely due to the presence of interplanetary magnetic structures situated between the source and STB. Also, the VDA method seems to only obtain reasonable results at well-connected locations and the inferred release times of energetic particles in different energy channels are similar. We suggest that good-connection is crucial for obtaining both an accurate release time and path length simultaneously, agreeing with the modeling result of Wang & Qin (2015).

  7. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    SciTech Connect

    E.V. Belova; N.N. Gorelenkov; C.Z. Cheng; E.D. Fredrickson

    2003-07-07

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects.

  8. Multi-spacecraft observations of wide-spread SEP events and unexpected energetic particle distributions

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gómez-Herrero, R.; Klassen, A.; Kartavykh, Y.; Droege, W.; Heber, B.; Klecker, B.

    2011-12-01

    With the end of 2009 the solar cycle 23 came to an end with solar activity increasing again. The meanwhile well separated two STEREO spacecraft in combination with further observers located at L1 provide an unique platform to investigate the longitudinal spread of energetic particles at 1 AU. In some cases the angular distribution was even far above 100 degrees as for instance in the January 17, 2010 SEP event, which shows energetic electrons and protons spreading almost all around the Sun. Large time delays between the flare and electron onsets at the spacecraft of about one hour as well as a lack of anisotropies and velocity dispersion are accompanying observations. Together with results from a 3D propagation model perpendicular diffusion is suggested to play a major role in understanding the observed particle distribution. Another example presented is the May 5, 2009 SEP event which was strongest observed at STEREO A, weaker at Earth and not by STEREO B. Multi-point radio measurements together with EUVI observations by STEREO B support an eastern source as seen from STEREO B for this event. However in-situ particle time-intensity profiles and anisotropies resemble a well connected source, rather than the eastern AR separated by ~100 degrees from the footpoint of STEREO A. These contradictory observations probably indicate an extremely asymmetric particle distribution.

  9. SEPEM: A tool for statistical modeling the solar energetic particle environment

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain

    2015-07-01

    Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.

  10. The surface distribution of solar energetic particles on the Earth and Southern Atlantic Anomaly

    NASA Astrophysics Data System (ADS)

    Trihermanto, Febi; Herdiwijaya, Dhani

    2012-06-01

    Solar Energetic Particle (SEP) is a high-energy particles of protons, electrons, and ions trapped in magnetic fields in the corona of the Sun. The particles can be ejected into interplanetary space and reach the Earth, through the propagation of magnetic flux tubes, as a result of energetic phenomena such as flares and Coronal Mass Ejection (CME). SEP-related phenomena that will be discussed in this paper is Southern Atlantic Anomaly (SAA), anomalous distribution of high energy particles trapped in Earth's magnetic field as well as its association with Van Allen radiation belts. Space, Environment, Effects, and Education System (SPENVIS), software developed by European Space Agency (ESA), is capable of displaying data on the distribution of protons (0.1-500 MeV) and electrons (0.1-5 MeV) trapped in Earth's magnetic field. The results show that distribution of electrons and protons depend on altitude (100-36000 km), their energies, and phase of solar cycle maximum and minimum.

  11. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    PubMed

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  12. Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-05-01

    The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).

  13. Energetic particle transport in the presence of magnetic turbulence: influence of spectral extension and intermittency

    NASA Astrophysics Data System (ADS)

    Pucci, F.; Malara, F.; Perri, S.; Zimbardo, G.; Sorriso-Valvo, L.; Valentini, F.

    2016-07-01

    The transport of energetic particles in the presence of magnetic turbulence is an important but unsolved problem of space physics and astrophysics. Here, we aim at advancing the understanding of energetic particle transport by means of a new numerical model of synthetic magnetic turbulence. The model builds up a turbulent magnetic field as a superposition of space-localized fluctuations at different spatial scales. The resulting spectrum is isotropic with an adjustable spectral index. The model allows us to reproduce a spectrum broader than four decades, and to regulate the level of intermittency through a technique based on the p-model. Adjusting the simulation parameters close to solar wind conditions at 1 au, we inject ˜1 MeV protons in the turbulence realization and compute the parallel and perpendicular diffusion coefficients as a function of spectral extension, turbulence level, and intermittency. While a number of previous results are recovered in the appropriate limits, including anomalous transport regimes for low turbulence levels, we find that long spectral extensions tend to reduce the diffusion coefficients. Furthermore, we find for the first time that intermittency has an influence on parallel transport but not on perpendicular transport, with the parallel diffusion coefficient increasing with the level of intermittency. We also obtain the distribution of particle inversion times for parallel velocity, a power law for more than one decade, and compare it with the pitch angle scattering times observed in the solar wind. This parametric study can be useful to interpret particle propagation properties in astrophysical systems.

  14. Perpendicular Diffusion in the Transport of Solar Energetic Particles from Unconnected Sources: The Counter-streaming Particle Beams Revisited

    NASA Astrophysics Data System (ADS)

    He, H.-Q.

    2015-12-01

    In some solar energetic particle (SEP) events, a counter-streaming particle beam with a deep depression of flux at ∼ 90^\\circ pitch angle during the beginning phase is observed. Two different interpretations exist within the community to explain this interesting phenomenon. One explanation invokes the hypothesis of an outer reflecting boundary or a magnetic mirror beyond the observer. The other one considers the effect of perpendicular diffusion on the transport process of SEPs in interplanetary space. In this work, we revisit the problem of counter-streaming particle beams observed in SEP events and discuss the possible mechanisms responsible for the formation of this phenomenon. We clarify some results in previous works.

  15. Solar Energetic Particle Events recorded aboard SOHO on December 24, 1996 and on May 6, 1998

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan M. P.; Kecskeméty; K.; Bothmer, V.; Rodriguez-Pacheco, J.; Facskó, G.; St. Cyr, C.

    The LION experiment on SOHO (which records protons from 44 keV-6 MeV and electrons from 44 keV-300 keV), and the energetically complementary EPHIN experiment (which measures protons + helium ions to >53 MeV/n and electrons to >5 MeV), each detected many energetic particle events (SEPs) in the early rising phase of Solar Cycle 23 (from ~ July 1996) - a period commonly associated with Coronal Mass Ejections (CMEs). The present paper contains an account of two representative rapid intensity increases recorded simultaneously by LION and EPHIN, each of which was accompanied by a CME and by impulsive type flaring. The SEPs have characteristics typical of both Gradual and Impulsive events and may be described as `Mixed'.

  16. Energetic particle measurements during a Cluster crossing of a complex high altitude cusp

    NASA Astrophysics Data System (ADS)

    Fritz, Theodore A.

    The Cluster spacecraft were outbound over the Northern Hemisphere on 26 February 2001, at approximately 12:00 MLT, approaching the magnetosheath through the high-altitude cusp region. Due to motions of the cusp, the spacecraft made more than 11 crossings of the boundary of the cusp region before exiting into the magnetosheath. Previously reported studies of this period have compared two methods of 4-spacecraft boundary analysis, one using PEACE data and one using FGM data [Taylor, et al., Annales Geophysicae (2004) 22: 3707-3719]. A third method employing the existence of an energetic particle layer on the cusp boundary measured by the RAPID experiment is presented that permits both the motion of the boundary of this complex passage to be tracked in even greater detail and to establish the capability of the cusp to actually trap energetic electrons within the accompanying cusp diamagnetic cavities that are observed.

  17. Energetic particle measurements during a Cluster crossing of a complex high altitude cusp

    NASA Astrophysics Data System (ADS)

    Wong, C.; Fritz, T. A.

    2008-05-01

    The Cluster spacecraft were outbound over the Northern Hemisphere on 26 February 2001, at approximately 12:00 MLT, approaching the magnetosheath through the high-altitude cusp region. Due to motions of the cusp, the spacecraft made more than 11 crossings of the boundary of the cusp region before exiting into the magnetosheath. Previously reported studies of this period have compared two methods of 4-spacecraft boundary analysis, one using PEACE data and one using FGM data [Taylor, et al., Annales Geophysicae (2004) 22: 3707-3719]. A third method employing the existence of an energetic particle layer on the cusp boundary measured by the RAPID experiment is presented that permits both the motion of the boundary of this complex passage to be tracked in even greater detail and to establish the capability of the cusp to actually trap energetic electrons within the accompanying cusp diamagnetic cavities that are observed.

  18. Observations of systematic temporal evolution in elemental composition during gradual solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Tylka, Allan J.; Reames, Donald V.; Ng, Chee K.

    The WIND/EPACT experiment offers a ˜100 fold increase in collecting power over instruments flown in previous solar cycles, thus allowing unprecedented detailed studies of temporal evolution in gradual solar energetic particle (SEP) events. We present hourly WIND/EPACT observations at ˜2-10 MeV/nuc from the 20 April 1998 and 26 August 1998 SEP events. These observations show striking patterns in elemental composition which evolve in a systematic fashion throughout the events' several-day durations. These data, combined with theoretical modeling in a companion Letter [Ng et al. 1999], suggest that a dynamic Alfvén wave field, generated primarily by streaming energetic protons, is responsible for the complex behavior which is observed.

  19. Energetic Charged Particle Emission from Hydrogen-Loaded pd and ti Cathodes and its Enhancement by He-4 Implantation

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.

    2006-02-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.

  20. CORRECTING FOR INTERPLANETARY SCATTERING IN VELOCITY DISPERSION ANALYSIS OF SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.; Valtonen, E.

    2015-06-10

    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.

  1. LIMITS ON ALPHA PARTICLE TEMPERATURE ANISOTROPY AND DIFFERENTIAL FLOW FROM KINETIC INSTABILITIES: SOLAR WIND OBSERVATIONS

    SciTech Connect

    Bourouaine, Sofiane; Verscharen, Daniel; Chandran, Benjamin D. G.; Maruca, Bennett A.; Kasper, Justin C.

    2013-11-01

    Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure and anisotropy driven instabilities such as the Alfvén/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this Letter, we use a long period of in situ measurements provided by the Wind spacecraft's Faraday cups to investigate the combined constraint on the alpha proton differential flow velocity and the alpha particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of T {sub α}/T {sub p} (T {sub ∥α}/T {sub ∥p}) when the alpha proton differential flow velocity is small, where T {sub α} and T {sub p} (T {sub ∥α} and T {sub ∥p}) are the perpendicular (parallel) temperatures of alpha particles and protons. We conjecture that this observed feature might arise from preferential alpha particle heating which can drive the alpha particles beyond the instability thresholds.

  2. Access of energetic particles to Titan's exobase: A study of Cassini's T9 flyby

    NASA Astrophysics Data System (ADS)

    Regoli, L. H.; Roussos, E.; Feyerabend, M.; Jones, G. H.; Krupp, N.; Coates, A. J.; Simon, S.; Motschmann, U.; Dougherty, M. K.

    2016-10-01

    We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan's exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge-Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon's radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north-south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon's exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitating O+ and H

  3. Solar energetic particle spectra from the SOHO-EPHIN sensor by application of regularization methods

    NASA Astrophysics Data System (ADS)

    Böhm, E.; Kharytonov, A.; Wimmer-Schweingruber, R. F.

    2007-10-01

    Context: The Electron Proton Helium Instrument (EPHIN) on ESA's Solar and Heliospheric Observatory (SOHO) measures solar energetic electrons, protons, and alpha particles with a stack of six solid-state detectors forming a telescope. The energy deposit in these detectors must be inverted to derive the original energy of the incident particles, thus leading to the original energy spectrum of solar energetic particles. Normal inversion techniques, such as least-squares methods, rely on fitting a known functional behavior of the spectral dependence (normally a power law) to the measured data with some account taken for the instrument response. Such procedures can fail to retrieve accurate particle spectra, e.g., when count rates are low and unphysical negative counts result from the fitting procedure. Aims: We show how regularization methods can be applied to energetic particle measurements to unambiguously derive the original particle spectrum without any assumptions about its functional behavior, while also satisfying constraints such as non-negative counts. Methods: Such inversion techniques still require knowledge of the instrument response function, however, it is an improvement upon normal least-squares or maximum-likelihood fitting procedures because it does not require any a-priori knowledge of the underlying particle spectra. Given the instrument response function in matrix form (here derived using Monte Carlo techniques), the original Fredholm integral equations reduce to a discrete system of linear algebraic equations that can be solved by ordinary regularization methods such as singular value decomposition (SVD) or the Tikhonov method. This procedure alone may lead to unphysical negative results, requiring the further constraint of non-negative count rates. This technique avoids full deconvolution because it involves the solution of ill-conditioned or singular linear systems. Results: We analyze data from SOHO/EPHIN by full deconvolution of the measured

  4. Particle beam self-modulation instability in tapered and inhomogeneous plasma

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Gruener, Florian; Leemans, Wim

    2011-12-28

    The particle beam self-modulation instability in tapered and inhomogeneous plasmas is analyzed via an evolution equation for the beam radius. For a sufficiently fast taper the instability is suppressed, and the condition for growth suppression is derived. The form of the taper to phase lock a trailing witness bunch in the plasma wave driven by a self-modulated beam is determined, which can increase the energy gain by several orders of magnitude. Growth of the instability places stringent constraints on the initial background plasma density fluctuations.

  5. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect

    Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  6. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles.

    PubMed

    Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y

    2014-10-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure. PMID:24344351

  7. Confined alpha particle diagnostic system using an energetic He{sup 0} beam for ITER

    SciTech Connect

    Sasao, M.; Shinto, K.; Isobe, M.; Nishiura, M.; Kaneko, O.; Wada, M.; Walker, C. I.; Kitajima, S.; Okamoto, A.; Sugawara, H.; Takeuchi, S.; Tanaka, N.; Aoyama, H.; Kisaki, M.

    2006-10-15

    The beam neutralization system for measurement of the spatial and velocity distributions of alpha particles of ITER plasmas was studied. As forward angle detection against the beam injection direction is required for effective neutralization, arrangement of the measurement system using possible ports in ITER configuration is proposed. The count rate of neutralized alpha particles produced by the double charge exchange interaction with energetic He{sup 0} beam particles injected is estimated. The ratios of signal to neutron-induced noise are evaluated. When a He{sup 0} beam produced by autodetachment from a 1-1.5 MeV He{sup -} beam of 10 mA is injected, the signal to noise ratio becomes greater than 1 at {rho}<0.4, even without beam modulation. Usage of a lock-in technique at the frequency of radio-frequency quadrapole accelerator will make measurement at the outer region possible.

  8. The simulation of radiation effects to astronauts due to solar energetic particles in deep space

    NASA Astrophysics Data System (ADS)

    Gang, Bao

    2012-02-01

    The exposure to interplanetary radiation poses a serious health risk to astronauts, especially for long-term missions. Protecting the astronauts from these particles has been the key issue to the manned space mission. High-energy space particles can penetrate the protective layer of a spacecraft, and probably cause deleterious effects to the astronauts. To estimate the size of these effects, a credible simulation of radioprotection is required. Using the Geant4 software toolkit, we have modeled the interaction processes and predicted the total energy deposit in a phantom (astronaut) as well as the similar information associated with secondary effects, due to Solar Energetic Particles (SEPs) at ∼1 AU caused by the large SEPs events in October 1989 and August 1972. In addition, we compared the characteristics of the energy deposit due to SEPs and Galactic Cosmic Rays (GCRs) and explained the differences between them by physical mechanism analysis.

  9. Modeling magnetospheric energetic particle escape across Earth's magnetopause as observed by the MMS mission

    NASA Astrophysics Data System (ADS)

    Mauk, Barry H.; Cohen, Ian J.; Westlake, Joseph H.; Anderson, Brian J.

    2016-05-01

    A longstanding puzzle is that the escape of magnetospheric energetic particles (greater than tens of keV) across Earth's magnetopause into the magnetosheath is common irrespective of conditions thought to engender magnetic reconnection and boundary normal magnetic fields. Multiple causes for escape have been invoked, including interactions with strong gradients, wave scattering, boundary dynamics, and boundary normal fields. Here we tackle only part of the problem by developing a relatively simple kinetic model including critical features not utilized in previous models. We find that particles can often completely escape without invoking waves or unmodeled magnetosheath structures for both northwardly and southwardly magnetosheath fields. Because multiple means of escape are found to be available, the particles are hard to completely contain, consistent with observations. The model also predicts specific pitch angle evolution signatures that uniquely identify boundary normal field-enabled escape, now reported in a companion paper as observed by the Magnetospheric Multiscale (MMS) mission.

  10. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Liu, D.; Heidbrink, W. W.; Wan, B. N.; Li, J. G.

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  11. Shock acceleration of energetic particles in corotating interaction regions in the solar wind

    SciTech Connect

    Fisk, L.A.; Lee, M.A.

    1980-04-15

    A simple shock model for the acceleration of energetic particles in corotating interaction regions (CIRs) in the solar wind is presented. Particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIRs. The model is able to account for the observed exponential spectra at Earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.

  12. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles.

    PubMed

    Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y

    2014-10-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure.

  13. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak.

    PubMed

    Zhu, Y B; Zhang, J Z; Qi, M Z; Xia, S B; Liu, D; Heidbrink, W W; Wan, B N; Li, J G

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  14. Deep space observations of the east-west asymmetry of solar energetic storm particle events - Voyagers 1 and 2

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Decker, R. B.; Krimigis, S. M.

    1985-01-01

    It has been well established that solar flare shock waves, propagating through the interplanetary medium, accelerate ambient energetic particles, giving rise to the formation of energetic storm particle (ESP) intensity enhancements. However, the acceleration mechanism which is responsible for the generation of ESP events is still under investigation. In the present investigation, energetic proton observations during solar flare ESP events made with the aid of the Voyagers 1 and 2 deep space probes are employed as a basis to examine further the acceleration processes responsible for the generation of ESP events under different 'interplanetary magnetic field-shock front' configurations. It is found that large ESP proton intensity enhancements are superimposed on the ambient solar energetic particle population for solar flare sites to the east of the sun-spacecraft medidian.

  15. Energetic Particle Cross-field Propagation Early in a Solar Event

    NASA Astrophysics Data System (ADS)

    Laitinen, T.; Dalla, S.; Marsh, M. S.

    2013-08-01

    Solar energetic particles (SEPs) have been observed to easily spread across heliographic longitudes, and the mechanisms responsible for this behavior remain unclear. We use full-orbit simulations of a 10 MeV proton beam in a turbulent magnetic field to study to what extent the spread across the mean field can be described as diffusion early in a particle event. We compare the full-orbit code results to solutions of a Fokker-Planck equation including spatial and pitch angle diffusion, and of one including also propagation of the particles along random-walking magnetic field lines. We find that propagation of the particles along meandering field lines is the key process determining their cross-field spread at 1 AU at the beginning of the simulated event. The mean square displacement of the particles an hour after injection is an order of magnitude larger than that given by the diffusion model, indicating that models employing spatial cross-field diffusion cannot be used to describe early evolution of an SEP event. On the other hand, the diffusion of the particles from their initial field lines is negligible during the first 5 hr, which is consistent with the observations of SEP intensity dropouts. We conclude that modeling SEP events must take into account the particle propagation along meandering field lines for the first 20 hr of the event.

  16. External front instabilities induced by a shocked particle ring.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2014-10-01

    The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.

  17. First Results on Pluto's Energetic Particle Environment from the PEPSSI Instrument

    NASA Astrophysics Data System (ADS)

    Kollmann, Peter; Hill, M. E.; McNutt, R.; Smith, H. T.; Vandegriff, J.; Kusterer, M.; Brown, L.; Haggerty, D. K.; Lisse, C. M.; Elliott, H. A.; Strobel, D.; Bagenal, F.; Sidrow, E.; McComas, D. J.; Horanyi, M.; Zirnstein, E.; Krimigis, S. M.; Ennico, K.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Stern, S. A.

    2015-11-01

    The New Horizons spacecraft flew by Pluto in July 2015 and passed through the wakes of Pluto and its largest moon Charon. Pluto interacts with the solar wind via the magnetic fields created by currents in its ionosphere and the pick-up of charge-exchange ions escaping from its atmosphere. The PEPSSI instrument (Pluto Energetic Particle Spectrometer Science Investigation) passed through this interaction region. Closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. PEPSSI measures intensities of keV to MeV ions and can distinguish ions in the solar wind from ions originating from Pluto. Pluto’s energetic particle environment clearly stands out compared to the surrounding solar wind at these heliospheric distances. Electrons in the same energy range as the ions do not show a distinct signature throughout the flyby. There is no indication in the particle observations for an intrinsic magnetic field of Pluto. We will present an analysis of the data that is downlinked throughout August and set them into context with measurements taken by PEPSSI in Jupiter’s magnetotail in 2007. This work was supported by NASA's New Horizons project.

  18. The Large Longitudinal Spread of Solar Energetic Particles During the 17 January 2010 Solar Event

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gómez-Herrero, R.; Klassen, A.; Heber, B.; Kartavykh, Y.; Dröge, W.

    2012-11-01

    We investigate multi-spacecraft observations of the 17 January 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO, suggesting a longitudinal spread of nearly 360 degrees at 1 AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO-B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dröge, Astrophys. J. 589, 1027 - 1039, 2003) and the 3D propagation model (model 2) by Dröge et al. ( Astrophys. J. 709, 912 - 919, 2010) including perpendicular diffusion in the interplanetary medium have been applied. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun, we favor a scenario with strong perpendicular transport in the interplanetary medium as an explanation for the observations.

  19. Inverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven Fingering Instabilities.

    PubMed

    Bihi, Ilyesse; Baudoin, Michael; Butler, Jason E; Faille, Christine; Zoueshtiagh, Farzam

    2016-07-15

    Using air to displace a viscous fluid contained in a Hele-Shaw cell can create a fingering pattern at the interface between the fluids if the capillary number exceeds a critical value. This Saffman-Taylor instability is revisited for the inverse case of a viscous fluid displacing air when partially wettable hydrophilic particles are lying on the walls. Though the inverse case is otherwise stable, the presence of the particles results in a fingering instability at low capillary number. This capillary-driven instability is driven by the integration of particles into the interface which results from the minimization of the interfacial energy. Both axisymmetric and rectangular geometries are considered in order to quantify this phenomenon.

  20. Inverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven Fingering Instabilities

    NASA Astrophysics Data System (ADS)

    Bihi, Ilyesse; Baudoin, Michael; Butler, Jason E.; Faille, Christine; Zoueshtiagh, Farzam

    2016-07-01

    Using air to displace a viscous fluid contained in a Hele-Shaw cell can create a fingering pattern at the interface between the fluids if the capillary number exceeds a critical value. This Saffman-Taylor instability is revisited for the inverse case of a viscous fluid displacing air when partially wettable hydrophilic particles are lying on the walls. Though the inverse case is otherwise stable, the presence of the particles results in a fingering instability at low capillary number. This capillary-driven instability is driven by the integration of particles into the interface which results from the minimization of the interfacial energy. Both axisymmetric and rectangular geometries are considered in order to quantify this phenomenon.

  1. Inverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven Fingering Instabilities.

    PubMed

    Bihi, Ilyesse; Baudoin, Michael; Butler, Jason E; Faille, Christine; Zoueshtiagh, Farzam

    2016-07-15

    Using air to displace a viscous fluid contained in a Hele-Shaw cell can create a fingering pattern at the interface between the fluids if the capillary number exceeds a critical value. This Saffman-Taylor instability is revisited for the inverse case of a viscous fluid displacing air when partially wettable hydrophilic particles are lying on the walls. Though the inverse case is otherwise stable, the presence of the particles results in a fingering instability at low capillary number. This capillary-driven instability is driven by the integration of particles into the interface which results from the minimization of the interfacial energy. Both axisymmetric and rectangular geometries are considered in order to quantify this phenomenon. PMID:27472115

  2. Clustering instability of the spatial distribution of inertial particles in turbulent flows.

    PubMed

    Elperin, Tov; Kleeorin, Nathan; L'vov, Victor S; Rogachevskii, Igor; Sokoloff, Dmitry

    2002-09-01

    A theory of clustering of inertial particles advected by a turbulent velocity field caused by an instability of their spatial distribution is suggested. The reason for the clustering instability is a combined effect of the particles inertia and a finite correlation time of the velocity field. The crucial parameter for the clustering instability is the size of the particles. The critical size is estimated for a strong clustering (with a finite fraction of particles in clusters) associated with the growth of the mean absolute value of the particles number density and for a weak clustering associated with the growth of the second and higher moments. A new concept of compressibility of the turbulent diffusion tensor caused by a finite correlation time of an incompressible velocity field is introduced. In this model of the velocity field, the field of Lagrangian trajectories is not divergence free. A mechanism of saturation of the clustering instability associated with the particles collisions in the clusters is suggested. Applications of the analyzed effects to the dynamics of droplets in the turbulent atmosphere are discussed. An estimated nonlinear level of the saturation of the droplets number density in clouds exceeds by the orders of magnitude their mean number density. The critical size of cloud droplets required for cluster formation is more than 20 microm.

  3. Solar photospheric and coronal abundances from solar energetic particle measurements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Breneman, H.

    1985-01-01

    Observations of solar energetic particles (SEP) from 22 solar flares in the 1977 to 1982 time period are reported. SEP abundances were obtained for all elements with 3 approximately less than Z approximately less than 30 except Li, Be, B, F, Sc, v, Co and Cu for which upper limits were obtained. Statistically meaningful abundances of several rare elements (P, Cl, K, Ti, and Mn) were determined for the first time, and the average abundance of the more abundant elements were determined with improved precision.

  4. An improved pulse-height analyzer for energetic particle measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Dean, L.; Smith, L. G.

    1982-01-01

    An energetic particle spectrometer for measurements in the upper atmosphere by rocket is described. The system has two methods of processing data. One is a staircase generator using threshold detectors; the other is a peak detector. The system incorporates a logarithmic converter for better resolution at low amplitudes and better use of telemetry channels. The circuits are described and calibration procedures are given. Modifications are recommended for high flux environments. Appendices cover sampling error in the peak detector and modifications made to the receiver of the propagation experiment.

  5. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    PubMed

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  6. SOHO/EPHIN observations of impulsive 3He-rich solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; del Peral, L.; Rodríguez-Frías, M. D.; Sequeiros, J.; Müller-Mellin, R.; Kunow, H.; Sierks, H.

    2002-03-01

    We report observations of 3He-rich solar energetic particle (SEP) events made with EPHIN instrument aboard SOHO spacecraft during the rising phase of the 23rd solar cycle. EPHIN detects electrons between 250 keV and 10.3 MeV, and hydrogen and helium isotopes between 4.3 and 53 MeV/n. Spectral indices, abundance ratios and temporal profiles have been obtained and compared for a sample of 13 3He-rich events detected by EPHIN between 1997 and 2000.

  7. Impulsive 3He-rich Solar Energetic Particle Events detected with EPHIN

    NASA Astrophysics Data System (ADS)

    Rodriguez-Frias, M. D.; Gomez-Herrero, R.; del Peral, L.; Sequeiros, J.; Kunow, H.; Mueller-Mellin, R.

    2001-08-01

    We report observation of 3 He-rich solar energetic particles (SEP) events detected by Electron Proton and Helium Instrument (EPHIN) aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. EPHIN has been detecting Helium isotopes in the energy range 4-53 MeV/n since December 1995 using a ˜E-E sensor system with solid-state detectors. In this paper we concentrate on observations of SEP with excess in the 3 He abundance. The abundances 3 He/4 He and 4 He/1 H have been obtained and compared among different events. Energy spectra of protons, 3 He, 4 He have been studied.

  8. Modeling Mission-Specific Worst-Case Solar Energetic Particle Environments

    NASA Technical Reports Server (NTRS)

    Adam, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.

    2011-01-01

    To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. The environment during large solar energetic particle events poses the greatest challenge to missions. As a starting point for planning and design, a reference environment must be specified representing the most challenging environment to be encountered during the mission at some confidence level. The engineering challenge is then to find plans and mission design solutions that insure safe and reliable operations in this reference environment. This paper describes progress toward developing a model that provides such reference space radiation environments at user-specified confidence levels.

  9. Enhancement of hybrid rocket combustion performance using nano-sized energetic particles

    NASA Astrophysics Data System (ADS)

    Risha, Grant Alexander

    Until now, the regression rate of classical hybrid rocket engines have typically been an order of magnitude lower than solid propellant motors; thus, hybrids require a relatively large fuel surface area for a given thrust level. In addition to low linear regression rates, relatively low combustion efficiency (87 to 92%), low mass burning rates, varying oxidizer-to-fuel ratio during operation, and lack of scaling laws have been reported. These disadvantages can be ameliorated by introducing nano-sized energetic powder additives into the solid fuel. The addition of nano-sized energetic particles into the solid fuel enhances performance as measured by parameters such as: density specific impulse, mass and linear burning rates, and thrust. Thermophysical properties of the solid fuel such as density, heat of combustion, thermal diffusivity, and thermal conductivity are also enhanced. The types of nano-sized energetic particles used in this study include aluminum, boron, boron carbide, and some Viton-A coated particles. Since the combustion process of solid fuels in a hybrid rocket engine is governed by the mass flux of the oxidizer entering the combustion chamber, the rate-limiting process is the mixing and reacting of the pyrolysis products of the fuel grain with the incoming oxidizer. The overall goal of this research was to determine the relative propulsive and combustion behavior for a family of newly-developed HTPB-based solid-fuel formulations containing various nano-sized energetic particles. Seventeen formulations contained 13% additive by weight, one formulation (SF4) contained 6.5% additive by weight, and one formulation (SF19) contained 5.65% boron by weight. The two hybrid rocket engines which were used in this investigation were the Long Grain Center-Perforated (LGCP) rocket engine and the X-Ray Transparent Casing (XTC) rocket engine. The smaller scale LGCP rocket engine was used to evaluate all of the formulations because conducting experiments using the

  10. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    PubMed

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert. PMID:23723233

  11. Multi-spacecraft observations of recurrent {sup 3}He-rich solar energetic particles

    SciTech Connect

    Bučík, R.; Innes, D. E.; Mall, U.; Korth, A.; Mason, G. M.; Gómez-Herrero, R.

    2014-05-01

    We study the origin of {sup 3}He-rich solar energetic particles (<1 MeV nucleon{sup –1}) that are observed consecutively on STEREO-B, Advanced Composition Explorer (ACE), and STEREO-A spacecraft when they are separated in heliolongitude by more than 90°. The {sup 3}He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE {sup 3}He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 {sup 3}He-rich events with the same sizeable active region (AR) producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous {sup 3}He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged AR near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of (1) solar regions with long-lasting conditions for {sup 3}He acceleration and (2) solar energetic {sup 3}He that is temporarily confined/re-accelerated in interplanetary space.

  12. Multi-spacecraft Observations of Recurrent 3He-rich Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Bučík, R.; Innes, D. E.; Mall, U.; Korth, A.; Mason, G. M.; Gómez-Herrero, R.

    2014-05-01

    We study the origin of 3He-rich solar energetic particles (<1 MeV nucleon-1) that are observed consecutively on STEREO-B, Advanced Composition Explorer (ACE), and STEREO-A spacecraft when they are separated in heliolongitude by more than 90°. The 3He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE 3He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 3He-rich events with the same sizeable active region (AR) producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous 3He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged AR near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of (1) solar regions with long-lasting conditions for 3He acceleration and (2) solar energetic 3He that is temporarily confined/re-accelerated in interplanetary space.

  13. Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Lingfeng; Dong, J. Q.; He, Zhixiong; He, Hongda; Shen, Y.

    2014-07-01

    Energetic-particle-induced kinetic electromagnetic geodesic acoustic modes (EKEGAMs) are numerically studied in low β (=plasma pressure/magnetic pressure) tokamak plasmas. The parallel component of the perturbed vector potential is considered along with the electrostatic potential perturbation. The effects of finite Larmor radius and finite orbit width of the bulk and energetic ions as well as electron parallel dynamics are all taken into account in the dispersion relation. Systematic harmonic and ordering analysis are performed for frequency and growth rate spectra of the EKEGAMs, assuming ( k ρ i ) ˜ q - 3 ˜ β ≪ 1, where q, k, and ρi are the safety factor, radial component of the EKEGAMs wave vector, and the Larmor radius of the ions, respectively. It is found that there exist critical βh/βi values, which depend, in particular, on pitch angle of energetic ions and safety factor, for the mode to be driven unstable. The EKEGAMs may also be unstable for pitch angle λ 0 B < 0.4 in certain parameter regions. Finite β effect of the bulk ions is shown to have damping effect on the EKEGAMs. Modes with higher radial wave vectors have higher growth rates. The damping from electron dynamics is found decreasing with decrease of the temperature ratio Te/Ti. The modes are easily to be driven unstable in low safety factor q region and high temperature ratio Th/Ti region. The harmonic features of the EKEGAMs are discussed as well.

  14. Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2003-10-20

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T{sub {perpendicular}b}/T{sub {parallel}b} >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r{sub w}. The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T{sub {perpendicular}b}/T{sub {parallel}b}){sup Weibel} >> (T{sub {perpendicular}b}/T{sub {parallel}b}){sup Harris}) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability.

  15. AN EFFECT OF PERPENDICULAR DIFFUSION ON THE ANISOTROPY OF SOLAR ENERGETIC PARTICLES FROM UNCONNECTED SOURCES

    SciTech Connect

    Qin, G.; He, H.-Q.; Zhang, M. E-mail: hqhe@spaceweather.ac.cn

    2011-09-01

    Recently, Tan and coworkers studied the 2001 September 24 solar energetic particle (SEP) event observed by the Wind spacecraft at 1 AU and found that there is a counter-streaming particle beam with a deep depression of flux at 90{sup 0} pitch angle during the beginning of the event. They suggested that it is a result of a reflecting boundary at some distance outside of 1 AU. While this scenario could be true under some specific configuration of an interplanetary magnetic field, in this paper we offer another possible explanation. We simulated the SEP event by solving the five-dimensional focused transport equation numerically for 40 keV electrons with perpendicular diffusion. We find that a counter-streaming particle beam with deep depression at 90{sup 0} pitch angle can form on Parker magnetic field lines that do not directly connect to the main particle source on the Sun in the beginning of an SEP event. It can happen when a significant number of observed particles come from adjacent field lines through parallel transport to large radial distance first, hopping across field lines through perpendicular diffusion, and then getting scattered back to 1 AU, where they combine with the particles directly coming from the Sun to form a counter-streaming beam.

  16. Modeling transport of energetic particles in corotating interaction regions: A case study

    NASA Astrophysics Data System (ADS)

    Zhao, Lulu; Li, Gang; Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; Mason, G. M.; Wu, Z.; Chen, Y.

    2016-01-01

    We investigate energetic particle transport in corotating interaction regions (CIRs) through a case study. The CIR event we study occurred on 8 February 2008 and was observed by both the Advanced Composition Explorer (ACE) and the twin Solar TErrestrial RElations Observatory (STEREO) B spacecraft. An in situ reverse shock was observed by STEREO B (1.0 AU) but not ACE (0.98 AU). Using STEREO B observations and assuming the CIR structure does not vary significantly in the corotating frame, we estimate the shock location at later times for both the STEREO B and ACE observations. Further assuming the accelerated particle spectral shape at the shock does not vary with shock location, we calculate the particle differential intensities as observed by ACE and STEREO B at two different times by solving the focused transport equation using a Monte Carlo simulation. We assume that particles move along Parker's field and experience no cross-field diffusion. We find that the modulation of sub-MeV/nucleon particles is significant. To obtain reasonable comparisons between the simulations and the observations by both ACE and STEREO B, one has to assume that the CIR shock can accelerate more particles at a larger heliocentric distance than at a smaller heliocentric distance.

  17. A Study of Interfacial-Instability-Induced Mixing in Explosive Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Annamalai, Subramanian; Ouellet, Frederick

    2015-06-01

    Recent experiments have shown that when a bed of particles is explosively dispersed, a multiphase instability front may occur, and lead to the formation of aerodynamically stable jet-particle structures. It is believed that these coherent structures originates from the early phase of explosive dispersal, in particular, in the manner in which the initial layer of particles undergoes instability, as it rapidly expands in the radial direction. In this work we want to isolate and study the effect of gas-particle two-way interaction on the nature of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities of an explosively driven particle layer. As a result we perform numerical experiments, where we limit the initial volume fraction of the particle layer. The focus of this investigation is on the RT and RM growth mechanisms in the linear and non-linear stages under the complexity of the cylindrical geometry, very high pressures and densities associated with the detonation process. Thus, in addition to the initial disturbance created by the random distribution of particles, we explicitly vary the initial density of the particle and gas distribution. Detailed analyses of single mode and two-mode RT/RM-induced mixing are presented. This work was supported (in part) by the U.S. DoE, NNSA, ASC Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  18. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    SciTech Connect

    Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  19. Polar Northern Hemisphere Middle Atmospheric Influence due to Energetic Particle Precipitation in January 2005

    NASA Astrophysics Data System (ADS)

    Jackman, Charles; Randall, Cora E.; Fang, Xiaohua; Bernath, Peter F.; Funke, Bernd; Lopez-Puertas, Manuel; Versick, Stefan; Stiller, Gabriele P.; Tylka, Allan J.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.

    Solar eruptions and geomagnetic activity led to energetic particle precipitation in early 2005, primarily during the January 16-21 period. Production of OH and destruction of ozone have been documented due to the enhanced energetic solar proton flux in January 2005 [e.g., Ver-ronen et al., Geophys Res. Lett., 33, L24811, doi:10.1029/2006GL028115, 2006; Seppala et al., Geophys. Res. Lett., 33, L07804, doi:10.1029/2005GL025571, 2006]. These solar pro-tons as well as precipitating electrons also led to the production of NOx (NO, NO2). Our simulations with the Whole Atmosphere Community Climate Model (WACCM) show that NOx is enhanced by 20-50 ppbv in the polar Northern Hemisphere middle mesosphere ( 60-70 km) by Jan. 18. Both the SCISAT-1 Atmospheric Chemistry Experiment (ACE) NOx mea-surements and Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) nighttime NO2 observations show large increases during this period, in reasonable agreement with WACCM predictions. Such enhancements are considerable for the mesosphere and led to simulated increases in polar Northern Hemisphere upper stratospheric odd nitrogen (NOy) of 2-5 ppbv into February 2005. The largest ground level enhancement of solar cycle 23 occurred on Jan. 20, 2005 with a neutron monitor increase of about 270 percent [Gopalswamy et al., 29th Int. Cosmic Ray Conf., Pune, 00, 101-104, 2005]. We found that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced stratospheric NOy of less than 1 percent as a result of this GLE. The atmospheric impact of precipitating middle energy electrons (30-2,500 keV) during the Jan. 16-21, 2005 period is also of interest, and an effort is ongoing to include these in WACCM computations. This presentation will show both short-and longer-term changes due to the January 2005 energetic particle precipitation.

  20. STEREO observations of energetic particle events during the rising phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Dresing, Nina; Gómez-Herrero, Raúl; Heber, Bernd; Klassen, Andreas; Müller-Mellin, Reinhold

    2010-05-01

    The Solar Electron and Proton Telescope (SEPT), one of four instruments of the Solar Energetic Particle (SEP) suite for the IMPACT investigation aboard the STEREO spacecraft, is designed to provide the three-dimensional distribution of energetic electrons and protons with good energy and time resolution. This knowledge is essential for characterizing the dynamic behavior of CME and solar flare associated events. SEPT measures electrons in the energy range from 30 to 400 keV and protons from 60 to 7000 keV. Anisotropy information on a non-spinning spacecraft is provided by the two separate telescopes: SEPT-E looking in the ecliptic plane along the Parker spiral magnetic field both towards and away from the Sun, and SEPT-NS looking vertical to the ecliptic plane towards North and South. On November 3, 2009 03:50 UT STEREO-A observed an impulsive energetic electron event, in connection with a type III burst and EIT wave originating from the active region (AR) 11029. While the longitude of the nominal magnetic foot point of the spacecraft was very close to the AR, the latitudinal separation was about 20 degrees. Velocity dispersion was found when applying the inverse particle velocity as a function of time. On December 22 both STEREO SEPT as well as SOHO EPHIN measured an intensity increase of several 100 keV electrons and a few MeV protons. This event is therefore the first event in solar cycle 24 which was observed at least over 130 degrees in longitude. The properties of these events will be presented.

  1. Local wave particle resonant interaction causing energetic particle prompt loss in DIII-D plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, R. B.; Fu, G. Y.; White, R. B.; Wang, X. G.

    2015-11-01

    A new wave particle resonance mechanism is found explaining the first-orbit prompt neutral beam-ion losses induced by shear Alfvén Eigenmodes (AEs) in the DIII-D tokamak. Because of the large banana width, a typical trapped beam ion can only interact locally with a core localised Alfvén Eigenmode for a fraction of its orbit, i.e. part of its inner leg of the banana orbit. These trapped beam ions can experience substantial radial kick within one bounce as long as the phases of the wave seen by the particles are nearly constant during this local interaction. A wave particle resonant condition is found based on the locally averaged particle orbit frequencies over the interaction part of the particle orbit. It is further found that the frequency width of the local resonance is quite large because the interaction time is short. This implies that particles over a considerable region of phase space can interact effectively with the localised AEs and experience large radial kicks within one bounce orbit. The radial kick size is found numerically and analytically to scale linearly in AE amplitude and is about 5 cm for typical experimental parameters. These results are consistent with experimental measurement.

  2. Mean free paths of energetic particles at very large heliodistances (Pioneer 11 at 20 AU)

    NASA Technical Reports Server (NTRS)

    Moussas, X.; Quenby, J. J.; Theodossiou-Ekaterinidi, Z.; Valdes-Galicia, J. F.; Drillia, A. G.; Roulias, D.; Smith, E. J.

    1992-01-01

    The parallel mean free path and the diffusion coefficient parallel to the magnetic field line are derived from magnetic field data at 20 AU to characterize heliospheric modulation and energetic-particle/magnetic-field interaction. The computational method of Moussas et al. (1975, 1982) is employed, and the values of the parallel mean free path are shown to be significantly larger than the values estimated in studies of up to 6 AU. The distance dependence of the parallel diffusion mean free path is found to follow a power law, and the diffusion coefficient dependence upon energy is determined by a constant mean free path and the velocity of the particle. The contribution of the diffusion coefficient perpendicular to the magnetic field is expected to dominate the radial diffusion coefficient of cosmic rays, although the contribution of the diffusion parallel to the field is important with respect to the small-scale structure of intensity gradients.

  3. On the Influence of the Geomagnetic Field Geometry on the Propagation of Charged Energetic Particles

    NASA Astrophysics Data System (ADS)

    Herbst, K.; Kopp, A.; Heber, B.

    2011-12-01

    Studies of the propagation of charged energetic particles in the Earth's magnetic field go back to Carl Størmer, who introduced ''allowed'' and ''forbidden'' regions on the Earth's surface, leading finally to the definition of the cutoff rigidity, i.e. the minimum momentum per charge a particle must have in order to reach a certain geographical point. Employing Monte Carlo Simulations with the PLANETOCOSMICS code we investigate the correlation between the geomagnetic field structure and the (vertical) cutoff rigidity. It turns out that the resulting rigidity maps reflect the geometry of the field, rather than its magnitude, where the field geometry is represented by the difference between the tangential and the radial components. In order to support our findings we also investigate the temporal variation of both quantities over the last century.

  4. Effects of energetic particles precipitation on stratospheric ozone in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Zossi de Artigas, Marta; Zotto, Elda M.; Mansilla, Gustavo A.; Fernandez de Campra, Patricia

    2016-11-01

    Measurements from TOMS and UARS-HALOE are used to estimate the effects of energetic particle precipitation (EPP) over the stratosphere during two geomagnetic storms occurred in November of the years 2003 and 2004. The EPP couples the solar wind to the Earth's atmosphere and indirectly to the Earth's climate. Due to particle precipitation, the ionization and dissociation increase, and create odd nitrogen (NOx) and odd hydrogen (HOx) in the upper atmosphere, which can affect ozone chemistry. In this paper, statistically significant variation in total ozone content at middle latitudes of the Southern Hemisphere is observed. The variations depend on the intensity of geomagnetic disturbances and the geomagnetic longitude. A significant variation in NOx concentration at altitudes from 30 to 50 km is observed from the profiles analysis.

  5. A rocket-borne pulse-height analyzer for energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Leung, W.; Smith, L. G.; Voss, H. D.

    1979-01-01

    The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased.

  6. Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic Ray Transport

    SciTech Connect

    Ptuskin, V.S.; Moskalenko, Igor V.; Jones, F.C.; Strong, A.W.; Zirakashvili, V.N.; /Troitsk, IZMIRAN /Heidelberg, Max Planck Inst. Astron.

    2006-01-17

    The physical processes involved in diffusion of Galactic cosmic rays in the interstellar medium are addressed. We study the possibility that the nonlinear MHD cascade sets the power-law spectrum of turbulence which scatters charged energetic particles. We find that the dissipation of waves due to the resonant interaction with cosmic ray particles may terminate the Kraichnan-type cascade below wavelengths 10{sup 13} cm. The effect of this wave dissipation has been incorporated in the GALPROP numerical propagation code in order to asses the impact on measurable astrophysical data. The energy-dependence of the cosmic-ray diffusion coefficient found in the resulting self-consistent model may explain the peaks in the secondary to primary nuclei ratios observed at about 1 GeV/nucleon.

  7. Identification of the energetic-particle driven GAM in the LHD

    NASA Astrophysics Data System (ADS)

    Ido, T.; Osakabe, M.; Shimizu, A.; Watari, T.; Nishiura, M.; Toi, K.; Ogawa, K.; Itoh, K.; Yamada, I.; Yasuhara, R.; Yoshimura, Y.; Kato, S.; The LHD Experiment Group

    2015-08-01

    n = 0 modes with frequency chirping have been observed by a heavy ion beam probe and Mirnov coils in the large helical device plasmas, where n is the toroidal mode number. The spatial structures of the electrostatic potential fluctuation and the density fluctuation correspond to those of the geodesic acoustic mode (GAM). The modes are observed only during the tangential neutral beam injection with the energy of 175 keV. The energy spectra of fast ions measured by a neutral particle analyzer implies that the modes are excited by the fast ions through the inverse Landau damping. The absolute values and the temperature dependence of the frequency of the mode can be interpreted by the dispersion relation taking into account the measured energy spectra of the fast ions. Therefore, the observed n = 0 modes are identified as the energetic-particle driven GAM.

  8. STUDY OF SOLAR ENERGETIC PARTICLE ASSOCIATIONS WITH CORONAL EXTREME-ULTRAVIOLET WAVES

    SciTech Connect

    Park, Jinhye; Moon, Y.-J.; Innes, D. E.; Bucik, R.; Kahler, S. W.

    2015-07-20

    We study the relationship between large gradual solar energetic particle (SEP) events and associated extreme-ultraviolet (EUV) wave properties in 16 events that occurred between 2010 August and 2013 May and were observed by SDO, the Solar and Heliospheric Observatory (SOHO), and/or STEREO. We determine onset times, peak times, and peak fluxes of the SEP events in the SOHO/ERNE and STEREO/LET proton channels (6–10 MeV). The EUV wave arrival times and their speeds from the source sites to the spacecraft footpoints in the photosphere, which are magnetically connected to the spacecraft by Parker spiral and potential fields, are determined by spacetime plots from the full-Sun heliographic images created by combining STEREO-A and STEREO-B 195 Å and SDO 193 Å images. The SEP peak fluxes increase with the EUV wave speeds, and the SEP spectral indices become harder with the speeds. This shows that higher energetic particle fluxes are associated with faster EUV waves, which are considered as the lateral expansions of coronal-mass-ejection-driven shocks in the low corona.

  9. Forecasting Geomagnetic Storms and Solar Energetic Particle Events: the COMESEP Project

    NASA Astrophysics Data System (ADS)

    Crosby, N.; Veronig, A.; Robbrecht, E.; Vrsnak, B.; Vennerstrøm, S.; Malandraki, O.; Dalla, S.; Srivastava, N.; Hesse, M.; Odstrcil, D.

    2012-04-01

    COMESEP (COronal Mass Ejections and Solar Energetic Particles), funded by the European Union Framework 7 programme, is a three-year collaborative project that has been running for one year. Tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms are being developed under the project. By analysis of historical data, complemented by the extensive data coverage of solar cycle 23, the key ingredients that lead to magnetic storms and SEP events and the factors that are responsible for false alarms are being identified. To enhance our understanding of the 3D kinematics and interplanetary propagation of coronal mass ejections (CMEs), the structure, propagation and evolution of CMEs are being investigated. In parallel, the sources and propagation of SEPs are being examined and modeled. Based on the insights gained, and making use of algorithms for the automated detection of CMEs, forecasting tools for geomagnetic and SEP radiation storms are being developed and optimised. Validation and implementation of the produced tools into an operational Space Weather Alert system will be performed. Geomagnetic and SEP radiation storm alerts will be based on the COMESEP definition of risk. COMESEP is a unique cross-collaboration effort and bridges the gap between the SEP and CME scientific communities. For more information about the project, see the COMESEP website http://www.comesep.eu/ . This work has received funding from the European Commission FP7 Project COMESEP (263252).

  10. Investigation of the Saturn dust environment from the analysis of energetic charged particle measurements

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1989-01-01

    In order to assist the Cassini project in evaluating risks of collisions with particulate matter in the rotational equatorial plane, available Pioneer 11 and Voyager energetic charged particle data were reinvestigated to constrain the column mass density of absorbing material within several radial ranges. Within the orbit of Mimas, CRAND proton phase space densities maximize near 2.67 R sub s and exhibit secondary maximum at 2.43 R sub s. From the condition that sources must exceed losses near these maxima and using available theoretical models for CRAND proton production rates, upper bounds on the column mass density at these two radial locations are calculated. Detailed fits of radial diffusion models to the observed flux maxima yield somewhat more restrictive upper limits. The upper limits compare to a lower limit on the column mass density, estimated from previous model calculations by Van Allen. Aside from continuous rings, longitudinally limited, low optical depth clouds of particulates may exist in orbit with several of the inner satellites including Mimas and Enceladus. A brief review of Voyager energetic particle microsignatures that suggest the presence of material co-orbiting with these two satellites is presented. Finally, Pioneer 11 and Voyager measurements of low energy electron fluxes exhibit minima near the location of the tenuous E Ring centered on approx. 4 R sub s. Pioneer 11 pitch angle distributions appear to support the possibility that direct absorption by Ring E particulates produced the observed flux decreases.

  11. Atmospheric Effects of Solar Energetic Particle Events In Magnetized and Non-Magnetized Regions of Mars

    NASA Astrophysics Data System (ADS)

    Jolitz, R.; Dong, C.; Lillis, R. J.; Curry, S.; Brain, D. A.; Larson, D. E.

    2015-12-01

    Solar and shock-accelerated heliospheric energetic charged particles represent an important if irregular source of energy to the Martian upper atmosphere. A Monte Carlo code has been developed to track a population of protons in an atmosphere and account for energy loss to collisional processes including heating, ionization, excitation, and charge transfer. The model framework is open to multiple planetary-specific inputs (e.g. three-dimensional neutral densities, electric and magnetic fields) and uses an adaptive trace algorithm to accurately model collisions in dense and sparse atmospheric regions. Applying 3-D models of electric and magnetic fields from the Michigan Mars MHD code and 1-D neutral densities from the Mars Global Thermosphere Ionosphere Model (M-GITM), we use this model to calculate volume rates of relevant proton-mediated energy loss processes in the Martian upper atmosphere. The model will be improved to generate ionization and heating rates in areas of strong and weak crustal magnetic fields for solar energetic particle events observed by the SEP instrument on MAVEN. Ultimately this will form part of a comprehensive model of solar wind interactions with Mars.

  12. Study of Solar Energetic Particle Associations with Coronal Extreme-ultraviolet Waves

    NASA Astrophysics Data System (ADS)

    Park, Jinhye; Innes, D. E.; Bucik, R.; Moon, Y.-J.; Kahler, S. W.

    2015-07-01

    We study the relationship between large gradual solar energetic particle (SEP) events and associated extreme-ultraviolet (EUV) wave properties in 16 events that occurred between 2010 August and 2013 May and were observed by SDO, the Solar and Heliospheric Observatory (SOHO), and/or STEREO. We determine onset times, peak times, and peak fluxes of the SEP events in the SOHO/ERNE and STEREO/LET proton channels (6-10 MeV). The EUV wave arrival times and their speeds from the source sites to the spacecraft footpoints in the photosphere, which are magnetically connected to the spacecraft by Parker spiral and potential fields, are determined by spacetime plots from the full-Sun heliographic images created by combining STEREO-A and STEREO-B 195 Å and SDO 193 Å images. The SEP peak fluxes increase with the EUV wave speeds, and the SEP spectral indices become harder with the speeds. This shows that higher energetic particle fluxes are associated with faster EUV waves, which are considered as the lateral expansions of coronal-mass-ejection-driven shocks in the low corona.

  13. Are CME 'interactions' Really Important for Accelerating Major Solar Energetic Particle Events?

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Lawrence, G. R.; Haggerty, D. K.; Kucera, T.; Szabo, A.

    2002-01-01

    Recent studies have proposed that the presence or absence of an interaction with a preceding coronal mass ejection (CME) or other coronal structure within approximately 50R(sub s), of the Sun discriminates large, fast CMEs associated with major solar energetic particle (SEP) events from those that are not. We conclude that there is no compelling evidence that, if such interactions take place, they play an important role in SEP acceleration. Reasons include: The reported statistical results are consistent with a chance association between interacting CMEs and SEP events; Energetic SEPs are detected at Earth typically before or around the time when the primary CME enters the LASCO C2 field of view - interactions higher in the corona cannot play a role in acceleration of these particles; For approximately 60% of major SEP events in 1997-2001, the preceding CME fades into the background corona or is relatively narrow (less than 40 deg), suggesting any interaction will be weak; Radio signatures attributed to CME interaction occur after SEP acceleration has commenced.

  14. A model for the behaviour of the Solar Energetic Particle Events inside Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Medina, J.; Hidalgo, M. A.

    2006-12-01

    The modulation effects of the solar ejecta over the solar energetic particle event SEPe fluxes (0,5-100 MeV) provided by solar flares have recently been highlighted. Especially important is the behaviour of these fluxes inside MCs where, in spite of the low magnetic field intensities of these interplanetary structures (about 30 nT), a decrease in the population of the energetic particles is observed. In the present work it is shown a simple theoretical model we have developed to analyse the behaviour of those fluxes inside the magnetic clouds (MCs) using, as a starting point, our previous magnetic field model for MCs. The experimental data from ACE, GOES, SAMPEX, SOHO, Ulysses and WIND satellites are presented, both from MC coincident with SEPe and not coincident. This work has been supported by the Spanish Comisión Internacional de Ciencia y Tecnología (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459 and Madrid Autonomous Community / University of Alcala grant CAM-UAH 2005/007. This work is performed inside COST Action 724.

  15. Temporal Evolution of Energetic Particles and Magnetic Field Waves Near CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Smith, Charles; Lee, Martin; Mason, Glenn; Al-Dayeh, Maher

    Coronal Mass Ejection-or CME-driven interplanetary (IP) shocks are responsible for caus-ing the so-called energetic storm particle (ESP) events observed at Earth. However, despite recent observational and theoretical advances, many important questions regarding such CME-associated particle events remain unanswered. This is because ESP events occur due to a con-fluence of numerous poorly understood physical effects all of whose contributions can vary with time and location. These effects include: the origin, structure, and obliquity of the shocks, the nature of wave-particle interactions and the type of turbulence that is present near the shocks, the distribution and composition of the seed populations, and the type of injection and accel-eration processes involved. In this paper, we combine observations of ˜0.1-0.5 MeV/nucleon O and Fe ions with that of the magnetic field near four CME-driven IP shocks observed at the Advanced Composition Explorer spacecraft to differentiate between shocks where the seed population is most likely dominated by thermal solar wind ions and those events where it is dominated by pre-existing suprathermal ions. In particular, we use the temporal evolution of (1) O and Fe intensities, (2) power-law spectral indices of O, (3) the Fe/O and C/O ratios, and (4) the magnetic field power spectrum to identify unique signatures that provide strong clues regarding the origin of the seed population. Such observational signatures may also be useful in modeling the properties of the so-called large gradual solar energetic particle (SEP) events that are primarily accelerated by CME shocks near the Sun.

  16. The Longitudinal Properties of a Solar Energetic Particle Event Investigated Using Modern Solar Imaging

    NASA Technical Reports Server (NTRS)

    Rouillard, A. P.; Sheeley, N.R. Jr.; Tylka, A.; Vourlidas, A.; Ng, C. K.; Rakowski, C.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Reames, D.; Savani, N. P.; StCyr, O. C.; Szabo, A.

    2012-01-01

    We use combined high-cadence, high-resolution, and multi-point imaging by the Solar-Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory to investigate the hour-long eruption of a fast and wide coronal mass ejection (CME) on 2011 March 21 when the twin STEREO spacecraft were located beyond the solar limbs. We analyze the relation between the eruption of the CME, the evolution of an Extreme Ultraviolet (EUV) wave, and the onset of a solar energetic particle (SEP) event measured in situ by the STEREO and near-Earth orbiting spacecraft. Combined ultraviolet and white-light images of the lower corona reveal that in an initial CME lateral "expansion phase," the EUV disturbance tracks the laterally expanding flanks of the CME, both moving parallel to the solar surface with speeds of approx 450 km/s. When the lateral expansion of the ejecta ceases, the EUV disturbance carries on propagating parallel to the solar surface but devolves rapidly into a less coherent structure. Multi-point tracking of the CME leading edge and the effects of the launched compression waves (e.g., pushed streamers) give anti-sunward speeds that initially exceed 900 km/s at all measured position angles. We combine our analysis of ultraviolet and white-light images with a comprehensive study of the velocity dispersion of energetic particles measured in situ by particle detectors located at STEREO-A (STA) and first Lagrange point (L1), to demonstrate that the delayed solar particle release times at STA and L1 are consistent with the time required (30-40 minutes) for the CME to perturb the corona over a wide range of longitudes. This study finds an association between the longitudinal extent of the perturbed corona (in EUV and white light) and the longitudinal extent of the SEP event in the heliosphere.

  17. Energetic Particles Associated with the Interplanetary Shock of 23 May 2002

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, T. T.; Cohen, C. M. S.; Cummings, A. C.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Wiedenbeck, M. E.

    2003-04-01

    We report on the elemental abundances of energetic particles associated with an interplanetary shock which passed the Advanced Composition Explorer (ACE) spacecraft at ˜ 10:15 UT on 23 May 2002. The shock occurred during a solar energetic particle event which began at the start of 22 May, slowly rose in intensity by ˜ 3 orders of magnitude over the course of the day, and then leveled off for two additional days. Heavy elements above 14 MeV/nucleon were observed to increase by a factor of 15 and then return to the existing event level all within a period of about two hours centered on the shock. Electrons in the range 0.18 - 0.31 MeV were observed by the Electron Proton Alpha Monitor on ACE to increase by a factor of about 100 in a similar spike lasting two hours surrounding the shock. This event is unlike most ESP events due to its short duration, which in turn may be due to the fact that the shock is a perpendicular shock. The abundances of elements from He to Fe relative to O before, during, and after the shock spike are approximately coronal, with the exception of Fe which dips to as low as 0.2 times the coronal value during the spike. We will discuss the origins of the solar particle event and of the interplanetary shock as well as consider what this event tells us about the particle acceleration process. This research was supported by NASA at the Goddard Space Flight Center, the California Institute of Technology (under Grant NAG5-6912), and the Jet Propulsion Laboratory.

  18. Toward A More General Technique to Infer Ionic Charge States of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Sollitt, L. S.; Aguirre, E. M.; Briggs, P.

    2011-12-01

    We report on a new method to infer charge states of high energy (≥ 10 MeV/nuc) solar energetic particles. We build on ideas developed in Sollitt (2004) and Sollitt et al. (2008); those papers indicated that in the decay phase of large well-connected solar particle events, particles of different species with the same rigidity (mv/q) exhibit similar decay profiles. Mason et al. (2006) suggested that these similarities extend to overall time-intensity profiles. Our method uses one-hour average particle flux data from the Solar Isotope Spectrometer (SIS) aboard the Advanced Composition Explorer (ACE) spacecraft. We choose a reference species (e.g. Carbon) for which the charge state is known to be stable over a wide range of energies. At each hour we construct a continuous reference energy profile using a cubic spline fit of the flux at the nominal passband energies. Then we best-fit the time profiles of target species (e.g. Iron) to the interpolated time profiles of the reference. Assuming that the matching profiles represent particles of the same rigidity, this analysis generates the ratio of the target species charge to the reference species charge.

  19. SOLAR ENERGETIC-PARTICLE RELEASE TIMES IN HISTORIC GROUND-LEVEL EVENTS

    SciTech Connect

    Reames, Donald V.

    2009-11-20

    Ground-level events (GLEs) are large solar energetic-particle events with sufficiently hard spectra for GeV protons to be detected by neutron monitors at ground level. For each of 30 well-observed historic GLEs from four solar cycles, extending back to 1973, I have plotted onset times versus velocity{sup -1} for particles observed on the IMP-7 and 8, ISEE-3, Wind, and GOES spacecraft and by neutron monitors. A linear fit on such a plot for each GLE determines the initial solar particle release (SPR) time, as the intercept, and the magnetic path length traversed, as the slope, of the fitted line. Magnetic path lengths and SPR times are well determined by the fits and cannot be used as adjustable parameters to make particle and photon emission times coincide. SPR times follow the onsets of shock-induced type II radio bursts and the coronal height of the coronal mass ejection (CME)-driven shock at SPR time can be determined for GLEs spanning an interval of solar longitude of approx140 deg. For a given GLE, all particle species and energies diverge from a single SPR point at a given coronal height and footpoint longitude of the field line to the Earth. These heights tend to increase with longitudinal distance away from the source, a pattern expected for shock acceleration. Acceleration for magnetically well-connected large GLEs begins at approx2 solar radii, in contrast to non-GLEs that have been found to be strongly associated with shocks above approx3 solar radii. The higher densities and magnetic field strengths at lower altitudes may be responsible for the acceleration of higher-energy particles in GLEs, while those GLEs that begin above 3R {sub S} may compensate by having higher shock speeds. These results support the joint dependence of maximum particle energy on magnetic field strength, injected particle density, and shock speed, all predicted theoretically.

  20. Energetic Particle Effects Can Explain the Low Frequency of Alfvin Modes in the DIII-D Tokamak

    SciTech Connect

    Gorelenkov, N.N.; Heidbrink, W.W.

    2001-01-31

    During beam injection in the DIII-D tokamak, modes with lower frequencies than expected for toroidicity-induced Alfvin eigenmodes (TAE) are often observed. We present the analysis of one of these ''beta-induced Alfvin eigenmodes'' (BAE) with a high-n stability code HINST that includes the effect of the energetic ions on the mode frequency. It shows that the ''BAE'' could be the theoretically predicted resonant-TAE (RTAE), which is also called an energetic-particle mode (EPM).

  1. Nonmodal instability of a stratified plane-channel suspension flow with fine particles.

    PubMed

    Boronin, Sergei A; Osiptsov, Alexander N

    2016-03-01

    We consider the nonmodal instability and transient growth of small disturbances in a plane-channel suspension flow with a nonuniform concentration profile of fine noncolloidal particles accumulated in two localized layers, symmetric about the channel axis. A single-velocity model of an effective Newtonian fluid with a finite particle volume fraction is employed. It is established that fine particles distributed nonuniformly in the main flow significantly modify the growth rate of the first mode in a wide range of governing parameters. The most pronounced destabilizing effect is produced by the particles localized in the vicinity of the walls. A parametric study of the so-called optimal disturbances showed that they are streaks elongated in the flow direction, similar to the optimal disturbances in the flow devoid of particles. The transverse wave number of the optimal disturbances depends strongly on the location of the particle layers. Even when the particle mass concentration (averaged over the channel cross section) is small (of the order of a percent) and the particles are localized in the middle between the walls and the channel axis, the energy of the optimal disturbances is by several orders of magnitude larger than in dusty-gas and pure-fluid flows. When the particle layers are located in the vicinity of the walls or the channel axis, the nonmodal instability mechanism is less pronounced, as compared to the flow devoid of particles. PMID:27078447

  2. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  3. Macroscopic quasi-linear theory and particle-in-cell simulation of helium ion anisotropy instabilities

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Seough, Jungjoon; Hwang, Junga; Nariyuki, Yasuhiro

    2015-08-01

    The protons and helium ions in the solar wind are observed to possess anisotropic temperature profiles. The anisotropy appears to be limited by various marginal instability conditions. One of the efficient methods to investigate the global dynamics and distribution of various temperature anisotropies in the large-scale solar wind models may be that based upon the macroscopic quasi-linear approach. The present paper investigates the proton and helium ion anisotropy instabilities on the basis of the quasi-linear theory versus particle-in-cell simulation. It is found that the overall dynamical development of the particle temperatures is quite accurately reproduced by the macroscopic quasi-linear scheme. The wave energy development in time, however, shows somewhat less restrictive comparisons, indicating that while the quasi-linear method is acceptable for the particle dynamics, the wave analysis probably requires higher-order physics, such as wave-wave coupling or nonlinear wave-particle interaction.

  4. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    A new non-perturbing technique for feedback control of plasma instabilities has been developed in the Columbia Linear Machine (CLM). The feedback control scheme involves the injection of a feedback modulated ion beam as a remote suppressor. The ion beam was obtained from a compact ion beam source which was developed for this purpose. A Langmuir probe was used as the feedback sensor. The feedback controller consisted of a phase-shifter and amplifiers. This technique was demonstrated by stabilizing various plasma instabilities to the background noise level, like the trapped particle instability, the ExB instability and the ion-temperature-gradient (ITG) driven instability. An important feature of this scheme is that the injected ion beam is non-perturbing to the plasma equilibrium parameters. The robustness of this feedback stabilization scheme was also investigated. The principal result is that the scheme is fairly robust, tolerating about 100% variation about the nominal parameter values. Next, this scheme is extended to the unsolved general problem of controlling multimode plasma instabilities simultaneously with a single sensor-suppressor pair. A single sensor-suppressor pair of feedback probes is desirable to reduce the perturbation caused by the probes. Two plasma instabilities the ExB and the ITG modes, were simultaneously stabilized. A simple 'state' feedback type method was used where more state information was generated from the single sensor Langmuir probe by appropriate signal processing, in this case, by differentiation. This proof-of-principle experiment demonstrated for the first time that by designing a more sophisticated electronic feedback controller, many plasma instabilities may be simultaneously controlled. Simple theoretical models showed generally good agreement with the feedback experimental results. On a parallel research front, a better understanding of the saturated state of a plasma instability was sought partly with the help of feedback

  5. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    SciTech Connect

    Chen, Yang

    2012-03-07

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global {delta} f-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particles non-perturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n=15 mode is about {beta}{sub {alpha}}(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects

  6. The Hydrodynamic Stability of a Fluid-Particle Flow: Instabilities in Gas-Fluidized Beds

    ERIC Educational Resources Information Center

    Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J.

    2008-01-01

    A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…

  7. Instability of nanoscale metallic particles under electron irradiation in TEM

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Zhang, S. G.; Xia, M. X.; Li, J. G.

    2016-03-01

    The stability of nano metallic glass under electron beam in transmission electron microscope (TEM) was investigated. The most common voltage of TEM used in metallic materials characterization was either 200 kV or 300 kV. Both situations were investigated in this work. An amorphous metallic particle with a dimension of a few hundred nanometers was tested under 300 keV electron irradiation. New phase decomposed from the parent phase was observed. Moreover, a crystal particle with the same composition and dimension was tested under 200 keV irradiation. Decomposition process also occurred in this situation. Besides, crystal orientation modification was observed during irradiation. These results proved that the electron beam in TEM have an effect on the stability of nanoscale samples during long time irradiation. Atomic displacement was induced and diffusion was enhanced by electron irradiation. Thus, artifacts would be induced when a nanoscale metallic sample was characterized in TEM.

  8. Is delayed genomic instability specifically induced by high-LET particles?

    NASA Astrophysics Data System (ADS)

    Testard, Isabelle; Sabatier, Laure

    1998-12-01

    Ionizing radiation can induce a large variety of damages in the DNA. The processing or repair of this damage occurs in the first minutes up to several hours after irradiation. Afterwhile the remaining lesions are fixed in an irreparable state. However, in recent years, data have accumulated to suggest that genomic instability can manifest in the progeny of irradiated cells leading to accumulation of damage through cell generations. Different biological endpoints were described: delayed cell death, delayed mutations, de novo chromosomal instability. The question regarding the ability of sparsely ionizing X-or γ-rays to induce such phenomenon is still unclear for normal cells. In most of the reports, high linear energy transfer (LET) particles are able to induce genomic instability but not low-LET particles. The mechanisms underlying this phenomenon are still unknown. In human fibroblasts irradiated by heavy ions in a large range of LETs, we showed that the chromosomal instability is characterized by telomeric associations (TAS) involving specific chromosomes. The same instability is observed during the senescence process and during the first passages after viral transfection. The specific chromosomal instability that we observed after irradiation would not be a direct consequence of irradiation but would be a natural phenomenon occurring after many cell divisions. The effect of the irradiation would lie on the bypass of the senescence process that would permit cells with end to end fusions to survive and be transmitted through cell generations, accumulating chromosome rearrangements and chromosome imbalances. Research on molecular mechanisms of chromosomal instability is focused on the role of telomeres in end to end fusions. Such observations could contribute to understand why chromosomal instability is not a dose dependant phenomenon. Why high-LET particles would be so potent in inducing delayed instability? The answer might lie in the study of primary effects of

  9. Low latitude aurorae as a diagnostic for energetic particle injections and their environment

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Dai, L.; Dombeck, J. P.; Cattell, C. A.; Mozer, F.; Russell, C. T.; Fennell, J. F.; Claudepierre, S. G.; Mende, S. B.; Frey, H. U.

    2012-12-01

    The region between the inner magnetosphere and the geomagnetic tail/plasma sheet is highly dynamic during geomagnetic storms and hosts many important magnetospheric phenomenon and structures, including particle injections and the outer radiation belt. The energy transport mechanisms in this region during major storms are not yet fully understood, however there is increasing evidence that in the range of invariant latitudes (ILAT) mapping to this dipole-tail boundary region, Alfven waves are an important energy source for the aurora. This range of latitudes, which is roughly 50 to 68 degrees ILAT varying somewhat on the level of magnetospheric disturbance, is low latitude for the aurora. We present a study of intense earthward Alfvenic Poynting flux at the location of, and concomitant with, energetic electron injections during dipolarizations, on field lines mapping to low latitude aurorae. The Poynting flux, when mapped to an ionospheric altitude of 100km, is of sufficient intensity to power the magnetically conjugate auroral luminosities. The preliminary results suggest that wave Poynting flux is an important link between injection events and low latitude aurorae. Thus the observation of the intensification and dynamic behavior of low latitude auroral arcs, i.e. those on field lines that during storms map to the near- tail boundary where particle injections are observed, are an important diagnostic for the occurrence, location, and plasma dynamics associated with energetic particle injections. This has important implications for the Radiation Belt Storm Probes (RBSP) mission. The data gathered by RBSP can be used in conjunction with auroral data from the THEMIS all-sky imaging array in Canada, providing a richer context for the study of radiation belt physics.

  10. Extracting the Injection History of Solar Energetic Particles on Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Hill, M. E.

    2013-05-01

    Studies over the last Solar Cycle of nearly scatter-free solar energetic particle propagation during magnetically well-connected impulsive events established that the particle injection history could be extracted directly from the anisotropy histories of beam-like events (without requiring the solution of a full propagation equation). However, the limitation of observations at 1AU was that the particles back-scattered from beyond 1AU began to arrive before the maximum intensity of out-going particles, thus partially obscuring the remainder of the injection history (which usually extended well beyond the event maximum). Fortunately, as Solar Probe Plus moves inward towards its perihelion, the arrival of the back-scattered component (which still must travel inward from beyond 1 AU) will likely be delayed until well after the injection maximum, giving the ISIS/EPI-Lo & EPI-Hi instruments a much clearer diagnostic of the entire injection process. Examples of intensity histories for such events well inside 1 AU will be constructed (based on beam-like events observed at 1 AU by ACE/EPAM and SOHO/ERNE), using the functional equation directly relating the scatter-free and the back-scatter propagation (Roelof, AIP Conf. Proc., 1039, pp. 174-183, 2008).

  11. Double Power Laws in the Event-integrated Solar Energetic Particle Spectrum

    NASA Astrophysics Data System (ADS)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.

    2016-04-01

    A double power law or a power law with exponential rollover at a few to tens of MeV nucleon-1 of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon-1 is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.

  12. The Upper Limit on 3He Fluence in Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Ho, G. C.; Roelof, E. C.; Mason, G. M.

    2005-03-01

    We investigated 201 3He-rich (3He/4He > 0.004 at 0.2-2.0 MeV nucleon-1) solar energetic particle (SEP) events from 1997 September through 2003 December using the Ultra Low Energy Isotope Spectrometer on the A dvanced Composition E xplorer. Both ``impulsive'' (flare-related) and ``gradual'' (CME-related) events are included. The 3He fluences varied only by a factor of 100 above our instrument sensitivity threshold, while the 4He fluences varied by factor of 10,000 above the same threshold. Moreover, there appears to be no significant correlation between the 3He and 4He fluences. We find it striking that with more than 6 years of continuous SEP data, we could not find any SEP event that has 3He fluence higher than 2.0×105 particles (cm2 sr MeV nucleon-1)-1, while the largest 4He fluence observed was 7.0×107 particles (cm2 sr MeV nucleon-1)-1. To the approximation that the event fluence is to first order proportional the number of particles released from the Sun, the observed upper limit for the 3He fluence seems to indicate that only a limited number of 0.2-2 MeV nucleon-1 3He can be released from the Sun in an SEP event.

  13. The dependence of solar energetic particle fluxes in the Earth-Mars-Earth route on solar activity period.

    PubMed

    Kuznetsov, N V; Nymmik, R A

    2002-01-01

    This report presents the results of analyzing the relative importance of particle fluxes of different origin in the Earth-Mars-Earth route during different solar activity periods. The analysis has been made in terms of the galactic cosmic ray and solar energetic particle flux models developed at Moscow State University. The results demonstrate the extreme importance of the high-energy solar particle fluxes in interplanetary space even during the years of "quiet" Sun.

  14. Direct determination of the ionic charge distribution of helium and iron in He-3-rich solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Hovestadt, D.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.

    1984-01-01

    The first direct measurement of the ionic charge distribution of the helium isotopes and of iron in (He-3)-Fe-rich solar energetic particle events is reported. No significant contribution of singly ionized helium to the events is found. The two-sigma upper limits for the He-3(+)/He-3(2+) and He-4(+)/He-4(2+) ratios are 0.02 and 0.03, respectively. The mean charge state of iron found by averaging five (He-3)-Fe-rich solar energetic particle events is 19 + or -2, significantly larger than the iron charge state for energetic solar particles in normal composition events. These results appear to favor the resonant heating model proposed by Fisk (1978). It is concluded that temperatures in the source region exceed 5 million K in the events under study.

  15. Resonant Alfven wave instabilities driven by streaming fast particles

    SciTech Connect

    Zachary, A.

    1987-05-08

    A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.

  16. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE PAGES

    None, None

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  17. Computational study of the shock driven instability of a multiphase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.

  18. Simulating the Rayleigh-Taylor instability in polymer fluids with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Zhuang, Xin; Wang, Lihua; Ouyang, Jie

    2016-04-01

    The Rayleigh-Taylor (RT) instability that occurs in the flow of polymer fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase flow, the Flory-Huggins parameter is introduced to model binary fluids. And the polymer chains in fluids are described by the modified FENE model that depicts both the elastic tension and the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Besides, a bead repulsive potential is employed to capture entanglements between polymer chains. Through our model and numerical simulation, we research the dynamics behaviors of the RT instability in polymer fluid medium. Furthermore, we also explore the effects of polymer volume concentration, chain length, and extensibility on the evolution of RT instability. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the saturation length of spikes becomes longer, and the two polymer fluids have less mixture. On the contrary, for the case of low concentration, or short chain, or small extensibility, the spikes easily split and break up, and the RT instability pattern evolves into chaotic structure. These observations indicate that the polymer and its properties drastically modify the RT instability pattern.

  19. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-12-01

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.

  20. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    SciTech Connect

    Lee, Sang-Yun; Lee, Ensang Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-12-15

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.

  1. Buckling instabilities of nanoscale polymer films and colloidal particle layers

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele Jemama

    Nanoscale polymer films have numerous potential applications such as protective coatings, flexible electronics, energy harvesting devices, and drug delivery systems. For realization of these potential applications, the mechanical properties of these materials and the underlying physics need to be understood. This dissertation focuses on understanding the responses of nanoscale films to mechanical deformations. In this regard, an elastic instability was exploited to locally bend and impart a local tensile stress in a nanoscale polystyrene film, and directly measure the resulting residual stress caused by the bending. Our results indicate that the onset of permanent deformation for thin polystyrene films is an order of magnitude smaller than what has been reported for the bulk value. In addition, not only is the onset of failure strain found to be small but also it increases with increased confinement. Using similar processing techniques, the yield strain of a more complex material---poly(styrene-b-divinylpyridine)---was studied. Similar to the polystyrene films, failure in polystyrene-b-poly(2-vinylpyridine) is also initiated at extremely low strain and is influenced by thin film confinement effects. In addition, we have demonstrated that internal nanostructure of self-assembled polystyrene-b-poly(2-vinylpyridine) affects the onset of failure strain. Having introduced an idealized heterogeneity to a sample through ultraviolet/ozone treatment, we have created samples ranging from continuous thin films to sets of isolated plates. We demonstrated that, when subjected to mechanical deformation, the unbounded plates form isotropic undulations that persist even beyond high strain. In contrast, isolated plates undergo non-isotropic undulations in the range of high strains. The non-isotropic undulation shape has been described through a simple numerical modeling subjected to controlled boundary conditions. The agreement between experiment and numerical modeling is

  2. Modeling Extreme Solar Energetic Particle Acceleration with Self-Consistent Wave Generation

    NASA Astrophysics Data System (ADS)

    Arthur, A. D.; le Roux, J. A.

    2015-12-01

    Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. Whether or not acceleration by a single shock is sufficient in these events or if some combination of multiple shocks or solar flares is required is currently not well understood. Furthermore, the observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream. We have updated our focused transport theory model that has successfully been applied to the termination shock and traveling interplanetary shocks in the past to investigate extreme SEP acceleration in the solar corona. This model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind flow. Diffusive shock acceleration of SEPs is included via the first-order Fermi mechanism for parallel shocks. To investigate the effects of the solar corona on the acceleration of SEPs, we have included an empirical model for the plasma number density, temperature, and velocity. The shock acceleration process becomes highly time-dependent due to the rapid variation of these coronal properties with heliocentric distance. Additionally, particle interaction with MHD wave turbulence is modeled in terms of gyroresonant interactions with parallel propagating Alfven waves. However, previous modeling efforts suggest that the background amplitude of the solar wind turbulence is not sufficient to accelerate SEPs to extreme energies over the short time scales observed. To account for this, we have included the transport and self-consistent amplification of MHD waves by the SEPs through wave-particle gyroresonance. We will present the results of this extended model for a single fast quasi-parallel CME driven shock in the

  3. The Energetic Particles: Acceleration, Composition, and Transport (EPACT) investigation on the WIND spacecraft

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, T. T.; Barbier, L. M.; Karsch, J.; Liberman, R.; Madden, M. P.; Nolan, T.; Reames, D. V.; Ryan, L.; Singh, S.; Trexel, H.; Winkert, G.; Mason, G. M.; Hamilton, D. C.; Walpole, P.

    1995-02-01

    The Energetic Particles: Acceleration, Composition, and Transport (EPACT) investigation is designed to make comprehensive observations of solar, interplanetary, and galactic particles over wide ranges of charge, mass, energy, and intensity using a combination of 8 different particle telescopes. This paper summarizes the scientific goals of EPACT and provides a detailed description of the instrument design and capabilities. Electrons are measured from 0.2 to 10 MeV, primarily providing time markers for injections of solar particles. Hydrogen is measured from 1.4 to 120 MeV, and Helium is measured from 0.04 to 500 MeV nucl-1. The collection powers and energy ranges for heavier nuclei up to iron are ideal for observations of quiet-time populations such as particles accelerated by interplanetary shocks and the anomalous cosmic rays (thought to be accelerated at the boundary of the heliosphere). The large collection power available is also ideal for observations of3He,4He, and heavier nuclei in impulsive3He-rich solar events. There is even the possibility of observing ultra heavy nuclei (Z>30) in large solar events for the first time. Finally, there is a telescope designed to measure isotopes from He (3.4 55 MeV nucl-1) to Fe (12 230 MeV nucl-1), which is intended for solar particles, the anomalous cosmic rays and galactic cosmic rays. The overall capabilities of EPACT provide scientifically interesting measurements over all phases of the solar cycle. There will also be important opportunities for combined studies with other spacecraft, such as SAMPEX, Ulysses, and Voyagers 1 and 2.

  4. SOHO/EPHIN observation of a multiple large solar energetic particles event in November 1997

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; Rodríguez-Frías, M. D.; del Peral, L.; Müller-Mellin, R.; Kunow, H.

    2002-04-01

    In November 1997, EPHIN (Electron, Proton, Helium INstrument) on board Solar and Heliospheric Observatory (SOHO ) detected solar energetic particles (SEP) from a multiple large event. Composition, temporal profiles and energy spectra of electrons, hydrogen and helium have been analyzed. The SEP events show, in general, gradual characteristics related to acceleration in the shocks driven the associated coronal mass ejections (CMEs). Composition features are very similar accounting that they are associated to the same active region and with similar physical conditions of the solar corona and solar wind. Temporal profile differences can be explained in terms of the different magnetic connection in both SEP events. During the November 6 SEP event the detection of some perturbations are produced by the passage of the shock and the halo CME associated with the November 4 event. Energetic characteristics of the SEP events denote differences between the November 6 SEP event, accelerated by a very fast shock, and the November 4 SEP event accelerated in a weaker shock. The compression ratio of the shock extracted from the SEP spectral index is correlated with the shock velocity reported and it demonstrates that protons and helium are accelerated by the same acceleration mechanism. SOHO is a project of international cooperation between ESA and NASA.

  5. Asymmetry of the Mars Ionosphere Boundary Altitude during a Solar Energetic Particle Event

    NASA Astrophysics Data System (ADS)

    Frahm, R. A.; Elliott, H. A.; Winningham, J. D.; Sharber, J. R.; DeForest, C. E.; Howard, T. A.; Kallio, E. J.; McKenna-Lawlor, S.; Duru, F.; Morgan, D. D.; Coates, A. J.; Odstrcil, D.; Lundin, R. N.; Futaana, Y.; Barabash, S. V.

    2013-12-01

    The Electron Spectrometer (ELS) and the Ion Mass Spectrometer (IMA) from the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment on the ESA's Mars Express (MEx) spacecraft have been used to study a Solar Energetic Particle (SEP) event associated with a Class X solar flare on on January 27, 2012. Arrival of the SEP at Mars about 46 minutes later is observed as an increase in the background of these plasma instruments. The background counts were observed to increase sharply, followed by a gradual decrease that lasted for about 4 days. During this time, ELS and IMA also recorded passages across the Martian ionospheric boundary on the dusk side of the planet, twice during each MEx orbit. The altitude of the ionospheric boundary was thereby found to have behaved differently in the northern and southern hemispheres. The boundary increased in altitude in each hemisphere with a time delay as the flare pumped energy into the Mars system. After reaching peak altitude, the ionospheric boundary returned to its original configuration faster in the northern than in the southern hemisphere. This suggests that the main difference between the northern and southern hemispheres at Mars, namely the presence in the south of crustal magnetic fields, is responsible for the dissipation of the energy input at a slower rate in the southern than in the northern hemisphere.

  6. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    SciTech Connect

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-09-10

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt {sup –γ}. The SEEs display a broken power-law WTD. The power-law index is γ{sub 1} = 0.99 for the short waiting times (<70 hr) and γ{sub 2} = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ{sup –α}exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt {sup α} {sup –3}, where 0 ≤ α < 2.

  7. A STATISTICAL STUDY OF SPECTRAL HARDENING IN SOLAR FLARES AND RELATED SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Grayson, James A.; Krucker, Saem; Lin, R. P. E-mail: krucker@ssl.berkeley.ed

    2009-12-20

    Using hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we investigate the reliability of spectral hardening during solar flares as an indicator of related solar energetic particle (SEP) events at Earth. All RHESSI data are analyzed, from 2002 February through the end of Solar Cycle 23, thereby expanding upon recent work on a smaller sample of flares. Previous investigations have found very high success when associating soft-hard-harder (SHH) spectral behavior with energetic proton events, and confirmation of this link would suggest a correlation between electron acceleration in solar flares and SEPs seen in interplanetary space. In agreement with these past findings, we find that of 37 magnetically well-connected flares (W30-W90), 12 of 18 flares with SHH behavior produced SEP events and none of 19 flares without SHH behavior produced SEPs. This demonstrates a statistically significant dependence of SHH and SEP observations, a link that is unexplained in the standard scenario of SEP acceleration at the shock front of coronal mass ejections and encourages further investigation of the mechanisms which could be responsible.

  8. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  9. Recommendations to mitigate against human health risks incurred due to energetic particle irradiation beyond low earth orbit/BLEO

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Bhardwaj, Anil; Ferrari, Franco; Kuznetsov, Nikolay; Lal, Ajay K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Günther; Pinsky, Lawrence; Shukor, Muszaphar (Sheikh); Singhvi, Ashok K.; Straube, Ulrich; Tomi, Leena; Lawrence, Townsend

    2015-04-01

    An account is provided of the main sources of energetic particle radiation in interplanetary space (Galactic Cosmic Radiation and Solar Energetic Particles) and career dose limits presently utilized by NASA to mitigate against the cancer and non-cancer effects potentially incurred by astronauts due to irradiation by these components are presented. Certain gaps in knowledge that presently militate against mounting viable human exploration in deep space due to the inherent health risks are identified and recommendations made as to how these gaps might be closed within a framework of global international cooperation.

  10. Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011) Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011)

    NASA Astrophysics Data System (ADS)

    Berk, H. L.

    2012-09-01

    The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the

  11. Electrostatic ion-acoustic-like instabilities in the solar wind with a backstreaming alpha particle beam

    SciTech Connect

    Gomberoff, L.; Gomberoff, K.; Deutsch, A.

    2010-06-15

    Nonlinear electrostatic instabilities have been shown to occur frequently and under very different conditions in plasma with two ion beams such as the fast solar wind. These instabilities can be triggered when the phase velocity of electrostatic ion-acoustic waves propagating forward and backward relative to the interplanetary magnetic field overlaps due to the presence of a finite amplitude of circularly polarized wave. The instabilities can be triggered by waves supported by the same ion component, or by waves supported by different ion components. By assuming a beam of alpha particles moving backward relative to the external magnetic field, as observed in some events in the fast solar wind, it is shown that a very small negative drift velocity of the alpha particle beam relative to the core plasma--a few percent of the local Alfven velocity--can trigger a very rich variety of nonlinear electrostatic acousticlike instabilities. Their growth rates can be rather large and they persist for larger negative alpha particles drift velocities and temperatures.

  12. Quasilinear theory and particle-in-cell simulation of proton cyclotron instability

    SciTech Connect

    Seough, Jungjoon E-mail: yoonp@umd.edu; Yoon, Peter H. E-mail: yoonp@umd.edu; Hwang, Junga E-mail: yoonp@umd.edu

    2014-06-15

    The electromagnetic ion (proton) cyclotron instability is important for regulating the excessive development of perpendicular temperature anisotropy in the solar wind, for instance, when it is compressed in the vicinity of the Earth's magnetosheath environment. A recent letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] successfully employed the quasilinear kinetic theory to explain the observed temperature anisotropy upper bound. The present paper rigorously examines the reliability of the quasilinear theory by making a direct comparison against results from the particle-in-cell simulation method. It is found that the quasilinear approach is indeed a valid first-cut theoretical tool in the study of proton cyclotron instability.

  13. The influence of the Kubo number on the transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Shalchi, A.

    2016-08-01

    We discuss the interaction between charged energetic particles and magnetized plasmas by using analytical theory. Based on the unified nonlinear transport (UNLT) theory we compute the diffusion coefficient across a large scale magnetic field. To achieve analytical tractability we use a simple Gaussian approach to model the turbulent magnetic fields. We show that the perpendicular diffusion coefficient depends only on two parameters, namely the Kubo number and the parallel mean free path. We combine the aforementioned turbulence model with the UNLT theory and we solve the corresponding integral equation numerically to show how these two parameters control the perpendicular diffusion coefficient. Furthermore, we consider two extreme cases, namely the case of strong and suppressed pitch-angle scattering, respectively. For each case we consider small and large Kubo numbers to achieve a further simplification. All our analytical findings are compared with formulas which are known in diffusion theory.

  14. Relationships among solar activity SEP occurrence frequency, and solar energetic particle event distribution function

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    The solar cycle 20-22 direct spacecraft measurement results are used to analyze the occurrence frequency and distribution function of solar energetic particle (SEP) events as dependent on solar activity. The analysis has shown that • the mean occurrence frequency of the SEP events with ≥30 MeV proton fluence sizes exceeding 106 is proportional to sunspot number, • the SEP event proton distribution functions for periods of different solar activity levels can be described to be power-law functions whose spectral form (spectral indices and cutoff values) are the same. The above results permit the following conclusions: a) to within statistical deviations, the total number of SEP events observed during any given time interval is proportional to the sum of mean-yearly sunspot numbers; b) large SEP events can occur to within quite a definite probability even during solar minima.

  15. Metis aboard the Solar Orbiter space mission: Doses from galactic cosmic rays and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Fabi, Michele; Grimani, Catia; Antonucci, Ester

    2016-03-01

    The aim of this work is to calculate the dose released by galactic cosmic rays (GCRs) and solar energetic particles (SEPs) in the polarimeter of the Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph [1] aboard the Solar Orbiter. This investigation is performed with a Monte Carlo method by considering the role of SEP events of proper intensity at a heliocentric distance from the Sun averaged along the spacecraft orbit. Our approach can be extended to other space missions reaching short distances from the Sun, such as Solar Probe Plus. This study indicates that the deposited dose on the whole set of polarimeter lenses and filters during ten years of the Solar Orbiter mission is of about 2000 Gy. For cerium treated lenses, a dose of 106 Gy of gamma radiation from a 60Co source causes a few percent transmittance loss.

  16. Approaching Solar Maximum 24 with Stereo-Multipoint Observations of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Dresing, N.; Cohen, C. M. S.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; von Rosenvinge, T. T.

    2014-01-01

    Since the beginning of the Solar Terrestrial Relations Observatory (STEREO) mission at the end of 2006, the two spacecraft have now separated by more than 130? degrees from the Earth. A 360-degree view of the Sun has been possible since February 2011, providing multipoint in situ and remote sensing observations of unprecedented quality. Combining STEREO observations with near-Earth measurements allows the study of solar energetic particle (SEP) events over a wide longitudinal range with minimal radial gradient effects. This contribution provides an overview of recent results obtained by the STEREO/IMPACT team in combination with observations by the ACE and SOHO spacecraft. We focus especially on multi-spacecraft investigations of SEP events. The large longitudinal spread of electron and 3He-rich events as well as unusual anisotropies will be presented and discussed.

  17. Association of Coronal Mass Ejections and Type II Radio Bursts with Impulsive Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Gopalswamy, N.; Cliver, E. W.; Reames, D. V.; Kaiser, M. L.; Howard, R. A.

    2004-12-01

    We report the association of impulsive solar energetic particle (SEP) events with coronal mass ejections (CMEs) and metric type II radio bursts. We identified 38 impulsive SEP events using the WIND/EPACT instrument and their CME association was investigated using white light data from SOHO/LASCO. We found that (1) at least ˜ 28--39 % of impulsive SEP events were associated with CMEs, (2) only 8--13 % were associated with metric type II radio bursts. The statistical properties of the associated CMEs were investigated and compared with those of general CMEs and CMEs associated with large gradual SEP events. The CMEs associated with impulsive SEP events were significantly slower (median speed of 613 kmps) and narrower (49 deg) than those of CMEs associated with large gradual SEP events (1336 kmps, 360 deg), but faster than the general CMEs (408 kmps).

  18. Time Scales of Solar Energetic Particle Events and Speeds of Source CMEs

    NASA Astrophysics Data System (ADS)

    Kahler, S.

    2004-05-01

    Solar Energetic Particle (SEP) events are characterized primarily by their peak intensities or fluences. Event temporal characteristics and their associations with solar phenomena are less frequently considered. We measure the times to SEP event onsets, rise times and event durations of E = 20 MeV solar proton events observed with the NASA/GSFC Epact instrument on the Wind spacecraft. The approximately 140 SEP events, observed from 1998 through 2002, were accompanied by associated coronal mass ejections (CMEs) observed with the Lasco coronagraph on the SOHO spacecraft. The timing characteristics of the SEP events are compared with the speeds and widths of the associated CMEs to determine whether any of the characteristics of the SEP intensity-time profiles can be related to CME properties. The longitude dependence of the temporal profiles is considered separately to determine the geometric extents of the shocks producing the SEP events at 1 AU.

  19. Solar Energetic Particles and Their Near-Earth Effects in Cycle 24 So Far (Invited)

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Randall, C. E.; Mewaldt, R. A.; Cohen, C. M.; Leske, R. A.; Jackman, C. H.; Jian, L.; Bain, H. M.; Li, Y.; Russell, C. T.; Odstrcil, D.

    2013-12-01

    Solar Energetic Particles were practically absent in the STEREO-era (STEREO started its prime mission in late 2006), with the exception of the significant events of December, 2006 at the end of cycle 23. The December 13, 2006 event included a GLE that affected Earth's polar middle atmosphere composition and the December 6, 2006 radio event had significant effects on GPS accuracy. Only weak impulsive events were then seen until late 2009 when the corona went through a brief dipolar phase. So far in cycle 24, the most impressive SEP event was seen on STEREO-A in July 2012, at a time when STEREO was far-removed from Earth's vicinity. Had that event impacted Earth what effects would it have produced? We compare the July 2012 SEP event with some other large events from the previously observed, much stronger solar cycles, and consider their relative effects on the Earth's upper atmosphere.

  20. Solar energetic particle characteristics and their dependence on longitude in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Cohen, C. M. S.; Mason, G. M.; Mewaldt, R. A.; von Rosenvinge, T. T.

    2013-06-01

    In previous solar cycles, most studies examining the longitude dependence of solar energetic particle (SEP) event characteristics (such as composition and spectral hardness) have involved statistical analysis of single-point measurements. With the significant separation between the two STEREO and near-Earth spacecraft during solar cycle 24, these SEP characteristics can be examined simultaneously from multiple vantage points. Using SEP measurements from sensors on STEREO and ACE, we have examined the longitude dependence of the Fe/O abundance ratio at 10 MeV/nuc and the oxygen spectral index for energies above 10 MeV/nuc. Longitudinal patterns were sought that support or refute the scenarios put forth by Tylka et al. and Cane et al. to explain the Fe-enriched large SEP events of cycle 23. Unfortunately few Fe-enriched events have occurred in cycle 24 and their longitudinal behavior is not entirely consistent with either of the proposed scenarios.

  1. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  2. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  3. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    SciTech Connect

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O.; Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S.; Shinto, K.; Wada, M.

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  4. Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere

    NASA Astrophysics Data System (ADS)

    Damiani, Alessandro; Funke, Bernd; Santee, Michelle L.; Cordero, Raul R.; Watanabe, Shingo

    2016-04-01

    Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.

  5. Effects of energetic particles on zonal flow generation by toroidal Alfvén eigenmode

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Chen, L.; Zonca, F.

    2016-09-01

    Generation of zonal flow (ZF) by energetic particle (EP) driven toroidal Alfvén eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that nonlinear resonant EP contribution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro-scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.

  6. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    PubMed

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  7. Ionic charge states of N, Ne, Mg, Si and S in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, D.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.

    1984-01-01

    The mean ionic charges and source-region temperatures of flare-accelerated N, Ne, Mg, Si and S in three large solar-energetic-particle events during 1978-1979 are determined from ISEE-3 observations, extending the findings of Hovestadt et al. (1981) and Gloeckler et al. (1981) for C, He, O, and Fe. The results are presented in tables and graphs, and the charge states are shown to correspond to different source temperatures even in the same flare, assuming equilibration in the hot plasma. The electron temperatures range from 2 x 10 to the 6th K for C, N, O, Si, and S, 4 x 10 to the 6th K for Ne and Fe, and 7 x 10 to the 6th K for Mg. The possibility that these temperature inconsistencies reflect different stages in the approach to equilibrium is considered.

  8. Quasilinear model for energetic particle diffusion in radial and velocity space

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Bass, E. M.; Staebler, G. M.

    2013-04-01

    A quasilinear model for passive energetic particle (EP) turbulent diffusion in radial and velocity space is fitted and tested against nonlinear gyrokinetic tokamak simulations with the GYRO code [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)]. Off diagonal elements of a symmetric positive definite 2×2 EP diffusion matrix account for fluxes up radial (energy) gradients driven by energy (radial) gradients of the EP velocity space distribution function. The quasilinear ratio kernel of the model is provided by a simple analytic formula for the EP radial and velocity space EP diffusivity relative to radial thermal ion energy diffusivity at each linear mode of the turbulence driven by the thermal plasma. The TGLF [G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 14, 0055909 (2007); ibid. 15, 0055908 (2008)] tokamak transport model provides the linear mode frequency and growth rates to the kernel as well as the nonlinear spectral weight for each mode.

  9. Quasilinear model for energetic particle diffusion in radial and velocity space

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Bass, E. M.

    2013-04-15

    A quasilinear model for passive energetic particle (EP) turbulent diffusion in radial and velocity space is fitted and tested against nonlinear gyrokinetic tokamak simulations with the GYRO code [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)]. Off diagonal elements of a symmetric positive definite 2 Multiplication-Sign 2 EP diffusion matrix account for fluxes up radial (energy) gradients driven by energy (radial) gradients of the EP velocity space distribution function. The quasilinear ratio kernel of the model is provided by a simple analytic formula for the EP radial and velocity space EP diffusivity relative to radial thermal ion energy diffusivity at each linear mode of the turbulence driven by the thermal plasma. The TGLF [G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 14, 0055909 (2007); ibid. 15, 0055908 (2008)] tokamak transport model provides the linear mode frequency and growth rates to the kernel as well as the nonlinear spectral weight for each mode.

  10. Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities

    NASA Astrophysics Data System (ADS)

    Nikola, Nikolai; Solon, Alexandre P.; Kafri, Yariv; Kardar, Mehran; Tailleur, Julien; Voituriez, Raphaël

    2016-08-01

    We study, from first principles, the pressure exerted by an active fluid of spherical particles on general boundaries in two dimensions. We show that, despite the nonuniform pressure along curved walls, an equation of state is recovered upon a proper spatial averaging. This holds even in the presence of pairwise interactions between particles or when asymmetric walls induce ratchet currents, which are accompanied by spontaneous shear stresses on the walls. For flexible obstacles, the pressure inhomogeneities lead to a modulational instability as well as to the spontaneous motion of short semiflexible filaments. Finally, we relate the force exerted on objects immersed in active baths to the particle flux they generate around them.

  11. Evidence for Ultra-Energetic Particles in Jet from Black Hole

    NASA Astrophysics Data System (ADS)

    2006-06-01

    New Haven, Conn. -- An international team of astronomers led by researchers at Yale has obtained key infrared observations that reveal the nature of quasar particle jets that originate just outside super-massive black holes at the center of galaxies and radiate across the spectrum from radio to X-ray wavelengths; a complementary study of jet X-ray emission led by astronomers at the University of Southampton, reaches the same conclusion. Composite of 3C273's jet Chandra, Hubble, and Spitzer composite of 3C273 Credit: NASA/JPL-Caltech/Yale Univ. Press Image and Caption Both studies involve the jet of the quasar 3C273, famous since its identification in 1963 as the first quasar. It now appears that the most energetic radiation from this jet arises through direct radiation from extremely energetic particles, and not in the way expected by most astronomers based on the previously available data. The two reports, available now online in the Astrophysical Journal, will appear in print in the September 10 issue. "Quasar jets, although extremely luminous, are so distant as to be relatively faint and difficult to observe. Thanks to the sensitivity of NASA's Great Observatories, we have been able to map the 3C273 jet in infrared, visible light and X-rays," said C. Megan Urry, Israel Munson Professor of Physics and Astronomy at Yale, and an author on one study. "These combined data strongly suggest that ultra-energetic particles in the 3C273 jet are producing their light via synchrotron radiation." Composite showing the relation between the quasar 3C273 and the jet Composite showing the relation between the quasar 3C273 (top left; the quasar is a very small and bright source, the fuzz apparently surrounding it is an artifact that appears when taking a picture of a very bright source with a camera and telescope for very faint things) and the jet. The color coding is the same as in the image above. Credit: NASA/NRAO, S.Jester, D.E.Harris, H.L.Marshall, K.Meisenheimer, H

  12. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    NASA Technical Reports Server (NTRS)

    Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.

    2004-01-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.

  13. Evaluation the effect of energetic particles in solar flares on satellite's life time

    NASA Astrophysics Data System (ADS)

    Bagheri, Z.; Davoudifar, P.

    2016-09-01

    As the satellites have a multiple role in the humans' life, their damages and therefore logical failures of their segment causes problems and lots of expenses. So evaluating different types of failures in their segments has a crustal role. Solar particles are one of the most important reasons of segment damages (hard and soft) during a solar event or in usual times. During a solar event these particle may cause extensive damages which are even permanent (hard errors). To avoid these effects and design shielding mediums, we need to know SEP (solar energetic particles) flux and MTTF (mean time between two failures) of segments. In the present work, we calculated SEP flux witch collide the satellite in common times, in different altitudes. OMERE software was used to determine the coordinates and specifications of a satellite which in simulations has been launched to space. Then we considered a common electronic computer part and calculated MTTF for it. In the same way the SEP fluxes were calculated during different solar flares of different solar cycles and MTFFs were evaluated during occurring of solar flares. Thus a relation between solar flare energy and life time of the satellite electronic part (hours) was obtained.

  14. Anisotropic Three-Dimensional Focused Transport of Solar Energetic Particles in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Dröge, W.; Kartavykh, Y. Y.; Klecker, B.; Kovaltsov, G. A.

    2010-02-01

    We investigate the combined effects of solar energetic particle propagation, parallel and perpendicular to the large-scale magnetic field in the solar wind. Numerical methods employing stochastic differential equations are used incorporating pitch-angle diffusion, focusing, and pitch-angle-dependent diffusion perpendicular to the magnetic field. We compute spatial distributions of ~100 keV electrons and 4 MeV protons in the inner heliosphere, assuming impulsive injection near the Sun over a limited range of solar longitude and latitude. In addition, spatial distributions and intensity-time profiles for various combinations of the parallel and perpendicular mean free path, with different assumptions for the dependence of λbottom on the radial distance and pitch angle, are investigated. We find that realistic results can be obtained when we assume that the perpendicular mean free path scales in the inner heliosphere with the gyroradius of the particles. Step-like decreases of particle intensities as frequently observed in impulsive events at 1 AU can be reproduced for a ratio of λbottom/λpar a few times 10-5.

  15. ESTIMATION OF THE RELEASE TIME OF SOLAR ENERGETIC PARTICLES NEAR THE SUN

    SciTech Connect

    Wang, Yang; Qin, Gang E-mail: gqin@spaceweather.ac.cn

    2015-01-20

    This paper investigates the onset time of solar energetic particle (SEP) events with numerical simulations and analyzes the accuracy of the velocity dispersion analysis (VDA) method. Using a three-dimensional focused transport model, we calculate the fluxes of protons observed in the ecliptic at 1 AU in the energy range between 10 MeV and 80 MeV. In particular, three models are used to describe different SEP sources produced by flare or coronal shock, and the effects of particle perpendicular diffusion in the interplanetary space are also studied. We have the following findings. When the observer is disconnected from the source, the effects of perpendicular diffusion in the interplanetary space and particles propagating in the solar atmosphere have a significant influence on the VDA results. As a result, although the VDA method is valid with impulsive source duration, low background, and weak scattering in the interplanetary space or fast diffusion in the solar atmosphere, the method is not valid with gradual source duration, high background, or strong scattering.

  16. Advancements in the Coupling of State-of-the-Art Energetic Particle and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gorby, M.

    2015-12-01

    Recent advancements in coupling the Earth Moon Mars Radiation Environment Module (EMMREM) and two MHD models, Magnetohydrodynamics Around a Sphere (MAS) and ENLIL, have yielded promising results for predicting differential energy flux and radiation doses at 1AU. The EMMREM+MAS coupling focuses on the details of particle acceleration due to CMEs initiated low in the corona (1Rs - 20Rs). The EMMREM+ENLIL coupling gives results for CMEs initiated at ~20Rs and is part of a predictive capability being developed in conjunction with the CCMC. The challenge in forming large solar energetic particle events in both the prompt scenario lower down or for a gradual CME further out is to have enhanced scattering within the acceleration regions while also allowing for efficient escape of accelerated particles downstream. We present here details of the MHD parameters and topology of a CME around the acceleration regions in the early evolution (below 2Rs), dose and flux predictions at 1AU, and how compression regions vs. shocks affect the evolution and spectrum of an SEP event.

  17. Propagation of Solar Energetic Particles During Multiple Coronal Mass Ejection Events

    NASA Astrophysics Data System (ADS)

    Pohjolainen, Silja; Al-Hamadani, Firas; Valtonen, Eino

    2016-02-01

    We study solar energetic particle (SEP) events during multiple solar eruptions. The analysed sequences, on 24 - 26 November 2000, 9 - 13 April 2001, and 22 - 25 August 2005, consisted of halo-type coronal mass ejections (CMEs) that originated from the same active region and were associated with intense flares, EUV waves, and interplanetary (IP) radio type II and type III bursts. The first two solar events in each of these sequences showed SEP enhancements near Earth, but the third in the row did not. We observed that in these latter events the type III radio bursts were stopped at much higher frequencies than in the earlier events, indicating that the bursts did not reach the typical plasma density levels near Earth. To explain the missing third SEP event in each sequence, we suggest that the earlier-launched CMEs and the CME-driven shocks either reduced the seed particle population and thus led to inefficient particle acceleration, or that the earlier-launched CMEs and shocks changed the propagation paths or prevented the propagation of both the electron beams and SEPs, so that they were not detected near Earth even when the shock arrivals were recorded.

  18. Observation of high iron charge states at low energies in solar energetic particle events

    SciTech Connect

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A.; Klecker, B.; Kartavykh, Y. Y.; Mason, G. M.

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ∼ 10-14 at low energies E ≤ 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ≤ 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ≥ 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ≥2 MK up to ∼4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ∼ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  19. Observation of High Iron Charge States at Low Energies in Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Möbius, E.; Klecker, B.; Bochsler, P.; Connell, J. J.; Kartavykh, Y. Y.; Mason, G. M.; Popecki, M. A.

    2014-04-01

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states langQ Ferang ~ 10-14 at low energies E <= 0.1 MeV nuc-1, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of langQ Ferang up to 20 at energies 0.1-0.5 MeV nuc-1 in impulsive SEPs are attributed to stripping during acceleration. However, Q Fe > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported langQ Ferang <= 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with langQ Ferang >= 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures >=2 MK up to ~4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated langQ Ferang ~ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  20. Study of the Most Harmful Solar Energetic Particle for Shielding next Human Space Flights

    NASA Astrophysics Data System (ADS)

    Komei Yamashiro, Bryan

    2015-04-01

    Solar energetic particles (SEPs) accelerated by solar events such as flares and coronal mass ejections are radiation risks for humans in space on board the International Space Station (ISS), and will be significant obstacles for future long-duration manned space flight missions. This research supported efforts to improve predictions of large solar storms and aimed for a better understanding of Heliophysics. The main objective was to generate a dated catalog of the highest energy range SEPs measured by the Alpha Magnetic Spectrometer (AMS-02). Using online graphical user interfaces from the satellites, Solar and Heliospeheric Observatory (SOHO) and Geostationary Operational Environmental Satellite (GOES-13, 15), the generated data files from the mounted particle detectors were plotted along a specified energy range. The resulting histograms illustrated the low energy range data from SOHO (4 MeV to 53 MeV) and the low-mid energy range from GOES (0.8 MeV to 500 MeV), which collectively provided a low- to mid-energy range spectrum of the specific event energy ranges versus the SEP proton flux. The high energy range results of the AMS-02 (125 MeV to a few TeV) will eventually be incorporated with the two alternative space satellites of lower energy ranges for a complete analysis across a full SEP energy range. X-ray flux from GOES-15 were then obtained and plotted with the corresponding time to portray initial phenomena of the solar events. This procedure was reproduced for 5 different events determined energetic enough to be measured by AMS-02. The generated plots showed correlation between the different satellite detectors.

  1. Polar Northern Hemisphere Middle Atmospheric Influence due to Energetic Particle Precipitation in January 2005

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.

    2010-01-01

    Solar eruptions and geomagnetic activity led to energetic particle precipitation in early 2005, primarily during the January 16-21 period. Production of OH and destruction of ozone have been documented due to the enhanced energetic solar proton flux in January 2005 [e.g., Verronen et al., Geophys. Res. Lett.,33,L24811,doi:10.1029/2006GL028115, 2006; Seppala et al., Geophys. Res. Lett.,33,L07804, doi:10.1029/2005GL025571,2006]. These solar protons as well as precipitating electrons also led to the production of NO(x) (NO, NO2). Our simulations with the Whole Atmosphere Community Climate Model (WACCM) show that NO(x) is enhanced by 20-50 ppbv in the polar Northern Hemisphere middle mesosphere (approx.60-70 km) by January 18. Both the SCISAT-1 Atmospheric Chemistry Experiment (ACE) NO(x) measurements and Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIP AS) nighttime NO2 observations show large increases during this period, in reasonable agreement with WACCM predictions. Such enhancements are considerable for the mesosphere and led to simulated increases in polar Northern Hemisphere upper stratospheric odd nitrogen (NO(y)) of2-5 ppbv into February 2005. The largest ground level enhancement (GLE) of solar cycle 23 occurred on January 20, 2005 with a neutron monitor increase of about 270 percent [Gopalswamy et al., 29th International Cosmic Ray Conference, Pune,00,101-104,2005]. We found that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced stratospheric NO(y) of less than 1 percent as a result of this GLE. The atmospheric impact of precipitating middle energy electrons (30-2,500 keV) during the January 16-21, 2005 period is also of interest, and an effort is ongoing to include these in WACCM computations. This presentation will show both short- and longer-term changes due to the January 2005 energetic particle precipitation.

  2. A diffusion driven instability in systems that separate particles by velocity sedimentation.

    PubMed Central

    Mason, D W

    1976-01-01

    Velocity sedimentation has been used extensively to separate particles according to the magnitude of their sedimentation velocity in suitable media. This technique has been used over a wide range of particle size from protein molecules, viruses, subcellular particles to whole cells. Successful separation demands that collective particle motion should not occur. In practice it is observed that such systems may, under certain circumstances, suffer from a particular type of instability which destroys the normal dependence of sedimentation velocity on particle size and density. The aim of this paper is to identify the critical parameters that determine the development of this instability. Stability criteria are deduced and predictions of the theory compared with published observations. Satisfactory agreement between theory and observation is obtained. It is concluded that the simple stability criterion, namely that stable sedimentation will occur if the total density gradient is in the direction of the sedimenting force, grossly overestimates the particle load that can be separated in practice. Some specific recommendations for optimum particle loading are included. Earlier theoretical and experimental works are briefly reviewed. PMID:1276375

  3. Numerical studies of the Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.

    2004-11-01

    In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  4. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2011-03-01

    Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.

  5. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    SciTech Connect

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-03-15

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (approx3000 km s{sup -1}) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  6. Fire hose instability driven by alpha particles in the solar wind

    NASA Astrophysics Data System (ADS)

    Matteini, Lorenzo; Hellinger, Petr; Schwartz, Steven J.; Landi, Simone

    2015-04-01

    We discuss the dynamics of fire hose parallel instability driven by anisotropic alpha particles in a plasma with typical solar wind composition (nα = 5%ne). We show, for the first time, the liner and nonlinear dynamics of the instability by means of hybrid numeric simulations, highlighting its dependence on the main plasma parameters, including the relative drift between the alphas and the main proton population. Our results confirm that the parallel fire hose instability can be efficiently excited by anisotropic distribution of the less abundant alpha particles, even when the rest of the plasma (electrons and protons) is Maxwellian. Moreover, our finding suggest that the dynamics driven by the alphas can also influence the properties of the protons. In particular the instability is found to significantly affect the evolution of the alpha-proton drift, constraining its final intensity to values smaller than the local Alfvén speed, as observed in the solar wind far from the Sun. When simulations with both species initially anisotropic are performed, we find a coexistence of the fire hose wave activity excited by both ions, leading to final stable configurations which reflect the marginal stability state of each species. As a consequence, when observed in the commonly used (β||,T⊥/T||) plane, alpha particles and protons are seen to saturate in different regions of the parameter space. This property is in very good agreement with recent solar wind in situ observations and strongly suggests that those instabilities play a role in regulating the anisotropy solar wind ions.

  7. Solar Energetic Particle Acceleration/Injection Time Profiles: Much Better Observed in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Lario, D.; Haggerty, D. K.

    2006-12-01

    We have argued that during the beam-like anisotropic phase of solar energetic particle (SEP) events, the history of the field-aligned unidirectional intensity is essentially that of the injection history at the Sun (shifted backwards by the scatter-free transit time). We have concentrated so far mainly on the injection timing relative to that of solar electromagnetic signatures, because the onset of the first-arriving particles can be delayed by only a fraction of their scatter-free transit time by interplanetary scattering (i.e., 10 min to 1AU for relativistic particles). However, there is much more information than just the onset time contained in the field- aligned intensity time profile throughout the beam-like phase; it must echo that of the actual solar injection history. We have recently classified the intensity time profiles during the duration of the beam-like anisotropies of ACE/EPAM near-relativistic electrons into three broad categories: 1) Spikes (rapid and equal rise and decay); 2) Pulses (rapid rise, slower decay); and 3) Ramps (rapid rise followed by a plateau). These classes indicate a wide range (and possibly different mechanisms) for SEP acceleration/injection. The beam- like anisotropic phase ends when a sufficient number of particles have been backscattered from beyond 1AU where propagation is no longer essentially scatter-free (as it usually is inside 1AU). Preliminary estimates of the time difference between the event beam onset and the first arrival of back-scattered particles yield about 10 min or more. This gives us a 10 min window for an unambiguous view of the injection history (although we can actually extract considerably more of the injection history even in the presence of back-scatter). The >10 min elapsed time for relativistic particles places this back-scattering region somewhere roughly beyond 1.3 AU (a field-aligned round-trip distance of >1.0 beyond 1 AU). Now imagine a spacecraft like one of the Sentinels, Solar Orbiter, or

  8. On the relationship between the energetic particle flux morphology and the change in the magnetic field magnitude during substorms

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Lui, A. T. Y.; Sibeck, D. G.; Takahashi, K.; Mcentire, R. W.

    1989-01-01

    The relationship between the morphology of energetic particle substorm injections and the change in the magnetic field magnitude over the course of the event is examined. Using the statistical relationships between the magnetic field during the growth phase and the change in the field magnitude during substorms calculated by Lopez et al. (1988), a limited number of dispersionless ion injections observed by AMPTE CCE are selected. It is argued that this limited set is representative of a large set of events and that the conclusions drawn from examining those events are valid for substorms in general in the inner magnetosphere. It is demonstrated that in an event when CCE directly observed the disruption of the current sheet, the particle and field data show that the region of particle acceleration was highly turbulent and was temporally, and perhaps spatially, limited and that the high fluxes of energetic particles are qualitatively associated with intense inductive electric fields.

  9. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    SciTech Connect

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  10. Study of energetic particles associated with shock waves in the INTERSHOCK project (set of new EPSW experiments)reverse arrow

    SciTech Connect

    Vandas, M.; Kudela, K.; Lutsenko, V.N.; Newecek, Z.; Slivka, M.

    1986-09-01

    The authors have examined first results of the EPSW set of experiments to study energetic charged particles associated with shock waves in the INTERSHOCK project. They briefly describe the EPSW equipment, the regimes and special features of its operation during the experiment. As an example, they consider data obtained for the intersection of the near-earth shock wave of May 7, 1985.

  11. Solar Energetic Particle Spectrum on 13 December 2006 Determined by IceTop

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2008-10-11

    The IceTop air shower array now under construction at the South Pole as the surface component of the IceCube neutrino telescope (Achterberg et al. 2006) detected an unusual near-solar-minimum Ground Level Enhancement (GLE) after a solar flare on 13 December 2006. Beginning at 0220 UT, the 4B class flare occurred at solar coordinates S06 W24, accompanied by strong (X3.4) X-ray emission and type II and IV radio bursts. The LASCO coronagraph on the SOHO spacecraft observed a halo CME launch from the Sun at {approx} 0225 UT with speed estimated to be {approx} 1770 km/s. We have begun (Bieber et al. 2007) a comprehensive analysis of the propagation of solar energetic particles in this event. However the focus of this Letter is the new and unique ability of IceTop to derive the energy spectrum of these particles in the multi-GeV regime from a single detector with a well defined viewing direction. When completed, IceTop will have approximately 500 square meters of ice Cherenkov collecting area arranged in an array of 80 stations on a 125 m triangular grid to detect air showers from one PeV to one EeV. Each station consists of two, two meter diameter tanks filled with ice to a depth of 90 cm. Tanks are instrumented with two Digital Optical Modules (DOM) operated at different gain settings to provide appropriate dynamic range to cover both large and small air showers. Each DOM contains a 10 inch photomultiplier and an advanced readout system capable of digitizing the full waveform. For historical reasons, the two discriminator counting rates recorded in each DOM are termed SPE (Single Photo Electron), and MPE (Multi Photo Electron). In the present analysis the SPE threshold corresponds approximately to 20 photoelectrons (PE), and the MPE threshold to 100 PE. Due to the high altitude (2835m) and the nearly zero geomagnetic cutoff at the South Pole, secondary particle spectra at the detector retain a significant amount of information on the spectra of the primary particles

  12. Particle dynamics in discs with turbulence generated by the vertical shear instability

    NASA Astrophysics Data System (ADS)

    Stoll, Moritz H. R.; Kley, Wilhelm

    2016-10-01

    Context. Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization, the vertical shear instability (VSI) has become an interesting candidate, since it relies purely on a vertical gradient in the angular velocity. Existing numerical simulations have shown that α-values a few times 10-4 can be generated. Aims: The particle growth in the early planet formation phase is determined by the dynamics of embedded dust particles. Here, we address, in particular, the efficiency of VSI-turbulence in concentrating particles to generate overdensities and low collision velocities. Methods: We perform three-dimensional (3D) numerical hydrodynamical simulations of accretion discs around young stars that include radiative transport and irradiation from the central star. The motion of embedded particles within a size range of a fraction of mm up to several m is followed using standard drag formula. Results: We confirm that, under realistic conditions, the VSI is able to generate turbulence in full 3D protoplanetary discs. The irradiated disc shows turbulence within 10 to 60 au. The mean radial motion of the gas is such that it is directed inward near the midplane and outward in the surface layers. We find that large particles drift inward with the expected speed, while small particles can experience phases of outward drift. Additionally, the particles show bunching behaviour with overdensities reaching five times the average value, which is strongest for dimensionless stopping times around unity. Conclusions: Particles in a VSI-turbulent discs are concentrated in large-scale turbulent eddies and show low relative speeds that allow for growing collisions. The reached overdensities will also enable the onset of streaming instabilities, further enhancing particle growth. The outward drift for small particles at higher disk elevations enable the transport of processed high temperature material in the solar system to greater distances.

  13. Instabilities of a circularly polarized wave with trapped particles in an isotropic plasma

    SciTech Connect

    Krasovsky, V. L.

    2013-04-15

    The structure and stability of a transverse electromagnetic wave propagating with a velocity lower than the speed of light in an unmagnetized plasma are considered. The stationary finite-amplitude wave is described by exact solutions to the Vlasov-Maxwell equations. However, unlike the well-known electrostatic analog, the Bernstein-Greene-Kruskal wave, the wave structure is determined to a large extent by the presence of trapped particles with a shear of transverse velocities, without which the existence of waves with a refraction index larger than unity is impossible. It is shown that the main origin of the wave instability is the longitudinal motion of trapped particles relative to the background plasma. Expressions for the growth rates in the main instability regimes are found under definite restrictions on the wave parameters.

  14. Properties of solar energetic particle events inferred from their associated radio emission

    NASA Astrophysics Data System (ADS)

    Kouloumvakos, A.; Nindos, A.; Valtonen, E.; Alissandrakis, C. E.; Malandraki, O.; Tsitsipis, P.; Kontogeorgos, A.; Moussas, X.; Hillaris, A.

    2015-08-01

    Aims: We study selected properties of solar energetic particle (SEP) events as inferred from their associated radio emissions. Methods: We used a catalogue of 115 SEP events, which consists of entries of proton intensity enhancements at one AU, with complete coverage over solar cycle 23 based on high-energy (~68 MeV) protons from SOHO/ERNE. We also calculated the proton release time at the Sun using velocity dispersion analysis (VDA). After an initial rejection of cases with unrealistic VDA path lengths, we assembled composite radio spectra for the remaining events using data from ground-based and space-borne radio spectrographs. We registered the associated radio emissions for every event, and we divided the events in groups according to their associated radio emissions. In cases of type III-associated events, we extended our study to the timings between the type III radio emission, the proton release, and the electron release as inferred from VDA based on Wind/3DP 20-646 keV data. Results: The proton release was found to be most often accompanied by both type III and II radio bursts, but a good association percentage was also registered in cases accompanied by type IIIs only. The worst association was found for the cases only associated with type II. In the type III-associated cases, we usually found systematic delays of both the proton and electron release times as inferred by the particles' VDAs, with respect to the start of the associated type III burst. The comparison of the proton and electron release times revealed that, in more than half of the cases, the protons and electrons were simultaneously released within the statistical uncertainty of our analysis. For the cases with type II radio association, we found that the distribution of the proton release heights had a maximum at ~2.5 R⊙. Most (69%) of the flares associated with our SEP events were located in the western hemisphere, with a peak within the well-connected region of 50°-60° western

  15. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    SciTech Connect

    MacFarlane, Joseph J

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for

  16. NASA's Living With a Star (LWS) Sentinels Mission to Understand the Origin of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.; Lin, R. P.; Szabo, A.

    2006-05-01

    One of the primary goals of NASA's Sentinels mission, the heliospheric element of the integrated LWS program, is to provide observations necessary for understanding the physics of solar/inner heliosphere processes that produce solar energetic particle (SEP) events, so that requirements for eventual predictive capability can be defined. We present the results of a study by the Sentinels Science and Technology Definition Team (STDT) that recommends the following program: (a) four identical Inner Heliosphere Sentinels (IHS) spacecraft that utilize Venus gravity assists to achieve 0.25-0.7 AU orbits, primarily for in situ particles and fields measurements; (b) a Near-Earth Sentinel (NES) with a spectroscopic coronagraph to provide the physical conditions in the SEP acceleration region and a wide field (>~0.3 AU) coronagraph to connect to the IHS measurements; and (3) a Farside Sentinel (FS) with a magnetograph to provide near global photospheric magnetic field measurements for modeling the structure of the inner heliosphere. From their multiple vantage points, distributed in radius and longitude, the four IHS spacecraft will be able to study the injection, acceleration, and transport of SEPs with unprecedented precision, which should resolve issues that have arisen from SEP timing studies at 1 AU. We illustrate how these combined measurements will lead to an understanding of SEP origin and improve our predictive capability for large SEP events.

  17. Observations of energetic particles with STEREO: events with large longitudinal spread

    NASA Astrophysics Data System (ADS)

    Dresing, Nina; Droege, Wolfgang; Kartavykh, Yulia; Klassen, Andreas; Malandraki, Olga; Gomez-Herrero, Raul; Heber, Bernd

    The two STEREO spacecraft perform Earth-like orbits around the Sun with an increasing longitudinal separation to the Earth of ~22 degrees per year. A 360 degree view of the Sun was reached in February 2011, providing multi-point in-situ and remote-sensing observations of unprecedented quality. Together with close to Earth measurements, the STEREO spacecraft build an optimal platform to study solar energetic particles (SEPs) and its longitudinal variations with minimal radial gradient effects. While solar activity finally began to rise after the very deep minimum in 2010 to 2011, the STEREO spacecraft had reached a sufficient longitudinal separation to detect and investigate events with large longitudinal spreads. The mechanisms producing these unexpected wide particle spreads are subject to recent research. Comprehensive observations and modeling tools are put forth to disentangle source and transport processes. The efficiency of perpendicular diffusion in the interplanetary medium versus coronal transport, as well as the role of coronal shocks, EUV waves, and CMEs will be discussed.

  18. Voyager 1 and 2 Observations of Anomalous Cosmic Rays and Other Energetic Particle in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Roelof, Edmond; Krimigis, Stamatios; Hamilton, Doug C.; Decker, Robert

    2012-07-01

    Conditions are changing in the heliosheath at the positions of Voyager 1 (V1) and Voyager 2 (V2) and are doing so in unexpected ways that so far defy a single consistent interpretation. Some characteristic intensity variations cut across a surprisingly broad range of energies and species, from termination shock particles (TSPs), to energetic electrons, to light and heavy anomalous cosmic rays (ACRs), and to galactic cosmic rays (GCRs). The changes must be a mix of spatial structure and temporal changes produced by the rise in activity of Solar Cycle 24 beginning in January 2010. Yet there are drastic differences between some of the same species at V1 compared with V2. The puzzling observations include the decline of V1 ACR intensities from 2010.7 to 2011.7, and increase thereafter, while at V2 ACRs were exponentially increasing, finally reaching levels comparable to or even exceeding those at V1. A distinct pattern of increases and decreases is seen at V2 in TSPs, electrons, light ACRs, and GCRs, but not in ACR heavy ions. However some things are happening similarly at V1 and V2, like a recent increase in GCR protons. We will present an overview of these observations with an emphasis on the ACR observations from the V1 and V2 Low Energy Charged Particle instruments, which also provide spectral properties, anisotropies, and (indirectly) solar wind speed.

  19. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    PubMed

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. PMID:26989259

  20. GROUND LEVEL ENHANCEMENT IN THE 2014 JANUARY 6 SOLAR ENERGETIC PARTICLE EVENT

    SciTech Connect

    Thakur, N.; Gopalswamy, N.; Xie, H.; Mäkelä, P.; Yashiro, S.; Akiyama, S.; Davila, J. M.

    2014-07-20

    We present a study of the 2014 January 6 solar energetic particle event which produced a small ground level enhancement (GLE), making it the second GLE of this unusual solar cycle 24. This event was primarily observed by the South Pole neutron monitors (increase of ∼2.5%) while a few other neutron monitors recorded smaller increases. The associated coronal mass ejection (CME) originated behind the western limb and had a speed of 1960 km s{sup –1}. The height of the CME at the start of the associated metric type II radio burst, which indicates the formation of a strong shock, was measured to be 1.61 Rs using a direct image from STEREO-A/EUVI. The CME height at the time of the GLE particle release (determined using the South Pole neutron monitor data) was directly measured as 2.96 Rs based on STEREO-A/COR1 white-light observations. These CME heights are consistent with those obtained for GLE71, the only other GLE of the current cycle, as well as cycle-23 GLEs derived using back-extrapolation. GLE72 is of special interest because it is one of only two GLEs of cycle 24, one of two behind-the-limb GLEs, and one of the two smallest GLEs of cycles 23 and 24.