Science.gov

Sample records for energetic supernova sn

  1. Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB 130427A

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Pian, E.; D'Elia, V.; D'Avanzo, P.; Della Valle, M.; Mazzali, P. A.; Tagliaferri, G.; Cano, Z.; Levan, A. J.; Møoller, P.; Amati, L.; Bernardini, M. G.; Bersier, D.; Bufano, F.; Campana, S.; Castro-Tirado, A. J.; Covino, S.; Ghirlanda, G.; Hurley, K.; Malesani, D.; Masetti, N.; Palazzi, E.; Piranomonte, S.; Rossi, A.; Salvaterra, R.; Starling, R. L. C.; Tanaka, M.; Tanvir, N. R.; Vergani, S. D.

    2014-07-01

    Aims: Long-duration gamma-ray bursts (GRBs) have been found to be associated with broad-lined type-Ic supernovae (SNe), but only a handful of cases have been studied in detail. Prompted by the discovery of the exceptionally bright, nearby GRB 130427A (redshift z = 0.3399), we aim at characterising the properties of its associated SN 2013cq. This is the first opportunity to test the progenitors of high-luminosity GRBs directly. Methods: We monitored the field of the Swift long-duration GRB 130427A using the 3.6 m TNG and the 8.2 m VLT during the time interval between 3.6 and 51.6 days after the burst. Photometric and spectroscopic observations revealed the presence of the type Ic SN 2013cq. Results: Spectroscopic analysis suggests that SN 2013cq resembles two previous GRB-SNe, SN 1998bw and SN 2010bh, associated with GRB 980425 and X-ray flash (XRF) 100316D, respectively. The bolometric light curve of SN 2013cq, which is significantly affected by the host galaxy contribution, is systematically more luminous than that of SN 2010bh (~2 mag at peak), but is consistent with SN 1998bw. The comparison with the light curve model of another GRB-connected SN 2003dh indicates that SN 2013cq is consistent with the model when brightened by 20%. This suggests a synthesised radioactive 56Ni mass of ~0.4M⊙. GRB 130427A/SN 2013cq is the first case of low-z GRB-SN connection where the GRB energetics are extreme (Eγ,iso ~ 1054 erg). We show that the maximum luminosities attained by SNe associated with GRBs span a very narrow range, but those associated with XRFs are significantly less luminous. On the other hand the isotropic energies of the accompanying GRBs span 6 orders of magnitude (1048 erg SN energy budget. Based on observations made with the VLT, operated on the mountain of Cerro Paranal in Chile under programme 091.D-0291

  2. Toward connecting core-collapse supernova theory with observations. I. Shock revival in a 15 M {sub ☉} blue supergiant progenitor with SN 1987A energetics

    SciTech Connect

    Handy, Timothy; Plewa, Tomasz; Odrzywołek, Andrzej

    2014-03-10

    We study the evolution of the collapsing core of a 15 M {sub ☉} blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiency of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.

  3. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-03-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  4. SN 1054: A pulsar-powered supernova?

    NASA Astrophysics Data System (ADS)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  5. DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Mahabal, A.; Williams, R.; Graham, M. J.; Prieto, J. L.; Balam, D.; Catelan, M.; Beshore, E.; Larson, S.

    2010-08-01

    We report on the discovery and initial observations of the energetic type IIn supernova 2008fz. This object was discovered at redshift z = 0.133 and reached an apparent magnitude of V {approx} 17. After correcting for Galactic extinction and redshift, we determine the peak absolute magnitude of the event to be M{sub V} = -22.3, placing it among the most luminous supernovae discovered. The optical energy emitted by SN 2008fz (based on the light curve over an 88 day period) is possibly the most ever observed for a supernova (>1.4 x 10{sup 51} erg). The event was more luminous than the type IIn SN 2006gy, but exhibited the same smooth, slowly evolving light curve. As is characteristic of type IIn supernova, the early spectra of SN 2008fz initially exhibited narrow Balmer lines which were replaced by a broader component at later times. The spectra also show a blue continuum with no signs of Ca or Na absorption, suggesting that there is little extinction due to dust in the host or circumstellar material. No host galaxy is identified in prior co-added images reaching R {approx} 22. From the supernova's redshift, we place an upper limit on the brightness of the host of M{sub R} {approx} -17 (similar to the brightness of the Small Magellanic Cloud). The presence of the supernova within such a faint galaxy follows the majority of recently discovered highly luminous supernovae. A possible reason for this is the combination of a high star formation rate in low-mass galaxies with a low-metallicity environment.

  6. Energetic Supernovae from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2013-04-01

    We present the results from our 3D supernova simulations by using CASTRO, a new radiation-hydrodynamics code. The first generation of stars in the universe ended the cosmic dark age by shining the first light. But what was the fate of these stars? Based on the stellar evolution models, the fate of stars depends on their masses. Modern cosmological simulations suggest that the first stars could be very massive, with a typical mass scale over 50 solar masses. We look for the possible supernovae from the death of the first stars with masses over 50 solar masses. Besides the iron-core collapse supernovae, we find energetic thermonuclear supernovae, including two types of pair-instability supernovae and one type of general-relativity instability supernovae. Our models capture all explosive burning and follow the explosion until the shock breaks out from the stellar surface. We will discuss the energetics, nucleosynthesis, and possible observational signatures for these primordial supernovae that will be the prime targets for future large telescopes such as the James Webb Space Telescope (JWST).

  7. The Supernova Impostor SN 2010da

    NASA Astrophysics Data System (ADS)

    Binder, Breanna A.; Williams, Benjamin F.; Kong, Albert K. H.; Plucinsky, Paul P.; Gaetz, Terrance J.; Skillman, Evan D.; Dolphin, Andrew E.

    2016-01-01

    Supernova impostors are optical transients that, despite being assigned a supernova designation, do not signal the death of a massive star or accreting white dwarf. Instead, many impostors are thought to be major eruptions from luminous blue variables. Although the physical cause of these eruptions is still debated, tidal interactions from a binary companion has recently gained traction as a possible explanation for observations of some supernova impostors. In this talk, I will discuss the particularly interesting impostor SN 2010da, which exhibits high-luminosity, variable X-ray emission. The X-ray emission is consistent with accretion onto a neutron star, making SN 2010da a likely high mass X-ray binary in addition to a supernova impostor. SN 2010da is a unique laboratory for understanding both binary interactions as drivers of massive star eruptions and the evolutionary processes that create high mass X-ray binaries.

  8. Quark nova imprint in the extreme supernova explosion SN 2006gy

    NASA Astrophysics Data System (ADS)

    Ouyed, R.; Kostka, M.; Koning, N.; Leahy, D. A.; Steffen, W.

    2012-06-01

    The extremely luminous supernova 2006gy (SN 2006gy) is among the most energetic ever observed. The peak brightness was 100 times that of a typical supernova and it spent an unheard of 250 d at magnitude -19 or brighter. Efforts to describe SN 2006gy have pushed the boundaries of current supernova theory. In this work we aspire to simultaneously reproduce the photometric and spectroscopic observations of SN 2006gy using a quark nova (QN) model. This analysis considers the supernova explosion of a massive star followed days later by the QN detonation of a neutron star. We lay out a detailed model of the interaction between the supernova envelope and the QN ejecta paying special attention to a mixing region which forms at the inner edge of the supernova envelope. This model is then fitted to photometric and spectroscopic observations of SN 2006gy. This QN model naturally describes several features of SN 2006gy including the late-stage light-curve plateau, the broad Hα line and the peculiar blue Hα absorption. We find that a progenitor mass between 20 and 40 M⊙ provides ample energy to power SN 2006gy in the context of a QN.

  9. Du Pont Classifications of 2 ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Prieto, J. L.; Rich, J.; Madore, B.; Poetrodjojo, Henry; D'Agostino, Joshua

    2016-09-01

    We report optical spectroscopy (range 370-910 nm) of two supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on Aug. 30 and Sep. 1 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  10. Du Pont Classifications of 4 ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Shappee, Benjamin J.

    2016-08-01

    We report optical spectroscopy (range 370-910 nm) of four supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on July 31 and Aug. 01 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  11. A LUMINOUS AND FAST-EXPANDING TYPE Ib SUPERNOVA SN 2012au

    SciTech Connect

    Takaki, Katsutoshi; Fukazawa, Yasushi; Itoh, Ryosuke; Ueno, Issei; Ui, Takahiro; Urano, Takeshi; Kawabata, Koji S.; Akitaya, Hiroshi; Moritani, Yuki; Ohsugi, Takashi; Uemura, Makoto; Yoshida, Michitoshi; Yamanaka, Masayuki; Maeda, Keiichi; Nomoto, Ken'ichi; Tanaka, Masaomi; Kinugasa, Kenzo; Sasada, Mahito

    2013-08-01

    We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6 days until {approx} + 150 days after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absolute magnitude is M{sub R} = -18.7 {+-} 0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km s{sup -1} around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7 {+-} 1.3) Multiplication-Sign 10{sup 42} erg s{sup -1}, we estimate the {sup 56}Ni mass produced during the explosion as {approx}0.30 M{sub Sun }. We also give a rough constraint to the ejecta mass 5-7 M{sub Sun} and the kinetic energy (7-18) Multiplication-Sign 10{sup 51} erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light-curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.

  12. SN 1987A: The Supernova of the Century

    NASA Technical Reports Server (NTRS)

    Sonneborne, George

    2012-01-01

    Supernova 1987 A in the Large Magellanic Cloud is one of the most intensively studied objects in the universe and a Rosetta Stone for understanding the explosions of massive stars. Approaching its 25th anniversary, SN 1987 A is a very young supernova remnant, a phase previously unobserved in any other supernova. The supernova of the 20th Century is now the supernova remnant of the 21st Century. In this talk I will discuss recent observations from the far-ultraviolet to the far-infrared with HST, the VLT, Spitzer, and the Herschel Space Observatory. These data reveal new insights into the composition, geometry, and heating of the explosion debris, the shock interaction with circumstellar material, and dust in the SN 1987 A system.

  13. Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B

    NASA Technical Reports Server (NTRS)

    Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David

    1995-01-01

    We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.

  14. SN 1993J: A Type IIb supernova

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Eastman, Ronald G.; Weaver, Thomas A.; Pinto, Philip A.

    1994-07-01

    The evolution of the bright Type II supernova discovered last year in M81, SN 1993J, is consistent with that expected for the explosion of a star which on the main sequence had a mass of 13-16 Solar Mass but which, owing to mass exchange with a binary companion (a intially approximately 3-5 AU, depending upon the actual presupernova radius and the masses of the two stars) lost almost all of its hydrogen-rich envelope during late helium burning. At the time of explosion, the helium core mass was 4.0 +/- 0.5 Solar Mass and the hydrogen envelope, 0.20 +/- 0.05 Solar Mass. The envelope was helium and nitrogen-rich (carbon-deficient) and the radius of the star, 4 +/- 1 x 1013 cm. The luminosity of the presupernova star was 3 + 1 x 1038 ergs/s, with the companion star contributing an additional approximately 1038 ergs/s. The star may have been a pulsating variable at the time of the explosion. For an explosion energy near 1051 ergs (KE at infinity) and an assumed distance of 3.3 Mpc, a mass of Ni-56 in the range 0.07 +/- 0.01 Solar Mass was produced and ejected. This prescription gives a light curve which compares favorably with the bolomatric observations. Color photometry is more restrictive and requires a model in which the hydrogen-envelope mass is low and the mixing of hydrogen inward has been small, but in which appreciable Ni-56 has been mixed outward into the helium and heavy-element core. It is possible to obtain good agreement with B and V light curves during the first 50 days, but later photometry, especially in bands other than B and V, will require a non-local thermo-dynamic equilibrium (LTE) spectral calculation for comparison. Based upon our model, we predict a flux of approximately 10-5(3.3 Mpc/D)2 photons/sq cm/s in the 847 keV line of CO-56 at peak during 1993 August. It may be easier to detect the Computonized continuum which peaks at a few times 10-4 photons /s/sq cm/MeV at 40 keV a few months after the explosion (though neither of these signals were

  15. Spectroscopic classification of supernova SN 2016fqr with the Nordic Optical Telescope

    NASA Astrophysics Data System (ADS)

    Terreran, G.; Elias-Rosa, N.; Mattila, S.; Lundqvist, P.; Stritzinger, M.; Benetti, S.; Cappellaro, E.; Blagorodnova, N.; Davis, S.; Dong, S.; Fraser, M.; Gall, C.; Harmanen, J.; Harrison, D.; Hodgkin, S.; Hsiao, E. Y.; Jonker, P.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Kostrzewa-Rutkowska, Z.; Nielsen, M.; Ochner, P.; Pastorello, A.; Prieto, J. L.; Reynolds, T.; Romero-Canizales, C.; Stanek, K.; Taddia, F.; Tartaglia, L.; Tomasella, L.; Wyrzykowski, L.

    2016-09-01

    The NOT Unbiased Transient Survey (NUTS; ATel #8992) report the spectroscopic classification of supernova SN 2016fqr in NGC 1122. The supernova was discovered by the Lick Observatory Supernova Search (LOSS).

  16. Energetic Supernovae of Very Massive Primordial Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Some of them would die as pair instability supernovae (PSNe) which might be the biggest explosions of the universe. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae. Our simulations provide useful predictions for the observational signatures of PSNe, which might soon be examined by the James Webb Space Telescope.

  17. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  18. On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca*

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Fraser, M.; Smartt, S. J.; Benetti, S.; Chen, T.-W.; Childress, M.; Gal-Yam, A.; Howell, D. A.; Kangas, T.; Pignata, G.; Polshaw, J.; Sullivan, M.; Smith, K. W.; Valenti, S.; Young, D. R.; Parker, S.; Seccull, T.; McCrum, M.

    2016-07-01

    We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 d prior to maximum light, until 531 d after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 yr, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium (CSM) rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a Type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with Type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (˜2.3-2.6 M⊙) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.

  19. SN 1991T - Gamma-Ray Observatory's first supernova?

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.

    1991-01-01

    Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.

  20. Spectra of the supernova SN1999by

    NASA Astrophysics Data System (ADS)

    Gavin, M.

    1999-08-01

    Spectra of SN1999by by Maurice Gavin. 30cm SCT+Rainbow grating+MX9 CCD; dispersion 4nm/pixel. 1999 May 2, 6, 10; 15m-35m exp. Spectrogram [at top] electronically stretched; profiles via Pixwin software.

  1. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    SciTech Connect

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; Hsiao, Eric Y.; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.; and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  2. SN 2004aw: confirming diversity of Type Ic supernovae

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Pastorello, A.; Mazzali, P. A.; Valenti, S.; Pignata, G.; Sauer, D. N.; Arbey, A.; Bärnbantner, O.; Benetti, S.; Della Valle, A.; Deng, J.; Elias-Rosa, N.; Filippenko, A. V.; Foley, R. J.; Goobar, A.; Kotak, R.; Li, W.; Meikle, P.; Mendez, J.; Patat, F.; Pian, E.; Ries, C.; Ruiz-Lapuente, P.; Salvo, M.; Stanishev, V.; Turatto, M.; Hillebrandt, W.

    2006-09-01

    Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [OI] λλ6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0Msolar, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3Msolar of 56Ni has been synthesized in the explosion. No connection to a GRB can be firmly established. Based on observations at ESO-Paranal, Prog. 074.D-0161(A). E-mail: tauben@mpa-garching.mpg.de

  3. Radio evolution of supernova SN 2008iz in M 82

    NASA Astrophysics Data System (ADS)

    Kimani, N.; Sendlinger, K.; Brunthaler, A.; Menten, K. M.; Martí-Vidal, I.; Henkel, C.; Falcke, H.; Muxlow, T. W. B.; Beswick, R. J.; Bower, G. C.

    2016-08-01

    We report on multi-frequency Very Large Array (VLA) and Very Long Baseline Interferometry (VLBI) radio observations for a monitoring campaign of supernova SN 2008iz in the nearby irregular galaxy M 82. We fit two models to the data, a simple time power-law, S ∝ tβ, and a simplified Weiler model, yielding decline indices of β = -1.22 ± 0.07 (days 100-1500) and -1.41 ± 0.02 (days 76-2167), respectively. The late-time radio light-curve evolution shows flux-density flares at ~970 and ~1400 days that are a factor of ~2 and ~4 higher than the expected flux, respectively. The later flare, except for being brighter, does not show signs of decline at least from results examined so far (2014 January 23; day 2167). We derive the spectral index, α, S ∝ να for frequencies 1.4 to 43 GHz for SN 2008iz during the period from ~430 to 2167 days after the supernova explosion. The value of α shows no signs of evolution and remains steep ≈-1 throughout the period, unlike that of SN 1993J, which started flattening at ~day 970. From the 4.8 and 8.4 GHz VLBI images, the supernova expansion is seen to start with a shell-like structure that becomes increasingly more asymmetric, then breaks up in the later epochs, with bright structures dominating the southern part of the ring. This structural evolution differs significantly from SN 1993J, which remains circularly symmetric over 4000 days after the explosion. The VLBI 4.8 and 8.4 GHz images are used to derive a deceleration index, m, for SN 2008iz, of 0.86 ± 0.02, and the average expansion velocity between days 73 and 1400 as (12.1 ± 0.2) × 103 km s-1. From the energy equipartition between magnetic field and particles, we estimate the minimum total energy in relativistic particles and the magnetic fields during the supernova expansion and also find the magnetic field amplification factor for SN 2008iz to be in the range of 55-400. The VLBI images (FITS files) are only available at the CDS via anonymous ftp to http

  4. XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE

    SciTech Connect

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Melandri, A.; Mundell, C. G.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; D'Avanzo, P.; Margutti, R.; Fruchter, A. S.; Garnavich, P.; Gomboc, A.; Kopac, D.; Gorosabel, J.; Kasen, D.; Mazzali, P. A.; Nugent, P. E.; Pian, E.

    2011-10-10

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN that was spectroscopically linked with XRF 060218, and at a similar rate to the non-GRB associated Type Ic SN 1994I. We estimate the rest-frame extinction of this event from our optical data to be E(B - V) = 0.18 {+-} 0.08 mag. We find the V-band absolute magnitude of SN 2010bh to be M{sub V} = -18.62 {+-} 0.08, which is the faintest peak V-band magnitude observed to date for spectroscopically confirmed GRB-SNe. When we investigate the origin of the flux at t - t{sub 0} = 0.598 days, it is shown that the light is not synchrotron in origin, but is likely coming from the SN shock breakout. We then use our optical and infrared data to create a quasi-bolometric light curve of SN 2010bh, which we model with a simple analytical formula. The results of our modeling imply that SN 2010bh synthesized a nickel mass of M{sub Ni} {approx} 0.1 M{sub sun}, ejected M{sub ej} {approx} 2.2 M{sub sun}, and has an explosion energy of E{sub k} {approx} 1.4 x 10{sup 52} erg. Thus, while SN 2010bh is an energetic explosion, the amount of nickel created during the explosion is much less than that of SN 1998bw and only marginally more than SN 1994I. Finally, for a sample of 22 GRB-SNe we check for a correlation between the stretch factors and luminosity factors in the R band and conclude that no statistically significant correlation exists.

  5. The acceleration of electrons in Radio Supernova SN1986J.

    NASA Astrophysics Data System (ADS)

    Ball, L.; Kirk, J. G.

    1995-11-01

    We propose a model for radio supernovae (RSN) based on synchrotron emission from relativistic electrons which are diffusively accelerated at the expanding supernova shock. This model was originally developed for application to the optically thin emission observed from SN1987A. Here we generalise it by including the effects of free-free absorption from both an external screen and from material internal to the source, and by relaxing the restriction to an azimuthal B-field. We find a good fit to the entire set of radio data for the best observed highly-luminous RSN-SN1986J-with a reduced Chi-squared of 3.85. Applying the new model to SN1988Z, another intrinsically bright RSN also yields a good fit (Chi-squared_red_~2) but this is less significant, because of the limited data on this distant (z=0.02) source. These fits suggest that the shock expands at constant speed, that the magnetic field within the source decreases with time according to t^-2^, and that the compression ratio of the shock front is close to the value expected of a strong shock in an ideal gas of adiabatic index 5/3 - indicating a relatively low value of the cosmic ray pressure compared with SN1987A. In the case of SN1986J we derive an explosion date in August/September 1982, a magnetic field at the position of the shock 1000 days after explosion of B~4nT and a spatial diffusion coefficient of the electrons of k~4x10^19^m^2^/s, four orders of magnitude greater than the Bohm value. In addition, we obtain the optical depths to external and internal absorption, and derive an estimate of the mass-loss rate.

  6. ASAS-SN Confirmation of a Bright, Fast-Rising Supernova in NGC 613

    NASA Astrophysics Data System (ADS)

    Nicholls, B.; Brown, J. S.; Dong, Subo; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we confirmed a bright supernova candidate in NGC 613. The transient is present in ASAS-SN "Cassius" data on UT 2016-09-21.29 (V~15.0).

  7. MERLIN radio observations of two recent supernovae in Arp299: SN2010O & SN2010P

    NASA Astrophysics Data System (ADS)

    Beswick, R. J.; Perez-Torres, M. A.; Mattila, S.; Garrington, S. T.; Kankare, E.; Ryder, S.; Alberdi, A.; Romero-Canizales, C.

    2010-02-01

    We report MERLIN radio observations of the two recent supernovae in Arp299; SN2010P and SN2010O (CBET #2145 and CBET #2144, respectively). Observations of Arp299 were made between 1900UT 29th Jan 2010 and 0150UT 1st Feb 2010 at 4994MHz. The previously known compact radio structure of Arp299, including the nuclear starburst components associated with A=IC694 and B1=the southernmost nucleus of NGC3690 are detected (Neff, Ulvestad & Teng 2004, ApJ, 611, 186; Ulvestad 2009 AJ, 138, 152; Perez-Torres et al 2009, A&A 507, 17).

  8. Supernovae Explosions Theory and Compact Remnant of SN 1987A

    NASA Astrophysics Data System (ADS)

    Chechetkin, V. M.; Baranov, A. A.; Popov, M. V.; Lugovsky, A. Yu.

    Hydrodynamics of massive star explosion within a non-spherical supernova model is presented. The explosive burning is computed in the He-core of a progenitor. It is assumed that the iron core and the other layers of the intermediate-mass nuclei formed a compact central object beyond the mass cut and its formation did not disturb the stellar envelope. A Piecewise Parabolic Method on a Local stencil (PPML) is applied to simulate the hydrodynamics of the explosion. The problem of compact remnant creation after the explosion is discussed in relation with SN 1987A observations. The computations show that at the neighbourhood of compact remnant a significant quantity of the matter should remain. The accretion of this matter to the compact remnant should produce strong radiation which is not observed in the case of SN 1987A.

  9. A Luminous Peculiar Type Ia Supernova SN 2011hr: More Like SN 1991T or SN 2007if?

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Jia; Wang, Xiao-Feng; Sasdelli, Michele; Zhang, Tian-Meng; Liu, Zheng-Wei; Mazzali, Paolo A.; Meng, Xiang-Cun; Maeda, Keiichi; Chen, Jun-Cheng; Huang, Fang; Zhao, Xu-Lin; Zhang, Kai-Cheng; Zhai, Qian; Pian, Elena; Wang, Bo; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Wang, Xue-Li; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zheng, Xiang-Ming; Zhang, Xi-Liang; Fan, Yu-Feng; Bai, Jin-Ming

    2016-02-01

    Photometric and spectroscopic observations of a slowly declining, luminous Type Ia supernova (SN Ia) SN 2011hr in the starburst galaxy NGC 2691 are presented. SN 2011hr is found to peak at {M}B\\=\\-19.84+/- 0.40 {mag}, with a postmaximum decline rate Δm15(B) = 0.92 ± 0.03 mag. From the maximum-light bolometric luminosity, L\\=\\(2.30+/- 0.90)× {10}43 {erg} {{{s}}}-1, we estimate the mass of synthesized 56Ni in SN 2011hr to be M{(}56{Ni})\\=\\1.11+/- 0.43 {M}⊙ . SN 2011hr appears more luminous than SN 1991T at around maximum light, and the absorption features from its intermediate-mass elements (IMEs) are noticeably weaker than those of the latter at similar phases. Spectral modeling suggests that SN 2011hr has IMEs of ˜0.07 {M}⊙ in the outer ejecta, which is much lower than the typical value of normal SNe Ia (i.e., 0.3-0.4 {M}⊙ ) and is also lower than the value of SN 1991T (i.e., ˜0.18 {M}⊙ ). These results indicate that SN 2011hr may arise from a Chandrasekhar-mass white dwarf progenitor that experienced a more efficient burning process in the explosion. Nevertheless, it is still possible that SN 2011hr may serve as a transitional object connecting the SN 1991T-like SNe Ia with a superluminous subclass like SN 2007if given that the latter also shows very weak IMEs at all phases.

  10. A Luminous Peculiar Type Ia Supernova SN 2011hr: More Like SN 1991T or SN 2007if?

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Jia; Wang, Xiao-Feng; Sasdelli, Michele; Zhang, Tian-Meng; Liu, Zheng-Wei; Mazzali, Paolo A.; Meng, Xiang-Cun; Maeda, Keiichi; Chen, Jun-Cheng; Huang, Fang; Zhao, Xu-Lin; Zhang, Kai-Cheng; Zhai, Qian; Pian, Elena; Wang, Bo; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Wang, Xue-Li; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zheng, Xiang-Ming; Zhang, Xi-Liang; Fan, Yu-Feng; Bai, Jin-Ming

    2016-02-01

    Photometric and spectroscopic observations of a slowly declining, luminous Type Ia supernova (SN Ia) SN 2011hr in the starburst galaxy NGC 2691 are presented. SN 2011hr is found to peak at {M}B\\=\\-19.84+/- 0.40 {mag}, with a postmaximum decline rate Δm15(B) = 0.92 ± 0.03 mag. From the maximum-light bolometric luminosity, L\\=\\(2.30+/- 0.90)× {10}43 {erg} {{{s}}}-1, we estimate the mass of synthesized 56Ni in SN 2011hr to be M{(}56{Ni})\\=\\1.11+/- 0.43 {M}ȯ . SN 2011hr appears more luminous than SN 1991T at around maximum light, and the absorption features from its intermediate-mass elements (IMEs) are noticeably weaker than those of the latter at similar phases. Spectral modeling suggests that SN 2011hr has IMEs of ∼0.07 {M}ȯ in the outer ejecta, which is much lower than the typical value of normal SNe Ia (i.e., 0.3–0.4 {M}ȯ ) and is also lower than the value of SN 1991T (i.e., ∼0.18 {M}ȯ ). These results indicate that SN 2011hr may arise from a Chandrasekhar-mass white dwarf progenitor that experienced a more efficient burning process in the explosion. Nevertheless, it is still possible that SN 2011hr may serve as a transitional object connecting the SN 1991T-like SNe Ia with a superluminous subclass like SN 2007if given that the latter also shows very weak IMEs at all phases.

  11. Origin of Galactic Type-Ia supernovae: SN 1572 and SN 1006

    NASA Astrophysics Data System (ADS)

    González-Hernández, J. I.; Ruiz-Lapuente, P.; Tabernero, H. M.; Montes, D.; Canal, R.; Méndez, J.; Bedin, L. R.

    2015-05-01

    We have been searching for surviving companions of progenitors of Galactic Type-Ia supernovae, in particular SN 1572 and SN 1006. These companion stars are expected to show peculiarities: (i) to be probably more luminous than the Sun, (ii) to have high radial velocity and proper motion, (iii) to be possibly enriched in metals from the SNIa ejecta, and (iv) to be located at the distance of the SNIa remnant. We have been characterizing possible candidate stars using high-resolution spectroscopic data taken at 10m-Keck and 8.2m-VLT facilities. We have identified a very promising candidate companion (Tycho G) for SN 1572 (see Ruiz-Lapuente et al. 2004; however for a different view see Kerzendorf et al., 2012) but we have not found any candidate companion for SN 1006, suggesting that SN event occurred in 1006 could have been the result of the merging of two white dwarfs (see González-Hernández et al., 2012). Adding these results to the evidence from the other direct searches, the clear minority of cases (20% or less) seem to disfavour the single-degenerate channel or that preferentially the single-degenerate escenario would involve main-sequence companions less massive than the Sun. Therefore, it appears to be very important to continue investigating these and other Galactic Type-Ia SNe such as the Johannes Kepler SN 1604.

  12. The ASAS-SN Bright Supernova Catalog I: 2013-2014

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Brimacombe, J.; Bersier, D.; Bishop, D. W.; Dong, Subo; Brown, J. S.; Danilet, A. B.; Simonian, G. V.; Basu, U.; Beacom, J. F.; Falco, E.; Pojmanski, G.; Skowron, D. M.; Woźniak, P. R.; Ávila, C. G.; Conseil, E.; Contreras, C.; Cruz, I.; Fernández, J. M.; Koff, R. A.; Guo, Zhen; Herczeg, G. J.; Hissong, J.; Hsiao, E. Y.; Jose, J.; Kiyota, S.; Long, Feng; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Wiethoff, W. S.

    2016-09-01

    We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (mV ≤ 17), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensive catalog of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses many previously existing biases. In particular, ASAS-SN systematically finds bright supernovae closer to the centers of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. This is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team.

  13. Supernova SN 2012dn: a spectroscopic clone of SN 2006gz

    NASA Astrophysics Data System (ADS)

    Chakradhari, N. K.; Sahu, D. K.; Srivastav, S.; Anupama, G. C.

    2014-09-01

    We present optical and UV analysis of the luminous Type Ia supernova SN 2012dn covering the period from ˜-11 to +109 d with respect to the B-band maximum, which occurred on JD 245 6132.89 ± 0.19, with an apparent magnitude of mB^max = 14.38 ± 0.02. The absolute magnitudes at maximum in B and V bands are MB^max = -19.52 ± 0.15 and MV^max = -19.42 ± 0.15, respectively. SN 2012dn is marginally luminous compared to normal Type Ia supernovae. The peak bolometric luminosity of log L_bol^max = 43.27 ± 0.06 erg s-1 suggests that 0.82 ± 0.12 M⊙ of 56Ni was synthesized in the explosion. The decline rate Δm15(B)true = 0.92 ± 0.04 mag is lower than that of normal Type Ia supernovae, and similar to the luminous SN 1991T. However, the photometric and spectroscopic behaviour of SN 2012dn is different from that of SN 1991T. Early-phase light curves in R and I bands are very broad. The I-band peak has a plateau-like appearance similar to the super-Chandra SN 2009dc. Pre-maximum spectra show clear evidence of C II 6580 Å line, indicating the presence of unburned materials. The velocity evolution of C II line is peculiar. Except for the very early phase (˜-13 d), the C II line velocity is lower than the velocity estimated using the Si II line. During the pre-maximum and close to the maximum phase, to reproduce observed shape of the spectra, the synthetic spectrum code SYN++ needs significantly higher blackbody temperature than those required for normal Type Ia events. The photospheric velocity evolution and other spectral properties are similar to those of the carbon-rich SN 2006gz.

  14. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    SciTech Connect

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Fermilab /Moscow, ITEP /Garching, Max Planck Inst. /Ohio State U., Dept. Astron. /Arizona U., Astron. Dept. - Steward Observ. /Chile U., Santiago /Texas A-M /Carnegie Inst. Observ. /KIPAC, Menlo Park /Caltech, IPAC /Notre Dame U. /South African Astron. Observ. /Cape Town U. /Washington U., Seattle, Astron. Dept. /New Mexico State U. /Chicago U., FLASH /Baltimore, Space Telescope Sci.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  15. Supernova SN 1006 in two historic Yemeni reports

    NASA Astrophysics Data System (ADS)

    Rada, W.; Neuhäuser, R.

    2015-04-01

    We present two Arabic texts of historic observations of supernova SN 1006 from Yemen as reported by al-Yamāni and Ibn al-Daybac (14th to 16th century AD). An English translation of the report by the latter was given before (Stephenson & Green 2002), but the original Arabic text was not yet published. In addition, we present for the first time the earlier report, also from Yemen, namely by al-Yamāni in its original Arabic and with our English translation. It is quite obvious that the report by Ibn al-Daybac is based on the report by al-Yamāni (or a common source), but the earlier report by al-Yamāni is more detailed and in better (Arabic) language. We discuss in detail the dating of these observations. The most striking difference to other reports about SN 1006 is the apparent early discovery in Yemen in the evening of {15th of Rajab} of the year 396h (i.e. AD 1006 April 17 ± 2 on the Julian calendar), as reported by both al-Yamāni and Ibn al-Daybac, i.e. {˜ 1.5} weeks earlier than the otherwise earliest known reports. We also briefly discuss other information from the Yemeni reports on brightness, light curve, duration of visibility, location, stationarity, and color.

  16. The peculiar case of the “double-humped" super-luminous supernova SN 2006oz

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis

    2013-10-01

    SN 2006oz is a super-luminous supernova with a mysterious bright precursor that has resisted explanation in standard models. However, such a precursor has been predicted in the dual-shock quark nova model of super-luminous supernovae — the precursor is the supernova event while the main light curve of the super-luminous supernova is powered by the Quark-Nova (explosive transition of the neutron star to a quark star). As the supernova is fading, the Quark-Nova re-energizes the supernova ejecta, producing a “double-humped" light curve. We show that the quark nova model successfully reproduces the observed light curve of SN 2006oz.

  17. ASASSN-16bl and ASASSN-16bm: ASAS-SN Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Kiyota, S.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Cruz, I.; Fernandez, J. M.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered two new transient sources, most likely supernovae, in the galaxies 2MASX J11422674-3654256 and GALEXASC J115155.68-132459.3.

  18. XRF 100316D/SN 2010bh: CLUE TO THE DIVERSE ORIGIN OF NEARBY SUPERNOVA-ASSOCIATED GAMMA-RAY BURSTS

    SciTech Connect

    Fan Yizhong; Zhang Bibbin; Liang Enwei; Zhang Bing; Xu Dong E-mail: zhang@physics.unlv.edu

    2011-01-01

    X-ray Flash (XRF) 100316D, a nearby super-long underluminous burst with a peak energy E{sub p} {approx} 20 keV, was detected by Swift and was found to be associated with an energetic supernova SN 2010bh. Both the spectral and the temporal behavior are rather similar to XRF 060218, except that the latter was associated with a 'less energetic' SN 2006aj and had a prominent soft thermal emission component in the spectrum. We analyze the spectral and temporal properties of this burst and interpret the prompt gamma-ray emission and the early X-ray plateau emission as synchrotron emission from a dissipating Poynting flux dominated outflow, probably powered by a magnetar with a spin period of P {approx} 10 ms and the polar cap magnetic field B{sub p} {approx} 3 x 10{sup 15} G. The energetic supernova SN 2010bh associated with this burst is, however, difficult to interpret within the slow magnetar model, and we suspect that the nascent magnetar may spin much faster with an initial rotation period {approx}1 ms. It suggests a delay between the core collapse and the emergence of the relativistic magnetar wind from the star. The diverse behaviors of low-luminosity gamma-ray bursts and their associated supernovae may be understood within a unified picture that invokes different initial powers of the central engine and different delay times between the core collapse and the emergence of the relativistic jet from the star.

  19. INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END?

    SciTech Connect

    Pastorello, A.; Cappellaro, E.; Benetti, S.; Inserra, C.; Smartt, S. J.; Fraser, M.; Pignata, G.; Takats, K.; Bufano, F.; Valenti, S.; Benitez, S.; Botticella, M. T.; Brimacombe, J.; Cellier-Holzem, F.; Costado, M. T.; Cupani, G.; Curtis, I.; Elias-Rosa, N.; Ergon, M.; Fynbo, J. P. U.; and others

    2013-04-10

    We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting {approx}50 days) with a peak of 3 Multiplication-Sign 10{sup 41} erg s{sup -1}, and the 2012b event (14 day rise time, still ongoing) with a peak of 8 Multiplication-Sign 10{sup 42} erg s{sup -1}. The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features ({approx}13,000 km s{sup -1}) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.

  20. The infrared echo of a type II supernova with a circumstellar dust shell - Applications to SN 1979c and SN 1980k

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1983-01-01

    Merrill (1980) and Telesco et al. (1981) have reported observations according to which supernovae developed a thermal infrared excess about 7-9 months after visual maximum. The two supernovae involved are SN 1979c in NGC 4321 and SN 1980k in NGC 6946. The infrared behavior of these supernovae is almost identical to that observed in several novae. The present investigation is concerned with the question whether the thermal infrared radiation from SN 1979c and SN 1980k could have been emitted by dust particles which were present in a circumstellar shell prior to the supernova event. The obtained results confirm the suggestion of Bode and Evans (1980) that the thermal emission from SN 1979c may have originated from preexisting dust present in a circumstellar shell and heated up by the UV-visual output of the supernova. The thermal infrared emission from SN 1980k may have a similar origin.

  1. Directed Searches for Broadband Extended Gravitational Wave Emission in Nearby Energetic Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2016-03-01

    Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time-frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose using coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.

  2. VLBI observations of SN 2011dh: imaging of the youngest radio supernova

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Tudose, V.; Paragi, Z.; Yang, J.; Marcaide, J. M.; Guirado, J. C.; Ros, E.; Alberdi, A.; Pérez-Torres, M. A.; Argo, M. K.; van der Horst, A. J.; Garrett, M. A.; Stockdale, C. J.; Weiler, K. W.

    2011-11-01

    We report on the VLBI detection of supernova SN 2011dh at 22 GHz using a subset of the EVN array. The observations took place 14 days after the discovery of the supernova, thus resulting in a VLBI image of the youngest radio-loud supernova ever. We provide revised coordinates for the supernova with milli-arcsecond precision, linked to the ICRF. The recovered flux density is a factor ~2 below the EVLA flux density reported by other authors at the same frequency and epoch of our observations. This discrepancy could be due to extended emission detected with the EVLA or to calibration problems in the VLBI and/or EVLA observations.

  3. Gamma-rays from Type Ia Supernova SN2014J

    NASA Astrophysics Data System (ADS)

    Churazov, E.; Sunyaev, R.; Isern, J.; Bikmaev, I.; Bravo, E.; Chugai, N.; Grebenev, S.; Jean, P.; Knödlseder, J.; Lebrun, F.; Kuulkers, E.

    2015-10-01

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19-162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19-35 and 50-162, respectively, optimized for 56Ni and 56Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ˜200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, 56Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.

  4. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    SciTech Connect

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.

    2015-10-10

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for {sup 56}Ni and {sup 56}Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, {sup 56}Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.

  5. Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Berger, E.; Margutti, R.; Chornock, R.; Blanchard, P. K.; Jerkstrand, A.; Smartt, S. J.; Arcavi, I.; Challis, P.; Chambers, K. C.; Chen, T.-W.; Cowperthwaite, P. S.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Magnier, E. A.; Maguire, K.; Mazzali, P. A.; McCully, C.; Milisavljevic, D.; Smith, K. W.; Taubenberger, S.; Valenti, S.; Wainscoat, R. J.; Yaron, O.; Young, D. R.

    2016-09-01

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250-400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days)-1 to 1.7 mag (100 days)-1, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large 56Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of -22 < M B < -17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7-30 M ⊙ of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  6. Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Berger, E.; Margutti, R.; Chornock, R.; Blanchard, P. K.; Jerkstrand, A.; Smartt, S. J.; Arcavi, I.; Challis, P.; Chambers, K. C.; Chen, T.-W.; Cowperthwaite, P. S.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Magnier, E. A.; Maguire, K.; Mazzali, P. A.; McCully, C.; Milisavljevic, D.; Smith, K. W.; Taubenberger, S.; Valenti, S.; Wainscoat, R. J.; Yaron, O.; Young, D. R.

    2016-09-01

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250–400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days)‑1 to 1.7 mag (100 days)‑1, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large 56Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of ‑22 < M B < ‑17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7–30 M ⊙ of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  7. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state. PMID:19305392

  8. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  9. SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Mauerhan, Jon C.; Prieto, Jose L.

    2014-02-01

    The recent supernova (SN) known as SN 2009ip had dramatic precursor eruptions followed by an even brighter explosion in 2012. Its pre-2012 observations make it the best documented SN progenitor in history, but have fuelled debate about the nature of its 2012 explosion - whether it was a true SN or some type of violent non-terminal event. Both could power shock interaction with circumstellar material (CSM), but only a core-collapse SN provides a self-consistent explanation. The persistent broad emission lines in the spectrum require a relatively large ejecta mass, and a corresponding kinetic energy of at least 1051 erg, while the faint 2012a event is consistent with published models of core-collapse SNe from compact (˜60 R⊙) blue supergiants. The light curves of SN 2009ip and another Type IIn, SN 2010mc, were nearly identical; we demonstrate that their spectra match as well, and that both are standard SNe IIn. Our observations contradict the recent claim that the late-time spectrum of SN 2009ip is returning to its progenitor's luminous blue variable-like state, and we show the that late-time spectra of SN 2009ip closely resemble the spectra of SN 1987A. Moreover, SN 2009ip's changing Hα equivalent width after explosion matches behaviour typically seen in core-collapse SNe IIn. Several key facts about SN 2009ip and SN 2010mc argue strongly in favour of a core-collapse interpretation, and make a non-terminal 1050 erg event implausible. The most straightforward and self-consistent interpretation is that SN 2009ip was an initially faint core-collapse explosion of a blue supergiant that produced about half as much 56Ni as SN 1987A, with most of the peak luminosity from CSM interaction.

  10. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.

    PubMed

    Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo

    2008-08-29

    The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

  11. CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE

    SciTech Connect

    Roepke, F. K.; Seitenzahl, I. R.; Kromer, M.; Taubenberger, S.; Ciaraldi-Schoolmann, F.; Hillebrandt, W.; Benitez-Herrera, S.; Pakmor, R.; Sim, S. A.; Aldering, G.; Childress, M.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Baltay, C.; Buton, C.; Chotard, N.; Copin, Y. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2012-05-01

    The nearby supernova SN 2011fe can be observed in unprecedented detail. Therefore, it is an important test case for Type Ia supernova (SN Ia) models, which may bring us closer to understanding the physical nature of these objects. Here, we explore how available and expected future observations of SN 2011fe can be used to constrain SN Ia explosion scenarios. We base our discussion on three-dimensional simulations of a delayed detonation in a Chandrasekhar-mass white dwarf and of a violent merger of two white dwarfs (WDs)-realizations of explosion models appropriate for two of the most widely discussed progenitor channels that may give rise to SNe Ia. Although both models have their shortcomings in reproducing details of the early and near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory (SNfactory), the overall match with the observations is reasonable. The level of agreement is slightly better for the merger, in particular around maximum, but a clear preference for one model over the other is still not justified. Observations at late epochs, however, hold promise for discriminating the explosion scenarios in a straightforward way, as a nucleosynthesis effect leads to differences in the {sup 55}Co production. SN 2011fe is close enough to be followed sufficiently long to study this effect.

  12. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    SciTech Connect

    Sako, Masao; Bassett, Bruce; Connolly, Brian; Dilday, Benjamin; Cambell, Heather; Frieman, Joshua A.; Gladney, Larry; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  13. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    SciTech Connect

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that

  14. Classification of SN 2016gmg (=PTSS-16opy), as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Chang, Liang; Wang, Jianguo; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan

    2016-09-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016gmg (=PTSS-16opy), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT Sep. 29.55 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  15. Spectroscopic Classification of SN 2016cyi as a Type IIn Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Lin, Han; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Zhao, Haibin; Wang, Lifan; Zhang, Jujia; Zhang, Tianmeng

    2016-08-01

    We obtained an optical spectrum (range 370-840 nm) of SN 2016cyi (=PTSS-16jik), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/), on UT Aug.02.7 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  16. Spectroscopic Classification of SN 2016flv(= PTSS-16mvt) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Zhang, Ziyang; Xu, Zhijian; Li, Bin; Wang, Lifan; Zhao, Haibin; Xiao, Feng; Zhang, Tianmeng; Zhou, Fan; Zhang, Jujia; Han, Jietan

    2016-08-01

    We obtained an optical spectrum (range 390-840 nm) of SN 2016flv(= PTSS-16mvt), discovered by PMO-Tsinghua Supernova Survey (http://119.78.210.3/ptss2/), on UT Aug.28.6 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  17. Spectroscopic Classification of SN 2016fnb (=PTSS-16mxs) as a Type II-P Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Xu, Zhijian; Wang, Lifan; Zhao, Haibin; Jia, Junjun; Zhang, Tianmeng

    2016-08-01

    We obtained an optical spectrum (range 380-860 nm) of SN 2016fnb (= PTSS-16mxs), discovered by PMO-Tsinghua Supernova Survey (PTSS; http://119.78.210.3/ptss2/), on UT Aug.30.75 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  18. Spectroscopic Classification of SN 2016frp (= PTSS-16mvz) as a Peculiar Type Ib Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Xu, Zhijian; Li, Bin; Wang, Lifan; Zhao, Haibin; Jia, Junjun; Wu, Hong; Zhang, Tianmeng; Zhang, Jujia

    2016-09-01

    We obtained an optical spectrum (range 370-860 nm) of SN 2016frp (= PTSS-16mvz), discovered by PMO-Tsinghua Supernova Survey (PTSS; http://119.78.210.3/ptss2/), on UT Sep.05.7 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of NAOC.

  19. Supernova SN1987A in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Glittering stars and wisps of gas create a breathtaking backdrop for the self-destruction of a massive star, called supernova 1987A, in the Large Magellanic Cloud, a nearby galaxy. Astronomers in the Southern hemisphere witnessed the brilliant explosion of this star on Feb. 23, 1987. Shown in this NASA Hubble Space Telescope image, the supernova remnant, surrounded by inner and outer rings of material, is set in a forest of ethereal, diffuse clouds of gas. This three-color image is composed of several pictures of the supernova and its neighboring region taken with the Wide Field and Planetary Camera 2 in Sept. 1994, Feb. 1996 and July 1997. The many bright blue stars nearby the supernova are massive stars, each more than six times heftier than our Sun. They are members of the same generation of stars as the star that went supernova about 12 million years ago. The presence of bright gas clouds is another sign of the youth of this region, which still appears to be a fertile breeding ground for new stars. In a few years the supernova's fast moving material will sweep the inner ring with full force, heating and exciting its gas, and will produce a new series of cosmic fireworks that will offer a striking view for more than a decade.

  20. Upper limits on the luminosity of the progenitor of Type Ia supernova SN 2014J

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Gilfanov, M.; Bogdán, Á.; Woods, T. E.; Nelemans, G.

    2014-08-01

    We analysed archival data of Chandra pre-explosion observations of the position of SN 2014J in M82. No X-ray source at this position was detected in the data, and we calculated upper limits on the luminosities of the progenitor. These upper limits allow us to firmly rule out an unobscured supersoft X-ray source progenitor with a photospheric radius comparable to the radius of white dwarf near the Chandrasekhar mass (˜1.38 M⊙) and mass accretion rate in the interval where stable nuclear burning can occur. However, due to a relatively large hydrogen column density implied by optical observations of the supernova, we cannot exclude a supersoft source with lower temperatures, kT ≲ 70 eV. We find that the supernova is located in the centre of a large structure of soft diffuse emission, about 200 pc across. The mass, ˜3 × 104 M⊙ and short cooling time of the gas, τcool ˜ 8 Myr, suggest that it is a supernova-inflated superbubble, associated with the region of recent star formation. If SN 2014J is indeed located inside the bubble, it likely belongs to the prompt population of Type Ia supernovae, with a delay time as short as ˜50 Myr. Finally, we analysed the one existing post-supernova Chandra observation and placed upper limit of ˜(1-2) × 1037 erg s-1 on the X-ray luminosity of the supernova itself.

  1. SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Challis, Peter J.; Friedman, Andrew S.; Chornock, Ryan; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Cenko, S. Bradley; Modjaz, Maryam; Silverman, Jeffrey M.; Wood-Vasey, W. Michael

    2009-08-15

    We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only M{sub V} = -14.2 mag, and low line velocities of only {approx}2000 km s{sup -1} near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already {approx}2 mag fainter and has line velocities {approx}5000 km s{sup -1} smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only {approx}10 days, significantly shorter than either SN 2002cx-like objects ({approx}15 days) or normal SNe Ia ({approx}19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at L {sub peak} = (9.5 {+-} 1.4) x 10{sup 40} erg s{sup -1}, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 {+-} 0.9) x 10{sup -3} M {sub sun} of {sup 56}Ni, had a kinetic energy of {approx}2 x 10{sup 48} erg, and ejected 0.15 M {sub sun} of material. The host galaxy of SN 2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large magellanic Cloud. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, deflagration of carbon-oxygen white dwarfs, with SN 2008ha being a partial deflagration and not unbinding the progenitor star, is

  2. SN 1991bg - A type Ia supernova with a difference

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Phillips, Mark M.; Wells, Lisa A.; Suntzeff, N. B.; Hamuy, Mario; Schommer, R. A.; Walker, A. R.; Gonzalez, L.; Ugarte, P.

    1993-01-01

    While SN 1991bg is an unusual type Ia SN in such a feature as the brief duration of the photospheric phase, which ended only two weeks after maximum, it shares with other Ia SNs strong Si II and Ca II lines near maximum light. In addition, the light and color curve slopes are almost identical with the templates at late times. The spectral evolution of SN 1991bg is also unique but not unrecognizable; nevertheless, the peculiarities associated with this event complicate the fundamental question as to whether the Ia SNs make good standard candles.

  3. An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.

    PubMed

    Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay

    2005-05-27

    Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.

  4. An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.

    PubMed

    Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay

    2005-05-27

    Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us. PMID:15919986

  5. Shock Breakout Emission from a Type Ib/c Supernova: XRT 080109/SN 2008D

    NASA Astrophysics Data System (ADS)

    Chevalier, Roger A.; Fransson, Claes

    2008-08-01

    The X-ray transient 080109, associated with SN 2008D, can be attributed to the shock breakout emission from a normal Type Ib/c supernova. If the observed emission is interpreted as thermal emission, the temperature and radiated energy are close to expectations, considering that scattering dominates absorption processes so that spectrum formation occurs deep within the photosphere. The X-ray emission observed at ~10 days is attributed to inverse Compton scattering of photospheric photons with relativistic electrons produced in the interaction of the supernova with the progenitor wind. A simple model for the optical/ultraviolet emission from shock breakout is developed and applied to SN 1987A, SN 1999ex, SN 2008D, and SN 2006aj, all of which have optical emission observed at t ~ 1 day. The emission from the first three can plausibly be attributed to shock breakout emission. The photospheric temperature is most sensitive to the radius of the progenitor star core and the radii in these cases are in line with expectations from stellar evolution. The early optical/ultraviolet observations of SN 2006aj cannot be accommodated by a nonrelativistic shock breakout model in a straightforward way.

  6. One year of monitoring of the Type IIb supernova SN 2011dh

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.

    2013-07-01

    Optical UBVRI photometry and low-resolution spectroscopy of the Type IIb supernova SN 2011dh in M51 are presented, covering the first year after the explosion. The light curve and spectral evolution are discussed. The early phase light-curve evolution of SN 2011dh is very similar to SN 1993J and SN 2008ax. In the late phase, however, SN 2011dh declines faster than SN 1993J. The late phase decline in the B band is steeper than in the R and I bands, indicating the possibility of dust formation. With a peak V-band absolute magnitude of MV = -17.123 ± 0.18 mag, SN 2011dh is a marginally faint type IIb event. The reddening corrected colour curves of SN 2011dh are found to be redder than other well-studied Type IIb supernovae. The bolometric light curve indicates ˜0.09 M⊙ of 56Ni is synthesized during the explosion. The He I lines were detected in the spectra during the rise to maximum. The nebular spectra of SN 2011dh show a box-shaped emission in the red wing of the [O I] 6300-6363 Å feature, that is attributed to Hα emission from a shock-excited circumstellar material. The analysis of nebular spectra indicates that ˜0.2 M⊙ of oxygen was ejected during the explosion. Further, the [Ca II]/[O I] line ratio in the nebular phase is ˜0.7, indicating a progenitor with a main-sequence mass of 10-15 M⊙.

  7. An unusually fast brightness decline in optical of young type II supernova SN 2016gkg from ASAS-SN follow-up observations

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Dong, Subo; Bose, S.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Holoien, T. W.-S.; Shields, J.; Shappee, B. J.; Bersier, D.; Brimacombe, J.; Nicholls, B.

    2016-09-01

    The All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") collaboration reports an unusually fast brightness decline in optical for SN 2016gkg at an averaged rate of ~1 mag/d in V-band between UT 2016-09-21.7 (JD 2457653.2) and UT 2016-09-22.4 (JD 2457653.9).

  8. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    SciTech Connect

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  9. Hubble Space Telescope and Ground-based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    NASA Astrophysics Data System (ADS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-05-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne >~ 109 cm-3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  10. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    SciTech Connect

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.; and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  11. Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Pereira, R.; Thomas, R. C.; Aldering, G.; Antilogus, P.; Baltay, C.; Benitez-Herrera, S.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Chen, J.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Fink, M.; Fouchez, D.; Gangler, E.; Guy, J.; Hillebrandt, W.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Kromer, M.; Nordin, J.; Nugent, P.; Paech, K.; Pain, R.; Pécontal, E.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Smadja, G.; Tao, C.; Taubenberger, S.; Tilquin, A.; Wu, C.

    2013-06-01

    We present 32 epochs of optical (3300-9700 Å) spectrophotometric observations of the nearby quintessential "normal" type Ia supernova (SN Ia) SN 2011fe in the galaxy M101, extending from -15 to +97 d with respect to B-band maximum, obtained by the Nearby Supernova Factory collaboration. SN 2011fe is the closest (μ = 29.04) and brightest (Bmax = 9.94 mag) SN Ia observed since the advent of modern large scale programs for the intensive periodic followup of supernovae. Both synthetic light curve measurements and spectral feature analysis attest to the normality of SN 2011fe. There is very little evidence for reddening in its host galaxy. The homogeneous calibration, intensive time sampling, and high signal-to-noise ratio of the data set make it unique. Thus it is ideal for studying the physics of SN Ia explosions in detail, and for furthering the use of SNe Ia as standardizable candles for cosmology. Several such applications are shown, from the creation of a bolometric light curve and measurement of the 56Ni mass, to the simulation ofdetection thresholds for unburned carbon, direct comparisons with other SNe Ia, and existing spectral templates. A movie is available in electronic form at http://www.aanda.orgAll the reduced spectra are available as FITS files in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5">130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A27

  12. Tycho SN 1572: A Naked Ia Supernova Remnant Without an Associated Ambient Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Tian, W. W.; Leahy, D. A.

    2011-03-01

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and 12CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy γ-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  13. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect

    Tian, W. W.; Leahy, D. A.

    2011-03-10

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  14. The Curious Case of SN 2011dn: Was It A Peculiar Type Ia Supernova?

    NASA Astrophysics Data System (ADS)

    Rachubo, Alisa; Salvo, Chris; Leonard, Douglas C.; Duong, Nhieu; Horst, Chuck; Khandrika, Harish G.; Sumandal, Julienne; Moustakas, John

    2014-06-01

    Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves. This led to the major discovery of the accelerated expansion of the universe (Riess et al. 1998, Perlmutter et al. 1999). However, SNe Ia are not so uniform as one may expect, as there are many ‘peculiar’ SNe Ia that exhibit differences in photometry and spectroscopy from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia by removing the peculiar SNe Ia from the sample. A useful parameter for identifying peculiar SNe Ia based on photometry is Δm15(B), which measures the decrease in B-band magnitude 15 days after the peak of the light curve (Phillips et al. 1993). For typical SNe Ia the standard value is Δm15(B) = 1.1. Peculiar SNe Ia of the overluminous type show a slower decline, with its prototypical member SN 1991T having Δm15(B) = 0.80 (Hicken et al. 2009), while peculiar SNe Ia of the subluminous type show a faster decline, with its prototypical member SN 1991bg having Δm15(B) = 1.87 (Hicken et al. 2009). Here we present optical photometry and spectroscopy of SN 2011dn, which were obtained as part of the MOunt LAguna SUpernova Survey (MOLASUS). Based on its pre-maximum spectrum, which showed strong absorption lines of Fe III λ4404 and Fe III λ5129, along with a weak Si II λ6355 absorption line, SN 2011dn was classified as a SN 1991T-like event (Koff et al. 2011). However, in an earlier preliminary analysis of the light curves - based on point-spread-function photometry - we proposed that SN 2011dn might have had a higher than expected Δm15(B) value of 1.08 (Salvo et al. 2012). Since SN 2011dn is embedded in its host galaxy UGC 11501, it is possible that some of the light from the host galaxy was measured, which may have influenced the measured Δm15(B) value. Here, we employ galaxy-subtraction techniques to isolate the supernova light from its host galaxy, and generate more

  15. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  16. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.

    PubMed

    Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P U; Woosley, Stan E; Kouveliotou, Chryssa; Tanvir, Nial R; Greiner, Jochen; Andersen, Michael I; Castro-Tirado, Alberto J; Castro Cerón, José María; Fruchter, Andrew S; Gorosabel, Javier; Jakobsson, Páll; Kaper, Lex; Klose, Sylvio; Masetti, Nicola; Pedersen, Holger; Pedersen, Kristian; Pian, Elena; Palazzi, Eliana; Rhoads, James E; Rol, Evert; van den Heuvel, Edward P J; Vreeswijk, Paul M; Watson, Darach; Wijers, Ralph A M J

    2003-06-19

    Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

  17. Probing the Interstellar Medium along the Lines of Sight to Supernovae SN 1994D and SN 1994I: Erratum

    NASA Astrophysics Data System (ADS)

    Ho, Luis C.; Filippenko, Alexei V.

    1996-06-01

    In the paper "Probing the Interstellar Medium along the Lines of Sight to Supernovae SN 1994D and SN 19941" by Luis C. Ho and Alexei V. Filippenko (ApJ, 444,165 [1995]; hereafter HF95), SN 1994D was assumed to be on the approaching side of its host galaxy, NGC 4526. The authors wish to correct this assumption. Long-slit optical spectra (resolution 6-7 A) obtained on 1994 March 18 UT with the 3 m Shane reflector at Lick Observatory exhibit Hα and [N II] λλ6548, 6583 emission lines that clearly show that SN 1994D is on the receding side of the galaxy, at a heliocentric velocity of ~850 km s^-1^ (The heliocentric systemic velocity of NGC 4526, measured at the nucleus, is ~620 km s^-1^, higher than the value of ~450 km s^-1^ often cited in the literature [e.g., the Revised Shapley-Ames Catalog of Bright Galaxies].) Thus, "system 6" in the high-resolution Keck spectrum of SN 1994D (Table 1 of HF95), at v = 709 km s^-1^, is almost certainly produced by gas in the outer regions of the gas/dust disk of NGC 4526, along the line of sight to the supernova (which is assumed to be within, or close to, the disk). Its velocity is not "anomalous," and it is unlikely to be of intergalactic origin, contrary to the previous conclusion of the paper. The revised value for the velocity of SN 1994D also suggests that systems 2-5 in Table 1 of HF95, all of which have heliocentric velocities in the range 200-250 km s^-1^, are not produced in the disk of NGC 4526; instead, they almost certainly correspond to "high-velocity clouds" (HVCs) associated with the Milky Way. Hence, they are similar to systems 3-5 along the line of sight to SN 1994I in M51 (HF95). In support of this, the authors note that Kumar & Thonnard (AJ, 88,260 [1983]) detect H I emission centered on heliocentric velocity 215 km s^-1^ at several different positions toward NGC 4526, in good agreement with the average velocity of the Na I absorption lines in our Keck spectrum; they conclude that the H I emission is produced

  18. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    SciTech Connect

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  19. Regularly pulsed neutrinos from supernova SN1987A?

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Wasserman, Ira M.; Biermann, Peter L.; Meyer, Hinrich

    1987-01-01

    Some consequences of the 8.9 millisecond periodicity observed in neutrino events from SN1987A with the Kamiokonde and IMB experiments are discussed. Interpreting the apparent period as a rotation of a compact object would imply that the neutrino emission is anisotropic and that the neutrino mass, averaged over all observed flavors, is less than 0.2 eV/c-squared. It is also noted that P = 8.9 ms is a reasonable period for very young pulsars.

  20. High-velocity emission in young supernova remnants: SN 1006 and SN 1572

    SciTech Connect

    Kirshner, R.; Winkler, P.F.; Chevalier, R.A.

    1987-04-01

    The paper reports the discovery of broad H-alpha emission from the SN 1006 remnant with a FWHM velocity of 2600 + or - 100 km/s. This emission is similar to that seen in the remnant of SN 1572 which has a FWHM for H-alpha of 1800 km/s. The nonradiative model was used to interpret the line widths and the derived shock velocity was compared with proper motion measurements to derive distances of 1.4-2.1 kpc to SN 1006 and 2.0-2.8 kpc to SN 1572. 24 references.

  1. Preliminary NIR Late Light Curve of the Type Ia Supernova SN2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, G.

    2013-01-01

    Type Ia supernovae (SNe Ia) are important in determining the expansion of the universe based on the uniformity of their light curves. It is essential to understand the behavior of these supernovae in order to strengthen our confidence in their use as standard candles. A small, but increasing number of SNe Ia have been observed later than the 200 day epoch in the near-infrared (NIR). Most of these exhibit a flattening of the NIR power, even as the visible light declines at a steady rate. It is unclear as to exactly what causes this behavior, and how typical it is. In order to characterize the late behavior of SNe Ia, images of the supernova SN2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). These images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer. The supernova’s magnitude was normalized with respect to the magnitudes of known stars so that traits related to the supernova may be compared to others. We present preliminary NIR (J, H, K) light curves of the observed supernova and compare them to other SNe Ia observed at these epochs.

  2. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  3. Supernovae. ⁴⁴Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion.

    PubMed

    Boggs, S E; Harrison, F A; Miyasaka, H; Grefenstette, B W; Zoglauer, A; Fryer, C L; Reynolds, S P; Alexander, D M; An, H; Barret, D; Christensen, F E; Craig, W W; Forster, K; Giommi, P; Hailey, C J; Hornstrup, A; Kitaguchi, T; Koglin, J E; Madsen, K K; Mao, P H; Mori, K; Perri, M; Pivovaroff, M J; Puccetti, S; Rana, V; Stern, D; Westergaard, N J; Zhang, W W

    2015-05-01

    In core-collapse supernovae, titanium-44 ((44)Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of (44)Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion. PMID:25954004

  4. Supernovae. ⁴⁴Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion.

    PubMed

    Boggs, S E; Harrison, F A; Miyasaka, H; Grefenstette, B W; Zoglauer, A; Fryer, C L; Reynolds, S P; Alexander, D M; An, H; Barret, D; Christensen, F E; Craig, W W; Forster, K; Giommi, P; Hailey, C J; Hornstrup, A; Kitaguchi, T; Koglin, J E; Madsen, K K; Mao, P H; Mori, K; Perri, M; Pivovaroff, M J; Puccetti, S; Rana, V; Stern, D; Westergaard, N J; Zhang, W W

    2015-05-01

    In core-collapse supernovae, titanium-44 ((44)Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of (44)Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  5. SN1987A: The Birth of a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    McCray, Richard

    2003-01-01

    This grant was intended to support the development of theoretical models needed to interpret and understand the observations by the Hubble Space Telescope and the Chandra X-ray telescope of the rapidly developing remnant of Supernova 1987A. In addition, we carried out a few investigations of related topics. The project was spectacularly successful. The models that we developed provide the definitive framework for predicting and interpreting this phenomenon. Following is a list of publications based on our work. Some of these papers include results of both theoretical modeling supported by this project and also analysis of data supported by the Space Telescope Science Institute and the Chandra X-ray Observatory. We first list papers published in refereed journals, then conference proceedings and book chapters, and also an educational web site.

  6. Radio structure of the remnant of Tycho's supernova (SN 1572)

    SciTech Connect

    Dickel, J.R.; Van breugel, W.J.M.; Strom, R.G. Lawrence Livermore National Laboratory, Livermore, CA Netherlands Foundation for Research in Astronomy, Dwingeloo )

    1991-06-01

    The radio emission from the remnant of Tycho's supernova of 1572 arises in a nearly circular, clumpy shell. A very distinct, thin bright rim just outside the main shell can be seen around most of the periphery of the remnant. The outer edge of radio emission, usually defined by this bright rim, coincides perfectly with the outer X-ray boundary. Most of the emission is polarized by a modest amount, with the outer rim particularly prominent. Observations at several wavelengths are used to map out the rotation measure at high angular resolution, and determine the intrinsic magnetic field direction. The magnetic field shows a somewhat cellular pattern but with a net radial orientation and a generally fairly low degree of polarization. 44 refs.

  7. Constraining the progenitor of the Type Ia Supernova SN 2012cg

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Stancliffe, Richard J.

    2016-06-01

    The nature of the progenitors of Type Ia supernovae (SNe Ia) is not yet fully understood. In the single-degenerate (SD) scenario, the collision of the SN ejecta with its companion star is expected to produce detectable ultraviolet emission in the first few days after the SN explosion within certain viewing angles. It was recently found that the B - V colour of the nearby SN Ia SN 2012cg at about 16 d before the maximum B-band brightness was about 0.2 mag bluer than those of other normal SNe Ia, which was reported as the first evidence for excess blue light from the interaction of normal SN Ia ejecta with its companion star. In this work, we compare current observations for SN 2012cg from its pre-explosion phase to the late-time nebular phase with theoretical predictions from binary evolution and population synthesis calculations for a variety of popular progenitor scenarios. We find that a main-sequence donor or a carbon-oxygen white dwarf donor binary system is more likely to be the progenitor of SN 2012cg. However, both scenarios also predict properties which are in contradiction to the observed features of this system. Taking both theoretical and observational uncertainties into account, we suggest that it might be too early to conclude that SN 2012cg was produced from an explosion of a Chandrasekhar-mass white dwarf in the SD scenario. Future observations and improved detailed theoretical modelling are still required to place a more stringent constraint on the progenitor of SN 2012cg.

  8. SN 2015U: a rapidly evolving and luminous Type Ibn supernova

    NASA Astrophysics Data System (ADS)

    Shivvers, Isaac; Zheng, Wei Kang; Mauerhan, Jon; Kleiser, Io K. W.; Van Dyk, Schuyler D.; Silverman, Jeffrey M.; Graham, Melissa L.; Kelly, Patrick L.; Filippenko, Alexei V.; Kumar, Sahana

    2016-09-01

    Supernova (SN) 2015U (also known as PSN J07285387+3349106) was discovered in NGC 2388 on 2015 Feb. 11. A rapidly evolving and luminous event, it showed effectively hydrogen-free spectra dominated by relatively narrow helium P-Cygni spectral features and it was classified as an SN Ibn. In this paper, we present photometric, spectroscopic, and spectropolarimetric observations of SN 2015U, including a Keck/DEIMOS spectrum (resolution ≈5000) which fully resolves the optical emission and absorption features. We find that SN 2015U is best understood via models of shock breakout from extended and dense circumstellar material (CSM), likely created by a history of mass-loss from the progenitor with an extreme outburst within ˜1-2 yr of core collapse (but we do not detect any outburst in our archival imaging of NGC 2388). We argue that the high luminosity of SN 2015U was powered not through 56Ni decay but via the deposition of kinetic energy into the ejecta/CSM shock interface. Though our analysis is hampered by strong host-galaxy dust obscuration (which likely exhibits multiple components), our data set makes SN 2015U one of the best-studied Type Ibn SNe and provides a bridge of understanding to other rapidly fading transients, both luminous and relatively faint.

  9. VLBA Observations of SN 2001em: Supernova, Misdirected Gamma-Ray Burster, or Both?

    NASA Astrophysics Data System (ADS)

    Stockdale, C. J.; Van Dyk, S. D.; Weiler, K. W.; Sramek, R. A.; Panagia, N.; Rupen, M. P.; Paczynski, B.; Weiler, K. W.

    2004-12-01

    We present Very Long Baseline Array (VLBA) observations of Supernova (SN) 2001em. Initially detected on September 15, 2001 (Papenkova & Li 2001) and classified as a type Ic SN on October 20, 2001 (Filippenko & Chornock 2001), SN 2001em was later reclassified as a Type IIn SN (Soderberg, Frail, & Wieringa 2004). SN 2001em was not well studied until a Very Large Array 3.6 cm radio search of type Ib/Ic SNe within 100 Mpc detected radio emission in excess of 1028 erg s-1 Hz-1 (for 80 Mpc distance) in mid October 2003 (Stockdale et al. 2004). This is roughly 50 times more radio luminous than SN 1998bw was at a comparable age. X-ray emission was detected by Pooley & Lewin (2004) in excess of 1041 erg s-1 (for 80 Mpc distance), making it one of the brightest X-ray SNe ever observed. We measured this source in July 2004 with the VLBA at 3.6 cm in an attempt to determine if radio structure was present. We present our new results and discuss their implications at this meeting.

  10. Explaining the Most Energetic Supernovae with an Inefficient Jet-feedback Mechanism

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai; Soker, Noam; Papish, Oded

    2016-08-01

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of it falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v eq ≈ 1000 km s-1 and M eq ≳ 1 M ⊙, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.

  11. Explaining the Most Energetic Supernovae with an Inefficient Jet-feedback Mechanism

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai; Soker, Noam; Papish, Oded

    2016-08-01

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of it falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v eq ≈ 1000 km s‑1 and M eq ≳ 1 M ⊙, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.

  12. THE SUPERNOVA IMPOSTOR IMPOSTOR SN 1961V: SPITZER SHOWS THAT ZWICKY WAS RIGHT (AGAIN)

    SciTech Connect

    Kochanek, C. S.; Szczygiel, D. M.; Stanek, K. Z.

    2011-08-20

    SN 1961V, one of Zwicky's defining Type V supernovae (SNe), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core-collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable star. The former case is suggested by its possible association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L{sub opt} {approx} 10{sup 5} L{sub sun}, than the L{sub opt} {approx_equal} 3 x 10{sup 6} L{sub sun} progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as an L{sub IR} {approx_equal} 3 x 10{sup 6} L{sub sun} mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest source of dust emission is only L{sub IR} {approx_equal} 10{sup 5} L{sub sun} and does not correspond to the previously identified candidates for the surviving star. The dust cannot be made sufficiently distant and cold to avoid detection unless the ejection energy, mass, and velocity scales are those of an SN or greater. We conclude that SN 1961V was a peculiar, but real, SN. Its peculiarities are probably due to enhanced mass loss just prior to the SN, followed by the interactions of the SN blast wave with this ejecta. This adds to the evidence that there is a population of SN progenitors that have major mass-loss episodes shortly before core collapse. The progenitor is a low metallicity, {approx}1/3 solar, high-mass, M{sub ZAMS} {approx}> 80 M{sub sun}, star, which means either that BH formation can be accompanied by an SN or that surprisingly high-mass stars can form an

  13. Multicolor Infrared Observations of SN 2006aj. I. The Supernova Associated with XRF 060218

    NASA Astrophysics Data System (ADS)

    Kocevski, Daniel; Modjaz, Maryam; Bloom, Joshua S.; Foley, Ryan; Starr, Daniel; Blake, Cullen H.; Falco, Emilio E.; Butler, Nathaniel R.; Skrutskie, Mike; Szentgyorgyi, Andrew

    2007-07-01

    We report simultaneous multicolor near-infrared (NIR) observations of the supernova associated with X-ray flash 060218 during the first 16 days after the high-energy event. We find that the light curve rises and peaks relatively fast compared to other Type Ic supernovae (SNe Ic), with the characteristic broad NIR peak seen in all three bands. We find that the rise profile before the peak is largely independent of NIR wavelength, each band appearing to transition into a plateau phase around day 10-13. Since the light curve is in the plateau phase when our observations end at day 16, we can only place limits on the peak absolute magnitudes, but we estimate that SN 2006aj is one of the lowest NIR luminosity X-ray flash/gamma-ray burst (XRF/GRB) associated SNe observed to date. The broad peaks observed in the JHKs bands point to a large increase in the NIR contribution of the total flux output from days 10-16. This evolution can be seen in the broad color and spectral energy distribution diagrams constructed using UBVRIJHKs monochromatic flux measurements for the first 16 days of the event. Ultimately, a 10 day rise time would make SN 2006aj an extremely fast rise SN Ic event, faster than SN 1998bw and SN 2003dh, which combined with its underluminous nature indicates a lower amount of 56Ni ejected by the progenitor compared to other XRF/GRB-SNe. Furthermore, the lack of significant color change during the rise portion of the burst points to little or no spectral evolution over the first 10 days of activity in the NIR.

  14. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-15

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor. PMID:22170680

  15. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  16. Optical emission from a fast shock wave - The remnants of Tycho's supernova and SN 1006

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Raymond, J. C.

    1978-01-01

    The faint optical filaments in Tycho's supernova remnant appear to be emission from a shock front moving at 5600 km/s. The intensity of the hydrogen lines, the absence of forbidden lines of heavy elements in the spectrum, and the width of the filaments are explained by a model in which a collisionless shock wave is moving into partially neutral gas. The presence of the neutral gas can be used to set an upper limit of approximately 5 x 10 to the 47th power ergs to the energy in ionizing radiation emitted by a Type I supernova. The patchy neutral gas is probably part of the warm neutral component of the interstellar medium. The existing information on the remnant of SN 1006 indicates that its emission is similar in nature to that from Tycho's remnant.

  17. Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova

    NASA Astrophysics Data System (ADS)

    Mattila, S.; Lundqvist, P.; Sollerman, J.; Kozma, C.; Baron, E.; Fransson, C.; Leibundgut, B.; Nomoto, K.

    2005-11-01

    We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained 9 and 2 days before (B-band) maximum light. This was in order to allow the detection of narrow hydrogen and/or helium emission lines from the circumstellar medium of the supernova. No such lines were detected in our data. We therefore use these spectra together with photoionisation models to derive upper limits of 9×10-6 {M}_⊙ yr-1 and 5×10-5 {M}_⊙ yr-1 for the mass loss rate from the progenitor system of SN 2001el assuming velocities of 10 km s-1 and 50 km s-1, respectively, for a wind extending to outside at least a few × 1015 cm away from the supernova explosion site. So far, these are the best Hα based upper limits obtained for a type Ia supernova, and exclude a symbiotic star in the upper mass loss rate regime (so called Mira type stars) from being the progenitor of SN 2001el. The low-resolution spectrum was obtained in the nebular phase of the supernova, 400 days after the maximum light, to search for any hydrogen rich gas originating from the supernova progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of 0.03 M⊙ for solar abundance material present at velocities lower than 1000 km s-1 within the supernova explosion site. According to numerical simulations of Marietta et al. (2000) this is less than the expected mass lost by a subgiant, red giant or a main-sequence secondary star at a small binary separation as a result of the SN explosion. Our data therefore exclude these scenarios as the progenitor of SN 2001el. Finally, we discuss the origin of high velocity Ca II lines previously observed in a few type Ia supernovae before the maximum light. We see both the Ca II IR triplet and the H&K lines in our earliest (-9 days) spectrum at a very high velocity of up to 34 000

  18. UV-Optical Observation of Type Ia Supernova SN 2013dy in NGC 7250

    NASA Astrophysics Data System (ADS)

    Zhai, Qian; Zhang, Ju-Jia; Wang, Xiao-Feng; Zhang, Tian-Meng; Liu, Zheng-Wei; Brown, Peter J.; Huang, Fan; Zhao, Xu-Lin; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zhang, Xi-Liang; Fan, Yu-Feng; Zheng, Xiang-Ming; Bai, Jin-Ming

    2016-05-01

    Extensive and independent observations of Type Ia supernova (SN Ia) SN 2013dy are presented, including a larger set of UBVRI photometry and optical spectra from a few days before the peak brightness to ˜ 200 days after explosion, and ultraviolet (UV) photometry spanning from t ≈ -10 days to t ≈ +15 days refers to the B band maximum. The peak brightness (i.e., MB = -19.65 ± 0.40 mag; Lmax = [1.95 ± 0.55] × 1043 erg s-1) and the mass of synthesized 56Ni (i.e., M(56Ni) = 0.90 ± 0.26 M⊙) are calculated, and they conform to the expectation for an SN Ia with a slow decline rate (i.e., Δm15(B) = 0.90 ± 0.03 mag). However, the near infrared (NIR) brightness of this SN (i.e., MH = -17.33 ± 0.30 mag) is at least 1.0 mag fainter than usual. Besides, spectroscopy classification reveals that SN 2013dy resides on the border of “core normal” and “shallow silicon” subclasses in the Branch et al. classification scheme, or on the border of the “normal velocity” SNe Ia and 91T/99aa-like events in the Wang et al. system. These suggest that SN 2013dy is a slow-declining SN Ia located on the transitional region of nominal spectroscopic subclasses and might not be a typical normal sample of SNe Ia.

  19. SN 2009ib: a Type II-P supernova with an unusually long plateau

    NASA Astrophysics Data System (ADS)

    Takáts, K.; Pignata, G.; Pumo, M. L.; Paillas, E.; Zampieri, L.; Elias-Rosa, N.; Benetti, S.; Bufano, F.; Cappellaro, E.; Ergon, M.; Fraser, M.; Hamuy, M.; Inserra, C.; Kankare, E.; Smartt, S. J.; Stritzinger, M. D.; Van Dyk, S. D.; Haislip, J. B.; LaCluyze, A. P.; Moore, J. P.; Reichart, D.

    2015-07-01

    We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusually long, lasting for about 130 d after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the 56Ni mass produced as 0.046 ± 0.015 M⊙. We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a Type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as D = 19.8 ± 3.0 Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour [(V - I)0 = 0.85 mag]. Assuming it is a single star, we estimate its initial mass as MZAMS = 20 M⊙. We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case, we estimate the upper limit for the initial zero-age main sequence (ZAMS) mass of the progenitor to be ˜14-17 M⊙. In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as ˜0.55 × 1051 erg, the pre-explosion radius as ˜400 R⊙, and the ejected envelope mass as ˜15 M⊙, which implies that the mass of the progenitor before explosion was ˜16.5-17 M⊙.

  20. Supernova Emulators: Connecting Massively Parallel SN Ia Radiative Transfer Simulations to Data with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Thomas, Rollin; Kasen, Daniel

    2015-01-01

    Collaboration between the type Ia supernova (SN Ia) modeling and observation communities hinges on our ability to directly connect simulations to data. Here we introduce supernova emulation, a method for facilitating such a connection. Emulation allows us to instantaneously predict the observables (light curves, spectra, spectral time series) generated by arbitrary SN Ia radiative transfer simulations, with estimates of prediction error. Emulators learn the mapping between physically meaningful simulation inputs and the resulting synthetic observables from a training set of simulation input-output pairs. In our emulation framework, we model PCA-decomposed representations of simulated observables as an ensemble of Gaussian Processes. As a proof of concept, we train a bolometric light curve (BLC) emulator on a grid of 400 simulation inputs and BLCs synthesized with the publicly available, gray, time-dependent Monte Carlo expanding atmospheres code, SMOKE. We emulate SMOKE simulations evaluated at a set of 100 out-of-sample input parameters, and achieve excellent agreement between the emulator predictions and the simulated BLCs. In addition to predicting simulation outputs, emulators allow us to infer the regions of simulation input parameter space that correspond to observed SN Ia light curves and spectra. We present a Bayesian framework for solving this inverse problem using Markov Chain Monte Carlo sampling. We fit published bolometric light curves with our emulator and obtain reconstructed masses (nickel mass, total ejecta mass) in agreement with reconstructions from semi-analytic models. We discuss applications of emulation to supernova cosmology and physics, including how emulators can be used to identify and quantify astrophysical sources of systematic error affecting SNe Ia as distance indicators for cosmology.

  1. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  2. Hubble Space Telescope And Ground-based Observations Of SN 2005hk And SN 2008a: SN 2002cx-like Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    McCully, Curtis; Jha, S. W.; Foley, R. J.; Garnavich, P. M.

    2011-01-01

    Type Ia supernovae (SNe Ia) have been very successful tools for studying the history of cosmic expansion and led to the discovery of the accelerating universe and dark energy. However, the explosion mechanism and progenitors for SNe Ia are still not fundamentally well understood. We present results from late time (up to 600 days past maximum brightness) HST and ground based observations of two typical members of the SN 2002cx-like subclass of peculiar SNe Ia: SN 2005hk and SN 2008A. At late times, these objects are characterized by significant amounts of high density, low velocity material giving a unique opportunity to resolve spectral features that are blended in normal SNe Ia. We identify permitted Fe I and Fe II lines, allowing us to calculate a characteristic temperature, and use the ratio between permitted and forbidden Ca II lines to constrain the density. We find that the density stays extraordinarily high out to late phases, implying enhanced cooling. However, we do not confirm the presence of the "infrared catastrophe” that is generically predicted by SN models as the ejecta cools. We also constrain explosion models for these objects: the lack of [0 I] 6300 A emission allows us to rule out the possibility that these peculiar objects are pure deflagration explosions that leave large amounts of unburned material in the innermost layers of the ejecta. Understanding what makes these SNe so different from their normal cousins has the promise to clarify these key systematic uncertainties in their use for cosmology.

  3. Five Years in the Mid-Infrared Development of the SN 1987A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2009-01-01

    Spitzer has been used to monitor the mid-IR evolution of SN 1987A over a 5 year period as it develops into a supernova remnant through interaction with its surrounding environment. This interaction is dominated by the collision of the ejecta with the pre-existing equatorial ring. The mid-IR continuum indicates an increasing mass of shock-heated silicate dust, but without any significant change in temperature of the dust grains. Comparison of the IR and X-ray evolution of the remnant can be used to infer plasma conditions and the processing of the dust in the shock-heated X-ray emitting gas.

  4. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  5. The End of Amnesia: Measuring the Metallicities of Type Ia SN Progenitors with Manganese Lines in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Bravo, Eduardo; Hughes, John P.

    2009-05-01

    The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of the Tycho Supernova Remnant. The fluxes of the Mn and Cr Kα lines in the X-ray spectra of Tycho observed by the Suzaku satellite suggests a progenitors of supersolar metallicity.

  6. X-ray characteristics of the Lupus Loop and SN 1006 supernova remnants

    SciTech Connect

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest x-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 to 10 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  7. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang

    2016-04-01

    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

  8. Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Valenti, S.; Hoeflich, P.; Baron, E.; Phillips, M. M.; Taddia, F.; Foley, R. J.; Hsiao, E. Y.; Jha, S. W.; McCully, C.; Pandya, V.; Simon, J. D.; Benetti, S.; Brown, P. J.; Burns, C. R.; Campillay, A.; Contreras, C.; Förster, F.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pignata, G.

    2015-01-01

    We present ultraviolet through near-infrared (NIR) broadband photometry, and visual-wavelength and NIR spectroscopy of the Type Iax supernova (SN) 2012Z. The data set consists of both early- and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M⊙ of 56Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~1051 erg, making it one of the brightest (MB = -18.3 mag) and most energetic SN Iax yet observed. The late phase (+269d) NIRspectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially from all supernova types. Constraints from the distribution of intermediate mass elements, e.g., silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the 56Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of 56Ni during the deflagration burning phase and little (or no) 56Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the intermediate mass elements is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of 56Ni production during the early subsonic phase

  9. Optical observations of the broad-lined type Ic supernova SN 2012ap

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zhao, Xu-Lin; Huang, Fang; Wang, Xiao-Feng; Zhang, Tian-Meng; Chen, Jun-Cheng; Zhang, Tong-Jie

    2015-02-01

    The optical observations of the type Ic supernova (SN Ic) SN 2012ap in NGC 1729 are presented. A comparison with other SNe Ic indicates that SN 2012ap is highly reddened (with E(B — V)host~0.8 mag) and may represent one of the most luminous SNe Ic ever observed, with an absolute V-band peak magnitude of ~ -19.3±0.5 mag after extinction correction. The near-maximum-light spectrum shows wide spectral features that are typical of broad-lined SNe Ic. One interesting feature in the spectrum is the appearance of some narrow absorption features that can be attributed to the diffuse interstellar bands, consistent with the large reddening inferred from the photometric method. Based on the light curves and the spectral data, we estimate that SN 2012ap produced a 56Ni mass of ~ 0.3 ± 0.1Msolar 1 in the explosion, with an ejecta mass of 2.4-0.7+0.7Msolar and a kinetic energy of EK = 1.1-0.4+0.4 × 1052 erg. The properties of its progenitor are also briefly discussed.

  10. SN Refsdal: Photometry and Time Delay Measurements of the First Einstein Cross Supernova

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Strolger, L.-G.; Kelly, P. L.; Bradač, M.; Brammer, G.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Hjorth, J.; Jha, S. W.; McCully, C.; Molino, A.; Riess, A. G.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Treu, T.; Weiner, B. J.; Zitrin, A.

    2016-03-01

    We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1-S4) exhibited a slow rise (over ˜150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative to S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.

  11. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300

    NASA Astrophysics Data System (ADS)

    Binder, B.; Williams, B. F.; Kong, A. K. H.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.; Dolphin, A.

    2016-04-01

    We present new observations of the `supernova impostor' SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be ˜5 × 1038 erg s-1 and faded by a factor of ˜25 in a four month period. Our two new Chandra observations show a factor of ˜10 increase in the 0.35-8 keV X-ray luminosity, from ˜4 × 1036 to 4 × 1037 erg s-1 in ˜6 months, and the X-ray spectrum is consistent in both observations with a power-law with a photon index of Γ ˜ 0. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder (Γ ˜0) compared to the low-luminosity state (Γ ˜ 1.2 ± 0.8). Using our Hubble observations, we fit the colour-magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of ≲5 Myr. Our observations are consistent with SN 2010da being a high-mass X-ray binary (HMXB) composed of a neutron star and a luminous blue variable-like companion, although we cannot rule out the possibility that SN 2010da is an unusually X-ray bright massive star. The ≲5 Myr age is consistent with the theoretically predicted delay time between the formation of a massive binary and the onset of the HMXB phase. It is possible that the initial 2010 outburst marked the beginning of X-ray production in the system, making SN 2010da possibly the first massive progenitor binary ever observed to evolve into an HMXB.

  12. Type IIP supernovae as cosmological probes: A SEAM distance to SN1999em

    SciTech Connect

    Baron, E.; Nugent, Peter E.; Branch, David; Hauschildt, Peter H.

    2004-06-01

    Because of their intrinsic brightness, supernovae make excellent cosmological probes. We describe the spectral-fitting expanding atmosphere method (SEAM) for obtaining distances to Type IIP supernovae (SNe IIP) and present a distance to SN 1999em for which a Cepheid distance exists. Our models give results consistent with the Cepheid distance, even though we have not attempted to tune the underlying hydrodynamical model but have simply chosen the best fits. This is in contradistinction to the expanding photosphere method (EPM), which yields a distance to SN 1999em that is 50 percent smaller than the Cepheid distance. We emphasize the differences between the SEAM and the EPM. We show that the dilution factors used in the EPM analysis were systematically too small at later epochs. We also show that the EPM blackbody assumption is suspect. Since SNe IIP are visible to redshifts as high as z {approx}< 6, with the James Webb Space Telescope, the SEAM may be a valuable probe of the early universe.

  13. Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.

    2009-05-01

    Aims: The extensive observations of the supernova SN 1993J at radio wavelengths make this object a unique target for the study of particle acceleration in a supernova shock. Methods: To describe the radio synchrotron emission we use a model that couples a semianalytic description of nonlinear diffusive shock acceleration with self-similar solutions for the hydrodynamics of the supernova expansion. The synchrotron emission, which is assumed to be produced by relativistic electrons propagating in the postshock plasma, is worked out from radiative transfer calculations that include the process of synchrotron self-absorption. The model is applied to explain the morphology of the radio emission deduced from high-resolution VLBI imaging observations and the measured time evolution of the total flux density at six frequencies. Results: Both the light curves and the morphology of the radio emission indicate that the magnetic field was strongly amplified in the blast wave region shortly after the explosion, possibly via the nonresonant regime of the cosmic-ray streaming instability operating in the shock precursor. The amplified magnetic field immediately upstream from the subshock is determined to be Bu ≈ 50 (t/1 { day})-1 G. The turbulent magnetic field was not damped behind the shock but carried along by the plasma flow in the downstream region. Cosmic-ray protons were efficiently produced by diffusive shock acceleration at the blast wave. We find that during the first 8.5 years after the explosion, about 19% of the total energy processed by the forward shock was converted to cosmic-ray energy. However, the shock remained weakly modified by the cosmic-ray pressure. The high magnetic field amplification implies that protons were rapidly accelerated to energies well above 1015 eV. The results obtained for this supernova support the scenario that massive stars exploding into their former stellar wind are a major source of Galactic cosmic-rays of energies above 1015 eV. We

  14. The role of supernova neutrinos on molecular homochirality.

    PubMed

    Bargueño, Pedro; Pérez de Tudela, Ricardo

    2007-06-01

    Electroweak parity violating interaction between supernova (SN) neutrinos and electrons of a simple chiral molecule is studied related to the origin of molecular homochirality. Appearance of supernova remnants inside molecular clouds favours the interaction of SN-neutrinos with interstellar molecules, leading to a energetic difference between the two enantiomers of the order of 10(-5) eV. This energetic difference is closer to the thermic energy of the interstellar medium, so molecular homochirality could be enhanced in molecular clouds containing supernova remnants inside it due to neutrino interaction.

  15. Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Woźniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y.-C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \\gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}⊙ ), and have a mean energy per unit mass of < E/M> =0.85× {10}51 erg/(10 {M}⊙ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{Δ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.

  16. Type II supernova energetics and comparison of light curves to shock-cooling models

    DOE PAGES

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; et al

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, withmore » $$\\gt 5$$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 $${M}_{\\odot }$$), and have a mean energy per unit mass of $$\\langle E/M\\rangle =0.85\\times {10}^{51}$$ erg/(10 $${M}_{\\odot }$$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ($${\\rm{\\Delta }}{m}_{15}$$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.« less

  17. Multi-dimensional Simulations of the Expanding Supernova Remnant of SN 1987A

    NASA Astrophysics Data System (ADS)

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-01

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M ⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  18. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  19. SALT spectroscopic classification of PS16atu (SN 2016atv) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of PS16atu (SN 2016atv) on 2016 Mar 10.1 UT, covering the wavelength range 350-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS16atu is a type-Ia supernova approximately a week past maximum light.

  20. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-11-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 +- 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is alpha = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  1. SN 2014J at M82 - I. A middle-class Type Ia supernova by all spectroscopic metrics

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Moreno-Raya, M. E.; Ruiz-Lapuente, P.; González Hernández, J. I.; Méndez, J.; Vallely, P.; Baron, E.; Domínguez, I.; Hamuy, M.; López-Sánchez, A. R.; Mollá, M.; Catalán, S.; Cooke, E. A.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F. C.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-03-01

    We present the intensive spectroscopic follow up of the Type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from 2014 January 22 to September 1 with the Isaac Newton and William Herschel Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti, Branch et al. and Wang et al. diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal and Broad-line groups, which corresponds to an intermediate position between low-velocity gradient and high-velocity gradient objects. SN 2014J follows the R(Si II)-Δm15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.

  2. Unveiling Type IIb Supernova Progenitors: SN 2011hs from a Supergiant Star

    NASA Astrophysics Data System (ADS)

    Bufano, F.

    2014-10-01

    Type IIb Supernovae are the final evolutionary stage of massive stars that were able to retain only a thin (lesssim 1 M_{odot}) H/He external envelope at the time of the explosion. The mechanism of mass-loss that made such final structure possible and the nature of such progenitor stars are still open issues. We present the results obtained from the study of a sample of Type IIb SNe, in particular, of SN 2011hs (Bufano et al., 2013, MNRAS submitted). SN 2011hs was a relatively faint (M_{B} = -15.6 mag) and red Type IIb SN, characterized by a narrow light curve shape. Its spectral evolution showed the metamorphosis typical of this class of SN, from spectra dominated by H I lines to spectra where He I features dominate, but with broad absorption line profiles indicating high expansion velocities. Modeling the light curve of SN 2011hs and its velocity evolution with hydrodynamical calculations, we estimated that the SN is consistent with the explosion of a 3-4 M_{odot} He-core star, from a main sequence mass of 12-15 M_{odot}, ejecting a ^{56}Ni mass equal to 0.04 M_{odot} and characterized by an explosion energy of E≍ 8.5× 10^{50} erg s^{-1}. Based on the light curve evolution, we assumed that the explosion occurred 6 days before the discovery (2,455,872 ± 4 JD), resulting in an adiabatic cooling phase lasting 8 days, similarly to SN 1993J. Since the duration and the decreasing rate of the cooling branch depends mainly on the progenitor size, we could infer from it a progenitor radius of ≍ 500-600 R_{odot}, like a supergiant star. Our modeling rules out models with He core mass >5 M_{odot}, i.e. main sequence masses above 20 M_{odot}. Such a lower limit for the progenitor mass could indicate the possibility of a binary origin, although the radio light curve does not show strong deviations, typically signature of the presence of a companion star.

  3. SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS

    SciTech Connect

    Kromer, M.; Taubenberger, S.; Seitenzahl, I. R.; Hillebrandt, W.; Pakmor, R.; Pignata, G.; Fink, M.; Röpke, F. K.; Sim, S. A.

    2013-11-20

    SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M {sub ☉} adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp.

  4. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  5. The early phases of the Type Iax supernova SN 2011ay

    NASA Astrophysics Data System (ADS)

    Szalai, Tamás; Vinkó, József; Sárneczky, Krisztián; Takáts, Katalin; Benkő, József M.; Kelemen, János; Kuli, Zoltán; Silverman, Jeffrey M.; Marion, G. Howie; Wheeler, J. Craig

    2015-10-01

    We present a detailed study of the early phases of the peculiar supernova (SN) 2011ay based on BVRI photometry obtained at Konkoly Observatory, Hungary, and optical spectra taken with the Hobby-Eberly Telescope at McDonald Observatory, Texas. The spectral analysis carried out with SYN++ and SYNAPPS confirms that SN 2011ay belongs to the recently defined class of SNe Iax, which is also supported by the properties of its light and colour curves. The estimated photospheric temperature around maximum light, Tphot ˜ 8000 K, is lower than in most SNe Ia, which results in the appearance of strong Fe II features in the spectra of SN 2011ay, even during the early phases. We also show that strong blending with metal features (those of Ti II, Fe II, Co II) makes the direct analysis of the broad spectral features very difficult, and this may be true for all SNe Iax. We find two alternative spectrum models that both describe the observed spectra adequately, but their photospheric velocities differ by at least ˜3000 km s-1. The quasi-bolometric light curve of SN 2011ay has been assembled by integrating the ultraviolet-optical spectral energy distributions. Fitting a modified Arnett model to Lbol(t), the moment of explosion and other physical parameters, i.e. the rise time to maximum, the 56Ni mass and the total ejecta mass are estimated as trise ˜ 14 ± 1 d, MNi ˜ 0.22 ± 0.01 M⊙ and Mej ˜ 0.8 M⊙, respectively.

  6. On the nature of the TeV emission from the supernova remnant SN 1006

    NASA Astrophysics Data System (ADS)

    Araya, Miguel; Frutos, Francisco

    2012-10-01

    We present a model for the non-thermal emission from the historical supernova remnant SN 1006. We constrain the synchrotron parameters of the model with archival radio and hard X-ray data. Our stationary emission model includes two populations of electrons, which is justified by multifrequency images of the object. From the set of parameters that predict the correct synchrotron flux we select those which are able to account, either partly or entirely, for the gamma-ray emission of the source as seen by HESS. We use the results from this model as well as the latest constraints imposed by the Fermi observatory and conclude that the TeV emission cannot be accounted for by π0 decay from high-energy ions with a single power-law distribution, of the form dN proton /dEp∝Ep-s, and s ≳ 2.

  7. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    SciTech Connect

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W.; Wyrzykowski, L.; Fraser, M.; Blagorodnova, N.; Campbell, H.; Shen, K. J.; Gal-Yam, A.; Howell, D. A.; Valenti, S.; Maguire, K.; Mazzali, P.; Bersier, D.; Taubenberger, S.; Benitez-Herrera, S.; Elias-Rosa, N.; and others

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

  8. Bounds on the parameter of noncommutativity from supernova SN1987A

    SciTech Connect

    Haghighat, M.

    2009-01-15

    We consider supernova SN1987A to find bounds on the parameter of noncommutativity, {theta}{sub {mu}}{sub {nu}}. The right-handed neutrino in the noncommutative standard model (NCSM) can directly couple to the photon and the Z-gauge boson. Therefore the observed flux of neutrinos from SN1987A can constrain the strength of the new couplings in the NCSM. We obtain two bounds on the NC-parameter, {lambda}{sub NC}=1/{radical}(|){theta}|, with respect to escaping or trapping of the right-handed neutrinos inside the supernova which are {lambda}{sub NC} > or approx. 3.7 TeV or {lambda}{sub NC} < or approx. 1 TeV, respectively. The excluded region 1 TeV < or approx. {lambda}{sub NC} < or approx. 3.7 TeV for the NC parameter is obtained for the first time. In fact {lambda}{sub NC} < or approx. 1 TeV is consistent with the existing bounds on {lambda}{sub NC} and raises our hopes to find the NC effects in the LHC or even in the LEP. Meanwhile {lambda}{sub NC} > or approx. 3.7 TeV is more stringent than the other bounds obtained from LEP and LHC considerations. Furthermore, since NC calculations are perturbative and are correct only up to the energy scale of the NC system < or approx. {lambda}{sub NC}, then these bounds (which are obtained from the energy scale and considerably less than the energy scale of LEP and LHC) are more reliable.

  9. All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin")

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin; Prieto, J.; Stanek, K. Z.; Kochanek, C. S.; Holoien, T.; Jencson, J.; Basu, U.; Beacom, J. F.; Szczygiel, D.; Pojmanski, G.; Brimacombe, J.; Dubberley, M.; Elphick, M.; Foale, S.; Hawkins, E.; Mullins, D.; Rosing, W.; Ross, R.; Walker, Z.

    2014-01-01

    Even in the modern era, only human eyes scan the entire optical sky for the violent, variable, and transient events that shape our universe. The "All Sky Automated Survey for Supernovae" (ASAS-SN or "Assassin") is changing this by surveying the extragalactic sky roughly once a week, and within a year ASAS-SN will triple in size. We began running our real-time search for variable sources in late April 2013 with our first unit, "Brutus". Brutus presently consists of two telescopes on a common mount hosted by Las Cumbres Observatory Global Telescope Network in the Faulkes Telescope North enclosure on Mount Haleakala, Hawaii. Each telescope consists of a 14-cm Nikon telephoto lens and has a 4.47 by 4.47 degree field-of-view. On a typical clear night, it can survey 5000+ square degrees. The data are reduced in real-time, and we can search for transient candidates about an hour after the data are taken using an automated difference imaging pipeline. We are now meeting, and frequently exceeding, our current depth goal of 16 mag, corresponding to the apparent brightness at maximum light of core-collapse SNe within ~30 Mpc and SNe Ia out to ~100 Mpc. Brutus will shortly expand to have four cameras instead of two, and a second unit, "Cassius", with two cameras, should commence operations in early 2014 on Cerro Tololo, Chile. With these expansions, ASAS-SN will be able to observe the entire extragalactic sky every 2-3 nights. ASAS-SN has already discovered 10+ nearby SNe, 100+ outbursts from CVs and novae, 15+ M-dwarf and other stellar flares, and AGN outbursts which have resulted in 35+ ATel and CBET telegrams and 3 publications. In particular, ASAS-SN discovered one of the most extreme M-dwarf Flares ever detected (delta 9 mag). Furthermore, after triggering on an outburst in NGC 2617 we found that the AGN had changed from a Type 1.8 into a Type 1 Seyfert. After monitoring the transient with Swift and ground-based telescopes for 70 days, we clearly determined that the X

  10. SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION

    SciTech Connect

    Gandhi, P.; Yamanaka, M.; Itoh, R.; Tanaka, M.; Nozawa, T.; Maeda, K.; Moriya, T. J.; Kawabata, K. S.; Saviane, I.; Hattori, T.; Sasada, M.

    2013-04-20

    We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminosity lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.

  11. The type Iax supernova, SN 2015H. A white dwarf deflagration candidate

    NASA Astrophysics Data System (ADS)

    Magee, M. R.; Kotak, R.; Sim, S. A.; Kromer, M.; Rabinowitz, D.; Smartt, S. J.; Baltay, C.; Campbell, H. C.; Chen, T.-W.; Fink, M.; Gal-Yam, A.; Galbany, L.; Hillebrandt, W.; Inserra, C.; Kankare, E.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Pakmor, R.; Röpke, F. K.; Ruiter, A. J.; Seitenzahl, I. R.; Sullivan, M.; Valenti, S.; Young, D. R.

    2016-05-01

    We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ~0.2 M⊙ of material containing ~0.07 M⊙ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲0.6 M⊙ of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.

  12. SN 2009N: Another supernova between the normal and subluminous Type II-P SNe

    NASA Astrophysics Data System (ADS)

    Takáts, K.

    2014-10-01

    We collected ultraviolet, optical, and near-infrared photometry together with optical and near-infrared spectra of SN 2009N. The optical spectra had narrow features with low velocities, typical of subluminous SNe II-P. The bolometric luminosity during the plateau phase was in between those of the subluminous and normal SNe II-P. The NIR spectra of SN 2009N contain features typical of SNe II-P, with the exception of the appearance of a feature at ˜ 1.055 μ m +48 days after the explosion. Via spectral modeling we found that this line is probably due to high-velocity He i λ 10830 The presence of this line, together with a HV component of Hα, can be an indicator of weak interaction of the ejecta with circumstellar material. We estimated the distance to SN 2009N using multiple versions of both the expanding photosphere method and the standardized candle method as D=21.6 ± 1.1 Mpc (μ=31.67 ± 0.11). The produced nickel mass was estimated to be 0.020 ± 0.004 M_sun. We determined the physical properties of the progenitor at the explosion via hydrodynamical modeling. The total explosion energy (˜ 0.48 {foe}) is in between the values typical of subluminous and normal SNe II-P. The pre-supernova mass (˜ 13-13.5 M_{sun}) is consistent with that of red supergiant stars, while the relatively small estimated radius at the time of the explosion (R_{ini}≍ 287 R_{sun}) can point to a yellow supergiant star.

  13. Type Ia Supernovae and Their Environment:Theory and Applications to SN 2014J

    NASA Astrophysics Data System (ADS)

    Dragulin, Paul; Hoeflich, Peter

    2016-02-01

    We present theoretical semi-analytic models for the interaction of stellar winds with the interstellar medium (ISM) or prior mass loss implemented in our code SPICE, assuming spherical symmetry and power-law ambient density profiles and using the Π-theorem. This allows us to test a wide variety of configurations, their functional dependencies, and to find classes of solutions for given observations. Here, we study Type Ia Supernova (SN Ia) surroundings of single and double degenerate systems, and their observational signatures. Winds may originate from the progenitor prior to the white dwarf (WD) stage, the WD, a donor star, or an accretion disk (AD). For MCh explosions, the AD wind dominates and produces a low-density void several light years across, surrounded by a dense shell. The bubble explains the lack of observed interaction in late time SN light curves for, at least, several years. The shell produces narrow ISM lines Doppler shifted by 10-100 km s-1, and equivalent widths of ≈100 mÅ and ≈1 mÅ in cases of ambient environments with constant density and produced by prior mass loss, respectively. For SN2014J, both mergers and MCh mass explosions have been suggested based on radio and narrow lines. As a consistent and most likely solution, we find an AD wind running into an environment produced by the red giant wind of the progenitor during the pre-WD stage, and a short delay, 0.013-1.4 Myr, between the WD formation and the explosion. Our framework may be applied more generally to stellar winds and star formation feedback in large scale galactic evolution simulations.

  14. SALT spectroscopic classification of PS16efm (= SN 2016fxu) as a type-Ic supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-09-01

    We obtained SALT (+RSS) spectroscopy of PS16efm (= SN 2016fxu) on 2016 Sep 8.0 UT, covering the wavelength range 350-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS16efm is a type-Ic supernova approximately two to three weeks past maximum light.

  15. SN 1961V: From Alpha to Omega?

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Filippenko, Alexei V.; Cenko, Bradley S.; Shields, Joseph C.

    2013-06-01

    The extraordinary object SN 1961V in NGC 1058 remains controversial to this day. It has long been considered the prototypical "supernova impostor," i.e., the giant eruption of a highly massive star with energetics that rival true supernovae. However, a number of arguments have been put forward that SN 1961V actually was a true SN, and that the explosion followed a sustained powerful outburst from its precursor star, much like the amazing SN 2009ip and other recent events. We will briefly discuss the debate that has roiled over SN 1961V, and we will also present evidence, including from new observations, which may indicate that the precursor has survived. Determining the true nature of SN 1961V will inform our understanding of the late stages of pre-SN evolution for the most massive stars.

  16. Late-time Photometry of Type Ia Supernova SN 2012cg Reveals the Radioactive Decay of 57 Co

    NASA Astrophysics Data System (ADS)

    Graur, Or; Zurek, David; Shara, Michael M.; Riess, Adam G.; Seitenzahl, Ivo R.; Rest, Armin

    2016-03-01

    Seitenzahl et al. have predicted that roughly three years after its explosion, the light we receive from a Type Ia supernova (SN Ia) will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain 57Co → 57Fe, instead of positrons from the decay chain 56Co → 56Fe that dominates the SN light at earlier times. Using the Hubble Space Telescope, we followed the light curve of the SN Ia SN 2012cg out to 1055 days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of 57Co, offering evidence that 57Co is produced in SN Ia explosions. However, the data are also consistent with a light echo ∼14 mag fainter than SN 2012cg at peak. Assuming no light-echo contamination, the mass ratio of 57Ni and 56Ni produced by the explosion, a strong constraint on any SN Ia explosion models, is {0.043}-0.011+0.012, roughly twice Solar. In the context of current explosion models, this value favors a progenitor white dwarf with a mass near the Chandrasekhar limit.

  17. Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P. A.; Pian, E.; James, P. A.

    2016-08-01

    A detailed spectroscopic analysis of SN 1986G has been performed. SN 1986G `bridges the gap' between normal and sub luminous type Ia supernova (SNe Ia). The abundance tomography technique is used to determine the abundance distribution of the elements in the ejecta. SN 1986G was found to be a low energy Chandrasekhar mass explosion. Its kinetic energy was 70% of the standard W7 model (0.9 × 1051 erg). Oxygen dominates the ejecta from the outermost layers down to ˜ 9000 kms-1 , intermediate mass elements (IME) dominate from ˜ 9000 kms-1 to ˜ 3500 kms-1 with Ni and Fe dominating the inner layers <˜ 3500 kms-1. The final masses of the main elements in the ejecta were found to be, O=0.33 M⊙, IME=0.69 M⊙, stable NSE=0.21 M⊙, 56Ni=0.14 M⊙. An upper limit of the carbon mass is set at C=0.02 M⊙. The spectra of SN 1986G consist of almost exclusively singly ionised species. SN 1986G can be thought of as a low luminosity extension of the main population of SN Ia, with a large deflagration phase that produced more IMEs than a standard SN Ia.

  18. Generating X-ray in MeV regime from interactions of mono-energetic electrons with Sn and Pb

    SciTech Connect

    Masalehdan, Hossein

    2012-09-06

    Quasi mono-energetic x-ray beams generated from thin targets by interaction of mono-energetic electron beams from 600 mJ, 80 fs laser pulse. A micron-scale laser-produced plasma creates, accelerates relativistic mono-energetic electron bunches. As such electrons propagate in the ion channel produced in the wake of the laser pulse; the accelerated electrons can interact with Sn, Pb targets and generate X-ray radiation of MeV energy and MeV/cm2 flux.

  19. SN1987A-Neutrino emission from Supernova': in Dynamic universe model of cosmology

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    SN1987A-Neutrino emission from supernova before the star bursts' is an important discovery, when viewed from `Dynamic universe model of cosmology' point of view. In OMEG05, we have successfully presented the reasons for calculation error called `missing mass' in an inhomoge-neous, anisotropic and multi-body Dynamic universe Model, where this error is not occurring. But there are some new voices that say about generation of some flavors of neutrinos during Bigbang. We find from SN1987A Neutrino generation covers all flavors. Remaining flavors of Neutrinos are generated from sun and stars. This covers the whole spectrum. This paper covers all these aspects. And other earlier results by Dynamic Universe Model 1. Offers Singularity free solutions 2. Non-collapsing Galaxy structures 3. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves. . . . 4. Blue shifted and red shifted Galaxies co-existence. . . 5. Explains the force behind expansion of universe. 6. Explains the large voids and non-uniform matter densities. 7. Explains the Pioneer anomaly 8. Predicts the trajectory of New Horizons satellite. 9 Jeans swindle test 10. Existence of large number of blue shifted Galaxies `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity free N-body tensor solution to the old problem announced by King Oscar II and tried by Poincare in year AD1888 for 133 masses, tested extensively for so many years. This was developed on 486 based PC of those days; the same software was used repeatedly for so many years for solving different Physical problems on Different PCs and Laptops. It is based on Dynamic Universe Model's mathematical back ground.

  20. SN 2015BN: A Detailed Multi-wavelength View of a Nearby Superluminous Supernova

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Berger, E.; Smartt, S. J.; Margutti, R.; Kamble, A.; Alexander, K. D.; Chen, T.-W.; Inserra, C.; Arcavi, I.; Blanchard, P. K.; Cartier, R.; Chambers, K. C.; Childress, M. J.; Chornock, R.; Cowperthwaite, P. S.; Drout, M.; Flewelling, H. A.; Fraser, M.; Gal-Yam, A.; Galbany, L.; Harmanen, J.; Holoien, T. W.-S.; Hosseinzadeh, G.; Howell, D. A.; Huber, M. E.; Jerkstrand, A.; Kankare, E.; Kochanek, C. S.; Lin, Z.-Y.; Lunnan, R.; Magnier, E. A.; Maguire, K.; McCully, C.; McDonald, M.; Metzger, B. D.; Milisavljevic, D.; Mitra, A.; Reynolds, T.; Saario, J.; Shappee, B. J.; Smith, K. W.; Valenti, S.; Villar, V. A.; Waters, C.; Young, D. R.

    2016-07-01

    We present observations of SN 2015bn (=PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift z = 0.1136. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter ({M}U≈ -23.1) and in a fainter galaxy ({M}B≈ -16.0) than other SLSNe at z˜ 0.1. We used this opportunity to collect the most extensive data set for any SLSN I to date, including densely sampled spectroscopy and photometry, from the UV to the NIR, spanning ‑50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30–50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20–30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a ≳ 10 M {}ȯ stripped progenitor exploding with ˜ {10}51 erg kinetic energy, forming a magnetar with a spin-down timescale of ˜20 days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario—interaction with ˜20 M {}ȯ of dense, inhomogeneous circumstellar material—can be tested with continuing radio follow-up.

  1. SN 2015BN: A Detailed Multi-wavelength View of a Nearby Superluminous Supernova

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Berger, E.; Smartt, S. J.; Margutti, R.; Kamble, A.; Alexander, K. D.; Chen, T.-W.; Inserra, C.; Arcavi, I.; Blanchard, P. K.; Cartier, R.; Chambers, K. C.; Childress, M. J.; Chornock, R.; Cowperthwaite, P. S.; Drout, M.; Flewelling, H. A.; Fraser, M.; Gal-Yam, A.; Galbany, L.; Harmanen, J.; Holoien, T. W.-S.; Hosseinzadeh, G.; Howell, D. A.; Huber, M. E.; Jerkstrand, A.; Kankare, E.; Kochanek, C. S.; Lin, Z.-Y.; Lunnan, R.; Magnier, E. A.; Maguire, K.; McCully, C.; McDonald, M.; Metzger, B. D.; Milisavljevic, D.; Mitra, A.; Reynolds, T.; Saario, J.; Shappee, B. J.; Smith, K. W.; Valenti, S.; Villar, V. A.; Waters, C.; Young, D. R.

    2016-07-01

    We present observations of SN 2015bn (=PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift z = 0.1136. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter ({M}U≈ -23.1) and in a fainter galaxy ({M}B≈ -16.0) than other SLSNe at z˜ 0.1. We used this opportunity to collect the most extensive data set for any SLSN I to date, including densely sampled spectroscopy and photometry, from the UV to the NIR, spanning -50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30-50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20-30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a ≳ 10 M {}⊙ stripped progenitor exploding with ˜ {10}51 erg kinetic energy, forming a magnetar with a spin-down timescale of ˜20 days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario—interaction with ˜20 M {}⊙ of dense, inhomogeneous circumstellar material—can be tested with continuing radio follow-up.

  2. SN 2007bg: the complex circumstellar medium around one of the most radio-luminous broad-lined Type Ic supernovae

    NASA Astrophysics Data System (ADS)

    Salas, P.; Bauer, F. E.; Stockdale, C.; Prieto, J. L.

    2013-01-01

    In this paper we present the results of the radio light curve and X-ray observations of broad-lined Type Ic (Ic-BL) SN 2007bg. The light curve shows three distinct phases of spectral and temporal evolution, implying that the supernova (SN) shock likely encountered at least three different circumstellar medium regimes. We interpret this as the progenitor of SN 2007bg having at least two distinct mass-loss episodes (i.e. phases 1 and 3) during its final stages of evolution, yielding a highly stratified circumstellar medium. Modelling the phase 1 light curve as a freely expanding, synchrotron-emitting shell, self-absorbed by its own radiating electrons, requires a progenitor mass-loss rate of skew4dot{M}≈ 1.9× 10^{-6}(v_w/1000 km s^{-1}) M⊙ yr-1 for the last t ˜ 20(vw/1000 km s-1) yr before explosion and a total energy of the radio-emitting ejecta of E ≈ 1 × 1048 erg 10 d after explosion. This places SN 2007bg among the most energetic Type Ib/c events. We interpret the second phase as a sparser `gap' region between the two winds stages. Phase 3 shows a second absorption turn-on before rising to a peak luminosity 2.6 times higher than in phase 1. Assuming this luminosity jump is due to a circumstellar medium density enhancement from a faster previous mass-loss episode, we estimate that the phase 3 mass-loss rate could be as high as skew4dot{M}lesssim 4.3× 10^{-4}(v_w/1000 km s^{-1}) M⊙ yr-1. The phase 3 wind would have transitioned directly into the phase 1 wind for a wind speed difference of ≈2. In summary, the radio light curve provides robust evidence for dramatic global changes in at least some Ic-BL progenitors just prior (˜10-1000 yr) to explosion. The observed luminosity of this SN is the highest observed for a non-gamma-ray-burst Ic-BL SN, reaching L8.46 GHz ≈ 1 × 1029 erg Hz-1 s-1, ˜567 d after explosion.

  3. Shock and Awe: Measuring the Expansion of the Shock Front of Supernova Remnant SN1006

    NASA Astrophysics Data System (ADS)

    Dills, Sidney; McKinney, L.; Moffett, D. A.; Reynoso, E.

    2014-01-01

    We have determined the expansion of the supernova remnant (SNR) of SN1006 over a seven-year period, using data collected in 2003 and 2010. The data was calibrated and imaged using Miriad and CASA programming before we stacked the two images to accurately assess the expansion rate. Our data was collected from the Very Large Array (VLA) in New Mexico and Australian Telescope Compact Array (ATCA). The 2003 epoch observations were conducted at the ATCA and the VLA. The 2010 epoch observations were conducted only at the ATCA. We processed the data using the Miriad and CASA software packages, which allowed us to perform calibration and imaging of radio interferometer visibility data. We deconvolved the raw images using CLEAN and MAXEN (maximum entropy deconvolution) to remove spurious side lobes, resulting in epoch images with a synthesized beamwidth of 6.0 arcseconds per beam. We used the 2010 image as a template to align the 2003 image and to match resolution. A difference image formed from the two epoch images reveals an obvious expansion of the SNR. We measured the expansion rate at nine points along the shell of the remnant. We found that the expansion rate varied across the remnant’s shell. The greatest amount of expansion measured was 5.71 arcseconds over seven years, which for a distance of 2.2 kpc, has the remnant moving at 8,500 km/s. The average expansion measured across the shell was 4.25 arcseconds over seven years.

  4. A Swift Look at SN 2011fe: The Earliest Ultraviolet Observations of a Type Ia Supernova

    NASA Technical Reports Server (NTRS)

    Oates, Samantha; Holland, Stephen; Immler, Stefan; Brown, Peter J.; Dawson, Kyle S.; DePasquale, Massimiliano; Gronwall, Caryl; Kuin, Paul; Mazzali, Paolo; Miline, Peter; Siegel, Michael

    2012-01-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well-defined, with approx. 20 data points per filter in the 5 days after explosion. With these early UV observations, we extend the near-UV template of SNe Ia to earlier times for comparison with observations at low and high redshift and report fits from semiempirical models of the explosion. We find the early UV count rates to be well fit by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. We find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  5. RE-EXAMINATION OF THE EXPECTED GAMMA-RAY EMISSION OF SUPERNOVA REMNANT SN 1987A

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5–50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ∼10{sup −13} erg cm{sup −2} s{sup −1}. This flux should decrease by a factor of about two over the next 10 years.

  6. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2012-05-01

    We report two epochs of Chandra-ACIS X-ray imaging spectroscopy of the nearby bright Type IIn supernova SN 2010jl, taken around two months and then a year after the explosion. The majority of the X-ray emission in both spectra is characterized by a high temperature ({approx}> 10 keV) and is likely to be from the forward shocked region resulting from circumstellar interaction. The absorption column density in the first spectrum is high ({approx}10{sup 24} cm{sup -2}), more than three orders of magnitude higher than the Galactic absorption column, and we attribute it to absorption by circumstellar matter. In the second epoch observation, the column density has decreased by a factor of three, as expected for shock propagation in the circumstellar medium. The unabsorbed 0.2-10 keV luminosity at both epochs is {approx}7 Multiplication-Sign 10{sup 41} erg s{sup -1}. The 6.4 keV Fe line clearly present in the first spectrum is not detected in the second spectrum. The strength of the fluorescent line is roughly that expected for the column density of circumstellar gas, provided the Fe is not highly ionized. There is also evidence for an absorbed power-law component in both spectra, which we attribute to a background ultraluminous X-ray source.

  7. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ˜10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  8. SN 2010mb: Direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material

    SciTech Connect

    Ben-Ami, Sagi; Gal-Yam, Avishay; Rabinak, Itay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Mazzali, Paolo A.; Gnat, Orly; Modjaz, Maryam; Sullivan, Mark; Bildsten, Lars; Poznanski, Dovi; Bloom, Joshua S.; Nugent, Peter E.; Horesh, Assaf; Kulkarni, Shrinivas R.; Perley, Daniel; Kasliwal, Mansi M.; Quimby, Robert; Xu, Dong

    2014-04-10

    We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (∼600 days) that cannot be powered by {sup 56}Ni/{sup 56}Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (∼10{sup 9} cm{sup –3}). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ∼3 M {sub ☉}. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature.

  9. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    PubMed

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-15

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf. PMID:22170681

  10. Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NASA Technical Reports Server (NTRS)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; vanderHorst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; Law, Nicolas M.; Poznanski, Dovi; Shara, Michael

    2012-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.

  11. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    PubMed

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-14

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

  12. The Mid-infrared Light Curve of Nearby Core-collapse Supernova SN 2011dh (PTF 11eon)

    NASA Astrophysics Data System (ADS)

    Helou, George; Kasliwal, Mansi M.; Ofek, Eran O.; Arcavi, Iair; Surace, Jason; Gal-Yam, Avishay

    2013-11-01

    We present Spitzer observations at 3.6 and 4.5 μm of the supernova SN 2011dh (PTF 11eon) in M51 from 18 days to 625 days after explosion. The mid-infrared emission peaks at 24 days after explosion at a few ×107 L ⊙, and decays more slowly than the visible-light bolometric luminosity. The infrared color temperature cools for the first 90 days and then is constant. Simple numerical models of a thermal echo can qualitatively reproduce the early behavior. At late times, the mid-IR light curve cannot be explained by a simple thermal echo model, suggesting additional dust heating or line emission mechanisms. We also propose that thermal echoes can serve as effective probes to uncover supernovae in heavily obscured environments, and speculate that under the right conditions, integrating the early epoch of the mid-infrared light curve may constrain the total energy in the shock breakout flash.

  13. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-08-20

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

  14. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Astrophysics Data System (ADS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kirshner, R. P.; Kudritzki, R.-P.; Luppino, G. A.; Lupton, R. H.; Magnier, E. A.; Monet, D. G.; Morgan, J. S.; Onaka, P. M.; Price, P. A.; Stubbs, C. W.; Tonry, J. L.; Wainscoat, R. J.; Waterson, M. F.

    2012-09-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ~4 days after explosion. The supernova (SN) had a peak luminosity, MR ≈ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si ≈ 19 × 103 km s-1 at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, M Ni = 0.9 M ⊙. Applying scaling relations to the light curve, we estimate a total ejecta mass, M ej ≈ 4.7 M ⊙, and total kinetic energy, EK ≈ 11 × 1051 erg. The ratio of M Ni to M ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E γ <~ 6 × 1048 erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E >~ 1048 erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters

  15. SN 2010ay Is a Luminous and Broad-Lined Type Ic Supernova Within a Low-Metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2012-01-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just approximately 4 days after explosion. The supernova (SN) had a peak luminosity, MR approx. -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si (is) approx. 19×10(exp 3) km s-1 at approximately 40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines approximately 2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, MNi = 0.9 solar mass. Applying scaling relations to the light curve, we estimate a total ejecta mass, Mej (is) approx. 4.7 solar mass, and total kinetic energy, EK (is) approx. 11 × 10(exp 51) erg. The ratio of MNi to Mej is approximately 2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and (is) approximately 0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E(gamma) (is) approximately less than 6 × 10(exp 48) erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E (is) approximately greater than 10(exp 48) erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF

  16. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    SciTech Connect

    Huang, Fang; Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin; Zhang, Jujia; Brown, Peter J.; Zampieri, Luca; Pumo, Maria Letizia; Zhang, Tianmeng E-mail: wang_xf@mail.tsinghua.edu.cn

    2015-07-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.

  17. Type IIb supernova SN 2011dh: Spectra and photometry from the ultraviolet to the near-infrared

    SciTech Connect

    Marion, G. H.; Kirshner, Robert P.; Foley, Ryan J.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Challis, Peter; Chornock, Ryan; Esquerdo, Gilbert A.; Falco, Emilio E.; Friedman, Andrew S.; Vinko, Jozsef; Bloom, Joshua S.; Chevalier, Roger A.; Culliton, Chris; Curtis, Jason L.; Everett, Mark E.; France, Kevin; Fransson, Claes; Garnavich, Peter; and others

    2014-02-01

    We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2000 Å in the ultraviolet (UV) to 2.4 μm in the near-infrared (NIR). Optical spectra provide line profiles and velocity measurements of H I, He I, Ca II, and Fe II that trace the composition and kinematics of the supernova (SN). NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the Space Telescope Imaging Spectrograph reveals that the UV flux for SN 2011dh is low compared to other SN IIb. Modeling the spectrum with SYNOW suggests that the UV deficit is due to line blanketing from Ti II and Co II. The H I and He I velocities in SN 2011dh are separated by about 4000 km s{sup –1} at all phases. A velocity gap is consistent with models for a preexplosion structure in which a hydrogen-rich shell surrounds the progenitor. We estimate that the H shell of SN 2011dh is ≈8 times less massive than the shell of SN 1993J and ≈3 times more massive than the shell of SN 2008ax. Light curves (LCs) for 12 passbands are presented: UVW2, UVM2, UVW1, U, u', B, V, r', i', J, H, and K{sub s} . In the B band, SN 2011dh reached peak brightness of 13.17 mag at 20.0 ± 0.5 after the explosion. The maximum bolometric luminosity of 1.8 ± 0.2 × 10{sup 42} erg s{sup –1} occurred ≈22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations, and the NIR contribution increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9, and 1% on day 34. We compare the bolometric LCs of SN 2011dh, SN 2008ax, and SN 1993J. The LC are very different for the first 12 days after the explosions, but all three SN IIb display similar peak luminosities, times of peak, decline rates, and colors after maximum

  18. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Chornock, R.; Foley, R. J.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2011-01-01

    We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN2010ay at z approx 0.067 imaged by the Pan-STARRS1 3pi survey just approx 4 days after explosion. Combining our photometric observations with those available in the literature, we estimate the explosion date and the peak luminosity of the SN, M(sub R) approximately equals 20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ibc ever discovered. We measure the photospheric expansion velocity of the explosion from our spectroscopic follow-up observations, v(sub ph) approximately equals 19.2 X 10 (exp 3) km/s at approx 40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN2010ay is 2 - 5 X higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of Ni-56, M(sub Ni) = 0.9(+0.1/-0.1) solar mass. Our modeling of the light-curve points to a total ejecta mass, M(sub ej) approx 4.7 Solar Mass, and total kinetic energy, E(sub K,51) approximately equals 11. Thus the ratio of M(sub Ni) to M(sub ej) is at least twice as large for SN2010ay than in GRB-SNe and may indicate an additional energy reservoir. We also measure the metallicity (log(O/H) + 12 = 8.19) of the explosion site within the host galaxy using a high S/N optical spectrum. Our abundance measurement places this SN in the low-metallicity regime populated by GRB-SNe, and approx 0.2(0.5) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. Despite striking similarities to the recent GRB-SN100316D/2010bh, we show that gamma-ray observations rule out an associated GRB with E(sub gamma) approx < 6 X 10(exp 48) erg (25-150 keV). Similarly, our deep

  19. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  20. Early Radio and X-Ray Observations of the Youngest nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NASA Astrophysics Data System (ADS)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; de Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; Law, Nicholas M.; Poznanski, Dovi; Shara, Michael

    2012-02-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of \\dot{M}\\lesssim 10^{-8}(w/100\\,km\\,s^{-1})\\,M_{\\odot }\\,yr^{-1} from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  1. Metamorphosis of SN 2014C: Delayed Interaction between a Hydrogen Poor Core-collapse Supernova and a Nearby Circumstellar Shell

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Challis, P.; Chornock, R.; Drout, M. R.; Fransson, C.; Fesen, R. A.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Mackey, J.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Soderberg, A. M.; Zauderer, B. A.

    2015-12-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30-300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  2. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    SciTech Connect

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Chornock, R.; Fransson, C.; Fesen, R. A.; Mackey, J.; and others

    2015-12-20

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  3. On the nature of Type IIn/Ia-CSM supernovae: optical and near-infrared spectra of SN 2012ca and SN 2013dn

    NASA Astrophysics Data System (ADS)

    Fox, Ori D.; Silverman, Jeffrey M.; Filippenko, Alexei V.; Mauerhan, Jon; Becker, Juliette; Borish, H. Jacob; Cenko, S. Bradley; Clubb, Kelsey I.; Graham, Melissa; Hsiao, Eric; Kelly, Patrick L.; Lee, William H.; Marion, G. H.; Milisavljevic, Dan; Parrent, Jerod; Shivvers, Isaac; Skrutskie, Michael; Smith, Nathan; Wilson, John; Zheng, Weikang

    2015-02-01

    A growing subset of Type Ia supernovae (SNe Ia) shows evidence via narrow emission lines for unexpected interaction with a dense circumstellar medium (SNe IIn/Ia-CSM). The precise nature of the progenitor, however, remains debated owing to spectral ambiguities arising from a strong contribution from the CSM interaction. Late-time spectra offer potential insight if the post-shock cold, dense shell becomes sufficiently thin and/or the ejecta begin to cross the reverse shock. To date, only a few high-quality spectra of this kind exist. Here we report on the late-time optical and infrared spectra of the SNe Ia-CSM 2012ca and 2013dn. These SNe Ia-CSM spectra exhibit low [Fe III]/[Fe II] ratios and strong [Ca II] at late epochs. Such characteristics are reminiscent of the super-Chandrasekhar-mass candidate SN 2009dc, for which these features suggested a low-ionization state due to high densities, although the broad Fe features admittedly show similarities to the blue `quasi-continuum' observed in some core collapse SNe Ibn and IIn. Neither SN 2012ca nor any of the other SNe Ia-CSM in this paper show evidence for broad oxygen, carbon, or magnesium in their spectra. Similar to the interacting Type IIn SN 2005ip, a number of high-ionization lines are identified in SN 2012ca, including [S III], [Ar III], [Ar X], [Fe VIII], [Fe X], and possibly [Fe XI]. The total bolometric energy output does not exceed 1051 erg, but does require a large kinetic-to-radiative conversion efficiency. All of these observations taken together suggest that SNe Ia-CSM are more consistent with a thermonuclear explosion than a core collapse event, although detailed radiative transfer models are certainly necessary to confirm these results.

  4. X-ray emission from the remnant of a carbon deflagration supernova - SN 1572 (Tycho)

    SciTech Connect

    Itoh, H.; Masai, K.; Nomoto, K.

    1988-11-01

    A spherically symmetric hydrodynamic code is used to study the evolution of a young supernova remnant on the basis of a carbon deflagration model for type Ia supernovae. The nonequilibrium X-ray emission has been determined for the elemental composition of the model. The discrepancy between the derived intensity of the Fe D-alpha line blend and the observed value is eliminated by assuming that the stratification of the elemental composition in the supernova ejecta is partially removed by mixing. 59 references.

  5. "New" B and V Photometry of the "Old" Type IA Supernova SN 1937C: Implications for HO

    NASA Astrophysics Data System (ADS)

    Pierce, Michael J.; Jacoby, George H.

    1995-12-01

    We have digitized and analyzed the original Baade and Zwicky 18 in. Palomar Schmidt films of the type Ia supernova SN 1937C. The data set consists of 76 films in the photographic bandpass mpg and a series of 50 previously unreduced photovisual (m_pv_) films. These data were supplemented by the three known, prediscovery plates of SN 1937C taken by Leutenegger and Grenat. The films and plates were scanned using the KPNO PDS microdensitometer and calibrated by fitting the integrated photographic density to a magnitude sequence of local standards on each film/plate. The resulting calibrations have typical rms dispersions of 0.06 and 0.04 mag for m_pg_ and m_pv_, respectively. Our magnitudes at the earliest epochs are systematically 0.30 mag fainter than those reported by Baade & Zwicky, with the two datasets converging by the eighth observation, about 11 days after maximum. We converted our mpg and mpv photometry to B and V using transformations determined both theoretically using synthetic photometry of spectrophotometric standards, and empirically using the local standard stars. The B and V light curves and B - V color evolution of SN 1937C were fitted with template light curves from previously well-observed supernovae to obtain B_max_= 8.94+/- 0.03, V_max_ = 9.00+/-0.03, and (B - V)_B(max)_ = -0.08 +/- 0.04. These correspond to M(B_max_)= - 19.42 and M( V_max_)= - 19.36 when combined with the Cepheid distance to IC 4182, the host galaxy. In comparing our results with the visual photometry of Beyer we found evidence for a color term which when applied to Beyer's data, leads to V_max_ = 8.87. We stress the importance of determining accurate color terms in the photometry of SN Ia due to the wide color range (from B - V ~ 0 to B - V ~1) through which they evolve over the first 30 days after maximum. The SN 1937C light curves were best fit by templates with very slow rates of decline. The correlation between decline rate and luminosity implies that SN 1937C, with {DELTA

  6. Cepheid Calibration of the Peak Brightness of Type IA Supernovae. VI. SN 1960F in NGC 4496A

    NASA Astrophysics Data System (ADS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Tammann, G. A.; Macchetto, F. D.; Panagia, N.

    1996-12-01

    Cepheid variables have been found in the SBcII galaxy NGC 4496A, parent to the Type Ia supernova 1960F. Of the 130 variables discovered with the Hubble Space Telescope (HST) over a 70 day observing internal from 1994 June to August, comprising 17 epochs in the F555W band and four epochs in the F814W band, 95 are bona fide Cepheids. The periods range from 7 days to greater than 70 days, with the mean magnitudes ranging from = 24.4 to 26.8. The distance modulus of NGC 4496A, based on the Cepheids, is (rn-Al)0 = 31.03±0.14, where a formal reddening of E(V-I) = 0.04±0.06 derived from the colors of the Cepheids has been used to account for possible extinction. There is no measurable differential reddening over the field. The absolute magnitudes of SN 1960F at maximum are M(B)max = -19.43±0.17 and M(V)max =-19.52±0.21. Combining these absolute magnitudes with the Hubble diagrams of "Branch normal" Type Ia supernovae (SNe Ia), determined earlier, gives Hubble constants, based on SN 1960F alone, of HO(B)=56±9 km s-1, (1) and H0(V) = 55±9 km s-1. (2) Combining the calibration of SN 1960F here with six other extant calibrations set out in Paper VII gives interim mean absolute magnitude calibrations of M(B) = -19.45±0.07 and 4M(V) max = -19.47±0.07, with no evidence for appreciable dependence on the light-curve decay rate. These mean interim calibrations require H0(B) = 57±4 km s-1 and H0(V) = 58±4 km s-1 Mpc-1.

  7. ENERGY PARTITION BETWEEN ENERGETIC ELECTRONS AND TURBULENT MAGNETIC FIELD IN SUPERNOVA REMNANT RX J1713.7-3946

    SciTech Connect

    Yang Chuyuan; Liu Siming E-mail: chyy@ynao.ac.cn

    2013-08-20

    Current observations of supernova remnant (SNR) RX J1713.7-3946 favor the leptonic scenario for the TeV emission, where the radio to X-ray emission is produced via the synchrotron process and the {gamma}-ray emission is produced via the inverse Comptonization of soft background photons, and the electron distribution can be inferred from the observed {gamma}-ray spectrum with a spectral inversion method. It is shown that the observed correlation between the X-ray and {gamma}-ray brightness of SNR RX J1713.7-3946 can be readily explained with the assumption that the energy density of energetic electrons is proportional to that of the magnetic field in such a scenario. A two-dimensional magnetohydrodynamic simulation is then carried out to model the overall emission spectrum. It is found that the total energy of electrons above {approx}1 GeV is equal to that of the magnetic field. This is the first piece of observational evidence for energy equipartition between energetic electrons and magnetic field in the downstream of strong collisionless astrophysical shocks of SNRs.

  8. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L. E-mail: panagia@stsci.edu E-mail: mrupen@nrao.edu E-mail: clmw@mit.edu

    2011-10-20

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of {lambda}{lambda}1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at {lambda}2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  9. X-Ray Observations of Type Ia Supernovae with Swift: Evidence of Circumstellar Interaction for SN 2005ke

    NASA Astrophysics Data System (ADS)

    Immler, S.; Brown, P. J.; Milne, P.; The, L.-S.; Petre, R.; Gehrels, N.; Burrows, D. N.; Nousek, J. A.; Williams, C. L.; Pian, E.; Mazzali, P. A.; Nomoto, K.; Chevalier, R. A.; Mangano, V.; Holland, S. T.; Roming, P. W. A.; Greiner, J.; Pooley, D.

    2006-09-01

    We present a study of the early (days to weeks) X-ray and UV properties of eight Type Ia supernovae (SNe Ia) that have been extensively observed with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on board Swift, ranging from 5 to 132 days after the outburst. SN 2005ke is tentatively detected (at a 3-3.6 σ level of significance) in X-rays based on deep monitoring with the XRT ranging from 8 to 120 days after the outburst. The inferred X-ray luminosity [L0.3-2=(2+/-1)×1038 ergs s-1 0.3-2 keV band] is likely caused by interaction of the SN shock with circumstellar material (CSM) deposited by a stellar wind from the progenitor's companion star with a mass-loss rate of M˙~3×10-6 Msolar yr-1 (vw/10 km s-1). Evidence of CSM interaction in X-rays is independently confirmed by an excess of UV emission, as observed with the UVOT on board Swift, starting around 35 days after the explosion. The nondetection of SN 2005ke with Chandra 105 days after the outburst implies a rate of decline steeper than LX~t-0.75, consistent with the decline expected from the interaction of the SN shock with a spherically symmetric CSM (t-1). None of the other seven SNe Ia is detected in X-rays or shows a UV excess, which allows us to put tight constraints on the mass-loss rates of the progenitor systems.

  10. ACCELERATING VERY FAST GAS IN THE SUPERNOVA IMPOSTOR SN 2009ip WITH JETS FROM A STELLAR COMPANION

    SciTech Connect

    Tsebrenko, Danny; Soker, Noam E-mail: soker@physics.technion.ac.il

    2013-11-10

    Using hydrodynamic numerical simulations we show that high-velocity ejecta with v ∼ 10{sup 4} km s{sup –1} in the outbursts of the supernova impostor SN 2009ip and similar luminous blue variable (LBV) stars can be explained by the interaction of fast jets, having v {sub jet} ∼ 2000-3000 km s{sup –1}, with a circumbinary shell (extended envelope). The density profile in the shell is very steep such that the shock wave, that is excited by the jets' interaction with the shell, accelerates to high velocities as it propagates outward. The amount of very fast ejecta is small, but sufficient to account for some absorption lines. Such an extended envelope can be formed from the binary interaction and/or the unstable phase of the LBV primary star. The jets themselves are launched by the more compact secondary star near periastron passages.

  11. No evidence for an early seventeenth-century Indian sighting of Kepler's supernova (SN1604)

    NASA Astrophysics Data System (ADS)

    van Gent, R. H.

    2013-03-01

    In a recent paper in this journal, Sule et al. (2011) argued that an early 17th-century Indian mural of the constellation Sagittarius with a dragon-headed tail indicated that the bright supernova of 1604 was also sighted by Indian astronomers. In this paper it will be shown that this identification is based on a misunderstanding of traditional Islamic astrological iconography and that the claim that the mural represents an early 17th-century Indian sighting of the supernova of 1604 has to be rejected.

  12. SN 2011hw: helium-rich circumstellar gas and the luminous blue variable to Wolf-Rayet transition in supernova progenitors

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Mauerhan, Jon C.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Filippenko, Alexei V.; Cenko, S. Bradley; Clubb, Kelsey I.; Kandrashoff, Michael T.

    2012-11-01

    We present optical photometry and spectroscopy of the peculiar Type IIn/Ibn supernova (SN) 2011hw. Its optical light curve exhibits a slower decline rate than that of normal SNe Ibc, with a peak absolute magnitude of -19.5 (unfiltered) and a secondary rise 20-30 d later of -18.3 mag (R). Spectra of SN 2011hw are highly unusual compared to those of normal SN types, most closely resembling the spectra of SNe Ibn. We centre our analysis on comparing SN 2011hw to the well-studied Type Ibn SN 2006jc. While the two SNe have many important similarities, the differences are quite telling: compared to SN 2006jc, SN 2011hw has weaker He I and Ca II lines and relatively stronger H lines, its light curve exhibits a higher visual-wavelength luminosity and slower decline rate, and emission lines associated with the progenitor's circumstellar material (CSM) are narrower. One can reproduce the unusual continuum shape of SN 2011hw with roughly equal contributions from a 6000-K blackbody and a spectrum of SN 2006jc. We attribute this blackbody-like emission component and many other differences between the two SNe to a small amount of additional H in SN 2011hw, analogous to the small H mass that makes SNe IIb differ from SNe Ib. Slower speeds in the CSM and somewhat elevated H content suggest a connection between SN 2011hw's progenitor and Ofpe/WN9 stars, which have been associated with luminous blue variables (LBVs) in their hot quiescent phases, and are H poor - but not H free like classical Wolf-Rayet (WR) stars. Comparisons between SN 2011hw and SN 2006jc can be largely understood if their progenitors exploded at different points in the transitional evolution from an LBV to a WR star.

  13. SN 2011ht: confirming a class of interacting supernovae with plateau light curves (Type IIn-P)

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Smith, Nathan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Morgan, Adam N.; Cenko, S. Bradley; Ganeshalingam, Mohan; Clubb, Kelsey I.; Bloom, Joshua S.; Matheson, Thomas; Milne, Peter

    2013-05-01

    We present photometry and spectroscopy of the Type IIn supernova (SN) 2011ht, identified previously as a possible SN impostor. The light curve exhibits an abrupt transition from a well-defined ˜120 d plateau to a steep bolometric decline, plummeting 4-5 mag in the optical and 2-3 mag in the infrared in only ˜10 d. Leading up to peak brightness (MV = -17.4 mag), a hot emission-line spectrum exhibits strong signs of interaction with circumstellar material (CSM), in the form of relatively narrow P-Cygni features of H I and He I superimposed on broad Lorentzian wings. For the latter half of the plateau phase, the spectrum exhibits strengthening P-Cygni profiles of Fe II, Ca II and Hα. By day 147, after the plateau has ended, the SN entered the nebular phase, heralded by the appearance of forbidden transitions of [O I], [O II] and [Ca II] over a weak continuum. At this stage, the light curve exhibits a low optical luminosity that is comparable to that of the most subluminous Type II-P supernovae, and a relatively fast visual wavelength decline that appeared to be significantly steeper than the 56Co decay rate. However, the total pseudo-bolometric decline, including the infrared luminosity, is consistent with 56Co decay, and implies a low 56Ni mass in the range 0.006-0.01 M⊙, near the lower end of the range exhibited by SNe II-P. We therefore characterize SN 2011ht as a core-collapse SN very similar to the peculiar SNe IIn 1994W and 2009kn. These three SNe appear to define a subclass, which are Type IIn based on their spectrum, but that also exhibit well-defined plateaus and produce low 56Ni yields. We therefore suggest Type IIn-P as a name for this subclass. The absence of observational signatures of high-velocity material from SNe IIn-P could be the result of an opaque shell at the shocked SN-CSM interface, which remains optically thick longer than the time-scale for the inner ejecta to cool and become transparent. Possible progenitors of SNe IIn-P, consistent

  14. Underpinning energetics of lithium bonding and stability in the Li-Pt-Sn system

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2012-10-01

    Within the Li-Pt-Sn system, we examine the electronic structures and Li-binding of LiPtSn2, Li2PtSn and Li3Pt2Sn3 with fluorite-related crystal structures. The structures with totally de-intercalated lithium keep the characteristics of the pristine ternary compound with a reduction of the volume. In Li3Pt2Sn3 the binding energies of lithium belonging to three crystallographically inequivalent Wyckoff sites are different and point to distinct activities of de-intercalation concomitant with site-selective bonding magnitudes. The derived potentials are within the range of non-oxide binary and ternary lithium based compounds and indicate the possibility of at least partial delithiation.

  15. Neutrino Signal of Collapse-induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN 1987A

    NASA Astrophysics Data System (ADS)

    Blum, Kfir; Kushnir, Doron

    2016-09-01

    Collapse-induced thermonuclear explosion (CITE) may explain core-collapse supernovae (CCSNe). We analyze the neutrino signal in CITE and compare it to the neutrino burst of SN 1987A. For strong (≳ {10}51 erg) CCSNe, such as SN 1987A, CITE predicts a proto-neutron star (PNS) accretion phase lasting up to a few seconds that is cut off by black hole (BH) formation. The neutrino luminosity can later be revived by accretion disk emission after a dead time of a few to a few tens of seconds. In contrast, the neutrino mechanism for CCSNe predicts a short (≲s) PNS accretion phase, followed by slowly declining PNS cooling luminosity. We repeat statistical analyses used in the literature to interpret the neutrino mechanism, and apply them to CITE. The first 1–2 s of the neutrino burst are equally compatible with CITE and with the neutrino mechanism. However, the data points toward a luminosity drop at t = 2–3 s, which is in some tension with the neutrino mechanism but can be naturally attributed to BH formation in CITE. The occurrence of neutrino signal events at 5 s suggests that, within CITE, the accretion disk formed by that time. We perform two-dimensional numerical simulations showing that CITE may be able to accommodate this disk formation time while reproducing the ejected 56Ni mass and ejecta kinetic energy within factors of 2–3 of observations. We estimate the accretion disk neutrino luminosity, finding it to be on the low side but compatible with the data to a factor of 10. Given comparable uncertainties in the disk luminosity simulation, we conclude that direct BH formation may have occurred in SN 1987A.

  16. Neutrino Signal of Collapse-induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN 1987A

    NASA Astrophysics Data System (ADS)

    Blum, Kfir; Kushnir, Doron

    2016-09-01

    Collapse-induced thermonuclear explosion (CITE) may explain core-collapse supernovae (CCSNe). We analyze the neutrino signal in CITE and compare it to the neutrino burst of SN 1987A. For strong (≳ {10}51 erg) CCSNe, such as SN 1987A, CITE predicts a proto-neutron star (PNS) accretion phase lasting up to a few seconds that is cut off by black hole (BH) formation. The neutrino luminosity can later be revived by accretion disk emission after a dead time of a few to a few tens of seconds. In contrast, the neutrino mechanism for CCSNe predicts a short (≲s) PNS accretion phase, followed by slowly declining PNS cooling luminosity. We repeat statistical analyses used in the literature to interpret the neutrino mechanism, and apply them to CITE. The first 1-2 s of the neutrino burst are equally compatible with CITE and with the neutrino mechanism. However, the data points toward a luminosity drop at t = 2-3 s, which is in some tension with the neutrino mechanism but can be naturally attributed to BH formation in CITE. The occurrence of neutrino signal events at 5 s suggests that, within CITE, the accretion disk formed by that time. We perform two-dimensional numerical simulations showing that CITE may be able to accommodate this disk formation time while reproducing the ejected 56Ni mass and ejecta kinetic energy within factors of 2-3 of observations. We estimate the accretion disk neutrino luminosity, finding it to be on the low side but compatible with the data to a factor of 10. Given comparable uncertainties in the disk luminosity simulation, we conclude that direct BH formation may have occurred in SN 1987A.

  17. Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Sullivan, M.; Filippenko, A. V.; Garnavich, P. M.; Clubb, K. I.; Maguire, K.; Pan, Y.-C.; Shappee, B.; Silverman, J. M.; Benetti, S.; Hachinger, S.; Nomoto, K.; Pian, E.

    2015-07-01

    A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, `ρ-11fe', was extended to lower velocities to include the regions that emit at nebular epochs. Model ρ-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [Fe II] and [Fe III] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is ˜0.47 ± 0.05 M⊙. The bulk of 56Ni has an outermost velocity of ˜8500 km s-1. The mass of stable iron is ˜0.23 ± 0.03 M⊙. Stable Ni has low abundance, ˜10-2 M⊙. This is sufficient to reproduce an observed emission line near 7400 Å. A sub-Chandrasekhar explosion model with mass 1.02 M⊙ and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.

  18. SALT spectroscopic classification of ASASSN-16cc (SN 2016aqf) as a type-II supernova

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Miszalski, B.

    2016-02-01

    We obtained SALT (+RSS) spectroscopy of ASASSN-16cc (SN 2016aqf) on 2016 February 27.9 UT, covering the wavelength range 360-920 nm. The spectrum features a blue continuum with prominent P-Cygni lines of H and He. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows a good match to the type-IIP SN 2014et at -3 days, confirming the results of Hosseinzadeh et al. (ATel 8748).

  19. Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts . The distance to SN 2013eq

    NASA Astrophysics Data System (ADS)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.

    2016-08-01

    Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 ± 0.001) prompted us to investigate the implications of the difference between "angular" and "luminosity" distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, θ, has to be corrected by a factor of (1 + z)2. Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of DL = 151 ± 18 Mpc and DL = 164 ± 20 Mpc by making use of different sets of dilution factors taken from the literature. Application of the standardized candle method for Type II-P SNe results in an independent luminosity distance estimate (DL = 168 ± 16 Mpc) that is consistent with the EPM estimate. Spectra of SN 2013eq are available in the Weizmann Interactive Supernova data REPository (WISeREP): http://wiserep.weizmann.ac.il

  20. The Shape of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  1. Spectroscopic Classification of SN 2016aqt as an Overluminous Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, L.; Hosseinzadeh, G.; Yang, Y.; Arcavi, I.; Howell, D. A.; McCully, C.; Valenti, S.; Wang, X.; Huang, F.; Zhai, M.; Zhang, T.; Wang, L.

    2016-03-01

    We obtained two optical spectra of SN 2016aqt, discovered by R. Gagliano, J. Newton, R. Post, and T. Puckett (POSS), on 2016 March 2.7 UT with the Xinglong 2.16-m telescope (China) and on 2016 March 4.7 UT with the robotic FLOYDS instrument mounted on the LCOGT 2-meter telescope in Siding Spring (Australia).

  2. SALT spectroscopic classification of PS16eot (= SN 2016hfb) as a type-II supernova

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Miszalski, B.; Colmenero, E. Romero

    2016-10-01

    We obtained SALT (+RSS) spectroscopy of PS16eot (= SN 2016hfb) on 2016 Oct 19.9 UT, covering the wavelength range 340-920 nm. Narrow emission lines confirm the redshift of the host galaxy UGC 2372 at z = 0.026 (Haynes et al. 1997, AJ, 113, 1197; via NED).

  3. Spectroscopic Classification of SN 2016grz as a Young Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Xu, Zhijian; Tan, Hanjie; Zhang, Tianmeng

    2016-10-01

    We obtained an optical spectrum (range 310-810 nm) of SN 2016grz, discovered by the Tsinghua-NAOC Transient Survey, on UT Oct.01.9 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  4. SALT spectroscopic classification of LSQ16acz (= PS16bby = SN 2016bew) as a type-Ia supernova approaching maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of LSQ16acz (= PS16bby = SN 2016bew; Baltay et al. 2013, PASP, 125, 683) on 2016 Mar 14.9 UT, covering the wavelength range 340-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows LSQ16acz is a type-Ia supernova a few days before maximum light.

  5. Discovery of an expanding molecular bubble surrounding Tycho's supernova remnant (SN 1572): evidence for a single-degenerate progenitor

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Chen, Yang; Zhang, Zhi-Yu; Li, Xiang-Dong; Safi-Harb, Samar; Zhou, Xin; Zhang, Xiao

    2016-06-01

    Whether the progenitors of Type Ia Supernovae, single degenerate or double- degenerate white dwarf (WD) systems, is a highly debated topic. To address the origin of the Type Ia Tycho's supernova remnant (SNR), SN 1572, we have carried out a 12CO J=2‑1 mapping and a 3-mm line survey towards the remnant using the IRAM 30 m telescope. We show that Tycho is surrounded by a highly clumpy molecular bubble at the local standard of rest velocity V LSR 62 km/s which has an expanding velocity of 5 km/s and a mass of 220 M_{⊙}) (at the distance of 2.5 kpc). Enhanced 12CO J=2‑1 line emission relative to 12CO J=10 emission and possible line broadenings (in velocity range ‑64 to ‑60 km/s) are found at the northeastern boundary of the SNR where the shell is deformed and decelerated. These features, combined with the morphological correspondence between the expanding molecular bubble and Tycho, suggest that the SNR is associated with the molecular bubble at the velocity range from ‑66 km/s to ‑57 km/s. The most plausible origin for the expanding bubble is the fast outflow (with velocity >100 km/s) driven from the vicinity of a massive WD as it accreted matter from a non-degenerate companion star. The SNR has been expanding in the low-density wind-blown bubble and the shock wave has just reached the molecular cavity wall. The expanding bubble presents new evidence for the progenitor of Tycho being a single-degenerate system.

  6. Origin of pulsed emission from the young supernova remnant SN 1987A

    NASA Technical Reports Server (NTRS)

    Ruderman, M.; Kluzniak, W.; Shaham, Jacob

    1989-01-01

    To overcome difficulties in understanding the origin of the submillisecond optical pulses from SN 1987A a model similar to that of Kundt and Krotscheck for pulsed synchrotron emission from the Crab was applied. The interaction of the expected ultrarelativistic e(sup + or -) pulsar wind with the pulsar dipole electromagnetic wave reflected from the walls of a pulsar cavity within the SN 1987A nubula can generate pulsed optical emission with efficiency at most eta(sub max) is approximately equal to 10(exp -3). The maximum luminosity of the source is reproduced and other observational constraints can be satisfied for an average wind energy flow is approximately equal to 10(exp 38) erg/(s steradian) and for electron Lorentz factor gamma is approximately equal to 10(exp 5). This model applied to the Crab yields pulsations of much lower luminosity and frequency.

  7. Spectroscopic Classification of SN 2016gvd as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng

    2016-10-01

    We obtained an optical spectrum (range 320-840 nm) of SN 2016gvd, discovered by Krisztián Sárneczky, Róbert Szakáts et al.(see ATel #9646), on UT Oct.23.7 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  8. The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe

    NASA Astrophysics Data System (ADS)

    Mazzali, Paolo A.; Walker, Emma S.; Pian, Elena; Tanaka, Masaomi; Corsi, Alessandra; Hattori, Takashi; Gal-Yam, Avishay

    2013-07-01

    SN 2010ah, a very broad-lined Type Ic supernova (SN) discovered by the Palomar Transient Factory, was interesting because of its relatively high luminosity and the high velocity of the absorption lines, which was comparable to that of gamma-ray burst (GRB)/SNe, suggesting a high explosion kinetic energy. However, no GRB was detected in association with the SN. Here, the properties of SN 2010ah are determined with higher accuracy than previous studies through modelling. New Subaru telescope photometry is presented. A bolometric light curve is constructed taking advantage of the spectral similarity with SN 1998bw. Radiation transport tools are used to reproduce the spectra and the light curve. The results thus obtained regarding ejecta mass, composition and kinetic energy are then used to compute a synthetic light curve. This is in reasonable agreement with the early bolometric light curve of SN 2010ah, but a high abundance of 56Ni at high velocity is required to reproduce the early rise, while a dense inner core must be used to reproduce the slow decline at late phases. The high-velocity 56Ni cannot have been located on our line of sight, which may be indirect evidence for an off-axis, aspherical explosion. The main properties of SN 2010ah are: ejected mass Mej ≈ 3 M⊙; kinetic energy Ekin ≈ 1052 erg, M(56Ni) ≈ 0.25 M⊙. The mass located at v ≳ 0.1 c is ˜0.2 M⊙. Although these values, in particular the Ekin, are quite large for a Type Ic SN, they are all smaller (especially Mej) than those typical of GRB/SNe. This confirms the tendency for these quantities to correlate, and suggests that there are minimum requirements for a GRB/SN, which SN 2010ah may not meet although it comes quite close. Depending on whether a neutron star or a black hole was formed following core collapse, SN 2010ah was the explosion of a CO core of ˜5 to 6 M⊙, pointing to a progenitor mass of ˜24-28 M⊙.

  9. Supernova 2012aw - a high-energy clone of archetypal Type IIP SN 1999em

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Kumar, Brijesh; Sutaria, Firoza; Kumar, Brajesh; Roy, Rupak; Bhatt, V. K.; Pandey, S. B.; Chandola, H. C.; Sagar, Ram; Misra, Kuntal; Chakraborti, Sayan

    2013-08-01

    We present densely sampled UBVRI/griz photometric and low-resolution (6-10 Å) optical spectroscopic observations from 4 to 270 d after explosion of a newly discovered Type II SN 2012aw in a nearby (˜9.9 Mpc) galaxy M95. The light-curve characteristics of apparent magnitudes, colours, bolometric luminosity and the presence and evolution of prominent spectral features are found to have striking similarity with the archetypal IIP SNe 1999em, 1999gi and 2004et. The early time observations of SN 2012aw clearly detect minima in the light curve of V, R and I bands near 37 d after explosion and this we suggest to be an observational evidence for emergence of recombination phase. The mid-plateau MV magnitude (-16.67 ± 0.04) lies in between the bright (˜-18) and subluminous (˜-15) IIP SNe. The mass of nickel is 0.06 ± 0.01 M⊙. The SYNOW modelling of spectra indicate that the value and evolution of the photospheric velocity is similar to SN 2004et, but about ˜600 km s-1 higher than that of SNe 1999em and 1999gi at comparable epochs. This trend is more apparent in the line velocities of Hα and Hβ. A comparison of ejecta velocity properties with that of existing radiation-hydrodynamical simulations indicate that the energy of explosion lies in the range 1-2 × 1051 ergs; a further comparison of nebular phase [O I] doublet luminosity with SNe 2004et and 1987A indicate that the mass of progenitor star is about 14 to 15 M⊙. The presence of high-velocity absorption features in the mid-to-late plateau and possibly in early phase spectra show signs of interaction between ejecta and the circumstellar matter; being consistent with its early time detection at X-ray and radio wavebands.

  10. OISTER optical and near-infrared observations of the super-Chandrasekhar supernova candidate SN 2012dn: Dust emission from the circumstellar shell

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masayuki; Maeda, Keiichi; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S.; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-05-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from -11 to +140 d after the date of its B-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO (Optical and Infrared Synergetic Telescopes for Education and Research Target of Opportunity) program. The NIR light curves and color evolutions up to 35 days after the B-band maximum provided an excellent match with those of another SC SN 2009dc, providing further support to the nature of SN 2012dn as an SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from 30 d after the B-band maximum. The H- and Ks-band light curves exhibited much later maximum dates at 40 and 70 d after the B-band maximum, respectively, compared with those of normal SNe Ia. The H- and Ks-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating an NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to 4.8-6.4 × 10-2 pc. No emission lines were found in its early phase spectra, suggesting that the ejecta-circumstellar material interaction could not occur. On the other hand, we found no signature that strongly supports the scenario of dust formation. The mass-loss rate of the pre-explosion system is estimated to be 10-6-10-5 M⊙ yr-1, assuming that the wind velocity of the system is 10-100 km s-1, which suggests that the progenitor of SN 2012dn could be a recurrent nova system. We conclude that the progenitor of this SC SN could be explained by the single-degenerate scenario.

  11. OISTER optical and near-infrared observations of the super-Chandrasekhar supernova candidate SN 2012dn: Dust emission from the circumstellar shell

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masayuki; Maeda, Keiichi; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S.; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-10-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from -11 to +140 d after the date of its B-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO (Optical and Infrared Synergetic Telescopes for Education and Research Target of Opportunity) program. The NIR light curves and color evolutions up to 35 days after the B-band maximum provided an excellent match with those of another SC SN 2009dc, providing further support to the nature of SN 2012dn as an SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from 30 d after the B-band maximum. The H- and Ks-band light curves exhibited much later maximum dates at 40 and 70 d after the B-band maximum, respectively, compared with those of normal SNe Ia. The H- and Ks-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating an NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to 4.8-6.4 × 10-2 pc. No emission lines were found in its early phase spectra, suggesting that the ejecta-circumstellar material interaction could not occur. On the other hand, we found no signature that strongly supports the scenario of dust formation. The mass-loss rate of the pre-explosion system is estimated to be 10-6-10-5 M⊙ yr-1, assuming that the wind velocity of the system is 10-100 km s-1, which suggests that the progenitor of SN 2012dn could be a recurrent nova system. We conclude that the progenitor of this SC SN could be explained by the single-degenerate scenario.

  12. Radio Observations of SN 2008ha

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia

    2009-03-01

    I observed the peculiar SN 2008ha (CBET #1567) with the Very Large Array on 2008 Nov 21.99 UT at a frequency of 8.46 GHz. No radio source is detected at the optical SN position to a limit of 93 microJy (3 sigma). At a distance of 21 Mpc, this corresponds to a radio luminosity limit similar to those of nearby Type Ia supernovae (Panagia et al. 2006). It is also consistent with the observed radio luminosities for the nearest Type Ibc supernovae (e.g., SN 2002ap; Berger, Kulkarni & Chevalier 2002), but a factor of 10^3 and 10^5 below the radio luminosities of sub-energetic GRBs (Soderberg et al.

  13. Supernova hydrodynamics

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    1981-11-01

    The physics as well as astrophysics of the supernova (SN) phenomenon are illustrated with the appropriate numbers. The explosion of a star, a supernova, occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN, or it may collapse, type I and type II SN, leaving a neutron star remnant. The type I progenitor is thought to be an old accreting white dwarf, 1.4 interior mass, with a close companion star. A type II SN is thought to be a massive young star, 6 to 10 interior mass. The mechanism of explosion is still a challenge to model, being the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe.

  14. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    SciTech Connect

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Filippenko, A. V.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Anderson, J. P.; De Jaeger, T.; Forster, F.; Benetti, S.; Bufano, F.; and others

    2013-06-10

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II {lambda}6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II {lambda}6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of {approx}12,000 km s{sup -1} until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v Almost-Equal-To 12,000 km s{sup -1} with narrow line width and long velocity plateau, as well as an HVF beginning at v Almost-Equal-To 31,000 km s{sup -1} two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  15. Aspherical supernovae

    SciTech Connect

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  16. Aspherical supernovae

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel Nathan

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must be undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new breakthroughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi- dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  17. Discovery of a compact radio component in the center of supernova 1986J.

    PubMed

    Bietenholz, Michael F; Bartel, Norbert; Rupen, Michael P

    2004-06-25

    Very-long-baseline interferometry observations have revealed a bright, compact radio component near the center of the expanding shell of supernova 1986J. The component, not present in earlier images, has an inverted radio spectrum different from that of the shell. Such an inversion has not been seen in the spectrum of any other supernova. The new component is likely radio emission associated either with accretion onto a black hole or with the nebula formed around an energetic young neutron star in the center of SN 1986J, which would directly link either a black hole or a neutron star to a modern supernova.

  18. Analysis of the flux and polarization spectra of the type Ia supernova SN 2001el: Exploring the geometry of the high-velocity Ejecta

    SciTech Connect

    Kasen, Daniel; Nugent, Peter; Wang, Lifan; Howell, D.A.; Wheeler, J. Craig; Hoeflich, Peter; Baade, Dietrich; Baron, E.; Hauschildt, P.H.

    2003-01-15

    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The unusual, high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v approximately 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v approximately 18,000-25,000 $ km/s) of CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the clearly discriminated if observations are obtained from several different lines of sight. Thus, assuming the high velocity structure observed for SN 2001el is a consistent feature of at least known subset of type Ia supernovae, future observations and analyses such as these may allow one to put strong constraints on the ejecta geometry and hence on supernova progenitors and explosion mechanisms.

  19. Evidence for nearby supernova explosions.

    PubMed

    Benítez, Narciso; Maíz-Apellániz, Jesús; Canelles, Matilde

    2002-02-25

    Supernova (SN) explosions are one of the most energetic---and potentially lethal---phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at approximately 130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of (60)Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that approximately 2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  20. Critical field of two-dimensional superconducting Sn{sub 1-x}/Si{sub x} bimetallic composite cluster assembled films with energetic cluster impact deposition

    SciTech Connect

    Kurokawa, Yuichiro; Hihara, Takehiko; Ichinose, Ikuo

    2013-05-07

    Sn{sub 1-x}/Si{sub x} cluster assembled films have been prepared by an energetic cluster impact deposition using a plasma-gas-condensation cluster beam deposition apparatus. Transmission electron microscope images indicated that individual clusters have composite morphologies, where Sn and Si were separated from each other. The superconducting critical magnetic fields, H{sub c}, of Sn{sub 1-x}/Si{sub x} cluster assembled films were measured and found to be much higher than the critical magnetic field of the bulk Sn. We estimated the H{sub c} values by using a theory of the superconducting thin film. The estimated values are in good agreement with the experiments, indicating that the Sn{sub 1-x}/Si{sub x} cluster assembled films can be regarded as a two-dimensional system although thickness, t, of Sn{sub 1-x}/Si{sub x} cluster assembled films (t Almost-Equal-To 1000 nm) is thicker than conventional superconducting thin film (t < 100 nm).

  1. Supernova 1987A in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  2. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2014-12-01

    We present the first quantitative spectroscopic modeling of an early-time supernova (SN) that interacts with its progenitor wind. Using the radiative transfer code CMFGEN, we investigate the recently reported 15.5 h post-explosion spectrum of the type IIb SN 2013cu. We are able to directly measure the chemical abundances of a SN progenitor and find a relatively H-rich wind, with H and He abundances (by mass) of X = 0.46 ± 0.2 and Y = 0.52 ± 0.2, respectively. The wind is enhanced in N and depleted in C relative to solar values (mass fractions of 8.2 × 10-3 and 1.0 × 10-5, respectively). We obtain that a slow, dense wind or circumstellar medium surrounds the precursor at the pre-SN stage, with a wind terminal velocity vwind ≲ 100 km s-1 and mass-loss rate of Ṁ ≃ 3 × 10-3 (vwind/ 100 km s-1) M⊙ yr-1. These values are lower than previous analytical estimates, although Ṁ/υ∞ is consistent with previous work. We also compute a CMFGEN model to constrain the progenitor spectral type; the high Ṁ and low vwind imply that the star had an effective temperature of ≃ 8000 K immediately before the SN explosion. Our models suggest that the progenitor was either an unstable luminous blue variable or a yellow hypergiant undergoing an eruptive phase, and rule out a Wolf-Rayet star. We classify the post-explosion spectra at 15.5 h as XWN5(h) and advocate for the use of the prefix "X" (eXplosion) to avoid confusion between post-explosion, non-stellar spectra, and those of massive stars. We show that the XWN spectrum results from the ionization of the progenitor wind after the SN, and that the progenitor spectral type is significantly different from the early post-explosion spectral type owing to the huge differences in the ionization structure before and after the SN event. We find the following temporal evolution: LBV/YHG → XWN5(h) → SN IIb. Future early-time spectroscopy in the UV will further constrain the properties of SN precursors, such as their

  3. Optical and near-infrared observations of SN 2014ck: an outlier among the Type Iax supernovae

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Cappellaro, E.; Benetti, S.; Pastorello, A.; Hsiao, E. Y.; Sand, D. J.; Stritzinger, M.; Valenti, S.; McCully, C.; Arcavi, I.; Elias-Rosa, N.; Harmanen, J.; Harutyunyan, A.; Hosseinzadeh, G.; Howell, D. A.; Kankare, E.; Morales-Garoffolo, A.; Taddia, F.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2016-06-01

    We present a comprehensive set of optical and near-infrared (NIR) photometric and spectroscopic observations for SN 2014ck, extending from pre-maximum to six months later. These data indicate that SN 2014ck is photometrically nearly identical to SN 2002cx, which is the prototype of the class of peculiar transients named SNe Iax. Similar to SN 2002cx, SN 2014ck reached a peak brightness MB = -17.37 ± 0.15 mag, with a post-maximum decline rate Δm15(B) = 1.76 ± 0.15 mag. However, the spectroscopic sequence shows similarities with SN 2008ha, which was three magnitudes fainter and faster declining. In particular, SN 2014ck exhibits extremely low ejecta velocities, ˜3000 km s-1 at maximum, which are close to the value measured for SN 2008ha and half the value inferred for SN 2002cx. The bolometric light curve of SN 2014ck is consistent with the production of 0.10^{+0.04}_{-0.03} M_{{⊙}} of 56Ni. The spectral identification of several iron-peak features, in particular Co II lines in the NIR, provides a clear link to SNe Ia. Also, the detection of narrow Si, S and C features in the pre-maximum spectra suggests a thermonuclear explosion mechanism. The late-phase spectra show a complex overlap of both permitted and forbidden Fe, Ca and Co lines. The appearance of strong [Ca II] λλ7292, 7324 again mirrors the late-time spectra of SN 2008ha and SN 2002cx. The photometric resemblance to SN 2002cx and the spectral similarities to SN 2008ha highlight the peculiarity of SN 2014ck, and the complexity and heterogeneity of the SNe Iax class.

  4. KECK OBSERVATIONS OF THE YOUNG METAL-POOR HOST GALAXY OF THE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVA SN 2007if

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Pain, R.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-05-20

    We present Keck LRIS spectroscopy and g-band photometry of the metal-poor, low-luminosity host galaxy of the super-Chandrasekhar-mass Type Ia supernova SN 2007if. Deep imaging of the host reveals its apparent magnitude to be m{sub g} = 23.15 {+-} 0.06, which at the spectroscopically measured redshift of z{sub helio} = 0.07450 {+-} 0.00015 corresponds to an absolute magnitude of M{sub g} = -14.45 {+-} 0.06. Galaxy g - r color constrains the mass-to-light ratio, giving a host stellar mass estimate of log(M{sub *}/M{sub sun}) = 7.32 {+-} 0.17. Balmer absorption in the stellar continuum, along with the strength of the 4000 A break, constrains the age of the dominant starburst in the galaxy to be t{sub burst} = 123{sup +165}{sub -77} Myr, corresponding to a main-sequence turnoff mass of M/M{sub sun} = 4.6{sup +2.6}{sub -1.4}. Using the R{sub 23} method of calculating metallicity from the fluxes of strong emission lines, we determine the host oxygen abundance to be 12 + log(O/H){sub KK04} = 8.01 {+-} 0.09, significantly lower than any previously reported spectroscopically measured Type Ia supernova host galaxy metallicity. Our data show that SN 2007if is very likely to have originated from a young, metal-poor progenitor.

  5. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    SciTech Connect

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Cenko, S. B.; Silverman, J. M.; Filippenko, A. V.; Pickering, T. E.; Kawabata, K.; Hattori, T.; Hsiao, E. Y.; Stritzinger, M. D.; and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  6. The Broad-lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.; Filippenko, A. V.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P.; Pickering, T. E.; Kawabata, K.; Hattori, T.; Hsiao, E. Y.; Stritzinger, M. D.; Marion, G. H.; Vinko, J.; Wheeler, J. C.

    2015-01-01

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s-1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v >~ 27,000 km s-1). We use these observations to estimate explosion properties and derive a total ejecta mass of ~2.7 M ⊙, a kinetic energy of ~1.0 × 1052 erg, and a 56Ni mass of 0.1-0.2 M ⊙. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z >~ Z ⊙, moderate to high levels of host galaxy extinction (E(B - V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  7. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    NASA Technical Reports Server (NTRS)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  8. Expectations for the Hard X-Ray Continuum and Gamma-Ray Line Fluxes from the Type Ia Supernova SN 2014J in M82

    NASA Astrophysics Data System (ADS)

    The, Lih-Sin; Burrows, Adam

    2014-05-01

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the 56Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior "X-ray" the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ~3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ~30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  9. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect

    The, Lih-Sin; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2014-05-10

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ∼3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ∼30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  10. First stars, hypernovae, and superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'Ichi

    2016-07-01

    After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.

  11. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  12. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    SciTech Connect

    Galbany, Lluis; et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  13. A Study of SN Ejecta in the Core-Collapse Supernova Remnant G292.0+1.8: Cas A's Older Cousin

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2006-07-01

    Recent studies of the southern oxygen-rich supernova remnant {SNR} G292.0+1.8 have shown it to be the only Galactic SNR to exhibit all the features we expect in young remnants of core-collapse supernovae: an outer shell behind an expanding primary shock, high-velocity fragments of undiluted metal-rich ejecta, and a central pulsar surrounded by a pulsar-wind nebula. G292.0+1.8's optical emission consists of numerous knots and filaments of O- and S-rich ejecta spread throughout much of the remnant shell, many with radially oriented pencil-like geometries that may trace their origins to Rayleigh-Taylor instabilities during the SN event. The evolution and fine-scale structure of SN debris in young remnants is poorly understood and largely uncharted territory. For testing models for the distribution of metal-rich ejecta from core-collapse SNe, how the ejecta evolve and clump, and how SN shocks interact with the local circumstellar medium, the 3000-yr-old G292.0+1.8 remnant rivals the 320-yr-old Cas A remnant in importance. We therefore propose the first HST images of G292.0+1.8 in order to characterize the fine-scale spatial distribution of the ejecta, their sub-arcsecond chemical make-up, and the detailed structure and scale lengths for metal-rich SN ejecta clumps. The proposed HST images of G292.0+1.8 will be used in conjunction with existing Spitzer Cycle 1 infrared data and an upcoming 0.5 Msec Chandra X-ray image. We expect to achieve the same kind of results for G292 that have already been obtained for Cas A. High-resolution HST images of this remnant, combined with Spitzer and Chandra data and contrasted with a similar data set on Cas A, will provide superb multiwavelength benchmarks for both very young and older core-collapse SNRs.

  14. Swift Observations of Supernovae during and after Shock Breakout

    NASA Technical Reports Server (NTRS)

    Immler, Stefan

    2008-01-01

    Over the past few years, space-based observatories have allowed detailed studies of energetic supernova explosions in previously unexplored time domains and wavelength regimes. NASA's Swift observatory is playing an important role in probing the early emission of SNe during and after shock breakout due to its fast response, flexible scheduling capabilities, and large wavelength band coverage, ranging from the optical, W, and X-ray to the Gamma-ray bands. By studying the outgoing SN shocks with material in its surroundings, the explosion physics and nature of progenitor stars can be studied. Furthermore, monitoring the X-ray emission of SNe with space-based X-ray observatories is being used to map the density structure in SN environments out to large radii from the sites of the explosions (>E20 cm), the transition of a SN into an old supernova remnant can be studied, and the mass-loss rates of the progenitor stars are being probed over significant timescales (>E4 years) in the stellar wind history. In combination, these observations give unprecedented insights into the nature of energetic explosions and their environments. During this talk, I will present highlights from recent observations, among them the first observation of a SN DURING the actual explosion with Swift, and I will discuss the "naked eye" burst at a redshift of -1, which was the most distant object humans could ever see with their own eyes.

  15. A High-Resolution X-Ray and Optical Study of SN1006: Asymmetric Expansion and Small-Scale Structure in a Type Ia Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Winkler, P. Frank; Williams, Brian J.; Reynolds, Stephen P.; Petre, Robert; Long, Knox S.; Katsuda, Satoru; Hwang, Una

    2014-01-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Ha image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of approx.7400 km/s (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NWrim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Ha, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the

  16. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  17. Nature of type 1 Supernovae

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1980-01-01

    The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.

  18. Du Pont Classifications of 6 Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Shappee, Benjamin J.

    2016-06-01

    We report optical spectroscopy (range 370-910 nm) of six supernovae from the Backyard Observatory Supernova Search (BOSS) and the All-Sky Automated Survey for Supernovae (ASAS-SN) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on June 17 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  19. NASA Scientists Witness a Supernova Cosmic Rite of Passage

    NASA Astrophysics Data System (ADS)

    2005-11-01

    wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and

  20. Radio Observations Reveal a Smooth Circumstellar Environment Around the Extraordinary Type Ib Supernova 2012au

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia M.; Chomiuk, Laura; Margutti, Raffaella; Medvedev, Mikhail; Milisavljevic, Dan; Chakraborti, Sayan; Chevalier, Roger; Chugai, Nikolai; Dittmann, Jason; Drout, Maria; Fransson, Claes; Nakar, Ehud; Sanders, Nathan

    2014-12-01

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρvpropr -2). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 1016cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s-1, we determine the mass-loss rate of the progenitor to be \\dot{M} = 3.6 × 10-6 M⊙ yr-1, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 1047 erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 1017 cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  1. Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au

    SciTech Connect

    Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella; Milisavljevic, Dan; Chakraborti, Sayan; Dittmann, Jason; Drout, Maria; Sanders, Nathan; Chomiuk, Laura; Medvedev, Mikhail; Chevalier, Roger; Chugai, Nikolai; Fransson, Claes; Nakar, Ehud

    2014-12-10

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss rate of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  2. SALT spectroscopic classification of PS16eho (= SN 2016gcr) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-09-01

    We obtained SALT (+RSS) spectroscopy of PS16eho (= SN 2016gcr) on 2016 Sep 12.0 UT, covering the wavelength range 350-930 nm. The spectrum is significantly contaminated with host galaxy light, and we confirm the redshift of the host galaxy 2MASX J22321713-2342106 z = 0.065 (Colless et al. 2003, 2dFGRS, arXiv:astroph/0306581; via NED) with numerous absorption and emission lines.

  3. Expanding Molecular Bubble Surrounding Tycho’s Supernova Remnant (SN 1572) Observed with the IRAM 30 m Telescope: Evidence for a Single-degenerate Progenitor

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Chen, Yang; Zhang, Zhi-Yu; Li, Xiang-Dong; Safi-Harb, Samar; Zhou, Xin; Zhang, Xiao

    2016-07-01

    Whether the progenitors of SNe Ia are single-degenerate or double-degenerate white dwarf (WD) systems is a highly debated topic. To address the origin of Tycho’s Type Ia supernova remnant (SNR), SN 1572, we have carried out a 12CO J = 2–1 mapping and a 3 mm line survey toward the remnant using the IRAM 30 m telescope. We show that Tycho is surrounded by a clumpy molecular bubble at a local standard of rest velocity of ˜ 61 {km} {{{s}}}-1, which expands at a speed of ˜ 4.5 {km} {{{s}}}-1 and has a mass of ˜ 220 {M}ȯ (at the distance of 2.5 kpc). Enhanced 12CO J = 2–1 line emission relative to 12CO J = 1–0 emission and possible line broadenings (in velocity range ‑64 to ‑60 km s‑1) are found at the northeastern boundary of the SNR, where the shell is deformed and decelerated. These features, combined with the morphological correspondence between the expanding molecular bubble and Tycho, suggest that the SNR is associated with the bubble at the velocity range ‑66 to ‑57 km s‑1. The most plausible origin for the expanding bubble is the fast outflow (with velocity of hundreds km s‑1) driven from the vicinity of a WD as it accreted matter from a nondegenerate companion star. The SNR has been expanding in the low-density wind-blown bubble, and the shock wave has just reached the molecular cavity wall. This is the first unambiguous detection of an expanding bubble driven by the progenitor of a Type Ia SNR, which constitutes evidence for a single-degenerate progenitor for this SN Ia.

  4. Expanding Molecular Bubble Surrounding Tycho’s Supernova Remnant (SN 1572) Observed with the IRAM 30 m Telescope: Evidence for a Single-degenerate Progenitor

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Chen, Yang; Zhang, Zhi-Yu; Li, Xiang-Dong; Safi-Harb, Samar; Zhou, Xin; Zhang, Xiao

    2016-07-01

    Whether the progenitors of SNe Ia are single-degenerate or double-degenerate white dwarf (WD) systems is a highly debated topic. To address the origin of Tycho’s Type Ia supernova remnant (SNR), SN 1572, we have carried out a 12CO J = 2-1 mapping and a 3 mm line survey toward the remnant using the IRAM 30 m telescope. We show that Tycho is surrounded by a clumpy molecular bubble at a local standard of rest velocity of ˜ 61 {km} {{{s}}}-1, which expands at a speed of ˜ 4.5 {km} {{{s}}}-1 and has a mass of ˜ 220 {M}⊙ (at the distance of 2.5 kpc). Enhanced 12CO J = 2-1 line emission relative to 12CO J = 1-0 emission and possible line broadenings (in velocity range -64 to -60 km s-1) are found at the northeastern boundary of the SNR, where the shell is deformed and decelerated. These features, combined with the morphological correspondence between the expanding molecular bubble and Tycho, suggest that the SNR is associated with the bubble at the velocity range -66 to -57 km s-1. The most plausible origin for the expanding bubble is the fast outflow (with velocity of hundreds km s-1) driven from the vicinity of a WD as it accreted matter from a nondegenerate companion star. The SNR has been expanding in the low-density wind-blown bubble, and the shock wave has just reached the molecular cavity wall. This is the first unambiguous detection of an expanding bubble driven by the progenitor of a Type Ia SNR, which constitutes evidence for a single-degenerate progenitor for this SN Ia.

  5. Discovery of a Highly Energetic X-Ray Pulsar Powering HESS J1813-178 in the Young Supernova Remnant G12.82-0.02

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.

    2009-08-01

    We report the discovery of 44.7 ms pulsations from the X-ray source CXOU J181335.1-174957 using data obtained with the XMM-Newton Observatory. PSR J1813-1749 lies near the center of the young radio supernova remnant G12.82-0.02, which overlaps the compact TeV source HESS J1813-178. This rotation-powered pulsar is the second most energetic in the Galaxy, with a spin-down luminosity of \\dot{E} = (6.8± 2.7) × 10^{37} erg s-1. In the rotating dipole model, the surface dipole magnetic field strength is Bs = (2.7 ± 0.6) × 1012 G and the spin-down age τ_c ≡ P/2\\dot{P} = 3.3-7.5 kyr, consistent with the location in the small, shell-type radio remnant. At an assumed distance of 4.7 kpc by association with an adjacent young stellar cluster, the efficiency of PSR J1813-1749 in converting spin-down luminosity to radiation is ≈0.03% for its 2-10 keV flux, ≈0.1% for its 20-100 keV INTEGRAL flux, and ≈0.07% for the >200 GeV emission of HESS J1813-178, making it a likely power source for the latter. The nearby young stellar cluster is possibly the birthplace of the pulsar progenitor, as well as an additional source of seed photons for inverse Compton scattering to TeV energies.

  6. Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Dwek, Eli; Skrutskie, Michael F.; Sugerman, Ben E. K.; Leisenring, Jarron M.

    2010-01-01

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of approx. 5 x 10(exp -4) Solar Mass and originates from newly formed dust in the ejecta, continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell approx. 0.01 - 0.05 Solar Mass by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 micro P Cygni profile indicates a progenitor eruption likely formed this dust shell approx.100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star. Subject

  7. DISENTANGLING THE ORIGIN AND HEATING MECHANISM OF SUPERNOVA DUST: LATE-TIME SPITZER SPECTROSCOPY OF THE TYPE IIn SN 2005ip

    SciTech Connect

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Leisenring, Jarron M.; Dwek, Eli; Sugerman, Ben E. K.

    2010-12-20

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest that the warmer dust has a mass of {approx}5 x 10{sup -4} M{sub sun}, originates from newly formed dust in the ejecta, or possibly the cool, dense shell, and is continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell {approx}0.01-0.05 M{sub sun} by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 {mu}m P Cygni profile indicates a progenitor eruption likely formed this dust shell {approx}100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable progenitor star.

  8. SN 2005ip: A luminous type IIn supernova emerging from a dense circumstellar medium as revealed by X-ray observations

    SciTech Connect

    Katsuda, Satoru; Maeda, Keiichi; Nozawa, Takaya; Pooley, David; Immler, Stefan

    2014-01-10

    We report on the X-ray spectral evolution of the nearby Type IIn supernova (SN) 2005ip based on Chandra and Swift observations covering ∼1-6 yr after explosion. X-ray spectra in all epochs are well fitted by a thermal emission model with kT ≳ 7 keV. The somewhat high temperature suggests that the X-ray emission mainly arises from the circumstellar medium (CSM) heated by the forward shock. We find that the spectra taken two to three years after the explosion are heavily absorbed (N {sub H} ∼ 5 × 10{sup 22} cm{sup –2}), but the absorption gradually decreases to the level of the Galactic absorption (N {sub H} ∼ 4 × 10{sup 20} cm{sup –2}) at the final epoch. This indicates that the SN went off in a dense CSM and that the forward shock has overtaken it. The intrinsic X-ray luminosity stays constant until the final epoch, when it drops by a factor of ∼2. The intrinsic 0.2-10 keV luminosity during the plateau phase is measured to be ∼1.5 × 10{sup 41} erg s{sup –1}, ranking SN 2005ip as one of the brightest X-ray SNe. Based on the column density, we derive a lower limit of a mass-loss rate to be M-dot ∼1.5×10{sup −2} (V{sub w} /100 km s{sup –1}) M {sub ☉} yr{sup –1}, which roughly agrees with that inferred from the X-ray luminosity, M-dot ∼2×10{sup −2} (V{sub w} /100 km s{sup –1}) M {sub ☉} yr{sup –1}, where V{sub w} is the circumstellar wind speed. Such a high mass-loss rate suggests that the progenitor star had eruptive mass ejections similar to a luminous blue variable star. The total mass ejected in the eruptive period is estimated to be ∼15 M {sub ☉}, indicating that the progenitor mass is ≳ 25 M {sub ☉}.

  9. Evolution of Pulsar Wind Nebulae inside Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Temim, T.

    2016-06-01

    Composite supernova remnants (SNRs) are those consisting of both a central pulsar that produces a wind of synchrotron-emitting relativistic particle and a supernova (SN) blast wave that expands into the surrounding interstellar medium (ISM). The evolution of the pulsar wind nebula (PWN) is coupled to the evolution of its host SNR and characterized by distinct stages, from the PWN's early expansion into the unshocked SN ejecta to its late-phase interaction with the SNR reverse shock. I will present an overview of the various evolutionary stages of composite SNRs and show how the signatures of the PWN/SNR interaction can reveal important information about the SNR and PWN dynamics, the SN progenitor and explosion asymmetry, the properties of the SN ejecta and newly-formed dust, particle injection and loss processes, and the eventual escape of energetic particles into the ISM. I will also discuss recent multi-wavelength observations and hydrodynamical modeling of evolved systems in which the PWN interacts with the SNR reverse shock and discuss their implications for our general understanding of the structure and evolution of composite SNRs.

  10. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakicevic, M.; Long, K. S.; Lundqvist, P.; Marti-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; vanLoon, J.

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  11. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    SciTech Connect

    Indebetouw, R.; Chevalier, R.; Matsuura, M.; Barlow, M. J.; Dwek, E.; Zanardo, G.; Baes, M.; Bouchet, P.; Burrows, D. N.; Clayton, G. C.; Fransson, C.; Lundqvist, P.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Meixner, M.; Martí-Vidal, I.; Marcaide, J.; and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  12. NASA's Chandra Sees Brightest Supernova Ever

    NASA Astrophysics Data System (ADS)

    2007-05-01

    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an

  13. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-10

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  14. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  15. SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert

    2013-07-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of {approx}1900, and most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities {approx}>18,000 km s{sup -1} have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs; Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K{alpha} emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including {sup 56}Ni) with velocities >18,000 km s{sup -1} were ejected by this SN. However, in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent three-dimensional delayed-detonation Type Ia models.

  16. Pair instability supernovae of very massive population III stars

    SciTech Connect

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  17. Pair Instability Supernovae of Very Massive Population III Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ⊙ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ~20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  18. Gamma-Ray Burst Associated Supernovae: Outliers Become Mainstream

    NASA Technical Reports Server (NTRS)

    Pian, E.; Mazzali, P.; Masetti, N.; Ferrero, P.; Klose, S.; Palazzi, E.; Ramirez-Ruiz, E.; Woosley, S. E.; Kouveliotou, C.; Deng, J.

    2006-01-01

    During the last eight years a clear connection has been established-between the two most powerful explosions in our Universe: core-collapse supernovae (SNe) and long gamma ray bursts (GRBs). Theory suggests4 that every GRB is simultaneously accompanied by a SN, but in only a few nearby cases have these two phenomena been observed together. We report the discovery and daily monitoring of SN 2006aj associated with the GRB 060218. Because the event was the second closest GRB, both explosions could be examined in detail. GRB 060218 had an unusually soft spectrum, long duration, and a total energy 100 to 1000 times less than most other GRBs. Yet SN 2006aj was similar to those in other GRBs, aside from rising more rapidly and being approximately 40% fainter. Taken together, these observations suggest that GRBs have two components: a broad, energetic, but only mildly relativistic outflow that makes a SN, and a more narrowly focused, highly relativistic jet responsible for the GRB. The properties of the GRB jet apparently vary greatly from event to event, while the broad SN outflow varies much less. Low energy transients like GRB 060218 may be the most common events in the Universe.

  19. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-01

    Stars with initial masses such that 10M[symbol: see text] supernova. By contrast, extremely massive stars with M(initial) >or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe. PMID:19956255

  20. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-01

    Stars with initial masses such that 10M[symbol: see text] supernova. By contrast, extremely massive stars with M(initial) >or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  1. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  2. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    SciTech Connect

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  3. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  4. Asiago spectroscopic classification of SN 2016eob

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Tomasella, G. Terreran L.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Turatto, M.; Yang, S.

    2016-08-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of SN 2016eob. The transient was discovered by Leonini et al. 2016, TNS Astronomical Transient Report No. 3994, Italian Supernovae Search Project (ISSP), on UT 2016-08-03.11 in the galaxy UGC00005 (2 other supernovae exploded in this host: SN 2000da, SN 2003lq).

  5. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  6. Supernovae, young remnants, and nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kirshner, R. P.

    1982-01-01

    Chemical abundance data from extragalactic supernovae and from supernova remnants (SNR) less than 1000 yrs old are employed to show that nuclear burning beyond helium synthesis actually occurs. Supernova (SN) are classified into types I or II, having no hydrogen lines or featuring hydrogen lines, respectively. The SN I's have been observed as having a preponderance of Fe lines, and emitting from a source at around 12,000 K with a center continuum of approximately 10 AU. Decay chains which could account for detected luminosities and spectra are presented, noting a good fit of Fe II spectrum with observed SN spectra. SNR pass through younger and older stages, going from the outpouring of material to diffusion in the interstellar medium. Expanding flocculi from young SNR show oxygen abundances as well as lines from sulfur, calcium, and argon, with a corresponding necessity of an explosive source of 15 solar masses.

  7. Observing Supernovae and Supernova Remnants with JWST

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Temim, Tea; Williams, Brian J.; Blair, William P.

    2015-01-01

    The James Webb Space Telescope (JWST) will enable near- and mid-infrared studies of supernovae (SN) and supernova remnants (SNR) in the Milky Way and galaxies throughout the local universe and to high redshift. JWST's instrumentation provides imaging, coronography, and spectroscopy (R<3000) over the wavelength range 1-29 microns. The unprecedented sensitivity and angular resolution will enable spectroscopic study of new and recent supernovae, including molecule and dust formation, in galaxies at least out to 30 Mpc, and imaging to much greater distances. The Target of Opportunity response time can be as short as 48 hours, enabling quick follow-up observations of important SN events. JWST will be ideal for the study of Galactic and Magellanic Clouds supernova remnants, particularly young remnants with hot dust. Its high angular resolution (0.07" at 2 microns, 0.7" at 20 microns) will allow direct comparison between the IR, optical, and X-ray morphologies, identifying sites of dust emission in both the ejecta and the shocked ISM unresolved by previous IR telescopes. There is a rich spectrum of atomic lines (H, He I, [Si I], [Fe II], [Ni I-III], [Co II-III], [S III-IV], [Ar II-III], [Ne II, III, V], [O IV]) and molecules (CO, SiO, H2) of importance for SN and SNR studies. JWST is a large aperture (6.5m), cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST observatory will be placed in an Earth-Sun L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations. The first call for proposals for JWST observations will be released in 2017.

  8. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2009-12-20

    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN data sets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light-curve templates to classify SN objects. In the first case, we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes fuzzy set theory for the definition and combination of SN light-curve models. For well-sampled light curves with a modest signal-to-noise ratio (S/N >10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with >=98% accuracy. In addition, the SOFT method has the potential to classify SNe into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method are verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper, the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.

  9. VLA radio upper limit on Type IIn Supernova 2008S

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-02-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed type IIn supernova SN 2008S (CBET 1234) with the Very Large Array (VLA) on 2008, February 10.62 UT. We do not detect any radio emission at the supernova position (CBET 1234). The flux density at the supernova position is -62 +/- 36 uJy.

  10. Magnetares como fuentes para potenciar supernovas superluminosas

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Benvenuto, O. G.

    2016-08-01

    Magnetars have been proposed as one of the possible sources to power the light curve of super-luminous supernovae. We have included the energy deposited by a hypothetical magnetar in our one-dimensional hydrodynamical code, and analyzed the dynamical effect on the supernova ejecta. In particular, we present a model for SN 2011kl, the first object associated with a ultra-long-duration gamma-ray burst. Finally, we show its effect on the light curves of hydrogen rich supernovae.

  11. The Final Stages of Massive Star Evolution and Their Supernovae

    NASA Astrophysics Data System (ADS)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  12. Do supernovae of type 1 paly a role in cosmic-ray production?

    NASA Technical Reports Server (NTRS)

    Shapiro, M. M.

    1985-01-01

    A model of cosmic-ray origin is suggested which aims to account for some salient features of the composition. Relative to solar abundances, the Galactic cosmic rays (GCR) are deficient in hydrogen and helim (H and He) by an order of magnitude when the two compositions are normalized at iron. Our conjectural model implicates supernovae of Type I (SN-I) as sources of some of the GCR. SN-I occur approximately as often as SN-II, through their genesis is thought to be different. Recent studies of nucleosynthesis in SN-I based on accreting white dwarfs, find that the elements from Si to Fe are produced copiously. On the other hand, SN-I are virtually devoid of hydrogen, and upper limits deduced for He are low. If SN-I contribute significantly to the pool of GCR by injecting energetic particles into the interstellar medium (ISM), then this could explain why the resulting GCR is relatively deficient in H and He. A test of the model is proposed, and difficulties are discussed.

  13. A Deep Search with the Hubble Space Telescope for Late-Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    NASA Technical Reports Server (NTRS)

    Levan, Andrew; Patel, Sandeep; Kouveliotou, Chryssa; Fruchter, Andrew; Rhoads, James; Rol, Evert; Ramirez-Ruiz, Enrico; Gorosabel, Javier; Hiorth, Jens; Wijers, Ralph

    2005-01-01

    X-ray flashes (XRFs) are, like gamma-ray bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible fiom a reduced range of distances when compared with GRBs. Here we present the results of two-epoch Hubble Space Telescope imaging of two XRFs. These images, taken approximately 45 and 200 days postburst, reveal no evidence of an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z approximately 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release (E(sub p) proportional to E(sub iso)(sup 1/2), in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z less than 0.6), either their line of sight is heavily extinguished, they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.

  14. JVLA observations of SN2013bv

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia

    2013-05-01

    We report radio observations with the Jansky Very Large Array of the Type Ic supernova SN2013bv discovered by Zhang et al.(CBET #3499) on April 9.51 UT and spectroscopically classified as broad-lined supernova similar to SN1998bw by Silverman et al. (CBET #3499). On 2013 April 27.0 UT, we triggered VLA observations at the position of SN2013bv at 4.8 & 7.1 GHz. No radio emission is detected in either of the frequency bands at the position of the supernova down to 3-sigma RMS level of 7 microJy.

  15. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  16. ASASSN-16gf: Discovery of A Supernova in CGCG 104-069

    NASA Astrophysics Data System (ADS)

    Fausnaugh, M.; Garnavich, P.; Zinn, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a supernova in the galaxy CGCG 104-069.

  17. ASASSN-16eo: Discovery of A Supernova in an Uncatalogued Galaxy

    NASA Astrophysics Data System (ADS)

    Strader, J.; Chomiuk, L.; Shishkovsky, L.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new supernova in an uncatalogued galaxy.

  18. Supernova hydrodynamicas experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.

    1997-07-01

    We are developing experiments using the Nova laser to investigate (1) compressible nonlinear hydrodynamic mixing relevant to the first few hours of the supernova (SN) explosion and (2) ejecta-ambient plasma interactions relevant to the early SN remnant phase. The experiments and astrophysical implications are discussed.

  19. The Most Luminous Supernovae

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  20. THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht

    SciTech Connect

    Roming, P. W. A.; Bayless, A. J.; Pritchard, T. A.; Prieto, J. L.; Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stoll, R.; Shappee, B. J.; Stanek, K. Z.; Szczygiel, D. M.; Fryer, C. L.; Davidson, K.; Humphreys, R. M.; Brown, P. J.; Holland, S. T.; Immler, S.; Kuin, N. P. M.; Oates, S. R.; Pojmanski, G.

    2012-06-01

    We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M{sub V} {approx} -17 in {approx}55 days. In contrast to the {approx}2 mag increase in the v-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated by strong, Balmer emission with narrow peaks (FWHM {approx} 600 km s{sup -1}), very broad asymmetric wings (FWHM {approx} 4200 km s{sup -1}), and blueshifted absorption ({approx}300 km s{sup -1}) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by {approx}1500 km s{sup -1}. Merged X-ray observations reveal a L{sub 0.2-10} = (1.0 {+-} 0.2) Multiplication-Sign 10{sup 39} erg s{sup -1}. Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics ({approx}2.5 Multiplication-Sign 10{sup 49} erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN.

  1. Black Hole Physics and Astrophysics: The GRB-Supernova Connection and URCA-1 - URCA-2

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Vitagliano, L.; Xue, S.-S.; Chardonnet, P.; Fraschetti, F.; Gurzadyan, V.

    2006-02-01

    We outline the confluence of three novel theoretical fields in our modeling of Gamma-Ray Bursts (GRBs): 1) the ultrarelativistic regime of a shock front expanding with a Lorentz gamma factor ~ 300; 2) the quantum vacuum polarization process leading to an electron-positron plasma originating the shock front; and 3) the general relativistic process of energy extraction from a black hole originating the vacuum polarization process. There are two different classes of GRBs: the long GRBs and the short GRBs. We here address the issue of the long GRBs. The theoretical understanding of the long GRBs has led to the detailed description of their luminosities in fixed energy bands, of their spectral features and made also possible to probe the astrophysical scenario in which they originate. We are specially interested, in this report, to a subclass of long GRBs which appear to be accompanied by a supernova explosion. We are considering two specific examples: GRB980425/SN1998bw and GRB030329/SN2003dh. While these supernovae appear to have a standard energetics of 1049 ergs, the GRBs are highly variable and can have energetics 104 - 105 times larger than the ones of the supernovae. Moreover, many long GRBs occurs without the presence of a supernova. It is concluded that in no way a GRB can originate from a supernova. The precise theoretical understanding of the GRB luminosity we present evidence, in both these systems, the existence of an independent component in the X-ray emission, usually interpreted in the current literature as part of the GRB afterglow. This component has been observed by Chandra and XMM to have a strong decay on scale of months. We have named here these two sources respectively URCA-1 and URCA-2, in honor of the work that George Gamow and Mario Shoenberg did in 1939 in this town of Urca identifying the basic mechanism, the Urca processes, leading to the process of gravitational collapse and the formation of a neutron star and a supernova. The further

  2. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1989-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more than 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  3. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  4. Extreme Supernova Models for the Super-luminous Transient ASASSN-15lh

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, E.; Wheeler, J. C.; Vinko, J.; Nagy, A. P.; Wiggins, B. K.; Even, W. P.

    2016-09-01

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ∼40 M ⊙ star interacting with a hydrogen-poor shell of ∼20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1–2 ms and magnetic field of 0.1–1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta–circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.

  5. Extreme Supernova Models for the Super-luminous Transient ASASSN-15lh

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, E.; Wheeler, J. C.; Vinko, J.; Nagy, A. P.; Wiggins, B. K.; Even, W. P.

    2016-09-01

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ˜40 M ⊙ star interacting with a hydrogen-poor shell of ˜20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1-2 ms and magnetic field of 0.1-1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.

  6. Non-LTE models for synthetic spectra of type Ia supernovae. III. An accelerated lambda-iteration procedure for the mutual interaction of strong spectral lines in SN Ia models with and without energy deposition

    NASA Astrophysics Data System (ADS)

    Pauldrach, A. W. A.; Hoffmann, T. L.; Hultzsch, P. J. N.

    2014-09-01

    Context. In type Ia supernova (SN Ia) envelopes a huge number of lines of different elements overlap within their thermal Doppler widths, and this problem is exacerbated by the circumstance that up to 20% of these lines can have a line optical depth higher than 1. The stagnation of the lambda iteration in such optically thick cases is one of the fundamental physical problems inherent in the iterative solution of the non-LTE problem, and the failure of a lambda iteration to converge is a point of crucial importance whose physical significance must be understood completely. Aims: We discuss a general problem related to radiative transfer under the physical conditions of supernova ejecta that involves a failure of the usual non-LTE iteration scheme to converge when multiple strong opacities belonging to different physical transitions come together, similar to the well-known situation where convergence is impaired even when only a single process attains high optical depths. The convergence problem is independent of the chosen frequency and depth grid spacing, independent of whether the radiative transfer is solved in the comoving or observer's frame, and independent of whether a common complete-linearization scheme or a conventional accelerated lambda iteration (ALI) is used. The problem appears when all millions of line transitions required for a realistic description of SN Ia envelopes are treated in the frame of a comprehensive non-LTE model. The only solution to this problem is a complete-linearization approach that considers all ions of all elements simultaneously, or an adequate generalization of the established ALI technique that accounts for the mutual interaction of the strong spectral lines of different elements and which thereby unfreezes the "stuck" state of the iteration. Methods: The physics of the atmospheres of SN Ia are strongly affected by the high-velocity expansion of the ejecta, which dominates the formation of the spectra at all wavelength ranges

  7. Spectroscopy of SN 2016hnk (= ATLAS16dpc) with SOAR and SALT: A Peculiar Type-Ia Supernova Similar to PTF09dav

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Duarte, A. S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Kniazev, A.

    2016-11-01

    We obtained spectroscopic observations of SN 2016hnk (= ATLAS16dpc) with the Goodman spectrograph on the Southern Astrophysical Research (SOAR) telescope on UT 2016 Oct 30.3 and with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) on UT 2016 Oct 31.0.

  8. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    PubMed

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-01-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs. PMID:21285953

  9. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    PubMed

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  10. The Local Supernova Rate from the Lick Observatory Supernova Search

    NASA Astrophysics Data System (ADS)

    Leaman, Jesse F.; Li, W.; Filippenko, A.; LOSS

    2009-05-01

    The robotic Lick Observatory Supernova Search (LOSS), conducted with the 0.76-m Katzman Automatic Imaging Telescope (KAIT), has been the world's most successful nearby supernova search engine over the past decade. For the over 1,000 supernovae (SNe) discovered in the LOSS sample galaxies until the end of the year 2008, we used an optimal subsample of 728 SNe to derive the SN rate in the local universe. The LOSS galaxy sample consists of about 14,000 fields, imaged with temporal frequencies that typically range from 2 to 10 days. Detailed logs of the observations and search parameters have allowed us to determine the most accurate nearby SN rates since the study of Cappellaro, Evans, & Turatto (1999, A&A, 351, 459). We first selected 140 SNe, discovered in a distance-limited sample, to construct the observed luminosity functions for various types of SNe. Photometry for each of these 140 SNe was collected, their peak magnitudes were measured, and their completeness in the survey was calculated. The resulting luminosity functions are the first of their kind, and provide significant improvement to Zwicky's well-known control-time calculation for the SN rates. We derived SN rates for various types of SNe, in galaxies of different Hubble types and B-K colors. Our rates agree well with previous measurements, but provide significant improvement in precision, more morphological and color bins, and fewer observational biases. We found that the SN rates, after linear normalization by the size of the galaxies, still have a significant correlation with the galaxy size, in the sense that smaller galaxies have a higher SN rate per unit luminosity or mass. The volumetric SN rates are as follows (in units of 10^-4 SN Mpc^-3 yr^-1): 0.28 +/- 0.03 for SNe Ia, 0.20 +/- 0.03 for SNe Ibc, and 0.40 +/- 0.05 for SNe II.

  11. Asiago spectroscopic classification of SN 2016gdt

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Pastorello, A.; Tomasella, L.; Turatto, M.; Terreran, G.

    2016-09-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of SN2016gdt in IC1407. The target was supplied by the Italian Supernovae Search Project (ISSP).

  12. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  13. Type Ia Supernova Progenitors and Chemical Enrichment in Hydrodynamical Simulations. I. The Single-degenerate Scenario

    NASA Astrophysics Data System (ADS)

    Jiménez, Noelia; Tissera, Patricia B.; Matteucci, Francesca

    2015-09-01

    The nature of the Type Ia supernova (SN Ia) progenitors remains uncertain. This is a major issue for galaxy evolution models since both chemical and energetic feedback plays a major role in the gas dynamics, star formation, and therefore the overall stellar evolution. The progenitor models for the SNe Ia available in the literature propose different distributions for regulating the explosion times of these events. These functions are known as the delay time distributions (DTDs). This work is the first one in a series of papers aiming at studying five different DTDs for SNe Ia. Here we implement and analyze the single-degenerate (SD) scenario in galaxies dominated by a rapid quenching of the star formation, displaying the majority of the stars concentrated in the bulge component. We find a good fit to both the present observed SN Ia rates in spheroidal-dominated galaxies and the [O/Fe] ratios shown by the bulge of the Milky Way. Additionally, the SD scenario is found to reproduce a correlation between the specific SN Ia rate and the specific star formation rate (sSFR), which closely resembles the observational trend, at variance with previous works. Our results suggest that SN Ia observations in galaxies with very low and very high sSFRs can help to impose more stringent constraints on the DTDs and therefore on SN Ia progenitors.

  14. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    1998bw is obviously an unusual supernova. It is therefore of particular significance that a Gamma-Ray Burst was observed from the same sky region just before it was discovered in optical light. It is very unlikely that these two very rare events would happen in the same region of the sky without being somehow related. Most astronomers therefore tend to believe that the gamma-rays do indeed originate in the supernova explosion. But can a single supernova be sufficiently energetic to produce a powerful Gamma-Ray Burst? New theoretical calculations, also published today in Nature, indicate that this may be so. Moreover, if the Gamma-Ray Burst observed on April 25 did originate in this supernova that is located in a relatively nearby galaxy, it was intrinsically much fainter than some of the other Gamma-Ray Bursts that are known to have taken place in extremely distant galaxies. The main idea is that while the centres of most other supernovae collapse into neutron stars at the moment of explosion, a black hole was created in a very massive star consisting mostly of carbon and oxygen. If so, a very strong shockwave may be produced that is capable of generating the observed gamma rays. A comparison of synthetic spectra from such a supernova model, based on a new spectrum-modelling technique developed by Leon Lucy at the ESA/ESO Space Telescope/European Coordinating Facility (ST/ECF), with the spectra of SN 1998bw observed at La Silla, show good agreement, thus lending credibility to the new models. Future work Much data has already been collected at ESO on the strange supernova SN 1998bw . More observations will be obtained by the astronomers at the ESO observatories in the future during a long-term monitoring programme of SN 1998bw . There is a good chance that this effort will ultimately provide fundamental information on the explosion mechanism and the nature of the progenitor star of this exceptional object. This supernova's connection with a Gamma-Ray Burst will

  15. Discovery of Shell-Like Radio-Structure in SN 1993J

    NASA Technical Reports Server (NTRS)

    Marcaide, J.; Alberdi, A.; Ros, E.; Diamond, P.; Schmidt, B.; Shapiro, I.; Baath, L.; De Bruyn, G.; Elosegui, P.; Guirado, J.; Davis, R.; Jones, D.; Krichbaum, T.; Manntovani, F.; Preston, R.; Ratner, M.; Rius, A.; Rogers, A.; Schilizzi, R.; Trigilio, C.; Whitney, A.; Witzel, A.; Zensus, A.

    1994-01-01

    The radio-luminous supernova SN 1993J in M81 offers an unprecedented opportunity to study with high linear resolution the details of the growth of a supernova radio structure by means of the VLBI technique.

  16. Calculated late time spectra of supernovae

    SciTech Connect

    Axelrod, T.S.

    1987-10-30

    We consider here the nebular phase spectra of supernovae whose late time luminosity is provided by the radioactive decay of /sup 56/Ni and /sup 56/Co synthesized in the explosion. A broad variety of supernovae are known or suspected to fall in this category. This includes all SNIa and SNIb, and at least some SNII, in particular SN1987a. At sufficiently late times the expanding supernova becomes basically nebular in character due to its decreasing optical depth. The spectra produced during this stage contain information on the density and abundance structure of the entire supernova, as opposed to spectra near maximum light which are affected only by the outermost layers. A numerical model for nebular spectrum formation is therefore potentially very valuable for answering currently outstanding questions about the post-explosion supernova structure. As an example, we can hope to determine the degree of mixing which occurs between the layers of the ''onion-skin'' abundance structure predicted by current one dimensional explosion calculations. In the sections which follow, such a numerical model is briefly described and then applied to SN1972e, a typical SNIa, SN1985f, an SNIb, and finally to SN1987a. In the case of SN1987a predicted spectra are presented for the wavelength range from 1 to 100 microns at a time 300 days after explosion. 18 refs., 6 figs.

  17. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  18. EXITE/IPC observations of SN1987A and southern targets

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.

    1991-09-01

    The Energetic X-ray Imaging Telescope Experiment (EXITE) was developed to a flight-ready status and conducted two flights (May 18, 1988, and May 8-10, 1989) from Alice Springs, Australia, as part of the campaigns to observe the supernova SN1987A. The basic operation of the detector and gondola systems in the laboratory was tested on the first flight and found to meet expected performance values. A bizarre 'balloon tape' insulation problem, however, prevented normal telescope pointing on the first flight so no data on SN1987A or other targets were obtained. Following a successful second EXITE flight from Ft. Sumner, NM, in October 1988, the experiment was flown again on a successful 30 hour flight as part of the final 1989 supernova campaign. A second x-ray imaging experiment from MSFC was also flown (piggy-back) for this third flight. Good data were obtained on the supernova and a variety of high priority galactic targets, and final analysis is still in progress. Preliminary results from this flight are presented.

  19. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    SciTech Connect

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  20. The Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfe, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration; Ofek, Eran O.; Kasliwal, Mansi M.; Nugent, Peter E.; Arcavi, Iair; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Perley, Daniel A.; Barlow, Tom; Horesh, Assaf; Gal-Yam, Avishay; Howell, D. A.; Dilday, Ben; PTF Collaboration; Evans, Phil A.; Kennea, Jamie A.; Swift Collaboration; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Waters, C.; Flewelling, H.; Tonry, J. L.; Rest, A.; Smartt, S. J.; Pan-STARRS1 Science Consortium

    2015-09-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.

  1. Supernova Flashback

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    The Cassiopeia A supernova's first flash of radiation makes six clumps of dust (circled in annotated version) unusually hot. The supernova remnant is the large white ball in the center. This infrared picture was taken by NASA's Spitzer Space Telescope.

  2. TEM Study of Internal Crystals in Supernova Graphites

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Bernatowicz, T.; Stadermann, F. J.; Messenger, S.; Amari, S.

    2003-03-01

    A coordinated TEM and isotopic study of ten supernova (SN) graphites from the Murchison meteorite has revealed many internal grains, mostly titanium carbides (TiCs) and TiC-kamacite composite grains, which were accreted during the graphite growth.

  3. Detection of Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Schmitt, Christian

    2011-05-01

    A core-collapse supernova (SN) would produce an expanding shell of charged particles which interact with the surrounding magnetic field of the progenitor star producing a transient radio pulse. Approximately one supernova event per century is expected in a galaxy. The radio waves emitted are detectable by a new generation of low-frequency radio telescope arrays. We present details of an ongoing search for such events by the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  4. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  5. Analysis of IUE Observations of Supernovae

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1996-01-01

    This program supported the analysis of IUE observations of supernovae. One aspect was a Target-of-Opportunity program to observe bright supernovae which was applied to SN 1993J in M81, and another was continuing analysis of the IUE data from SN 1987A. Because of its quick response time, the IUE satellite has continued to provide useful data on the ultraviolet spectra of supernovae. Even after the launch of the Hubble Space Telescope, which has much more powerful ultraviolet spectrometers, the IUE has enabled us to obtain early and frequent measurements of ultraviolet radiation: this information has been folded in with our HST data to create unique observations of supernova which can be interpreted to give powerful constraints on the physical properties of the exploding stars. Our chief result in the present grant period was the completion of a detailed reanalysis of the data on the circumstellar shell of SN 1987A. The presence of narrow high-temperature mission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolution of the supernova's progenitor. Our new analysis shows that the onset of these lines, their rise to maximum, and their subsequent fading can be understood in the context of a model for the photoionization of circumstellar matter.

  6. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  7. An Update on Radio Supernovae

    NASA Astrophysics Data System (ADS)

    van Dyk, Schuyler D.; Sramek, Richard A.; Weiler, Kurt W.; Montes, Marcos J.; Panagia, Nino

    The radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a ``turn-on'' delay at longer wavelengths, power-law decline after maximum with index beta, and spectral index alpha asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) ``mini-shell'' model, with modifications by Weiler \\etal\\ (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

  8. Pair production of helicity-flipped neutrinos in supernovae

    NASA Technical Reports Server (NTRS)

    Perez, Armando; Gandhi, Raj

    1989-01-01

    The emissivity was calculated for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. Also presented are simple estimates which show that such process can act as an efficient energy-loss mechanism in the shocked supernova core, and this fact is used to extract neutrino mass limits from SN 1987A neutrino observations.

  9. A New Supernova Discovery/Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Nugent, P. E.; Sullivan, M.; Gal-Yam, A.

    2010-10-01

    The Type Ia supernova science working group of the Palomar Transient Factory (ATEL#1964) reports the discovery of the Type Ia supernova PTF10ygu at RA=09:37:30.30, Dec=+23:09:33.6 (J2000) in the host galaxy NGC 2929 at z=0.025. The supernova was discovered on Oct. 12.5 UT when it was at magnitude 19.2 in R-band (calibrated wrt the USNO catalog). There was nothing at this location on Oct 8.5 UT to a limiting magnitude of 20.3, and a marginal detection (S/N=5) at R=19.6 on Oct.

  10. The nearby supernova factory

    SciTech Connect

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-23

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to {approx}12 SNe/month in 2003.

  11. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  12. Supernova 1987A at 29 years

    NASA Astrophysics Data System (ADS)

    McCray, Richard

    2016-06-01

    In the 29 years since it was discovered, SN 1987A has evolved from supernova to supernova remnant, in the sense that its luminosity is now dominated by radiation from its shock interaction with circumstellar matter rather than radioactive decay of newly synthesized elements. The circumstellar matter has a complex structure and the impact of the supernova debris results in a complex distribution of shocks, with velocities ranging from a few hundred to several thousand km/s. The supernova blast wave is overtaking dense knots in the equatorial ring, resulting in rapidly brightening optical “hotspots”, while the interaction with less dense matter gives rise to X-rays. The X-rays illuminate the outer supernova debris, causing it to glow at optical wavelengths. The ALMA telescope provides a new window at mm/sub-mm wavelengths, enabling us to probe the structure of the cold inner debris through molecular emission lines.

  13. Echoes of Historical Supernovae in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Badenes, Carles; Blondin, Stephane; Challis, Peter; Clocchiatti, Alejandro; Filippenko, Alex; Foley, Ryan; Huber, Mark E.; Matheson, Thomas; Mazzali, Paolo; Olsen, Knut; Sauer, Daniel; Sinnott, Brendan; Smith, R. Chris; Suntzeff, Nicholas; Welch, Doug; Bergmann, Marcel

    2010-08-01

    We propose to discover the first light echoes (LEs) associated with the historical Galactic supernovae SN 1181 (3C 58) and SN 1054 (Crab), and to locate additional LE complexes from SN 1680 (Cas A) and SN 1572 (Tycho). Using other facilities, we will obtain spectra of the LEs to determine the nature and properties of these important events. This is a continuation of a previously approved NOAO program to obtain images of regions of significant dust concentration near these Galactic supernova remnants. With data from previous semesters, we found LEs from the Cas A and Tycho supernovae teRest08b. We then used the rich set of LEs from Cas A to examine the Cas A SN from different viewing angles teRest10_casaspec, Rest10_leprofile, finding that in one direction the He I (lambda) 5876 and H(alpha) features are blue-shifted by an additional about 4000 km/s relative to the other directions teRest10_casaspec, which is direct evidence that the SN was asymmetric. The study of scattered-light echoes from Galactic supernovae provides a host of newly-recognized observational benefits which have only just begun to be exploited including (1) a direct comparison of a supernova and its remnant, (2) a three-dimensional view of a supernova, and (3) a Galactic network of absolute distance differences.

  14. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  15. Modeling Type IIn Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie; Roming, Peter; Fryer, Chris

    2016-01-01

    We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.

  16. Supernova Search at Intermediate-redshift. III. Expansion Velocities of the Ejecta

    NASA Astrophysics Data System (ADS)

    Balastegui, A.; Ruiz-Lapuente, P.; Méndez, J.; Altavilla, G.; Irwin, M.; Schamanache, K.; Balland, C.; Pain, R.; Walton, N.

    2005-12-01

    We discuss the expansion velocities of different elements in the ejecta of the intermediate--z Type Ia supernovae (SNe Ia) discovered as a part of the International Time Programme (ITP) project ``Ω and Λ from Supernovae and the Physics of Supernovae Explosions'' at the European Northern Observatory (ENO). The expansion velocities measured for each normal SNIa are found to be within the typical velocity dispersion for their epoch. Meanwhile, the subluminous SN 2002lk SiII expansion velocity is significantly higher than that of SN 1991bg shortly after maximum. The observed phase was younger in SN2002lk than in the local subluminous SNIa SN1991bg.

  17. Supernovae as sources of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Allen, John E., Jr.

    1992-01-01

    Small hydrocarbon grains in the vicinity of a supernova could be annealed by the absorption of several far-ultraviolet photons to produce the tiny diamonds found in meteorites. These freshly-synthesized diamond grains would be bombarded by the heavy ions and neutrals in the supernovae outflow and would thereby acquire the distinctive noble-gas isotopic signature by which they were first isolated. Only diamonds formed relatively close to supernovae would acquire such a signature, since grains formed farther out would be subjected to a much diluted and less energetic plasma environment.

  18. Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.

    This lecture gives an introduction to the topic of supernova nucleosynthesis which is at the origin of almost all nuclear species that we encounter in the Universe. It starts with an overview over the relevant nuclear physics, with some emphasise on nuclear stability and nuclear reactions. The central part of the lecture is devoted to the synthesis of new elements in the interiors of stars, either during their quiescent live or during their violent explosion as supernova. The different types of supernova explosions are exposed and their key nucleosynthesis products are summarised. The lecture closes with an overview over gamma-ray line diagnostics which provides a modern tool to study supernova nucleosynthesis by the measurement of freshly produced radioactive isotopes.

  19. Optical and ultraviolet observations of a low-velocity type II plateau supernova 2013am in M65

    SciTech Connect

    Zhang, Jujia; Bai, Jinming; Fan, Yufeng; Wang, Jianguo; Yi, Weimin; Wang, Chuanjun; Xin, Yuxin; Liangchang; Zhang, Xiliang; Lun, Baoli; Wang, Xueli; He, Shousheng; Wang, Xiaofeng; Huang, Fang; Mo, Jun; Mazzali, Paolo A.; Bersier, David; Zhang, Tianmeng; Walker, Emma S. E-mail: baijinming@ynao.ac.cn

    2014-12-10

    Optical and ultraviolet observations for the nearby type II plateau supernova (SN IIP) 2013am in the nearby spiral galaxy M65 are presented in this paper. The early spectra are characterized by relatively narrow P-Cygni features, with ejecta velocities much lower than observed in normal SNe IIP (i.e., ∼2000 km s{sup –1} versus ∼5000 km {sup –1} in the middle of the plateau phase). Moreover, prominent Ca II absorptions are also detected in SN 2013am at relatively early phases. These spectral features are reminiscent of those seen in the low-velocity and low-luminosity SN IIP 2005cs. However, SN 2013am exhibits different photometric properties, having shorter plateau phases and brighter light curve tails if compared to SN 2005cs. Adopting R{sub V} = 3.1 and a mean value of total reddening derived from the photometric and spectroscopic methods (i.e., E(B – V) = 0.55 ± 0.19 mag), we find that SN 2013am may have reached an absolute V-band peak magnitude of –15.83 ± 0.71 mag and produced an {sup 56}Ni mass of 0.016{sub −0.006}{sup +0.010} M {sub ☉} in the explosion. These parameters are close to those derived for SN 2008in and SN 2009N, which have been regarded as 'gap-filler' objects linking the faint SNe IIP to the normal ones. This indicates that some low-velocity SNe IIP may not necessarily result from the low-energetic explosions. The low expansion velocities could be due to a lower metallicity of the progenitor stars, a larger envelope mass ejected in the explosion, or the effect of viewing angle where these SNe were observed at an angle away from the polar direction.

  20. The Energetic Universe: a Nobel Surprise

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert P.

    2015-01-01

    he history of cosmic expansion can be accurately traced using Type Ia supernovae (SN Ia) as standard candles. Over the past 40 years, this effort has improved its precision and extended its reach in redshift. Recently, the distances to SN Ia have been measured to a precision of ~5% using luminosity information that is encoded in the shape of the supernova's rest frame optical light curve. By combining observations of supernova distances as measured from their light curves and redshifts measured from spectra, we can detect changes in the cosmic expansion rate. This empirical approach was successfully exploited by the High-Z Supernova Team and by the Supernova Cosmology Project to detect cosmic expansion and to infer the presence of dark energy. The 2011 Nobel Prize in Physics was awarded to Perlmutter, Schmidt and Riess for this discovery. The world's sample of well-observed SN Ia light curves at high redshift and low, approaching 1000 objects, is now large enough to make statistical errors due to sample size a thing of the past. Systematic errors are now the challenge. To learn the properties of dark energy and determine, for example, whether it has an equation-of-state that is different from the cosmological constant demands higher precision and better accuracy. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from uncertain knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not yet produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant and to improved constraints on dark energy. In the NIR, SN Ia are better standard candles and the effects of dust absorption are smaller. We have begun an HST program dubbed RAISIN (SN IA in the IR) to tighten our grip on dark energy properties

  1. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-05-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si iiλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe ii]λ7155 and [Ni ii]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  2. Metallicity Gradients of Stripped Core-Collapse Supernovae Host Galaxies

    NASA Astrophysics Data System (ADS)

    Fierroz, David F.; Modjaz, M.

    2013-01-01

    We examine a sample of over 30 galaxies that have hosted stripped core-collapse supernovae including SN IIb, SN Ib, SN Ic and SN Ic with broad lines (SN Ic-BL). The supernovae were discovered by both targeted and untargeted surveys including the Katzman Automatic Imaging Telescope (KAIT), the Nearby Supernova Factory (SNF) and the Palomar Transient Factory (PTF). The metallicity of the supernova environment is expected to play an important role during the short lifetimes of the massive stellar progenitors and likely influences the class of the explosion. We obtain spectra to measure metallicity at the nucleus of the galaxy as well as at HII regions going out to radii that include the supernova site. We use three different oxygen-abundance scales to calibrate and compare metallicities across core-collapse classes. By interpolating the metallicity across the host galaxy we construct our own metallicity gradients that can include SN that have no HII regions at their position and remove the selection effect in place by prior studies. This new feature allows us to probe SN environmental metallicities, even at sites that don’t have recent star formation activity.

  3. First supernova companion star found

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  4. SN 2009E: a faint clone of SN 1987A

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Pumo, M. L.; Navasardyan, H.; Zampieri, L.; Turatto, M.; Sollerman, J.; Taddia, F.; Kankare, E.; Mattila, S.; Nicolas, J.; Prosperi, E.; San Segundo Delgado, A.; Taubenberger, S.; Boles, T.; Bachini, M.; Benetti, S.; Bufano, F.; Cappellaro, E.; Cason, A. D.; Cetrulo, G.; Ergon, M.; Germany, L.; Harutyunyan, A.; Howerton, S.; Hurst, G. M.; Patat, F.; Stritzinger, M.; Strolger, L.-G.; Wells, W.

    2012-01-01

    Context.1987A-like events form a rare sub-group of hydrogen-rich core-collapse supernovae that are thought to originate from the explosion of blue supergiant stars. Although SN 1987A is the best known supernova, very few objects of this group have been discovered and, hence, studied. Aims: In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present new data for a few additional objects. Methods: The lack of early-time observations from professional telescopes is compensated by frequent follow-up observations performed by a number of amateur astronomers. This allows us to reconstruct a well-sampled light curve for SN 2009E. Spectroscopic observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates with those available for the similar SNe 1987A and 1998A. Results: The light curve of SN 2009E is less luminous than that of SN 1987A and the other members of this class, and the maximum light curve peak is reached at a slightly later epoch than in SN 1987A. Late-time photometric observations suggest that SN 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M⊙. The photospheric spectra show a number of narrow (v ≈ 1800 km s-1) metal lines, with unusually strong Ba II lines. The nebular spectrum displays narrow emission lines of

  5. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  6. Supernovae and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.

    2014-09-01

    Nucleosynthesis by rapid neutron capture (the r-process) could be an important diagnostic of the explosive deep interiors of supernovae. The early appearance of r-process elements in the Galaxy, along with energetic requirements, strongly argues in favor of a supernova origin for r-process isotopes. However there is a current conundrum as to the relative contributions from various supernovae environments, e.g. MHD jets or neutrino energized winds. There are also possible contributions from failed supernovae (collapsars) leading to a black hole (BH), or the ejection of material during the mergers of neutron stars in binary systems, i.e. NS+NS or NS+BH systems. In this talk we will review the theoretical underpinnings of each possibility in the quest to deduce the relative contribution of each process. In particular, each model for r-process nucleosynthesis invariably leads to systematic discrepancies with the observed solar-system r-process abundances. For example, although the location of the abundance peaks near nuclear mass numbers A = 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. Similarly, most recent neutrino-driven wind simulations produce only the lighter r-process elements, while neutron-star mergers may miss the r-process peaks due to fission recycling. In this talk we demonstrate that the underproduction of elements above and below the r-process peaks can be supplemented via fission fragment distributions from the recycling of material synthesized during neutron star mergers, while the abundance peaks themselves are well reproduced in MHD jets in supernovae and collapsars. Moreover, we show that the relative contributions to the solar-system r-process yields from core-collapse supernovae and neutron star mergers required by this proposal are consistent with estimates of the

  7. Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3 , and Sn S2

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Burton, Lee A.; Walsh, Aron; Oba, Fumiyasu

    2016-07-01

    The tin sulfides SnS, Sn2S3 , and Sn S2 are investigated for a wide variety of applications such as photovoltaics, thermoelectrics, two-dimensional electronic devices, Li ion battery electrodes, and photocatalysts. For these applications, native point defects play important roles, but only those of SnS have been investigated theoretically in the literature. In this study, we consider the band structures, band-edge positions, and thermodynamical stability of the tin sulfides using a density functional that accounts for van der Waals corrections and the G W0 approximation. We revisit the point-defect properties, namely, electronic and atomic structures and energetics of defects, in SnS and newly examine those in Sn S2 and Sn2S3 with a comparison to those in SnS. We find that Sn S2 shows contrasting defect properties to SnS: Undoped SnS shows p -type behavior, whereas Sn S2 shows n type, which are mainly attributed to the tin vacancies and tin interstitials, respectively. We also find that the defect features in Sn2S3 can be described as a combination of those in SnS and Sn S2 , intrinsically Sn2S3 showing n -type behavior. However, the conversion to p type can be attained by doping with a large monovalent cation, namely, potassium. The ambipolar dopability, coupled with the earth abundance of its constituents, indicates great potential for electronic applications, including photovoltaics.

  8. Runaway Stars in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  9. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  10. Supernova explosions in the Universe.

    PubMed

    Burrows, A

    2000-02-17

    During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics.

  11. Observing the next galactic supernova

    SciTech Connect

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Stanek, K. Z.; Vagins, Mark R.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (≅ 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (≅ 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (∼3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2{sub −2.6}{sup +7.3} per century and a Galactic SN Ia rate of 1.4{sub −0.8}{sup +1.4} per

  12. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J O; Remington, B A; Arnett, D; Fryxell, B A; Drake, R P

    1998-11-10

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, they are attempting to rigorously scale the physics of the laboratory in supernova. The scaling of hydrodynamics on microscopic laser scales to hydrodynamics on the SN-size scales is presented and requirements established. Initial results were reported in [1]. Next the appropriate conditions are generated on the NOVA laser. 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov instability and to the Rayleigh-Taylor instability as the interface decelerates is generated. This scales the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike bubble velocities using potential flow theory and Ott thin shell theory is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of Sn 1987A.

  13. Radio evolution of the remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Zanardo, Giovanna

    Radio supernovae result from the collision between a supernova (SN) shock and the progenitor's circumstellar medium (CSM). Supernova 1987A in the Large Magellanic Cloud, as the only nearby core-collapse supernova observed with a telescope since its early stages, has allowed unique studies of the SN-CSM interaction and the complex structure of the resulting emission. This thesis investigates the evolution of the remnant of SN 1987A, as the shock wave impacts the dense CSM in the equatorial ring, and the possible presence of a compact object in the remnant interior, using new data from the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, the Australian Long Baseline Array, and the Parkes telescope.

  14. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  15. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  16. Supernova Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Teyssier, R.

    2008-06-01

    The hierarchical model of galaxy formation is known to suffer from the ``over-cooling'' problem: the high efficiency of radiative cooling results in too much baryonic matter in a condensed phase (namely, cold gas or stars) when compared to observations. A solution proposed by many authors (see Springel & Hernquist 2003; Fujita et al. 2004; Rasera & Teyssier 2005) is feedback due to supernova (SN) driven winds or active galactic nuclei. Modeling SN feedback by direct injection of thermal energy usually turns out to be inefficient in galaxy-scale simulations, due to the quasi-instantaneous radiation of the SN energy. To avoid this effect, we have developed a new method to incorporate SN feedback in cosmological simulations: using temporary test particles, we reproduce explicitly a local Sedov blast wave solution in the gas distribution. We have performed several self-consistent runs of isolated Navarro, Frenk, & White (1996, hereafter NFW) halos with radiative cooling, star formation, SN feedback and metal enrichment using the adaptive mesh refinement code RAMSES (Teyssier 2002). We have explored the influence of SN feedback on the formation and the evolution of galaxies with different masses. We have studied the efficiency of the resulting galactic winds, as a function of the mass of the parent halo.

  17. Unparticle constraints from supernova 1987A

    SciTech Connect

    Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y. Y.

    2007-12-15

    The existence of an unparticle sector, weakly coupled to the standard model, would have a profound impact on supernova (SN) physics. Emission of energy into the unparticle sector from the core of SN 1987A would have significantly shortened the observed neutrino burst. The unparticle interaction with nucleons, neutrinos, electrons and muons is constrained to be so weak that it is unlikely to provide any missing-energy signature at colliders. One important exception are models where scale invariance in the hidden sector is broken by the Higgs vacuum expectation value. In this case the SN emission is suppressed by threshold effects.

  18. Supernova hydrodynamics experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A.; Kane, J.; Arnett, D.; Drake, R.P.; McCray, R.

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  19. Weak neutral currents and collapse initiated supernova

    SciTech Connect

    Wilson, J.R.

    1993-03-19

    Since 1974 the neutrino processes mediated by neutral currents have been a part of supernova (SN) modeling calculations. In this report only present day SN calculations will be discussed. First I will give brief description of the SN computer model and an outline of the explosion process as depicted by that model. Then I will discuss the role weak neutral current (WNC) processes play in this explosion process. Finally, I will discus inelastic scattering of tau neutrinos by heavy elements in WNC or Earth as a mechanism for measuring the mass of tau neutrino.

  20. Multi-wavelength observations of pulsar wind nebulae and composite supernova remnants

    NASA Astrophysics Data System (ADS)

    Temim, Tea

    Multi-wavelength studies of pulsar wind nebulae (PWNe) and supernova remnants (SNRs) lead to a better understanding of their evolutionary development, the interaction of supernovae (SNe) and pulsar winds with their surroundings, and nucleosynthesis and production and processing of dust grains by SNe. PWNe and composite supernova remnants, in particular, are unique laboratories for the study of the energetic pulsar winds, particle injection processes, and the impact of PWNe on the evolving SNR. They provide information on SNR shock properties, densities and temperatures, and the chemical composition and the ionization state of the material ejected by SNe. SNRs also serve as laboratories for the study of dust production and processing in SNe. While X-ray observations yield important information about the SN progenitor, hot gas properties, SN explosion energy, and the surrounding interstellar medium (ISM), the IR can provide crucial information about the faint non-thermal emission, continuum emission from dust, and forbidden line emission from SN ejecta. Combining observations at a wide range of wavelengths provides a more complete picture of the SNR development and helps better constrain current models describing a SNR's evolution and its impact on the surrounding medium. This thesis focuses on a multi-wavelength study of PWNe in various stages of their evolution and investigates their interaction with the expanding SN ejecta and dust and the SNR reverse shock. The study of these interactions can provide important information on the SNR properties that may otherwise be unobservable. The work in this thesis has been carried out under the supervision of Patrick Slane at the Harvard-Smithsonian Center for Astrophysics, and Charles E. Woodward and Rebert D. Gehrz at the University of Minnesota. The first part of the thesis summarizes the evolution and observational properties of SNRs and PWNe, with a focus on the evolution of young PWNe that are sweeping up inner SN

  1. Late time emission from core-collapse supernovae.

    NASA Astrophysics Data System (ADS)

    Kozma, C.

    The evolution and emission from the ejecta of core-collapse supernovae are modeled for epochs later than 200 days. The emission at these times reflects the nucleosynthesis in the progenitor star and in the explosion, as well as the hydrodynamical structure of the explosion. The results are compared to observations of SN 1987A. Contents: 1. Introduction. 2. Supernovae. 3. SN 1987A. 4. Late time emission (Gamma-ray thermalization (Astrophys. J., Vol. 390, p. 602 - 621 (10 May 1992); The freeze-out phase (Astrophys. J., Lett., Vol. 408, p. L25 - L28 (1 May 1993); Late spectral evolution of SN 1987A (C. Kozma, C. Fransson).

  2. VLA radio upper limit on Type IIn Supernova 2007pk

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2007-11-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed Type IIn supernova SN 2007pk (CBET 1129) with the VLA in 8.46 GHz band on 2007, November 12.20 UT, 1.89 days since discovery (CBET 1129). We do not detect radio emission from the SN position (CBET 1129). The flux density at the SN position is 11 +/-26 uJy.

  3. Supernova remnants

    NASA Astrophysics Data System (ADS)

    Decourchelle, A.

    2016-06-01

    Supernova remnants result from the explosion of a star and keep trace, in their young ejecta-dominated phase, both of the explosion mechanism and to a lesser extent of the nature of the progenitor. They inject a large amount of energy into their surroundings, which impacts significantly the interstellar medium and to a larger extent the working of the galaxy by distributing heavy elements, heating to tens of million degrees large fractions of gas, accelerating high-energy particles, generating turbulence and amplification of the magnetic field. I will review the observational results on supernova remnants and their related scientific issues before suggesting directions for future ambitious XMM-Newton observations.

  4. Quantitative comparison between type Ia supernova spectra at low and high redshifts: a case study

    NASA Astrophysics Data System (ADS)

    Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, T.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2007-08-01

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 ≤ z ≤ 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of the absorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z < 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  5. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  6. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS

    SciTech Connect

    Kelly, Patrick L.; Kirshner, Robert P.

    2012-11-10

    We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae (SN). The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates (SFRs) of the host galaxies provide circumstantial evidence on the origin of each SN type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific SFRs. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our SN sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the SN discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.

  7. Radio Observations of SN 2006jc

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia

    2006-10-01

    "I observed the Type Ib SN 2006jc (CBET 666) with the Very Large Array on Oct 14.7 and Oct 15.7 UT as part of an ongoing program to study the radio properties of Type Ibc supernovae. SN 2006jc is not detected at 4.9, 8.5 or 22.5 GHz. At a distance of 24 Mpc, the radio luminosity of SN 2006jc is at least a factor of 100 lower than that of SN 1998bw at a similar epoch (Kulkarni et al., 1998, Nature, 395, 663).

  8. Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Hidaka, J.; Kajino, T.; Mathews, G. J.

    2016-08-01

    Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}ȯ , while the standard theoretical value is as much as 25{M}ȯ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}ȯ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.

  9. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  10. EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT

    SciTech Connect

    Nakar, Ehud; Sari, Re'em

    2010-12-10

    The first light from a supernova (SN) emerges once the SN shock breaks out of the stellar surface. The first light, typically a UV or X-ray flash, is followed by a broken power-law decay of the luminosity generated by radiation that leaks out of the expanding gas sphere. Motivated by recent detection of emission from very early stages of several SNe, we revisit the theory of shock breakout and the following emission, paying special attention to the photon-gas coupling and deviations from thermal equilibrium. We derive simple analytic light curves of SNe from various progenitors at early times. We find that for more compact progenitors, white dwarfs, Wolf-Rayet stars (WRs), and possibly more energetic blue-supergiant explosions, the observed radiation is out of thermal equilibrium at the breakout, during the planar phase (i.e., before the expanding gas doubles its radius), and during the early spherical phase. Therefore, during these phases we predict significantly higher temperatures than previous analysis that assumed equilibrium. When thermal equilibrium prevails, we find the location of the thermalization depth and its temporal evolution. Our results are useful for interpretation of early SN light curves. Some examples are (1) red supergiant SNe have an early bright peak in optical and UV flux, less than an hour after breakout. It is followed by a minimum at the end of the planar phase (about 10 hr), before it peaks again once the temperature drops to the observed frequency range. In contrast, WRs show only the latter peak in optical and UV. (2) Bright X-ray flares are expected from all core-collapse SNe types. (3) The light curve and spectrum of the initial breakout pulse hold information on the explosion geometry and progenitor wind opacity. Its spectrum in more compact progenitors shows a (nonthermal) power law and its light curve may reveal both the breakout diffusion time and the progenitor radius.

  11. Detecting thermal neutrinos from supernovae with DUMAND

    SciTech Connect

    Pryor, C.; Roos, C.E.; Webster, M.S.

    1988-06-01

    The Deep Underwater Muon and Neutrino Detector (DUMAND) could be made sensitive to the thermal (about 10-MeV) neutrinos from a supernova, as well as the TeV neutrinos for which it was originally designed, by clustering the photomultiplier tubes used to detect the Cerenkov light produced by neutrino interactions into nodes of four tubes. Requiring coincident counts from three or four of the tubes at a node would reduce the background from bioluminescence enough to allow the detection of the neutrinos from a supernova. A modified DUMAND using quadruple coincidence would have detected roughly eight neutrinos from SN 1987A and would detect about 280 neutrinos from a Galactic supernova at a distance of 9 kpc. Triple coincidence could be used with a Galactic supernova and would detect about 1500 neutrinos. 26 references.

  12. Type Ibn Supernovae: Not a Single Class

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Arcavi, Iair; Howell, Dale Andrew; McCully, Curtis; Valenti, Stefano

    2016-01-01

    Type Ibn supernovae are a small yet diverse class of explosions whose spectra are characterized by low-velocity helium emission lines. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material. However, unlike the more common Type IIn supernovae, whose interaction with hydrogen-rich circumstellar material has been shown to generate a wide variety of light curve shapes, we find that light curves of Type Ibn supernovae are more homogeneous and faster evolving. Spectroscopically, we find that Type Ibn supernovae divide cleanly into two classes, only one of which resembles the archetypal Type Ibn SN 2006jc. We explore various photometric and spectroscopic parameter spaces in order to characterize these two classes. We consider the possibility that not all objects classified as Type Ibn have the same physical origin.

  13. TYPE IIP SUPERNOVA 2009kf: EXPLOSION DRIVEN BY BLACK HOLE ACCRETION?

    SciTech Connect

    Utrobin, V. P.; Chugai, N. N.; Botticella, M. T. E-mail: nchugai@inasan.r

    2010-11-01

    The unusually bright type IIP supernova (SN) 2009kf is studied employing hydrodynamic modeling. We derived optimal values of the ejecta mass of 28.1 M{sub sun}, explosion energy of 2.2 x 10{sup 52} erg, and presupernova radius of 2 x 10{sup 3} R{sub sun} assuming that {sup 56}Ni mass is equal to the upper limit of 0.4 M{sub sun}. We analyzed effects of the uncertainties in the extinction and {sup 56}Ni mass and concluded that both the ejecta mass and explosion energy cannot be significantly reduced compared with the optimal values. The huge explosion energy of SN 2009kf indicates that the explosion is caused by the same mechanism which operates in energetic SNe Ibc (hypernovae), i.e., via a rapid disk accretion onto black hole. The ejecta mass combined with the black hole mass and the mass lost by stellar wind yields the progenitor mass of about 36 M{sub sun}. We propose a scenario in which massive binary evolution might result in the SN 2009kf event.

  14. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  15. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  16. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  17. Optical observations of the type Ic supernova 2007gr in NGC 1058

    SciTech Connect

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea E-mail: wang_xf@mail.tsinghua.edu.cn

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  18. Optical Observations of the Type Ic Supernova 2007gr in NGC 1058

    NASA Astrophysics Data System (ADS)

    Chen, Juncheng; Wang, Xiaofeng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Li, Junzheng; Steele, Thea

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = -8 days) shows a possible signature of helium (He I λ5876 at a velocity of ~19,000 km s-1). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (~8-9 M ⊙) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  19. IUE investigations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1989-01-01

    IUE observations of the SN 1987A began shortly after the discovery and have been frequent through 1988 and 1989, using the fine error sensor for photometry, low dispersion spectra for the supernova spectrum, and high dispersion observations for the interstellar medium when the supernova was bright and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were very useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observations of a circumstellar shell.

  20. Reverse and Forward Shock X-Ray Emission in an Evolutionary Model of Supernova Remnants Undergoing Efficient Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Ellison, Donald C.; Nagataki, Shigehiro; Slane, Patrick O.

    2014-08-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  1. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    SciTech Connect

    Lee, Shiu-Hang; Patnaude, Daniel J.; Slane, Patrick O.; Ellison, Donald C.; Nagataki, Shigehiro E-mail: shiu-hang.lee@riken.jp E-mail: slane@cfa.harvard.edu E-mail: don_ellison@ncsu.edu

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  2. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average

  3. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  4. Near-Infrared Spectra of Supernovae

    NASA Astrophysics Data System (ADS)

    Gerardy, C. L.; Fesen, R. A.; Hoflich, P.; Nomoto, K.; Garnavich, P. M.; Jha, S.; Challis, P. M.; Kirshner, R. P.; Wheeler, J. C.; Sakai, S.

    2001-12-01

    We present results from a survey of the near-infrared properties of all types of supernovae. Near-infrared spectra of the subluminous Type Ia SN 1999by taken 5 days before to two weeks after maximum light have been analysed using self-consistent SN Ia explosion models. The data generally agree with 1D delayed-detonation models, indicate a near Chandrasekhar-mass WD progenitor, and show low yield of iron-peak elements confined to the innermost layers of the ejecta. This puts strong constraints on the mixing of large iron blobs into the outer layers due to Rayleigh-Taylor instabilities during the deflagration phase. NIR spectra of Type IIP SNe are relatively line-free during the plateau phase, showing largely hydrogen emission with only a handful of other lines, mostly in the 1-1.2 micron region. After the plateau phase, Type IIP spectra become much richer, showing many overlapping emission features throughout the near-infrared. It appears that CO emission is a common feature of core-collapse supernovae, as several detections of first overtone CO emission near 2.3 microns have been made, including SN 1998S (IIn), SN 1999em, SN 1999gi (IIP) and SN 2000ew (Ic). Finally, we find that Type IIn supernovae often exhibit extraordinary infrared excesses at late times. This is probably thermal emission from hot dust, most likely in the dense circumstellar gas surrounding the progenitor star. The infrared luminosity can reach 1041-42 erg s-1, and can last for several years. A possible scenario is that the dust emission is an ``infrared echo'' powered not by the flash of the SN explosion, but rather by UV/X-ray emission from the strong shock interaction with the dense circumstellar material.

  5. Supernova experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Wallace, R.; Rubenchik, A.; Fryxell, B.A.

    1997-12-02

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in [l]. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov and Rayleigh-Taylor instabilities as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. New analysis of the bubble velocity is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of SN 1987A.

  6. Supernova Experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.

    2000-04-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported by Kane et al. in a recent paper. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmeyer-Meshkov instability, and to the Rayleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few times 10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. We also present new analysis of the bubble velocity, a study of two-dimensional versus three-dimensional difference in growth at the He-H interface of SN 1987A, and designs for two-dimensional versus three-dimensional hydro experiments. (c) 2000 The American Astronomical Society.

  7. Photometric selection of Type Ia supernovae in the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Bazin, G.; Ruhlmann-Kleider, V.; Palanque-Delabrouille, N.; Rich, J.; Aubourg, E.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Sullivan, M.; Fourmanoit, N.; González-Gaitán, S.; Lidman, C.; Perlmutter, S.; Ripoche, P.; Walker, E. S.

    2011-10-01

    We present a sample of 485 photometrically identified Type Ia supernova candidates mined from the first three years of data of the CFHT SuperNova Legacy Survey (SNLS). The images were submitted to a deferred processing independent of the SNLS real-time detection pipeline. Light curves of all transient events were reconstructed in the gM, rM, iM and zM filters and submitted to automated sequential cuts in order to identify possible supernovae. Pure noise and long-term variable events were rejected by light curve shape criteria. Type Ia supernova identification relied on event characteristics fitted to their light curves assuming the events to be normal SNe Ia. The light curve fitter SALT2 was used for this purpose, assigning host galaxy photometric redshifts to the tested events. The selected sample of 485 candidates is one magnitude deeper than that allowed by the SNLS spectroscopic identification. The contamination by supernovae of other types is estimated to be 4%. Testing Hubble diagram residuals with this enlarged sample allows us to measure the Malmquist bias due to spectroscopic selections directly. The result is fully consistent with the precise Monte Carlo based estimate used to correct SN Ia distance moduli in the SNLS 3-year cosmological analyses. This paper demonstrates the feasibility of a photometric selection of high redshift supernovae with known host galaxy redshifts, opening interesting prospects for cosmological analyses from future large photometric SN Ia surveys.

  8. Dust and Other Recent Discoveries in SN 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2011-01-01

    Supernova 1987 A in the Large Magellanic Cloud is one of the most intensively studied objects in the universe and a Rosetta Stone for understanding the explosions of massive stars. Now almost 25 years old, SN 1987 A is a very young supernova remnant, a phase previously unobserved in any other supernova. In this talk I will discuss recent observations from the far ultraviolet to the far-infrared with HST, the VLT, and the Herschel Space Observatory. These data reveal new insights into the composition, geometry, and heating of the explosion debris, the shock interaction with circumstellar material, and dust in the SN 1987 A system.

  9. SN 2014J and the Harvard Observing Project

    NASA Astrophysics Data System (ADS)

    McIntosh, Melissa; Bieryla, Allyson; Newton, Elisabeth R.; Lewis, John A.; Vanderburg, Andrew; Alexander, Kate Denham; Blanchard, Peter

    2014-06-01

    A chance discovery on January 21, 2014 by Steve Fossey et al. of University College London during an undergraduate telescope training session revealed the closest type Ia supernova in the past 42 years. The bright SN 2014J was observed by undergraduates and graduate students alike in the Harvard Observing Project (see poster by A. Bieryla) with the Clay Telescope at Harvard University. Observations were obtained in multiple filters starting January 24, 2014, prior to the supernova reaching its peak brightness, and monitoring will continue as the supernova fades in brightness. We will present multiple band light curve photometry and color RGB images of SN 2014J and its host galaxy M82.

  10. Classifying supernovae using only galaxy data

    SciTech Connect

    Foley, Ryan J.; Mandel, Kaisey

    2013-12-01

    We present a new method for probabilistically classifying supernovae (SNe) without using SN spectral or photometric data. Unlike all previous studies to classify SNe without spectra, this technique does not use any SN photometry. Instead, the method relies on host-galaxy data. We build upon the well-known correlations between SN classes and host-galaxy properties, specifically that core-collapse SNe rarely occur in red, luminous, or early-type galaxies. Using the nearly spectroscopically complete Lick Observatory Supernova Search sample of SNe, we determine SN fractions as a function of host-galaxy properties. Using these data as inputs, we construct a Bayesian method for determining the probability that an SN is of a particular class. This method improves a common classification figure of merit by a factor of >2, comparable to the best light-curve classification techniques. Of the galaxy properties examined, morphology provides the most discriminating information. We further validate this method using SN samples from the Sloan Digital Sky Survey and the Palomar Transient Factory. We demonstrate that this method has wide-ranging applications, including separating different subclasses of SNe and determining the probability that an SN is of a particular class before photometry or even spectra can. Since this method uses completely independent data from light-curve techniques, there is potential to further improve the overall purity and completeness of SN samples and to test systematic biases of the light-curve techniques. Further enhancements to the host-galaxy method, including additional host-galaxy properties, combination with light-curve methods, and hybrid methods, should further improve the quality of SN samples from past, current, and future transient surveys.

  11. Updated Physical Parameters of SN 2012cg

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Challis, P.; Hicken, M.; Mandel, K.; Meyer, S.; Kirshner, R. P.; Foley, R. J.; Friedman, A.; Irwin, J.; Wood-Vasey, W. M.; Wheeler, J. C.; Vinko, J.; Rines, K.; Wilhelmy, S.; Macri, L.

    2012-06-01

    The Harvard-Smithsonian Center for Astrophysics Supernova Group reports photometric and spectroscopic observations of SN 2012cg (ATEL #4115, #4159). We find that SN 2012cg has a slow decline rate and low expansion velocities. BayeSN fits to the data show that SN 2012cg has significant dust extinction (A_v ~ 0.67 mag). We find R_v = 2.7 +/- 0.5, which is consistent with the Milky Way value of 3.1 and mildly inconsistent with the extremely low values reported for some highly reddened SN (e.g., R_v = 1.59 +/- 0.07 for SN 2002cv; Elias-Rosa et al.

  12. Tycho Brahe's Supernova: Light from Centuries Past

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2004-09-01

    The light curve of SN 1572 is described in the terms used nowadays to characterize Type Ia supernovae (SNe Ia). By assembling the records of the observations done in 1572-1574 and evaluating their uncertainties, it is possible to recover the light curve and the color evolution of this supernova. It is found that within the SN Ia family, the event should have been an SN Ia with a normal rate of decline, its stretch factor being s~0.9. The visual light curve near maximum, late-time decline, and color evolution sustain this conclusion. After correcting for extinction, the luminosity of this supernova as observed at maximum is found to be MV=-19.24-5log(D/3.0kpc)+/-0.42. From stretch fitting of the overall light curve, the maximum in V would imply a luminosity difference of +0.17+/-0.1 mag, with the maximum brightness of an s=1 SN Ia. The quantity MV is consistent with a distance of 2.8+/-0.4 kpc for the scale of H0=65 km s-1 Mpc-1.

  13. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  14. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  15. Electron-capture supernovae exploding within their progenitor wind

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Tominaga, Nozomu; Langer, Norbert; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.

    2014-09-01

    The most massive stars on the asymptotic giant branch (AGB), or the so-called super-AGB stars, are thought to produce supernovae triggered by electron captures in their degenerate O+Ne+Mg cores. Super-AGB stars are expected to have slow winds with high mass-loss rates, so their circumstellar density is high. The explosions of super-AGB stars are therefore presumed to occur in this dense circumstellar environment. We provide the first synthetic light curves for such events by exploding realistic electron-capture supernova progenitors within their super-AGB winds. We find that the early light curve - that is, before the recombination wave reaches the bottom of the hydrogen-rich envelope of supernova ejecta (the plateau phase) - is not affected by the dense wind. However, after the luminosity drop following the plateau phase, the luminosity remains much higher when the super-AGB wind is taken into account. We compare our results to the historical light curve of SN 1054, the progenitor of the Crab Nebula, and show that the explosion of an electron-capture supernova within an ordinary super-AGB wind can explain the observed light curve features. We conclude that SN 1054 could have been a Type IIn supernova without any extra extreme mass loss, which was previously suggested to be necessary to account for its early high luminosity. We also show that our light curves match Type IIn supernovae with an early plateau phase or the so-called Type IIn-P supernovae, and suggest that they are electron-capture supernovae within super-AGB winds. Although some electron-capture supernovae can be bright in the optical spectral range due to the large progenitor radius, their X-ray luminosity from the interaction does not necessarily get as bright as other Type IIn supernovae whose optical luminosities are also powered by the interaction. Thus, we suggest that optically bright X-ray-faint Type IIn supernovae can emerge from electron-capture supernovae. Optically faint Type IIn supernovae

  16. SN1987A's Twentieth Anniversary

    NASA Astrophysics Data System (ADS)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  17. 3D Hydrodynamic Modeling of SN 1987A from the SN explosion till the Athena Era

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Miceli, Marco; Pumo, Maria Letizia; Bocchino, Fabrizio

    2015-09-01

    The proximity of SN 1987A and the wealth of observations collected at all wavelength bands since its outburst allow us to study in detail the transition of a supernova (SN) in a supernova remnant(SNR) and the link between the morphological properties of a SNRand the complex phases in the SN explosion. Here we investigate theinteraction between the remnant of SN 1987A and the surroundingcircumstellar medium (CSM) through three-dimensional hydrodynamic modeling. The aim is to identify the imprint of SN 1987A on the X-ray emission of its remnant and to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux, thusproviding clues on both the ejecta and the density structure of theinhomogeneous CSM. Our model describes the evolution of the blastwave from the breakout of the shock wave at the stellar surfacetill its transition from SN to SNR, making predictions on the futureobservations of SN 1987A with the instruments on board Athena. Ourmodel is able to reproduce alltogether the main observables of boththe progenitor supernova (e.g. the bolometric lightcurve during thefirst 250 days) and of its remnant (X-ray lightcurves and spectraduring the following 26 years of evolution), providing for the firsttime an accurate description of the structure of ejecta and of the CSM around the progenitor.

  18. Survey for the Binary Progenitor in SN1006 and Update on SN1572

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar; Hernández, Jonay González; Tabernero, Hugo; Montes, David; Canal, Ramon; Mendez, Javier; Bedin, Luigi

    2013-01-01

    We have completed a survey down to R = 15 mag of the stars within a circle of 4 arcmin radius around the nominal center of the remnant of SN 1006, one of the three historical Type Ia supernovae (the other two being SN 1572 and SN 1604), in search of a possible surviving binary companion of the white dwarf whose explosion gave rise to the supernova. The stellar parameters (effective temperature, surface gravity, and metallicity), as well as the radial velocities of all the stars, have been measured from spectra obtained with the UVES spectrograph at the VLT, and from the former and the available photometry, distances have been determined. Chemical abundances of the Fe-peak elements Cr, Mn, Co, and Ni have also been measured to check for possible contamination of the stellar surface by the supernova ejecta. The limiting magnitude of the survey would allow us to find stellar companions of the red-giant type, subgiant stars, and main-sequence stars down to F5-6. Unlike in SN 1572, where a subgiant of type G0-1 has been proposed as the companion of SN 1572, for SN 1006 we can discard the possibility that SN 1006 had a red giant or subgiant companion.

  19. Supernova Optical Observations and Theory

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi; Bersten, Melina C.; Moriya, Takashi J.; Folatelli, Gaston; Nomoto, Ken'ichi

    2014-01-01

    We review emission processes within the supernova (SN) ejecta. Examples of the application of the theory to observational data are presented. The emission processes and thermal condition within the SN ejecta change as a function of time, and multi-epoch observations are important to obtain comprehensive views. Through the analyses, we can constrain the progenitor radius, compositions as a function of depth, ejecta properties, explosion asymmetry and so on. Multi-frequency follow-up is also important, including radio synchrotron emissions and the inverse Compton effect, γ-ray emissions from radioactive decay of newly synthesized materials. The optical data are essential to make the best use of the multi-frequency data.

  20. Progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi; Terada, Yukikatsu

    2016-07-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This paper aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  1. Powerful Nearby Supernova Caught By Web

    NASA Astrophysics Data System (ADS)

    2008-09-01

    One of the nearest supernovas in the last 25 years has been identified over a decade after it exploded. This result was made possible by combining data from the vast online archives from many of the world's premier telescopes. The supernova was first singled out in 2001 by Franz Bauer, then at Penn State and now at Columbia University, who noticed a bright, variable object in the spiral galaxy Circinus using NASA's Chandra X-ray Observatory. Though the source displayed some exceptional properties, at the time Bauer and his Penn State colleagues could not confidently identify its nature. It was not until years later that Bauer and his team were able to confirm this object was a supernova. Clues in a spectrum from the European Southern Observatory's Very Large Telescope (VLT) led the team to search through data from 18 different telescopes, both in space and on the ground, nearly all of which was from archives. Because this object was found in a nearby galaxy, making it relatively easy to study, the public archives of these telescopes contained abundant data on this galaxy. The data show that this supernova, dubbed SN 1996cr, is among the brightest supernovas ever seen in radio and X-rays. It also bears many striking similarities to the famous supernova SN 1987A, which occurred in a galaxy only 160,000 light years from Earth. "This supernova appears to be a wild cousin of SN 1987A," said Bauer. "These two look alike in many ways, except this newer supernova is intrinsically a thousand times brighter in radio and X-rays." Optical images from the archives of the Anglo-Australian Telescope in Australia show that SN 1996cr exploded between February 28, 1995 and March 15, 1996, nearly a decade after SN 1987A. SN 1996cr may not have been noticed by astronomers at the time because it was only visible in the southern hemisphere, which is not as widely monitored as the northern. Among the five nearest supernovas of the last 25 years, it is the only one that was not seen

  2. IT'S ALIVE{exclamation_point} THE SUPERNOVA IMPOSTOR 1961V

    SciTech Connect

    Van Dyk, Schuyler D.; Matheson, Thomas

    2012-02-20

    Reports of the death of the precursor of supernova (SN) 1961V in NGC 1058 are exaggerated. Consideration of the best astrometric data shows that the star, known as 'Object 7', lies at the greatest proximity to SN 1961V and is the likely survivor of the 'SN impostor' super-outburst. SN 1961V does not coincide with a neighboring radio source and is therefore not a radio SN. Additionally, the current properties of Object 7, based on data obtained with the Hubble Space Telescope, are consistent with it being a quiescent luminous blue variable (LBV). Furthermore, post-explosion non-detections by the Spitzer Space Telescope do not necessarily and sufficiently rule out a surviving LBV. We therefore consider, based on the available evidence, that it is still a bit premature to reclassify SN 1961V as a bona fide SN. The inevitable demise of this star, though, may not be too far off.

  3. Gravitational microlensing of high-redshift supernovae by compact objects

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.

    1991-01-01

    An analysis of the effect of microlensing by a cosmologically dominant density of compact objects is performed, using high-redshift Type Ia supernovae (SN Ia's) as probes. The compact objects are modeled as a three-dimensional distribution of point masses, and Monte Carlo simulations are done to calculate the resulting amplification probability distributions for several column densities and cosmologies. By combining these distributions with the intrinsic SN Ia luminosity function and comparing with the results for a perfectly smooth universe, estimates are made of the number of supernovae that would need to be observed to confirm or rule out this lensing scenario. It is found that about 1000 SN Ia's with redshifts of z = 1 would be needed to perform this test, which is beyond what current searches can hope to accomplish. Observations of many fewer high-redshift supernovae, used merely as standard candles, appears a promising way of distinguishing between different cosmological models.

  4. SPECTRA AND LIGHT CURVES OF FAILED SUPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Dahl, Jon A.; Fontes, Christopher J. E-mail: dahl@lanl.go

    2009-12-10

    Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae (SNe), they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here, we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these 'failed' SNe: SNe with considerable fallback, accretion-induced collapse of white dwarfs, and energetic helium flashes (also known as type Ia SNe).

  5. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-01

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way. PMID:26551803

  6. STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS

    SciTech Connect

    Kochanek, Christopher S.

    2009-12-20

    For typical models of binary statistics, 50%-80% of core-collapse supernova (ccSN) progenitors are members of a stellar binary at the time of the explosion. Independent of any consequences of mass transfer, this has observational consequences that can be used to study the binary properties of massive stars. In particular, the secondary companion to the progenitor of a Type Ib/c SN is frequently (approx50%) the more optically luminous star since the high effective temperatures of the stripped progenitors make it relatively easy for a lower luminosity, cooler secondary to emit more optical light. Secondaries to the lower mass progenitors of Type II SN will frequently produce excess blue emission relative to the spectral energy distribution of the red primary. Available data constrain the models weakly. Any detected secondaries also provide an independent lower bound on the progenitor mass and, for historical SN, show that it was not a Type Ia event. Bright ccSN secondaries have an unambiguous, post-explosion observational signature-strong, blueshifted, relatively broad absorption lines created by the developing SN remnant (SNR). These can be used to locate historical SN with bright secondaries, confirm that a source is a secondary, and, potentially, measure abundances of ccSN ejecta. Luminous, hot secondaries will re-ionize the SNR on timescales of 100-1000 yr that are faster than re-ionization by the reverse shock, creating peculiar H II regions due to the high metallicity and velocities of the ejecta.

  7. Dark Matter Ignition of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph

    2015-10-01

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8 σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.

  8. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-01

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  9. The Fast Evolution of SN 2010bh Associated with XRF 100316D

    NASA Technical Reports Server (NTRS)

    Olivares E., F.; Greiner, J.; Schady, P.; Rau, A.; Klose, S.; Kruhler, T.; Afonso, P. M. J.; Updike, A. C.; Nardini, M.; Filgas, R.; Nicuesa Guelbenzu, A.; Clemens, C.; Elliott, J.; Kann, D. A.; Rossi, A.; Sudilovsky, V.

    2012-01-01

    most rapidly evolving GRB-SNe to date. Modelling of the quasi-bolometric light curve yields M(sub Ni) = 0.21 +/- 0.03 solar M and M(sub ej) = 2.6 +/- 0.2 solar M, typical of values within the GRB-SN population. The kinetic energy is E(sub k) = (2.4 +/- 0.7) x 10(exp 52) erg, which is making this SN the second most energetic GRB-SN after SN 1998bw. Conclusions. This supernova has one of the earliest peaks ever recorded and thereafter fades more rapidly than other GRB-SNe, hypernovae, or typical type-Ic SNe. This could be explained by a thin envelope expanding at very high velocities, which is therefore unable to retain the gamma-rays that would prolong the duration of the SN event.

  10. An unusually fast-evolving supernova.

    PubMed

    Poznanski, Dovi; Chornock, Ryan; Nugent, Peter E; Bloom, Joshua S; Filippenko, Alexei V; Ganeshalingam, Mohan; Leonard, Douglas C; Li, Weidong; Thomas, Rollin C

    2010-01-01

    Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. Here we describe SN 2002bj, which stands out as different from any SN reported to date. Its light curve rose and declined very rapidly, yet reached a peak intrinsic brightness greater than -18 magnitude. A spectrum obtained 7 days after discovery shows the presence of helium and intermediate-mass elements, yet no clear hydrogen or iron-peak elements. The spectrum only barely resembles that of a type Ia SN, with added carbon and helium. Its properties suggest that SN 2002bj may be representative of a class of progenitors that previously has been only hypothesized: a helium detonation on a white dwarf, ejecting a small envelope of material. New surveys should find many such objects, despite their scarcity. PMID:19892941

  11. An unusually fast-evolving supernova.

    PubMed

    Poznanski, Dovi; Chornock, Ryan; Nugent, Peter E; Bloom, Joshua S; Filippenko, Alexei V; Ganeshalingam, Mohan; Leonard, Douglas C; Li, Weidong; Thomas, Rollin C

    2010-01-01

    Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. Here we describe SN 2002bj, which stands out as different from any SN reported to date. Its light curve rose and declined very rapidly, yet reached a peak intrinsic brightness greater than -18 magnitude. A spectrum obtained 7 days after discovery shows the presence of helium and intermediate-mass elements, yet no clear hydrogen or iron-peak elements. The spectrum only barely resembles that of a type Ia SN, with added carbon and helium. Its properties suggest that SN 2002bj may be representative of a class of progenitors that previously has been only hypothesized: a helium detonation on a white dwarf, ejecting a small envelope of material. New surveys should find many such objects, despite their scarcity.

  12. Long gamma-ray Bursts and Type Ic Core CollapseSupernovae have Similar Environments

    SciTech Connect

    Kelly, P.L.; Kirshner, R.P.; Pahre, M.

    2007-12-04

    When the afterglow fades at the site of a long-duration {gamma}-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB had different environments from a collection of core-collapse supernovae identified in a high-redshift sample from colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 263 fully spectroscopically-typed supernovae found in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SN Ia) and some varieties of core-collapse supernovae (SN II and SN Ib) follow the galaxy light, but the SN Ic (like LGRB) are much more likely to erupt in the brightest regions of their hosts. The high-redshift hosts of LGRB are overwhelmingly irregulars, without bulges, while many low redshift SN Ic hosts are spirals with small bulges. When we remove the bulge light from our low-redshift sample, the SN Ic and LGRB distributions agree extremely well. If both LGRB and SN Ic stem from very massive stars, then it seems plausible that the conditions necessary for forming SN Ic are also required for LGRB. Additional factors, including metallicity, may determine whether the stellar evolution of a massive star leads to a LGRB with an underlying broad-lined SN Ic, or simply a SN Ic without a {gamma}-ray burst.

  13. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    SciTech Connect

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-03-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius {approx}1 x 10{sup 11} cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is {approx}0.1 M {sub sun}.

  14. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  15. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Temi, P.; Rank, D.

    2000-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short enough times that many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extinction is especially severe. Thus, determining the supernova rate in active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micrometer emission line was the strongest line in the infrared spectrum for a period of a year and half after th explosion. Since dust extinction is much less at 6.63 micrometers than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the [NiII] line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micrometers using ISOCAM to search for the [NiII] emission line characteristic of recent supernovae. We did not detect any [NiII] line emission brighter than a 5-sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled ot the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a [NiII] line with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a [NiII] line luminosity greater than the line in SN1987A.

  16. What sodium absorption lines tell us about Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2014-10-01

    We propose that the sodium responsible for the variable Na ID absorption lines in some Type Ia supernovae (SN Ia) originate mainly from dust residing at ˜1 pc from the supernovae. In this Na-from-dust absorption (NaDA) model, the process by which the SN Ia peak luminosity releases sodium from dust at ˜1 pc from the SN is similar to the processes by which solar radiation releases sodium from cometary dust when comets approach a distance of ≲ 1 au from the Sun. The dust grains are not sublimated but rather stay intact, and release sodium by photon-stimulated desorption (or photosputtering). Some of the Na might start in the gas phase before the explosion. Weakening in absorption strength is caused by Na-ionizing radiation of the SN. We apply the NaDA model to SN 2006X and SN 2007le, and find it to comply better with the observed time variability of the Na ID absorption lines than the Na recombination model. The mass in the dusty shell of the NaDA model is much too high to be accounted for in the single-degenerate scenario for SN Ia. Therefore, the presence of variable Na ID lines in some SN Ia further weakens the already very problematic single-degenerate scenario for SN Ia.

  17. X-ray Observations of the Tycho Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hughes, John P.

    2006-06-01

    In this presentation I summarize some key new findings from recent Chandra and XMM-Newton data on the remnant of the supernova (SN) observed by Tycho Brahe in 1572, which is widely believed to have been of Type Ia origin. Studies of the Tycho supernova remnant (SNR) at the current epoch address aspects of SN Ia physics, the evolution of young SNRs, and cosmic ray acceleration at high Mach-number shocks.Research on the Tycho SNR at Rutgers has been supported by Chandra grants GO3-4066X and AR5-6010X.

  18. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1993-01-01

    Most Galactic optical supernovae are hidden due to severe extinction in the disk, but could be detectable through their gamma-ray afterglow. Ti-44 is among the potentially detectable isotopes in supernova ejecta. HEAO 3 and SMM sky surveys have not detected gamma-ray lines from the decay of Ti-44, thus constraining SN rates and nucleosynthesis. We perform Monte Carlo simulations of the gamma-ray signatures of SN occurring during the last millenium to interpret the gamma-ray paucity.

  19. Gamma Ray Burst with a delayed Supernovae explosion

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Gamma Ray Burst models didn't find yet an explanation of a few percent well known GRB-SN events. The puzzle is based on the difficulties to make twice an explosion in the same place by a single collapsing star.The possible presence of a persistent and precessing jet from a neutron star or a Black hole whose blazing to us is observed as a GRB cannot naturally explain the additional late Supernova explosion. We Show that there is a new simple and well based astrophysical configuration able to make both the GRB and the late Supernova-like explosion, solving the main puzzle of GRB-SN signature.

  20. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  1. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  2. General energetics

    SciTech Connect

    Smil, V.

    1991-01-01

    This book is a comprehensive sourcebook for planetary management and strategies for sustainable development. Coupling biospheric and civilizational aspects, the book features thorough treatments of all critical energy storages, flows, and conversions. Measurements of energy and power densities and intensities are used throughout the book to provide an integrated framework of analysis for all segments of energetics from planetary and bioenergetics to the human energetics of hunting-gathering and agricultural societies through modern industrial civilization. Coverage also examines the environmental and socio-economic implication of the general patterns and trends of modern energy use.

  3. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  4. Solving the 56Ni Puzzle of Magnetar-powered Broad-lined Type IC Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Han, Yan-Hui; Xu, Dong; Wang, Shan-Qin; Dai, Zi-Gao; Wu, Xue-Feng; Wei, Jian-Yan

    2016-11-01

    Broad-lined Type Ic supernovae (SNe Ic-BL) are of great importance because their association with long-duration gamma-ray bursts (LGRBs) holds the key to deciphering the central engine of LGRBs, which refrains from being unveiled despite decades of investigation. Among the two popularly hypothesized types of central engine, i.e., black holes and strongly magnetized neutron stars (magnetars), there is mounting evidence that the central engine of GRB-associated SNe (GRB-SNe) is rapidly rotating magnetars. Theoretical analysis also suggests that magnetars could be the central engine of SNe Ic-BL. What puzzled the researchers is the fact that light-curve modeling indicates that as much as 0.2{--}0.5 {M}ȯ of 56Ni was synthesized during the explosion of the SNe Ic-BL, which is unfortunately in direct conflict with current state-of-the-art understanding of magnetar-powered 56Ni synthesis. Here we propose a dynamic model of magnetar-powered SNe to take into account the acceleration of the ejecta by the magnetar, as well as the thermalization of the injected energy. Assuming that the SN kinetic energy comes exclusively from the magnetar acceleration, we find that although a major fraction of the rotational energy of the magnetar is to accelerate the SN ejecta, a tiny fraction of this energy deposited as thermal energy of the ejecta is enough to reduce the needed 56Ni to 0.06 M ⊙ for both SN 1997ef and SN 2007ru. We therefore suggest that magnetars could power SNe Ic-BL in aspects both of energetics and of 56Ni synthesis.

  5. ASASSN-16lc: Discovery of A Probable Supernova in GALEXASC J192901.47-515813.5

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-10-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J192901.47-515813.5.

  6. ASASSN-16lm: Discovery of A Probable Supernova in 2MASX J09033461+4142367

    NASA Astrophysics Data System (ADS)

    Nicolas, J.; Shields, J.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Holoien, T.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-10-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J09033461+4142367.

  7. ASASSN-16ll: Discovery of A Probable Supernova in IRAS F18594+5429

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-10-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy IRAS F18594+5429.

  8. ASASSN-16jw: Discovery of A Probable Supernova in IC 1780

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Bock, G.; Cruz, I.; Kiyota, S.; Marples, P.; Masi, G.; Nicholls, B.; Post, R. S.; Stone, G.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy IC 1780.

  9. ASASSN-16ke: Discovery of A Probable Supernova in AGC 331536

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Bock, G.; Cruz, I.; Marples, P.; Post, R. S.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy AGC 331536.

  10. ASASSN-16if: Discovery of A Possible Supernova in AM 0557-522 NED03

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Kiyota, S.; Post, R. S.; Stone, G.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, possibly a supernova, in the galaxy AM 0557-522 NED03.

  11. ASASSN-16cm: Discovery of A Probable Supernova in 2MASX J15192684-0055256

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Monard, L. A. G.; Dong, Subo; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.; Bock, G.; Conseil, E.; Fernandez, J. M.; Kiyota, S.; Masi, G.; Wiethoff, W.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J15192684-0055256.

  12. ASASSN-16el: Discovery of A Probable Supernova in UGC 04671

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 04671.

  13. ASASSN-16ft: Discovery of A Probable Supernova in CGCG 382-005

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Fernandez, J. M.; Kiyota, S.; Masi, G.; Nicholls, B.; Wiethoff, W.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 382-005.

  14. ASASSN-16cn: Discovery of A Probable Supernova in ESO 579-G018

    NASA Astrophysics Data System (ADS)

    Monard, L. A. G.; Cruz, I.; Brown, J. S.; Dong, Subo; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.; Bock, G.; Conseil, E.; Fernandez, J. M.; Kiyota, S.; Masi, G.; Wiethoff, W.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 579-G018.

  15. ASASSN-16bv and ASASSN-16bw: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Kiyota, S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Cruz, I.; Masi, G.; Nicholls, B.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy LCRS B014209.4-420839.

  16. ASASSN-16ej: Discovery of A Probable Supernova in UGC 11409

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Koff, R. A.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Conseil, E.; Fernandez, J. M.; Masi, G.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 11409.

  17. ASASSN-16fg and ASASSN-16fh: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Monard, L. A. G.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Kiyota, S.; Koff, R. A.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered two new transient sources, most likely a supernovae, in the galaxies 2MASX J00051603-1629348 and 2MASXi J0002057-265846.

  18. ASASSN-16hc: Discovery of A Probable Supernova in 2MASX J13590394+3308172

    NASA Astrophysics Data System (ADS)

    Masi, G.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Kiyota, S.; Post, R. S.; Stone, G.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J13590394+3308172.

  19. ASASSN-16cy: Discovery of A Probable Supernova in CGCG 295-010

    NASA Astrophysics Data System (ADS)

    Masi, G.; Fernandez, J. M.; Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Cruz, I.; Monard, L. A. G.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 295-010.

  20. ASASSN-16db: Discovery of A Probable Supernova in UGC 06198

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Fernandez, J. M.; Masi, G.; Nicholls, B.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 06198.

  1. ASASSN-16ci: Discovery of A Type Ia Supernova in NGC 1272

    NASA Astrophysics Data System (ADS)

    Chornock, Ryan; Katebi, Reza; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy NGC 1272.

  2. ASASSN-16eq: Discovery of A Probable Supernova in UGC 11898

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 11898.

  3. ASASSN-16eu: Discovery of A Probable Supernova in NGC 2649

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy NGC 2649.

  4. ASASSN-16do: Discovery of A Probable Supernova in an Uncatalogued Galaxy

    NASA Astrophysics Data System (ADS)

    Nicholls, B.; Brown, J. S.; Stanek, K. Z.; Dong, Subo; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.; Kiyota, S.; Masi, G.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in an uncatalogued galaxy.

  5. ASASSN-16gv: Discovery of A Probable Supernova in CGCG 503-021

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Post, R. S.; Stone, G.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 503-021.

  6. ASASSN-16fx: Discovery of A Probable Supernova in GALEXASC J020044.56-461644.0

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J020044.56-461644.0.

  7. ASASSN-16gu: Discovery of A Probable Supernova in NGC 4725

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Dong, Subo; Kochanek, C. S.; Stanek, K. Z.; Brown, J. S.; Holoien, T. W.-S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Fernandez, J. M.; Koff, R. A.; Post, R. S.; Stone, G.; Wiethoff, W.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy NGC 4725.

  8. ASASSN-16em: Discovery of A Supernova in GALEXASC J133213.24+844042.7

    NASA Astrophysics Data System (ADS)

    Cruz, I.; Brimacombe, J.; Prieto, J. L.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Bersier, D.; Dong, Subo; Chen, Ping; Conseil, E.; Kiyota, S.; Koff, R. A.; Masi, G.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J133213.24+844042.7.

  9. ASASSN-16fa: Discovery of A Probable Supernova in UGC 06434

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Nicholls, B.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 06434.

  10. ASASSN-16dn: Discovery of A Probable Supernova in GALEXASC J104848.62-201544.1

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J104848.62-201544.1.

  11. ASASSN-16ek: Discovery of A Probable Supernova in a Bright, Uncatalogued Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Cruz, I.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Conseil, E.; Kiyota, S.; Koff, R. A.; Masi, G.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J072024.60+325058.8.

  12. ASASSN-16fp: Discovery of A Probable Supernova in UGC 11868

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Brown, J. S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 11868.

  13. ASASSN-16bq and ASASSN-16br: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Cruz, I.; Kiyota, S.; Masi, G.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxies IC 0986 and 2MASX J15453055-1309057.

  14. ASASSN-16dw: Discovery of A Probable Supernova in 2MASX J13300119-2758297

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Marples, P.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J13300119-2758297.

  15. ASASSN-16fs: Discovery of A Probable Supernova in UGC 09523

    NASA Astrophysics Data System (ADS)

    Masi, G.; Fernandez, J. M.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Kiyota, S.; Nicholls, B.; Wiethoff, W.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 09523.

  16. ASASSN-16am: Discovery of A Probable Supernova in CGCG 328-018

    NASA Astrophysics Data System (ADS)

    Masi, G.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Kiyota, S.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 328-018.

  17. ASASSN-16ar: Discovery of A Supernova in 2MASX J04283087-1739233

    NASA Astrophysics Data System (ADS)

    Masi, G.; Bersier, D.; Shappee, B. J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Prieto, J. L.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Kiyota, S.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J04283087-1739233.

  18. ASASSN-16bb: Discovery of A Probable Supernova in SDSS J140557.36+435257.2

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Koff, R. A.; Masi, G.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J140557.36+435257.2.

  19. ASASSN-16gz and ASASSN-16ha: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered two new transient sources, most likely supernovae, in the galaxies APMUKS(BJ) B043218.28-211910.3 and Fairall 0673.

  20. ASASSN-16gn: Discovery of A Probable Supernova in SDSS J120657.56+271806.0

    NASA Astrophysics Data System (ADS)

    Koff, R. A.; Post, R. S.; Stone, G.; Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Fernandez, J. M.; Masi, G.; Nicholls, B.; Nicolas, J.; Wiethoff, W.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J120657.56+271806.0.

  1. ASASSN-16fj: Discovery of A Probable Supernova in IC 1289

    NASA Astrophysics Data System (ADS)

    Cruz, I.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Kiyota, S.; Koff, R. A.; Monard, L. A. G.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy IC 1289.

  2. ASASSN-16hd: Discovery of A Probable Supernova in GALEXASC J015051.89+223348.8

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J015051.89+223348.8.

  3. ASASSN-16dm: Discovery of A Probable Supernova in 2MASX J11372059-0454450

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Masi, G.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J11372059-0454450.

  4. ASASSN-16cc: Discovery of A Probable Supernova in NGC 2101

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Bersier, D.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Masi, G.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy NGC 2101.

  5. ASASSN-16fl: Discovery of A Probable Supernova in 2MASX J10065350-1543022

    NASA Astrophysics Data System (ADS)

    Nicholls, B.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Cruz, I.; Kiyota, S.; Koff, R. A.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J10065350-1543022.

  6. ASASSN-16hw: Discovery of A Probable Supernova in GALEXASC J215327.92-342420.8

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J215327.92-342420.8.

  7. ASASSN-16gm: Discovery of A Probable Supernova in GALEXASC J200348.67-601528.7

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Nicholls, B.; Post, R. S.; Stone, G.; Wiethoff, W.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J200348.67-601528.7.

  8. ASASSN-16bx: Discovery of A Probable Supernova in CGCG 280-023

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Cruz, I.; Kiyota, S.; Masi, G.; Nicholls, B.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 280-023.

  9. ASASSN-16hh: Discovery of A Probable Supernova in MCG +03-06-031

    NASA Astrophysics Data System (ADS)

    Nicolas, J.; Kiyota, S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Masi, G.; Post, R. S.; Stone, G.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy MCG +03-06-031.

  10. ASASSN-16eh: Discovery of A Probable Supernova in SDSS J154029.29+005437.4

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Dong, Subo; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.; Bock, G.; Conseil, E.; Fernandez, J. M.; Kiyota, S.; Nicholls, B.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J154029.29+005437.4.

  11. ASASSN-16ex: Discovery of A Probable Supernova in SDSS J171023.63+262350.3

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J171023.63+262350.3.

  12. ASASSN-16hn: Discovery of A Probable Supernova in GALEXASC J000403.88-344851.6

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Kiyota, S.; Nicolas, J.; Post, R. S.; Stone, G.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J000403.88-344851.6.

  13. ASASSN-16bn: Discovery of A Probable Supernova in 2MASX J03103162+0416184

    NASA Astrophysics Data System (ADS)

    Masi, G.; Brimacombe, J.; Kiyota, S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Cruz, I.; Fernandez, J. M.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J03103162+0416184.

  14. ASASSN-16ay: Discovery of A Probable Supernova in UGC 03738

    NASA Astrophysics Data System (ADS)

    Koff, R. A.; Brimacombe, J.; Kiyota, S.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Masi, G.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 03738.

  15. ASASSN-16aw: Discovery of A Probable Supernova in ESO 306-G016

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Koff, R. A.; Masi, G.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 306-G016.

  16. ASASSN-16bg: Discovery of A Probable Supernova in 2MASX J12592491+2744198

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Dong, Subo; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.; Fernandez, J. M.; Kiyota, S.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J12592491+2744198.

  17. ASASSN-16ec: Discovery of A Probable Supernova in 2MASX J13031054-2159149

    NASA Astrophysics Data System (ADS)

    Bock, G.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Marples, P.; Nicholls, B.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J13031054-2159149.

  18. ASASSN-16hr: Discovery of A Probable Supernova in 2MASX J22253147+3859010

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Kiyota, S.; Nicholls, B.; Post, R. S.; Stone, G.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J22253147+3859010.

  19. ASASSN-16ff: Discovery of A Probable Supernova in ESO 218-G008

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Kiyota, S.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Koff, R. A.; Monard, L. A. G.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 218-G008.

  20. ASASSN-16bc: Discovery of A Probable Supernova in 2MASX J12052488-2123572

    NASA Astrophysics Data System (ADS)

    Fernandez, J. M.; Kiyota, S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Koff, R. A.; Masi, G.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J12052488-2123572.

  1. ASASSN-16bp: Discovery of A Probable Supernova in CGCG 336-041

    NASA Astrophysics Data System (ADS)

    Cruz, I.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Kiyota, S.; Masi, G.

    2016-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 336-041.

  2. ASASSN-16at: Discovery of A Probable Nearby Supernova in UGC 08041

    NASA Astrophysics Data System (ADS)

    Bock, G.; Shappee, B. J.; Stanek, K. Z.; Prieto, J. L.; Kochanek, C. S.; Holoien, T. W.-S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Masi, G.; Kiyota, S.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 8041.

  3. ASASSN-16et: Discovery of A Probable Supernova in 2MASX J10200192+5627397

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J10200192+5627397.

  4. ASASSN-16dp: Discovery of A Probable Supernova in SDSS J145942.12+040518.1

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Stanek, K. Z.; Brown, J. S.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J145942.12+040518.1.

  5. ASASSN-16ch: Discovery of A Probable Supernova in MSPM 00984

    NASA Astrophysics Data System (ADS)

    Wiethoff, W.; Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Bock, G.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Masi, G.

    2016-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy MSPM 00984.

  6. ASASSN-16hp: Discovery of A Probable Supernova in ESO 509-IG064

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 509-IG064.

  7. ASASSN-16gy: Discovery of A Probable Supernova in UGC 01814

    NASA Astrophysics Data System (ADS)

    Masi, G.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Post, R. S.; Stone, G.

    2016-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 01814 NOTES02.

  8. ASASSN-16fn and ASASSN-16fo: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Nicholls, B.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Cruz, I.; Kiyota, S.; Koff, R. A.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered two new probable supernovae, one in an uncatalogued galaxy, and a second in 2MASX J13323577-0516218.

  9. ASASSN-16fm: Discovery of A Probable Supernova with no Apparent Host Galaxy

    NASA Astrophysics Data System (ADS)

    Villanueva, S., Jr.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, with no apparent host galaxy.

  10. ASASSN-16go: Discovery of A Probable Supernova in 2MASX J13024397-2656276

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J13024397-2656276.

  11. ASASSN-16es: Discovery of A Probable Supernova in SDSS J115054.45+021828.1

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J115054.45+021828.1.

  12. ASASSN-16av: Discovery of A Type Ia Supernova in NGC 3926 NED02

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Bersier, D.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new type Ia supernova in the galaxy NGC 3926 NED02.

  13. ASASSN-16ic: Discovery of A Probable Supernova in GALEXASC J011415.49-162456.4

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J011415.49-162456.4.

  14. ASASSN-16jj: Discovery of A Supernova in GALEXASC J234711.93+100501.3

    NASA Astrophysics Data System (ADS)

    Nicolas, J.; Krannich, G.; Masi, G.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Marples, P.; Post, R. S.; Stone, G.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a supernova in the galaxy GALEXASC J234711.93+100501.3.

  15. ASASSN-16iq: Discovery of A Probable Supernova in ESO 471-G041

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 471-G041.

  16. ASASSN-16jc: Discovery of A Probable Supernova in NGC 6942

    NASA Astrophysics Data System (ADS)

    Marples, P.; Brown, J. S.; Dong, Subo; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Bose, S.; Chen, Ping; Brimacombe, J.; Cacella, P.; Kiyota, S.; Post, R. S.; Stone, G.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy NGC 6942.

  17. ASASSN-16ji: Discovery of A Probable Supernova in GALEXASC J201155.52+811602.0

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J201155.52+811602.0.

  18. ASASSN-16hy: Discovery of A Probable Supernova in UGC 09857

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Dong, Subo; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Bose, S.; Chen, Ping; Masi, G.; Post, R. S.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 09857.

  19. ASASSN-16ie: Discovery of A Probable Supernova in 2MASXi J1604144+164124

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASXi J1604144+164124.

  20. ASASSN-16je: Discovery of A Probable Supernova in 2MASX J17055033+6950555

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J17055033+6950555.

  1. ASASSN-16ip: Discovery of A Probable Supernova in ESO_479-G_007

    NASA Astrophysics Data System (ADS)

    Shields, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 479-G007.

  2. ASASSN-16jq: Discovery of A Probable Supernova in CGMW 2-2125

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Krannich, G.; Marples, P.; Masi, G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy CGMW 2-2125.

  3. ASASSN-16hz: Discovery of A Probable Supernova in 2MASX J23154564-0120135

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Post, R. S.; Kiyota, S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Stone, G.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J23154564-0120135.

  4. ASASSN-16io: Discovery of A Probable Supernova in 2MASX J18400114+5413042

    NASA Astrophysics Data System (ADS)

    Nicolas, J.; Kiyota, S.; Cruz, I.; Stone, G.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-08-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J18400114+5413042.

  5. ASASSN-16kv: Discovery of A Probable Supernova in 2MASX J05073951-1932539

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Nicholls, B.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J05073951-1932539.

  6. ASASSN-16kw: Discovery of A Probable Supernova in 2MASX J05080487-4141151

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J05080487-4141151.

  7. ASASSN-16kk: Discovery of A Supernova in LSBG F156-039

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy LSBG F156-039.

  8. ASASSN-16kz: Discovery of A Probable Supernova in ESO 555-G029

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy ESO 555-G029.

  9. VLA radio upper limit on Type IIn Supernova 2007rt

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-01-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2007rt (CBET 1148) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 12.55 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1148). The flux density at the supernova position is 9 ± 27 uJy.

  10. Are 44Ti-producing supernovae exceptional?

    NASA Astrophysics Data System (ADS)

    The, L.-S.; Clayton, D. D.; Diehl, R.; Hartmann, D. H.; Iyudin, A. F.; Leising, M. D.; Meyer, B. S.; Motizuki, Y.; Schönfelder, V.

    2006-05-01

    According to standard models supernovae produce radioactive 44Ti, which should be visible in gamma-rays following decay to 44Ca for a few centuries. 44Ti production is believed to be the source of cosmic 44Ca, whose abundance is well established. Yet, gamma-ray telescopes have not seen the expected young remnants of core collapse events. The 44Ti mean life of τ ≃ 89 y and the Galactic supernova rate of ≃3/100 y imply ≃several detectable 44Ti gamma-ray sources, but only one is clearly seen, the 340-year-old Cas A SNR. Furthermore, supernovae which produce much 44Ti are expected to occur primarily in the inner part of the Galaxy, where young massive stars are most abundant. Because the Galaxy is transparent to gamma-rays, this should be the dominant location of expected gamma-ray sources. Yet the Cas A SNR as the only one source is located far from the inner Galaxy (at longitude 112°). We evaluate the surprising absence of detectable supernovae from the past three centuries. We discuss whether our understanding of SN explosions, their 44Ti yields, their spatial distributions, and statistical arguments can be stretched so that this apparent disagreement may be accommodated within reasonable expectations, or if we have to revise some or all of the above aspects to bring expectations in agreement with the observations. We conclude that either core collapse supernovae have been improbably rare in the Galaxy during the past few centuries, or 44Ti-producing supernovae are atypical supernovae. We also present a new argument based on 44Ca/40Ca ratios in mainstream SiC stardust grains that may cast doubt on massive-He-cap type I supernovae as the source of most galactic 44Ca.

  11. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Bazan, G.; Drake, R.P.; Fryxell, B.A.; Teyssier, R.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane {ital et al.} [Astrophys. J. {bold 478}, L75 (1997) and B. A. Remington {ital et al.}, Phys. Plasmas {bold 4}, 1994 (1997)]. The Nova laser is used to generate a 10{endash}15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer{endash}Meshkov instability, and to the Rayleigh{endash}Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. {bold 51}, 179 (1994)] and CALE [R. T. Barton, {ital Numerical Astrophysics} (Jones and Bartlett, Boston, 1985), pp. 482{endash}497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. {bold 54}, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  12. Are young supernova remnants interacting with circumstellar gas

    SciTech Connect

    Chevalier, R.A.

    1982-08-15

    The young remnants of galactic Type I supernovae (SN 1006, SN 1572, and SN 1604) appear to be interacting with moderately dense gas (n/sub O/> or =0.1 cm/sup -3/). If the gas in the ambient interstellar medium, the observations suggest that gas of this density is fairly pervasive. If the gas is circumstellar, there are important implications for the progenitors of Type I supernovae. A plausible density distribution for circumstellar gas is rhoinfinityr/sup -2/. The expansion of a supernova into such a medium is examined and is compared with expansion into a uniform medium. The two cases can be distinguished on the basis of their density profiles and their rates of expansion. Currently available data factor the hypothesis of expansion in a uniform medium for all three Type I remnants; the evidence is the strongest for SN 1572 and the weakest for SN 1604. Further X-ray and radio observations of the galactic remnants and of extragalactic Type I supernovae should serve to test this hypothesis.

  13. Late-time Constraints on the Fates of Supernova Impostors

    NASA Astrophysics Data System (ADS)

    Adams, Scott

    2016-01-01

    Transients showing circumstellar interactions, low luminosities and low expansion velocities are generally considered to be non-terminal outbursts. Two main classes of such transients are 'supernova impostors', whose progenitors are massive stars (>20 solar masses) and may be extra-galactic analogs of Eta Car's eruptions, and SN 2008S-like transients, which have lower-mass (~10 solar masses), dust-obscured progenitors. We present late-time Hubble and Spitzer Space Telescope observations of the archetypal 'supernova impostor', SN 1997bs, as well as the prototypes of the SN 2008S class of transients, SN 2008S and NGC 300 2008-OT1. All of these objects have faded below their progenitor luminosities in all bands for which comparisons are possible. We show that it is difficult to reconcile the late-time observations with models where surviving stars are obscured by either ejected shells or thick, dusty winds. Although some supernova impostors, such as SN 1954J, are clearly non-fatal, our results suggest that many of these weak stellar transients with circumstellar interactions may actually be low energy supernovae.

  14. Properties of unusually luminous supernovae

    NASA Astrophysics Data System (ADS)

    Pan, Tony Shih Arng

    This thesis is a theoretical study of the progenitors, event rates, and observational properties of unusually luminous supernova (SN), and aims to identify promising directions for future observations. In Chapter 2, we present model light curves and spectra of pair-instability supernovae (PISNe) over a range of progenitor masses and envelope structures for Pop III stars. We calculate the rates and detectability of PISNe, core-collapse supernovae (CCSNe), and Type Ia SNe at the Epoch of Reionization with the James Webb Space Telescope (JWST), which can be used to determine the contribution of Pop III versus Pop II stars toward ionizing the universe. Although CCSNe are the least intrinsically luminous supernovae, Chapter 5 shows that a JWST survey targeting known galaxy clusters with Einstein radii > 35" should discover gravitationally lensed CCSNe at redshifts exceeding z = 7--8. In Chapter 3, we explain the Pop II/I progenitors of observed PISNe in the local universe can be created via mergers in runaway collisions in young, dense star clusters, despite copious mass loss via line-driven winds. The PISN rate from this mechanism is consistent with the observed volumetric rate, and the Large Synoptic Survey Telescope could discover ~102 such PISNe per year. In Chapter 4, we identify 10 star clusters which may host PISN progenitors with masses up to 600 solar masses formed via runaway collisions. We estimate the probabilities of these very massive stars being in eclipsing binaries to be ≳ 30%, and find that their transits can be detected even under the contamination of the background cluster light, due to mean transit depths of ~10 6 solar luminosities. In Chapter 6, we show that there could be X-ray analogues of optically super-luminous SNe that are powered by the conversion of the kinetic energy of SN ejecta into radiation upon its collision with a dense but optically-thin circumstellar shell. We find shell configurations that can convert a large fraction of the SN

  15. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  16. Supernova 1987A: a Template to Link Supernovae to Their Remnants

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F.

    2015-09-01

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 1051 erg and the envelope mass in the range 15–17 M ⊙. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = ‑8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  17. Powerful Nearby Supernova Caught By Web

    NASA Astrophysics Data System (ADS)

    2008-09-01

    One of the nearest supernovas in the last 25 years has been identified over a decade after it exploded. This result was made possible by combining data from the vast online archives from many of the world's premier telescopes. The supernova was first singled out in 2001 by Franz Bauer, then at Penn State and now at Columbia University, who noticed a bright, variable object in the spiral galaxy Circinus using NASA's Chandra X-ray Observatory. Though the source displayed some exceptional properties, at the time Bauer and his Penn State colleagues could not confidently identify its nature. It was not until years later that Bauer and his team were able to confirm this object was a supernova. Clues in a spectrum from the European Southern Observatory's Very Large Telescope (VLT) led the team to search through data from 18 different telescopes, both in space and on the ground, nearly all of which was from archives. Because this object was found in a nearby galaxy, making it relatively easy to study, the public archives of these telescopes contained abundant data on this galaxy. The data show that this supernova, dubbed SN 1996cr, is among the brightest supernovas ever seen in radio and X-rays. It also bears many striking similarities to the famous supernova SN 1987A, which occurred in a galaxy only 160,000 light years from Earth. "This supernova appears to be a wild cousin of SN 1987A," said Bauer. "These two look alike in many ways, except this newer supernova is intrinsically a thousand times brighter in radio and X-rays." Optical images from the archives of the Anglo-Australian Telescope in Australia show that SN 1996cr exploded between February 28, 1995 and March 15, 1996, nearly a decade after SN 1987A. SN 1996cr may not have been noticed by astronomers at the time because it was only visible in the southern hemisphere, which is not as widely monitored as the northern. Among the five nearest supernovas of the last 25 years, it is the only one that was not seen

  18. Supernova 2009ig Has Brightened

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2009-09-01

    The Type-Ia Supernova 2009ig in NGC 1015 has brightened from its discovery magnitude of 17.5 on Aug. 20.48 UT (I. Kleiser, S. B. Cenko, W. Li, and A. V. Filippenko, University of California; LOSS discovery on unfiltered KAIT images) to unfiltered CCD magnitude 14.0 on Sep. 20.646 UT (Yoshiteru Matsuura, Nada-ku, Kobe, Japan). H. Navasardyan, E. Cappellaro, and S. Benetti, Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, report that a spectrogram obtained on Aug. 21.08 UT with the Asiago 1.82-m telescope indicates that the object is a type-Ia supernova caught soon after explosion. They note some similarity to early spectra of SN 2002bo (Benetti et al. 2004, MNRAS 348, 261), although Si II 597.2-nm and S II 564.0-nm are not yet present. Instructions for CCD observing are given in accordance with AAVSO policy on the observation of Type-Ia supernovae brighter than magnitude 15.0. Data should be submitted to the AAVSO International Database; FITS images should be uploaded to ftp.aavso.org.

  19. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  20. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  1. RELATIVISTIC SUPERNOVAE HAVE SHORTER-LIVED CENTRAL ENGINES OR MORE EXTENDED PROGENITORS: THE CASE OF SN 2012ap

    SciTech Connect

    Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; Sanders, N.; Chakraborti, S.; Kamble, A.; Drout, M.; Parrent, J.; Zauderer, A.; Guidorzi, C.; Morsony, B. J.; Ray, A.; Chomiuk, L.

    2014-12-20

    Deep, late-time X-ray observations of the relativistic, engine-driven, type Ic SN 2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic supernova explosions (SNe). We find that on a local scale of ∼0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate of M-dot <5×10{sup −6} M{sub ⊙} yr{sup −1}, in line with gamma-ray bursts (GRBs) and the other relativistic SN 2009bb. Like sub-energetic GRBs, SN 2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late-time (δt ≈ 20 days) X-ray emission is ∼100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to break out. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.

  2. ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: {chi}{sup 2}-MINIMIZATION OF PARAMETER FITS

    SciTech Connect

    Chatzopoulos, E.; Wheeler, J. Craig; Vinko, J.; Horvath, Z. L.; Nagy, A.

    2013-08-10

    We present fits of generalized semi-analytic supernova (SN) light curve (LC) models for a variety of power inputs including {sup 56}Ni and {sup 56}Co radioactive decay, magnetar spin-down, and forward and reverse shock heating due to supernova ejecta-circumstellar matter (CSM) interaction. We apply our models to the observed LCs of the H-rich superluminous supernovae (SLSN-II) SN 2006gy, SN 2006tf, SN 2008am, SN 2008es, CSS100217, the H-poor SLSN-I SN 2005ap, SCP06F6, SN 2007bi, SN 2010gx, and SN 2010kd, as well as to the interacting SN 2008iy and PTF 09uj. Our goal is to determine the dominant mechanism that powers the LCs of these extraordinary events and the physical conditions involved in each case. We also present a comparison of our semi-analytical results with recent results from numerical radiation hydrodynamics calculations in the particular case of SN 2006gy in order to explore the strengths and weaknesses of our models. We find that CS shock heating produced by ejecta-CSM interaction provides a better fit to the LCs of most of the events we examine. We discuss the possibility that collision of supernova ejecta with hydrogen-deficient CSM accounts for some of the hydrogen-deficient SLSNe (SLSN-I) and may be a plausible explanation for the explosion mechanism of SN 2007bi, the pair-instability supernova candidate. We characterize and discuss issues of parameter degeneracy.

  3. Frontier Field Supernova Search

    NASA Astrophysics Data System (ADS)

    Rodney, Steven

    2014-10-01

    The Frontier Fields program presents an extraordinary opportunity for the detection of high redshift supernovae (SNe). The combination of very deep imaging in each epoch with the added boost from gravitational lensing magnification will provide the means to detect both Type Ia SNe (SNIa) and core collapse SNe (CC SNe) out to z~3. We propose to capitalize on this unique new asset by processing and searching all of the Frontier Field data, and then triggering ToO follow-up observations for SNe of interest.We expect to discover ~20 new SNe over the entire 3-year program, including ~5 SNIa at z>1.5 and ~6 with strong lensing magnification. These samples are small but special: the high-z SNIa set has unique leverage for testing SNIa progenitor models through the delay time distribution; the lensed SNIa offer a chance to validate cluster mass models by directly measuring the lensing magnification. We will also be able to extend CCSN rate measurements for the first time beyond z~1, and our search will open up the small but exciting possibility of catching a truly rare event such as a multiply imaged SN or a superluminous SN at z>4.This follow-up program provides the color and light curve information necessary to unlock the science potential of these SNe. It is also designed for high efficiency: broad-band photometry and ground-based spectroscopy will be used to classify and characterize most of the SNe. For a small "New Frontier" sub-set comprising the SNIa candidates at never-before-seen redshifts, we will employ a novel medium band IR imaging strategy. All told, this program will classify and characterize all SNe of interest with just 60 orbits across 3 cycles.

  4. Frontier Field Supernova Search

    NASA Astrophysics Data System (ADS)

    Rodney, Steven

    2013-10-01

    The Frontier Fields program presents an extraordinary opportunity for the detection of high redshift supernovae (SNe). The combination of very deep imaging in each epoch with the added boost from gravitational lensing magnification will provide the means to detect both Type Ia SNe (SNIa) and core collapse SNe (CC SNe) out to z~3. We propose to capitalize on this unique new asset by processing and searching all of the Frontier Field data, and then triggering ToO follow-up observations for SNe of interest.We expect to discover ~20 new SNe over the entire 3-year program, including ~5 SNIa at z>1.5 and ~6 with strong lensing magnification. These samples are small but special: the high-z SNIa set has unique leverage for testing SNIa progenitor models through the delay time distribution; the lensed SNIa offer a chance to validate cluster mass models by directly measuring the lensing magnification. We will also be able to extend CCSN rate measurements for the first time beyond z~1, and our search will open up the small but exciting possibility of catching a truly rare event such as a multiply imaged SN or a superluminous SN at z>4.This follow-up program provides the color and light curve information necessary to unlock the science potential of these SNe. It is also designed for high efficiency: broad-band photometry and ground-based spectroscopy will be used to classify and characterize most of the SNe. For a small "New Frontier" sub-set comprising the SNIa candidates at never-before-seen redshifts, we will employ a novel medium band IR imaging strategy. All told, this program will classify and characterize all SNe of interest with just 60 orbits across 3 cycles.

  5. Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters?

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-01

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed "metal aversion" of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  6. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    SciTech Connect

    Van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  7. Cosmology with Photometrically Classified Type Ia Supernovae from the SDSS-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Campbell, Heather; D'Andrea, Chris B.; Nichol, Robert C.; Sako, Masao; Smith, Mathew; Lampeitl, Hubert; Olmstead, Matthew D.; Bassett, Bruce; Biswas, Rahul; Brown, Peter; Cinabro, David; Dawson, Kyle S.; Dilday, Ben; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; Kuhlmann, Steve; Kunz, Martin; Marriner, John; Miquel, Ramon; Richmond, Michael; Riess, Adam; Schneider, Donald P.; Sollerman, Jesper; Taylor, Matt; Zhao, Gong-Bo

    2013-02-01

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat ΛCDM cosmological model, we find that our photometric sample alone gives Ω m = 0.24+0.07 -0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Ω m and ΩΛ, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H 0, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96+0.10 -0.10, Ω m = 0.29+0.02 -0.02, and Ω k = 0.00+0.03 -0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.

  8. NERO- a post-maximum supernova radiation transport code

    NASA Astrophysics Data System (ADS)

    Maurer, I.; Jerkstrand, A.; Mazzali, P. A.; Taubenberger, S.; Hachinger, S.; Kromer, M.; Sim, S.; Hillebrandt, W.

    2011-12-01

    The interpretation of supernova (SN) spectra is essential for deriving SN ejecta properties such as density and composition, which in turn can tell us about their progenitors and the explosion mechanism. A very large number of atomic processes are important for spectrum formation. Several tools for calculating SN spectra exist, but they mainly focus on the very early or late epochs. The intermediate phase, which requires a non-local thermodynamic equilibrium (NLTE) treatment of radiation transport has rarely been studied. In this paper, we present a new SN radiation transport code, NERO, which can look at those epochs. All the atomic processes are treated in full NLTE, under a steady-state assumption. This is a valid approach between roughly 50 and 500 days after the explosion depending on SN type. This covers the post-maximum photospheric and the early and the intermediate nebular phase. As a test, we compare NERO to the radiation transport code of Jerkstrand, Fransson & Kozma and to the nebular code of Mazzali et al. All three codes have been developed independently and a comparison provides a valuable opportunity to investigate their reliability. Currently, NERO is one-dimensional and can be used for predicting spectra of synthetic explosion models or for deriving SN properties by spectral modelling. To demonstrate this, we study the spectra of the 'normal' Type Ia supernova (SN Ia) 2005cf between 50 and 350 days after the explosion and identify most of the common SN Ia line features at post-maximum epochs.

  9. The Supernova Shock

    NASA Astrophysics Data System (ADS)

    Bethe, Hans A.

    1995-08-01

    Vigorous convection is the key to the supernova mechanism. An analytic theory is presented which parallels the computations of Herant et al. Energy is delivered by neutrinos to the convecting medium. The most important quantity is p1r3, where P1 is the density outside the shock. This can be obtained from the computations of Wilson et al., since it is not affected by the convection behind the shock. It is closely related to Mdot, the rate at which matter falls in toward the center. The outgoing shock is dominated by the Hugoniot equation; the shock cannot move out until its energy is of the order of 1 foe (= 1051 ergs). Once it moves, its velocity and energy are calculated as functions of its radius. Nucleosynthesis gives an appreciable contribution to the energy. A substantial fraction of the energy is initially stored as nuclear dissociation energy, and then released as the shock moves out. This energy cannot at present be calculated from first principles, but it can be deduced from the observed energy of SN 1987A of 1.4±0.4 foe. From the result it is shown that about one-half of the infalling material goes into the shock and one-half accretes to the neutron star.

  10. In search of Mahutonga: a possible supernova recorded in Maori astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Green, David A.; Orchiston, Wayne

    Maori astronomical traditions refer to Mahutonga, which can be interpreted as a possible record of a southern supernova (SN) in or near Crux. A search for any known "young" supernova remnants in this region does not reveal any obvious candidate to associate with this possible supernova. Relaxing the positional constraint somewhat, the SN of A.D. 185 near a Centauri is nearby. If this is associated with Mahutonga, then the Maori term must be a relic of an earlier Proto-Polynesian record.

  11. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  12. Emission from Pair Instability Supernovae with Rotation

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Emmanouil; Van Rossum, Daniel R; Whalen, Daniel J.

    2014-08-01

    Pair Instability Supernovae have been suggested as candidates for some Super Luminous Supernovae, like SN 2007bi, and can also be one of the dominant types of explosion occurring in the early Universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating therefore exhibiting a differentevolutionary path due to the effects of rotationally-induced mixing and mass-loss.Proper identification of such events requires rigorous radiation hydrodynamics and non-localthermal equilibrium calculations that capture not only the behavior of the light curve but also the spectral evolution of these events accurately. We present radiation hydrodynamics and local and non-local thermal equilibrium radiation transport calculations for 90-140 Msun rotating pair-instability supernovae covering both the shock break-out and late light curve phases. We find that for a variety of progenitor masses these events are too dim and too red in color to account for so far observed super-luminous supernovae and do not seem to matchother known events, in terms of spectral appearance. We discuss the qualitative differences between different radiation transport treatments and compare our results with previous results from non-rotating pair-instability supernovae.

  13. Snapping Supernovae at z>1.7

    SciTech Connect

    Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V.; Perlmutter, Saul

    2006-07-03

    We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7

  14. Deciphering the Encoded Debris of Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan

    2016-06-01

    Theory and observation strongly favor the notion that asymmetric explosions drive core-collapse supernovae. Where and how this asymmetry is introduced is uncertain, in part because of limited constraints on various dynamical processes that may take place deep inside the star prior to and during core collapse. Fortunately, the debris fields of supernovae encode valuable information about these processes in their three-dimensional kinematics and chemical abundances. Accessing that information accurately, however, is not straightforward since observed properties may have multiple origins; e.g., asymmetries in both the explosion mechanism and/or turbulent stellar interior, and nonuniform circumstellar environments. I argue that the key to deciphering supernova debris fields is via end-toend investigations that connect extragalactic events with young, nearby supernova remnants. This approach has the unique ability to trace the sources of mixing and clumping at large and small scales back to the time of explosion. I will emphasize how a holistic SN-SNR methodology is necessary for the next generation of three-dimensional core-collapse simulations seeking to robustly model and interpret the gravitational wave, neutrino, and EM signatures of supernovae.

  15. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  16. Radio detection of the near-IR discovered supernova 2010P

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, R.; Romero-Canizales, C.; Perez-Torres, M. A.; Alberdi, A.; Kankare, E.; Mattila, S.; Ryder, S. D.

    2012-09-01

    We report the radio detection of supernova 2010P (cf. CBETs 2145, 2149) in Arp 299 in EVLA (8459 MHz) observations from 15th Jun 2011. SN2010P was discovered in near-IR images on 18th Jan 2010, and classified as a Type Ib/IIb SN based on its optical spectrum obtained on 11th Feb 2010 (cf. CBET 2189).

  17. VERY LATE PHOTOMETRY OF SN 2011fe

    SciTech Connect

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-12-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of {sup 56}Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs.

  18. Very Late Photometry of SN 2011fe

    NASA Astrophysics Data System (ADS)

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-12-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of 56Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs.

  19. Supernova Remnants And GLAST

    SciTech Connect

    Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

    2011-11-29

    It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

  20. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.