Science.gov

Sample records for energetic supernova sn

  1. Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB 130427A

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Pian, E.; D'Elia, V.; D'Avanzo, P.; Della Valle, M.; Mazzali, P. A.; Tagliaferri, G.; Cano, Z.; Levan, A. J.; Møoller, P.; Amati, L.; Bernardini, M. G.; Bersier, D.; Bufano, F.; Campana, S.; Castro-Tirado, A. J.; Covino, S.; Ghirlanda, G.; Hurley, K.; Malesani, D.; Masetti, N.; Palazzi, E.; Piranomonte, S.; Rossi, A.; Salvaterra, R.; Starling, R. L. C.; Tanaka, M.; Tanvir, N. R.; Vergani, S. D.

    2014-07-01

    Aims: Long-duration gamma-ray bursts (GRBs) have been found to be associated with broad-lined type-Ic supernovae (SNe), but only a handful of cases have been studied in detail. Prompted by the discovery of the exceptionally bright, nearby GRB 130427A (redshift z = 0.3399), we aim at characterising the properties of its associated SN 2013cq. This is the first opportunity to test the progenitors of high-luminosity GRBs directly. Methods: We monitored the field of the Swift long-duration GRB 130427A using the 3.6 m TNG and the 8.2 m VLT during the time interval between 3.6 and 51.6 days after the burst. Photometric and spectroscopic observations revealed the presence of the type Ic SN 2013cq. Results: Spectroscopic analysis suggests that SN 2013cq resembles two previous GRB-SNe, SN 1998bw and SN 2010bh, associated with GRB 980425 and X-ray flash (XRF) 100316D, respectively. The bolometric light curve of SN 2013cq, which is significantly affected by the host galaxy contribution, is systematically more luminous than that of SN 2010bh (~2 mag at peak), but is consistent with SN 1998bw. The comparison with the light curve model of another GRB-connected SN 2003dh indicates that SN 2013cq is consistent with the model when brightened by 20%. This suggests a synthesised radioactive 56Ni mass of ~0.4M⊙. GRB 130427A/SN 2013cq is the first case of low-z GRB-SN connection where the GRB energetics are extreme (Eγ,iso ~ 1054 erg). We show that the maximum luminosities attained by SNe associated with GRBs span a very narrow range, but those associated with XRFs are significantly less luminous. On the other hand the isotropic energies of the accompanying GRBs span 6 orders of magnitude (1048 erg SN energy budget. Based on observations made with the VLT, operated on the mountain of Cerro Paranal in Chile under programme 091.D-0291

  2. Toward connecting core-collapse supernova theory with observations. I. Shock revival in a 15 M {sub ☉} blue supergiant progenitor with SN 1987A energetics

    SciTech Connect

    Handy, Timothy; Plewa, Tomasz; Odrzywołek, Andrzej

    2014-03-10

    We study the evolution of the collapsing core of a 15 M {sub ☉} blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiency of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.

  3. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-03-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  4. DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Mahabal, A.; Williams, R.; Graham, M. J.; Prieto, J. L.; Balam, D.; Catelan, M.; Beshore, E.; Larson, S.

    2010-08-01

    We report on the discovery and initial observations of the energetic type IIn supernova 2008fz. This object was discovered at redshift z = 0.133 and reached an apparent magnitude of V {approx} 17. After correcting for Galactic extinction and redshift, we determine the peak absolute magnitude of the event to be M{sub V} = -22.3, placing it among the most luminous supernovae discovered. The optical energy emitted by SN 2008fz (based on the light curve over an 88 day period) is possibly the most ever observed for a supernova (>1.4 x 10{sup 51} erg). The event was more luminous than the type IIn SN 2006gy, but exhibited the same smooth, slowly evolving light curve. As is characteristic of type IIn supernova, the early spectra of SN 2008fz initially exhibited narrow Balmer lines which were replaced by a broader component at later times. The spectra also show a blue continuum with no signs of Ca or Na absorption, suggesting that there is little extinction due to dust in the host or circumstellar material. No host galaxy is identified in prior co-added images reaching R {approx} 22. From the supernova's redshift, we place an upper limit on the brightness of the host of M{sub R} {approx} -17 (similar to the brightness of the Small Magellanic Cloud). The presence of the supernova within such a faint galaxy follows the majority of recently discovered highly luminous supernovae. A possible reason for this is the combination of a high star formation rate in low-mass galaxies with a low-metallicity environment.

  5. Energetic Supernovae from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2013-04-01

    We present the results from our 3D supernova simulations by using CASTRO, a new radiation-hydrodynamics code. The first generation of stars in the universe ended the cosmic dark age by shining the first light. But what was the fate of these stars? Based on the stellar evolution models, the fate of stars depends on their masses. Modern cosmological simulations suggest that the first stars could be very massive, with a typical mass scale over 50 solar masses. We look for the possible supernovae from the death of the first stars with masses over 50 solar masses. Besides the iron-core collapse supernovae, we find energetic thermonuclear supernovae, including two types of pair-instability supernovae and one type of general-relativity instability supernovae. Our models capture all explosive burning and follow the explosion until the shock breaks out from the stellar surface. We will discuss the energetics, nucleosynthesis, and possible observational signatures for these primordial supernovae that will be the prime targets for future large telescopes such as the James Webb Space Telescope (JWST).

  6. SN 1054: A pulsar-powered supernova?

    NASA Astrophysics Data System (ADS)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  7. The ASAS-SN Bright Supernova Catalog - II. 2015

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Basu, U.; Beacom, J. F.; Bersier, D.; Chen, Ping; Danilet, A. B.; Falco, E.; Godoy-Rivera, D.; Goss, N.; Pojmanski, G.; Simonian, G. V.; Skowron, D. M.; Thompson, Todd A.; Woźniak, P. R.; Ávila, C. G.; Bock, G.; Carballo, J.-L. G.; Conseil, E.; Contreras, C.; Cruz, I.; Andújar, J. M. F.; Guo, Zhen; Hsiao, E. Y.; Kiyota, S.; Koff, R. A.; Krannich, G.; Madore, B. F.; Marples, P.; Masi, G.; Morrell, N.; Monard, L. A. G.; Munoz-Mateos, J. C.; Nicholls, B.; Nicolas, J.; Wagner, R. M.; Wiethoff, W. S.

    2017-01-01

    This manuscript presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalog, we also present redshifts and near-UV through IR magnitudes for all supernova host galaxies in both samples. Combined with our previous catalog, this work comprises a complete catalog of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is the second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  8. Du Pont Classifications of 2 ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Prieto, J. L.; Rich, J.; Madore, B.; Poetrodjojo, Henry; D'Agostino, Joshua

    2016-09-01

    We report optical spectroscopy (range 370-910 nm) of two supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on Aug. 30 and Sep. 1 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  9. Du Pont Classifications of 4 ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Shappee, Benjamin J.

    2016-08-01

    We report optical spectroscopy (range 370-910 nm) of four supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on July 31 and Aug. 01 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  10. SN 2010as and Transitional Ib/c Supernovae

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón

    2014-01-01

    We present intensive photometric and spectroscopic observations of SN 2010as carried out by the Millennium Center for Supernova Studies (MCSS) and the Carnegie Supernova Project (CSP). The SN belongs to the transitional type Ibc (SN Ibc) that is characterized by the slow appearance of weak helium lines with low expansion velocities. We find a wide variety of photometric properties among otherwise spectroscopically similar SN Ibc. A hydrodynamical model is used to provide physical properties of SN 2010as in comparison with the bolometric light curve and expansion velocity.

  11. A LUMINOUS AND FAST-EXPANDING TYPE Ib SUPERNOVA SN 2012au

    SciTech Connect

    Takaki, Katsutoshi; Fukazawa, Yasushi; Itoh, Ryosuke; Ueno, Issei; Ui, Takahiro; Urano, Takeshi; Kawabata, Koji S.; Akitaya, Hiroshi; Moritani, Yuki; Ohsugi, Takashi; Uemura, Makoto; Yoshida, Michitoshi; Yamanaka, Masayuki; Maeda, Keiichi; Nomoto, Ken'ichi; Tanaka, Masaomi; Kinugasa, Kenzo; Sasada, Mahito

    2013-08-01

    We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6 days until {approx} + 150 days after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absolute magnitude is M{sub R} = -18.7 {+-} 0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km s{sup -1} around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7 {+-} 1.3) Multiplication-Sign 10{sup 42} erg s{sup -1}, we estimate the {sup 56}Ni mass produced during the explosion as {approx}0.30 M{sub Sun }. We also give a rough constraint to the ejecta mass 5-7 M{sub Sun} and the kinetic energy (7-18) Multiplication-Sign 10{sup 51} erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light-curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.

  12. Type Ia supernova diversity: Studies of SN 2007qd, SN 2008Q and SN 2011fe

    NASA Astrophysics Data System (ADS)

    McClelland, Colin M.

    Type Ia supernovae (SN Ia) have proven to be incredibly useful as distance indicators and in nuclear astrophysics, but there remain many unanswered questions as to their nature. We examine three particular SN Ia at length in an attempt to provide constraints on both their theory and their application to cosmology. We first present SN 2007qd, one of the lowest-luminosity SN Ia ever discovered. It appears to belong to the SN 2002cx-like subclass of peculiar SN Ia. We observe and analyze the photospheric-phase spectra and photometry for this event and determine that, despite its extreme nature, it still appears to be a thermonuclear event rather than a core-collapse SN Ic. We also discover a possible relation between the luminosity and the low expansion velocities (2000˜7000 km/s) of similar events, and determine that they constitute a well-defined group of SN Ia. From the explosion kinematics and the content of the spectra, we argue that SN 2007qd was likely caused by a pure deflagration of a carbon and oxygen white dwarf. We then consider SN 2008Q, a SN Ia that exploded in the same early-type host galaxy as the peculiar SN 2000cx. This provided a chance for a direct comparison of two SN Ia at the same distance, extinction and host environment. We combine photometry from the ultraviolet through to the mid-infrared (MIR) and create a picture of how this SN evolved bolometrically over a span of two years. We discover that SN 2008Q was relatively bright in the ultraviolet, and characterize the possible existence of a class of SN Ia with similar UV excesses. We identify intrinsic differences between SN 2008Q and SN 2000cx, and discuss what this means for the variation in explosion and nebular physics in SN Ia events. We present next the mid-infrared and optical decay of SN 2011fe. This SN Ia exploded in the nearby galaxy M101, allowing observations of high signal-to-noise during the later phases. We examine this SN with Spitzer/IRAC MIR photometry and discover that the

  13. Classification of SN2005dj, a Type II Supernova

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Sauge, L.; Smadja, G.; Antilogus, P.; Garavini, G.; Gilles, S.; Pain, R.; Aldering, G.; Bailey, S.; Lee, B. C.; Loken, S.; Nugent, P.; Perlmutter, S.; Scalzo, R.; Thomas, R. C.; Wang, L.; Weaver, B. A.; Bonnaud, C.; Pecontal, E.; Kessler, R.; Baltay, C.; Rabinowitz, D.; Bauer, A.

    2005-08-01

    The Nearby Supernova Factory reports that a spectrum (range 320-1000 nm) of SN 2005dj (IAUC#8585), obtained August 19.6 UT with the Supernova Integral Field Spectrograph on the University of Hawaii 2.2-meter telescope, reveals P-Cygni H-alpha and H-beta, indicative of a Type II supernova. The observed redshift is consistent with that of the host UGC 3545 (z = 0.011508, Huchtmeier & Skillman 1998 via NED).

  14. SN 1987A: The Supernova of the Century

    NASA Technical Reports Server (NTRS)

    Sonneborne, George

    2012-01-01

    Supernova 1987 A in the Large Magellanic Cloud is one of the most intensively studied objects in the universe and a Rosetta Stone for understanding the explosions of massive stars. Approaching its 25th anniversary, SN 1987 A is a very young supernova remnant, a phase previously unobserved in any other supernova. The supernova of the 20th Century is now the supernova remnant of the 21st Century. In this talk I will discuss recent observations from the far-ultraviolet to the far-infrared with HST, the VLT, Spitzer, and the Herschel Space Observatory. These data reveal new insights into the composition, geometry, and heating of the explosion debris, the shock interaction with circumstellar material, and dust in the SN 1987 A system.

  15. Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B

    NASA Technical Reports Server (NTRS)

    Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David

    1995-01-01

    We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.

  16. Energetic Supernovae of Very Massive Primordial Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Some of them would die as pair instability supernovae (PSNe) which might be the biggest explosions of the universe. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae. Our simulations provide useful predictions for the observational signatures of PSNe, which might soon be examined by the James Webb Space Telescope.

  17. SN 1993J: A Type IIb supernova

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Eastman, Ronald G. (Editor); Weaver, Thomas A; Pinto, Philip A.

    1994-01-01

    The evolution of the bright Type II supernova discovered last year in M81, SN 1993J, is consistent with that expected for the explosion of a star which on the main sequence had a mass of 13-16 Solar Mass but which, owing to mass exchange with a binary companion (a intially approximately 3-5 AU, depending upon the actual presupernova radius and the masses of the two stars) lost almost all of its hydrogen-rich envelope during late helium burning. At the time of explosion, the helium core mass was 4.0 +/- 0.5 Solar Mass and the hydrogen envelope, 0.20 +/- 0.05 Solar Mass. The envelope was helium and nitrogen-rich (carbon-deficient) and the radius of the star, 4 +/- 1 x 10(exp 13) cm. The luminosity of the presupernova star was 3 + 1 x 10(exp 38) ergs/s, with the companion star contributing an additional approximately 10(exp 38) ergs/s. The star may have been a pulsating variable at the time of the explosion. For an explosion energy near 10(exp 51) ergs (KE at infinity) and an assumed distance of 3.3 Mpc, a mass of Ni-56 in the range 0.07 +/- 0.01 Solar Mass was produced and ejected. This presciption gives a light curve which compares favorably with the bolomatric observations. Color photometry is more restrictive and requires a model in which the hydrogen-envelope mass is low and the mixing of hydrogen inward has been small, but in which appreciable Ni-56 has been mixed outward into the helium and heavy-element core. It is possible to obtain good agreement with B and V light curves during the first 50 days, but later photometry, especially in bands other than B and V, will require a non-local thermo-dynamic equilibrium (LTE) spectral calculation for comparison. Based upon our model, we predict a flux of approximately 10(exp -5)(3.3 Mpc/D)(exp 2) photons/sq cm/s in the 847 keV line of CO-56 at peak during 1993 August. It may be easier to detect the Computonized continuum which peaks at a few times 10(exp -4) photons /s/sq cm/MeV at 40 keV a few months after the

  18. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  19. The Supernova Spectropolarimetry Project: Evolution of Asymmetries in the Very Luminous Type Ib SN 2012au

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Smith, N.; Bilinski, C.; Dessart, L.; Huk, L. N.; Leonard, D. C.; Milne, P.; Smith, P. S.; Williams, G.

    2014-01-01

    The Supernova Spectropolarimetry Project is a recently formed collaboration between observers and theorists that focuses on decoding the complex, time-dependent spectropolarimetric behavior of supernovae (SNe) of all types. Using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes, we obtain multi-epoch observations of each target, aiming to construct the most comprehensive survey to date of supernovae in polarized light. In this poster we present the results of 6 epochs of spectropolarimetric observations of the Type Ib SN 2012au spanning the first 315 days of its evolution. This supernova was a very energetic, luminous, and slow-evolving event that may represent an intermediate case between normal core-collapse SNe and the enigmatic superluminous SNe (SLSNe). Strong, time-variable line polarization signatures, particularly in the He I λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the spectropolarimetric evolution of SN 2012au with that of other objects in our data set and discuss its connections with other SNe Ib/c and SLSNe.

  20. SN 2013fs & SN 2013fr: Filling the gaps between Type IIn and Type IIP supernovae

    NASA Astrophysics Data System (ADS)

    Bullivant, Christopher William; Smith, Nathan; Milne, Peter; LOSS, PESSTO, LCOGT

    2017-01-01

    Type IIn supernovae (SNe IIn), characterized by narrow lines in their spectra, display some of the greatest diversity in environments and explosion characteristics, despite representing only about 9% of all core collapse supernovae. The narrow lines are indicative of circumstellar material (CSM) ejected by the progenitor during the late stages of massive star evolution. Consequently, SNe IIn can be attributed to a wide range of progenitors with strong mass loss. Previous research has suggested a continuum between Type IIn and IIP, and Type IIP and IIL supernovae. We present early time photometry and spectroscopy of SN 2013fs and SN 2013fr, both objects initially classified as type IIn supernovae, across a wide range of wavelengths. These both exhibit signs of early time CSM interaction and are spectroscopically similar at discovery, but rapidly diverge as they evolve. We discuss the implications of this highly divergent evolution on the efforts to link SNe IIn and SNe IIP, as SN 2013fs and SN 2013fr both occupy positions in between very bright SNe IIn like SN 1998S and more typical SNe IIP like SN 1999em.

  1. On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca*

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Fraser, M.; Smartt, S. J.; Benetti, S.; Chen, T.-W.; Childress, M.; Gal-Yam, A.; Howell, D. A.; Kangas, T.; Pignata, G.; Polshaw, J.; Sullivan, M.; Smith, K. W.; Valenti, S.; Young, D. R.; Parker, S.; Seccull, T.; McCrum, M.

    2016-07-01

    We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 d prior to maximum light, until 531 d after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 yr, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium (CSM) rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a Type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with Type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (˜2.3-2.6 M⊙) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.

  2. Expanded VLA observations of Type IIn supernova SN 2010al

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia; Chevalier, Roger; Fransson, Claes; Chugai, Nikolai

    2010-04-01

    We observed the Type IIN supernova SN 2010al (Rich et al, CBET #2207), which has shown its early spectrum similar to SN 1998S (Cooke et al. ATel #2491) with the Expanded VLA (EVLA; Perley et al. 2009, IEEEP, 97, 1448) in D configuration beginning at Mar 26.25 UT for a duration of 1.0 hr. The observations were carried out at a central frequency of 8.396 GHz with a total bandwidth of 256 MHz. The map rms was 17 uJy.

  3. SN 2012au: A Golden Link between Superluminous Supernovae and Their Lower-luminosity Counterparts

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Howie Marion, G.; Sanders, Nathan E.; Hsiao, Eric Y.; Lunnan, Ragnhild; Chornock, Ryan; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; De Rosa, Gisella; Fausnaugh, Michael; Hainline, Kevin N.; Chen, Chien-Ting; Hickox, Ryan C.; Morrell, Nidia; Phillips, Mark M.; Stritzinger, Maximilian

    2013-06-01

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching ≈2 × 104 km s-1 in its early spectra, and a broad light curve that peaked at MB = -18.1 mag. Models of these data indicate a large explosion kinetic energy of ~1052 erg and 56Ni mass ejection of M Ni ≈ 0.3 M ⊙ on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities >~ 4500 km s-1, as well as O I and Mg I lines at noticeably smaller velocities <~ 2000 km s-1. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 <~ MB <~ -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  4. Radio evolution of supernova SN 2008iz in M 82

    NASA Astrophysics Data System (ADS)

    Kimani, N.; Sendlinger, K.; Brunthaler, A.; Menten, K. M.; Martí-Vidal, I.; Henkel, C.; Falcke, H.; Muxlow, T. W. B.; Beswick, R. J.; Bower, G. C.

    2016-08-01

    We report on multi-frequency Very Large Array (VLA) and Very Long Baseline Interferometry (VLBI) radio observations for a monitoring campaign of supernova SN 2008iz in the nearby irregular galaxy M 82. We fit two models to the data, a simple time power-law, S ∝ tβ, and a simplified Weiler model, yielding decline indices of β = -1.22 ± 0.07 (days 100-1500) and -1.41 ± 0.02 (days 76-2167), respectively. The late-time radio light-curve evolution shows flux-density flares at ~970 and ~1400 days that are a factor of ~2 and ~4 higher than the expected flux, respectively. The later flare, except for being brighter, does not show signs of decline at least from results examined so far (2014 January 23; day 2167). We derive the spectral index, α, S ∝ να for frequencies 1.4 to 43 GHz for SN 2008iz during the period from ~430 to 2167 days after the supernova explosion. The value of α shows no signs of evolution and remains steep ≈-1 throughout the period, unlike that of SN 1993J, which started flattening at ~day 970. From the 4.8 and 8.4 GHz VLBI images, the supernova expansion is seen to start with a shell-like structure that becomes increasingly more asymmetric, then breaks up in the later epochs, with bright structures dominating the southern part of the ring. This structural evolution differs significantly from SN 1993J, which remains circularly symmetric over 4000 days after the explosion. The VLBI 4.8 and 8.4 GHz images are used to derive a deceleration index, m, for SN 2008iz, of 0.86 ± 0.02, and the average expansion velocity between days 73 and 1400 as (12.1 ± 0.2) × 103 km s-1. From the energy equipartition between magnetic field and particles, we estimate the minimum total energy in relativistic particles and the magnetic fields during the supernova expansion and also find the magnetic field amplification factor for SN 2008iz to be in the range of 55-400. The VLBI images (FITS files) are only available at the CDS via anonymous ftp to http

  5. SN2002es-like Supernovae from Different Viewing Angles

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Kulkarni, S. R.; Gal-Yam, Avishay; Papadogiannakis, S.; Nugent, P. E.; Masci, Frank J.; Bue, Brian D.

    2016-11-01

    In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day-1, before it reached the R-band peak (-18.05 mag). On the other hand, iPTF14dpk rose rapidly to -17 mag within a day of discovery with a rise rate \\gt 1.8 {{mag}} {{{day}}}-1, and then rose slowly to its peak (-18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before -17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction.

  6. The magnification of SN 1997ff, the farthest known supernova

    SciTech Connect

    Benitez, Narciso; Riess, Adam; Nugent, Peter; Dickinson, Mark; Chornock, Ryan; Filippenko, Alexei V.

    2002-09-03

    With a redshift of z {approx} 1.7, SN 1997ff is the most distant type Ia supernova discovered so far. This SN is close to several bright, z = 0.6-0.9 galaxies, and we consider the effects of lensing by those objects on the magnitude of SN 1997ff. We estimate their velocity dispersions using the Tully-Fisher and Faber-Jackson relations corrected for evolution effects, and calculate, applying the multiple-plane lensing formalism, that SN 1997ff is magnified by 0.34{+-}0.12 mag. Due to the spatial configuration of the foreground galaxies, the shear from individual lenses partially cancels out,and the total distortion induced on the host galaxy is considerably smaller than that produced by a single lens having the same magnification. After correction for lensing, the revised distance to SN 1997ff is m-M = 45.49 {+-} 0.34 mag, which improves the agreement with the {Omega}{sub M} = 0.35, {Omega}{Lambda} = 0.65 cosmology expected from lower-redshift SNe Ia, and is inconsistent at the {approx} 3 sigma confidence level with a uniform gray dust model or a simple evolution model.

  7. SN Refsdal: Classification as a Luminous and Blue SN 1987A-like Type II Supernova

    NASA Astrophysics Data System (ADS)

    Kelly, P. L.; Brammer, G.; Selsing, J.; Foley, R. J.; Hjorth, J.; Rodney, S. A.; Christensen, L.; Strolger, L.-G.; Filippenko, A. V.; Treu, T.; Steidel, C. C.; Strom, A.; Riess, A. G.; Zitrin, A.; Schmidt, K. B.; Bradač, M.; Jha, S. W.; Graham, M. L.; McCully, C.; Graur, O.; Weiner, B. J.; Silverman, J. M.; Taddia, F.

    2016-11-01

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad Hα P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong Hα and Na I D absorption. From the grism spectrum, we measure an Hα expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the Hα emission of the WFC3 and X-shooter spectra, separated by ˜2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  8. Origin of Galactic Type-Ia supernovae: SN 1572 and SN 1006

    NASA Astrophysics Data System (ADS)

    González-Hernández, J. I.; Ruiz-Lapuente, P.; Tabernero, H. M.; Montes, D.; Canal, R.; Méndez, J.; Bedin, L. R.

    2015-05-01

    We have been searching for surviving companions of progenitors of Galactic Type-Ia supernovae, in particular SN 1572 and SN 1006. These companion stars are expected to show peculiarities: (i) to be probably more luminous than the Sun, (ii) to have high radial velocity and proper motion, (iii) to be possibly enriched in metals from the SNIa ejecta, and (iv) to be located at the distance of the SNIa remnant. We have been characterizing possible candidate stars using high-resolution spectroscopic data taken at 10m-Keck and 8.2m-VLT facilities. We have identified a very promising candidate companion (Tycho G) for SN 1572 (see Ruiz-Lapuente et al. 2004; however for a different view see Kerzendorf et al., 2012) but we have not found any candidate companion for SN 1006, suggesting that SN event occurred in 1006 could have been the result of the merging of two white dwarfs (see González-Hernández et al., 2012). Adding these results to the evidence from the other direct searches, the clear minority of cases (20% or less) seem to disfavour the single-degenerate channel or that preferentially the single-degenerate escenario would involve main-sequence companions less massive than the Sun. Therefore, it appears to be very important to continue investigating these and other Galactic Type-Ia SNe such as the Johannes Kepler SN 1604.

  9. The ASAS-SN bright supernova catalogue - I. 2013-2014

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Brimacombe, J.; Bersier, D.; Bishop, D. W.; Dong, Subo; Brown, J. S.; Danilet, A. B.; Simonian, G. V.; Basu, U.; Beacom, J. F.; Falco, E.; Pojmanski, G.; Skowron, D. M.; Woźniak, P. R.; Ávila, C. G.; Conseil, E.; Contreras, C.; Cruz, I.; Fernández, J. M.; Koff, R. A.; Guo, Zhen; Herczeg, G. J.; Hissong, J.; Hsiao, E. Y.; Jose, J.; Kiyota, S.; Long, Feng; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Wiethoff, W. S.

    2017-01-01

    We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (mV ≤ 17), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensive catalogue of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses many previously existing biases. In particular, ASAS-SN systematically finds bright supernovae closer to the centres of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. This is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team.

  10. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    SciTech Connect

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Fermilab /Moscow, ITEP /Garching, Max Planck Inst. /Ohio State U., Dept. Astron. /Arizona U., Astron. Dept. - Steward Observ. /Chile U., Santiago /Texas A-M /Carnegie Inst. Observ. /KIPAC, Menlo Park /Caltech, IPAC /Notre Dame U. /South African Astron. Observ. /Cape Town U. /Washington U., Seattle, Astron. Dept. /New Mexico State U. /Chicago U., FLASH /Baltimore, Space Telescope Sci.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  11. Ejecta in SN 1006: The knotty issue. [supernova remnant

    NASA Technical Reports Server (NTRS)

    Fesen, Robert A.; Hamilton, Andrew J. S.

    1988-01-01

    The 1988 IUE SWP observations of a faint sdOB star situated behind the remnant of the supernova of AD 1006 are presented. These spectra along with IUE spectra of the star taken between 1982 and 1986 provide a detailed look at the elemental composition and dynamical properties of the SN 1006 remnant. Over the 6 years there were no significant changes in the absorption features associated with the remnant at 1281, 1330, or 1420 A. While the lack of variability in these absorption lines makes it impossible to decide whether the ejecta is distributed smoothly or in knots, it is clear that the 1281 A feature is a blend, requiring either S II absorption redshifted at 6000 km/sec plus Si II 1260 at 5200 km/sec, or else 2 individual Si absorbing regions.

  12. Supernova SN 1006 in two historic Yemeni reports

    NASA Astrophysics Data System (ADS)

    Rada, W.; Neuhäuser, R.

    2015-04-01

    We present two Arabic texts of historic observations of supernova SN 1006 from Yemen as reported by al-Yamāni and Ibn al-Daybac (14th to 16th century AD). An English translation of the report by the latter was given before (Stephenson & Green 2002), but the original Arabic text was not yet published. In addition, we present for the first time the earlier report, also from Yemen, namely by al-Yamāni in its original Arabic and with our English translation. It is quite obvious that the report by Ibn al-Daybac is based on the report by al-Yamāni (or a common source), but the earlier report by al-Yamāni is more detailed and in better (Arabic) language. We discuss in detail the dating of these observations. The most striking difference to other reports about SN 1006 is the apparent early discovery in Yemen in the evening of {15th of Rajab} of the year 396h (i.e. AD 1006 April 17 ± 2 on the Julian calendar), as reported by both al-Yamāni and Ibn al-Daybac, i.e. {˜ 1.5} weeks earlier than the otherwise earliest known reports. We also briefly discuss other information from the Yemeni reports on brightness, light curve, duration of visibility, location, stationarity, and color.

  13. Spectroscopic Classification of SN2016igr as a Normal Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Bostroem, K. A.; Valenti, S.; Tartaglia, L.

    2016-12-01

    We report that a CCD spectrum (range 350-1050 nm) of SN2016igr was obtained on Dec 1, 5.95 UT, with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J.

  14. DIRECTED SEARCHES FOR BROADBAND EXTENDED GRAVITATIONAL WAVE EMISSION IN NEARBY ENERGETIC CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Van Putten, Maurice H. P. M.

    2016-03-10

    Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time–frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose using coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.

  15. Directed Searches for Broadband Extended Gravitational Wave Emission in Nearby Energetic Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2016-03-01

    Core-collapse supernovae (CC-SNe) are factories of neutron stars and stellar-mass black holes. SNe Ib/c stand out as potentially originating in relatively compact stellar binaries and they have a branching ratio of about 1% into long gamma-ray bursts. The most energetic events probably derive from central engines harboring rapidly rotating black holes, wherein the accretion of fall-back matter down to the innermost stable circular orbit (ISCO) offers a window into broadband extended gravitational wave emission (BEGE). To search for BEGE, we introduce a butterfly filter in time-frequency space by time-sliced matched filtering. To analyze long epochs of data, we propose using coarse-grained searches followed by high-resolution searches on events of interest. We illustrate our proposed coarse-grained search on two weeks of LIGO S6 data prior to SN 2010br (z = 0.002339) using a bank of up to 64,000 templates of one-second duration covering a broad range in chirp frequencies and bandwidth. Correlating events with signal-to-noise ratios > 6 from the LIGO L1 and H1 detectors reduces the total to a few events of interest. Lacking any further properties reflecting a common excitation by broadband gravitational radiation, we disregarded these as spurious. This new pipeline may be used to systematically search for long-duration chirps in nearby CC-SNe from robotic optical transient surveys using embarrassingly parallel computing.

  16. Spectroscopic Classification of SN 2017hq as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Zhang, Liyun; Xiao, Feng; Zhang, Jinbo; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 360-850 nm) of SN 2017hq (=ASASSN-17am), discovered by All Sky Automated Survey for SuperNovae (ASAS-SN), on UT Jan.13.9 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  17. Spectroscopic Classification of SN 2017cal (=ASASSN-17dh) as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Jia, Junjun; Zhang, Bo; Zhang, Tianmeng; Zhang, Jujia

    2017-03-01

    We obtained an optical spectrum (range 360-860 nm) of SN 2017cal (=ASASSN-17dh, see ATEL 10156), discovered by All Sky Automated Survey for SuperNovae (ASAS-SN), on UT Mar.09.9 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  18. SN 2009mw: a member of the tiny group of 1987A-like supernovae

    NASA Astrophysics Data System (ADS)

    Takats, Katalin; Pignata, Giuliano

    2015-08-01

    SN 1987A was an event that have had a great role in forming our understanding of supernovae (SNe). It was an unusal object, different from type II-P SNe, with a broad light curve that reached the peak about 3 months after the explosion. Even today, there have been only a handful of similar objects studied.We present an event belonging to this elite group. SN 2009mw was discovered by the Chilean Supernova Search project soon after its explosion. We present our observational data of the SN, analyse its nature and compare it to the other similar objects.

  19. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    SciTech Connect

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.

    2015-10-10

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for {sup 56}Ni and {sup 56}Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, {sup 56}Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.

  20. SN 1978K: An evolved supernova outside our Local Group detected at millimetre wavelengths

    NASA Astrophysics Data System (ADS)

    Ryder, S. D.; Kotak, R.; Smith, I. A.; Tingay, S. J.; Kool, E. C.; Polshaw, J.

    2016-11-01

    Supernova 1978K is one of the oldest-known examples of the class of Type IIn supernovae that show evidence for strong interaction between the blast wave and a dense, pre-existing circumstellar medium. Here we report detections of SN 1978K at both 34 GHz and 94 GHz, making it only the third extragalactic supernova (after SN 1987A and SN 1996cr) to be detected at late-times at these frequencies. We find SN 1978K to be >400 times more luminous than SN 1987A at millimetre wavelengths in spite of the roughly nine year difference in ages, highlighting the risk in adopting SN 1987A as a template for the evolution of core-collapse supernovae in general. Additionally, from new VLBI observations at 8.4 GHz, we measure a deconvolved diameter for SN 1978K of 5 milli-arcsec, and a corresponding average expansion velocity of <1500 km s-1. These observations provide independent evidence of an extremely dense circumstellar medium surrounding the progenitor star.

  1. Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Berger, E.; Margutti, R.; Chornock, R.; Blanchard, P. K.; Jerkstrand, A.; Smartt, S. J.; Arcavi, I.; Challis, P.; Chambers, K. C.; Chen, T.-W.; Cowperthwaite, P. S.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Magnier, E. A.; Maguire, K.; Mazzali, P. A.; McCully, C.; Milisavljevic, D.; Smith, K. W.; Taubenberger, S.; Valenti, S.; Wainscoat, R. J.; Yaron, O.; Young, D. R.

    2016-09-01

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250-400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days)-1 to 1.7 mag (100 days)-1, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large 56Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of -22 < M B < -17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7-30 M ⊙ of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  2. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  3. DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A

    SciTech Connect

    Xu, D.; Krühler, T.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Watson, D. J.; Geier, S.; De Ugarte Postigo, A.; Thöne, C. C.; Sánchez-Ramírez, R.; Cano, Z.; Jakobsson, P.; Schulze, S.; Kaper, L.; Sollerman, J.; Cabrera-Lavers, A.; Cao, C.; Covino, S.; and others

    2013-10-20

    Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399 ± 0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E{sub iso} ∼ 9.6 × 10{sup 53} erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, ∼0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.

  4. SALT spectroscopic classification of SN 2017azk (= PS17bii) as a type-Ia supernova near maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Vaisanen, P.

    2017-02-01

    We obtained SALT (+RSS) spectroscopy of SN 2017azk (= PS17bii) on 2017 Feb 24.0 UT, covering the wavelength range 340-920 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017azk is a type-Ia supernova near maximum light.

  5. The Final Word on the Progenitor of the Type II-Plateau Supernova SN 2006ov

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas

    2011-10-01

    Despite recent rapid progress, the field of supernova {SN} progenitor identification remains in its infancy, with only five supernovae having had unambiguous detection and characterization of their progenitor stars made. The existence of deep pre-SN WFPC2 images of the site of the nearby core-collapse {Type II-Plateau} SN 2006ov has enabled two independent searches for its progenitor star to be carried out. While both studies agree that an object is located at the location of SN 2006ov in the pre-SN images, they disagree on whether the light from this source {or, part of it} is, in fact, coming from the actual progenitor star. The time is ripe to settle the issue: A single-orbit reobservation of the SN site with HST/ACS will permit the definitive determination of whether this object is indeed associated with SN 2006ov. If it is, and its flux is found to have diminished {it was an extended source} or vanished {it was an isolated star}, then this will enable the third conclusive characterization of a Type II-Plateau supernova's progenitor star's properties to be made. If it is not, then a firm upper mass limit on the progenitor star will be confidently declared the final word on the topic.

  6. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.

    PubMed

    Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo

    2008-08-29

    The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

  7. A Second Ultraviolet ``Light Bulb'' behind the Supernova Remnant SN 1006

    NASA Astrophysics Data System (ADS)

    Winkler, P. Frank; Long, Knox S.

    1997-09-01

    A point X-ray source located 9' NE of the center of SN 1006 has been spectroscopically identified as a background QSO, with a redshift of 0.335. The object is moderately bright, with magnitude V = 18.3. If its ultraviolet spectrum is typical of low-z quasars, this object will be a second source (after the Schweizer-Middleditch star) to use for absorption spectroscopy of material within SN 1006. Absorption spectra provide a unique probe for unshocked ejecta within this supernova remnant and can possibly solve the long-standing problem of ``missing'' iron in the remnants of Type Ia supernovae.

  8. Energetics of Sn2+ isomorphic substitution into hydroxylapatite: First-principles predictions

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2016-11-04

    In this study, the energetics of Sn2+ substitution into the Ca2+ sublattice of hydroxylapatite (HA), Ca10(PO4)6(OH)2, has been investigated within the framework of density functional theory. Calculations reveal that Sn2+ incorporation via coupled substitutions at Ca(II) sites is energetically favourable up to a composition of Sn6Ca4(PO4)6(OH)2, and further substitutions at Ca(I) sites proceed once full occupancy of Ca(II) sites by Sn2+ is achieved. Compositions of SnxCa10–x(PO4)6(OH)2 (x = 4–9) are predominant, with an optimal stoichiometry of Sn8Ca2(PO4)6(OH)2, and Sn-substituted HA follows approximately Vegard's law across the entire composition range.

  9. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    SciTech Connect

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that

  10. The Final Word on the Progenitor of the Type II-Plateau Supernova SN 2006my

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas

    2010-09-01

    Despite recent rapid progress, the field of supernova {SN} progenitor identification remains in its infancy, with only four supernovae having had unambiguous detection and characterization of their progenitor stars made. The existence of pre-SN WFPC2 images of the site of the nearby core-collapse {Type II-Plateau} SN 2006my has enabled three independent searches for its progenitor star to be carried out. In the first, Li et. al. {2007} find spatial coincidence between the SN and a possibly extended source with properties deemed consistent with those of a red supergiant. Subsequent analyses by Leonard et al. {2008} and Crockett et al. {2010} refute the Li et al. detection claim, but recognize that existing data do not permit a definitive resolution of the issue since even the revised SN localizations place SN 2006my on part of the putative progenitor's point-spread-function in the pre-SN frames {although no longer at its center}. The time is ripe to settle the issue: A single-orbit reobservation of the SN site with HST/ACS will permit the definitive determination of whether this object is indeed associated with SN 2006my. If it is, and its flux is found to have diminished {it was an extended source} or vanished {it was an isolated star}, then this will enable the second conclusive characterization of a Type II-Plateau supernova's progenitor star's properties to be made. If it is not, then upper mass limits on the progenitor star will be confidently declared the final word on the topic.

  11. Supernova SN1987A in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Glittering stars and wisps of gas create a breathtaking backdrop for the self-destruction of a massive star, called supernova 1987A, in the Large Magellanic Cloud, a nearby galaxy. Astronomers in the Southern hemisphere witnessed the brilliant explosion of this star on Feb. 23, 1987. Shown in this NASA Hubble Space Telescope image, the supernova remnant, surrounded by inner and outer rings of material, is set in a forest of ethereal, diffuse clouds of gas. This three-color image is composed of several pictures of the supernova and its neighboring region taken with the Wide Field and Planetary Camera 2 in Sept. 1994, Feb. 1996 and July 1997. The many bright blue stars nearby the supernova are massive stars, each more than six times heftier than our Sun. They are members of the same generation of stars as the star that went supernova about 12 million years ago. The presence of bright gas clouds is another sign of the youth of this region, which still appears to be a fertile breeding ground for new stars. In a few years the supernova's fast moving material will sweep the inner ring with full force, heating and exciting its gas, and will produce a new series of cosmic fireworks that will offer a striking view for more than a decade.

  12. Spectroscopic Classification of SN 2016jdw as a Type Ib Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Yu, Xiaoguang; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie

    2016-12-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2016jdw (=PTSS-16sjp), discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Dec.30.9 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  13. Spectroscopic Classification of SN 2016bll (=PTSS-16ckr) as a Type Ib Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Li, Bin; Zhao, Haibin; Wang, Lifan; Xu, Zhijian; Zhang, Jujia; Zhang, Tianmeng

    2016-04-01

    We obtained an optical spectrum (range 420-860 nm) of SN 2016bll(=PTSS-16ckr), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), on UT Apr.04.7 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  14. Spectroscopic Classification of SN 2016frp (= PTSS-16mvz) as a Peculiar Type Ib Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Li, Wenxiong; Yang, Zesheng; Xu, Zhijian; Li, Bin; Wang, Lifan; Zhao, Haibin; Jia, Junjun; Wu, Hong; Zhang, Tianmeng; Zhang, Jujia

    2016-09-01

    We obtained an optical spectrum (range 370-860 nm) of SN 2016frp (= PTSS-16mvz), discovered by PMO-Tsinghua Supernova Survey (PTSS; http://119.78.210.3/ptss2/), on UT Sep.05.7 2016 with the 2.16-m telescope (+BFOSC) at Xinglong Station of NAOC.

  15. VLA observations of type Ib supernova SN 2014C (PSN J22370560+3424319)

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia; Zauderer, B. Ashley; Chakraborti, Sayan; Margutti, Raffaella; Milisavljevic, Dan

    2014-01-01

    We report radio observations with the Very Large Array (VLA) of supernova SN 2014C (PSN J22370560+3424319; CBET 3777) discovered by Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory on 5th Jan 2014 (ATel #5721) and identified by Asiago as of type-Ib (ATEL #5742).

  16. Spectroscopic Classification of SN 2017ms as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Xiao, Feng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 330-870 nm) of SN 2017ms(= PTSS-17dfc), discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.23.88 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  17. Spectroscopic Classification of SN 2017mu as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Yang, Hanjie Tan Zesheng; Song, Hao

    2017-01-01

    We obtained an optical spectrum (range 340-800 nm) of SN 2017mu (=PTSS-17dgm), discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.26.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  18. Spectroscopic Classification of SN 2017mt as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Xiao, Feng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 370-870 nm) of SN 2017mt, discovered by the PMO-Tsinghua Supernova Survey (PTSS), on UT Jan.27.9 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  19. Spectroscopic Classification of SN 2017bke as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Rui, Liming; ), Zesheng Yang

    2017-02-01

    We obtained an optical spectrum (range 340-880 nm) of SN 2017bke (=PTSS-17hcz),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.25.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  20. Spectroscopic Classification of SN 2017auu as a Young Type II Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Lun, Baoli; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-860 nm) of SN 2017auu (=PTSS-17fhy),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.16.5 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  1. Spectroscopic Classification of SN 2017aap as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-830 nm) of SN 2017aap (=PTSS-17die), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.02.9 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  2. Spectroscopic Classification of SN 2017cff (=PTSS-17nem) as a Young Type IIP Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Xin, Yuxin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Xiang, Danfeng

    2017-03-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017cff (=PTSS-17nem), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Mar.19.76 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  3. Spectroscopic Classification of SN 2017aas as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Lu, Kaixin; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-830 nm) of SN 2017aas (=PTSS-17dib),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.04.86 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  4. Spectroscopic Classification of SN 2017ckp as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Li, Bin; Yang, Zesheng; Tan, Hanjie; Zhao, Haibin; Wang, Lifan

    2017-04-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017ckp (=PTSS-17npa), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.05.82 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  5. Spectroscopic Classification of SN 2017ckc as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Li, Bin; Yang, Zesheng; Tan, Hanjie; Zhao, Haibin; Wang, Lifan

    2017-04-01

    We obtained an optical spectrum (range 370-880 nm) of SN 2017ckc (=PTSS-17nip), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Apr.06.82 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  6. Spectroscopic Classification of SN 2017cne as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Yang, Zesheng; Li, Bin; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Meng, Xianmin; Wang, J.; Jia, Junjun; Zhang, Tianmeng; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017cne (=PTSS-17ntl),discovered by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Mar.31.76 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  7. A Very Energetic Supernova Associated with the Gamma Ray Burst of 29 March 2003

    NASA Technical Reports Server (NTRS)

    Hjorth, Jens; Sollerman, Jesper; Moller, Palle; Fynbo, Johan P. U.; Woosley, Stan E.; Kouvelioto, Chryssa; Tanvir, Nial R.; Greiner, Jochen; Andersen, Michael I.; Castro-Tirado, Alberto

    2003-01-01

    Over the past five years evidence has mounted that long-duration (greater than 2s) gamma-ray bursts (GRBs), the most brilliant of all astronomical explosions, signal the collapse of massive stars in our Universe. This evidence, originally based on the probable association of one unusual GRB with a supernova, now includes the association of GRBs with regions of massive star-formation in distant galaxies, tantalizing evidence of supernova-like light-curve 'bumps' in the optical afterglows of several bursts, and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively validate, models based upon the deaths of massive stars, presumably associated with core collapse. Here we report evidence for a very energetic supernova (a hypernova), temporally and spatially coincident with a GRB at redshift z=0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs. Amongst the GRB central engine models proposed to-date, the properties of this supernova thus favour the collapsar model.

  8. An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.

    PubMed

    Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay

    2005-05-27

    Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.

  9. LOSS's first supernova? New limits on the `impostor' SN 1997bs

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.

    2015-09-01

    We present new, late-time Hubble Space Telescope and Spitzer Space Telescope observations of the archetypal supernova (SN) impostor SN 1997bs. We show that SN 1997bs remains much fainter than its progenitor, posing a challenge for the canonical picture of late-time obscuration by dust forming in a shell ejected during the transient. The possibility that the star survived cloaked behind a dusty, steady wind is also disfavoured. The simplest explanation is that SN 1997bs was a subluminous Type IIn SN, although it is currently impossible to rule out the possibility that the star survived either behind an obscuring dusty shell ≳1 M⊙ or with a significantly decreased intrinsic luminosity. Continued monitoring of the system is the most promising means of ultimately resolving the question.

  10. SN 1991bg - A type Ia supernova with a difference

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Phillips, Mark M.; Wells, Lisa A.; Suntzeff, N. B.; Hamuy, Mario; Schommer, R. A.; Walker, A. R.; Gonzalez, L.; Ugarte, P.

    1993-01-01

    While SN 1991bg is an unusual type Ia SN in such a feature as the brief duration of the photospheric phase, which ended only two weeks after maximum, it shares with other Ia SNs strong Si II and Ca II lines near maximum light. In addition, the light and color curve slopes are almost identical with the templates at late times. The spectral evolution of SN 1991bg is also unique but not unrecognizable; nevertheless, the peculiarities associated with this event complicate the fundamental question as to whether the Ia SNs make good standard candles.

  11. Optical observations of an SN 2002cx-like peculiar supernova SN 2013en in UGC 11369

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Zhang, J.-J.; Ciabattari, F.; Tomasella, L.; Wang, X.-F.; Zhao, X.-L.; Zhang, T.-M.; Xin, Y.-X.; Wang, C.-J.; Chang, L.

    2015-09-01

    We present optical observations of an SN 2002cx-like supernova SN 2013en in UGC 11369, spanning from a phase near maximum light (t = + 1 d) to t = + 60 d with respect to the R-band maximum. Adopting a distance modulus of μ = 34.11 ± 0.15 mag and a total extinction (host galaxy+Milky Way) of AV ≈ 1.5 mag, we found that SN 2013en peaked at MR ≈ -18.6 mag, which is underluminous compared to the normal SNe Ia. The near maximum spectra show lines of Si II, Fe II, Fe III, Cr II, Ca II and other intermediate-mass and iron group elements which all have lower expansion velocities (i.e. ˜ 6000 km s- 1). The photometric and spectroscopic evolution of SN 2013en is remarkably similar to those of SN 2002cx and SN 2005hk, suggesting that they are likely to be generated from a similar progenitor scenario or explosion mechanism.

  12. THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz

    SciTech Connect

    Perets, Hagai B.; Gal-yam, Avishay; Crockett, R. Mark; Sullivan, Mark; Anderson, Joseph P.; James, Phil A.; Neill, James D.; Leonard, Douglas C.

    2011-02-20

    The supernova SN 2005cz has recently attracted some attention due to the fact that it was spectroscopically similar to type Ib supernovae (SNe Ib), a class that is presumed to result from the core collapse of massive stars, yet it occurred in an elliptical galaxy, where one expects very few massive stars to exist. Two explanations for this remarkable event were put forward. Perets et al. associate SN 2005cz with the class of Ca-rich, faint SNe Ib, which likely result from old double-white-dwarf systems with an He-rich secondary. On the other hand, Kawabata et al. suggest that SN 2005cz is indeed a core-collapse event (in a binary system), albeit of a star at the lower end of the mass range, 10-12 M{sub sun}. The existence of this star in its elliptical host is explained as resulting from low-level star formation (SF) activity in that galaxy. Here we present extensive observations of the location of SN 2005cz, sensitive to a variety of SF tracers, including optical spectroscopy, H{alpha} emission, UV emission, and Hubble Space Telescope photometry. We show that NGC 4589, the host galaxy of SN 2005cz, does not show any signatures of a young stellar population or recent SF activity either close to or far from the location of SN 2005cz.

  13. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    SciTech Connect

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  14. Pac-Man in Space? ASAS-SN Discovery of A Probable Supernova in Galaxy Pair CGCG 314-006

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Holoien, T. W.-S.; Dong, Subo; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Chen, Ping; Brimacombe, J.

    2015-12-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the middle of the Pac-Man-shaped galaxy pair CGCG 314-006.

  15. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect

    Tian, W. W.; Leahy, D. A.

    2011-03-10

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  16. The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.; Phillips, M. M.; Anderson, J. P.; Ergon, M.; Folatelli, G.; Fransson, C.; Freedman, W.; Hamuy, M.; Morrell, N.; Pastorello, A.; Persson, S. E.; Gonzalez, S.

    2012-01-01

    Context. Supernova 1987A revealed that a blue supergiant (BSG) star can end its life as a core-collapse supernova (SN). SN 1987A and other similar objects exhibit properties that distinguish them from ordinary Type II Plateau (IIP) SNe, whose progenitors are believed to be red supergiants (RSGs). Similarities among 1987A-like events include a long rise to maximum, early luminosity fainter than that of normal Type IIP SNe, and radioactivity acting as the primary source powering the light curves. Aims: We present and analyze two SNe monitored by the Carnegie Supernova Project that are reminiscent of SN 1987A. Methods: Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Results: Both objects exhibit a slow rise to maximum and light curve evolution similar to that of SN 1987A. At the earliest epochs, SN 2006au also displays an initial dip which we interpret as the signature of the adiabatic cooling phase that ensues shock break-out. SNe 2006V and 2006au are both found to be bluer, hotter and brighter than SN 1987A. Spectra of SNe 2006V and 2006au are similar to those of SN 1987A and other normal Type II objects, although both consistently exhibit expansion velocities higher than SN 1987A. Semi-analytic models are fit to the UVOIR light curve of each object from which physical properties of the progenitors are estimated. This yields ejecta mass estimates of Mej ≈ 20 M⊙, explosion energies of E ≈ 2-3 × 1051 erg s-1, and progenitor radii of R ≈ 75-100 R⊙ for both SNe. Conclusions: The progenitors of SNe 2006V and 2006au were most likely BSGs with a larger explosion energy as compared to that of SN 1987A. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 076.A-0156). This paper includes data gathered with the 6

  17. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  18. The Non-Thermal Electron Spectrum of the Supernova Remnant SN 1006

    NASA Technical Reports Server (NTRS)

    Allen, Glenn E.; Sturner, Steven J.

    2002-01-01

    We present the results of a spectral analysis of a compilation of X-ray, radio, and gamma-ray data for the supernova remnant SN 1006. The data are used to constrain models of the electron spectrum of the remnant. We present the results for the electron spectrum and review the implications for cosmic-ray acceleration and the strength of the magnetic field in the remnant.

  19. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    SciTech Connect

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  20. SN 2015bp: adding to the growing population of transitional Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Anupama, G. C.; Sahu, D. K.; Ravikumar, C. D.

    2017-04-01

    Photometric and spectroscopic observations of Type Ia supernova 2015bp are presented, spanning ∼-6 to ∼+141 d since B-band maximum. Also presented are unpublished HCT spectra of type Ia iPTF13ebh between -11 and +34 d since B-band maximum. SN 2015bp shows rapidly declining light curves with Δm15(B) = 1.72 ± 0.04. The I-band light curve shows a clear secondary maximum and peaks before the B-band maximum, placing SN 2015bp in the transitional category of SNe Ia. The spectral evolution of SN 2015bp resembles other transitional SNe Ia rather than 1991bg-like events. The C II λ6580 feature is detected in both SN 2015bp and iPTF13ebh, though it is present till the epoch of B-band maximum in the case of SN 2015bp. The velocity gradients of Si II λ6355 place SN 2015bp and iPTF13ebh in the FAINT subclass, whereas pseudo-equivalent widths of Si II features place them in the Cool (CL) subclass of SNe Ia. The bolometric light curve of SN 2015bp indicates that ∼0.2 M⊙ of 56Ni was synthesized in the explosion, with a total ejected mass of ∼0.9 M⊙, suggesting a sub-Chandrasekhar mass white dwarf progenitor.

  1. Probing the Interstellar Medium along the Lines of Sight to Supernovae SN 1994D and SN 1994I: Erratum

    NASA Astrophysics Data System (ADS)

    Ho, Luis C.; Filippenko, Alexei V.

    1996-06-01

    In the paper "Probing the Interstellar Medium along the Lines of Sight to Supernovae SN 1994D and SN 19941" by Luis C. Ho and Alexei V. Filippenko (ApJ, 444,165 [1995]; hereafter HF95), SN 1994D was assumed to be on the approaching side of its host galaxy, NGC 4526. The authors wish to correct this assumption. Long-slit optical spectra (resolution 6-7 A) obtained on 1994 March 18 UT with the 3 m Shane reflector at Lick Observatory exhibit Hα and [N II] λλ6548, 6583 emission lines that clearly show that SN 1994D is on the receding side of the galaxy, at a heliocentric velocity of ~850 km s^-1^ (The heliocentric systemic velocity of NGC 4526, measured at the nucleus, is ~620 km s^-1^, higher than the value of ~450 km s^-1^ often cited in the literature [e.g., the Revised Shapley-Ames Catalog of Bright Galaxies].) Thus, "system 6" in the high-resolution Keck spectrum of SN 1994D (Table 1 of HF95), at v = 709 km s^-1^, is almost certainly produced by gas in the outer regions of the gas/dust disk of NGC 4526, along the line of sight to the supernova (which is assumed to be within, or close to, the disk). Its velocity is not "anomalous," and it is unlikely to be of intergalactic origin, contrary to the previous conclusion of the paper. The revised value for the velocity of SN 1994D also suggests that systems 2-5 in Table 1 of HF95, all of which have heliocentric velocities in the range 200-250 km s^-1^, are not produced in the disk of NGC 4526; instead, they almost certainly correspond to "high-velocity clouds" (HVCs) associated with the Milky Way. Hence, they are similar to systems 3-5 along the line of sight to SN 1994I in M51 (HF95). In support of this, the authors note that Kumar & Thonnard (AJ, 88,260 [1983]) detect H I emission centered on heliocentric velocity 215 km s^-1^ at several different positions toward NGC 4526, in good agreement with the average velocity of the Na I absorption lines in our Keck spectrum; they conclude that the H I emission is produced

  2. Energetics of Sn2+ isomorphic substitution into hydroxylapatite: First-principles predictions

    SciTech Connect

    Weck, Philippe F.; Kim, Eunja

    2016-11-04

    In this study, the energetics of Sn2+ substitution into the Ca2+ sublattice of hydroxylapatite (HA), Ca10(PO4)6(OH)2, has been investigated within the framework of density functional theory. Calculations reveal that Sn2+ incorporation via coupled substitutions at Ca(II) sites is energetically favourable up to a composition of Sn6Ca4(PO4)6(OH)2, and further substitutions at Ca(I) sites proceed once full occupancy of Ca(II) sites by Sn2+ is achieved. Compositions of SnxCa10–x(PO4)6(OH)2 (x = 4–9) are predominant, with an optimal stoichiometry of Sn8Ca2(PO4)6(OH)2, and Sn-substituted HA follows approximately Vegard's law across the entire composition range.

  3. Optical and NIR observations of the nearby type Ia supernova SN 2014J

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Ninan, J. P.; Kumar, B.; Anupama, G. C.; Sahu, D. K.; Ojha, D. K.; Prabhu, T. P.

    2016-03-01

    Optical and NIR observations of the Type Ia supernova SN 2014J in M82 are presented. The observed light curves are found to be similar to normal Type Ia supernovae (SNe Ia), with a decline rate parameter Δm15(B) = 1.08 ± 0.03. The supernova reached B-band maximum on JD 2456690.14, at an apparent magnitude mB(max) = 11.94. The optical spectra show a red continuum with deep interstellar Na I absorption, but otherwise resemble those of normal SNe Ia. The Si II λ6355 feature indicates a velocity of ˜12 000 km s-1 at B-band maximum, which places SN 2014J at the border of the normal velocity and high velocity group of SNe Ia. The velocity evolution of SN 2014J places it in the Low Velocity Gradient subclass, whereas the equivalent widths of Si II features near B-band maximum place it at the border of the core normal and Broad Line subclasses of SNe Ia. An analytic model fit to the bolometric light curve indicates that a total of ˜1.3 M⊙ was ejected in the explosion, and the ejected 56Ni mass MNi ˜ 0.6 M⊙. The low [Fe III] λ4701 to [Fe II] λ5200 ratio in the nebular spectra of SN 2014J hints towards clumpiness in the ejecta. Optical broad-band, linear polarimetric observations of SN 2014J obtained on four epochs indicate an almost constant polarization (PR ˜2.7 per cent; θ ˜ 37°), which suggests that the polarization signal is of interstellar origin.

  4. Regularly pulsed neutrinos from supernova SN1987A?

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Wasserman, Ira M.; Biermann, Peter L.; Meyer, Hinrich

    1987-01-01

    Some consequences of the 8.9 millisecond periodicity observed in neutrino events from SN1987A with the Kamiokonde and IMB experiments are discussed. Interpreting the apparent period as a rotation of a compact object would imply that the neutrino emission is anisotropic and that the neutrino mass, averaged over all observed flavors, is less than 0.2 eV/c-squared. It is also noted that P = 8.9 ms is a reasonable period for very young pulsars.

  5. Preliminary NIR Late Light Curve of the Type Ia Supernova SN2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, G.

    2013-01-01

    Type Ia supernovae (SNe Ia) are important in determining the expansion of the universe based on the uniformity of their light curves. It is essential to understand the behavior of these supernovae in order to strengthen our confidence in their use as standard candles. A small, but increasing number of SNe Ia have been observed later than the 200 day epoch in the near-infrared (NIR). Most of these exhibit a flattening of the NIR power, even as the visible light declines at a steady rate. It is unclear as to exactly what causes this behavior, and how typical it is. In order to characterize the late behavior of SNe Ia, images of the supernova SN2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). These images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer. The supernova’s magnitude was normalized with respect to the magnitudes of known stars so that traits related to the supernova may be compared to others. We present preliminary NIR (J, H, K) light curves of the observed supernova and compare them to other SNe Ia observed at these epochs.

  6. Supernovae. ⁴⁴Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion.

    PubMed

    Boggs, S E; Harrison, F A; Miyasaka, H; Grefenstette, B W; Zoglauer, A; Fryer, C L; Reynolds, S P; Alexander, D M; An, H; Barret, D; Christensen, F E; Craig, W W; Forster, K; Giommi, P; Hailey, C J; Hornstrup, A; Kitaguchi, T; Koglin, J E; Madsen, K K; Mao, P H; Mori, K; Perri, M; Pivovaroff, M J; Puccetti, S; Rana, V; Stern, D; Westergaard, N J; Zhang, W W

    2015-05-08

    In core-collapse supernovae, titanium-44 ((44)Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of (44)Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  7. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  8. SN1987A: The Birth of a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    McCray, Richard

    2003-01-01

    This grant was intended to support the development of theoretical models needed to interpret and understand the observations by the Hubble Space Telescope and the Chandra X-ray telescope of the rapidly developing remnant of Supernova 1987A. In addition, we carried out a few investigations of related topics. The project was spectacularly successful. The models that we developed provide the definitive framework for predicting and interpreting this phenomenon. Following is a list of publications based on our work. Some of these papers include results of both theoretical modeling supported by this project and also analysis of data supported by the Space Telescope Science Institute and the Chandra X-ray Observatory. We first list papers published in refereed journals, then conference proceedings and book chapters, and also an educational web site.

  9. The Crab nebula and the class of Type IIn-P supernovae caused by sub-energetic electron-capture explosions

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2013-09-01

    What sort of supernova (SN) gave rise to the Crab nebula? While there are several indications that the Crab arose from a sub-energetic explosion of an 8-10 M⊙ progenitor star, this would appear to conflict with the high luminosity indicated by historical observations. This paper shows that several well-known observed properties of the Crab and SN 1054 are well matched by a particular breed of Type IIn SN. The Crab's properties are best suited to the Type IIn-P subclass (Type IIn spectra with plateau light curves), exemplified by SNe 1994W, 2009kn and 2011ht. These events probably arise from relatively low energy (1050 erg) explosions with low 56Ni yield that may result from electron-capture SN (ecSN) explosions, but their high visual-wavelength luminosity and Type IIn spectra are dominated by shock interaction with dense circumstellar material (CSM) rather than the usual recombination photosphere. In this interaction, a large fraction of the 1050 erg of the total kinetic energy can be converted to visual-wavelength luminosity. After about 120 d, nearly all of the mass outside the neutron star in the CSM and ejecta ends up in a slowly expanding (1000-1500 km s-1) thin dense shell, which is then accelerated and fragmented by the growing pulsar wind nebula in the subsequent 1000 yr, producing the complex network of filaments seen today. There is no need to invoke the extended, invisible fast SN envelope hypothesized to reside outside the Crab. As differentiated from a normal SN II-P, SNe IIn-P provide a much better explanation for several observed features of the Crab: (1) no blast wave outside the Crab nebula filaments, (2) no rapidly expanding SN envelope outside the filaments, (3) a total mass of ˜5 M⊙ swept up in a thin slow shell, (4) a low kinetic energy of the Crab at least an order of magnitude below a normal core-collapse SN, (5) a high peak luminosity (-18 mag) despite the low kinetic energy, (6) chemical abundances consistent with an 8-10 M⊙ star and

  10. Early observations of the nearby Type Ia supernova SN 2015F

    NASA Astrophysics Data System (ADS)

    Cartier, R.; Sullivan, M.; Firth, R. E.; Pignata, G.; Mazzali, P.; Maguire, K.; Childress, M. J.; Arcavi, I.; Ashall, C.; Bassett, B.; Crawford, S. M.; Frohmaier, C.; Galbany, L.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Johansson, J.; Kasai, E. K.; McCully, C.; Prajs, S.; Prentice, S.; Schulze, S.; Smartt, S. J.; Smith, K. W.; Smith, M.; Valenti, S.; Young, D. R.

    2017-02-01

    We present photometry and time series spectroscopy of the nearby Type Ia supernova (SN Ia) SN 2015F over -16 d to +80 d relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2015F is a slightly sub-luminous SN Ia with a decline rate of Δm15(B) = 1.35 ± 0.03 mag, placing it in the region between normal and SN 1991bg-like events. Our densely sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II λ6580 absorption until -4 days, and high-velocity Ca II is particularly strong at <-10 d at expansion velocities of ≃23 000 km s-1. At early times, our spectral modelling with SYN++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities >14 000 km s-1, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at ˜6800 Å that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases, the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 Å feature is weakly present in other normal SN Ia events and common in the SN 1991bg-like sub-class.

  11. SN 2015U: a rapidly evolving and luminous Type Ibn supernova

    NASA Astrophysics Data System (ADS)

    Shivvers, Isaac; Zheng, Wei Kang; Mauerhan, Jon; Kleiser, Io K. W.; Van Dyk, Schuyler D.; Silverman, Jeffrey M.; Graham, Melissa L.; Kelly, Patrick L.; Filippenko, Alexei V.; Kumar, Sahana

    2016-09-01

    Supernova (SN) 2015U (also known as PSN J07285387+3349106) was discovered in NGC 2388 on 2015 Feb. 11. A rapidly evolving and luminous event, it showed effectively hydrogen-free spectra dominated by relatively narrow helium P-Cygni spectral features and it was classified as an SN Ibn. In this paper, we present photometric, spectroscopic, and spectropolarimetric observations of SN 2015U, including a Keck/DEIMOS spectrum (resolution ≈5000) which fully resolves the optical emission and absorption features. We find that SN 2015U is best understood via models of shock breakout from extended and dense circumstellar material (CSM), likely created by a history of mass-loss from the progenitor with an extreme outburst within ˜1-2 yr of core collapse (but we do not detect any outburst in our archival imaging of NGC 2388). We argue that the high luminosity of SN 2015U was powered not through 56Ni decay but via the deposition of kinetic energy into the ejecta/CSM shock interface. Though our analysis is hampered by strong host-galaxy dust obscuration (which likely exhibits multiple components), our data set makes SN 2015U one of the best-studied Type Ibn SNe and provides a bridge of understanding to other rapidly fading transients, both luminous and relatively faint.

  12. VLBA Observations of SN 2001em: Supernova, Misdirected Gamma-Ray Burster, or Both?

    NASA Astrophysics Data System (ADS)

    Stockdale, C. J.; Van Dyk, S. D.; Weiler, K. W.; Sramek, R. A.; Panagia, N.; Rupen, M. P.; Paczynski, B.; Weiler, K. W.

    2004-12-01

    We present Very Long Baseline Array (VLBA) observations of Supernova (SN) 2001em. Initially detected on September 15, 2001 (Papenkova & Li 2001) and classified as a type Ic SN on October 20, 2001 (Filippenko & Chornock 2001), SN 2001em was later reclassified as a Type IIn SN (Soderberg, Frail, & Wieringa 2004). SN 2001em was not well studied until a Very Large Array 3.6 cm radio search of type Ib/Ic SNe within 100 Mpc detected radio emission in excess of 1028 erg s-1 Hz-1 (for 80 Mpc distance) in mid October 2003 (Stockdale et al. 2004). This is roughly 50 times more radio luminous than SN 1998bw was at a comparable age. X-ray emission was detected by Pooley & Lewin (2004) in excess of 1041 erg s-1 (for 80 Mpc distance), making it one of the brightest X-ray SNe ever observed. We measured this source in July 2004 with the VLBA at 3.6 cm in an attempt to determine if radio structure was present. We present our new results and discuss their implications at this meeting.

  13. SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Roy, R.; Sollerman, J.; Silverman, J. M.; Pastorello, A.; Fransson, C.; Drake, A.; Taddia, F.; Fremling, C.; Kankare, E.; Kumar, B.; Cappellaro, E.; Bose, S.; Benetti, S.; Filippenko, A. V.; Valenti, S.; Nyholm, A.; Ergon, M.; Sutaria, F.; Kumar, B.; Pandey, S. B.; Nicholl, M.; Garcia-Álvarez, D.; Tomasella, L.; Karamehmetoglu, E.; Migotto, K.

    2016-12-01

    Context. Research on supernovae (SNe) over the past decade has confirmed that there is a distinct class of events which are much more luminous (by 2 mag) than canonical core-collapse SNe (CCSNe). These events with visual peak magnitudes ≲-21 are called superluminous SNe (SLSNe). The mechanism that powers the light curves of SLSNe is still not well understood. The proposed scenarios are circumstellar interaction, the emergence of a magnetar after core collapse, or disruption of a massive star through pair production. Aims: There are a few intermediate events which have luminosities between these two classes. They are important for constraining the nature of the progenitors of these two different populations and their environments and powering mechanisms. Here we study one such object, SN 2012aa. Methods: We observed and analysed the evolution of the luminous Type Ic SN 2012aa. The event was discovered by the Lick Observatory Supernova Search in an anonymous galaxy (z ≈ 0.08). The optical photometric and spectroscopic follow-up observations were conducted over a time span of about 120 days. Results: With an absolute V-band peak of - 20 mag, the SN is an intermediate-luminosity transient between regular SNe Ibc and SLSNe. SN 2012aa also exhibits an unusual secondary bump after the maximum in its light curve. For SN 2012aa, we interpret this as a manifestation of SN-shock interaction with the circumstellar medium (CSM). If we assume a 56Ni-powered ejecta, the quasi-bolometric light curve requires roughly 1.3 M⊙ of 56Ni and an ejected mass of 14M⊙. This also implies a high kinetic energy of the explosion, 5.4 × 1051 erg. On the other hand, the unusually broad light curve along with the secondary peak indicate the possibility of interaction with CSM. The third alternative is the presence of a central engine releasing spin energy that eventually powers the light curve over a long time. The host of SN 2012aa is a star-forming Sa/Sb/Sbc galaxy. Conclusions

  14. SN 2013ab: a normal Type IIP supernova in NGC 5669

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Valenti, Stefano; Misra, Kuntal; Pumo, Maria Letizia; Zampieri, Luca; Sand, David; Kumar, Brijesh; Pastorello, Andrea; Sutaria, Firoza; Maccarone, Thomas J.; Kumar, Brajesh; Graham, M. L.; Howell, D. Andrew; Ochner, Paolo; Chandola, H. C.; Pandey, Shashi B.

    2015-07-01

    We present densely sampled ultraviolet/optical photometric and low-resolution optical spectroscopic observations of the Type IIP supernova 2013ab in the nearby (˜24 Mpc) galaxy NGC 5669, from 2 to 190 d after explosion. Continuous photometric observations, with the cadence of typically a day to one week, were acquired with the 1-2 m class telescopes in the Las Cumbres Observatory Global Telescope network, ARIES telescopes in India and various other telescopes around the globe. The light curve and spectra suggest that the supernova (SN) is a normal Type IIP event with a plateau duration of ˜80 d with mid-plateau absolute visual magnitude of -16.7, although with a steeper decline during the plateau (0.92 mag 100 d-1 in V band) relative to other archetypal SNe of similar brightness. The velocity profile of SN 2013ab shows striking resemblance with those of SNe 1999em and 2012aw. Following the Rabinak & Waxman prescription, the initial temperature evolution of the SN emission allows us to estimate the progenitor radius to be ˜800 R⊙, indicating that the SN originated from a red supergiant star. The distance to the SN host galaxy is estimated to be 24.3 Mpc from expanding photosphere method. From our observations, we estimate that 0.064 M⊙ of 56Ni was synthesized in the explosion. General relativistic, radiation hydrodynamical modelling of the SN infers an explosion energy of 0.35 × 1051 erg, a progenitor mass (at the time of explosion) of ˜9 M⊙ and an initial radius of ˜600 R⊙.

  15. SN 2008iy: an unusual Type IIn Supernova with an enduring 400-d rise time

    NASA Astrophysics Data System (ADS)

    Miller, A. A.; Silverman, J. M.; Butler, N. R.; Bloom, J. S.; Chornock, R.; Filippenko, A. V.; Ganeshalingam, M.; Klein, C. R.; Li, W.; Nugent, P. E.; Smith, N.; Steele, T. N.

    2010-05-01

    We present spectroscopic and photometric observations of the Type IIn supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of ~400 d, making it the first known SN to take significantly longer than 100 d to reach peak optical luminosity. The peak absolute magnitude of SN 2008iy was Mr ~ -19.1 mag, and the total radiated energy over the first ~700 d was ~2 × 1050 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN 1988Z at late times and, like SN 1988Z, it is a luminous X-ray source (both SNe had an X-ray luminosity LX > 1041 ergs-1). SN 2008iy has a growing near-infrared excess at late times similar to several other SNe IIn. The Hα emission-line profile of SN 2008iy shows a narrow P Cygni absorption component, implying a pre-SN wind speed of ~100kms-1. We argue that the luminosity of SN 2008iy is powered via the interaction of the SN ejecta with a dense, clumpy circumstellar medium. The ~400-d rise time can be understood if the number density of clumps increases with distance over a radius ~1.7 × 1016cm from the progenitor. This scenario is possible if the progenitor experienced an episodic phase of enhanced mass loss <1 century prior to explosion or if the progenitor wind speed increased during the decades before core collapse. We favour the former scenario, which is reminiscent of the eruptive mass-loss episodes observed for luminous blue variable (LBV) stars. The progenitor wind speed and increased mass-loss rates serve as further evidence that at least some, and perhaps all, Type IIn SNe experience LBV-like eruptions shortly before core collapse. We also discuss the host galaxy of SN 2008iy, a subluminous dwarf galaxy, and offer a few reasons why the recent suggestion that unusual, luminous SNe preferentially occur in dwarf galaxies may be the result of observational biases.

  16. THE SUPERNOVA IMPOSTOR IMPOSTOR SN 1961V: SPITZER SHOWS THAT ZWICKY WAS RIGHT (AGAIN)

    SciTech Connect

    Kochanek, C. S.; Szczygiel, D. M.; Stanek, K. Z.

    2011-08-20

    SN 1961V, one of Zwicky's defining Type V supernovae (SNe), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core-collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable star. The former case is suggested by its possible association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L{sub opt} {approx} 10{sup 5} L{sub sun}, than the L{sub opt} {approx_equal} 3 x 10{sup 6} L{sub sun} progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as an L{sub IR} {approx_equal} 3 x 10{sup 6} L{sub sun} mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest source of dust emission is only L{sub IR} {approx_equal} 10{sup 5} L{sub sun} and does not correspond to the previously identified candidates for the surviving star. The dust cannot be made sufficiently distant and cold to avoid detection unless the ejection energy, mass, and velocity scales are those of an SN or greater. We conclude that SN 1961V was a peculiar, but real, SN. Its peculiarities are probably due to enhanced mass loss just prior to the SN, followed by the interactions of the SN blast wave with this ejecta. This adds to the evidence that there is a population of SN progenitors that have major mass-loss episodes shortly before core collapse. The progenitor is a low metallicity, {approx}1/3 solar, high-mass, M{sub ZAMS} {approx}> 80 M{sub sun}, star, which means either that BH formation can be accompanied by an SN or that surprisingly high-mass stars can form an

  17. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  18. SN1991bg-like supernovae are a compelling source of most Galactic antimatter

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2017-01-01

    The Milky Way Galaxy glows with the soft gamma ray emission resulting from the annihilation of ~5 × 1043 electron-positron pairs every second. The origin of this vast quantity of antimatter and the peculiar morphology of the 511keV gamma ray line resulting from this annihilation have been the subject of debate for almost half a century. Most obvious positron sources are associated with star forming regions and cannot explain the rate of positron annihilation in the Galactic bulge, which last saw star formation some 10 Gyr ago, or else violate stringent constraints on the positron injection energy. Radioactive decay of elements formed in core collapse supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply positrons matching the injection energy constraints but the distribution of such potential sources does not replicate the required morphology. We show that a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae (SNe 91bg) - can supply the number and distribution of positrons we see annihilating in the Galaxy through the decay of 44Ti synthesised in these events. Such 44Ti production simultaneously addresses the observed abundance of 44Ca, the 44Ti decay product, in solar system material.

  19. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  20. Optical emission from a fast shock wave - The remnants of Tycho's supernova and SN 1006

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Raymond, J. C.

    1978-01-01

    The faint optical filaments in Tycho's supernova remnant appear to be emission from a shock front moving at 5600 km/s. The intensity of the hydrogen lines, the absence of forbidden lines of heavy elements in the spectrum, and the width of the filaments are explained by a model in which a collisionless shock wave is moving into partially neutral gas. The presence of the neutral gas can be used to set an upper limit of approximately 5 x 10 to the 47th power ergs to the energy in ionizing radiation emitted by a Type I supernova. The patchy neutral gas is probably part of the warm neutral component of the interstellar medium. The existing information on the remnant of SN 1006 indicates that its emission is similar in nature to that from Tycho's remnant.

  1. UV-Optical Observation of Type Ia Supernova SN 2013dy in NGC 7250

    NASA Astrophysics Data System (ADS)

    Zhai, Qian; Zhang, Ju-Jia; Wang, Xiao-Feng; Zhang, Tian-Meng; Liu, Zheng-Wei; Brown, Peter J.; Huang, Fan; Zhao, Xu-Lin; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zhang, Xi-Liang; Fan, Yu-Feng; Zheng, Xiang-Ming; Bai, Jin-Ming

    2016-05-01

    Extensive and independent observations of Type Ia supernova (SN Ia) SN 2013dy are presented, including a larger set of UBVRI photometry and optical spectra from a few days before the peak brightness to ˜ 200 days after explosion, and ultraviolet (UV) photometry spanning from t ≈ -10 days to t ≈ +15 days refers to the B band maximum. The peak brightness (i.e., MB = -19.65 ± 0.40 mag; Lmax = [1.95 ± 0.55] × 1043 erg s-1) and the mass of synthesized 56Ni (i.e., M(56Ni) = 0.90 ± 0.26 M⊙) are calculated, and they conform to the expectation for an SN Ia with a slow decline rate (i.e., Δm15(B) = 0.90 ± 0.03 mag). However, the near infrared (NIR) brightness of this SN (i.e., MH = -17.33 ± 0.30 mag) is at least 1.0 mag fainter than usual. Besides, spectroscopy classification reveals that SN 2013dy resides on the border of “core normal” and “shallow silicon” subclasses in the Branch et al. classification scheme, or on the border of the “normal velocity” SNe Ia and 91T/99aa-like events in the Wang et al. system. These suggest that SN 2013dy is a slow-declining SN Ia located on the transitional region of nominal spectroscopic subclasses and might not be a typical normal sample of SNe Ia.

  2. SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Cameron, P. B.; Kasliwal, M. M.; Gal-Yam, A.; Rau, A.; Kulkarni, S. R.; Frail, D. A.; Chandra, P.; Cenko, S. B.; Soderberg, A. M.; Immler, S.

    2007-04-01

    With an extinction-corrected V-band peak absolute magnitude of about -22, supernova SN 2006gy is probably the brightest SN ever observed. We report on multiwavelength observations of this SN and its environment. Our spectroscopy shows an Hα emission line as well as absorption features that may be identified as Si II lines at low expansion velocity. The slow brightening, the peak luminosity, and the Hα emission line resemble those observed in hybrid Type IIn/Ia SNe (also known as Type IIa) and may suggest that SN 2006gy is related to the Type IIa SNe class. The host galaxy, NGC 1260, is dominated by an old stellar population with solar metallicity. However, our high-resolution adaptive optics images reveal a dust lane in this galaxy, and there appears to be an H II region in the vicinity of the SN. The extraordinarily large peak luminosity, ~3 × 1044 ergs s-1, demands a dense circumstellar medium, regardless of the mass of the progenitor star. The inferred mass-loss rate of the progenitor is ~0.1 Msolar yr-1 over a period of ~10 yr prior to explosion. Such an high mass-loss rate may be the result of a binary star common envelope ejection. The total radiated energy in the first 2 months is about 1.1 × 1051 ergs, which is only a factor of 2 less than that available from a super-Chandrasekhar Type Ia explosion. Therefore, given the presence of a star-forming region in the vicinity of the SN and the high-energy requirements, a plausible scenario is that SN 2006gy is related to the death of a massive star.

  3. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  4. The End of Amnesia: Measuring the Metallicities of Type Ia SN Progenitors with Manganese Lines in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Bravo, Eduardo; Hughes, John P.

    2009-05-01

    The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of the Tycho Supernova Remnant. The fluxes of the Mn and Cr Kα lines in the X-ray spectra of Tycho observed by the Suzaku satellite suggests a progenitors of supersolar metallicity.

  5. SALT spectroscopic classification of ASASSN-17bu (= SN 2017yv) as a type-Ia supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Kotze, M.

    2017-02-01

    We obtained SALT (+RSS) spectroscopy of ASASSN-17bu (= SN 2017yv; ATel #10033) on 2017 Feb 3.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows ASASSN-17bu is a type-Ia supernova several days before maximum light.

  6. X-ray characteristics of the Lupus Loop and SN 1006 supernova remnants

    SciTech Connect

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest x-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 to 10 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  7. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang

    2016-04-01

    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

  8. SALT spectroscopic classification of SN 2016iae (= ATLAS16dvr) as a type-Ic supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Foley, R. J.; Skelton, R.

    2016-11-01

    We obtained SALT (+RSS) spectroscopy of SN 2016iae (= ATLAS16dvr; Tonry et al. 2016, ATel #9749) on 2016 Nov 12.9 UT covering the wavelength range 350-940 nm. The spectrum shows a relatively blue continuum, with well-developed broad absorption features, including strong Si II (rest 635.5 nm). Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2016iae is a type-Ic supernova approaching maximum light.

  9. Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Valenti, S.; Hoeflich, P.; Baron, E.; Phillips, M. M.; Taddia, F.; Foley, R. J.; Hsiao, E. Y.; Jha, S. W.; McCully, C.; Pandya, V.; Simon, J. D.; Benetti, S.; Brown, P. J.; Burns, C. R.; Campillay, A.; Contreras, C.; Förster, F.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pignata, G.

    2015-01-01

    We present ultraviolet through near-infrared (NIR) broadband photometry, and visual-wavelength and NIR spectroscopy of the Type Iax supernova (SN) 2012Z. The data set consists of both early- and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M⊙ of 56Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~1051 erg, making it one of the brightest (MB = -18.3 mag) and most energetic SN Iax yet observed. The late phase (+269d) NIRspectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially from all supernova types. Constraints from the distribution of intermediate mass elements, e.g., silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the 56Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of 56Ni during the deflagration burning phase and little (or no) 56Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the intermediate mass elements is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of 56Ni production during the early subsonic phase

  10. The role of supernova neutrinos on molecular homochirality.

    PubMed

    Bargueño, Pedro; Pérez de Tudela, Ricardo

    2007-06-01

    Electroweak parity violating interaction between supernova (SN) neutrinos and electrons of a simple chiral molecule is studied related to the origin of molecular homochirality. Appearance of supernova remnants inside molecular clouds favours the interaction of SN-neutrinos with interstellar molecules, leading to a energetic difference between the two enantiomers of the order of 10(-5) eV. This energetic difference is closer to the thermic energy of the interstellar medium, so molecular homochirality could be enhanced in molecular clouds containing supernova remnants inside it due to neutrino interaction.

  11. Type Ib SN 1999dn as an example of the thoroughly mixed ejecta of Ib supernovae

    NASA Astrophysics Data System (ADS)

    Cano, Zach; Maeda, Keiichi; Schulze, Steve

    2014-03-01

    We present the results of modelling archival observations of Type Ib SN 1999dn. In the spectra, two He I absorption features are seen: a slower component with larger opacity, and a more rapid He I component with smaller opacity. Complementary results are obtained from modelling the bolometric light curve of SN 1999dn, where a two-zone model (dense inner region, and less dense outer region) provides a much better fit than a one-zone model. A key result we find is that roughly equal amounts of radioactive material are found in both regions. The two-zone analytical model provides a more realistic representation of the structure of the ejecta, including mixing and asymmetries, which offers a physical explanation for how the radioactive material is propelled to, and mixed within, the outer regions. Our result supports the theoretical expectation that the radioactive content in the outflow of a Type Ib supernova (SN) is thoroughly mixed. We fit our model to six additional SNe Ibc, of which the majority of the SNe Ib are best described by the two-zone model, and the majority of the SNe Ic by the one-zone model. Of the SNe Ic, only SN 2007gr was best fitted by the two-zone model, indicating that the lack of helium spectral features for this event cannot be attributed to poor mixing.

  12. Optical observations of the broad-lined type Ic supernova SN 2012ap

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zhao, Xu-Lin; Huang, Fang; Wang, Xiao-Feng; Zhang, Tian-Meng; Chen, Jun-Cheng; Zhang, Tong-Jie

    2015-02-01

    The optical observations of the type Ic supernova (SN Ic) SN 2012ap in NGC 1729 are presented. A comparison with other SNe Ic indicates that SN 2012ap is highly reddened (with E(B — V)host~0.8 mag) and may represent one of the most luminous SNe Ic ever observed, with an absolute V-band peak magnitude of ~ -19.3±0.5 mag after extinction correction. The near-maximum-light spectrum shows wide spectral features that are typical of broad-lined SNe Ic. One interesting feature in the spectrum is the appearance of some narrow absorption features that can be attributed to the diffuse interstellar bands, consistent with the large reddening inferred from the photometric method. Based on the light curves and the spectral data, we estimate that SN 2012ap produced a 56Ni mass of ~ 0.3 ± 0.1Msolar 1 in the explosion, with an ejecta mass of 2.4-0.7+0.7Msolar and a kinetic energy of EK = 1.1-0.4+0.4 × 1052 erg. The properties of its progenitor are also briefly discussed.

  13. PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovae

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Yuan, F.; Taubenberger, S.; Maguire, K.; Pastorello, A.; Benetti, S.; Smartt, S. J.; Cappellaro, E.; Howell, D. A.; Bildsten, L.; Moore, K.; Stritzinger, M.; Anderson, J. P.; Benitez-Herrera, S.; Bufano, F.; Gonzalez-Gaitan, S.; McCrum, M. G.; Pignata, G.; Fraser, M.; Gal-Yam, A.; Le Guillou, L.; Inserra, C.; Reichart, D. E.; Scalzo, R.; Sullivan, M.; Yaron, O.; Young, D. R.

    2014-01-01

    We present optical and infrared monitoring data of SN 2012hn collected by the Public European Southern Observatory Spectroscopic Survey for Transient Objects. We show that SN 2012hn has a faint peak magnitude (MR ˜ -15.65) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Instead, we detect prominent Ca II lines at all epochs, which relates this transient to previously described `Ca-rich' or `gap' transients. However, the photospheric spectra (from -3 to +32 d with respect to peak) of SN 2012hn show a series of absorption lines which are unique and a red continuum that is likely intrinsic rather than due to extinction. Lines of Ti II and Cr II are visible. This may be a temperature effect, which could also explain the red photospheric colour. A nebular spectrum at +150 d shows prominent Ca II, O I, C I and possibly Mg I lines which appear similar in strength to those displayed by core-collapse supernovae (SNe). To add to the puzzle, SN 2012hn is located at a projected distance of 6 kpc from an E/S0 host and is not close to any obvious star-forming region. Overall SN 2012hn resembles a group of faint H-poor SNe that have been discovered recently and for which a convincing and consistent physical explanation is still missing. They all appear to explode preferentially in remote locations offset from a massive host galaxy with deep limits on any dwarf host galaxies, favouring old progenitor systems. SN 2012hn adds heterogeneity to this sample of objects. We discuss potential explosion channels including He-shell detonations and double detonations of white dwarfs as well as peculiar core-collapse SNe.

  14. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300

    NASA Astrophysics Data System (ADS)

    Binder, B.; Williams, B. F.; Kong, A. K. H.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.; Dolphin, A.

    2016-04-01

    We present new observations of the `supernova impostor' SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be ˜5 × 1038 erg s-1 and faded by a factor of ˜25 in a four month period. Our two new Chandra observations show a factor of ˜10 increase in the 0.35-8 keV X-ray luminosity, from ˜4 × 1036 to 4 × 1037 erg s-1 in ˜6 months, and the X-ray spectrum is consistent in both observations with a power-law with a photon index of Γ ˜ 0. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder (Γ ˜0) compared to the low-luminosity state (Γ ˜ 1.2 ± 0.8). Using our Hubble observations, we fit the colour-magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of ≲5 Myr. Our observations are consistent with SN 2010da being a high-mass X-ray binary (HMXB) composed of a neutron star and a luminous blue variable-like companion, although we cannot rule out the possibility that SN 2010da is an unusually X-ray bright massive star. The ≲5 Myr age is consistent with the theoretically predicted delay time between the formation of a massive binary and the onset of the HMXB phase. It is possible that the initial 2010 outburst marked the beginning of X-ray production in the system, making SN 2010da possibly the first massive progenitor binary ever observed to evolve into an HMXB.

  15. Type II supernova energetics and comparison of light curves to shock-cooling models

    DOE PAGES

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; ...

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, withmore » $$\\gt 5$$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 $${M}_{\\odot }$$), and have a mean energy per unit mass of $$\\langle E/M\\rangle =0.85\\times {10}^{51}$$ erg/(10 $${M}_{\\odot }$$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ($${\\rm{\\Delta }}{m}_{15}$$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.« less

  16. Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Woźniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y.-C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \\gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}⊙ ), and have a mean energy per unit mass of < E/M> =0.85× {10}51 erg/(10 {M}⊙ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{Δ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.

  17. Type II supernova energetics and comparison of light curves to shock-cooling models

    SciTech Connect

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Wozniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y. -C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with $\\gt 5$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 ${M}_{\\odot }$), and have a mean energy per unit mass of $\\langle E/M\\rangle =0.85\\times {10}^{51}$ erg/(10 ${M}_{\\odot }$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (${\\rm{\\Delta }}{m}_{15}$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.

  18. Type IIP supernovae as cosmological probes: A SEAM distance to SN1999em

    SciTech Connect

    Baron, E.; Nugent, Peter E.; Branch, David; Hauschildt, Peter H.

    2004-06-01

    Because of their intrinsic brightness, supernovae make excellent cosmological probes. We describe the spectral-fitting expanding atmosphere method (SEAM) for obtaining distances to Type IIP supernovae (SNe IIP) and present a distance to SN 1999em for which a Cepheid distance exists. Our models give results consistent with the Cepheid distance, even though we have not attempted to tune the underlying hydrodynamical model but have simply chosen the best fits. This is in contradistinction to the expanding photosphere method (EPM), which yields a distance to SN 1999em that is 50 percent smaller than the Cepheid distance. We emphasize the differences between the SEAM and the EPM. We show that the dilution factors used in the EPM analysis were systematically too small at later epochs. We also show that the EPM blackbody assumption is suspect. Since SNe IIP are visible to redshifts as high as z {approx}< 6, with the James Webb Space Telescope, the SEAM may be a valuable probe of the early universe.

  19. The cold, the dense and the energetic : cosmic ray bombardment of molecular cores near supernova remnants

    NASA Astrophysics Data System (ADS)

    Maxted, Nigel Ivan

    2013-04-01

    are excluded from the centres of molecular cores were identified. Such cases may result in a lower proportion of low energy gamma-rays coming from core centres relative to higher energy gamma-rays (ie. a hardening of the gamma-ray spectrum). Chapter 5 is an overview of the molecular gas towards the entire gamma-ray emission region of the supernova remnant CTB37A (in 1 article), allowing the estimation of the mass of cosmicray target material, found to be ∼;104M⊙. In a hadronic scenario for gamma-ray emission, this corresponds to a cosmic ray density of ∼80-1100 times that seen Earth. This may have implications for the supernova remnant energetics, distance and age, which are discussed. Finally, in Chapter 6, an investigation of the subtleties of cosmic ray diffusion near supernova remnants is carried out, and techniques to simulate effects that may result from diffusion into molecular gas are outlined. Hard conclusions concerning the spectrum of gamma-rays resulting from molecular cores are left for future work.

  20. Three-dimensional hydrodynamic modeling of SN 1987A from the supernova explosion till the Athena era

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore

    2016-06-01

    The proximity of SN 1987A and the wealth of observations collected at all wavelenght bands since its outburst allow us to study in details the evolution of a supernova remnant (SNR) from the immediate aftermath of the SN explosion till its expansion through the highly inhomogeneous circumstellar medium (CSM). We investigate the interaction between SN 1987A and the surrounding CSM through three-dimensional hydrodynamic modeling. The aim is to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux and to derive the density structure of the inhomogeneous CSM and clues on the early structure of ejecta. We show that the physical model reproducing the main observables of SN 1987A reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrain the explosion energy in the range 1.2 - 1.4 × 10^(51) erg and the envelope mass in the range 15 - 17 M_{⊙}) . We find that the shape of X-ray lightcurves and spectra at early epochs (< 15 years) reflect the structure of outer ejecta. At later epochs, the shape of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, to disentangle the imprint of the supernova on the remnant emission from the effects of the remnant interaction with the environment, and to constrain the pre-supernova structure of the nebula. Finally the remnant evolution is followed for 40 years, providing predictions on the future of SN 1987A until the adventof Athena.

  1. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  2. Multi-dimensional Simulations of the Expanding Supernova Remnant of SN 1987A

    NASA Astrophysics Data System (ADS)

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-01

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M ⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  3. TYPE IIn SUPERNOVA SN 2010jl: OPTICAL OBSERVATIONS FOR OVER 500 DAYS AFTER EXPLOSION

    SciTech Connect

    Zhang Tianmeng; Wu Chao; Zhai Meng; Wu Hong; Fan Zhou; Zou Hu; Zhou Xu; Ma Jun; Wang Xiaofeng; Chen Juncheng; Chen Jia; Liu Qin; Huang Fang; Liang Jide; Zhao Xulin; Lin Lin; Wang Min; Dennefeld, Michel; Zhang Jujia E-mail: wang_xf@mail.tsinghua.edu.cn

    2012-11-01

    We present extensive optical observations of a Type IIn supernova (SN IIn) 2010jl for the first 1.5 years after its discovery. The UBVRI light curves demonstrated an interesting two-stage evolution during the nebular phase, which almost flatten out after about 90 days from the optical maximum. SN 2010jl has one of the highest intrinsic H{alpha} luminosities ever recorded for an SN IIn, especially at late phase, suggesting a strong interaction of SN ejecta with the dense circumstellar material (CSM) ejected by the progenitor. This is also indicated by the remarkably strong Balmer lines persisting in the optical spectra. One interesting spectral evolution about SN 2010jl is the appearance of asymmetry of the Balmer lines. These lines can be well decomposed into a narrow component and an intermediate-width component. The intermediate-width component showed a steady increase in both strength and blueshift with time until t {approx} 400 days after maximum, but it became less blueshifted at t {approx} 500 days, when the line profile appeared relatively symmetric again. Owing to the fact that a pure reddening effect will lead to a sudden decline of the light curves and a progressive blueshift of the spectral lines, we therefore propose that the asymmetric profiles of H lines seen in SN 2010jl are unlikely due to the extinction by newly formed dust inside the ejecta, contrary to the explanation by some early studies. Based on a simple CSM-interaction model, we speculate that the progenitor of SN 2010jl may suffer a gigantic mass loss ({approx}30-50 M{sub Sun }) a few decades before explosion. Considering a slow-moving stellar wind (e.g., {approx}28 km s{sup -1}) inferred for the preexisting, dense CSM shell and the extremely high mass-loss rate (1-2 M{sub Sun} yr{sup -1}), we suggest that the progenitor of SN 2010jl might have experienced a red supergiant stage and may explode finally as a post-red supergiant star with an initial mass above 30-40 M{sub Sun }.

  4. SALT spectroscopic classification of PS16atu (SN 2016atv) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of PS16atu (SN 2016atv) on 2016 Mar 10.1 UT, covering the wavelength range 350-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS16atu is a type-Ia supernova approximately a week past maximum light.

  5. Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Kilpatrick, Charles D.; Mauerhan, Jon C.; Andrews, Jennifer E.; Margutti, Raffaella; Fong, Wen-Fai; Graham, Melissa L.; Zheng, WeiKang; Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.

    2017-04-01

    Supernova (SN) 2005ip was a Type IIn event notable for its sustained strong interaction with circumstellar material (CSM), coronal emission lines and infrared (IR) excess, interpreted as shock interaction with the very dense and clumpy wind of an extreme red supergiant. We present a series of late-time spectra of SN 2005ip and a first radio detection of this SN, plus late-time X-rays, all of which indicate that its CSM interaction is still strong a decade post-explosion. We also present and discuss new spectra of geriatric SNe with continued CSM interaction: SN 1988Z, SN 1993J and SN 1998S. From 3 to 10 yr post-explosion, SN 2005ip's Hα luminosity and other observed characteristics were nearly identical to those of the radio-luminous SN 1988Z, and much more luminous than SNe 1993J and 1998S. At 10 yr after explosion, SN 2005ip showed a drop in Hα luminosity, followed by a quick resurgence over several months. We interpret this Hα variability as ejecta crashing into a dense shell located ≲ 0.05 pc from the star, which may be the same shell that caused the IR echo at earlier epochs. The extreme Hα luminosities in SN 2005ip and SN 1988Z are still dominated by the forward shock at 10 yr post-explosion, whereas SN 1993J and SN 1998S are dominated by the reverse shock at a similar age. Continuous strong CSM interaction in SNe 2005ip and 1988Z is indicative of enhanced mass-loss for ∼103 yr before core collapse, longer than Ne, O or Si burning phases. Instead, the episodic mass-loss must extend back through C burning and perhaps even part of He burning.

  6. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-11-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 +- 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is alpha = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  7. Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Johansson, J.; Goobar, A.; Kasliwal, M. M.; Helou, G.; Masci, F.; Tinyanont, S.; Jencson, J.; Cao, Y.; Fox, O. D.; Kromer, M.; Amanullah, R.; Banerjee, D. P. K.; Joshi, V.; Jerkstrand, A.; Kankare, E.; Prince, T. A.

    2017-04-01

    SN 2014J in M 82 is the closest Type Ia supernova (SN Ia) in decades. The proximity allows for detailed studies of supernova physics and provides insights into the circumstellar and interstellar environment. In this work, we analyse Spitzer mid-infrared (mid-IR) data of SN 2014J in the 3.6 and 4.5 μm wavelength range, together with several other nearby and well-studied SNe Ia. We compile the first composite mid-IR light-curve templates from our sample of SNe Ia, spanning the range from before peak brightness well into the nebular phase. Our observations indicate that SNe Ia form a very homogeneous class of objects at these wavelengths. Using the low-reddening supernovae for comparison, we constrain possible thermal emission from circumstellar dust around the highly reddened SN 2014J. We also study SNe 2006X and 2007le, where the presence of matter in the circumstellar environment has been suggested. No significant mid-IR excess is detected, allowing us to place upper limits on the amount of pre-existing dust in the circumstellar environment. For SN 2014J, Mdust ≲ 10- 5 M⊙ within rdust ∼ 1017 cm, which is insufficient to account for the observed extinction. Similar limits are obtained for SNe 2006X and 2007le.

  8. SN 2014J at M82 - I. A middle-class Type Ia supernova by all spectroscopic metrics

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Moreno-Raya, M. E.; Ruiz-Lapuente, P.; González Hernández, J. I.; Méndez, J.; Vallely, P.; Baron, E.; Domínguez, I.; Hamuy, M.; López-Sánchez, A. R.; Mollá, M.; Catalán, S.; Cooke, E. A.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F. C.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-03-01

    We present the intensive spectroscopic follow up of the Type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from 2014 January 22 to September 1 with the Isaac Newton and William Herschel Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti, Branch et al. and Wang et al. diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal and Broad-line groups, which corresponds to an intermediate position between low-velocity gradient and high-velocity gradient objects. SN 2014J follows the R(Si II)-Δm15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.

  9. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  10. The early phases of the Type Iax supernova SN 2011ay

    NASA Astrophysics Data System (ADS)

    Szalai, Tamás; Vinkó, József; Sárneczky, Krisztián; Takáts, Katalin; Benkő, József M.; Kelemen, János; Kuli, Zoltán; Silverman, Jeffrey M.; Marion, G. Howie; Wheeler, J. Craig

    2015-10-01

    We present a detailed study of the early phases of the peculiar supernova (SN) 2011ay based on BVRI photometry obtained at Konkoly Observatory, Hungary, and optical spectra taken with the Hobby-Eberly Telescope at McDonald Observatory, Texas. The spectral analysis carried out with SYN++ and SYNAPPS confirms that SN 2011ay belongs to the recently defined class of SNe Iax, which is also supported by the properties of its light and colour curves. The estimated photospheric temperature around maximum light, Tphot ˜ 8000 K, is lower than in most SNe Ia, which results in the appearance of strong Fe II features in the spectra of SN 2011ay, even during the early phases. We also show that strong blending with metal features (those of Ti II, Fe II, Co II) makes the direct analysis of the broad spectral features very difficult, and this may be true for all SNe Iax. We find two alternative spectrum models that both describe the observed spectra adequately, but their photospheric velocities differ by at least ˜3000 km s-1. The quasi-bolometric light curve of SN 2011ay has been assembled by integrating the ultraviolet-optical spectral energy distributions. Fitting a modified Arnett model to Lbol(t), the moment of explosion and other physical parameters, i.e. the rise time to maximum, the 56Ni mass and the total ejecta mass are estimated as trise ˜ 14 ± 1 d, MNi ˜ 0.22 ± 0.01 M⊙ and Mej ˜ 0.8 M⊙, respectively.

  11. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    SciTech Connect

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W.; Wyrzykowski, L.; Fraser, M.; Blagorodnova, N.; Campbell, H.; Shen, K. J.; Gal-Yam, A.; Howell, D. A.; Valenti, S.; Maguire, K.; Mazzali, P.; Bersier, D.; Taubenberger, S.; Benitez-Herrera, S.; Elias-Rosa, N.; and others

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

  12. SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA

    SciTech Connect

    Rodney, S. A.; Strolger, L.-G.; Brammer, G.; Kelly, P. L.; Filippenko, A. V.; Bradač, M.; Foley, R. J.; Graur, O.; Hjorth, J.; Selsing, J.; Jha, S. W.; McCully, C.; Molino, A.; Riess, A. G.; Schmidt, K. B.; Sharon, K.; Treu, T.; and others

    2016-03-20

    We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1–S4) exhibited a slow rise (over ∼150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative to S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.

  13. SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION

    SciTech Connect

    Gandhi, P.; Yamanaka, M.; Itoh, R.; Tanaka, M.; Nozawa, T.; Maeda, K.; Moriya, T. J.; Kawabata, K. S.; Saviane, I.; Hattori, T.; Sasada, M.

    2013-04-20

    We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminosity lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.

  14. SN 1957D in M83: A Young Supernova Remnant Emerges

    NASA Astrophysics Data System (ADS)

    Winkler, P. Frank; Long, K. S.; Blair, W. P.; Soria, R.; Godfrey, L. E. H.; Kuntz, K. D.; Plucinsky, P. P.; Whitmore, B. C.

    2012-05-01

    We report recent multi-wavelength observations of the remnant from SN 1957D, a core-collapse supernova in M83 and one of six SNe M83 has produced in the past century. SN 1957D was recovered as a radio SNR by Cowan & Branch (1983), and optically by Long et al. (1988). We have recently detected it for the first time in X-rays, in a long observation from Chandra. New HST WFC3 images resolve the SNR from the complex surrounding emission and reveal the local star field. The optical flux from SN 1957D is dominated by broad [O III] emission lines, the signature of fast-moving SN ejecta. The [O III] flux dropped precipitously between 1989 and 1991; a series of subsequent observations indicates continuing but more gradual decline. The width of the broad lines has remained roughly constant at about 3000 km/s (FWHM). At radio wavelengths, observations over the period 1990-2011 show a decline rate Sν t-3.9, far steeper than the rate observed between 1984 and 1990. Such evolution suggests early expansion into a circumstellar medium dominated by wind material from the progenitor, followed by a steeper decline as the blast wave overruns the edge of the wind material. The X-ray luminosity (0.3 - 10 keV) is 2.0 E37 erg/s, with a relatively hard spectrum. We cannot distinguish between a power law (indicating a probable pulsar and surrounding nebula) vs a hot thermal spectrum from the blast wave. However, the absorption is relatively high, NH 2 E22 cm-2, suggesting a dense local environment. Photometry of the local stellar population around SN 1957D, using HST WFC3 images, indicates a log(age) 7.3 and (remaining) stars up to about 11 M. This research is supported primarily by NASA through Chandra Grant G01-12115; PFW acknowledges additional support from NSF Grant AST-0908566.

  15. Type Ia Supernovae and Their Environment:Theory and Applications to SN 2014J

    NASA Astrophysics Data System (ADS)

    Dragulin, Paul; Hoeflich, Peter

    2016-02-01

    We present theoretical semi-analytic models for the interaction of stellar winds with the interstellar medium (ISM) or prior mass loss implemented in our code SPICE, assuming spherical symmetry and power-law ambient density profiles and using the Π-theorem. This allows us to test a wide variety of configurations, their functional dependencies, and to find classes of solutions for given observations. Here, we study Type Ia Supernova (SN Ia) surroundings of single and double degenerate systems, and their observational signatures. Winds may originate from the progenitor prior to the white dwarf (WD) stage, the WD, a donor star, or an accretion disk (AD). For MCh explosions, the AD wind dominates and produces a low-density void several light years across, surrounded by a dense shell. The bubble explains the lack of observed interaction in late time SN light curves for, at least, several years. The shell produces narrow ISM lines Doppler shifted by 10-100 km s-1, and equivalent widths of ≈100 mÅ and ≈1 mÅ in cases of ambient environments with constant density and produced by prior mass loss, respectively. For SN2014J, both mergers and MCh mass explosions have been suggested based on radio and narrow lines. As a consistent and most likely solution, we find an AD wind running into an environment produced by the red giant wind of the progenitor during the pre-WD stage, and a short delay, 0.013-1.4 Myr, between the WD formation and the explosion. Our framework may be applied more generally to stellar winds and star formation feedback in large scale galactic evolution simulations.

  16. SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51

    SciTech Connect

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Rabinak, Itay; Waxman, Eli; Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Horesh, Assaf; Kulkarni, Shrinivas R.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Cenko, S. Bradley; Li, Weidong; Bloom, Joshua S.; Nugent, Peter E.; Poznanski, Dovi; Sullivan, Mark; Gorbikov, Evgeny; and others

    2011-12-15

    On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius ({approx}10{sup 13} cm) would be highly inconsistent with constraints from our post-explosion spectra.

  17. Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by

    NASA Astrophysics Data System (ADS)

    Höflich, Peter; Gerardy, Christopher L.; Fesen, Robert A.; Sakai, Shoko

    2002-04-01

    Near-infrared (NIR) spectra of the subluminous Type Ia supernova SN 1999by are presented that cover the time evolution from about 4 days before to 2 weeks after maximum light. Analysis of these data was accomplished through the construction of an extended set of delayed detonation (DD) models covering the entire range of normal to subluminous SNe Ia. The explosion, light curves, and time evolution of the synthetic spectra were calculated self-consistently for each model, with the only free parameters being the initial structure of the white dwarf and the description of the nuclear burning front during the explosion. From these, one model was selected for SN 1999by by matching the synthetic and observed optical light curves, principally the rapid brightness decline. DD models require a minimum amount of burning during the deflagration phase, which implies a lower limit for the 56Ni mass of about 0.1Msolar and consequently a lower limit for the SN brightness. The models that best match the optical light curve of SN 1999by were those with a 56Ni production close to this theoretical minimum. The data are consistent with little or no interstellar reddening [E(B-V)<=0.12 mag], and we derive a distance of 11+/-2.5 Mpc for SN 1999by, in agreement with other estimates. Without any modification, the synthetic spectra from this subluminous model match reasonably well the observed IR spectra taken on 1999 May 6, 10, 16, and 24. These dates correspond roughly to -4, 0, 6, and 14 days after maximum light. Prior to maximum, the NIR spectra of SN 1999by are dominated by products of explosive carbon burning (O, Mg) and Si. Spectra taken after maximum light are dominated by products of incomplete Si burning. Unlike the behavior of normal Type Ia SNe, lines from iron-group elements begin to show up only in our last spectrum taken about 2 weeks after maximum light. The implied distribution of elements in velocity space agrees well with the DD model predictions for a subluminous SN Ia

  18. SALT spectroscopic classification of PS16efm (= SN 2016fxu) as a type-Ic supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-09-01

    We obtained SALT (+RSS) spectroscopy of PS16efm (= SN 2016fxu) on 2016 Sep 8.0 UT, covering the wavelength range 350-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS16efm is a type-Ic supernova approximately two to three weeks past maximum light.

  19. Tsallis Statistics and the Role of a Stabilized Radion in the Supernovae SN1987A Cooling

    NASA Astrophysics Data System (ADS)

    Das, Prasanta Kumar; Selvaganapathy, J.; Sharma, Chandradew; Jha, Tarun Kumar; Kumar, V. Sunil

    2013-11-01

    The radion in the two-brane Randall-Sundrum model is required to stabilize the size of the fifth (extra) spatial dimension. It can be copiously produced inside the supernova core due to electron-positron annihilation (e+e-→ϕ), plasmon-plasmon annihilation (γP+γP→ϕ) and nucleon-nucleon bremsstrahlung and can take away the energy released in SN1987A explosion. Working within the q-deformed statistics (Tsallis statistics) and using the "Raffelt criterion" on the supernovae cooling rate ˙ {ǎrepsilon}<= 1019 ergs g-1 s-1, we find that in Case I (cooling due to e+e-→ϕ channel): for q = 1.22, as the radion mass mϕ changes from 20 GeV to 150 GeV, the lower bound <ϕ> changes from 7 TeV to 1.5 TeV and in Case II (cooling due to γP+γP→ϕ channel): for q = 1.11, as mϕ ranges from 20 GeV to 150 GeV, the lower bound <ϕ> changes from 201 TeV to 3.3 TeV. We investigate the dependence of <ϕ> on q and found that in Case I: mϕ = 50(100) GeV, <ϕ> changes from 0.5(0.2) TeV (for q = 1.18) to 5.5(4.8) TeV (for q = 1.30) and in Case II: for mϕ = 50(100) GeV, <ϕ> changes from 0.8( 0.1) TeV (for q = 1.09) to 569(216) TeV (for q = 1.13). We also verified that the normal Fermi-Dirac and Bose-Einstein statistics get recovered from the Tsallis statistics in the q→1 limit.

  20. Late-time Photometry of Type Ia Supernova SN 2012cg Reveals the Radioactive Decay of 57 Co

    NASA Astrophysics Data System (ADS)

    Graur, Or; Zurek, David; Shara, Michael M.; Riess, Adam G.; Seitenzahl, Ivo R.; Rest, Armin

    2016-03-01

    Seitenzahl et al. have predicted that roughly three years after its explosion, the light we receive from a Type Ia supernova (SN Ia) will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain 57Co → 57Fe, instead of positrons from the decay chain 56Co → 56Fe that dominates the SN light at earlier times. Using the Hubble Space Telescope, we followed the light curve of the SN Ia SN 2012cg out to 1055 days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of 57Co, offering evidence that 57Co is produced in SN Ia explosions. However, the data are also consistent with a light echo ∼14 mag fainter than SN 2012cg at peak. Assuming no light-echo contamination, the mass ratio of 57Ni and 56Ni produced by the explosion, a strong constraint on any SN Ia explosion models, is {0.043}-0.011+0.012, roughly twice Solar. In the context of current explosion models, this value favors a progenitor white dwarf with a mass near the Chandrasekhar limit.

  1. Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P. A.; Pian, E.; James, P. A.

    2016-12-01

    A detailed spectroscopic analysis of SN 1986G has been performed. SN 1986G `bridges the gap' between normal and subluminous Type Ia supernovae (SNe Ia). The abundance tomography technique is used to determine the abundance distribution of the elements in the ejecta. SN 1986G was found to be a low-energy Chandrasekhar mass explosion. Its kinetic energy was 70 per cent of the standard W7 model (0.9 × 1051 erg). Oxygen dominates the ejecta from the outermost layers down to ˜9000 km s-1, intermediate mass elements (IMEs) dominate from ˜9000 to ˜3500 km s-1 with Ni and Fe dominating the inner layers < ˜3500 km s-1. The final masses of the main elements in the ejecta were found to be, O = 0.33 M⊙, IME = 0.69 M⊙, stable NSE = 0.21 M⊙, 56Ni = 0.14 M⊙. An upper limit of the carbon mass is set at C = 0.02 M⊙. The spectra of SN 1986G consist of almost exclusively singly ionized species. SN 1986G can be thought of as a low-luminosity extension of the main population of SN Ia, with a large deflagration phase that produced more IMEs than a standard SN Ia.

  2. SN 1961V: From Alpha to Omega?

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Filippenko, Alexei V.; Cenko, Bradley S.; Shields, Joseph C.

    2013-06-01

    The extraordinary object SN 1961V in NGC 1058 remains controversial to this day. It has long been considered the prototypical "supernova impostor," i.e., the giant eruption of a highly massive star with energetics that rival true supernovae. However, a number of arguments have been put forward that SN 1961V actually was a true SN, and that the explosion followed a sustained powerful outburst from its precursor star, much like the amazing SN 2009ip and other recent events. We will briefly discuss the debate that has roiled over SN 1961V, and we will also present evidence, including from new observations, which may indicate that the precursor has survived. Determining the true nature of SN 1961V will inform our understanding of the late stages of pre-SN evolution for the most massive stars.

  3. SN1987A-Neutrino emission from Supernova': in Dynamic universe model of cosmology

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    SN1987A-Neutrino emission from supernova before the star bursts' is an important discovery, when viewed from `Dynamic universe model of cosmology' point of view. In OMEG05, we have successfully presented the reasons for calculation error called `missing mass' in an inhomoge-neous, anisotropic and multi-body Dynamic universe Model, where this error is not occurring. But there are some new voices that say about generation of some flavors of neutrinos during Bigbang. We find from SN1987A Neutrino generation covers all flavors. Remaining flavors of Neutrinos are generated from sun and stars. This covers the whole spectrum. This paper covers all these aspects. And other earlier results by Dynamic Universe Model 1. Offers Singularity free solutions 2. Non-collapsing Galaxy structures 3. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves. . . . 4. Blue shifted and red shifted Galaxies co-existence. . . 5. Explains the force behind expansion of universe. 6. Explains the large voids and non-uniform matter densities. 7. Explains the Pioneer anomaly 8. Predicts the trajectory of New Horizons satellite. 9 Jeans swindle test 10. Existence of large number of blue shifted Galaxies `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity free N-body tensor solution to the old problem announced by King Oscar II and tried by Poincare in year AD1888 for 133 masses, tested extensively for so many years. This was developed on 486 based PC of those days; the same software was used repeatedly for so many years for solving different Physical problems on Different PCs and Laptops. It is based on Dynamic Universe Model's mathematical back ground.

  4. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2012-05-01

    We report two epochs of Chandra-ACIS X-ray imaging spectroscopy of the nearby bright Type IIn supernova SN 2010jl, taken around two months and then a year after the explosion. The majority of the X-ray emission in both spectra is characterized by a high temperature ({approx}> 10 keV) and is likely to be from the forward shocked region resulting from circumstellar interaction. The absorption column density in the first spectrum is high ({approx}10{sup 24} cm{sup -2}), more than three orders of magnitude higher than the Galactic absorption column, and we attribute it to absorption by circumstellar matter. In the second epoch observation, the column density has decreased by a factor of three, as expected for shock propagation in the circumstellar medium. The unabsorbed 0.2-10 keV luminosity at both epochs is {approx}7 Multiplication-Sign 10{sup 41} erg s{sup -1}. The 6.4 keV Fe line clearly present in the first spectrum is not detected in the second spectrum. The strength of the fluorescent line is roughly that expected for the column density of circumstellar gas, provided the Fe is not highly ionized. There is also evidence for an absorbed power-law component in both spectra, which we attribute to a background ultraluminous X-ray source.

  5. The behavior of supernova SN 2014cy in the optical wavelength

    NASA Astrophysics Data System (ADS)

    Singh, Mridweeka

    2016-07-01

    The supernovae (SNe) of type II prominently exhibit presence of hydrogen in their early spectra and are results of the core collapse of massive stars. These SNe show a wide variety of light curve and spectral properties. A detailed analysis of individual SNe allows us to study the peculiarities seen in the different sub-classes of type II SNe. In this poster we present the optical observations of a type IIP SN 2014cy which occurred in the galaxy NGC 7742. High cadence photometric observations, covering a span of ~150 days, were taken with the 1.0m class telescopes at ARIES. Supplementary spectroscopic observations were taken with the 2.0m Himalayan Chandra Telescope at IAO, Hanle. The light curve evolution in different phases allows us to estimate various physical parameters such as the Ni mass, ejected mass and progenitor mass. We also present a comparison of the physical properties of a sample of other well studied type IIP SNe.

  6. RE-EXAMINATION OF THE EXPECTED GAMMA-RAY EMISSION OF SUPERNOVA REMNANT SN 1987A

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5–50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ∼10{sup −13} erg cm{sup −2} s{sup −1}. This flux should decrease by a factor of about two over the next 10 years.

  7. A Swift Look at SN 2011fe: The Earliest Ultraviolet Observations of a Type Ia Supernova

    NASA Technical Reports Server (NTRS)

    Oates, Samantha; Holland, Stephen; Immler, Stefan; Brown, Peter J.; Dawson, Kyle S.; DePasquale, Massimiliano; Gronwall, Caryl; Kuin, Paul; Mazzali, Paolo; Miline, Peter; Siegel, Michael

    2012-01-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well-defined, with approx. 20 data points per filter in the 5 days after explosion. With these early UV observations, we extend the near-UV template of SNe Ia to earlier times for comparison with observations at low and high redshift and report fits from semiempirical models of the explosion. We find the early UV count rates to be well fit by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. We find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  8. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ˜10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  9. SN 2010mb: Direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material

    SciTech Connect

    Ben-Ami, Sagi; Gal-Yam, Avishay; Rabinak, Itay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Mazzali, Paolo A.; Gnat, Orly; Modjaz, Maryam; Sullivan, Mark; Bildsten, Lars; Poznanski, Dovi; Bloom, Joshua S.; Nugent, Peter E.; Horesh, Assaf; Kulkarni, Shrinivas R.; Perley, Daniel; Kasliwal, Mansi M.; Quimby, Robert; Xu, Dong

    2014-04-10

    We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (∼600 days) that cannot be powered by {sup 56}Ni/{sup 56}Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (∼10{sup 9} cm{sup –3}). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ∼3 M {sub ☉}. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature.

  10. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    SciTech Connect

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A. E-mail: jph@physics.rutgers.edu

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  11. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    PubMed

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-14

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

  12. Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NASA Technical Reports Server (NTRS)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; vanderHorst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; Law, Nicolas M.; Poznanski, Dovi; Shara, Michael

    2012-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.

  13. The Extinction properties of and distance to the highly reddened Type~Ia supernova SN 2012cu

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Raha, Zachary; Aldering, Greg Scott; Antilogus, Pierre; Bailey, Stephen J.; Charles, Baltay; Barbary, Kyle H.; Baugh, Derek; Boone, Kyle; Bongard, Sebastien; Buton, Clement; Chen, Juncheng; Chotard, Nicolas; Copin, Yannick; Fagrelius, Parker; Fakhouri, Hannah; Feindt, Ulrich; Fouchez, Dominique; Gangler, Emmanuel; Hayden, Brian; Hillebrandt, Wolfgang; Kim, Alex G.; Kowalski, Marek; Leget, Pierre-Francois; Lombardo, Simona; Nordin, Jakob; Pain, Reynald; Pecontal, Emmanuel; Pereira, Rui; Perlmutter, Saul; Rabinowitz, David L.; Rigault, Mickael; Rubin, David; Runge, Karl; Saunders, Clare; Smadja, Gerard; Sofiatti, Caroline; Stocker, Andrew; Suzuki, Nao; Taubenberger, Stefan; Tao, Charling; Thomas, Rollin

    2017-01-01

    Correction of Type Ia SN brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 A, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B - V ), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.09) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 A band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curves of Cardelli et al. (1989), O’Donnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6±1.1 Mpc. We compare this result with distance measurements in the literature.

  14. Revised Lens Model for the Multiply Imaged Lensed Supernova, “SN Refsdal” in MACS J1149+2223

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Johnson, Traci L.

    2015-02-01

    We present a revised lens model of MACS J1149+2223, in which the first resolved multiply imaged lensed supernova (SN) was discovered. The lens model is based on the model of Johnson et al. with some modifications. We include more lensing constraints from the host galaxy of the newly discovered SN, and increase the flexibility of the model in order to better reproduce the lensing signal in the vicinity of this galaxy. The revised model accurately reconstructs the positions of the lensed SN, provides magnifications, and predicts the time delay between the instances of the SN. Finally, we reconstruct the source image of the host galaxy, and position the SN on one of its spiral arms. Products of this lens model are available to the community through MAST. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO 9722, GO 12065.

  15. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-08-20

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

  16. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  17. SN 2010ay Is a Luminous and Broad-Lined Type Ic Supernova Within a Low-Metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2012-01-01

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just approximately 4 days after explosion. The supernova (SN) had a peak luminosity, MR approx. -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si (is) approx. 19×10(exp 3) km s-1 at approximately 40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines approximately 2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, MNi = 0.9 solar mass. Applying scaling relations to the light curve, we estimate a total ejecta mass, Mej (is) approx. 4.7 solar mass, and total kinetic energy, EK (is) approx. 11 × 10(exp 51) erg. The ratio of MNi to Mej is approximately 2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and (is) approximately 0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E(gamma) (is) approximately less than 6 × 10(exp 48) erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E (is) approximately greater than 10(exp 48) erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF

  18. SN 2008jb: A 'LOST' CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT {approx}10 Mpc

    SciTech Connect

    Prieto, J. L.; Lee, J. C.; Drake, A. J.; Djorgovski, S. G.; McNaught, R.; Garradd, G.; Beacom, J. F.; Beshore, E.; Catelan, M.; Pojmanski, G.; Stanek, K. Z.; Szczygiel, D. M.

    2012-01-20

    We present the discovery and follow-up observations of SN 2008jb, a core-collapse supernova in the southern dwarf irregular galaxy ESO 302-14 (M{sub B} = -15.3 mag) at 9.6 Mpc. This nearby transient was missed by galaxy-targeted surveys and was only found in archival optical images obtained by the Catalina Real-time Transient Survey and the All-Sky Automated Survey. The well-sampled archival photometry shows that SN 2008jb was detected shortly after explosion and reached a bright optical maximum, V{sub max} {approx_equal} 13.6 mag (M{sub V,max} {approx_equal} -16.5). The shape of the light curve shows a plateau of {approx}100 days, followed by a drop of {approx}1.4 mag in the V band to a slow decline with an approximate {sup 56}Co decay slope. The late-time light curve is consistent with 0.04 {+-} 0.01 M{sub Sun} of {sup 56}Ni synthesized in the explosion. A spectrum of the supernova obtained two years after explosion shows a broad, boxy H{alpha} emission line, which is unusual for normal Type II-Plateau supernovae at late times. We detect the supernova in archival Spitzer and WISE images obtained 8-14 months after explosion, which show clear signs of warm (600-700 K) dust emission. The dwarf irregular host galaxy, ESO 302-14, has a low gas-phase oxygen abundance, 12 + log(O/H) = 8.2 ({approx}1/5 Z{sub Sun }), similar to those of the Small Magellanic Cloud and the hosts of long gamma-ray bursts and luminous core-collapse supernovae. This metallicity is one of the lowest among local ({approx}< 10 Mpc) supernova hosts. We study the host environment using GALEX far-UV, R-band, and H{alpha} images and find that the supernova occurred in a large star formation complex. The morphology of the H{alpha} emission appears as a large shell (R {approx_equal} 350 pc) surrounding the FUV and optical emission. Using the H{alpha}-to-FUV ratio and FUV and R-band luminosities, we estimate an age of {approx}9 Myr and a total mass of {approx}2 Multiplication-Sign 10{sup 5} M{sub Sun

  19. Modelling supernova line profile asymmetries to determine ejecta dust masses: SN 1987A from days 714 to 3604

    NASA Astrophysics Data System (ADS)

    Bevan, Antonia; Barlow, M. J.

    2016-02-01

    The late-time optical and near-IR line profiles of many core-collapse supernovae exhibit a red-blue asymmetry as a result of greater extinction by internal dust of radiation emitted from the receding parts of the supernova ejecta. We present here a new code, DAMOCLES, that models the effects of dust on the line profiles of core-collapse supernovae in order to determine newly formed dust masses. We find that late-time dust-affected line profiles may exhibit an extended red scattering wing (as noted by Lucy et al. 1989) and that they need not be flux-biased towards the blue, although the profile peak will always be blueshifted. We have collated optical spectra of SN 1987A from a variety of archival sources and have modelled the Hα line from days 714 to 3604 and the [O I] 6300,6363 Å doublet between days 714 and 1478. Our line profile fits rule out day 714 dust masses >3 × 10-3 M⊙ for all grain types apart from pure magnesium silicates, for which no more than 0.07 M⊙ can be accommodated. Large grain radii ( ≥ 0.6 μm) are generally required to fit the line profiles even at the earlier epochs. We find that a large dust mass (≥0.1 M⊙) had formed by day 3604 and infer that the majority of the present dust mass must have formed after this epoch. Our findings agree with recent estimates from spectral energy distribution fits for the dust mass evolution of SN 1987A and support the inference that the majority of SN 1987A's dust formed many years after the initial explosion.

  20. Photometric and Spectroscopic Observations of SN 2012dn, a Super-Chandra Candidate Type-Ia Supernova

    NASA Astrophysics Data System (ADS)

    Parrent, Jerod T.; Transient Factory, Palomar; Cumbres Observatory Global Telescope Network, Las

    2013-01-01

    Currently, there is no singular standard model picture of type-Ia supernovae (SNe Ia) with a parameter-space of predictions that overlap the observed, diverse array of SN Ia properties. The same can be said for the super-luminous versions of SNe Ia, those thought to originate from up to 2.4 solar mass progenitor systems. To make matters worse, we remain in the dark-ages of astronomy regarding the interpretation of their observed spectra. In short, line-blending due to resonant line-scattering alone prevents making clear the compositional makeup of the outermost ejected layers. Since simulations of violent merger and single degenerate scenarios are both able to roughly reproduce spectroscopic observations, the direct mapping of the ejecta via spectrum synthesis measurements is of high importance. For example, with the closest SN Ia to date, SN 2011fe, we were able to map (in velocity space) the composition of the outer layers of ejecta. We did this by evolving simple P-Cygni-blends of synthetic spectra over the course of the first month (post-explosion), with an average of 1.8 days between observations by which to compare. As a result, SN 2011fe gave a clearer picture of the compositional structure of a ''normal'' SN Ia. We now have another chance to put this measure of SN Ia diversity into practice with the discovery of a brighter than normal southern hemisphere object, SN 2012dn. Here we present g-, r-, and i-band photometric observations obtained at Faulkes Telescope South, as well as optical time-series spectra from Gemini-North, Gemini-South, SALT, and MMT facilities. With 19 spectroscopic observations spanning its first month, post-explosion, we are able to measure the relative velocities of the periodic table in the outermost layers of ejected material. This serves as a means for distinguishing the origin of SNe Ia and their various forms.

  1. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    SciTech Connect

    Huang, Fang; Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin; Zhang, Jujia; Brown, Peter J.; Zampieri, Luca; Pumo, Maria Letizia; Zhang, Tianmeng E-mail: wang_xf@mail.tsinghua.edu.cn

    2015-07-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.

  2. Type IIb supernova SN 2011dh: Spectra and photometry from the ultraviolet to the near-infrared

    SciTech Connect

    Marion, G. H.; Kirshner, Robert P.; Foley, Ryan J.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Challis, Peter; Chornock, Ryan; Esquerdo, Gilbert A.; Falco, Emilio E.; Friedman, Andrew S.; Vinko, Jozsef; Bloom, Joshua S.; Chevalier, Roger A.; Culliton, Chris; Curtis, Jason L.; Everett, Mark E.; France, Kevin; Fransson, Claes; Garnavich, Peter; and others

    2014-02-01

    We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2000 Å in the ultraviolet (UV) to 2.4 μm in the near-infrared (NIR). Optical spectra provide line profiles and velocity measurements of H I, He I, Ca II, and Fe II that trace the composition and kinematics of the supernova (SN). NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the Space Telescope Imaging Spectrograph reveals that the UV flux for SN 2011dh is low compared to other SN IIb. Modeling the spectrum with SYNOW suggests that the UV deficit is due to line blanketing from Ti II and Co II. The H I and He I velocities in SN 2011dh are separated by about 4000 km s{sup –1} at all phases. A velocity gap is consistent with models for a preexplosion structure in which a hydrogen-rich shell surrounds the progenitor. We estimate that the H shell of SN 2011dh is ≈8 times less massive than the shell of SN 1993J and ≈3 times more massive than the shell of SN 2008ax. Light curves (LCs) for 12 passbands are presented: UVW2, UVM2, UVW1, U, u', B, V, r', i', J, H, and K{sub s} . In the B band, SN 2011dh reached peak brightness of 13.17 mag at 20.0 ± 0.5 after the explosion. The maximum bolometric luminosity of 1.8 ± 0.2 × 10{sup 42} erg s{sup –1} occurred ≈22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations, and the NIR contribution increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9, and 1% on day 34. We compare the bolometric LCs of SN 2011dh, SN 2008ax, and SN 1993J. The LC are very different for the first 12 days after the explosions, but all three SN IIb display similar peak luminosities, times of peak, decline rates, and colors after maximum

  3. SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy

    NASA Technical Reports Server (NTRS)

    Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Chornock, R.; Foley, R. J.; Levesque, E. M.; Narayan, G.; Botticella, M. T.; Briggs, M. S.; Connaughton, V.; Terada, Y.; Gehrels, N.; Golenetskii, S.; Mazets, E.; Cline, T.; von Kienlin, A.; Boynton, W.; Chambers, K. C.; Grav, T.; Heasley, J. N.

    2011-01-01

    We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN2010ay at z approx 0.067 imaged by the Pan-STARRS1 3pi survey just approx 4 days after explosion. Combining our photometric observations with those available in the literature, we estimate the explosion date and the peak luminosity of the SN, M(sub R) approximately equals 20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ibc ever discovered. We measure the photospheric expansion velocity of the explosion from our spectroscopic follow-up observations, v(sub ph) approximately equals 19.2 X 10 (exp 3) km/s at approx 40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN2010ay is 2 - 5 X higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of Ni-56, M(sub Ni) = 0.9(+0.1/-0.1) solar mass. Our modeling of the light-curve points to a total ejecta mass, M(sub ej) approx 4.7 Solar Mass, and total kinetic energy, E(sub K,51) approximately equals 11. Thus the ratio of M(sub Ni) to M(sub ej) is at least twice as large for SN2010ay than in GRB-SNe and may indicate an additional energy reservoir. We also measure the metallicity (log(O/H) + 12 = 8.19) of the explosion site within the host galaxy using a high S/N optical spectrum. Our abundance measurement places this SN in the low-metallicity regime populated by GRB-SNe, and approx 0.2(0.5) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. Despite striking similarities to the recent GRB-SN100316D/2010bh, we show that gamma-ray observations rule out an associated GRB with E(sub gamma) approx < 6 X 10(exp 48) erg (25-150 keV). Similarly, our deep

  4. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  5. A non-spherical core in the explosion of supernova SN 2004dj.

    PubMed

    Leonard, Douglas C; Filippenko, Alexei V; Ganeshalingam, Mohan; Serduke, Franklin J D; Li, Weidong; Swift, Brandon J; Gal-Yam, Avishay; Foley, Ryan J; Fox, Derek B; Park, Sung; Hoffman, Jennifer L; Wong, Diane S

    2006-03-23

    An important and perhaps critical clue to the mechanism driving the explosion of massive stars as supernovae is provided by the accumulating evidence for asymmetry in the explosion. Indirect evidence comes from high pulsar velocities, associations of supernovae with long-soft gamma-ray bursts, and asymmetries in late-time emission-line profiles. Spectropolarimetry provides a direct probe of young supernova geometry, with higher polarization generally indicating a greater departure from spherical symmetry. Large polarizations have been measured for 'stripped-envelope' (that is, type Ic; ref. 7) supernovae, which confirms their non-spherical morphology; but the explosions of massive stars with intact hydrogen envelopes (type II-P supernovae) have shown only weak polarizations at the early times observed. Here we report multi-epoch spectropolarimetry of a classic type II-P supernova that reveals the abrupt appearance of significant polarization when the inner core is first exposed in the thinning ejecta (approximately 90 days after explosion). We infer a departure from spherical symmetry of at least 30 per cent for the inner ejecta. Combined with earlier results, this suggests that a strongly non-spherical explosion may be a generic feature of core-collapse supernovae of all types, where the asphericity in type II-P supernovae is cloaked at early times by the massive, opaque, hydrogen envelope.

  6. OPTICAL OBSERVATIONS OF THE TYPE IA SUPERNOVA SN 2011fe IN M101 FOR NEARLY 500 DAYS

    SciTech Connect

    Zhang, Kaicheng; Wang, Xiaofeng; Zhao, Xulin; Chen, Jia; Chen, Juncheng; Huang, Fang; Mo, Jun; Rui, Liming; Song, Hao; Sai, Hanna; Li, Wenxiong; Zhang, JuJia; Bai, Jinming; Zhang, Tianmeng; Wu, Chao; Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.; Zheng, Weikang; Wang, Lifan

    2016-03-20

    We present well-sampled optical observations of the bright Type Ia supernova (SN Ia) SN 2011fe in M101. Our data, starting from ∼16 days before maximum light and extending to ∼463 days after maximum, provide an unprecedented time series of spectra and photometry for a normal SN Ia. Fitting the early-time rising light curve, we find that the luminosity evolution of SN 2011fe follows a t{sup n} law, with the index n being close to 2.0 in the VRI bands but slightly larger in the U and B bands. Combining the published ultraviolet (UV) and near-infrared (NIR) photometry, we derive the contribution of UV/NIR emission relative to the optical. SN 2011fe is found to have stronger UV emission and reaches its UV peak a few days earlier than other SNe Ia with similar Δm{sub 15}(B), suggestive of less trapping of high-energy photons in the ejecta. Moreover, the U-band light curve shows a notably faster decline at late phases (t ≈ 100–300 days), which also suggests that the ejecta may be relatively transparent to UV photons. These results favor the notion that SN 2011fe might have a progenitor system with relatively lower metallicity. On the other hand, the early-phase spectra exhibit prominent high-velocity features (HVFs) of O i λ7773 and the Ca ii NIR triplet, but only barely detectable in Si ii 6355. This difference can be caused by either an ionization/temperature effect or an abundance enhancement scenario for the formation of HVFs; it suggests that the photospheric temperature of SN 2011fe is intrinsically low, perhaps owing to incomplete burning during the explosion of the white dwarf.

  7. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    SciTech Connect

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; and others

    2012-02-10

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot {approx}<10{sup -8}(w/100 km s{sup -1}) M{sub sun} yr{sup -1} from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  8. The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Smith, Nathan; Filippenko, Alexei V.; Blanchard, Kyle B.; Blanchard, Peter K.; Casper, Chadwick F. E.; Cenko, S. Bradley; Clubb, Kelsey I.; Cohen, Daniel P.; Fuller, Kiera L.; Li, Gary Z.; Silverman, Jeffrey M.

    2013-04-01

    Some reports of supernova (SN) discoveries turn out not to be true core-collapse explosions. One such case was SN 2009ip, which was recognized to be the eruption of a luminous blue variable (LBV) star. This source had a massive (50-80 M⊙), hot progenitor star identified in pre-explosion data; it had documented evidence of pre-outburst variability and it was subsequently discovered to have a second outburst in 2010. In 2012, the source entered its third known outburst. Initial spectra showed the same narrow-line profiles as before, suggesting another LBV-like eruption. We present new photometry and spectroscopy of SN 2009ip, indicating that the 2012 outburst transitioned into a genuine SN explosion. The most striking aspect of these data is that unlike any previous episodes, the spectrum developed Balmer lines with very broad P-Cygni profiles characteristic of normal Type II supernovae (SNe II), in addition to overlying narrow emission components. The emission lines exhibit unprecedented (for any known non-terminal LBV-like eruption) full width at half-maximum intensity values of ˜8000 km s-1, while the absorption components seen just before the main brightening had blue wings extending out to -13 000 km s-1. These velocities are typical of core-collapse SN explosions, but have never been associated with emission lines from a non-terminal LBV-like eruption. SN 2009ip is the first object to have both a known massive blue progenitor star and LBV-like eruptions with accompanying spectra observed a few years prior to becoming a SN. Immediately after the broad lines first appeared, the peak absolute magnitude of MV ≈ -14.5 was fainter than that of normal SNe II. However, after a brief period of fading, the source quickly brightened again to MR = -17.5 mag in ˜2 d, suggesting a causal link to the prior emergence of the broad-line spectrum. Once the bright phase began, the broad lines mostly disappeared, and the spectrum resembled the early optically thick phases of

  9. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    SciTech Connect

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Chornock, R.; Fransson, C.; Fesen, R. A.; Mackey, J.; and others

    2015-12-20

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  10. Metamorphosis of SN 2014C: Delayed Interaction between a Hydrogen Poor Core-collapse Supernova and a Nearby Circumstellar Shell

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Challis, P.; Chornock, R.; Drout, M. R.; Fransson, C.; Fesen, R. A.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Mackey, J.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Soderberg, A. M.; Zauderer, B. A.

    2015-12-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30-300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  11. "New" B and V Photometry of the "Old" Type IA Supernova SN 1937C: Implications for HO

    NASA Astrophysics Data System (ADS)

    Pierce, Michael J.; Jacoby, George H.

    1995-12-01

    We have digitized and analyzed the original Baade and Zwicky 18 in. Palomar Schmidt films of the type Ia supernova SN 1937C. The data set consists of 76 films in the photographic bandpass mpg and a series of 50 previously unreduced photovisual (m_pv_) films. These data were supplemented by the three known, prediscovery plates of SN 1937C taken by Leutenegger and Grenat. The films and plates were scanned using the KPNO PDS microdensitometer and calibrated by fitting the integrated photographic density to a magnitude sequence of local standards on each film/plate. The resulting calibrations have typical rms dispersions of 0.06 and 0.04 mag for m_pg_ and m_pv_, respectively. Our magnitudes at the earliest epochs are systematically 0.30 mag fainter than those reported by Baade & Zwicky, with the two datasets converging by the eighth observation, about 11 days after maximum. We converted our mpg and mpv photometry to B and V using transformations determined both theoretically using synthetic photometry of spectrophotometric standards, and empirically using the local standard stars. The B and V light curves and B - V color evolution of SN 1937C were fitted with template light curves from previously well-observed supernovae to obtain B_max_= 8.94+/- 0.03, V_max_ = 9.00+/-0.03, and (B - V)_B(max)_ = -0.08 +/- 0.04. These correspond to M(B_max_)= - 19.42 and M( V_max_)= - 19.36 when combined with the Cepheid distance to IC 4182, the host galaxy. In comparing our results with the visual photometry of Beyer we found evidence for a color term which when applied to Beyer's data, leads to V_max_ = 8.87. We stress the importance of determining accurate color terms in the photometry of SN Ia due to the wide color range (from B - V ~ 0 to B - V ~1) through which they evolve over the first 30 days after maximum. The SN 1937C light curves were best fit by templates with very slow rates of decline. The correlation between decline rate and luminosity implies that SN 1937C, with {DELTA

  12. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. SN 2011fe: Photometrically Determining the Physical Properties and Distance of This Bright Type 1a Supernova

    NASA Astrophysics Data System (ADS)

    Ambrosino, William; Guinan, E. F.; Gouravajhala, S.; Gott, A.; Strolger, L.

    2013-01-01

    We report on the UBVRI photometry and spectroscopy of SN 2011fe. This SN is a recent bright Type-Ia supernova (SN Ia) that occurred in the spiral galaxy M101. One of the closest and brightest SNe Ia in the last 40 yrs, the SN was discovered in Aug, 2011, by the PTF (Nugent et al. 2011). SNe Ia occur in binary systems in which a degenerate white dwarf component accretes mass from its companion star (or undergoes a merger with another white dwarf), overcomes the Chandrasekhar limit, and deflagrates in a spectacular explosion. Crucial constraints on the progenitor system (for a single degenerate model) by Li et al. (2011) rule out bright red-giant mass donors, but do not rule out faint secondaries. The peak brightness of most SNe Ia are remarkably similar, which allows them to be used as accurate cosmic distance indicators. UBVRI observations have been carried out with the 1.3-meter Robotically Controlled Telescope (RCT) located at KPNO. These observations have been combined with archival measures (most from RIT & MSU) to define light curves of the star over its outburst. Analysis of the photometry indicates a Vmax = +9.99+/-0.01 mag. Using the M101 distance modulus of (mv-Mv)0 = 29.04+/-0.06 (=6.43 Mpc) as recently determined by Shappee and Stanek (2011), and assuming interstellar reddening of Av = 0.043 (from an E(B-V) = 0.014+/-0.002) determined by Patat et al. 2011, we determine an Mv = -19.09+/-0.06 mag. Using various semi-empirical LC-Shape methods for determining SNe Ia absolute magnitudes (see Phillips (1993; 1999), Prieto et al. 2006, and others), we determine the corresponding values of Mv & MB for SN 2011fe. We use the results of this study to test SNe Ia calibrations & also the inverse case of improving the distance to M101. SN 2011fe is important because of its relatively high brightness and early detection in a nearby, well-studied, face-on galaxy with a good distance determination and little ISM extinction. We discuss the physical and photometric

  14. Spectroscopy of supernova host galaxies from the SDSS-II SN survey with the SDSS and BOSS spectrographs

    NASA Astrophysics Data System (ADS)

    Olmstead, Matthew Dwaune

    Type Ia supernovae (SNeIa) have been used as standard candles to measure cosmological distances. The initial discovery of the accelerated expansion of the universe was performed using ~50 SNe Ia. Large SNe surveys have increased the number of spectroscopically-confirmed SNe Ia to over a thousand with redshift coverage beyond z = 1. We are now in the age of abundant photometry without the ability for full follow-up spectroscopy of all SN candidates. SN cosmology using these large samples will increasingly rely on robust photometric classification of SN candidates. Photometric classification will increase the sample by including faint SNe as these are preferentially not observed with follow-up spectroscopy. The primary concern with using photometrically classified SNe Ia in cosmology is when a core-collapse SNe is incorrectly classified as an SN Ia. This can be mitigated by obtaining the host galaxy redshift of each SN candidate and using this information as a prior in the photometric classification, removing one degree of freedom. To test the impact of redshift on photometric classification, I have performed an assessment on photometric classification of candidates from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey. I have tested the classification with and without redshift priors by looking at the change of photometric classification, the effect of data quality on photometric classification, and the effect of SN light curve properties on photometric classification. Following our suggested classification scheme, there are a total of 1038 photometrically classified SNe Ia when using a flat redshift prior and 1002 SNe~Ia with the spectroscopic redshift. For 912 (91.0%) candidates classified as likely SNe Ia without redshift information, the classification is unchanged when adding the host galaxy redshift. Finally, I investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2

  15. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L. E-mail: panagia@stsci.edu E-mail: mrupen@nrao.edu E-mail: clmw@mit.edu

    2011-10-20

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of {lambda}{lambda}1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at {lambda}2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  16. Energetics and Birth Rates of Supernova Remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.

    2017-03-01

    Published X-ray emission properties for a sample of 50 supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) are used as input for SNR evolution modeling calculations. The forward shock emission is modeled to obtain the initial explosion energy, age, and circumstellar medium density for each SNR in the sample. The resulting age distribution yields a SNR birthrate of 1/(500 yr) for the LMC. The explosion energy distribution is well fit by a log-normal distribution, with a most-probable explosion energy of 0.5× {10}51 erg, with a 1σ dispersion by a factor of 3 in energy. The circumstellar medium density distribution is broader than the explosion energy distribution, with a most-probable density of ∼0.1 cm‑3. The shape of the density distribution can be fit with a log-normal distribution, with incompleteness at high density caused by the shorter evolution times of SNRs.

  17. No evidence for an early seventeenth-century Indian sighting of Kepler's supernova (SN1604)

    NASA Astrophysics Data System (ADS)

    van Gent, R. H.

    2013-03-01

    In a recent paper in this journal, Sule et al. (2011) argued that an early 17th-century Indian mural of the constellation Sagittarius with a dragon-headed tail indicated that the bright supernova of 1604 was also sighted by Indian astronomers. In this paper it will be shown that this identification is based on a misunderstanding of traditional Islamic astrological iconography and that the claim that the mural represents an early 17th-century Indian sighting of the supernova of 1604 has to be rejected.

  18. SN 2011ht: confirming a class of interacting supernovae with plateau light curves (Type IIn-P)

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Smith, Nathan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Morgan, Adam N.; Cenko, S. Bradley; Ganeshalingam, Mohan; Clubb, Kelsey I.; Bloom, Joshua S.; Matheson, Thomas; Milne, Peter

    2013-05-01

    We present photometry and spectroscopy of the Type IIn supernova (SN) 2011ht, identified previously as a possible SN impostor. The light curve exhibits an abrupt transition from a well-defined ˜120 d plateau to a steep bolometric decline, plummeting 4-5 mag in the optical and 2-3 mag in the infrared in only ˜10 d. Leading up to peak brightness (MV = -17.4 mag), a hot emission-line spectrum exhibits strong signs of interaction with circumstellar material (CSM), in the form of relatively narrow P-Cygni features of H I and He I superimposed on broad Lorentzian wings. For the latter half of the plateau phase, the spectrum exhibits strengthening P-Cygni profiles of Fe II, Ca II and Hα. By day 147, after the plateau has ended, the SN entered the nebular phase, heralded by the appearance of forbidden transitions of [O I], [O II] and [Ca II] over a weak continuum. At this stage, the light curve exhibits a low optical luminosity that is comparable to that of the most subluminous Type II-P supernovae, and a relatively fast visual wavelength decline that appeared to be significantly steeper than the 56Co decay rate. However, the total pseudo-bolometric decline, including the infrared luminosity, is consistent with 56Co decay, and implies a low 56Ni mass in the range 0.006-0.01 M⊙, near the lower end of the range exhibited by SNe II-P. We therefore characterize SN 2011ht as a core-collapse SN very similar to the peculiar SNe IIn 1994W and 2009kn. These three SNe appear to define a subclass, which are Type IIn based on their spectrum, but that also exhibit well-defined plateaus and produce low 56Ni yields. We therefore suggest Type IIn-P as a name for this subclass. The absence of observational signatures of high-velocity material from SNe IIn-P could be the result of an opaque shell at the shocked SN-CSM interface, which remains optically thick longer than the time-scale for the inner ejecta to cool and become transparent. Possible progenitors of SNe IIn-P, consistent

  19. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles

    2007-09-01

    We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more

  20. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    SciTech Connect

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  1. Neutrino Signal of Collapse-induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN 1987A

    NASA Astrophysics Data System (ADS)

    Blum, Kfir; Kushnir, Doron

    2016-09-01

    Collapse-induced thermonuclear explosion (CITE) may explain core-collapse supernovae (CCSNe). We analyze the neutrino signal in CITE and compare it to the neutrino burst of SN 1987A. For strong (≳ {10}51 erg) CCSNe, such as SN 1987A, CITE predicts a proto-neutron star (PNS) accretion phase lasting up to a few seconds that is cut off by black hole (BH) formation. The neutrino luminosity can later be revived by accretion disk emission after a dead time of a few to a few tens of seconds. In contrast, the neutrino mechanism for CCSNe predicts a short (≲s) PNS accretion phase, followed by slowly declining PNS cooling luminosity. We repeat statistical analyses used in the literature to interpret the neutrino mechanism, and apply them to CITE. The first 1-2 s of the neutrino burst are equally compatible with CITE and with the neutrino mechanism. However, the data points toward a luminosity drop at t = 2-3 s, which is in some tension with the neutrino mechanism but can be naturally attributed to BH formation in CITE. The occurrence of neutrino signal events at 5 s suggests that, within CITE, the accretion disk formed by that time. We perform two-dimensional numerical simulations showing that CITE may be able to accommodate this disk formation time while reproducing the ejected 56Ni mass and ejecta kinetic energy within factors of 2-3 of observations. We estimate the accretion disk neutrino luminosity, finding it to be on the low side but compatible with the data to a factor of 10. Given comparable uncertainties in the disk luminosity simulation, we conclude that direct BH formation may have occurred in SN 1987A.

  2. The Shape of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  3. Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Sullivan, M.; Filippenko, A. V.; Garnavich, P. M.; Clubb, K. I.; Maguire, K.; Pan, Y.-C.; Shappee, B.; Silverman, J. M.; Benetti, S.; Hachinger, S.; Nomoto, K.; Pian, E.

    2015-07-01

    A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, `ρ-11fe', was extended to lower velocities to include the regions that emit at nebular epochs. Model ρ-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [Fe II] and [Fe III] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is ˜0.47 ± 0.05 M⊙. The bulk of 56Ni has an outermost velocity of ˜8500 km s-1. The mass of stable iron is ˜0.23 ± 0.03 M⊙. Stable Ni has low abundance, ˜10-2 M⊙. This is sufficient to reproduce an observed emission line near 7400 Å. A sub-Chandrasekhar explosion model with mass 1.02 M⊙ and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.

  4. SALT spectroscopic classification of ASASSN-16cc (SN 2016aqf) as a type-II supernova

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Miszalski, B.

    2016-02-01

    We obtained SALT (+RSS) spectroscopy of ASASSN-16cc (SN 2016aqf) on 2016 February 27.9 UT, covering the wavelength range 360-920 nm. The spectrum features a blue continuum with prominent P-Cygni lines of H and He. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows a good match to the type-IIP SN 2014et at -3 days, confirming the results of Hosseinzadeh et al. (ATel 8748).

  5. Spectroscopic Classification of SN 2017hn as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Zhang, Jujia; Yu, Xiaoguang; Zhang, Liyun; Jia, Junjun; Zhai, Meng; Zhang, Tianmeng

    2017-01-01

    We obtained an optical spectrum (range 360-860 nm) of SN 2017hn, discovered by R.Gagliano, R. Post, E. Weinberg, Jack Newton, and Tim Puckett, on UT Jan.11.9 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  6. Spectroscopic Classification of SN 2016gvd as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zhang, Xiliang; Wang, Xiaofeng

    2016-10-01

    We obtained an optical spectrum (range 320-840 nm) of SN 2016gvd, discovered by Krisztián Sárneczky, Róbert Szakáts et al.(see ATel #9646), on UT Oct.23.7 2016 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Observatory of Yunnan Observatories (YNAO).

  7. Spectroscopic classification of Gaia16cdi (SN 2016iyf) as Type Ia supernova with SEDM

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Neill, James D.; Walters, R.

    2016-12-01

    The Caltech Time Domain Astronomy group reports the classification of Gaia16cdi (SN 2016iyf), discovered by the Gaia ESA survey. The follow-up spectroscopic observations were performed with the Spectral Energy Distribution Machine (SEDM) (http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R 100) on Palomar 60-inch (P60) telescope.

  8. Spectroscopic Classification of SN 2017yi as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Xiang, Danfeng; Li, Wenxiong; Jia, Junjun; He, Min; Zhang, Tianmeng; Wu, Zhenyu; Zhang, Jujia

    2017-02-01

    We obtained an optical spectrum (range 370-850 nm) of SN 2017yi, discovered by J. Vales,on UT Feb.01.5 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  9. Spectroscopic Classification of SN 2017mf as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng

    2017-01-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017mf, discovered by Fabio Briganti and Paolo Campaner (ISSP), on UT Jan.22.95 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  10. SALT spectroscopic classification of PS16eot (= SN 2016hfb) as a type-II supernova

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Miszalski, B.; Colmenero, E. Romero

    2016-10-01

    We obtained SALT (+RSS) spectroscopy of PS16eot (= SN 2016hfb) on 2016 Oct 19.9 UT, covering the wavelength range 340-920 nm. Narrow emission lines confirm the redshift of the host galaxy UGC 2372 at z = 0.026 (Haynes et al. 1997, AJ, 113, 1197; via NED).

  11. Spectroscopic Classification of SN 2017coa as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Tan, Hanjie; Li, Wenxiong; Zhang, Tianmeng; Xu, Zhijian; Yang, Zesheng; Song, Hao; Mo, Jun; Wang, Yuanhao; Zhou, Ziheng; Meng, Xianmin; Qian, Shenban; Jia, Junjun; Zhou, Xu; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017coa,discovered by Tsinghua-NAOC Transient Survey (TNTS), on UT Mar.31.49 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  12. Spectroscopic Classification of SN 2017cbr as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Jianguo; Li, Wenxiong; Wang, Xiaofeng; Tan, Hanjie; Zhang, Tianmeng; Zhou, Xu; Mo, Jun; Rui, Liming; Xiang, Danfeng

    2017-03-01

    We obtained an optical spectrum (range 340-900 nm) of SN 2017cbr, discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT Mar.22.7 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  13. Spectroscopic Classification of SN 2017lf as a Highly Reddened Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Yuanhao; Li, Wenxiong; Wang, Xiaofeng; Dai, Zhibin; Zhang, Tianmeng; Zhou, Xu; Xiao, Feng; Tan, Hanjie; Xu, Zhijian; Xiang, Danfeng; Mo, Jun; Song, Hao

    2017-01-01

    We obtained an optical spectrum (range 380-870 nm) of SN 2017lf, discovered by the Tsinghua-NAOC Transient Survey (TNTS) and iPTF independently,on UT Jan.23.6 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  14. Spectroscopic Classification of SN 2017nh as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Rui, Liming; Wang, Xiaofeng; Xiang, Danfeng; Wu, Hong; Jia, Junjun; Zhai, Meng; Zhang, Tianmeng; Zhang, Jujia

    2017-01-01

    We obtained an optical spectrum (range 380-870 nm) of SN 2017nh (=ASASSN-17bc), discovered by the All Sky Automated Survey for SuperNovae,on UT Jan.24.6 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  15. Spectroscopic Classification of SN 2016iae as a Young Type Ic Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Wang, Chuanjun; Wang, Xiaofeng; Rui, Liming

    2016-11-01

    We obtained an optical spectrum (range 350-910 nm) of SN 2016iae, discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS), on UT Nov.12.7 with the 2.4m telescope (+YFOSC) at Lijiang Observatory of YNAO.

  16. Spectroscopic Classification of SN 2017cfa as a Type IIP Supernova

    NASA Astrophysics Data System (ADS)

    Xiang, Danfeng; Lin, Han; Rui, Liming; Wang, Xiaofeng; Xiao, Feng; Zhai, Meng; Zhang, Tianmeng; Zhang, Jujia

    2017-03-01

    We obtained an optical spectrum (range 370-860 nm) of SN 2017cfa(= ATLAS17cnz), discovered by ATLAS, on UT Mar.17.56 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  17. SALT spectroscopic classification of LSQ16acz (= PS16bby = SN 2016bew) as a type-Ia supernova approaching maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of LSQ16acz (= PS16bby = SN 2016bew; Baltay et al. 2013, PASP, 125, 683) on 2016 Mar 14.9 UT, covering the wavelength range 340-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows LSQ16acz is a type-Ia supernova a few days before maximum light.

  18. The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe

    NASA Astrophysics Data System (ADS)

    Mazzali, Paolo A.; Walker, Emma S.; Pian, Elena; Tanaka, Masaomi; Corsi, Alessandra; Hattori, Takashi; Gal-Yam, Avishay

    2013-07-01

    SN 2010ah, a very broad-lined Type Ic supernova (SN) discovered by the Palomar Transient Factory, was interesting because of its relatively high luminosity and the high velocity of the absorption lines, which was comparable to that of gamma-ray burst (GRB)/SNe, suggesting a high explosion kinetic energy. However, no GRB was detected in association with the SN. Here, the properties of SN 2010ah are determined with higher accuracy than previous studies through modelling. New Subaru telescope photometry is presented. A bolometric light curve is constructed taking advantage of the spectral similarity with SN 1998bw. Radiation transport tools are used to reproduce the spectra and the light curve. The results thus obtained regarding ejecta mass, composition and kinetic energy are then used to compute a synthetic light curve. This is in reasonable agreement with the early bolometric light curve of SN 2010ah, but a high abundance of 56Ni at high velocity is required to reproduce the early rise, while a dense inner core must be used to reproduce the slow decline at late phases. The high-velocity 56Ni cannot have been located on our line of sight, which may be indirect evidence for an off-axis, aspherical explosion. The main properties of SN 2010ah are: ejected mass Mej ≈ 3 M⊙; kinetic energy Ekin ≈ 1052 erg, M(56Ni) ≈ 0.25 M⊙. The mass located at v ≳ 0.1 c is ˜0.2 M⊙. Although these values, in particular the Ekin, are quite large for a Type Ic SN, they are all smaller (especially Mej) than those typical of GRB/SNe. This confirms the tendency for these quantities to correlate, and suggests that there are minimum requirements for a GRB/SN, which SN 2010ah may not meet although it comes quite close. Depending on whether a neutron star or a black hole was formed following core collapse, SN 2010ah was the explosion of a CO core of ˜5 to 6 M⊙, pointing to a progenitor mass of ˜24-28 M⊙.

  19. On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Meikle, W. P. S.; Fassia, A.; Geballe, T.; Lundqvist, P.; Chugai, N. N.; Sollerman, J.

    2004-08-01

    We present late-time near-infrared (NIR) and optical observations of the Type IIn SN 1998S. The NIR photometry spans 333-1242 d after explosion, while the NIR and optical spectra cover 333-1191 and 305-1093 d, respectively. The NIR photometry extends to the M' band (4.7 μm), making SN 1998S only the second ever supernova for which such a long IR wavelength has been detected. The shape and evolution of the Hα and HeI 1.083-μm line profiles indicate a powerful interaction with a progenitor wind, as well as providing evidence of dust condensation within the ejecta. The latest optical spectrum suggests that the wind had been flowing for at least 430 yr. The intensity and rise of the HK continuum towards longer wavelengths together with the relatively bright L' and M' magnitudes show that the NIR emission was due to hot dust newly formed in the ejecta and/or pre-existing dust in the progenitor circumstellar medium (CSM). The NIR spectral energy distribution (SED) at about 1 yr is well described by a single-temperature blackbody spectrum at about 1200 K. The temperature declines over subsequent epochs. After ~2 yr, the blackbody matches are less successful, probably indicating an increasing range of temperatures in the emission regions. Fits to the SEDs achieved with blackbodies weighted with λ-1 or λ-2 emissivity are almost always less successful. Possible origins for the NIR emission are considered. Significant radioactive heating of ejecta dust is ruled out, as is shock/X-ray-precursor heating of CSM dust. More plausible sources are (a) an IR echo from CSM dust driven by the ultraviolet/optical peak luminosity, and (b) emission from newly-condensed dust which formed within a cool, dense shell produced by the ejecta shock/CSM interaction. We argue that the evidence favours the condensing dust hypothesis, although an IR echo is not ruled out. Within the condensing-dust scenario, the IR luminosity indicates the presence of at least 10-3 Msolar of dust in the ejecta

  20. Interface Energetics and Charge Carrier Density Amplification by Sn-Doping in LaAlO3/SrTiO3 Heterostructure.

    PubMed

    Nazir, Safdar; Cheng, Jianli; Behtash, Maziar; Luo, Jian; Yang, Kesong

    2015-07-08

    Tailoring the two-dimensional electron gas (2DEG) at the n-type (TiO2)(0)/(LaO)(+1) interface between the polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) insulators can potentially provide desired functionalities for next-generation low-dimensional nanoelectronic devices. Here, we propose a new approach to tune the electronic and magnetic properties in the n-type LAO/STO heterostructure (HS) system via electron doping. In this work, we modeled four types of layer doped LAO/STO HS systems with Sn dopants at different cation sites and studied their electronic structures and interface energetics by using first-principles electronic structure calculations. We identified the thermodynamic stability conditions for each of the four proposed doped configurations with respect to the undoped LAO/STO interface. We further found that the Sn-doped LAO/STO HS system with Sn at Al site (Sn@Al) is energetically most favorable with respect to decohesion, thereby strengthening the interface, while the doped HS system with Sn at La site (Sn@La) exhibits the lowest interfacial cohesion. Moreover, our results indicate that all the Sn-doped LAO/STO HS systems exhibit the n-type conductivity with the typical 2DEG characteristics except the Sn@La doped HS system, which shows p-type conductivity. In the Sn@Al doped HS model, the Sn dopant exists as a Sn(4+) ion and introduces one additional electron into the HS system, leading to a higher charge carrier density and larger magnetic moment than that of all the other doped HS systems. An enhanced charge confinement of the 2DEG along the c-axis is also found in the Sn@Al doped HS system. We hence suggest that Sn@Al doping can be an effective way to enhance the electrical conduction and magnetic moment of the 2DEG in LAO/STO HS systems in an energetically favorable manner.

  1. Origin of pulsed emission from the young supernova remnant SN 1987A

    NASA Technical Reports Server (NTRS)

    Ruderman, M.; Kluzniak, W.; Shaham, Jacob

    1989-01-01

    To overcome difficulties in understanding the origin of the submillisecond optical pulses from SN 1987A a model similar to that of Kundt and Krotscheck for pulsed synchrotron emission from the Crab was applied. The interaction of the expected ultrarelativistic e(sup + or -) pulsar wind with the pulsar dipole electromagnetic wave reflected from the walls of a pulsar cavity within the SN 1987A nubula can generate pulsed optical emission with efficiency at most eta(sub max) is approximately equal to 10(exp -3). The maximum luminosity of the source is reproduced and other observational constraints can be satisfied for an average wind energy flow is approximately equal to 10(exp 38) erg/(s steradian) and for electron Lorentz factor gamma is approximately equal to 10(exp 5). This model applied to the Crab yields pulsations of much lower luminosity and frequency.

  2. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Filippenko, Alexei V.

    2017-03-01

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  3. SN 2015bh: NGC 2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; de Ugarte Postigo, A.; Leloudas, G.; Gall, C.; Cano, Z.; Maeda, K.; Schulze, S.; Campana, S.; Wiersema, K.; Groh, J.; de la Rosa, J.; Bauer, F. E.; Malesani, D.; Maund, J.; Morrell, N.; Beletsky, Y.

    2017-03-01

    Very massive stars in the final phases of their lives often show unpredictable outbursts that can mimic supernovae, so-called, "SN impostors", but the distinction is not always straightforward. Here we present observations of a luminous blue variable (LBV) in NGC 2770 in outburst over more than 20 yr that experienced a possible terminal explosion as type IIn SN in 2015, named SN 2015bh. This possible SN (or "main event") had a precursor peaking 40 days before maximum. The total energy release of the main event is 1.8 × 1049 erg, consistent with a <0.5 M⊙ shell plunging into a dense CSM. The emission lines show a single narrow P Cygni profile during the LBV phase and a double P Cygni profile post maximum suggesting an association of the second component with the possible SN. Since 1994 the star has been redder than an LBV in an S-Dor-like outburst. SN 2015bh lies within a spiral arm of NGC 2770 next to several small star-forming regions with a metallicity of 0.5 solar and a stellar population age of 7-10 Myr. SN 2015bh shares many similarities with SN 2009ip and may form a new class of objects that exhibit outbursts a few decades prior to a "hyper eruption" or final core-collapse. If the star survives this event it is undoubtedly altered, and we suggest that these "zombie stars" may evolve from an LBV to a Wolf-Rayet star over the timescale of only a few years. The final fate of these stars can only be determined with observations a decade or more after the SN-like event.

  4. OISTER optical and near-infrared observations of the super-Chandrasekhar supernova candidate SN 2012dn: Dust emission from the circumstellar shell

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masayuki; Maeda, Keiichi; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S.; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-10-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from -11 to +140 d after the date of its B-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO (Optical and Infrared Synergetic Telescopes for Education and Research Target of Opportunity) program. The NIR light curves and color evolutions up to 35 days after the B-band maximum provided an excellent match with those of another SC SN 2009dc, providing further support to the nature of SN 2012dn as an SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from 30 d after the B-band maximum. The H- and Ks-band light curves exhibited much later maximum dates at 40 and 70 d after the B-band maximum, respectively, compared with those of normal SNe Ia. The H- and Ks-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating an NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to 4.8-6.4 × 10-2 pc. No emission lines were found in its early phase spectra, suggesting that the ejecta-circumstellar material interaction could not occur. On the other hand, we found no signature that strongly supports the scenario of dust formation. The mass-loss rate of the pre-explosion system is estimated to be 10-6-10-5 M⊙ yr-1, assuming that the wind velocity of the system is 10-100 km s-1, which suggests that the progenitor of SN 2012dn could be a recurrent nova system. We conclude that the progenitor of this SC SN could be explained by the single-degenerate scenario.

  5. Aspherical supernovae

    SciTech Connect

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  6. The broad-lined Type Ic supernova 2003jd

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Benetti, S.; Cappellaro, E.; Patat, F.; Mazzali, P.; Turatto, M.; Hurley, K.; Maeda, K.; Gal-Yam, A.; Foley, R. J.; Filippenko, A. V.; Pastorello, A.; Challis, P.; Frontera, F.; Harutyunyan, A.; Iye, M.; Kawabata, K.; Kirshner, R. P.; Li, W.; Lipkin, Y. M.; Matheson, T.; Nomoto, K.; Ofek, E. O.; Ohyama, Y.; Pian, E.; Poznanski, D.; Salvo, M.; Sauer, D. N.; Schmidt, B. P.; Soderberg, A.; Zampieri, L.

    2008-02-01

    The results of a worldwide coordinated observational campaign on the broad-lined Type Ic supernova (SN Ic) 2003jd are presented. In total, 74 photometric data points and 26 spectra were collected using 11 different telescopes. SN 2003jd is one of the most luminous SN Ic ever observed. A comparison with other Type Ic supernovae (SNe Ic) confirms that SN 2003jd represents an intermediate case between broad-line events (2002ap, 2006aj) and highly energetic SNe (1997ef, 1998bw, 2003dh, 2003lw), with an ejected mass of Mej = 3.0 +/- 1Msolar and a kinetic energy of Ek(tot) = 7+3-2 × 1051erg. SN 2003jd is similar to SN 1998bw in terms of overall luminosity, but it is closer to SNe 2006aj and 2002ap in terms of light-curve shape and spectral evolution. The comparison with other SNe Ic suggests that the V-band light curves of SNe Ic can be partially homogenized by introducing a time-stretch factor. Finally, because of the similarity of SN 2003jd to the SN 2006aj/XRF 060218 event, we discuss the possible connection of SN 2003jd with a gamma-ray burst (GRB). E-mail: svalenti@eso.org Based on observations at ESO-Paranal, Prog. 074.D-0161A.

  7. Spectroscopic Observations of SN 2012fr: A Luminous, Normal Type Ia Supernova with Early High-velocity Features and a Late Velocity Plateau

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Bufano, F.; de Jaeger, T.; Forster, F.; Gal-Yam, A.; Le Guillou, L.; Maguire, K.; Maund, J.; Mazzali, P. A.; Pignata, G.; Smartt, S.; Spyromilio, J.; Sullivan, M.; Taddia, F.; Valenti, S.; Bayliss, D. D. R.; Bessell, M.; Blanc, G. A.; Carson, D. J.; Clubb, K. I.; de Burgh-Day, C.; Desjardins, T. D.; Fang, J. J.; Fox, O. D.; Gates, E. L.; Ho, I.-T.; Keller, S.; Kelly, P. L.; Lidman, C.; Loaring, N. S.; Mould, J. R.; Owers, M.; Ozbilgen, S.; Pei, L.; Pickering, T.; Pracy, M. B.; Rich, J. A.; Schaefer, B. E.; Scott, N.; Stritzinger, M.; Vogt, F. P. A.; Zhou, G.

    2013-06-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity "photospheric" component. This Si II λ6355 HVF fades by phase -5 subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ~12,000 km s-1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s-1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s-1 two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the "low velocity gradient" group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  8. More Supernova Surprises

    DTIC Science & Technology

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  9. Supernova 1987A

    NASA Astrophysics Data System (ADS)

    McCray, R.; Murdin, P.

    2002-10-01

    Supernova 1987A (SN1987A) in the LARGE MAGELLANIC CLOUD (LMC) is the brightest supernova to be observed since SN1604 (Kepler), the first to be observed in every band of the ELECTROMAGNETIC SPECTRUM and the first to be detected through its initial burst of NEUTRINOS. Although the bolometric luminosity of SN1987A today is ≈10-6 of its value at maximum light (Lmax≈2.5×108L⊙), it ...

  10. Evidence for nearby supernova explosions.

    PubMed

    Benítez, Narciso; Maíz-Apellániz, Jesús; Canelles, Matilde

    2002-02-25

    Supernova (SN) explosions are one of the most energetic---and potentially lethal---phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at approximately 130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of (60)Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that approximately 2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  11. Analysis of the flux and polarization spectra of the type Ia supernova SN 2001el: Exploring the geometry of the high-velocity Ejecta

    SciTech Connect

    Kasen, Daniel; Nugent, Peter; Wang, Lifan; Howell, D.A.; Wheeler, J. Craig; Hoeflich, Peter; Baade, Dietrich; Baron, E.; Hauschildt, P.H.

    2003-01-15

    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The unusual, high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v approximately 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v approximately 18,000-25,000 $ km/s) of CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the clearly discriminated if observations are obtained from several different lines of sight. Thus, assuming the high velocity structure observed for SN 2001el is a consistent feature of at least known subset of type Ia supernovae, future observations and analyses such as these may allow one to put strong constraints on the ejecta geometry and hence on supernova progenitors and explosion mechanisms.

  12. The Origin of the Near-infrared Excess in SN Ia 2012dn: Circumstellar Dust around the Super-Chandrasekhar Supernova Candidate

    NASA Astrophysics Data System (ADS)

    Nagao, Takashi; Maeda, Keiichi; Yamanaka, Masayuki

    2017-02-01

    The nature of progenitors of the so-called super-Chandrasekhar candidate Type Ia supernovae (SC-SNe Ia) has been actively debated. Recently, Yamanaka et al. reported a near-infrared (NIR) excess for SN 2012dn and proposed that the excess originates from an echo by circumstellar (CS) dust. In this paper, we examine a detailed distribution of the CS dust around SN 2012dn and investigate implications of the CS dust echo scenario for general cases of SC-SNe Ia. We find that a disk/bipolar CS medium configuration reproduces the NIR excess fairly well, where the radial density distribution is given by a stationary mass loss. The inner radius of the CS dust is 0.04 pc. The mass-loss rate of the progenitor system is estimated to be 1.2× {10}-5 and 3.2× {10}-6 M⊙ yr‑1 for the disk and bipolar CS medium configurations, respectively, which adds further support for the single-degenerate scenario. Our models limit SN 2009dc, another SC-SN Ia, to have a dust mass less than 0.16 times that of SN 2012dn. While this may merely indicate some variation on the CS environment among SC-SNe Ia, this could raise another interesting possibility. There could be two classes among SC-SNe Ia: the brighter SC-SNe Ia in a clean environment (SN 2009dc) and the fainter SC-SNe Ia in a dusty environment (SN 2012dn).

  13. Supernova 1987A in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  14. TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY

    SciTech Connect

    Galbany, Lluis; Miquel, Ramon; Oestman, Linda; Brown, Peter J.; Olmstead, Matthew D.; Cinabro, David; D'Andrea, Chris B.; Nichol, Robert C.; Frieman, Joshua; Jha, Saurabh W.; Marriner, John; Nordin, Jakob; Sako, Masao; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper; Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; and others

    2012-08-20

    We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A{sub V} , c) and light-curve shape ({Delta}, x{sub 1}) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A{sub V} from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  15. Revised Lens Model and Predictions of Time Delay for the Multiply Imaged Lensed Supernova, “SN Refsdal”, in the FF cluster MACS J1149+2223

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Johnson, Traci Lin

    2015-08-01

    We present a revised lens model of MACS J1149+2223, in which the first resolved multiply imaged lensed supernova (SN) was discovered. The lens model is based on the model of Johnson et al. with some modifications. We include more lensing constraints from the host galaxy of the newly discovered SN, and increase the flexibility of the model in order to better reproduce the lensing signal in the vicinity of this galaxy. The revised model accurately reconstructs the positions of the lensed SN, provides magnifications, predicts the time delay between the instances of the SN, and derive their uncertainties. We find that the time delays between the four observed images are a few days: t(S2) = 2 +10/-6 days, t(S3)=-5 +13/-7 days, t(S4)=7 +16/-3 days. At the positions of the other images of the same host galaxy, an image of the SN had appeared on the opposite side of the cluster some 11-13 years ago, and another is predicted to appear approximately 180-280 days after S1, i.e., in a 3-month window around July 2015. This image will be less magnified than the ones already detected, with magnification of mu=5 (compared to mu~10-20 of the four images that were observed in 2014, making it about three times fainter). Finally, we reconstruct the source image of the host galaxy, and position the SN on one of its spiral arms. New lensing constraints from the full depth FF imaging will improve the accuracy of future lens models. Products of this lens model are available to the community through MAST.

  16. The Broad-lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.; Filippenko, A. V.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P.; Pickering, T. E.; Kawabata, K.; Hattori, T.; Hsiao, E. Y.; Stritzinger, M. D.; Marion, G. H.; Vinko, J.; Wheeler, J. C.

    2015-01-01

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s-1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v >~ 27,000 km s-1). We use these observations to estimate explosion properties and derive a total ejecta mass of ~2.7 M ⊙, a kinetic energy of ~1.0 × 1052 erg, and a 56Ni mass of 0.1-0.2 M ⊙. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z >~ Z ⊙, moderate to high levels of host galaxy extinction (E(B - V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  17. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    NASA Technical Reports Server (NTRS)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  18. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    SciTech Connect

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Cenko, S. B.; Silverman, J. M.; Filippenko, A. V.; Pickering, T. E.; Kawabata, K.; Hattori, T.; Hsiao, E. Y.; Stritzinger, M. D.; and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  19. First stars, hypernovae, and superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'Ichi

    2016-07-01

    After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.

  20. Optical and near-infrared observations of SN 2014ck: an outlier among the Type Iax supernovae

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Cappellaro, E.; Benetti, S.; Pastorello, A.; Hsiao, E. Y.; Sand, D. J.; Stritzinger, M.; Valenti, S.; McCully, C.; Arcavi, I.; Elias-Rosa, N.; Harmanen, J.; Harutyunyan, A.; Hosseinzadeh, G.; Howell, D. A.; Kankare, E.; Morales-Garoffolo, A.; Taddia, F.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2016-06-01

    We present a comprehensive set of optical and near-infrared (NIR) photometric and spectroscopic observations for SN 2014ck, extending from pre-maximum to six months later. These data indicate that SN 2014ck is photometrically nearly identical to SN 2002cx, which is the prototype of the class of peculiar transients named SNe Iax. Similar to SN 2002cx, SN 2014ck reached a peak brightness MB = -17.37 ± 0.15 mag, with a post-maximum decline rate Δm15(B) = 1.76 ± 0.15 mag. However, the spectroscopic sequence shows similarities with SN 2008ha, which was three magnitudes fainter and faster declining. In particular, SN 2014ck exhibits extremely low ejecta velocities, ˜3000 km s-1 at maximum, which are close to the value measured for SN 2008ha and half the value inferred for SN 2002cx. The bolometric light curve of SN 2014ck is consistent with the production of 0.10^{+0.04}_{-0.03} M_{{⊙}} of 56Ni. The spectral identification of several iron-peak features, in particular Co II lines in the NIR, provides a clear link to SNe Ia. Also, the detection of narrow Si, S and C features in the pre-maximum spectra suggests a thermonuclear explosion mechanism. The late-phase spectra show a complex overlap of both permitted and forbidden Fe, Ca and Co lines. The appearance of strong [Ca II] λλ7292, 7324 again mirrors the late-time spectra of SN 2008ha and SN 2002cx. The photometric resemblance to SN 2002cx and the spectral similarities to SN 2008ha highlight the peculiarity of SN 2014ck, and the complexity and heterogeneity of the SNe Iax class.

  1. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect

    The, Lih-Sin; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2014-05-10

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ∼3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ∼30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  2. The Mont Blanc detection of neutrinos from SN 1987A.

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Kalchukov, F. F.; Kortchaguin, V. B.; Kortchaguin, P. V.; Malguin, A. S.; Ryassny, V. G.; Ryazhkaya, O. G.; Saavedra, O.; Talochkin, V. P.; Trinchero, G.; Vernetto, S.; Zatsepin, G. T.; Yakushev, V. F.

    The authors discuss the event detected in the Mont Blanc Underground Neutrino Observatory on February 23, 1987, during the occurrence of supernova SN 1987A. The pulse amplitudes, the background imitation probability, and the energetics connected with the event are reported. It is also shown that some interactions recorded at the same time in other underground experiments, with a lower detection efficiency, are consistent with the Mont Blanc event.

  3. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  4. Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Georgy, Cyril; Ekström, Sylvia

    2013-10-01

    Core-collapse supernova (SN) explosions mark the end of the tumultuous life of massive stars. Determining the nature of their progenitors is a crucial step towards understanding the properties of SNe. Until recently, no progenitor has been directly detected for SN of type Ibc, which are believed to come from massive stars that lose their hydrogen envelope through stellar winds and from binary systems where the companion has stripped the H envelope from the primary. Here we analyze recently reported observations of iPTF13bvn, which could possibly be the first detection of a SN Ib progenitor based on pre-explosion images. Very interestingly, the recently published Geneva models of single stars can reproduce the observed photometry of the progenitor candidate and its mass-loss rate, confirming a recently proposed scenario. We find that a single WR star with initial mass in the range 31-35 M⊙ fits the observed photometry of the progenitor of iPTF13bvn. The progenitor likely has a luminosity of log (L⋆/L⊙) ~ 5.55, surface temperature ~45 000 K, and mass of ~10.9 M⊙ at the time of explosion. Our non-rotating 32 M⊙ model overestimates the derived radius of the progenitor, although this could likely be reconciled with a fine-tuned model of a more massive (between 40 and 50 M⊙), hotter, and luminous progenitor. Our models indicate a very uncertain ejecta mass of ~8 M⊙, which is higher than the average of the SN Ib ejecta mass that is derived from the lightcurve (2-4 M⊙). This possibly high ejecta mass could produce detectable effects in the iPTF13bvn lightcurve and spectrum. If the candidate is indeed confirmed to be the progenitor, our results suggest that stars with relatively high initial masses (> 30 M⊙) can produce visible SN explosions at their deaths and do not collapse directly to a black hole.

  5. Turbulence in Type Ia Supernovae Simulations

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2012-03-01

    Type Ia supernovae are among the most energetic explosions in the known universe, releasing 10^51 ergs of kinetic energy in their ejecta, with 0.7 solar masses of radioactive Ni-56 synthesized during the explosion. The discovery of the Phillips relation enabled the use of Type Ia supernova (SN Ia) as standardizable cosmological candles, and has ushered in a new era of astronomy leading to the discovery of the acceleration of the universe, leading to the 2011 Nobel Prize in physics. The nature of the Type Ia progenitors, as well as their precise explosion mechanism, remains a subject of active investigation, both observationally as well as theoretically. It is known that the progenitors of Type Ia supernovae are near-Chandrasekhar mass white dwarfs in binary systems, though competing models suggest the companion is either a red giant or main sequence star (the so-called ``single-degenerate channel'') or another white dwarf (the ``double-degenerate channel''). In this talk, I will present recent results of three -dimensional models of the single-degenerate channel of Type Ia supernovae. I will also discuss prospects for modeling the double-degenerate channel of Type Ia supernovae, which have recently enjoyed increased favor from observers and theorists.

  6. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    SciTech Connect

    Galbany, Lluis; et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  7. Swift Observations of Supernovae during and after Shock Breakout

    NASA Technical Reports Server (NTRS)

    Immler, Stefan

    2008-01-01

    Over the past few years, space-based observatories have allowed detailed studies of energetic supernova explosions in previously unexplored time domains and wavelength regimes. NASA's Swift observatory is playing an important role in probing the early emission of SNe during and after shock breakout due to its fast response, flexible scheduling capabilities, and large wavelength band coverage, ranging from the optical, W, and X-ray to the Gamma-ray bands. By studying the outgoing SN shocks with material in its surroundings, the explosion physics and nature of progenitor stars can be studied. Furthermore, monitoring the X-ray emission of SNe with space-based X-ray observatories is being used to map the density structure in SN environments out to large radii from the sites of the explosions (>E20 cm), the transition of a SN into an old supernova remnant can be studied, and the mass-loss rates of the progenitor stars are being probed over significant timescales (>E4 years) in the stellar wind history. In combination, these observations give unprecedented insights into the nature of energetic explosions and their environments. During this talk, I will present highlights from recent observations, among them the first observation of a SN DURING the actual explosion with Swift, and I will discuss the "naked eye" burst at a redshift of -1, which was the most distant object humans could ever see with their own eyes.

  8. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  9. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  10. A High-Resolution X-Ray and Optical Study of SN1006: Asymmetric Expansion and Small-Scale Structure in a Type Ia Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Winkler, P. Frank; Williams, Brian J.; Reynolds, Stephen P.; Petre, Robert; Long, Knox S.; Katsuda, Satoru; Hwang, Una

    2014-01-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Ha image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of approx.7400 km/s (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NWrim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Ha, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the

  11. A high-resolution X-ray and optical study of SN 1006: asymmetric expansion and small-scale structure in a type IA supernova remnant

    SciTech Connect

    Winkler, P. Frank; Williams, Brian J.; Petre, Robert; Hwang, Una; Reynolds, Stephen P.; Long, Knox S.; Katsuda, Satoru E-mail: brian.j.williams@nasa.gov E-mail: reynolds@ncsu.edu

    2014-02-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Hα image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of ∼7400 km s{sup –1} (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NW rim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated 'bullets' of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Hα, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both

  12. Surviving Companions of Supernovae

    NASA Astrophysics Data System (ADS)

    Kerzendorf, W.

    2016-06-01

    Most supernovae should occur in binaries. Massive stars, the progenitors of core collapse supernovae (SN II/Ib/c), have a very high binarity fraction of 80 percent (on average, they have 1.5 companions). Binary systems are also required to produce thermonuclear supernovae (SN Ia). Understanding the role that binarity plays in pre-supernova evolution is one of the great mysteries in supernova research. Finding and studying surviving companions of supernovae has the power to shed light on some of these mysteries. Searching Galactic and nearby supernova remnants for surviving companions is a particularly powerful technique. This might allow to study the surviving companion in great detail possibly enabling a relatively detailed reconstruction of the pre-supernova evolution. In this talk, I will summarize the multitude of theoretical studies that have simulated the impact of the shockwave on the companion star and the subsequent evolution of the survivor. I will then give an overview of the searches that used these theoretical findings to identify surviving companions in nearby supernova remnants as well as their results. Finally, I will give an outlook of new opportunities in the relatively young field.

  13. SALT spectroscopic classification of SN 2017lm (= ATLAS17aix) as a type-Ia supernova near maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kuhn, R.

    2017-01-01

    We obtained SALT (+RSS) spectroscopy of SN 2017lm (= ATLAS17aix) on 2017 Jan 19.8 UT, covering the wavelength range 350-930 nm. The longslit was also placed through the host galaxy nucleus, and numerous emission lines yield a host redshift z = 0.03052.

  14. NASA Scientists Witness a Supernova Cosmic Rite of Passage

    NASA Astrophysics Data System (ADS)

    2005-11-01

    wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and

  15. Radio Observations Reveal a Smooth Circumstellar Environment Around the Extraordinary Type Ib Supernova 2012au

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia M.; Chomiuk, Laura; Margutti, Raffaella; Medvedev, Mikhail; Milisavljevic, Dan; Chakraborti, Sayan; Chevalier, Roger; Chugai, Nikolai; Dittmann, Jason; Drout, Maria; Fransson, Claes; Nakar, Ehud; Sanders, Nathan

    2014-12-01

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρvpropr -2). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 1016cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s-1, we determine the mass-loss rate of the progenitor to be \\dot{M} = 3.6 × 10-6 M⊙ yr-1, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 1047 erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 1017 cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  16. Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au

    SciTech Connect

    Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella; Milisavljevic, Dan; Chakraborti, Sayan; Dittmann, Jason; Drout, Maria; Sanders, Nathan; Chomiuk, Laura; Medvedev, Mikhail; Chevalier, Roger; Chugai, Nikolai; Fransson, Claes; Nakar, Ehud

    2014-12-10

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss rate of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  17. The neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment.

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Kalchukov, F. F.; Khalchukov, F. F.; Kortchaguin, V. B.; Korchagin, V. B.; Kortchaguin, P. V.; Korchagin, P. V.; Malguin, A. S.; Mal'Gin, A. S.; Ryassny, V. G.; Ryasnyj, V. G.; Ryazhkaya, O. G.; Saavedra, O.; Talochkin, V. P.; Trinchero, G.; Vernetto, S.; Zatsepin, G. T.; Yakushev, V. F.

    The authors discuss the event, (5 interactions recorded during 7 seconds) detected in the Mont Blanc Underground Neutrino Observatory on February 23, 1987, during the occurrence of supernova SN 1987A. The pulse amplitudes, the background imitation probability, and the energetics connected with the event are reported. It is also shown that some interactions recorded at the same time in other underground experiments, with a lower detection efficiency, are consistent with the Mont Blanc event.

  18. SALT spectroscopic classification of PS16eho (= SN 2016gcr) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-09-01

    We obtained SALT (+RSS) spectroscopy of PS16eho (= SN 2016gcr) on 2016 Sep 12.0 UT, covering the wavelength range 350-930 nm. The spectrum is significantly contaminated with host galaxy light, and we confirm the redshift of the host galaxy 2MASX J22321713-2342106 z = 0.065 (Colless et al. 2003, 2dFGRS, arXiv:astroph/0306581; via NED) with numerous absorption and emission lines.

  19. SALT spectroscopic classification of PS16eqv (= SN 2016hjk) as a type-Ia supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kniazev, A.

    2016-10-01

    We obtained SALT (+RSS) spectroscopy of PS16eqv (= SN 2016hjk) on 2016 Oct 27.1 UT, covering the wavelength range 340-920 nm. An extraction of the spectrum of the host-galaxy nucleus (also placed on the slit) reveals numerous absorption lines and confirms the redshift of 2MASX J02314347-2500088 at z = 0.085 (Colless et al. 2003, 2dFGRS, arXiv:astroph/0306581; via NED).

  20. The Origin of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Badenes, Carles; Park, Sangwook; Laming, J. Martin

    2012-09-01

    It is now well established that Kepler's supernova remnant (SNR) is the result of a Type Ia explosion. With an age of 407 yr and an angular diameter of ~4', Kepler is estimated to be between 3.0 and 7.0 kpc distant. Unlike other Galactic Type Ia SNRs such as Tycho and SN 1006, and SNR 0509-67.5 in the Large Magellanic Cloud, Kepler shows evidence for a strong circumstellar interaction. A bowshock structure in the north is thought to originate from the motion of a mass-losing system through the interstellar medium prior to the supernova. We present results of hydrodynamical and spectral modeling aimed at constraining the circumstellar environment of the system and the amount of 56Ni produced in the explosion. Using models that contain either 0.3 M ⊙ (subenergetic) or 1.0 M ⊙ (energetic) of 56Ni, we simulate the interaction between supernova Ia ejecta and various circumstellar density models. Based on dynamical considerations alone, we find that the subenergetic models favor a distance to the SNR of <6.4 kpc, while the model that produces 1 M ⊙ of 56Ni requires a distance to the SNR of >7 kpc. The X-ray spectrum is consistent with an explosion that produced ~1 M ⊙ of 56Ni, ruling out the subenergetic models, and suggesting that Kepler's SNR was an SN 1991T-like event. Additionally, the X-ray spectrum rules out a pure r -2 wind profile expected from isotropic mass loss up to the time of the supernova. Introducing a small cavity around the progenitor system results in modeled X-ray spectra that are consistent with the observed spectrum. If a wind-shaped circumstellar environment is necessary to explain the dynamics and X-ray emission from the shocked ejecta in Kepler's SNR, then we require that the distance to the remnant be greater than 7 kpc.

  1. Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Dwek, Eli; Skrutskie, Michael F.; Sugerman, Ben E. K.; Leisenring, Jarron M.

    2010-01-01

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of approx. 5 x 10(exp -4) Solar Mass and originates from newly formed dust in the ejecta, continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell approx. 0.01 - 0.05 Solar Mass by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 micro P Cygni profile indicates a progenitor eruption likely formed this dust shell approx.100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star. Subject

  2. Evolution of Pulsar Wind Nebulae inside Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Temim, T.

    2016-06-01

    Composite supernova remnants (SNRs) are those consisting of both a central pulsar that produces a wind of synchrotron-emitting relativistic particle and a supernova (SN) blast wave that expands into the surrounding interstellar medium (ISM). The evolution of the pulsar wind nebula (PWN) is coupled to the evolution of its host SNR and characterized by distinct stages, from the PWN's early expansion into the unshocked SN ejecta to its late-phase interaction with the SNR reverse shock. I will present an overview of the various evolutionary stages of composite SNRs and show how the signatures of the PWN/SNR interaction can reveal important information about the SNR and PWN dynamics, the SN progenitor and explosion asymmetry, the properties of the SN ejecta and newly-formed dust, particle injection and loss processes, and the eventual escape of energetic particles into the ISM. I will also discuss recent multi-wavelength observations and hydrodynamical modeling of evolved systems in which the PWN interacts with the SNR reverse shock and discuss their implications for our general understanding of the structure and evolution of composite SNRs.

  3. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakicevic, M.; Long, K. S.; Lundqvist, P.; Marti-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; vanLoon, J.

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  4. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Lundqvist, P.; Martí-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; Vlahakis, C.; van Loon, J.

    2014-02-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M ⊙). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  5. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    SciTech Connect

    Indebetouw, R.; Chevalier, R.; Matsuura, M.; Barlow, M. J.; Dwek, E.; Zanardo, G.; Baes, M.; Bouchet, P.; Burrows, D. N.; Clayton, G. C.; Fransson, C.; Lundqvist, P.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Meixner, M.; Martí-Vidal, I.; Marcaide, J.; and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  6. Transport of relativistic electrons at shocks in shell-type supernova remnants: diffusive and superdiffusive regimes

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Amato, Elena; Zimbardo, Gaetano

    2016-11-01

    Context. Understanding the transport properties of energetic particles in the presence of magnetic turbulence is crucial for interpreting observations of supernova remnants (SNR) and for assessing the cosmic-ray acceleration mechanism. Aims: We aim at obtaining information on the transport regimes of energetic electrons upstream and downstream of SNR blast waves by studying the X-ray rims. Methods: We considered emission profiles expected when synchrotron energy losses dominate, normal diffusion (typically causing an exponential decay), and superdiffusion (causing a power-law decay) for a spherically symmetric model. Then we compared the model profiles, projected on the plane of the sky, with Chandra observations of supernova (SN)1006 and Tycho's SN. Results: Our study shows that downstream of the blast wave the observed profile is exponentially cut-off due to synchrotron energy losses in the amplified and shock compressed magnetic field present. Upstream of the blast wave and close to the shock, the observed profile of SN1006 is well reproduced by electron diffusion in the Bohm regime. However, the long X-ray tail far upstream of the shock is better explained by considering a change in the energetic electrons' transport regime, that appears to become superdiffusive and gives rise to a power law intensity profile on scales over which the magnetic field strength can be assumed to be constant. Similar results are obtained for Tycho, although in this case the nonlinear effects associated with particle acceleration appear to be stronger close to the shock. Conclusions: The analysis of Chandra observations of the X-ray thin rims of SN1006 and of Tycho's SN, SN 1572, can be well explained assuming normal diffusion in the vicinity of the blast wave and superdiffusion far upstream, similarly to what has been found for particles accelerated at interplanetary shocks. This suggests that anomalous transport is common in both interplanetary space and interstellar medium.

  7. ASASSN-17co: Discovery of A Supernova in UGC 11128

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Post, R. S.

    2017-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new supernova in the galaxy UGC 11128.

  8. NASA's Chandra Sees Brightest Supernova Ever

    NASA Astrophysics Data System (ADS)

    2007-05-01

    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an

  9. Explosive Nucleosynthesis of Ultra-Stripped Type Ic Supernovae

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Suwa, Yudai; Umeda, Hideyuki; Shibata, Masaru; Takahashi, Koh

    We investigate the explosive nucleosynthesis of ultra-stripped Type Ic supernovae (SNe) evolved from 1.45 and 1.5 M ȯ CO stars. We calculate the SN explosions using two-dimensional neutrino-radiation hydrodynamics code. The explosion energy of these SNe is about 1050 erg and the ejecta mass is about 0.1 M ȯ . The 56Ni yield is (6-10) × 10-3 M ȯ . Light curve of ultra-stripped SNe would be fast-fading and subluminous like SN 2005ek. Neutrino-driven winds contain neutron-rich materials and the first-peak r-process elements are produced. Ultra-stripped SNe and sub-energetic SNe evolved from single stars having a small CO core could be sources of light r-elements.

  10. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  11. Pair instability supernovae of very massive population III stars

    SciTech Connect

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  12. Pair Instability Supernovae of Very Massive Population III Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ⊙ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ~20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  13. Gamma-Ray Burst Associated Supernovae: Outliers Become Mainstream

    NASA Technical Reports Server (NTRS)

    Pian, E.; Mazzali, P.; Masetti, N.; Ferrero, P.; Klose, S.; Palazzi, E.; Ramirez-Ruiz, E.; Woosley, S. E.; Kouveliotou, C.; Deng, J.

    2006-01-01

    During the last eight years a clear connection has been established-between the two most powerful explosions in our Universe: core-collapse supernovae (SNe) and long gamma ray bursts (GRBs). Theory suggests4 that every GRB is simultaneously accompanied by a SN, but in only a few nearby cases have these two phenomena been observed together. We report the discovery and daily monitoring of SN 2006aj associated with the GRB 060218. Because the event was the second closest GRB, both explosions could be examined in detail. GRB 060218 had an unusually soft spectrum, long duration, and a total energy 100 to 1000 times less than most other GRBs. Yet SN 2006aj was similar to those in other GRBs, aside from rising more rapidly and being approximately 40% fainter. Taken together, these observations suggest that GRBs have two components: a broad, energetic, but only mildly relativistic outflow that makes a SN, and a more narrowly focused, highly relativistic jet responsible for the GRB. The properties of the GRB jet apparently vary greatly from event to event, while the broad SN outflow varies much less. Low energy transients like GRB 060218 may be the most common events in the Universe.

  14. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-10

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  15. A Novel Multigrid Method for Sn Discretizations of the Mono-Energetic Boltzmann Transport Equation in the Optically Thick and Thin Regimes with Anisotropic Scattering, Part I

    SciTech Connect

    Lee, Barry

    2010-05-01

    This paper presents a new multigrid method applied to the most common Sn discretizations (Petrov-Galerkin, diamond-differenced, corner-balanced, and discontinuous Galerkin) of the mono-energetic Boltzmann transport equation in the optically thick and thin regimes, and with strong anisotropic scattering. Unlike methods that use scalar DSA diffusion preconditioners for the source iteration, this multigrid method is applied directly to an integral equation for the scalar flux. Thus, unlike the former methods that apply a multigrid strategy to the scalar DSA diffusion operator, this method applies a multigrid strategy to the integral source iteration operator, which is an operator for 5 independent variables in spatial 3-d (3 in space and 2 in angle) and 4 independent variables in spatial 2-d (2 in space and 2 in angle). The core smoother of this multigrid method involves applications of the integral operator. Since the kernel of this integral operator involves the transport sweeps, applying this integral operator requires a transport sweep (an inversion of an upper triagular matrix) for each of the angles used. As the equation is in 5-space or 4-space, the multigrid approach in this paper coarsens in both angle and space, effecting efficient applications of the coarse integral operators. Although each V-cycle of this method is more expensive than a V-cycle for the DSA preconditioner, since the DSA equation does not have angular dependence, the overall computational efficiency is about the same for problems where DSA preconditioning {\\it is} effective. This new method also appears to be more robust over all parameter regimes than DSA approaches. Moreover, this new method is applicable to a variety of Sn spatial discretizations, to problems involving a combination of optically thick and thin regimes, and more importantly, to problems with anisotropic scattering cross-sections, all of which DSA approaches perform poorly or not applicable at all. This multigrid approach

  16. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-03

    Stars with initial masses such that 10M[symbol: see text] supernova. By contrast, extremely massive stars with M(initial) >or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  17. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    SciTech Connect

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  18. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  19. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  20. Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Li, Hong Wei

    1988-01-01

    Supernova 1987A (February 23, 1987) in the Large Magellanic Cloud is the brightest supernova to be observed since SN 1604 AD (Kepler). Detection of a burst of neutrinos indicates that a neutron star was formed. Radioactive decay of about 0.07 solar mass of Co-56 is responsible for the observed optical light as well as hard X-rays and gamma-ray lines. Ultraviolet, optical, and infrared 'light echoes' and soft X-rays provide information on the distribution of circumstellar matter and the evolution of the progenitor star.

  1. New Constraints on the Energetics, Progenitor Mass, and Age of the Supernova Remnant G292.0+1.8 Containing PSR J1124-5916

    NASA Astrophysics Data System (ADS)

    Gonzalez, Marjorie; Safi-Harb, Samar

    2003-02-01

    We present spatially resolved spectroscopy of the supernova remnant (SNR) G292.0+1.8 with the Chandra X-Ray Observatory. This composite-type SNR contains the 135 ms pulsar, J1124-5916, recently discovered by Camilo and coworkers. We apply nonequilibrium ionization models to fit the ejecta-dominated regions and to identify the blast wave of the supernova explosion. By comparing the derived abundances with those predicted from nucleosynthesis models, we estimate a progenitor mass of 30-40 Msolar. We derive the intrinsic parameters of the supernova explosion such as its energy, the age of the SNR, the blast wave velocity, and the swept-up mass. In the Sedov interpretation, our estimated SNR age of 2600+250-200 yr is close to the pulsar's characteristic age of 2900 yr. This confirms the pulsar/SNR association and relaxes the need for the pulsar to have a noncanonical value for the braking index, a large period at birth, or a large transverse velocity. We discuss the properties of the pulsar wind nebula (PWN) in the light of the Kennel & Coroniti model and estimate the pulsar wind magnetization parameter. We also report the first evidence for steepening of the power-law spectral index with increasing radius from the pulsar, a result that is expected from synchrotron losses and is reminiscent of Crab-like PWNe.

  2. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  3. Spectra ID of recent SN

    NASA Astrophysics Data System (ADS)

    Challis, Peter

    2013-12-01

    P. Challis, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group, report spectra (range 320-860 nm) of various SN obtained during Dec. 24-27 UT by P. Challis, S. Gottilla (MMTO.org), and E. Marin (MMTO.org) with the MMT 6.5-m telescope (+ Blue Channel). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  4. Dust in supernova remnants

    NASA Astrophysics Data System (ADS)

    Gomez, H.

    In this Review, I will discuss our changing view on supernovae as interstellar dust sources. In particular I will focus on infrared and submillimetre studies of the historical supernova remnants Cassiopeia A, the Crab Nebula, SN 1987A, Tycho and Kepler. In the last decade (and particularly in recent years), SCUBA, Herschel and ALMA have now demonstrated that core-collapse supernovae are prolific dust factories, with evidence of 0.1 - 0.7 M⊙ of dust formed in the ejecta, though there is little evidence (as yet) for significant dust production in Type Ia supernova ejecta. There is no longer any question that dust (and molecule) formation is efficient after some supernova events, though it is not clear how much of this will survive over longer timescales. Current and future instruments will allow us to investigate the spatial distribution of dust within corecollapse ejecta, and whether this component contributes a significant amount to the dust content of the Universe or if supernovae ultimately provide a net loss once dust destruction by shocks is taken into account.

  5. Neutrinos from supernovae.

    NASA Astrophysics Data System (ADS)

    Burrows, A. S.

    First, the author presents a short history of supernova neutrino theory. Then, the theory of core collapse supernovae is reviewed. Because of the profound opacity to light of the dense core that experiences collapse, we "see" this core directly only through its neutrino signature. Every bump and wiggle echoes the internal convulsions of the event and can provide clues about both the supernova mechanism and the neutron star that remains. The author discusses the only neutrino observations of a supernova so far, SN 1987A. While the agreement with calculations has been gratifying, there remain, of course, plenty of outstanding issues in supernova theory to be tested. These are high-lighted throughout the text. Since neutrinos give us the only real access to the physics inside the collapse, it is important that observation of these particles continue. In an appendix the author describes some of the available or contemplated neutrino detectors capable of good time resolution and therefore of shedding light on supernova mechanisms.

  6. MDM OSMOS Spectroscopic classification of Supernovae

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Dong, Subo; Chen, Ping; Klusmeyer, J.; Prieto, Jose Luis; Shappee, B.; Shields, J.; Brown, J.; Stanek, K. Z.; Kochanek, C.

    2016-11-01

    We report optical spectroscopic classification of supernova candidates 2016hgd (ATel #9651), 2016hli (ATel #9685), CSS161013:015319+171853 and CSS161013:020130+141534 (http://nesssi.cacr.caltech.edu/catalina/AllSN.html).

  7. A relativistic type Ibc supernova without a detected gamma-ray burst.

    PubMed

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  8. The All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, D.

    2016-12-01

    This is an overview of the All-Sky Automated Survey for SuperNovae - ASAS-SN. We briefly present the hardware and capabilities of the survey and describe the most recent science results, in particular tidal disruption events and supernovae, including the brightest SN ever found.

  9. Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte.

    PubMed

    Oda, Yoshiaki; Shen, Heping; Zhao, Lin; Li, Jianbao; Iwamoto, Mitsumasa; Lin, Hong

    2014-06-01

    An environmentally friendly solid-state quantum dot sensitized solar cell (ss-QDSSC) was prepared by combining colloidal SnS QDs as the sensitizer and organic hole scavenger spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene) as the solid-state electrolyte, and the energy alignment of SnS and TiO2 was investigated. The bandgap of colloidal SnS QDs increased with decreasing particle size from 14 to 4 nm due to an upshift of the conduction band and a downshift of the valence band. In TiO2/SnS heterojunctions, the conduction band minimum (CBM) difference between TiO2 and SnS was as large as ∼0.8 eV; this difference decreased with decreasing particle size, but was sufficient for electron injection from SnS nanoparticles of any size into TiO2. Meanwhile, the sensitizer regeneration driving force, that is, the difference between the valence band maximum (VBM) of SnS and the work function of the electrolyte, showed an opposite behaviour with the SnS size due to a downward shift of the SnS VB. Consequently, smaller SnS QDs should result in a more efficient charge transfer in heterojunctions, revealing the advantages of QDs vs larger particles as sensitizers. This prediction was confirmed by the improved photovoltaic performance of ss-QDSSCs modified with SnS nanoparticles, which peaked for 5-6 nm sized SnS nanoparticles due to the balance between electron injection and sunlight absorption.

  10. Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte

    PubMed Central

    Oda, Yoshiaki; Shen, Heping; Zhao, Lin; Li, Jianbao; Iwamoto, Mitsumasa; Lin, Hong

    2014-01-01

    An environmentally friendly solid-state quantum dot sensitized solar cell (ss-QDSSC) was prepared by combining colloidal SnS QDs as the sensitizer and organic hole scavenger spiro-OMeTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene) as the solid-state electrolyte, and the energy alignment of SnS and TiO2 was investigated. The bandgap of colloidal SnS QDs increased with decreasing particle size from 14 to 4 nm due to an upshift of the conduction band and a downshift of the valence band. In TiO2/SnS heterojunctions, the conduction band minimum (CBM) difference between TiO2 and SnS was as large as ∼0.8 eV; this difference decreased with decreasing particle size, but was sufficient for electron injection from SnS nanoparticles of any size into TiO2. Meanwhile, the sensitizer regeneration driving force, that is, the difference between the valence band maximum (VBM) of SnS and the work function of the electrolyte, showed an opposite behaviour with the SnS size due to a downward shift of the SnS VB. Consequently, smaller SnS QDs should result in a more efficient charge transfer in heterojunctions, revealing the advantages of QDs vs larger particles as sensitizers. This prediction was confirmed by the improved photovoltaic performance of ss-QDSSCs modified with SnS nanoparticles, which peaked for 5–6 nm sized SnS nanoparticles due to the balance between electron injection and sunlight absorption. PMID:27877682

  11. Supernova 2002hi

    NASA Astrophysics Data System (ADS)

    Pooley, D.; Lewin, W. H. G.

    2003-01-01

    D. Pooley and W. H. G. Lewin, Massachusetts Institute of Technology, on behalf of a larger collaboration, report the detection of X-ray emission at the position of the type-IIn supernova (SN) 2002hi (IAUC 8006) with the Chandra X-ray observatory: An ACIS-S3 observation of 10 ks was made on Dec. 10.73. In the 0.5-10 keV range, we searched a 2x2 pixel region (approx. 1" by 1") around the reported position of the SN and detected 2 counts.

  12. Energetic Fermi/LAT GRB 100414A: Energetic and Correlations

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamaoka, Kazutaka; Tsai, Patrick P.; Tashiro, Makoto S.

    2012-03-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7+132.6 - 106.6 keV and E iso of 34.5+2.0 - 1.8 × 1052 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = -2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5fdg8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak-E iso and E src peak-E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  13. Magnetares como fuentes para potenciar supernovas superluminosas

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Benvenuto, O. G.

    2016-08-01

    Magnetars have been proposed as one of the possible sources to power the light curve of super-luminous supernovae. We have included the energy deposited by a hypothetical magnetar in our one-dimensional hydrodynamical code, and analyzed the dynamical effect on the supernova ejecta. In particular, we present a model for SN 2011kl, the first object associated with a ultra-long-duration gamma-ray burst. Finally, we show its effect on the light curves of hydrogen rich supernovae.

  14. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    NASA Astrophysics Data System (ADS)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  15. Do supernovae of type 1 paly a role in cosmic-ray production?

    NASA Technical Reports Server (NTRS)

    Shapiro, M. M.

    1985-01-01

    A model of cosmic-ray origin is suggested which aims to account for some salient features of the composition. Relative to solar abundances, the Galactic cosmic rays (GCR) are deficient in hydrogen and helim (H and He) by an order of magnitude when the two compositions are normalized at iron. Our conjectural model implicates supernovae of Type I (SN-I) as sources of some of the GCR. SN-I occur approximately as often as SN-II, through their genesis is thought to be different. Recent studies of nucleosynthesis in SN-I based on accreting white dwarfs, find that the elements from Si to Fe are produced copiously. On the other hand, SN-I are virtually devoid of hydrogen, and upper limits deduced for He are low. If SN-I contribute significantly to the pool of GCR by injecting energetic particles into the interstellar medium (ISM), then this could explain why the resulting GCR is relatively deficient in H and He. A test of the model is proposed, and difficulties are discussed.

  16. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  17. Supernova hydrodynamicas experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.

    1997-07-01

    We are developing experiments using the Nova laser to investigate (1) compressible nonlinear hydrodynamic mixing relevant to the first few hours of the supernova (SN) explosion and (2) ejecta-ambient plasma interactions relevant to the early SN remnant phase. The experiments and astrophysical implications are discussed.

  18. Black Hole Physics and Astrophysics: The GRB-Supernova Connection and URCA-1 - URCA-2

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Vitagliano, L.; Xue, S.-S.; Chardonnet, P.; Fraschetti, F.; Gurzadyan, V.

    2006-02-01

    We outline the confluence of three novel theoretical fields in our modeling of Gamma-Ray Bursts (GRBs): 1) the ultrarelativistic regime of a shock front expanding with a Lorentz gamma factor 300; 2) the quantum vacuum polarization process leading to an electron-positron plasma originating the shock front; and 3) the general relativistic process of energy extraction from a black hole originating the vacuum polarization process. There are two different classes of GRBs: the long GRBs and the short GRBs. We here address the issue of the long GRBs. The theoretical understanding of the long GRBs has led to the detailed description of their luminosities in fixed energy bands, of their spectral features and made also possible to probe the astrophysical scenario in which they originate. We are specially interested, in this report, to a subclass of long GRBs which appear to be accompanied by a supernova explosion. We are considering two specific examples: GRB980425/SN1998bw and GRB030329/SN2003dh. While these supernovae appear to have a standard energetics of 1049 ergs, the GRBs are highly variable and can have energetics 104 - 105 times larger than the ones of the supernovae. Moreover, many long GRBs occurs without the presence of a supernova. It is concluded that in no way a GRB can originate from a supernova. The precise theoretical understanding of the GRB luminosity we present evidence, in both these systems, the existence of an independent component in the X-ray emission, usually interpreted in the current literature as part of the GRB afterglow. This component has been observed by Chandra and XMM to have a strong decay on scale of months. We have named here these two sources respectively URCA-1 and URCA-2, in honor of the work that George Gamow and Mario Shoenberg did in 1939 in this town of Urca identifying the basic mechanism, the Urca processes, leading to the process of gravitational collapse and the formation of a neutron star and a supernova. The further

  19. JVLA observations of SN2013bv

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia

    2013-05-01

    We report radio observations with the Jansky Very Large Array of the Type Ic supernova SN2013bv discovered by Zhang et al.(CBET #3499) on April 9.51 UT and spectroscopically classified as broad-lined supernova similar to SN1998bw by Silverman et al. (CBET #3499). On 2013 April 27.0 UT, we triggered VLA observations at the position of SN2013bv at 4.8 & 7.1 GHz. No radio emission is detected in either of the frequency bands at the position of the supernova down to 3-sigma RMS level of 7 microJy.

  20. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1989-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more than 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  1. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  2. Extreme supernova models for the super-luminous transient ASASSN-15LH

    SciTech Connect

    Chatzopoulos, Emmanouil; Wheeler, John C.; Vinko, J.; Nagy, A. P.; Wiggins, Brandon Kerry; Even, Wesley Paul

    2016-09-07

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ~40 M star interacting with a hydrogen-poor shell of ~20 M . The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1–2 ms and magnetic field of 0.1–1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. As a result, we thus favor a single-input model where the reverse shock formed in a strong SN ejecta–circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.

  3. Extreme supernova models for the super-luminous transient ASASSN-15LH

    DOE PAGES

    Chatzopoulos, Emmanouil; Wheeler, John C.; Vinko, J.; ...

    2016-09-07

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observedmore » spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ~40 M ⊙ star interacting with a hydrogen-poor shell of ~20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1–2 ms and magnetic field of 0.1–1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. As a result, we thus favor a single-input model where the reverse shock formed in a strong SN ejecta–circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.« less

  4. Extreme Supernova Models for the Super-luminous Transient ASASSN-15lh

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, E.; Wheeler, J. C.; Vinko, J.; Nagy, A. P.; Wiggins, B. K.; Even, W. P.

    2016-09-01

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ˜40 M ⊙ star interacting with a hydrogen-poor shell of ˜20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1-2 ms and magnetic field of 0.1-1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.

  5. The Unusual Temporal and Spectral Evolution of the Type IIn Supernova 2011ht

    NASA Astrophysics Data System (ADS)

    Roming, P. W. A.; Pritchard, T. A.; Prieto, J. L.; Kochanek, C. S.; Fryer, C. L.; Davidson, K.; Humphreys, R. M.; Bayless, A. J.; Beacom, J. F.; Brown, P. J.; Holland, S. T.; Immler, S.; Kuin, N. P. M.; Oates, S. R.; Pogge, R. W.; Pojmanski, G.; Stoll, R.; Shappee, B. J.; Stanek, K. Z.; Szczygiel, D. M.

    2012-06-01

    We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of MV ~ -17 in ~55 days. In contrast to the ~2 mag increase in the v-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated by strong, Balmer emission with narrow peaks (FWHM ~ 600 km s-1), very broad asymmetric wings (FWHM ~ 4200 km s-1), and blueshifted absorption (~300 km s-1) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by ~1500 km s-1. Merged X-ray observations reveal a L 0.2-10 = (1.0 ± 0.2) × 1039 erg s-1. Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics (~2.5 × 1049 erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN. This paper is dedicated to our colleague, Weidong Li, who died on 2011 December 12. His contribution to the study of all types of SNe was tremendous.

  6. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    PubMed

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  7. Supernova 1993J as a spectroscopic link between type II and type Ib supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, D. A.; Clocchiatti, A.; Benjamin, R.; Lester, D. F.; Wheeler, J. C.

    1993-01-01

    Supernova 1993J in the nearby galaxy M81 is one of the closest - and hence brightest - supernovae to be witnessed this century. The early spectrum of SN1993J showed the characteristic hydrogen signature of type II supernovae, but its subsequent evolution is atypical for this class of supernova. Here we present optical and infrared spectra of SN1993J up to 43 days after outburst, which reveal the onset of the helium absorption and emission features more commonly associated with hydrogen-free type Ib supernovae. Corresponding model spectra show that the progenitor star must have possessed an unusually thin (for type II supernovae) hydrogen-rich envelope overlying a helium-rich mantle. Moreover, the supernova ejecta must have remained compositionally stratified, with little transport of the hydrogen-rich material down into the underlying helium layer or mixing of heavier elements outwards. SN1993J therefore represents a transition object between hydrogen-dominated type II supernovae, and hydrogen-free, helium-dominated type Ib supernovae.

  8. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  9. Core-Collapse Supernova Progenitors in Hubble Space Telescope Images

    NASA Astrophysics Data System (ADS)

    van Dyk, Schuyler D.; Li, Weidong; Filippenko, Alexei V.

    Determining which stars give rise to supernovae (SNe) is key to SN research and stellar evolution studies. Without knowledge of SN progenitors, many of the conclusions and inferences made about the connection between SNe and important problems in astrophysics stand on precarious ground. The main obstacle is that a SN leaves few traces of the star that exploded.

  10. Connecting supernovae with their environments

    NASA Astrophysics Data System (ADS)

    Galbany, L.

    2017-03-01

    We present MUSE observations of galaxy NGC 7469 from its Science Verification to show how powerful is the combination of high-resolution wide-field integral field spectroscopy with both photometric and spectroscopic observations of supernova (SN) explosions. Using STARLIGHT and H II explorer, we selected all H II regions of the galaxy and produced 2-dimensional maps of the Hα equivalent width, average luminosity-weighted stellar age, and oxygen abundance. We measured deprojected galactocentric distances for all H II regions, and radial gradients for all above-mentioned parameters. We positioned the type Ia SN2008ec in the Branch et al. diagram, and finally discussed the characteristics of the SN parent H II region compared to all other H II regions in the galaxy. In a near future, the AMUSING survey will be able to reproduce this analysis and construct statistical samples to enable the characterization of the progenitors of different supernova types.

  11. Spectroscopy of SN 2016hnk (= ATLAS16dpc) with SOAR and SALT: A Peculiar Type-Ia Supernova Similar to PTF09dav

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Duarte, A. S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Kniazev, A.

    2016-11-01

    We obtained spectroscopic observations of SN 2016hnk (= ATLAS16dpc) with the Goodman spectrograph on the Southern Astrophysical Research (SOAR) telescope on UT 2016 Oct 30.3 and with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) on UT 2016 Oct 31.0.

  12. SALT spectroscopic classification of PS16fbb (= Gaia16bvg = SN 2016ick) as a type-Ia supernova at maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-11-01

    We obtained SALT (+RSS) spectroscopy of PS16fbb (= Gaia16bvg = SN 2016ick) on 2016 Nov 25.9 UT, covering the wavelength range 340-920 nm. Emission and absorption lines from the anonymous host galaxy give a redshift z = 0.0525.

  13. Correction to ATel 10128: Spectral Comparison Object SN 1999em -> SN 1999ee

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng

    2017-02-01

    We report a correction to the spectroscopic classification announced in ATel #10128. The spectral comparison shows that SN 2017bke is similar to type Ia supernova SN 1999ee (which was incorrectly typed as SN 1999em) at t = -7 days from the maximum light. We apologize for any confusion caused by this typo error.

  14. Software Based Supernova Recognition

    NASA Astrophysics Data System (ADS)

    Walters, Stephen M.

    2014-05-01

    This paper describes software for detecting Supernova (SN) in images. The software can operate in real-time to discover SN while data is being collected so the instrumentation can immediately be re-tasked to perform spectroscopy or photometry of a discovery. Because the instrumentation captures two images per minute, the realtime budget is constrained to 30 seconds per target, a challenging goal. Using a set of two to four images, the program creates a "Reference" (REF) image and a "New" (NEW) image where all images are used in both NEW and REF but any SN survives the combination process only in the NEW image. This process produces good quality images having similar noise characteristics but without artifacts that might be interpreted as SN. The images are then adjusted for seeing and brightness differences using a variant of Tomaney and Crotts method of Point Spread Function (PSF) matching after which REF is subtracted from NEW to produce a Difference (DIF) image. A Classifier is then trained on a grid of artificial SN to estimate the statistical properties of four attributes and used in a process to mask false positives that can be clearly identified as such. Further training to avoid any remaining false positives sets the range, in standard deviations for each attribute, that the Classifier will accept as a valid SN. This training enables the Classifier to discriminate between SN and most subtraction residue. Lastly, the DIF image is scanned and measured by the Classifier to find locations where all four properties fall within their acceptance ranges. If multiple locations are found, the one best conforming to the training estimates is chosen. This location is then declared as a Candidate SN, the instrumentation re-tasked and the operator notified.

  15. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    1998bw is obviously an unusual supernova. It is therefore of particular significance that a Gamma-Ray Burst was observed from the same sky region just before it was discovered in optical light. It is very unlikely that these two very rare events would happen in the same region of the sky without being somehow related. Most astronomers therefore tend to believe that the gamma-rays do indeed originate in the supernova explosion. But can a single supernova be sufficiently energetic to produce a powerful Gamma-Ray Burst? New theoretical calculations, also published today in Nature, indicate that this may be so. Moreover, if the Gamma-Ray Burst observed on April 25 did originate in this supernova that is located in a relatively nearby galaxy, it was intrinsically much fainter than some of the other Gamma-Ray Bursts that are known to have taken place in extremely distant galaxies. The main idea is that while the centres of most other supernovae collapse into neutron stars at the moment of explosion, a black hole was created in a very massive star consisting mostly of carbon and oxygen. If so, a very strong shockwave may be produced that is capable of generating the observed gamma rays. A comparison of synthetic spectra from such a supernova model, based on a new spectrum-modelling technique developed by Leon Lucy at the ESA/ESO Space Telescope/European Coordinating Facility (ST/ECF), with the spectra of SN 1998bw observed at La Silla, show good agreement, thus lending credibility to the new models. Future work Much data has already been collected at ESO on the strange supernova SN 1998bw . More observations will be obtained by the astronomers at the ESO observatories in the future during a long-term monitoring programme of SN 1998bw . There is a good chance that this effort will ultimately provide fundamental information on the explosion mechanism and the nature of the progenitor star of this exceptional object. This supernova's connection with a Gamma-Ray Burst will

  16. Dynamics of Supernova Remnants with Ejecta and Circumstellar Bubbles

    NASA Astrophysics Data System (ADS)

    Blondin, M. J.; Featherstone, N.; Borkowski, J. K.; Reynolds, P. S.

    2001-09-01

    Progenitors of core-collapse supernovae (SNe) blow bubbles in the ambient medium and sweep it into shells with their powerful stellar winds. After the explosion, SN ejecta initially collide with the stellar wind, then with the wind-blown bubble, and finally with a dense wind-swept shell. This collision is particularly energetic for SNe whose progenitors lost most of their outer envelopes just prior to explosion: the brightest galactic supernova remnant (SNR), Cas A, is a prime example of such an interaction with the circumstellar medium (CSM). The SN ejecta are far from being smooth for such remnants, because of vigorous turbulence and mixing of heavy-element ejecta immediately after the explosion and subsequent growth of Ni-Fe bubbles powered by the radioactive decay. We study the interaction of ``bubbly'' SN ejecta with a CSM bubble and a swept CSM shell, using hydrodynamical simulations in 2 and 3 dimensions with the VH-1 hydrocode. We compare our simulations with analytic self-similar (Chevalier & Liang 1989) solutions and with our previous simulations of interaction of bubbly ejecta with a uniform ambient medium. When compared with these simulations, the impact of bubbly ejecta with the shell results in a more vigorous turbulence and mixing. Dense and cool ejecta at the boundaries of adjacent bubbles may penetrate the shell, leading to plume-like and ring-like features. We examine whether such an interaction is responsible for the observed morphology of Cas A as seen by the Chandra X-ray Observatory and the Hubble Space Telescope, and for the different expansion rates seen at X-ray and radio wavelengths.

  17. Asiago spectroscopic classification of SN2017awk.

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner; Pastorello, P.; Turatto, M.; Terreran, G

    2017-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of ASASSN-17co The target was supplied by All Sky Automated Survey for SuperNovae (ASAS-SN).

  18. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2009-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  19. Calculated late time spectra of supernovae

    SciTech Connect

    Axelrod, T.S.

    1987-10-30

    We consider here the nebular phase spectra of supernovae whose late time luminosity is provided by the radioactive decay of /sup 56/Ni and /sup 56/Co synthesized in the explosion. A broad variety of supernovae are known or suspected to fall in this category. This includes all SNIa and SNIb, and at least some SNII, in particular SN1987a. At sufficiently late times the expanding supernova becomes basically nebular in character due to its decreasing optical depth. The spectra produced during this stage contain information on the density and abundance structure of the entire supernova, as opposed to spectra near maximum light which are affected only by the outermost layers. A numerical model for nebular spectrum formation is therefore potentially very valuable for answering currently outstanding questions about the post-explosion supernova structure. As an example, we can hope to determine the degree of mixing which occurs between the layers of the ''onion-skin'' abundance structure predicted by current one dimensional explosion calculations. In the sections which follow, such a numerical model is briefly described and then applied to SN1972e, a typical SNIa, SN1985f, an SNIb, and finally to SN1987a. In the case of SN1987a predicted spectra are presented for the wavelength range from 1 to 100 microns at a time 300 days after explosion. 18 refs., 6 figs.

  20. Discovery of Shell-Like Radio-Structure in SN 1993J

    NASA Technical Reports Server (NTRS)

    Marcaide, J.; Alberdi, A.; Ros, E.; Diamond, P.; Schmidt, B.; Shapiro, I.; Baath, L.; De Bruyn, G.; Elosegui, P.; Guirado, J.; Davis, R.; Jones, D.; Krichbaum, T.; Manntovani, F.; Preston, R.; Ratner, M.; Rius, A.; Rogers, A.; Schilizzi, R.; Trigilio, C.; Whitney, A.; Witzel, A.; Zensus, A.

    1994-01-01

    The radio-luminous supernova SN 1993J in M81 offers an unprecedented opportunity to study with high linear resolution the details of the growth of a supernova radio structure by means of the VLBI technique.

  1. New observational insight on shock interactions toward supernovae and supernova remnants

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles Donald

    Supernovae (SNe) are energetic explosions that signal the end of a star's life. These events and the supernova remnants (SNRs) they leave behind play a central role in stellar feedback by adding energy and momentum and metals to the interstellar medium (ISM). Emission associated with these feedback processes, especially atomic and molecular line emission as well as thermal and nonthermal continuum emission is known to be enhanced in regions of high density, such as dense circumstellar matter (CSM) around SNe and molecular clouds (MCs). In this thesis, I begin with a brief overview of the physics of SN shocks in Chapter 1, focusing on a foundation for studying pan-chromatic signatures of interactions between SNe and dense environments. In Chapter 2, I examine an unusual SN with signatures of CSM interaction in the form of narrow lines of hydrogen (Type IIn) and thermal continuum emission. This SN appears to belong to a class of Type Ia SNe that shares spectroscopic features with Type IIn SNe. I discuss the difficulties of decomposing spectra in a regime where interaction occurs between SN ejecta and CSM, potentially confusing the underlying SN type. This is followed by a discussion of rebrightening that occurred at late-time in B and V band photometry of this SN, possibly associated with clumpy or dense CSM at large distances from the progenitor. In Chapter 3, I examine synchrotron emission from Cassiopeia A, observed in the Ks band over multiple epochs. The synchrotron emission is generally diffuse over the remnant, but there is one location in the southwest portion of the remnant where it appears to be enhanced and entrained as knots of emission in the SNR ejecta. I evaluate whether the Ks band knots are dominated by synchrotron emission by comparing them to other infrared and radio imaging that is known to be dominated by synchrotron emission. Concluding that they are likely synchrotron-emitting knots, I measure the magnetic field strength and electron density

  2. Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

    NASA Astrophysics Data System (ADS)

    Pian, E.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mazzali, P. A.; Baltay, C.; Branchesi, M.; Brocato, E.; Campana, S.; Copperwheat, C.; Covino, S.; D'Avanzo, P.; Ellman, N.; Grado, A.; Melandri, A.; Palazzi, E.; Piascik, A.; Piranomonte, S.; Rabinowitz, D.; Raimondo, G.; Smartt, S. J.; Steele, I. A.; Stritzinger, M.; Yang, S.; Ascenzi, S.; Della Valle, M.; Gal-Yam, A.; Getman, F.; Greco, G.; Inserra, C.; Kankare, E.; Limatola, L.; Nicastro, L.; Pastorello, A.; Pulone, L.; Stamerra, A.; Stella, L.; Stratta, G.; Tartaglia, L.; Turatto, M.

    2017-04-01

    Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the Type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest-frame days after maximum luminosity and are affected by a young stellar population background. Broad spectral absorption lines associated with the SN are detected over the continuum, similar to those measured for broad-lined, highly energetic SNe Ic. The light curve and maximum luminosity are instead more similar to those of low luminosity, narrow-lined Ic SNe. This suggests a behaviour whereby certain highly stripped-envelope SNe do not produce a large amount of 56Ni, but the explosion is sufficiently energetic that a large fraction of the ejecta is accelerated to higher than usual velocities. We estimate SN iPTF15dld had a main-sequence progenitor of 20-25 M⊙, produced a 56Ni mass of ∼0.1-0.2 M⊙, had an ejecta mass of [2-10] M⊙, and a kinetic energy of [1-18] × 1051 erg.

  3. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    SciTech Connect

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  4. CRTS Supernova Candidate

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Williams, R.; Mahabal, A.; Beshore, E. C.; Larson, S. M.; Hill, R.; Catelan, M.; Christensen, E.

    2008-09-01

    We have detected a likely supernova in CSS images from 24 Sep 2008 UT. The object has the following parameters:

    CSS080924:044524+182425 2008-09-24 UT 11:17:06 RA 04:45:24.00 Dec 18:24:25.1 Mag 17.5 Type SN
    The object is near the edge of galaxy LCSB L0250N (z=0.0155).

  5. EXITE/IPC observations of SN1987A and southern targets

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1991-01-01

    The Energetic X-ray Imaging Telescope Experiment (EXITE) was developed to a flight-ready status and conducted two flights (May 18, 1988, and May 8-10, 1989) from Alice Springs, Australia, as part of the campaigns to observe the supernova SN1987A. The basic operation of the detector and gondola systems in the laboratory was tested on the first flight and found to meet expected performance values. A bizarre 'balloon tape' insulation problem, however, prevented normal telescope pointing on the first flight so no data on SN1987A or other targets were obtained. Following a successful second EXITE flight from Ft. Sumner, NM, in October 1988, the experiment was flown again on a successful 30 hour flight as part of the final 1989 supernova campaign. A second x-ray imaging experiment from MSFC was also flown (piggy-back) for this third flight. Good data were obtained on the supernova and a variety of high priority galactic targets, and final analysis is still in progress. Preliminary results from this flight are presented.

  6. The Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfe, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration; Ofek, Eran O.; Kasliwal, Mansi M.; Nugent, Peter E.; Arcavi, Iair; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Perley, Daniel A.; Barlow, Tom; Horesh, Assaf; Gal-Yam, Avishay; Howell, D. A.; Dilday, Ben; PTF Collaboration; Evans, Phil A.; Kennea, Jamie A.; Swift Collaboration; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Waters, C.; Flewelling, H.; Tonry, J. L.; Rest, A.; Smartt, S. J.; Pan-STARRS1 Science Consortium

    2015-09-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.

  7. What powers the 3000-day light curve of SN 2006gy?

    NASA Astrophysics Data System (ADS)

    Fox, Ori D.; Smith, Nathan; Ammons, S. Mark; Andrews, Jennifer; Bostroem, K. Azalee; Cenko, S. Bradley; Clayton, Geoffrey C.; Dwek, Eli; Filippenko, Alexei V.; Gallagher, Joseph S.; Kelly, Patrick L.; Mauerhan, Jon C.; Miller, Adam A.; Van Dyk, Schuyler D.

    2015-12-01

    SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>1051 erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ˜800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here, we report detections of SN 2006gy using HST and Keck AO at ˜3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K'-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system.

  8. Simulated Studies of Supernova Cosmology for LSST

    NASA Astrophysics Data System (ADS)

    Biswas, Rahul

    2017-01-01

    We discuss methods for simulating Type Ia SN observations from LSST based on the Operation Simulation (OpSim) ouptuts supplied by the LSST project and emperical, data driven models of supernovae. Such simulations can be used to assess the Survey strategies implemented in OpSim in terms of the success of different programs in supernova cosmology based on the results of analysis of the simulations.

  9. Detection of Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Schmitt, Christian

    2011-05-01

    A core-collapse supernova (SN) would produce an expanding shell of charged particles which interact with the surrounding magnetic field of the progenitor star producing a transient radio pulse. Approximately one supernova event per century is expected in a galaxy. The radio waves emitted are detectable by a new generation of low-frequency radio telescope arrays. We present details of an ongoing search for such events by the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  10. TEM Study of Internal Crystals in Supernova Graphites

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Bernatowicz, T.; Stadermann, F. J.; Messenger, S.; Amari, S.

    2003-03-01

    A coordinated TEM and isotopic study of ten supernova (SN) graphites from the Murchison meteorite has revealed many internal grains, mostly titanium carbides (TiCs) and TiC-kamacite composite grains, which were accreted during the graphite growth.

  11. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  12. Analysis of IUE Observations of Supernovae

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1996-01-01

    This program supported the analysis of IUE observations of supernovae. One aspect was a Target-of-Opportunity program to observe bright supernovae which was applied to SN 1993J in M81, and another was continuing analysis of the IUE data from SN 1987A. Because of its quick response time, the IUE satellite has continued to provide useful data on the ultraviolet spectra of supernovae. Even after the launch of the Hubble Space Telescope, which has much more powerful ultraviolet spectrometers, the IUE has enabled us to obtain early and frequent measurements of ultraviolet radiation: this information has been folded in with our HST data to create unique observations of supernova which can be interpreted to give powerful constraints on the physical properties of the exploding stars. Our chief result in the present grant period was the completion of a detailed reanalysis of the data on the circumstellar shell of SN 1987A. The presence of narrow high-temperature mission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolution of the supernova's progenitor. Our new analysis shows that the onset of these lines, their rise to maximum, and their subsequent fading can be understood in the context of a model for the photoionization of circumstellar matter.

  13. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  14. ASASSN-17bb: Discovery of a Probable Supernova

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Koff, R. A.; Masi, G.; Post, R. S.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient sources, most likely a supernova, in the galaxy 2MASX J15204087+043933.

  15. ASASSN-17bc: Discovery of a Probable Supernova

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Koff, R. A.; Masi, G.; Post, R. S.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient sources, most likely a supernova, in the galaxy J07101346+2712041.

  16. Pair production of helicity-flipped neutrinos in supernovae

    NASA Technical Reports Server (NTRS)

    Perez, Armando; Gandhi, Raj

    1989-01-01

    The emissivity was calculated for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. Also presented are simple estimates which show that such process can act as an efficient energy-loss mechanism in the shocked supernova core, and this fact is used to extract neutrino mass limits from SN 1987A neutrino observations.

  17. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  18. SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE

    SciTech Connect

    Strotjohann, Nora L.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer; Sullivan, Mark; Kulkarni, Shrinivas R.; Cao, Yi; Shaviv, Nir J.; Fremling, Christoffer; Sollerman, Jesper; Kasliwal, Mansi M.; Nugent, Peter E.; Arcavi, Iair; Filippenko, Alexei V.; Laher, Russ; Surace, Jason

    2015-10-01

    The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of −14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a ≳5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.

  19. Moderately luminous Type II supernovae

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Pastorello, A.; Turatto, M.; Pumo, M. L.; Benetti, S.; Cappellaro, E.; Botticella, M. T.; Bufano, F.; Elias-Rosa, N.; Harutyunyan, A.; Taubenberger, S.; Valenti, S.; Zampieri, L.

    2013-07-01

    Context. Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 M⊙. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. Aims: In this paper we present ultraviolet, optical and near infrared observations of five Type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous Type II events. We investigate the photometric similarities and differences among these bright objects. We also attempt to characterise them by analysing the spectral evolutions, in order to find some traces of CSM-ejecta interaction. Methods: We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. Modelling the data of SNe 2009dd, 2010aj and 1995ad allows us to constrain the explosion parameters and the properties of the progenitor stars. Results: The light curves have luminous peak magnitudes (-16.95 < MB < -18.70). The ejected masses of 56Ni for three SNe span a wide range of values (2.8 × 10-2 M⊙ < M(56Ni)< 1.4 × 10-1 M⊙), while for a fourth (SN 2010aj) we could determine a stringent upper limit (7 × 10-3 M⊙). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and 1996W. For SN 2007pk we observe a spectral transition from a Type IIn to a standard Type II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5 × 1013 cm and ejected masses of ~5.0-9.5 M⊙. Conclusions: These

  20. Diffuse neutrino flux from failed supernovae.

    PubMed

    Lunardini, Cecilia

    2009-06-12

    I study the diffuse flux of electron antineutrinos from stellar collapses with direct black hole formation (failed supernovae). This flux is more energetic than that from successful supernovae, and therefore it might contribute substantially to the total diffuse flux above realistic detection thresholds. The total flux might be considerably higher than previously thought, and approach the sensitivity of Super-Kamiokande. For more conservative values of the parameters, the flux from failed supernovae dominates for antineutrino energies above 30-45 MeV, with potential to give an observable spectral distortion at megaton detectors.

  1. Echoes of Historical Supernovae in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Badenes, Carles; Blondin, Stephane; Challis, Peter; Clocchiatti, Alejandro; Filippenko, Alex; Foley, Ryan; Huber, Mark E.; Matheson, Thomas; Mazzali, Paolo; Olsen, Knut; Sauer, Daniel; Sinnott, Brendan; Smith, R. Chris; Suntzeff, Nicholas; Welch, Doug; Bergmann, Marcel

    2010-08-01

    We propose to discover the first light echoes (LEs) associated with the historical Galactic supernovae SN 1181 (3C 58) and SN 1054 (Crab), and to locate additional LE complexes from SN 1680 (Cas A) and SN 1572 (Tycho). Using other facilities, we will obtain spectra of the LEs to determine the nature and properties of these important events. This is a continuation of a previously approved NOAO program to obtain images of regions of significant dust concentration near these Galactic supernova remnants. With data from previous semesters, we found LEs from the Cas A and Tycho supernovae teRest08b. We then used the rich set of LEs from Cas A to examine the Cas A SN from different viewing angles teRest10_casaspec, Rest10_leprofile, finding that in one direction the He I (lambda) 5876 and H(alpha) features are blue-shifted by an additional about 4000 km/s relative to the other directions teRest10_casaspec, which is direct evidence that the SN was asymmetric. The study of scattered-light echoes from Galactic supernovae provides a host of newly-recognized observational benefits which have only just begun to be exploited including (1) a direct comparison of a supernova and its remnant, (2) a three-dimensional view of a supernova, and (3) a Galactic network of absolute distance differences.

  2. Supernova Neutrinos

    SciTech Connect

    Cardall, Christian Y

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence, a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis.

  3. TYPE Ia SUPERNOVA PROGENITORS AND CHEMICAL ENRICHMENT IN HYDRODYNAMICAL SIMULATIONS. I. THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Jiménez, Noelia; Tissera, Patricia B.; Matteucci, Francesca

    2015-09-10

    The nature of the Type Ia supernova (SN Ia) progenitors remains uncertain. This is a major issue for galaxy evolution models since both chemical and energetic feedback plays a major role in the gas dynamics, star formation, and therefore the overall stellar evolution. The progenitor models for the SNe Ia available in the literature propose different distributions for regulating the explosion times of these events. These functions are known as the delay time distributions (DTDs). This work is the first one in a series of papers aiming at studying five different DTDs for SNe Ia. Here we implement and analyze the single-degenerate (SD) scenario in galaxies dominated by a rapid quenching of the star formation, displaying the majority of the stars concentrated in the bulge component. We find a good fit to both the present observed SN Ia rates in spheroidal-dominated galaxies and the [O/Fe] ratios shown by the bulge of the Milky Way. Additionally, the SD scenario is found to reproduce a correlation between the specific SN Ia rate and the specific star formation rate (sSFR), which closely resembles the observational trend, at variance with previous works. Our results suggest that SN Ia observations in galaxies with very low and very high sSFRs can help to impose more stringent constraints on the DTDs and therefore on SN Ia progenitors.

  4. Modeling Type IIn Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie; Roming, Peter; Fryer, Chris

    2016-01-01

    We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.

  5. First supernova companion star found

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  6. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  7. The Energetic Universe: a Nobel Surprise

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert P.

    2015-01-01

    he history of cosmic expansion can be accurately traced using Type Ia supernovae (SN Ia) as standard candles. Over the past 40 years, this effort has improved its precision and extended its reach in redshift. Recently, the distances to SN Ia have been measured to a precision of ~5% using luminosity information that is encoded in the shape of the supernova's rest frame optical light curve. By combining observations of supernova distances as measured from their light curves and redshifts measured from spectra, we can detect changes in the cosmic expansion rate. This empirical approach was successfully exploited by the High-Z Supernova Team and by the Supernova Cosmology Project to detect cosmic expansion and to infer the presence of dark energy. The 2011 Nobel Prize in Physics was awarded to Perlmutter, Schmidt and Riess for this discovery. The world's sample of well-observed SN Ia light curves at high redshift and low, approaching 1000 objects, is now large enough to make statistical errors due to sample size a thing of the past. Systematic errors are now the challenge. To learn the properties of dark energy and determine, for example, whether it has an equation-of-state that is different from the cosmological constant demands higher precision and better accuracy. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from uncertain knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not yet produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant and to improved constraints on dark energy. In the NIR, SN Ia are better standard candles and the effects of dust absorption are smaller. We have begun an HST program dubbed RAISIN (SN IA in the IR) to tighten our grip on dark energy properties

  8. A Plausible (Overlooked) Super-luminous Supernova in the Sloan Digital Sky Survey Stripe 82 Data

    NASA Astrophysics Data System (ADS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz; Djorgovski, S. George; Glikman, Eilat; Mahabal, Ashish A.; Koposov, Sergey

    2013-12-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m g < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of MB = -18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3+/- 0.2; hence, the SN peaked at M g < -21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  9. Optical and ultraviolet observations of a low-velocity type II plateau supernova 2013am in M65

    SciTech Connect

    Zhang, Jujia; Bai, Jinming; Fan, Yufeng; Wang, Jianguo; Yi, Weimin; Wang, Chuanjun; Xin, Yuxin; Liangchang; Zhang, Xiliang; Lun, Baoli; Wang, Xueli; He, Shousheng; Wang, Xiaofeng; Huang, Fang; Mo, Jun; Mazzali, Paolo A.; Bersier, David; Zhang, Tianmeng; Walker, Emma S. E-mail: baijinming@ynao.ac.cn

    2014-12-10

    Optical and ultraviolet observations for the nearby type II plateau supernova (SN IIP) 2013am in the nearby spiral galaxy M65 are presented in this paper. The early spectra are characterized by relatively narrow P-Cygni features, with ejecta velocities much lower than observed in normal SNe IIP (i.e., ∼2000 km s{sup –1} versus ∼5000 km {sup –1} in the middle of the plateau phase). Moreover, prominent Ca II absorptions are also detected in SN 2013am at relatively early phases. These spectral features are reminiscent of those seen in the low-velocity and low-luminosity SN IIP 2005cs. However, SN 2013am exhibits different photometric properties, having shorter plateau phases and brighter light curve tails if compared to SN 2005cs. Adopting R{sub V} = 3.1 and a mean value of total reddening derived from the photometric and spectroscopic methods (i.e., E(B – V) = 0.55 ± 0.19 mag), we find that SN 2013am may have reached an absolute V-band peak magnitude of –15.83 ± 0.71 mag and produced an {sup 56}Ni mass of 0.016{sub −0.006}{sup +0.010} M {sub ☉} in the explosion. These parameters are close to those derived for SN 2008in and SN 2009N, which have been regarded as 'gap-filler' objects linking the faint SNe IIP to the normal ones. This indicates that some low-velocity SNe IIP may not necessarily result from the low-energetic explosions. The low expansion velocities could be due to a lower metallicity of the progenitor stars, a larger envelope mass ejected in the explosion, or the effect of viewing angle where these SNe were observed at an angle away from the polar direction.

  10. Echoes from Ancient supernovae in the Large Magellanic Cloud

    SciTech Connect

    Rest, A; Suntzeff, N B; Olsen, K; Prieto, J L; Smith, R C; Welch, D L; Becker, A; Bergmann, M; Clocchiatti, A; Cook, K; Garg, A; Huber, M; Miknaitis, G; Minniti, D; Nikolaev, S; Stubbs, C

    2005-06-15

    In principle, historical supernovae could still be visible as scattered-light echoes even centuries later [1, 2]. Searches for surface brightness variations using photographic plates have not recovered any echoes in the regions of historical Galactic supernovae [3]. Using differenced images, our SuperMACHO collaboration has discovered three faint new variable surface brightness complexes with high apparent proper motion pointing back to well-defined positions in the Large Magellanic Cloud (LMC). These correspond to three of the six smallest (and likely youngest) supernova remnants believed to be due to thermonuclear (Type Ia) supernovae [4]. A lower limit to the age of these remnants and echoes is 200 years given the lack of any reported LMC supernovae until 1987. The discovery of historical supernova echoes in the LMC suggests that similar echoes for Galactic supernovae such as Tycho, Kepler, Cas A, or SN1006 could be visible using standard image differencing techniques.

  11. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  12. Supernova explosions in the Universe.

    PubMed

    Burrows, A

    2000-02-17

    During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics.

  13. ASASSN-17cl and ASASSN-17cm: Discovery of Two Probable Supernovae in MCG -02-13-038 and 2MASX J05474279-7912525

    NASA Astrophysics Data System (ADS)

    Post, R. S.; Koff, R. A.; Kiyota, S.; Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Krannich, G.

    2017-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), we discovered two new transient sources, most likely supernovae, in the galaxies MCG -02-13-038 and 2MASX J05474279-7912525.

  14. ASASSN-17dh and ASASSN-17dk: Discovery of Two Probable Supernovae in NGC 6321 and SDSS J152927.45+565558.3

    NASA Astrophysics Data System (ADS)

    Stone, G.; Cruz, I.; Brimacombe, J.; Post, R. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Kiyota, S.; Koff, R. A.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), we discovered two new transient sources, most likely supernovae, in the galaxies NGC 6321 and SDSS J152927.45+565558.3.

  15. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  16. Type Ia Supernovae: Colors, Rates, and Progenitors

    NASA Astrophysics Data System (ADS)

    Heringer, Epson; Pritchet, Chris; Kezwer, Jason; Graham, Melissa L.; Sand, David; Bildfell, Chris

    2017-01-01

    The rate of type Ia supernovae (SNe Ia) in a galaxy depends not only on stellar mass, but also on star formation history (SFH). Here we show that two simple observational quantities (g ‑ r or u ‑ r host galaxy color, and r-band luminosity), coupled with an assumed delay time distribution (DTD) (the rate of SNe Ia as a function of time for an instantaneous burst of star formation), are sufficient to accurately determine a galaxy’s SN Ia rate, with very little sensitivity to the precise details of the SFH. Using this result, we compare observed and predicted color distributions of SN Ia hosts for the MENeaCS cluster supernova survey, and for the SDSS Stripe 82 supernova survey. The observations are consistent with a continuous DTD, without any cutoff. For old progenitor systems, the power-law slope for the DTD is found to be -{1.50}-0.15+0.19. This result favors the double degenerate scenario for SN Ia, though other interpretations are possible. We find that the late-time slopes of the DTD are different at the 1σ level for low and high stretch supernova, which suggest a single degenerate (SD) scenario for the latter. However, due to ambiguity in the current models’ DTD predictions, SD progenitors can neither be confirmed as causing high stretch supernovae nor ruled out from contributing to the overall sample.

  17. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J O; Remington, B A; Arnett, D; Fryxell, B A; Drake, R P

    1998-11-10

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, they are attempting to rigorously scale the physics of the laboratory in supernova. The scaling of hydrodynamics on microscopic laser scales to hydrodynamics on the SN-size scales is presented and requirements established. Initial results were reported in [1]. Next the appropriate conditions are generated on the NOVA laser. 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov instability and to the Rayleigh-Taylor instability as the interface decelerates is generated. This scales the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike bubble velocities using potential flow theory and Ott thin shell theory is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of Sn 1987A.

  18. Observing the next galactic supernova

    SciTech Connect

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Stanek, K. Z.; Vagins, Mark R.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (≅ 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (≅ 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (∼3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2{sub −2.6}{sup +7.3} per century and a Galactic SN Ia rate of 1.4{sub −0.8}{sup +1.4} per

  19. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  20. Radio evolution of the remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Zanardo, Giovanna

    Radio supernovae result from the collision between a supernova (SN) shock and the progenitor's circumstellar medium (CSM). Supernova 1987A in the Large Magellanic Cloud, as the only nearby core-collapse supernova observed with a telescope since its early stages, has allowed unique studies of the SN-CSM interaction and the complex structure of the resulting emission. This thesis investigates the evolution of the remnant of SN 1987A, as the shock wave impacts the dense CSM in the equatorial ring, and the possible presence of a compact object in the remnant interior, using new data from the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, the Australian Long Baseline Array, and the Parkes telescope.

  1. Luminous supernovae.

    PubMed

    Gal-Yam, Avishay

    2012-08-24

    Supernovae, the luminous explosions of stars, have been observed since antiquity. However, various examples of superluminous supernovae (SLSNe; luminosities >7 × 10(43) ergs per second) have only recently been documented. From the accumulated evidence, SLSNe can be classified as radioactively powered (SLSN-R), hydrogen-rich (SLSN-II), and hydrogen-poor (SLSN-I, the most luminous class). The SLSN-II and SLSN-I classes are more common, whereas the SLSN-R class is better understood. The physical origins of the extreme luminosity emitted by SLSNe are a focus of current research.

  2. Gamma-producing radioactivities from supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Pinto, Philip A.

    1988-09-01

    The production of three isotopes critical to astronomical γ-ray spectroscopy, 44Ti, 56Co, and 57Co, is briefly reviewed along with the information each contains. Emphasis is placed on SN 1987A, the only Type II supernova likely to be seen in γ-lines for decases to come. The 847 keV line from 56Co decay in this supernova should peak approximately 400 days after its explosion with a flux of about 1×10-3 cm-2 s-1. For comparison, the second best candidate, a Type Ia in the Virgo cluster (20 Mpc) gives a peak flux 100 times smaller than this 100 days after the explosion. 57Co decay in SN 1987A will also present a potentially detectable signal ~1×10-4 cm-2 s-1 in 1989 through 1991. 44Ti, chiefly from Type I supernovae, is a wild card, but may be responsible for the diffuse pair background.

  3. Supernova Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Teyssier, R.

    2008-06-01

    The hierarchical model of galaxy formation is known to suffer from the ``over-cooling'' problem: the high efficiency of radiative cooling results in too much baryonic matter in a condensed phase (namely, cold gas or stars) when compared to observations. A solution proposed by many authors (see Springel & Hernquist 2003; Fujita et al. 2004; Rasera & Teyssier 2005) is feedback due to supernova (SN) driven winds or active galactic nuclei. Modeling SN feedback by direct injection of thermal energy usually turns out to be inefficient in galaxy-scale simulations, due to the quasi-instantaneous radiation of the SN energy. To avoid this effect, we have developed a new method to incorporate SN feedback in cosmological simulations: using temporary test particles, we reproduce explicitly a local Sedov blast wave solution in the gas distribution. We have performed several self-consistent runs of isolated Navarro, Frenk, & White (1996, hereafter NFW) halos with radiative cooling, star formation, SN feedback and metal enrichment using the adaptive mesh refinement code RAMSES (Teyssier 2002). We have explored the influence of SN feedback on the formation and the evolution of galaxies with different masses. We have studied the efficiency of the resulting galactic winds, as a function of the mass of the parent halo.

  4. Supernova hydrodynamics experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A.; Kane, J.; Arnett, D.; Drake, R.P.; McCray, R.

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  5. Unparticle constraints from supernova 1987A

    SciTech Connect

    Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y. Y.

    2007-12-15

    The existence of an unparticle sector, weakly coupled to the standard model, would have a profound impact on supernova (SN) physics. Emission of energy into the unparticle sector from the core of SN 1987A would have significantly shortened the observed neutrino burst. The unparticle interaction with nucleons, neutrinos, electrons and muons is constrained to be so weak that it is unlikely to provide any missing-energy signature at colliders. One important exception are models where scale invariance in the hidden sector is broken by the Higgs vacuum expectation value. In this case the SN emission is suppressed by threshold effects.

  6. Probing supernova physics with neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Minakata, H.

    2002-08-01

    We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing bar{nu}_{e} from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons.

  7. TeV neutrinos from core collapse supernovae and hypernovae.

    PubMed

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2004-10-29

    A fraction of core-collapse supernovae of type Ib/c are associated with gamma-ray bursts, which are thought to produce highly relativistic jets. Recently, it has been hypothesized that a larger fraction of core-collapse supernovae produce slower jets, which may contribute to the disruption and ejection of the supernova envelope, and explain the unusually energetic hypernovae. We explore the TeV neutrino signatures expected from such slower jets, and calculate the expected detection rates with upcoming Gigaton Cherenkov experiments. We conclude that individual jetted supernovae may be detectable from nearby galaxies.

  8. Supernovae and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.

    2014-09-01

    Nucleosynthesis by rapid neutron capture (the r-process) could be an important diagnostic of the explosive deep interiors of supernovae. The early appearance of r-process elements in the Galaxy, along with energetic requirements, strongly argues in favor of a supernova origin for r-process isotopes. However there is a current conundrum as to the relative contributions from various supernovae environments, e.g. MHD jets or neutrino energized winds. There are also possible contributions from failed supernovae (collapsars) leading to a black hole (BH), or the ejection of material during the mergers of neutron stars in binary systems, i.e. NS+NS or NS+BH systems. In this talk we will review the theoretical underpinnings of each possibility in the quest to deduce the relative contribution of each process. In particular, each model for r-process nucleosynthesis invariably leads to systematic discrepancies with the observed solar-system r-process abundances. For example, although the location of the abundance peaks near nuclear mass numbers A = 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. Similarly, most recent neutrino-driven wind simulations produce only the lighter r-process elements, while neutron-star mergers may miss the r-process peaks due to fission recycling. In this talk we demonstrate that the underproduction of elements above and below the r-process peaks can be supplemented via fission fragment distributions from the recycling of material synthesized during neutron star mergers, while the abundance peaks themselves are well reproduced in MHD jets in supernovae and collapsars. Moreover, we show that the relative contributions to the solar-system r-process yields from core-collapse supernovae and neutron star mergers required by this proposal are consistent with estimates of the

  9. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  10. Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3 , and Sn S2

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Burton, Lee A.; Walsh, Aron; Oba, Fumiyasu

    2016-07-01

    The tin sulfides SnS, Sn2S3 , and Sn S2 are investigated for a wide variety of applications such as photovoltaics, thermoelectrics, two-dimensional electronic devices, Li ion battery electrodes, and photocatalysts. For these applications, native point defects play important roles, but only those of SnS have been investigated theoretically in the literature. In this study, we consider the band structures, band-edge positions, and thermodynamical stability of the tin sulfides using a density functional that accounts for van der Waals corrections and the G W0 approximation. We revisit the point-defect properties, namely, electronic and atomic structures and energetics of defects, in SnS and newly examine those in Sn S2 and Sn2S3 with a comparison to those in SnS. We find that Sn S2 shows contrasting defect properties to SnS: Undoped SnS shows p -type behavior, whereas Sn S2 shows n type, which are mainly attributed to the tin vacancies and tin interstitials, respectively. We also find that the defect features in Sn2S3 can be described as a combination of those in SnS and Sn S2 , intrinsically Sn2S3 showing n -type behavior. However, the conversion to p type can be attained by doping with a large monovalent cation, namely, potassium. The ambipolar dopability, coupled with the earth abundance of its constituents, indicates great potential for electronic applications, including photovoltaics.

  11. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  12. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J. O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-104 s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  13. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  14. Simulating Supernova Light Curves

    SciTech Connect

    Even, Wesley Paul; Dolence, Joshua C.

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  15. Supernova Candidate from CSS

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Mahabal, A.; Djorgovski, S. G.; Williams, R.; Graham, M. J.; Christensen, E.; Beshore, E. C.; Larson, S. M.

    2008-06-01

    We have detected a likely Supernova in Catalina Sky Survey images from 11 Jun 2008 UT. The object has the following parameters:

    CSS080611:121642+410211 2008-06-11 UT 04:52:41 RA 12:16:41.53 Dec 41:02:11.2 Mag 17.7 Type SN
    The object is near the edge of galaxy SDSSJ121642.18+410223.7 (z = 0.039, mags: g~ 17.9, r~17.6, i~17.3, z~17.5).

  16. Understanding the Ultraviolet Flux from Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.

    2016-01-01

    The conversion of observed magnitudes into flux densities for the creation of spectral energy distributions or integrating bolometric fluxes depends on the spectral shape of the source and the characteristics of the filters. Such details are often neglected, though the effects can be significant. We demonstrate the complexities of conversion as they relate to ultraviolet observations of supernovae, though the principles have broader application. These complexities include spectral model testing, the meaning of effective wavelengths, the endpoints of integration, and extinction corrections. Using data from the Swift Optical Ultraviolet Supernova Archive (SOUSA) we will present integrated luminosity curves from example supernovae of all types. We will also show the unprecedented ultraviolet luminosity of ASASSN-15lh/SN2015L. The creation of ultraviolet/optical spectral energy distributions is helpful in predicting the observed brightness and detectability of these supernovae at higher redshifts with optical telescopes such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  17. Type Ibn Supernovae: Not a Single Class

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Arcavi, Iair; Howell, Dale Andrew; McCully, Curtis; Valenti, Stefano

    2016-01-01

    Type Ibn supernovae are a small yet diverse class of explosions whose spectra are characterized by low-velocity helium emission lines. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material. However, unlike the more common Type IIn supernovae, whose interaction with hydrogen-rich circumstellar material has been shown to generate a wide variety of light curve shapes, we find that light curves of Type Ibn supernovae are more homogeneous and faster evolving. Spectroscopically, we find that Type Ibn supernovae divide cleanly into two classes, only one of which resembles the archetypal Type Ibn SN 2006jc. We explore various photometric and spectroscopic parameter spaces in order to characterize these two classes. We consider the possibility that not all objects classified as Type Ibn have the same physical origin.

  18. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS

    SciTech Connect

    Kelly, Patrick L.; Kirshner, Robert P.

    2012-11-10

    We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae (SN). The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates (SFRs) of the host galaxies provide circumstantial evidence on the origin of each SN type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific SFRs. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our SN sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the SN discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.

  19. SNCosmo: Python library for supernova cosmology

    NASA Astrophysics Data System (ADS)

    Barbary, Kyle; Barclay, Tom; Biswas, Rahul; Craig, Matt; Feindt, Ulrich; Friesen, Brian; Goldstein, Danny; Jha, Saurabh; Rodney, Steve; Sofiatti, Caroline; Thomas, Rollin C.; Wood-Vasey, Michael

    2016-11-01

    SNCosmo synthesizes supernova spectra and photometry from SN models, and has functions for fitting and sampling SN model parameters given photometric light curve data. It offers fast implementations of several commonly used extinction laws and can be used to construct SN models that include dust. The SNCosmo library includes supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID, SNANA and Whalen models, as well as a variety of built-in bandpasses and magnitude systems, and provides convenience functions for reading and writing peculiar data formats used in other packages. The library is extensible, allowing new models, bandpasses, and magnitude systems to be defined using an object-oriented interface.

  20. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  1. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  2. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  3. NIR Spectra of Type Ia Supernovae: High-Cadence Observations

    NASA Astrophysics Data System (ADS)

    Marion, Howie H.; Hsiao, E.; Vinko, J.; Parrent, J. T.; Silverman, J. M.; Kirshner, R. P.; Phillips, M.; Wheeler, J. C.; Burns, C. R.; Morrell, N.; Contreras, C.; Challis, P.; Supernova Project, Carnegie, II; CfA Supernova Group

    2014-01-01

    New observing resources and coordinated scheduling make it possible to obtain sequences of NIR spectra from individual supernovae on a regular basis. In the past three years the Carnegie Supernova Project II and the CfA Supernova Group have obtained 350 NIR spectra of 78 supernovae. Here we describe eight series of NIR spectra from Type Ia supernovae for which there are ten or more observations with 4 or more of the spectra obtained before Mg II becomes undetectable at about six days post-maximum. NIR spectra are particularly useful for tracing the burning history of the outer layers in SN Ia and the presence of Mg II defines the limit of the carbon burning region. Recent analysis suggests that all significant absorption features in spectra of SN Ia are blends of two or more lines. Data sets with higher spectral cadence are more successful at breaking line-identification degeneracies and consequently provide more accurate information about line profiles and velocity measurements. Three of the eight spectral series in this sample include more than 20 observations and in two cases, there are 12 spectra between -12d and +6d with respect to B-max. The eight SN Ia vary from -18.0 to -19.5 in absolute magnitude and we explore the differences between the supernovae in the timing and strength of spectral features. We make qualitative comparisons of these results to theoretical models for the chemical distribution of materials in SN Ia.

  4. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average

  5. Optical Observations of the Type Ic Supernova 2007gr in NGC 1058

    NASA Astrophysics Data System (ADS)

    Chen, Juncheng; Wang, Xiaofeng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Li, Junzheng; Steele, Thea

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = -8 days) shows a possible signature of helium (He I λ5876 at a velocity of ~19,000 km s-1). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (~8-9 M ⊙) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  6. Optical observations of the type Ic supernova 2007gr in NGC 1058

    SciTech Connect

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea E-mail: wang_xf@mail.tsinghua.edu.cn

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  7. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    SciTech Connect

    Lee, Shiu-Hang; Patnaude, Daniel J.; Slane, Patrick O.; Ellison, Donald C.; Nagataki, Shigehiro E-mail: shiu-hang.lee@riken.jp E-mail: slane@cfa.harvard.edu E-mail: don_ellison@ncsu.edu

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  8. Supernova experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Wallace, R.; Rubenchik, A.; Fryxell, B.A.

    1997-12-02

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in [l]. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov and Rayleigh-Taylor instabilities as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. New analysis of the bubble velocity is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of SN 1987A.

  9. Supernova Experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.

    2000-04-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported by Kane et al. in a recent paper. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmeyer-Meshkov instability, and to the Rayleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few times 10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. We also present new analysis of the bubble velocity, a study of two-dimensional versus three-dimensional difference in growth at the He-H interface of SN 1987A, and designs for two-dimensional versus three-dimensional hydro experiments. (c) 2000 The American Astronomical Society.

  10. IUE investigations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1989-01-01

    IUE observations of the SN 1987A began shortly after the discovery and have been frequent through 1988 and 1989, using the fine error sensor for photometry, low dispersion spectra for the supernova spectrum, and high dispersion observations for the interstellar medium when the supernova was bright and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were very useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observations of a circumstellar shell.

  11. Classifications of Three ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Drout, M. R.; Holoien, T. W.-S.; Shappee, B. J.

    2017-01-01

    We report the classifications of ASASSN-17ap, ASASSN-17bb, and ASASSN-17bd using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory. The spectrum for ASASSN-17bb was obtained on UT 2017-01-26 and the spectra for ASASSN-17ap and ASASSN-17bd were obtained on UT 2017-01-27.

  12. Tycho Brahe's Supernova: Light from Centuries Past

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2004-09-01

    The light curve of SN 1572 is described in the terms used nowadays to characterize Type Ia supernovae (SNe Ia). By assembling the records of the observations done in 1572-1574 and evaluating their uncertainties, it is possible to recover the light curve and the color evolution of this supernova. It is found that within the SN Ia family, the event should have been an SN Ia with a normal rate of decline, its stretch factor being s~0.9. The visual light curve near maximum, late-time decline, and color evolution sustain this conclusion. After correcting for extinction, the luminosity of this supernova as observed at maximum is found to be MV=-19.24-5log(D/3.0kpc)+/-0.42. From stretch fitting of the overall light curve, the maximum in V would imply a luminosity difference of +0.17+/-0.1 mag, with the maximum brightness of an s=1 SN Ia. The quantity MV is consistent with a distance of 2.8+/-0.4 kpc for the scale of H0=65 km s-1 Mpc-1.

  13. CONDITIONS FOR SUPERNOVAE-DRIVEN GALACTIC WINDS

    SciTech Connect

    Nath, Biman B.; Shchekinov, Yuri E-mail: yus@sfedu.ru

    2013-11-01

    We point out that the commonly assumed condition for galactic outflows, that supernovae (SNe) heating is efficient in the central regions of starburst galaxies, suffers from invalid assumptions. We show that a large filling factor of hot (≥10{sup 6} K) gas is difficult to achieve through SNe heating, irrespective of the SN's initial gas temperature and density, its uniformity, or its clumpiness. We instead suggest that correlated supernovae from OB associations in molecular clouds in the central region can drive powerful outflows if the molecular surface density is >10{sup 3} M {sub ☉} pc{sup –2}.

  14. Electron-capture supernovae exploding within their progenitor wind

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Tominaga, Nozomu; Langer, Norbert; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.

    2014-09-01

    The most massive stars on the asymptotic giant branch (AGB), or the so-called super-AGB stars, are thought to produce supernovae triggered by electron captures in their degenerate O+Ne+Mg cores. Super-AGB stars are expected to have slow winds with high mass-loss rates, so their circumstellar density is high. The explosions of super-AGB stars are therefore presumed to occur in this dense circumstellar environment. We provide the first synthetic light curves for such events by exploding realistic electron-capture supernova progenitors within their super-AGB winds. We find that the early light curve - that is, before the recombination wave reaches the bottom of the hydrogen-rich envelope of supernova ejecta (the plateau phase) - is not affected by the dense wind. However, after the luminosity drop following the plateau phase, the luminosity remains much higher when the super-AGB wind is taken into account. We compare our results to the historical light curve of SN 1054, the progenitor of the Crab Nebula, and show that the explosion of an electron-capture supernova within an ordinary super-AGB wind can explain the observed light curve features. We conclude that SN 1054 could have been a Type IIn supernova without any extra extreme mass loss, which was previously suggested to be necessary to account for its early high luminosity. We also show that our light curves match Type IIn supernovae with an early plateau phase or the so-called Type IIn-P supernovae, and suggest that they are electron-capture supernovae within super-AGB winds. Although some electron-capture supernovae can be bright in the optical spectral range due to the large progenitor radius, their X-ray luminosity from the interaction does not necessarily get as bright as other Type IIn supernovae whose optical luminosities are also powered by the interaction. Thus, we suggest that optically bright X-ray-faint Type IIn supernovae can emerge from electron-capture supernovae. Optically faint Type IIn supernovae

  15. SN Environments in LEGUS

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; LEGUS Team

    2017-01-01

    From the LEGUS multi-band data we can analyze the stellar environments of recent supernovae (SNe), attempt to recover emission from the aging SNe, and search for light echoes around them. We can attempt to constrain the properties of the SN progenitor, based on age estimates for stellar populations in the immediate SN environments. The sites of 15 SNe of various types can be isolated in these images. I will briefly provide a summary of what we have learned about these SNe from their LEGUS environments. A few of these environments have been analyzed and published by other teams. In addition, two SNe occurred shortly after observations were made of two of the galaxies in our sample, NGC 4258 and NGC 1566. I will talk about the inferences we can make regarding the progenitors of these two core-collapse events. In general, the LEGUS dataset will be a valuable resource for identifying the progenitors of future SNe.

  16. The evolution of supernova remnants in different galactic environments, and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.

    1980-01-01

    Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.

  17. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  18. SN 2014J and the Harvard Observing Project

    NASA Astrophysics Data System (ADS)

    McIntosh, Melissa; Bieryla, Allyson; Newton, Elisabeth R.; Lewis, John A.; Vanderburg, Andrew; Alexander, Kate Denham; Blanchard, Peter

    2014-06-01

    A chance discovery on January 21, 2014 by Steve Fossey et al. of University College London during an undergraduate telescope training session revealed the closest type Ia supernova in the past 42 years. The bright SN 2014J was observed by undergraduates and graduate students alike in the Harvard Observing Project (see poster by A. Bieryla) with the Clay Telescope at Harvard University. Observations were obtained in multiple filters starting January 24, 2014, prior to the supernova reaching its peak brightness, and monitoring will continue as the supernova fades in brightness. We will present multiple band light curve photometry and color RGB images of SN 2014J and its host galaxy M82.

  19. Dust and Other Recent Discoveries in SN 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2011-01-01

    Supernova 1987 A in the Large Magellanic Cloud is one of the most intensively studied objects in the universe and a Rosetta Stone for understanding the explosions of massive stars. Now almost 25 years old, SN 1987 A is a very young supernova remnant, a phase previously unobserved in any other supernova. In this talk I will discuss recent observations from the far ultraviolet to the far-infrared with HST, the VLT, and the Herschel Space Observatory. These data reveal new insights into the composition, geometry, and heating of the explosion debris, the shock interaction with circumstellar material, and dust in the SN 1987 A system.

  20. Galex and Pan-STARRS1 Discovery of SN IIP 2010aq: The First Few Days After Shock Breakout in a Red Supergiant Star

    DTIC Science & Technology

    2010-09-01

    present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission... supernovae : individual (SN 2010aq) – surveys – ultraviolet: general 1. INTRODUCTION Shock breakout in a core-collapse supernova (SN) marks the first escape...plateau lasting 2 days before fading away from Type IIP SN SNLS- 04D2dc at z = 0.185, two weeks before its discovery in the optical Supernova Legacy

  1. Supernovae 1983i and 1983v - Evidence for abundance variations in type Ib supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Harkness, R. P.; Barker, E. S.; Cochran, A. L.; Wills, D.

    1987-01-01

    Spectra are presented of SN 1983i 5 days after discovery and of SN 1983v 13 days after discovery. The similarity of these two spectra argues that they are of similar origin and phase. Theoretical atmosphere calculations provide evidence for a connection to the type Ib supernovae 1983n and 1984l, with SN 1983i and 1983v having a similar structure but less helium and more carbon and oxygen. Available photometry suggests that the spectra correspond to a phase about 20 days after maximum light. These spectra are consistent with an interpretation of type Ib supernovae arising in the bare cores of moderately massive stars, with individual events showing a range in He/O mass ratio from approximately 10 to less than 1.

  2. Powerful Nearby Supernova Caught By Web

    NASA Astrophysics Data System (ADS)

    2008-09-01

    One of the nearest supernovas in the last 25 years has been identified over a decade after it exploded. This result was made possible by combining data from the vast online archives from many of the world's premier telescopes. The supernova was first singled out in 2001 by Franz Bauer, then at Penn State and now at Columbia University, who noticed a bright, variable object in the spiral galaxy Circinus using NASA's Chandra X-ray Observatory. Though the source displayed some exceptional properties, at the time Bauer and his Penn State colleagues could not confidently identify its nature. It was not until years later that Bauer and his team were able to confirm this object was a supernova. Clues in a spectrum from the European Southern Observatory's Very Large Telescope (VLT) led the team to search through data from 18 different telescopes, both in space and on the ground, nearly all of which was from archives. Because this object was found in a nearby galaxy, making it relatively easy to study, the public archives of these telescopes contained abundant data on this galaxy. The data show that this supernova, dubbed SN 1996cr, is among the brightest supernovas ever seen in radio and X-rays. It also bears many striking similarities to the famous supernova SN 1987A, which occurred in a galaxy only 160,000 light years from Earth. "This supernova appears to be a wild cousin of SN 1987A," said Bauer. "These two look alike in many ways, except this newer supernova is intrinsically a thousand times brighter in radio and X-rays." Optical images from the archives of the Anglo-Australian Telescope in Australia show that SN 1996cr exploded between February 28, 1995 and March 15, 1996, nearly a decade after SN 1987A. SN 1996cr may not have been noticed by astronomers at the time because it was only visible in the southern hemisphere, which is not as widely monitored as the northern. Among the five nearest supernovas of the last 25 years, it is the only one that was not seen

  3. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    NASA Astrophysics Data System (ADS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high-z SN survey with application to real SN data.

  4. IT'S ALIVE{exclamation_point} THE SUPERNOVA IMPOSTOR 1961V

    SciTech Connect

    Van Dyk, Schuyler D.; Matheson, Thomas

    2012-02-20

    Reports of the death of the precursor of supernova (SN) 1961V in NGC 1058 are exaggerated. Consideration of the best astrometric data shows that the star, known as 'Object 7', lies at the greatest proximity to SN 1961V and is the likely survivor of the 'SN impostor' super-outburst. SN 1961V does not coincide with a neighboring radio source and is therefore not a radio SN. Additionally, the current properties of Object 7, based on data obtained with the Hubble Space Telescope, are consistent with it being a quiescent luminous blue variable (LBV). Furthermore, post-explosion non-detections by the Spitzer Space Telescope do not necessarily and sufficiently rule out a surviving LBV. We therefore consider, based on the available evidence, that it is still a bit premature to reclassify SN 1961V as a bona fide SN. The inevitable demise of this star, though, may not be too far off.

  5. Light Curve Modeling of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi; Blinnikov, Sergei I.; Tominaga, Nozomu; Yoshida, Naoki; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2014-01-01

    Origins of superluminous supernovae (SLSNe) discovered by recent SN surveys are still not known well. One idea to explain the huge luminosity is the collision of dense CSM and SN ejecta. If SN ejecta is surrounded by dense CSM, the kinetic energy of SN ejecta is efficiently converted to radiation energy, making them very bright. To see how well this idea works quantitatively, we performed numerical simulations of collisions of SN ejecta and dense CSM by using one-dimensional radiation hydrodynamics code STELLA and obtained light curves (LCs) resulting from the collision. First, we show the results of our LC modeling of SLSN 2006gy. We find that physical parameters of dense CSM estimated by using the idea of shock breakout in dense CSM (e.g., Chevalier & Irwin 2011, Moriya & Tominaga 2012) can explain the LC properties of SN 2006gy well. The dense CSM's radius is about 1016 cm and its mass about 15 M ⊙. It should be ejected within a few decades before the explosion of the progenitor. We also discuss how LCs change with different CSM and SN ejecta properties and origins of the diversity of H-rich SLSNe. This can potentially be a probe to see diversities in mass-loss properties of the progenitors. Finally, we also discuss a possible signature of SN ejecta-CSM interaction which can be found in H-poor SLSN.

  6. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  7. STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS

    SciTech Connect

    Kochanek, Christopher S.

    2009-12-20

    For typical models of binary statistics, 50%-80% of core-collapse supernova (ccSN) progenitors are members of a stellar binary at the time of the explosion. Independent of any consequences of mass transfer, this has observational consequences that can be used to study the binary properties of massive stars. In particular, the secondary companion to the progenitor of a Type Ib/c SN is frequently (approx50%) the more optically luminous star since the high effective temperatures of the stripped progenitors make it relatively easy for a lower luminosity, cooler secondary to emit more optical light. Secondaries to the lower mass progenitors of Type II SN will frequently produce excess blue emission relative to the spectral energy distribution of the red primary. Available data constrain the models weakly. Any detected secondaries also provide an independent lower bound on the progenitor mass and, for historical SN, show that it was not a Type Ia event. Bright ccSN secondaries have an unambiguous, post-explosion observational signature-strong, blueshifted, relatively broad absorption lines created by the developing SN remnant (SNR). These can be used to locate historical SN with bright secondaries, confirm that a source is a secondary, and, potentially, measure abundances of ccSN ejecta. Luminous, hot secondaries will re-ionize the SNR on timescales of 100-1000 yr that are faster than re-ionization by the reverse shock, creating peculiar H II regions due to the high metallicity and velocities of the ejecta.

  8. An unusually fast-evolving supernova.

    PubMed

    Poznanski, Dovi; Chornock, Ryan; Nugent, Peter E; Bloom, Joshua S; Filippenko, Alexei V; Ganeshalingam, Mohan; Leonard, Douglas C; Li, Weidong; Thomas, Rollin C

    2010-01-01

    Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. Here we describe SN 2002bj, which stands out as different from any SN reported to date. Its light curve rose and declined very rapidly, yet reached a peak intrinsic brightness greater than -18 magnitude. A spectrum obtained 7 days after discovery shows the presence of helium and intermediate-mass elements, yet no clear hydrogen or iron-peak elements. The spectrum only barely resembles that of a type Ia SN, with added carbon and helium. Its properties suggest that SN 2002bj may be representative of a class of progenitors that previously has been only hypothesized: a helium detonation on a white dwarf, ejecting a small envelope of material. New surveys should find many such objects, despite their scarcity.

  9. PUSHing Core-Collapse Supernovae to Explosions in Spherical Symmetry: Nucleosynthesis Yields

    NASA Astrophysics Data System (ADS)

    Sinha, Sanjana; Fröhlich, Carla; Ebinger, Kevin; Perego, Albino; Hempel, Matthias; Eichler, Marius; Liebendörfer, Matthias; Thielemann, Friedrich-Karl

    Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on artificial explosion methods that do not adequately capture the physics of the innermost layers of the star. The PUSH method, calibrated against SN1987A, utilizes the energy of heavy-flavor neutrinos emitted by the proto-neutron star (PNS) to trigger parametrized explosions. This makes it possible to follow the consistent evolution of the PNS and to ensure a more accurate treatment of the electron fraction of the ejecta. Here, we present the Iron group nucleosynthesis results for core-collapse supernovae, exploded with PUSH, for two different progenitor series. Comparisons of the calculated yields to observational metal-poor star data are also presented. Nucleosynthesis yields will be calculated for all elements and over a wide range of progenitor masses. These yields can be immensely useful for models of galactic chemical evolution.

  10. Supernova neutrinos

    SciTech Connect

    John Beacom

    2003-01-23

    We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  11. SN1987A's Twentieth Anniversary

    NASA Astrophysics Data System (ADS)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  12. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  13. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  14. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Temi, P.; Rank, D.

    2000-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short enough times that many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extinction is especially severe. Thus, determining the supernova rate in active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micrometer emission line was the strongest line in the infrared spectrum for a period of a year and half after th explosion. Since dust extinction is much less at 6.63 micrometers than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the [NiII] line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micrometers using ISOCAM to search for the [NiII] emission line characteristic of recent supernovae. We did not detect any [NiII] line emission brighter than a 5-sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled ot the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a [NiII] line with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a [NiII] line luminosity greater than the line in SN1987A.

  15. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  16. Type IIb Supernovae with Compact and Extended Progenitors

    NASA Astrophysics Data System (ADS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-03-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ~1 × 1011 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ~0.1 M sun.

  17. Survey for the Binary Progenitor in SN1006 and Update on SN1572

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar; Hernández, Jonay González; Tabernero, Hugo; Montes, David; Canal, Ramon; Mendez, Javier; Bedin, Luigi

    2013-01-01

    We have completed a survey down to R = 15 mag of the stars within a circle of 4 arcmin radius around the nominal center of the remnant of SN 1006, one of the three historical Type Ia supernovae (the other two being SN 1572 and SN 1604), in search of a possible surviving binary companion of the white dwarf whose explosion gave rise to the supernova. The stellar parameters (effective temperature, surface gravity, and metallicity), as well as the radial velocities of all the stars, have been measured from spectra obtained with the UVES spectrograph at the VLT, and from the former and the available photometry, distances have been determined. Chemical abundances of the Fe-peak elements Cr, Mn, Co, and Ni have also been measured to check for possible contamination of the stellar surface by the supernova ejecta. The limiting magnitude of the survey would allow us to find stellar companions of the red-giant type, subgiant stars, and main-sequence stars down to F5-6. Unlike in SN 1572, where a subgiant of type G0-1 has been proposed as the companion of SN 1572, for SN 1006 we can discard the possibility that SN 1006 had a red giant or subgiant companion.

  18. Long gamma-ray Bursts and Type Ic Core CollapseSupernovae have Similar Environments

    SciTech Connect

    Kelly, P.L.; Kirshner, R.P.; Pahre, M.

    2007-12-04

    When the afterglow fades at the site of a long-duration {gamma}-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB had different environments from a collection of core-collapse supernovae identified in a high-redshift sample from colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 263 fully spectroscopically-typed supernovae found in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SN Ia) and some varieties of core-collapse supernovae (SN II and SN Ib) follow the galaxy light, but the SN Ic (like LGRB) are much more likely to erupt in the brightest regions of their hosts. The high-redshift hosts of LGRB are overwhelmingly irregulars, without bulges, while many low redshift SN Ic hosts are spirals with small bulges. When we remove the bulge light from our low-redshift sample, the SN Ic and LGRB distributions agree extremely well. If both LGRB and SN Ic stem from very massive stars, then it seems plausible that the conditions necessary for forming SN Ic are also required for LGRB. Additional factors, including metallicity, may determine whether the stellar evolution of a massive star leads to a LGRB with an underlying broad-lined SN Ic, or simply a SN Ic without a {gamma}-ray burst.

  19. The Fast Evolution of SN 2010bh Associated with XRF 100316D

    NASA Technical Reports Server (NTRS)

    Olivares E., F.; Greiner, J.; Schady, P.; Rau, A.; Klose, S.; Kruhler, T.; Afonso, P. M. J.; Updike, A. C.; Nardini, M.; Filgas, R.; Nicuesa Guelbenzu, A.; Clemens, C.; Elliott, J.; Kann, D. A.; Rossi, A.; Sudilovsky, V.

    2012-01-01

    most rapidly evolving GRB-SNe to date. Modelling of the quasi-bolometric light curve yields M(sub Ni) = 0.21 +/- 0.03 solar M and M(sub ej) = 2.6 +/- 0.2 solar M, typical of values within the GRB-SN population. The kinetic energy is E(sub k) = (2.4 +/- 0.7) x 10(exp 52) erg, which is making this SN the second most energetic GRB-SN after SN 1998bw. Conclusions. This supernova has one of the earliest peaks ever recorded and thereafter fades more rapidly than other GRB-SNe, hypernovae, or typical type-Ic SNe. This could be explained by a thin envelope expanding at very high velocities, which is therefore unable to retain the gamma-rays that would prolong the duration of the SN event.

  20. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1993-01-01

    Most Galactic optical supernovae are hidden due to severe extinction in the disk, but could be detectable through their gamma-ray afterglow. Ti-44 is among the potentially detectable isotopes in supernova ejecta. HEAO 3 and SMM sky surveys have not detected gamma-ray lines from the decay of Ti-44, thus constraining SN rates and nucleosynthesis. We perform Monte Carlo simulations of the gamma-ray signatures of SN occurring during the last millenium to interpret the gamma-ray paucity.

  1. X-ray Observations of the Tycho Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hughes, John P.

    2006-06-01

    In this presentation I summarize some key new findings from recent Chandra and XMM-Newton data on the remnant of the supernova (SN) observed by Tycho Brahe in 1572, which is widely believed to have been of Type Ia origin. Studies of the Tycho supernova remnant (SNR) at the current epoch address aspects of SN Ia physics, the evolution of young SNRs, and cosmic ray acceleration at high Mach-number shocks.Research on the Tycho SNR at Rutgers has been supported by Chandra grants GO3-4066X and AR5-6010X.

  2. Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae

    NASA Astrophysics Data System (ADS)

    Pumo, M. L.; Zampieri, L.; Spiro, S.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Manicò, G.; Turatto, M.

    2017-01-01

    With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SNe, we infer explosion energies of 0.16-0.18 foe, radii at explosion of 1.8-3.5 × 1013 cm and ejected masses of 10-11.3 M⊙. The estimated progenitor mass on the main sequence is in the range ˜13.2-15.1 M⊙ for SN 2003Z and ˜11.4-12.9 M⊙ for SNe 2008bk and 2009md, in agreement with estimates from observations of the progenitors. These results together with those for other LL SNe IIP modelled in the same way enable us also to conduct a comparative study on this SN sub-group. The results suggest that (a) the progenitors of faint SNe IIP are slightly less massive and have less energetic explosions than those of intermediate-luminosity SNe IIP; (b) both faint and intermediate-luminosity SNe IIP originate from low-energy explosions of red (or yellow) supergiant stars of low to intermediate mass; (c) some faint objects may also be explained as electron-capture SNe from massive super-asymptotic giant branch stars; and (d) LL SNe IIP form the underluminous tail of the SNe IIP family, where the main parameter `guiding' the distribution seems to be the ratio of the total explosion energy to the ejected mass. Further hydrodynamical studies should be performed and compared to a more extended sample of LL SNe IIP before drawing any conclusion on the relevance of fall-back to this class of events.

  3. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  4. ASASSN-17ej and ASASSN-17em: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Stone, G.; Wiethoff, W.; Post, R. S.; Kiyota, S.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Krannich, G.

    2017-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxies 2MASX J14075270+0938281 and CGCG 299-048 NED01.

  5. ASASSN-17ek: Discovery of A Probable Supernova in LCRS B035620.1-420206

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2017-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy LCRS B035620.1-420206.

  6. ASASSN-17bs and ASASSN-17bt: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Stone, G.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Bock, G.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Masi, G.; Nicholls, B.; Post, R. S.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxies IC 1269 and 2MASX J09441179+3250341.

  7. ASASSN-17ds and ASASSN-17dt: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Masi, G.; Brown, J. S.; Dong, Subo; Prieto, J. L.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Bersier, D.; Bose, S.; Chen, Ping; Kiyota, S.; Koff, R. A.; Post, R. S.; Stone, G.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxies IC 0491 and 2MFGC 08661.

  8. ASASSN-17du: Discovery of A Probable Supernova in SDSS J163319.94+234356.4

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Kiyota, S.; Koff, R. A.; Masi, G.; Post, R. S.; Stone, G.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J163319.94+234356.4.

  9. ASASSN-17ap: Discovery of A Probable Supernova in GALEXASC J003737.20-342957.7

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Kiyota, S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Marples, P.; Masi, G.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J003737.20-342957.7.

  10. ASASSN-17ac: Discovery of A Probable Supernova in 2MASX J14342552-3828081

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Kiyota, S.; Masi, G.; Post, R. S.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J14342552-3828081.

  11. ASASSN-17bn: Discovery of A Probable Supernova in 2MASX J08592386-0952291

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Bock, G.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Masi, G.; Nicholls, B.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J08592386-0952291.

  12. ASASSN-17bd: Discovery of A Probable Supernova in 2MASX J15591858+1336487

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Koff, R. A.; Masi, G.; Post, R. S.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J15591858+1336487.

  13. ASASSN-17ai and ASASSN-17aj: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxy KUG 1204+171 and MCG -02-30-003.

  14. ASASSN-17bq: Discovery of A Supernova in GALEXASC J072538.14+590010.5

    NASA Astrophysics Data System (ADS)

    Macri, L.; Hutchison, T.; Koff, R. A.; Falco, E.; Challis, P.; Kirshner, R.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Kiyota, S.; Krannich, G.; Masi, G.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J072538.14+590010.5.

  15. ASASSN-17ad: Discovery of A Probable Supernova in CGCG 314-011

    NASA Astrophysics Data System (ADS)

    Post, R. S.; Shields, J.; Dong, Subo; Stanek, K. Z.; Kochanek, C. S.; Holoien, T. W.-S.; Brown, J. S.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Bose, S.; Chen, Ping; Brimacombe, J.; Kiyota, S.; Fernandez, J. M.; Masi, G.; Marples, P.; Bock, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 314-011.

  16. ASASSN-17ae: Discovery of A Probable Supernova in 2MASX J16170338+1041359

    NASA Astrophysics Data System (ADS)

    Post, R. S.; Shields, J.; Dong, Subo; Stanek, K. Z.; Kochanek, C. S.; Holoien, T. W.-S.; Brown, J. S.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Bose, S.; Chen, Ping; Brimacombe, J.; Bock, G.; Fernandez, J. M.; Kiyota, S.; Observato, P. Marples (Leyburn

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J16170338+1041359.

  17. ASASSN-17am: Discovery of A Probable Supernova in CGCG 073-079

    NASA Astrophysics Data System (ADS)

    Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Bock, G.; Fernandez, J. M.; Kiyota, S.; Marples, P.; Masi, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 073-079.

  18. ASASSN-17at: Discovery of A Supernova in 2MASX J11383367+2523532

    NASA Astrophysics Data System (ADS)

    Masi, G.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Kiyota, S.; Koff, R. A.; Marples, P.; Post, R. S.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a supernova in the galaxy 2MASX J11383367+2523532.

  19. ASASSN-17bh: Discovery of A Probable Supernova in CGCG 223-033 NED01

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Nicholls, B.; Post, R. S.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy CGCG 223-033 NED01.

  20. ASASSN-17af: Discovery of A Probable Supernova in MCG -01-32-001

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Kiyota, S.; Post, R. S.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy MCG -01-32-001.

  1. ASASSN-17bo and ASASSN-14br: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Krannich, G.; Cruz, I.; Brimacombe, J.; Stone, G.; Post, R. S.; Masi, G.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Kiyota, S.; Koff, R. A.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxies 2MASX J11011991+7039548 and GALEXASC J155200.16+661851.6.

  2. ASASSN-17cu and ASASSN-17cv: Discovery of Two Probable Supernovae

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brimacombe, J.; Koff, R. A.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.

    2017-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered two new transient sources, most likely supernovae, in the galaxies MCG +08-20-019 and 2MASX J16110570+0234002.

  3. ASASSN-17ee: Discovery of A Supernova in UGC 04030 NED01

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Fernandez, J. M.; Brown, J. S.; Falco, E.; Berlind, P.; Prieto, J. L.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Kiyota, S.; Post, R. S.; Stone, G.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 04030 NED01.

  4. ASASSN-17di: Discovery of A Probable Supernova in an Uncatalogued Host Galaxy

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Post, R. S.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Fernandez, J. M.; Koff, R. A.; Stone, G.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in an uncatalogued host galaxy.

  5. ASASSN-17df: Discovery of A Type Ia Supernova in NGC 2996

    NASA Astrophysics Data System (ADS)

    Stone, G.; Post, R. S.; Macri, L.; Lambert, T.; Holoien, T. W.-S.; Prieto, J. L.; Falco, E.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Cruz, I.; Koff, R. A.; Nicholls, B.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new supernova in the galaxy NGC 2996.

  6. ASASSN-17dm: Discovery of A Probable Supernova in AKARI J1006572-474345

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cacella, P.; Koff, R. A.; Post, R. S.; Stone, G.

    2017-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy AKARI J1006572-474345.

  7. ASASSN-17be: Discovery of A Type Ia Supernova in 2MASX J02031063-6141105

    NASA Astrophysics Data System (ADS)

    Drout, M. R.; Holoien, T. W.-S.; Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new Type Ia supernova in the galaxy 2MASX J02031063-6141105.

  8. ASASSN-17bp: Discovery of A Probable Supernova in GALEXASC J020208.73-175958.3

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Krannich, G.; Masi, G.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cruz, I.; Kiyota, S.; Koff, R. A.; Post, R. S.; Stone, G.

    2017-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J020208.73-175958.3.

  9. ASASSN-17cr: Discovery of A Probable Supernova in SDSS J162349.91+150448.3

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Post, R. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Brimacombe, J.; Cacella, P.; Fernandez, J. M.; Marples, P.

    2017-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy SDSS J162349.91+150448.3.

  10. ASASSN-17cz: Discovery of A Probable Supernova in 2MASX J17503055-0148023

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Cacella, P.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Marples, P.; Post, R. S.

    2017-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy 2MASX J17503055-0148023.

  11. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Bazan, G.; Drake, R.P.; Fryxell, B.A.; Teyssier, R.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane {ital et al.} [Astrophys. J. {bold 478}, L75 (1997) and B. A. Remington {ital et al.}, Phys. Plasmas {bold 4}, 1994 (1997)]. The Nova laser is used to generate a 10{endash}15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer{endash}Meshkov instability, and to the Rayleigh{endash}Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. {bold 51}, 179 (1994)] and CALE [R. T. Barton, {ital Numerical Astrophysics} (Jones and Bartlett, Boston, 1985), pp. 482{endash}497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. {bold 54}, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  12. Scaling supernova hydrodynamics to the laboratory

    NASA Astrophysics Data System (ADS)

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.; Teyssier, R.; Moore, K.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al. [Astrophys. J. 478, L75 (1997) and B. A. Remington et al., Phys. Plasmas 4, 1994 (1997)]. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer-Meshkov instability, and to the Rayleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few ×103 s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. 51, 179 (1994)] and CALE [R. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985), pp. 482-497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. 54, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  13. Light Curve Models of Supernovae and X-ray Spectra of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blinnikov, S. I.; Baklanov, P. V.; Kozyreva, A. V.; Sorokina, E. I.

    2005-12-01

    We compare parameters of well-observed type II SN1999em derived by M. Hamuy and D. Nadyozhin based on tet*{LN85} analytic fits with those found from the simulations using our radiative hydro code STELLA. The same code applied to models of SN1993J allows us to estimate systematic errors of extracting foreground extinction toward SN1993J suggested by tet{Clo95} which is based on the assumption of black body radiation of the supernova envelope near the first maximum light after shock break out. A new implicit two-temperature hydro code code SUPREMNA is introduced which self-consistently takes into account the kinetics of ionization, electron thermal conduction, and radiative losses. Finally, a combination of STELLA and SUPREMNA allows us to use the same Type Ia supernova (SNIa) models both for building their light curves and predicting X-ray spectra of young Supernova remnants such as Tycho and Kepler. For the comparison of theoretical results with the observations we used data on Tycho supernova remnant (SNR) obtained with XMM-Newton space telescope.

  14. Solving the 56Ni Puzzle of Magnetar-powered Broad-lined Type IC Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Han, Yan-Hui; Xu, Dong; Wang, Shan-Qin; Dai, Zi-Gao; Wu, Xue-Feng; Wei, Jian-Yan

    2016-11-01

    Broad-lined Type Ic supernovae (SNe Ic-BL) are of great importance because their association with long-duration gamma-ray bursts (LGRBs) holds the key to deciphering the central engine of LGRBs, which refrains from being unveiled despite decades of investigation. Among the two popularly hypothesized types of central engine, i.e., black holes and strongly magnetized neutron stars (magnetars), there is mounting evidence that the central engine of GRB-associated SNe (GRB-SNe) is rapidly rotating magnetars. Theoretical analysis also suggests that magnetars could be the central engine of SNe Ic-BL. What puzzled the researchers is the fact that light-curve modeling indicates that as much as 0.2{--}0.5 {M}⊙ of 56Ni was synthesized during the explosion of the SNe Ic-BL, which is unfortunately in direct conflict with current state-of-the-art understanding of magnetar-powered 56Ni synthesis. Here we propose a dynamic model of magnetar-powered SNe to take into account the acceleration of the ejecta by the magnetar, as well as the thermalization of the injected energy. Assuming that the SN kinetic energy comes exclusively from the magnetar acceleration, we find that although a major fraction of the rotational energy of the magnetar is to accelerate the SN ejecta, a tiny fraction of this energy deposited as thermal energy of the ejecta is enough to reduce the needed 56Ni to 0.06 M ⊙ for both SN 1997ef and SN 2007ru. We therefore suggest that magnetars could power SNe Ic-BL in aspects both of energetics and of 56Ni synthesis.

  15. Late-time Constraints on the Fates of Supernova Impostors

    NASA Astrophysics Data System (ADS)

    Adams, Scott

    2016-01-01

    Transients showing circumstellar interactions, low luminosities and low expansion velocities are generally considered to be non-terminal outbursts. Two main classes of such transients are 'supernova impostors', whose progenitors are massive stars (>20 solar masses) and may be extra-galactic analogs of Eta Car's eruptions, and SN 2008S-like transients, which have lower-mass (~10 solar masses), dust-obscured progenitors. We present late-time Hubble and Spitzer Space Telescope observations of the archetypal 'supernova impostor', SN 1997bs, as well as the prototypes of the SN 2008S class of transients, SN 2008S and NGC 300 2008-OT1. All of these objects have faded below their progenitor luminosities in all bands for which comparisons are possible. We show that it is difficult to reconcile the late-time observations with models where surviving stars are obscured by either ejected shells or thick, dusty winds. Although some supernova impostors, such as SN 1954J, are clearly non-fatal, our results suggest that many of these weak stellar transients with circumstellar interactions may actually be low energy supernovae.

  16. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  17. RELATIVISTIC SUPERNOVAE HAVE SHORTER-LIVED CENTRAL ENGINES OR MORE EXTENDED PROGENITORS: THE CASE OF SN 2012ap

    SciTech Connect

    Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; Sanders, N.; Chakraborti, S.; Kamble, A.; Drout, M.; Parrent, J.; Zauderer, A.; Guidorzi, C.; Morsony, B. J.; Ray, A.; Chomiuk, L.

    2014-12-20

    Deep, late-time X-ray observations of the relativistic, engine-driven, type Ic SN 2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic supernova explosions (SNe). We find that on a local scale of ∼0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate of M-dot <5×10{sup −6} M{sub ⊙} yr{sup −1}, in line with gamma-ray bursts (GRBs) and the other relativistic SN 2009bb. Like sub-energetic GRBs, SN 2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late-time (δt ≈ 20 days) X-ray emission is ∼100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to break out. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.

  18. Supernova Science with an Advanced Compton Telescope

    DTIC Science & Technology

    2000-12-04

    Clemson University, Clemson, SC 29634 ABSTRACT Gamma-ray line emission is a direct probe of the nucleosynthesis that occurs in Type Ia supernovae. In this...suggested to contribute to the optical light (Woosley, Pinto & Hartmann 1989). The study of SN nucleosynthesis has branched into three principle categories...explosive nucleosynthesis , radiation transport, and galactic chemical evolution. The first category of study concentrates upon applying nuclear

  19. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  20. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS

    SciTech Connect

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F.

    2015-09-10

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 10{sup 51} erg and the envelope mass in the range 15–17 M{sub ⊙}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = −8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  1. Supernova 1987A: a Template to Link Supernovae to Their Remnants

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F.

    2015-09-01

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2-1.4 × 1051 erg and the envelope mass in the range 15-17 M ⊙. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = -8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  2. Light Curves of Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Ford, C. H.; Herbst, W.; Balonek, T. J.; Benson, P. J.; Chromey, F. R.; Ratcliff, S. J.

    1992-05-01

    VRI light curves of five Type Ia supernovae (1991B, 1991N, 1991T, 1991bg, and 1992G) have been obtained with CCDs attached to small telescopes at northeastern sites. The data have been carefully transformed to the standard system using images obtained with the 0.9m telescope at KPNO. The first three supernovae have faded sufficiently that we can carefully correct for the galactic background and, in particular, its effect on the determination of fade rates at late times. SN 1991bg clearly demonstrates that there can be gross differences among Type Ia's in the shape (and maximum brightness) of their light curves (Filippenko et al., preprint). We investigate whether a single "template" can be devised which fits the R and I light curve shapes of the other four supernovae in our sample, and the degree to which each fits the V template of Leibundgut (1988, Ph.D. thesis, U. of Basel). The distinctive secondary maximum seen in I (about 18 days after primary maximum; Balonek et al., preprint) should be useful for distinguishing peculiar Type Ia's like SN 1991bg, and for establishing the time of maximum brightness for supernovae that were discovered up to three weeks afterwards. We thank the W. M. Keck Foundation for their support of the Keck Northeast Astronomy Consortium. This project is an outgrowth of that support.

  3. It's Alive! The Supernova Impostor 1961V

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Matheson, Thomas

    2012-02-01

    Reports of the death of the precursor of supernova (SN) 1961V in NGC 1058 are exaggerated. Consideration of the best astrometric data shows that the star, known as "Object 7," lies at the greatest proximity to SN 1961V and is the likely survivor of the "SN impostor" super-outburst. SN 1961V does not coincide with a neighboring radio source and is therefore not a radio SN. Additionally, the current properties of Object 7, based on data obtained with the Hubble Space Telescope, are consistent with it being a quiescent luminous blue variable (LBV). Furthermore, post-explosion non-detections by the Spitzer Space Telescope do not necessarily and sufficiently rule out a surviving LBV. We therefore consider, based on the available evidence, that it is still a bit premature to reclassify SN 1961V as a bona fide SN. The inevitable demise of this star, though, may not be too far off. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained in part from the data archive of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  4. The imprint of a symbiotic binary progenitor on the properties of Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Schure, K. M.; Vink, J.

    2012-01-01

    We present a model for the type Ia supernova remnant (SNR) of SN 1604, also known as Kepler's SNR. We find that its main features can be explained by a progenitor model of a symbiotic binary consisting of a white dwarf and an AGB donor star with an initial mass of 4-5 M⊙. The slow, nitrogen-rich wind emanating from the donor star has partially been accreted by the white dwarf, but has also created a circumstellar bubble. On the basis of observational evidence, we assume that the system moves with a velocity of 250 km s-1. Owing to the spatial velocity, the interaction between the wind and the interstellar medium has resulted in the formation of a bow shock, which can explain the presence of a one-sided, nitrogen-rich shell. We present two-dimensional hydrodynamical simulations of both the shell formation and the SNR evolution. The SNR simulations show good agreement with the observed kinematic and morphological properties of Kepler's SNR. In particular, the model reproduces the observed expansion parameters (m = V/(R/t)) of m ≈ 0.35 in the north and m ≈ 0.6 in the south of Kepler's SNR. We discuss the variations among our hydrodynamical simulations in light of the observations, and show that part of the blast wave may have completely traversed through the one-sided shell. The simulations suggest a distance to Kepler's SNR of 6 kpc, or otherwise imply that SN 1604 was a sub-energetic type Ia explosion. Finally, we discuss the possible implications of our model for type Ia supernovae and their remnants in general.

  5. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    SciTech Connect

    Van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  6. Does energy of type IIP supernovae depend on progenitor mass?

    NASA Astrophysics Data System (ADS)

    Chugai, Nikolai

    The oxygen [O I] 6300 A emission doublet, seen in nebular spectra of core-collapse supernovae, is used to obtain oxygen density in central zone of a sample of SN IIP. The inferred values of the oxygen density on day 300 turn out to fall into rather narrow range. This result does not depend on the distance, extinction, or model assumptions. The found density distribution led us to conclude that the SN IIP explosion energy monotonically increases with the progenitor mass.

  7. Flare energetics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  8. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  9. Supernova Remnants And GLAST

    SciTech Connect

    Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

    2011-11-29

    It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

  10. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  11. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  12. Supernova hydrodynamics experiments on the Nova laser

    NASA Astrophysics Data System (ADS)

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Rubenchik, A.; Drake, R. P.; Fryxell, B. A.; Muller, E.

    1997-12-01

    The critical roles of hydrodynamic instabilities in SN 1987A and in ICF are well known; 2D-3D differences are important in both areas. In a continuing project at Lawrence Livermore National Laboratory (LLNL), the Nova Laser is being used in scaled laboratory experiments of hydrodynamic mixing under supernova-relevant conditions. Numerical simulations of the experiments are being done, using LLNL hydro codes, and astrophysics codes used to model supernovae. Initial investigations with two-layer planar packages having 2D sinusoidal interface perturbations are described in Ap.J. 478, L75 (1997). Early-time simulations done with the LLNL 1D radiation transport code HYADES are mapped into the 2D LLNL code CALE and into the multi-D supernova code PROMETHEUS. Work is underway on experiments comparing interface instability growth produced by 2D sinusoidal versus 3D cross-hatch and axisymmetric cylindrical perturbations. Results of the simulations will be presented and compared with experiment. Implications for interpreting supernova observations and for supernova modelling will be discussed. * Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  13. Snapping Supernovae at z>1.7

    SciTech Connect

    Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V.; Perlmutter, Saul

    2006-07-03

    We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7

  14. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  15. Supernova frequency estimates

    SciTech Connect

    Tsvetkov, D.Y.

    1983-01-01

    Estimates of the frequency of type I and II supernovae occurring in galaxies of different types are derived from observational material acquired by the supernova patrol of the Shternberg Astronomical Institute.

  16. In search of Mahutonga: a possible supernova recorded in Maori astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Green, David A.; Orchiston, Wayne

    Maori astronomical traditions refer to Mahutonga, which can be interpreted as a possible record of a southern supernova (SN) in or near Crux. A search for any known "young" supernova remnants in this region does not reveal any obvious candidate to associate with this possible supernova. Relaxing the positional constraint somewhat, the SN of A.D. 185 near a Centauri is nearby. If this is associated with Mahutonga, then the Maori term must be a relic of an earlier Proto-Polynesian record.

  17. NERO- a post-maximum supernova radiation transport code

    NASA Astrophysics Data System (ADS)

    Maurer, I.; Jerkstrand, A.; Mazzali, P. A.; Taubenberger, S.; Hachinger, S.; Kromer, M.; Sim, S.; Hillebrandt, W.

    2011-12-01

    The interpretation of supernova (SN) spectra is essential for deriving SN ejecta properties such as density and composition, which in turn can tell us about their progenitors and the explosion mechanism. A very large number of atomic processes are important for spectrum formation. Several tools for calculating SN spectra exist, but they mainly focus on the very early or late epochs. The intermediate phase, which requires a non-local thermodynamic equilibrium (NLTE) treatment of radiation transport has rarely been studied. In this paper, we present a new SN radiation transport code, NERO, which can look at those epochs. All the atomic processes are treated in full NLTE, under a steady-state assumption. This is a valid approach between roughly 50 and 500 days after the explosion depending on SN type. This covers the post-maximum photospheric and the early and the intermediate nebular phase. As a test, we compare NERO to the radiation transport code of Jerkstrand, Fransson & Kozma and to the nebular code of Mazzali et al. All three codes have been developed independently and a comparison provides a valuable opportunity to investigate their reliability. Currently, NERO is one-dimensional and can be used for predicting spectra of synthetic explosion models or for deriving SN properties by spectral modelling. To demonstrate this, we study the spectra of the 'normal' Type Ia supernova (SN Ia) 2005cf between 50 and 350 days after the explosion and identify most of the common SN Ia line features at post-maximum epochs.

  18. CfA Nearby Supernova Ia Light Curves

    NASA Astrophysics Data System (ADS)

    Hicken, Malcolm; Berlind, P.; Blondin, S.; Calkins, M.; Challis, P.; Esquerdo, G.; Everett, M.; Fernandez, J.; Jha, S.; Kirshner, R. P.; Latham, D.; Modjaz, M.; Rest, A.; Wood-Vasey, M.

    2007-12-01

    Type Ia supernovae (SN Ia) are central in measuring the accelerated expansion of the Universe and the properties of the underlying dark energy. Nearby SN Ia are compared with distant ones to establish the history of cosmic expansion. In fact, current efforts in SN Ia cosmology are constrained by the limited number of well-observed nearby SN Ia. A significantly improved sample of nearby SN Ia, fully covering the space of Ia properties, is needed to maximize the utility of high-redshift SN Ia. Our ongoing project at the CfA has collected such a set of 170 SN Ia. We have used the FLWO 1.2m telescope. About half of our objects were observed in UBVRI with the 4Shooter camera and have an average of 10 epochs each while the other half was taken in UBVr'i' with the Keplercam instrument and have an average of 17 epochs each. We have now reduced this sample of over 25000 images and present calibrated light curves of these SN Ia along with an analysis of their properties. The CfA Supernova program is supported in part by the National Science Foundation through grant AST-0606772 to Harvard University.

  19. SN2009ip at Very Late Times

    NASA Astrophysics Data System (ADS)

    Bigley, Andrew Christopher; Graham, Melissa Lynn

    2016-01-01

    The 2012 eruption of SN 2009ip resembled a Type IIn supernovae, dominated by emission from interaction of the ejecta with circumstellar material, but the question remains: was the 2012 outburst of SN 2009ip truly the terminal explosion of a massive star? We present time series photometric and spectroscopic data for the transient SN2009ip from 260 to 1026 days after the peak of its 2012 outburst. These data were collected at the Las Cumbres Observatory Global Telescope Network and Keck Observatory. We will show that SN 2009ip continues to decline linearly in brightness at very late epochs, analyze the evolution in flux and asymmetry of the Balmer emission lines, and investigate the geometry of the circumstellar material from the progenitor star system and the true nature of SN 2009ip.

  20. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

  1. HST OBSERVATIONS OF THE SUPERNOVA IN M51

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has returned the most detailed images ever of supernova 1994I which is in the 'Whirlpool Galaxy' (M51) located 20 million light-years away in the constellation Canes Venatici. The view in this picture encompasses the inner region of the galaxy's grand spiral disk, which extends all the way to the bright nucleus. An arrow points to the location of the supernova, which lies approximately 2,000 light-years from the nucleus. The supernova appears to be superposed on a diffuse background of starlight. The Hubble Space Telescope was also used to measure the spectrum of the supernova in the ultraviolet light, which can be used to analyze the chemical composition and the motion of the gas ejected in the explosion. A supernova is a violent stellar explosion which destroys a star, while ejecting the products of nuclear burning into the gas between stars. The energy for some supernova explosions comes from the collapse of a massive star to a compact neutron star, with the mass of the Sun, but the size of a city. Elements out of which the Earth is formed had their origin in ancient supernova explosions in our own Milky Way Galaxy. This supernova was discovered on April 2, 1994 by amateur astronomers and has been the target of investigations by astronomers using ground-based optical and radio telescopes and NASA's International Ultraviolet Explorer satellite. Because a supernova explosion is a billion times as bright as a star like the Sun, they can be seen to great distances and may prove useful in charting the size of the universe. These previous observations show that SN 1994I is a very unusual supernova, called 'Type Ic,' for which very few examples have been studied carefully. The ultraviolet observations made with HST will help astronomers understand what type of stellar explosion led to supernova 1994I. Further observations of SN 1994I with the Hubble Space Telescope will be able to see more deeply into the interior of the exploded star, as

  2. Diversity in Type Ibn supernovae

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Valenti, Stefano; Arcavi, Iair; Howell, Dale Andrew; McCully, Curtis; Iptf, Pessto

    2015-01-01

    Type Ibn supernovae (SNe Ibn) are rare explosions of massive stars whose spectra exhibit narrow helium emission lines but no hydrogen lines. The narrow lines are thought to indicate interaction between the SN ejecta and circumstellar material from previous episodes of mass loss. Only a handful of SNe Ibn have been observed, and even fewer have been caught near the time of explosion. However, in the single case where a SN Ibn had multiple observations during the rising phase (iPTF13beo), its light curve exhibited a double peak. Here we present well-sampled multi-band photometry and spectroscopy of another SN Ibn, iPTF14aki, combining data from the intermediate Palomar Transient Factory (iPTF), the Las Cumbres Observatory Global Telescope Network (LCOGT), and the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). We compare this object to other published and previously unpublised SNe Ibn and find that not all such events have a double-peaked light curve. We also discuss constraints on prior episodes of mass loss and the properties of the group as a whole.

  3. [Reducing the searching range of supernova candidates automatically in a flood of spectra of galaxies].

    PubMed

    Tu, Liang-Ping; Luo, A-Li; Wu, Fu-Chao; Zhao, Yong-Heng

    2009-12-01

    Supernova (SN) is one of the most intense astronomical phenomena among the known stellar activities, but compared with several billion astronomical objects which people have probed, the number of supernova the authors have observed is very small. Therefore, the authors need to find faster and higher-efficiency approaches to searching supernova. In the present paper, we present a novel automated method, which can be successfully used to reduce the range of searching for 1a supernova candidates in a huge number of galaxy spectra. The theoretical basis of the method is clustering and outlier picking, by introducing and measuring local outlier factors of data samples, description of statistic characters of SN emerges in low dimension space. Firstly, eigenvectors of Peter's 1a supernova templates are acquired through PCA projection, and the description of la supernova's statistic characters is calculated. Secondly, in all data set, the local outlier factor (LOF) of each galaxy is calculated including those SN and their host galaxy spectra, and all LOFs are arranged in descending order. Finally, spectra with the largest first one percent of all LOFs should be the reduced 1a SN candidates. Experiments show that this method is a robust and correct range reducing method, which can get rid of the galaxy spectra without supernova component automatically in a flood of galaxy spectra. It is a highly efficient approach to getting the reliable candidates in a spectroscopy survey for follow-up photometric observation.

  4. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Strolger, L.-G.; Benitez, N.; Coe, D.; Jouvel, S.; Medezinski, E.; Molino, A.; Nonino, M.; Bradley, L.; Koehemoer, A.; Balestra, I.; Cenko, S. B.; Clubb, K. I.; Dickinson, M. E.; Filippenko, A. V.; Frederiksen, T. F.; Garnavich, P.; Hjorth, J.; Jones, D. O.; Leibundgut, B.; Matheson, T.; Mobasher, B.; Rosati, P.; Silverman, J. M.; U., V.; Jedruszczuk, K.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  5. Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Childress, M.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kim, A. G.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.

    2013-06-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M */M ⊙) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  6. Supernova hydrodynamics experiments using the Nova laser*

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Glendinning, S. G.; Estabrook, K. G.; London, R. A.; Wallace, R. J.; Kane, J.; Arnett, D.; Drake, R. P.; Liang, E.; McCray, R.; Rubenchik, A.

    1997-04-01

    We are developing experiments using the Nova laser [1,2] to investigate two areas of physics relevant to core-collapse supernovae (SN): compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications will be discussed. *Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. [1] J. Kane et al., in press, Astrophys. J. Lett. (March-April, 1997). [2] B.A. Remington et al., in press, Phys. Plasmas (May, 1997).

  7. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  8. Type Ib Supernova 2007uy - a multiwavelegth perspective

    NASA Astrophysics Data System (ADS)

    Roy, Rupak; Kumar, Brijesh

    2014-01-01

    We present the results from a comprehensive analysis of a Type Ib supernova (SN) 2007uy in a nearby galaxy NGC 2770 (~30 Mpc), using data from space-based Swift/UVOT, along with ground-based observations at visible, infrared and radio wave bands.

  9. Cosmological Inference from Host-Selected Type Ia Supernova Samples

    NASA Astrophysics Data System (ADS)

    Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Hardin, Delphine

    2017-01-01

    We compare two Type Ia supernova samples that are drawn from a spectroscopically confirmed Type Ia supernova sample: a host-selected sample in which SNe Ia are restricted to those that have a spectroscopic redshift from the host; and a broader, more traditional sample in which the redshift could come from either the SN or the host. The host-selected sample is representative of SN samples that will use the redshift of the host to infer the SN redshift, long after the SN has faded from view. We find that SNe Ia that are selected on the availability of a redshift from the host differ from SNe Ia that are from the broader sample. The former tend to be redder, have narrower light curves, live in more massive hosts, and tend to be at lower redshifts. We find that constraints on the equation of state of dark energy, w, and the matter density, ΩM, remain consistent between these two types of samples. Our results are important for ongoing and future supernova surveys, which unlike previous supernova surveys, will have limited real-time follow-up to spectroscopically classify the SNe they discover. Most of the redshifts in these surveys will come from the hosts.

  10. IAUS 331: Supernova 1987A thirty years later

    NASA Astrophysics Data System (ADS)

    Ray, Alak

    2017-04-01

    First the neutrinos arrived, then the burst of light: messengers of a cataclysmic event in the galaxy next door. Alak Ray recounts IAUS 331, a conference that celebrated the thirtieth anniversary of the supernova of a lifetime, SN1987A, and explored the critical role of asymmetry in the explosions, surroundings and initial conditions.

  11. SEARCHING FOR HYDROGEN IN TYPE Ib SUPERNOVAE

    SciTech Connect

    James, Spencer; Baron, E.

    2010-08-01

    We present synthetic spectral fits of the typical Type Ib SN 1999dn and the hydrogen-rich Ib SN 2000H using the generalized non-local thermodynamic equilibrium stellar atmospheres code PHOENIX. We fit model spectra to five epochs of SN 1999dn ranging from 10 days pre-maximum light to 17 days post-maximum light and to the two earliest epochs of SN 2000H available, maximum light and six days post-maximum. Our goal is to investigate the possibility of hydrogen in Type Ib supernovae (SNe Ib), specifically a feature around 6200 A which has previously been attributed to high-velocity H{alpha}. In earlier work on SN 1999dn we found the most plausible alternative to H{alpha} to be a blend of Si II and Fe II lines which can be adjusted to fit by increasing the metallicity. Our models are simple; they assume a power-law density profile with radius, homologous expansion, and solar compositions. The helium core is produced by 'burning' 4H{yields}He in order to conserve the nucleon number. For models with hydrogen the outer skin of the model consists of a shell of solar composition. The hydrogen mass of the standard solar composition shell is M{sub H} {approx}< 10{sup -3} M{sub sun} in SN 1999dn and M{sub H} {approx}< 0.2 M{sub sun} for SN 2000H. Our models fit the observed spectra reasonably well, successfully reproducing most features including the characteristic He I absorptions. The hydrogen feature in SN 1999dn is clear, but much more pronounced in SN 2000H. We discuss a possible evolutionary scenario that accounts for the dichotomy in the hydrogen shell mass between these two SNe.

  12. A luminous, blue progenitor system for the type Iax supernova 2012Z.

    PubMed

    McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D

    2014-08-07

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  13. Characterizing the environments of supernovae with MUSE

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Anderson, J. P.; Rosales-Ortega, F. F.; Kuncarayakti, H.; Krühler, T.; Sánchez, S. F.; Falcón-Barroso, J.; Pérez, E.; Maureira, J. C.; Hamuy, M.; González-Gaitán, S.; Förster, F.; Moral, V.

    2016-02-01

    We present a statistical analysis of the environments of 11 supernovae (SNe) which occurred in six nearby galaxies (z ≲ 0.016). All galaxies were observed with MUSE, the high spatial resolution integral-field spectrograph mounted to the 8 m VLT UT4. These data enable us to map the full spatial extent of host galaxies up to ˜3 effective radii. In this way, not only can one characterize the specific host environment of each SN, one can compare their properties with stellar populations within the full range of other environments within the host. We present a method that consists of selecting all H II regions found within host galaxies from 2D extinction-corrected Hα emission maps. These regions are then characterized in terms of their Hα equivalent widths, star formation rates and oxygen abundances. Identifying H II regions spatially coincident with SN explosion sites, we are thus able to determine where within the distributions of host galaxy e.g. metallicities and ages each SN is found, thus providing new constraints on SN progenitor properties. This initial pilot study using MUSE opens the way for a revolution in SN environment studies where we are now able to study multiple environment SN progenitor dependencies using a single instrument and single pointing.

  14. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  15. VERY LATE PHOTOMETRY OF SN 2011fe

    SciTech Connect

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-12-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of {sup 56}Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs.

  16. Curvas de luz de supernovas ricas en hidrógeno

    NASA Astrophysics Data System (ADS)

    Rojas Kaufmann, M. L.; Bersten, M.

    2016-08-01

    Type II supernovae (SNe II) are the most common type of explosions in the Universe. There is a small and peculiar subgroup of those objects that show light curves similar to the famous SN 1987A. In this work we present an analysis of how the variation of certain physical parameters such as the mass and radius of the progenitor star, the energy of the explosion and the amount of radioactive material impact on the light curve of these objects, based on models that simulate the stellar explosions. In particular, we analyze the case of SN 2009mw, one of the few supernovae with similar characteristics to the SN 1987A.

  17. The disappearance of the progenitors of supernovae 1993J and 2003gd.

    PubMed

    Maund, Justyn R; Smartt, Stephen J

    2009-04-24

    Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.

  18. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-01

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass MMs ˜ 7 - 9.5M⊙. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 1050 erg and the small 56Ni mass of 2.5 × 10-3 M⊙, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ˜ 2 × 1044 erg s-1 and can evaporate circumstellar dust up to R ˜ 1017 cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ˜ 1042 erg s-1 and t ˜ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ˜ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ˜ 1048 erg.

  19. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    SciTech Connect

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-02

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub Ms} ∼ 7 - 9.5M{sub ⊙}. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 × 10{sup −3} M{sub ⊙}, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ∼ 2 × 10{sup 44} erg s{sup −1} and can evaporate circumstellar dust up to R ∼ 10{sup 17} cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ∼ 10{sup 42} erg s{sup −1} and {sup t} ∼ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ∼ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ∼ 10{sup 48} erg.

  20. Catching the First Cosmic Explosions: Explosion and Mixing of Pair-Instability Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan

    2014-03-01

    We present multidimensional simulations of the thermonuclear supernovae from massive primordial stars. Numerical and theoretical study of the primordial star formation in the early Universe suggest that these stars could have been very massive. Primordial stars with initial masses of 150-260 solar masses may have died as energetic thermonuclear supernovae, so-called pair-instability supernovae (PSNe). We model the explosion of PSNe by using a new radiation-hydro code, CASTRO and find the fluid instabilities driven by nuclear burning and hydrodynamics during the explosion. For red supergiant models, amplitudes of these instabilities are sufficient to break down the spherical symmetry of the supernova ejecta.

  1. Optical Photometry of the Type Ia Supernova 1999ee and the Type Ib/c Supernova 1999ex in IC 5179

    NASA Astrophysics Data System (ADS)

    Stritzinger, Maximilian; Hamuy, Mario; Suntzeff, Nicholas B.; Smith, R. C.; Phillips, M. M.; Maza, José; Strolger, L.-G.; Antezana, Roberto; González, Luis; Wischnjewsky, Marina; Candia, Pablo; Espinoza, Juan; González, David; Stubbs, Christopher; Becker, A. C.; Rubenstein, Eric P.; Galaz, Gaspar

    2002-10-01

    We present UBVRIz light curves of the Type Ia SN 1999ee and the Type Ib/c SN 1999ex, both located in the galaxy IC 5179. SN 1999ee has an extremely well-sampled light curve spanning from 10 days before Bmax through 53 days after peak. Near maximum, we find systematic differences of ~0.05 mag in photometry measured with two different telescopes, even though the photometry is reduced to the same local standards around the supernova using the specific color terms for each instrumental system. We use models for our bandpasses and spectrophotometry of SN 1999ee to derive magnitude corrections (S-corrections) and remedy this problem. This exercise demonstrates the need of accurately characterizing the instrumental system before great photometric accuracies of Type Ia supernovae can be claimed. It also shows that this effect can have important astrophysical consequences, since a small systematic shift of 0.02 mag in the B-V color can introduce a 0.08 mag error in the extinction-corrected peak B magnitude of a supernova and thus lead to biased cosmological parameters. The data for the Type Ib/c SN 1999ex present us with the first ever observed shock breakout of a supernova of this class. These observations show that shock breakout occurred 18 days before Bmax and support the idea that Type Ib/c supernovae are due to the core collapse of massive stars rather than thermonuclear disruption of white dwarfs.

  2. Observing SN 1987A with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1991-01-01

    The International Ultraviolet Explorer (IUE) satellite played a leading role in elucidating the nature of SN 1987A, providing a unique ultraviolet perspective on the brightest supernova since 1604. IUE observations of SN 1987A began promptly after discovery and were frequent through 1988 and 1989, using the FES (Fine Error Sensor) for photometry, low dispersion spectra for the supernova spectrum, high dispersion observations for the interstellar medium when the supernova was bright, and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were especially useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observation of a circumstellar shell.

  3. SN 2007uy - metamorphosis of an aspheric Type Ib explosion

    NASA Astrophysics Data System (ADS)

    Roy, Rupak; Kumar, Brijesh; Maund, Justyn R.; Schady, Patricia; Olivares, E. Felipe; Malesani, Daniele; Leloudas, Giorgos; Nandi, Sumana; Tanvir, Nial; Milisavljevic, Dan; Hjorth, Jens; Misra, Kuntal; Kumar, Brajesh; Pandey, S. B.; Sagar, Ram; Chandola, H. C.

    2013-09-01

    The supernovae (SNe) of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the nature of their progenitors and the characteristics of the explosions, investigation of proximate events is necessary. Here we present the results of multiwavelength observations of Type Ib SN 2007uy in the nearby (˜29.5 Mpc) galaxy NGC 2770. Analysis of the photometric observations revealed this explosion as an energetic event with peak absolute R-band magnitude -18.5 ± 0.16, which is about 1 mag brighter than the mean value (-17.6 ± 0.6) derived for well observed Type Ibc events. The SN is highly extinguished, E(B - V) = 0.63 ± 0.15 mag, mainly due to foreground material present in the host galaxy. From optical light curve modelling we determine that about 0.3 M⊙ radioactive 56Ni is produced and roughly 4.4 M⊙ material is ejected during this explosion with liberated energy ˜15 × 1051 erg, indicating the event to be an energetic one. Through optical spectroscopy, we have noticed a clear aspheric evolution of several line-forming regions, but no dependency of asymmetry is seen on the distribution of 56Ni inside the ejecta. The SN shock interaction with the circumstellar material is clearly noticeable in radio follow-up, presenting a synchrotron self-absorption dominated light curve with a contribution of free-free absorption during the early phases. Assuming a Wolf-Rayet (WR) star, with wind velocity ≳ 103 km s- 1, as a progenitor, we derive a lower limit to the mass-loss rate inferred from the radio data as M˙ ⪆ 2.4 × 10-5 M⊙ yr-1, which is consistent with the results obtained for other Type Ibc SNe bright at radio frequencies.

  4. Light-Echo Spectrum Reveals the Type of Tycho Brahe's 1572 Supernova

    NASA Astrophysics Data System (ADS)

    Usuda, T.; Krause, O.; Tanaka, M.; Hattori, T.; Goto, M.; Birkmann, S. M.; Nomoto, K.

    2013-01-01

    We successfully obtained the first optical spectra of the faint light echoes around Cassiopeia A and Tycho Brahe's supernova remnants (SNRs) with FOCAS and the Subaru Telescope. We conclude that Cas A and Tycho's SN 1572 belong to the Type IIb and normal Type Ia supernovae, respectively. Light echo spectra are important in order to obtain further insight into the supernova explosion mechanism of Tycho's SN 1572: how the Type Ia explosion actually proceeds, and whether accretion occurs from a companion or by the merging of two white dwarfs. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. Future light-echo spectra, obtained in different spatial directions of SN 1572, will enable to construct a three-dimensional spectroscopic view of the explosion.

  5. SN 1961V - An extragalactic ETA Carinae analog

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Stringfellow, Guy S.; Penrod, G. Donald; Filippenko, Alexei V.

    1989-01-01

    Spectra of the site of the unique type V supernova SN 1961V in NGC 1058 and of two nearby H II regions have been obtained. Broad H-alpha emission with a luminosity of 2 x 10 to the 36th ergs/s is detected at the position, so that SN 1961V becomes the first historical extragalactic object classified as a supernova to be optically recovered. The characteristics and origin of the high-excitation H II regions of the site are discussed. It is argued that SN 1961V was not a supernova, but an exaggerated Eta Carinae-type outburst of a very massive, evolved star near the end of core hydrogen burning.

  6. A study of the low-luminosity Type II-Plateau supernova 2008bk

    NASA Astrophysics Data System (ADS)

    Lisakov, S. M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2017-04-01

    Supernova (SN) 2008bk is a well-observed low-luminosity Type II event visually associated with a low-mass red-supergiant progenitor. To model SN 2008bk, we evolve a 12 M⊙ star from the main sequence until core collapse, when it has a total mass of 9.88 M⊙, a He-core mass of 3.22 M⊙ and a radius of 502 R⊙. We then artificially trigger an explosion that produces 8.29 M⊙ of ejecta with a total energy of 2.5 × 1050 erg and ∼0.009 M⊙ of 56Ni. We model the subsequent evolution of the ejecta with non-local thermodynamic equilibrium time-dependent radiative transfer. Although somewhat too luminous and energetic, this model reproduces satisfactorily the multiband light curves and multi-epoch spectra of SN 2008bk, confirming the suitability of a low-mass massive star progenitor. As in other low-luminosity SNe II, the structured Hα profile at the end of the plateau phase is probably caused by Ba II 6496.9 Å rather than asphericity. We discuss the sensitivity of our results to changes in progenitor radius and mass, as well as chemical mixing. A 15 per cent increase in progenitor radius causes a 15 per cent increase in luminosity and a 0.2 mag V-band brightening of the plateau but leaves its length unaffected. An increase in ejecta mass by 10 per cent lengthens the plateau by ∼10 d. Chemical mixing introduces slight changes to the bolometric light curve, limited to the end of the plateau, but has a large impact on colours and spectra at nebular times.

  7. THE SUPERNOVA THAT DESTROYED A PROTOGALAXY: PROMPT CHEMICAL ENRICHMENT AND SUPERMASSIVE BLACK HOLE GROWTH

    SciTech Connect

    Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L.

    2013-09-01

    The first primitive galaxies formed from accretion and mergers by z {approx} 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H{sub 2}, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 10{sup 8} M{sub Sun} and virial temperatures of 10{sup 4} K, these halos began to rapidly cool by atomic lines, perhaps forming 10{sup 4}-10{sup 6} M{sub Sun} Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of {approx}1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.

  8. The Supernova that Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L.

    2013-09-01

    The first primitive galaxies formed from accretion and mergers by z ~ 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H2, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 108 M ⊙ and virial temperatures of 104 K, these halos began to rapidly cool by atomic lines, perhaps forming 104-106 M ⊙ Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of ~1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.

  9. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ∼0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ∼0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  10. Short-Lived Circumstellar Interaction in a Low-Luminosity Type IIP Supernova

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Valenti, Stefano; Arcavi, Iair; McCully, Curtis; Howell, Dale Andrew

    2017-01-01

    While interaction with circumstellar material is known to play an important role in Type IIn supernovae, analyses of the more common Type IIP and IIL supernovae have not traditionally included interaction as a significant power source. However, recent campaigns to observe supernovae within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous Type II supernovae of all subclasses. These "flash spectroscopy" features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity supernova to show flash spectroscopy features, SN 2016bkv. This supernova peaked at MV = -16 mag and has expansion velocities around maximum light of < 2000 km s-1, placing it at the faint/slow end of the distribution of Type IIP supernovae (similar to SN 2005cs). The detection of flash spectroscopy features in this event demonstrates that circumstellar interaction plays a role even in a low-luminosity Type IIP supernovae. Conversely, it implies that the range of luminosities of Type II supernovae is not solely driven by the presence of circumstellar material.

  11. Du Pont Classification of ASASSN-16jc as a Young SN Ia

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Prieto, J. L.; Rich, J.; Seibert, M.; Madore, B.; Poetrodjojo, Henry; D'Agostino, Joshua

    2016-08-01

    We report optical spectroscopy (range 370-910 nm) of ASASSN-16jc discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on Aug. 24 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J. 666, 1024).

  12. Supernova 1987A at 30

    NASA Astrophysics Data System (ADS)

    Spyromilio, J.; Leibundgut, B.; Fransson, C.; Larsson, J.; Migotto, K.; Girard, J.

    2017-03-01

    Thirty years on, SN 1987A continues to develop and, over the last decade in particular, has: revealed the presence of a large centrally concentrated reservoir of dust; shown the presence of molecular species within the ejecta; expanded such that the ejecta structure is angularly resolved; begun the destruction of the circumstellar ring and transitioned to being dominated by energy sources external to the ejecta. We are participating in a live experiment in the creation of a supernova remnant and here the recent progress is briefly overviewed. Exciting developments can be expected as the ejecta and the reverse shock continue their interaction, the X-rays penetrate into the cold molecular core and we observe the return of the material into the interstellar medium. We anticipate that the nature of the remnant of the leptonisation event in the centre will also be revealed.

  13. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  14. Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Blinnikov, Sergei I.; Tominaga, Nozomu; Yoshida, Naoki; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2013-01-01

    We show model light curves of superluminous supernova 2006gy on the assumption that the supernova is powered by the collision of supernova ejecta and a dense circumstellar medium. The initial conditions are constructed based on the shock breakout condition, assuming that the circumstellar medium is dense enough to cause a shock breakout within it. We perform a set of numerical light-curve calculations using the one-dimensional multigroup radiation hydrodynamics code stella. We succeed in reproducing the overall features of the early light curve of SN 2006gy with a circumstellar medium of mass about 15 M⊙ (the average mass-loss rate is ˜0.1 M⊙ yr-1). Thus, the progenitor of SN 2006gy is likely a very massive star. The density profile of the circumstellar medium is not well constrained by light-curve modelling alone, but our modelling disfavours a circumstellar medium formed by steady mass loss. The ejecta mass is estimated to be comparable to or less than 15 M⊙ and the explosion energy is expected to be more than 4 × 1051 erg. No 56Ni is required to explain the early light curve. We find that multidimensional effects, e.g. Rayleigh-Taylor instability, which is expected to take place in the cool dense shell between the supernova ejecta and the dense circumstellar medium, are important in understanding supernovae powered by shock interaction. We also show the evolution of optical and near-infrared model light curves of high-redshift superluminous supernovae. They can potentially be used to identify SN 2006gy-like superluminous supernovae in future optical and near-infrared transient surveys.

  15. Radio emission from supernovae and gamma-ray bursters and the need for the SKA

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Van Dyk, Schuyler D.; Sramek, Richard A.; Panagia, Nino

    2004-12-01

    Study of radio supernovae (SNe) over the past 25 years includes two dozen detected objects and more than 100 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. Since 1997 the afterglow of γ-ray bursting sources (GRBs) has occasionally been detected in the radio, as well in other wavelength bands. In particular, the interesting and unusual γ-ray burst GRB 980425, almost certainly related to the radio supernova SN 1998bw, and the more recent SN 2003dh/GRB 030329 are links between the two classes of objects. Analyzing the extensive radio emission data available for SN 1998bw, one can describe its time evolution within the well established framework available for the analysis of radio emission from supernovae. This then allows relatively detailed description of a number of physical properties of the object. The radio emission can best be explained as the interaction of a mildly relativistic ( Γ ˜ 1.6) shock with a dense pre-explosion stellar wind-established circumstellar medium that is highly structured both azimuthally, in clumps or filaments, and radially, with observed density enhancements. From this we can support the conclusion that at least some members of the slow-soft class of GRBs are related to type Ib/c SNe and can be attributed to the explosion of a massive star in a dense, highly structured CSM that was presumably established by the pre-explosion stellar system. However, due to the lack of sensitivity of current radio telescopes, most supernovae cannot be studied if they are more

  16. Constraints on Type IIn supernova progenitor outbursts from the Lick Observatory Supernova Search

    NASA Astrophysics Data System (ADS)

    Bilinski, Christopher; Smith, Nathan; Li, Weidong; Williams, G. Grant; Zheng, WeiKang; Filippenko, Alexei V.

    2015-06-01

    We searched through roughly 12 years of archival survey data acquired by the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search in order to detect or place limits on possible progenitor outbursts of Type IIn supernovae (SNe IIn). The KAIT data base contains multiple pre-SN images for five SNe IIn (plus one ambiguous case of an SN IIn/imposter) within 50 Mpc. No progenitor outbursts are found using the false discovery rate statistical method in any of our targets. Instead, we derive limiting magnitudes (LMs) at the locations of the SNe. These LMs (typically reaching mR ≈ 19.5 mag) are compared to outbursts of SN 2009ip and η Car, plus additional simulated outbursts. We find that the data for SN 1999el and SN 2003dv are of sufficient quality to rule out events ˜40 d before the main peak caused by initially faint SNe from blue supergiant precursor stars, as in the cases of SN 2009ip and SN 2010mc. These SNe IIn may thus have arisen from red supergiant progenitors, or they may have had a more rapid onset of circumstellar matter interaction. We also estimate the probability of detecting at least one outburst in our data set to be ≳60% for each type of the example outbursts, so the lack of any detections suggests that such outbursts are either typically less luminous (intrinsically or owing to dust) than ˜-13 mag, or not very common among SNe IIn within a few years prior to explosion.

  17. Radio Supernovae in the Great Survey Era

    NASA Astrophysics Data System (ADS)

    Lien, Amy; Chakraborty, Nachiketa; Fields, Brian D.; Kemball, Athol

    2011-10-01

    Radio properties of supernova outbursts remain poorly understood despite longstanding campaigns following events discovered at other wavelengths. After ~30 years of observations, only ~50 supernovae have been detected at radio wavelengths, none of which are Type Ia. Even the most radio-loud events are ~104 fainter in the radio than in the optical; to date, such intrinsically dim objects have only been visible in the very local universe. The detection and study of radio supernovae (RSNe) will be fundamentally altered and dramatically improved as the next generation of radio telescopes comes online, including EVLA, ASKAP, and MeerKAT, and culminating in the Square Kilometer Array (SKA); the latter should be >~ 50 times more sensitive than present facilities. SKA can repeatedly scan large (gsim 1 deg2) areas of the sky, and thus will discover RSNe and other transient sources in a new, automatic, untargeted, and unbiased way. We estimate that SKA will be able to detect core-collapse RSNe out to redshift z ~ 5, with an all-redshift rate of ~620 events yr-1 deg-2, assuming a survey sensitivity of 50 nJy and radio light curves like those of SN 1993J. Hence, SKA should provide a complete core-collapse RSN sample that is sufficient for statistical studies of radio properties of core-collapse supernovae. EVLA should find ~160 events yr-1 deg-2 out to redshift z ~ 3, and other SKA precursors should have similar detection rates. We also provided recommendations of the survey strategy to maximize the RSN detections of SKA. This new radio core-collapse supernova sample will complement the detections from the optical searches, such as the LSST, and together provide crucial information on massive star evolution, supernova physics, and the circumstellar medium, out to high redshift. Additionally, SKA may yield the first radio Type Ia detection via follow-up of nearby events discovered at other wavelengths.

  18. The spectacular evolution of Supernova 1996al over 15 years: a low energy explosion of a stripped massive star in a highly structured environment

    NASA Astrophysics Data System (ADS)

    Benetti, Stefano

    2016-06-01

    The final fate of massive stars is not well explored and depending on the stellar mass may have very much different outputs, ranging from very energetic explosions (e.g. GRB-SNe) to direct collapse on black-holes with very weak or not explosion at all (Heger, Woosley, & Baraffe, 2005). Here I present the case of SN 1996al. I describe the physical properties of this luminous supernova in the framework of a very weak explosion (kinetic energy of 1.6 x 10^(50 erg)), where the bolometric luminosity is sustained by the conversion of the kinetic energy into radiation thanks to the interaction between a low mass ( 1.15 M_{⊙}) , 87% of which is Helium, the remaining is Hydrogen) symmetric ejecta with an highly asymmetric circumstellar material. The detection of Hα emission in pre-explosion archive images suggests that the progenitor of SN 1996al was most likely a massive star ( 25 M_{⊙}) ZAMS) that had lost a large fraction of its hydrogen envelope before explosion, and was hence embedded in a H-rich cocoon. The low-mass ejecta and modest kinetic energy of the explosion are then explained with massive fallback of material into the compact remnant, a 7 - 8 M_{⊙}) black hole. Finally, I will try to place this particularly interesting SN in the framework of the SNIIn zoo.

  19. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  20. Follow-Up Observations of SN1999GI in NGC 3184

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric

    1999-09-01

    Type II supernovae may all be X-ray sources but differences in behavior are becoming visible: normal SN II's fade quickly while the abnormal SN IIn's last for months, perhaps years. These suppositions are based upon very limited statistics: 2 normal SN II's and about 4-6 SN IIn's. The turn-on times are unknown, as are the half-lives. Two normal SN II's observed in the X-ray band are SN1980K (Canizares et al. 1982) and SN1999em (Fox & Lewin 1999, IAU Circ 7318). The turn-on time of these SNe appear to be nearly immediate. Radio and X-ray emission should be correlated, yet are not: SN1980K was an early radio source; SN1999em has not yet been detected. But a correlation with radio emission must be suspect with so little data. SN1999gi,the target of this TOO, represents a potential third norm