Sample records for energetically favorable compared

  1. Evolution of biofunctional semiconductor nanocrystals: a calorimetric investigation.

    PubMed

    Ghosh, Debasmita; Mondal, Somrita; Roy, Chandra Nath; Saha, Abhijit

    2013-12-14

    Semiconductor nanomaterials have found numerous applications in optoelectronic device fabrication and in platforms for drug delivery and hyperthermia cancer treatment, and in various other biomedical fields because of their high photochemical stability and size-tunable photoluminescence (PL). However, little attention has been paid to exploring the energetics of formation of these semiconductor nanoparticles. We demonstrate that formation of nanocrystals with biofunctionalization supported by widely used groups, BSA and cysteine, is an exothermic spontaneous process driven by enthalpy. The whole energetics of the reaction shows that formation of smaller particles is favored with lower synthesis temperature. Further, it is shown that the thermodynamics of nanoparticle formation is strongly influenced by the conformation of the protein matrix. We also demonstrate that protein supported formation of nanocrystals is thermodynamically more favorable compared to that involving smaller organic thiol groups. The favorable enthalpy of formation compensates unfavorable entropy, resulting in favorable Gibbs free energy. Thus, this study can open up new avenues for establishing a thermodynamic basis for the design of nanosystems with new and tunable properties.

  2. Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes

    NASA Astrophysics Data System (ADS)

    Naughton, H.; Fendorf, S. E.

    2015-12-01

    Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical structure of organic matter, elucidated with techniques such as FT-ICR MS, to improve microbial decomposition and carbon cycling models by incorporating energetic limitations due to carbon oxidation.

  3. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  4. Investigating the Energetic Ordering of Stable and Metastable TiO 2 Polymorphs Using DFT+ U and Hybrid Functionals

    DOE PAGES

    Curnan, Matthew T.; Kitchin, John R.

    2015-08-12

    Prediction of transition metal oxide BO 2 (B = Ti, V, etc.) polymorph energetic properties is critical to tunable material design and identifying thermodynamically accessible structures. Determining procedures capable of synthesizing particular polymorphs minimally requires prior knowledge of their relative energetic favorability. Information concerning TiO 2 polymorph relative energetic favorability has been ascertained from experimental research. In this study, the consistency of first-principles predictions and experimental results involving the relative energetic ordering of stable (rutile), metastable (anatase and brookite), and unstable (columbite) TiO 2 polymorphs is assessed via density functional theory (DFT). Considering the issues involving electron–electron interaction and chargemore » delocalization in TiO 2 calculations, relative energetic ordering predictions are evaluated over trends varying Ti Hubbard U 3d or exact exchange fraction parameter values. Energetic trends formed from varying U 3d predict experimentally consistent energetic ordering over U 3d intervals when using GGA-based functionals, regardless of pseudopotential selection. Given pertinent linear response calculated Hubbard U values, these results enable TiO 2 polymorph energetic ordering prediction. Here, the hybrid functional calculations involving rutile–anatase relative energetics, though demonstrating experimentally consistent energetic ordering over exact exchange fraction ranges, are not accompanied by predicted fractions, for a first-principles methodology capable of calculating exact exchange fractions precisely predicting TiO 2 polymorph energetic ordering is not available.« less

  5. N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method

    NASA Astrophysics Data System (ADS)

    Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.

    2018-05-01

    Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.

  6. Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems

    NASA Astrophysics Data System (ADS)

    Hu, C. H.; Chizallet, C.; Toulhoat, H.; Raybaud, P.

    2009-05-01

    Using first-principles calculations, we present a comprehensive investigation of the structural trends of low dimensionality late 4d (from Tc to Ag) and 5d (from Re to Au) transition-metal systems including 13-atom clusters. Energetically favorable clusters not being reported previously are discovered by molecular-dynamics simulation based on the simulated annealing method. They allow a better agreement between experiments and theory for their magnetic properties. The structural periodic trend exhibits a nonmonotonic variation of the ratio of square to triangular facets for the two rows, with a maximum for Rh13 and Ir13 . By a comparative analysis of the relevant energetic and electronic properties performed on other metallic systems with reduced dimensionalities such as four-atom planar clusters, one-dimensional (1D) scales, double scales, 1D cylinders, monatomic films, two and seven layer slabs, we highlight that this periodic trend can be generalized. Hence, it appears that 1D-metallic nanocylinders or 1D-double nanoscales (with similar binding energies as TM13 ) also favor square facets for Rh and Ir. We finally propose an interpretation based on the evolution of the width of the valence band and of the Coulombic repulsions of the bonding basins.

  7. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  8. First-principles study of water desorption from montmorillonite surface.

    PubMed

    Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli

    2016-05-01

    Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.

  9. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector.

    PubMed

    Pace, D C; Pipes, R; Fisher, R K; Van Zeeland, M A

    2014-11-01

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  10. Aromatic Side Chain Water-to-Lipid Transfer Free Energies Show a Depth Dependence across the Membrane Normal.

    PubMed

    McDonald, Sarah K; Fleming, Karen G

    2016-06-29

    Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.

  11. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    DOE PAGES

    Pace, D. C.; Pipes, R.; Fisher, R. K.; ...

    2014-08-05

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signaturemore » spanning across 50-140 keV. As a result, these calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.« less

  12. Combined effects of trapped energetic ions and resistive layer damping on the stability of the resistive wall mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yuling; Liu, Yue, E-mail: Yueqiang.Liu@ccfe.ac.uk, E-mail: liuyue@dlut.edu.cn; Liu, Chao

    2016-01-15

    A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilizationmore » is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.« less

  13. Cysteine and cystine adsorption on FeS2(100)

    NASA Astrophysics Data System (ADS)

    Suzuki, Teppei; Yano, Taka-aki; Hara, Masahiko; Ebisuzaki, Toshikazu

    2018-08-01

    Iron pyrite (FeS2) is the most abundant metal sulfide on Earth. Owing to its reactivity and catalytic activity, pyrite has been studied in various research fields such as surface science, geochemistry, and prebiotic chemistry. Importantly, native iron-sulfur clusters are typically coordinated by cysteinyl ligands of iron-sulfur proteins. In the present paper, we study the adsorption of L-cysteine and its oxidized dimer, L-cystine, on the FeS2 surface, using electronic structure calculations based density functional theory and Raman spectroscopy measurements. Our calculations suggest that sulfur-deficient surfaces play an important role in the adsorption of cysteine and cystine. In the thiol headgroup adsorption on the sulfur-vacancy site, dissociative adsorption is found to be energetically favorable compared with molecular adsorption. In addition, the calculations indicate that, in the cystine adsorption on the defective surface under vacuum conditions, the formation of the S-Fe bond is energetically favorable compared with molecular adsorption. Raman spectroscopic measurements suggest the formation of cystine molecules through the S-S bond on the pyrite surface in aqueous solution. Our results might have implications for chemical evolution at mineral surfaces on the early Earth and the origin of iron-sulfur proteins, which are believed to be one of the most ancient families of proteins.

  14. BODY SIZE AND HAREM SIZE IN MALE RED-WINGED BLACKBIRDS: MANIPULATING SELECTION WITH SEX-SPECIFIC FEEDERS.

    PubMed

    Rohwer, Sievert; Langston, Nancy; Gori, Dave

    1996-10-01

    We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort. © 1996 The Society for the Study of Evolution.

  15. First-principles study of the solid solution of hydrogen in lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoellhammer, Gunther; Herzig, Peter; Wolf, Walter

    2011-09-01

    Results from first-principles investigations of the energetical, structural, electronic, and vibrational properties of model structures probing the metal-rich region of the lanthanum-hydrogen system, i.e., the region of the solid solution of hydrogen in lanthanum, are presented. We have studied the site preference and the ordering tendency of hydrogen atoms interstitially bonded in close-packed lanthanum. Spatially separated hydrogen atoms have turned out to exhibit an energetical preference for the occupation of octahedral interstitial sites at low temperature. Indications for a reversal of the site preference in favor of the occupation of tetrahedral interstitial sites at elevated temperature have been found. Linearmore » arrangements consisting of pairs of octahedrally and/or tetrahedrally coordinated hydrogen atoms collinearly bonded to a central lanthanum atom have turned out to be energetically favorable structure elements. Further stabilization is achieved if such hydrogen pairs are in turn linked together so that extended chains of La-H bonds are formed. Pair formation and chain linking counteract the energetical preference for octahedral coordination observed for separated hydrogen atoms.« less

  16. Evaluating the phase diagram of superconductors with asymmetric spin populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannarelli, Massimo; Nardulli, Giuseppe; Ruggieri, Marco

    2006-09-15

    The phase diagram of a nonrelativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean-field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak- and strong-coupling regimes considering both homogeneous and nonhomogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong-coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that themore » inhomogeneous superconductive phase characterized by the condensate {delta}(x){approx}{delta} exp(iq{center_dot}x) is energetically favored in a range of values of the chemical-potential mismatch that shrinks to zero in the strong-coupling regime.« less

  17. Widespread Transient Hoogsteen Base-Pairs in Canonical Duplex DNA with Variable Energetics

    PubMed Central

    Alvey, Heidi S.; Gottardo, Federico L.; Nikolova, Evgenia N.; Al-Hashimi, Hashim M.

    2015-01-01

    Hoogsteen base-pairing involves a 180 degree rotation of the purine base relative to Watson-Crick base-pairing within DNA duplexes, creating alternative DNA conformations that can play roles in recognition, damage induction, and replication. Here, using Nuclear Magnetic Resonance R1ρ relaxation dispersion, we show that transient Hoogsteen base-pairs occur across more diverse sequence and positional contexts than previously anticipated. We observe sequence-specific variations in Hoogsteen base-pair energetic stabilities that are comparable to variations in Watson-Crick base-pair stability, with Hoogsteen base-pairs being more abundant for energetically less favorable Watson-Crick base-pairs. Our results suggest that the variations in Hoogsteen stabilities and rates of formation are dominated by variations in Watson-Crick base pair stability, suggesting a late transition state for the Watson-Crick to Hoogsteen conformational switch. The occurrence of sequence and position-dependent Hoogsteen base-pairs provide a new potential mechanism for achieving sequence-dependent DNA transactions. PMID:25185517

  18. Sugars as the Optimal Biosynthetic Carbon Substrate of Aqueous Life throughout the Universe

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1999-01-01

    Our previous analysis of the energetics of metabolism showed that both the biosynthesis of amino acids and lipids from sugars, and the fermentation of organic substrates, were energetically driven by electron transfer reactions resulting in carbon redox disproportionation (Weber 1997). Redox disproportionation -- the spontaneous (energetically favorable) direction of carbon group transformation in biosynthesis -- is brought about and driven by the energetically downhill transfer of electron pairs from more oxidized carbon groups (with lower half-cell reduction potentials) to more reduced carbon groups (with higher half-cell reduction potentials). In this report, we compare the redox and kinetic properties of carbon groups in order to evaluate the relative biosynthetic capability of organic substrates, and to identify the optimal biosubstrate. This analysis revealed that sugars (monocarbonyl alditols) are the optimal biosynthetic substrate because they contain the maximum number of biosynthetically useful .high energy electrons/carbon atom , while still containing a single carbonyl group needed to kinetically facilitate their conversion to useful biosynthetic intermediates. This conclusion applies to aqueous life throughout the Universe because it is based on invariant aqueous carbon chemistry -- primarily, the universal reduction potentials of carbon groups.

  19. Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the universe

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2000-01-01

    Our previous analysis of the energetics of metabolism showed that both the biosynthesis of amino acids and lipids from sugars, and the fermentation of organic substrates, were energetically driven by electron transfer reactions resulting in carbon redox disproportionation (Weber, 1997). Redox disproportionation--the spontaneous (energetically favorable) direction of carbon group transformation in biosynthesis--is brought about and driven by the energetically downhill transfer of electron pairs from more oxidized carbon groups (with lower half-cell reduction potentials) to more reduced carbon groups (with higher half-cell reduction potentials). In this report, we compare the redox and kinetic properties of carbon groups in order to evaluate the relative biosynthetic capability of organic substrates, and to identify the optimal biosubstrate. This analysis revealed that sugars (monocarbonyl alditols) are the optimal biosynthetic substrate because they contain the maximum number of biosynthetically useful high energy electrons/carbon atom while still containing a single carbonyl group needed to kinetically facilitate their conversion to useful biosynthetic intermediates. This conclusion applies to aqueous life throughout the Universe because it is based on invariant aqueous carbon chemistry--primarily, the universal reduction potentials of carbon groups.

  20. Heterogeneous Two-Phase Pillars in Epitaxial NiFe 2 O 4 -LaFeO 3 Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comes, Ryan B.; Perea, Daniel E.; Spurgeon, Steven R.

    2017-07-10

    Self-assembled epitaxial oxide nanocomposites have been explored for a wide range of applications, including multiferroic and magnetoelectric properties, plasmonics, and catalysis. These so-called “vertically aligned nanocomposites” form spontaneously during the deposition process when segregation into two phases is energetically favorable as compared to a solid solution. However, there has been surprisingly little work understanding the driving forces that govern the synthesis of these materials, which can include point defect energetics, surface diffusion, and interfacial energies. To explore these factors, La-Ni-Fe-O films have been synthesized by molecular beam epitaxy and it is shown that these phase segregate into spinel-perovskite nanocomposites. Usingmore » complementary scanning transmission electron microscopy and atom-probe tomography, the elemental composition of each phase is examined and found that Ni ions are exclusively found in the spinel phase. From correlative analysis, a model for the relative favorability of the Ni2+ and Ni3+ valences under the growth conditions is developed. It is shown that multidimensional characterization techniques provide previously unobserved insight into the growth process and complex driving forces for phase segregation.« less

  1. Sub-grain induced crack deviation in multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Lv; Nelias, Daniel; Bardel, Didier; Wang, Meng; Marie, Benoit

    2017-06-01

    The fracture process in crystalline silicon is dictated by energy dissipation. Here, we show that sub-grains can deviate the crack path from the most energetically favorable ( 111) plane. Albeit a small misorientation across the sub-grain boundary is identified, upon entering into the sub-grain region, the crack either slightly deviates from the ideal ( 111) plane or directly chooses the secondly most favorable ( 110) one. We propose that the deviation is related to the dislocation core in the ( 111) crystal plane, which leads to a discontinuous atom debonding process and consequently a pronounced lattice trapping. In this circumstance, localized crystal defects prevail in the fracture process of silicon, while energetical criterion fails to interpret the crack path.

  2. Tail loss compromises immunity in the many-lined skink, Eutropis multifasciata

    NASA Astrophysics Data System (ADS)

    Kuo, Chi-Chien; Yao, Chiou-Ju; Lin, Te-En; Liu, Hsu-Che; Hsu, Yu-Cheng; Hsieh, Ming-Kun; Huang, Wen-San

    2013-04-01

    Tail autotomy incurs energetic costs, and thus, a trade-off in resource allocation may lead to compromised immunity in lizards. We tested the hypothesis that tailless lizards will favor constitutive innate immunity responses over an energetically costly inflammatory response. The influence of fasting and colorful ornamentation was also investigated. We experimentally induced tail autotomy in the lizard Eutropis multifasciata and found that inflammation was suppressed by tail loss, but not further affected by fasting; the suppressive effect of colorful ornamentation was manifested only in males, but not in females. Constitutive innate immunity was not affected by any of these factors. As expected, only costly inflammation was compromised, and a less expensive constitutive innate immunity might be favored as a competent first-line defense during energetically demanding periods. After considering conventional trade-offs among tail regeneration and reproduction, further extending these studies to incorporate disease risk and how this influences escape responses to predators and future reproduction would make worthwhile studies.

  3. Spatial structure and electronic spectrum of TiSi{/n -} clusters ( n = 6-18)

    NASA Astrophysics Data System (ADS)

    Borshch, N. A.; Pereslavtseva, N. S.; Kurganskii, S. I.

    2014-10-01

    Results from optimizing the spatial structure and calculated electronic spectra of anion clusters TiSi{/n -} ( n = 6-18) are presented. Calculations are performed within the density functional theory. Spatial structures of clusters detected experimentally are established by comparing the calculated and experimental data. It is shown that prismatic and fullerene-like structures are the ones most energetically favorable for clusters TiSi{/n -}. It is concluded that these structures are basic when building clusters with close numbers of silicon atoms.

  4. Energetic basis on interactions between ferredoxin and ferredoxin NADP{sup +} reductase at varying physiological conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Misaki; Kim, Ju Yaen; Kume, Satoshi

    In spite of a number of studies to characterize ferredoxin (Fd):ferredoxin NADP{sup +} reductase (FNR) interactions at limited conditions, detailed energetic investigation on how these proteins interact under near physiological conditions and its linkage to FNR activity are still lacking. We herein performed systematic Fd:FNR binding thermodynamics using isothermal titration calorimetry (ITC) at distinct pH (6.0 and 8.0), NaCl concentrations (0–200 mM), and temperatures (19–28 °C) for mimicking physiological conditions in chloroplasts. Energetically unfavorable endothermic enthalpy changes were accompanied by Fd:FNR complexation at all conditions. This energetic cost was compensated by favorable entropy changes, balanced by conformational and hydrational entropy. Increases inmore » the NaCl concentration and pH weakened interprotein affinity due to the less contribution of favorable entropy change regardless of energetic gains from enthalpy changes, suggesting that entropy drove complexation and modulated affinity. Effects of temperature on binding thermodynamics were much smaller than those of pH and NaCl. NaCl concentration and pH-dependent enthalpy and heat capacity changes provided clues for distinct binding modes. Moreover, decreases in the enthalpy level in the Hammond's postulate-based energy landscape implicated kinetic advantages for FNR activity. All these energetic interplays were comprehensively demonstrated by the driving force plot with the enthalpy-entropy compensation which may serve as an energetic buffer against outer stresses. We propose that high affinity at pH 6.0 may be beneficial for protection from proteolysis of Fd and FNR in rest states, and moderate affinity at pH 8.0 and proper NaCl concentrations with smaller endothermic enthalpy changes may contribute to increase FNR activity. - Highlights: • Energetics of Fd:FNR binding were examined by considering physiological conditions. • NaCl and pH affect energetically Fd:FNR binding with minimal effects of temperature. • Enthalpy and heat capacity may modulate binding kinetics and modes for FNR activity. • Entropy drives complexation by overcoming unfavorable enthalpy and tunes affinity. • Driving force plot reveals condition-dependent energetic interplays for complexation.« less

  5. Energetic storm particle events in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Mcdonald, F.; Trainor, J.; Mihalov, J.; Wolfe, J.; Webber, W.

    1981-01-01

    The evolution of energetic particle events with increasing heliocentric distance is studied through events of Pioneers 10 and 11. Beyond 12 AU the events become the dominant type of solar particle event at 1 AU, and the combined effects of adiabatic cooling and volume expansion rule out the possibility that the particles represent the confinement of the original particle population behind the shock. It is not established whether the particles originate from the solar wind by injection via post-shock enhancements or are energetic solar particles further energized by the shock, although their very long lifetime favors the solar wind origin.

  6. The Reactions of Polycyclic Aromatic Hydrocarbons with OH

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    2000-01-01

    The OH radical adds to naphthalene and naphthalene cation without a barrier. For the neutrals, the most favorable path for this intermediate is the loss of the OH, and the next most favorable option is the loss of an H atom to form the alcohol. For the cation, the most favorable path appears to be a hydrogen migration followed by the loss of a hydrogen to form the alcohol. The OH at carbon atom 1 is energetically most favorable for both the initial complex and final product. This is true for both the neutrals and cations.

  7. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption processmore » of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.« less

  8. An ab-initio study of the energetics and geometry of sulfide, sulfite and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Konecke, B.; Fiege, A.; Simon, A. C.; Becker, U.

    2017-12-01

    We use ab-initio calculations to investigate the energetics and geometry of incorporation of S with its oxidation states S6+, S4+, and S2- into the apatite end-members fluor-, chlor-, and hydroxylapatite, [Ca10(PO4)6(F,Cl,OH)2]. The reaction energy of the balanced equation indicates the stability of the modeled S-incorporated apatite relative to the host apatite, the source, and sink phases. One possible coupled substitution mechanism involves the replacement of La3+ + PO43- ↔ Ca2+ + SO42-. Our results show that the incorporation of SO42- into La- and Na-bearing apatite, Ca8NaLa(PO4)6(F,Cl,OH)2, is energetically favored over the incorporation into La- and Si-bearing apatite, Ca9La(PO4)5(SiO4)(F,Cl,OH)2. Co-incorporation of SO42- and SO32- is energetically favored when the lone pair electrons of SO32- face towards the anion column site, compared to facing away from it. Full or partial incorporation of S2- is favored on the column anion site in the form of [Ca10(PO4)6S] and [Ca20(PO4)12SX2)], where X = F, Cl, or OH. Upon full incorporation (i.e., replacing all column ions by sulfide ions), S2- is positioned in the anion column at z = 0.5 (half way between the mirror planes at z = 1/4 and z = 3/4) in the energy-optimized structure. The calculated energies for partial incorporation of S2- demonstrate that in an energy-optimized structure, S2- is displaced from the mirror plane at z = 1/4 or 3/4, by 1.0 to 1.6 Å, depending on the surrounding species (F-, Cl- or OH-); however, the probability for S2- to be incorporated into the apatite structure is highest for chlorapatite end-members. Our results describe energetically feasible incorporation mechanisms for all three oxidations states of S (S6+, S4+, S2-) in apatite, along with structural distortion and concurring electronic structure changes. These observations are consistent with recently published experimental results (Konecke et al. 2017) that demonstrate S6+, S4+ and S2- incorporation into apatite, where the ratio of S6+/∑S in apatite is controlled by oxygen fugacity (fO2). The new computational results coupled with published experimental data provide the basis for using S in apatite as a geochemical proxy to trace variations in oxygen fugacity of magmatic and magmatic-hydrothermal systems.

  9. [The principle of the energy minimum in ontogeny and the channeling of developmental processes].

    PubMed

    Ozerniuk, N D

    1989-01-01

    The principle of minimum of energy in ontogenesis has been formulated on the basis of data concerning age changes in energetic metabolism, as well as the influence of ecological factors on this process. According to this principle the smallest expenditures of energy are observed in the zone of the most favorable developmental conditions. The minimal level of energetic metabolism at every developmental stage that corresponds to the most stable state of organism is treated as homeostasis and the developmental stability is treated as homeorrhesis. Regulation mechanisms of energetic metabolism during ontogenesis and under the influence of environmental factors are analyzed.

  10. Growth energetics of germanium quantum dots by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Richard Joseph

    Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. We also describe experimental methods of island growth and characterization in order to understand the relevant physical processes and to interpret experimental observations for comparison with simulation. We show that pyramidal Ge islands with rebonded step {105} facets are energetically favorable compared to growth of planar Ge (2 x 8) on Si(001). We determine how the chemical potential of these islands varies with size, lateral spacing, and wetting layer thickness. We also illustrate the atomic-level structure of these islands with favorable formation energy. Intermixing can occur between the growing Ge film and the Si substrate. We show that although Ge prefers to wet the surface, entropy drives some fraction into the underlying layers. We present a simple model of intermixing by equilibration of the top crystal layers. The equilibration is performed with a flexible lattice Monte Carlo simulation. Ultimately, intermixing produces a temperature-dependent graded Ge concentration. The resulting chemical potential leads to the onset of islanding after 3-4 monolayers of deposition, consistent with experimental observations. The distribution of island sizes on a surface is determined by the relation of island energy to size. We find that there exists a minimum-energy island size due to the interaction of surface energy and bulk relaxation. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The distributions, with peak populations around 86 000 atoms, compare favorably with experiment. This work explores the driving force in growth of Ge on Si(001). The knowledge derived here explains why islanding occurs and provides guidance for the control of island self-assembly to construct useful microelectronic devices from quantum dots.

  11. Binding Site and Potency Prediction of Teixobactin and other Lipid II Ligands by Statistical Base Scoring of Conformational Space Maps.

    PubMed

    Lungu, Claudiu N; Diudea, Mircea V

    2018-01-01

    Lipid II, a peptidoglycan, is a precursor in bacterial cell synthesis. It has both hydrophilic and lipophilic properties. The molecule translocates a bacterial membrane to deliver and incorporate "building blocks" from disaccharide-pentapeptide into the peptidoglican wall. Lipid II is a valid antibiotic target. A receptor binding pocket may be occupied by a ligand in various plausible conformations, among which only few ones are energetically related to a biological activity in the physiological efficiency domain. This paper reports the mapping of the conformational space of Lipid II in its interaction with Teixobactin and other Lipid II ligands. In order to study computationally the complex between Lipid II and ligands, a docking study was first carried on. Docking site was retrieved form literature. After docking, 5 ligand conformations and further 5 complexes (denoted 00 to 04) for each molecule were taken into account. For each structure, conformational studies were performed. Statistical analysis, conformational analysis and molecular dynamics based clustering were used to predict the potency of these compounds. A score for potency prediction was developed. Appling lipid II classification according to Lipid II conformational energy, a conformation of Teixobactin proved to be energetically favorable, followed by Oritravicin, Dalbavycin, Telvanicin, Teicoplamin and Vancomycin, respectively. Scoring of molecules according to cluster band and PCA produced the same result. Molecules classified according to standard deviations showed Dalbavycin as the most favorable conformation, followed by Teicoplamin, Telvanicin, Teixobactin, Oritravicin and Vancomycin, respectively. Total score showing best energetic efficiency of complex formation shows Teixobactin to have the best conformation (a score of 15 points) followed by Dalbavycin (14 points), Oritravicin (12v points), Telvanicin (10 points), Teicoplamin (9 points), Vancomycin (3 points). Statistical analysis of conformations can be used to predict the efficiency of ligand - target interaction and consecutively to find insight regarding ligand potency and postulate about favorable conformation of ligand and binding site. In this study it was shown that Teixobactin is more efficient in binding with Lipid II compared to Vancomycin, results confirmed by experimental data reported in literature. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions.

    PubMed

    Bhushan, Bharat; Paquet, Louise; Halasz, Annamaria; Spain, Jim C; Hawari, Jalal

    2003-06-27

    Enzyme catalyzed biotransformation of the energetic chemical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is not known. The present study describes a xanthine oxidase (XO) catalyzed biotransformation of HMX to provide insight into the biodegradation pathway of this energetic chemical. The rates of biotransformation under aerobic and anaerobic conditions were 1.6+/-0.2 and 10.5+/-0.9 nmolh(-1)mgprotein(-1), respectively, indicating that anaerobic conditions favored the reaction. The biotransformation rate was about 6-fold higher using NADH as an electron-donor compared to xanthine. During the course of reaction, the products obtained were nitrite (NO(2)(-)), methylenedinitramine (MDNA), 4-nitro-2,4-diazabutanal (NDAB), formaldehyde (HCHO), nitrous oxide (N(2)O), formic acid (HCOOH), and ammonium (NH(4)(+)). The product distribution gave carbon and nitrogen mass-balances of 91% and 88%, respectively. A comparative study with native-, deflavo-, and desulfo-XO and the site-specific inhibition studies showed that HMX biotransformation occurred at the FAD-site of XO. Nitrite stoichiometry revealed that an initial single N-denitration step was sufficient for the spontaneous decomposition of HMX.

  13. Design of New Bridge-Ring Energetic Compounds Obtained by Diels-Alder Reactions of Tetranitroethylene Dienophile.

    PubMed

    He, Piao; Mei, Hao-Zheng; Wu, Le; Yang, Jun-Qing; Zhang, Jian-Guo; Cohen, Adva; Gozin, Michael

    2018-03-29

    The density functional theory method was employed to calculate three-dimensional structures for a series of novel explosophores. The design of new molecules (DA1-DA12) was based on the bridge-ring structures that could be formed via Diels-Alder (DA) reaction of selected nitrogen-rich dienes and tetranitroethylene dienophile. The feasibility of the proposed DA reactions was predicted on the basis of the molecular orbital theory. The strong interactions between the HOMO of dienes, with electron-donating groups (Diene2, Diene6, and Diene8), and the LUMO of tetranitroethylene dienophile suggested thermodynamically favorable formation of the desired DA reaction products. In addition to molecular structures of the explored DA compounds, their physicochemical and energetic properties were also calculated in detail. Due to compact bridge-ring structures, new energetic molecules have highly positive heats of formation (up to 1124.90 kJ·mol -1 ) and high densities (up to 2.04 g·cm -3 ). Also, as a result of all-right ratios of nitrogen and oxygen, most of the new compounds possess high detonation velocities (8.28-10.02 km·s -1 ) and high detonation pressures (30.87-47.83 GPa). Energetic compounds DA1, DA4, and DA12 exhibit a superior detonation performance over widely used HMX explosive, and DA5, DA7, and DA10 could be comparable to the state-of-the-art CL-20 and ONC explosives. Our proposed designs and synthetic methodology should provide a platform for the development of novel energetic materials with superior performance.

  14. Enthalpic Breakdown of Water Structure on Protein Active-Site Surfaces

    PubMed Central

    Haider, Kamran; Wickstrom, Lauren; Ramsey, Steven; Gilson, Michael K.; Kurtzman, Tom

    2016-01-01

    The principles underlying water reorganization around simple non-polar solutes are well understood and provide the framework for classical hydrophobic effect, whereby water molecules structure themselves around solutes so that they maintain favorable energetic contacts with both the solute and with other water molecules. However, for certain solute surface topographies, water molecules, due to their geometry and size, are unable to simultaneously maintain favorable energetic contacts with both the surface and neighboring water molecules. In this study, we analyze the solvation of ligand-binding sites for six structurally diverse proteins using hydration site analysis and measures of local water structure, in order to identify surfaces at which water molecules are unable to structure themselves in a way that maintains favorable enthalpy relative to bulk water. These surfaces are characterized by a high degree of enclosure, weak solute-water interactions, and surface constraints that induce unfavorable pair interactions between neighboring water molecules. Additionally, we find that the solvation of charged side-chains in an active site generally results in favorable enthalpy but can also lead to pair interactions between neighboring water molecules that are significantly unfavorable relative to bulk water. We find that frustrated local structure can occur not only in apolar and weakly polar pockets, where overall enthalpy tends to be unfavorable, but also in charged pockets, where overall water enthalpy tends to be favorable. The characterization of local water structure in these terms may prove useful for evaluating the displacement of water from diverse protein active-site environments. PMID:27169482

  15. Interaction of tetraethoxysilane with OH-terminated SiO2 (0 0 1) surface: A first principles study

    NASA Astrophysics Data System (ADS)

    Deng, Xiaodi; Song, Yixu; Li, Jinchun; Pu, Yikang

    2014-06-01

    First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO2(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO2 film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO2 films while the other will lead to formation of disordered SiO2 films.

  16. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    PubMed Central

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  17. First principle calculation in FeCo overlayer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vishal, E-mail: vjain045@gmail.com; Lakshmi, N.; Jain, Vivek Kumar

    In this work the first principle electronic structure calculation is reported for FeCo/GaAs thin film system to investigate the effect of orientation on the electronic structural properties. A unit cell describing FeCo layers and GaAs layers is constructed for (100), (110), (111) orientation with vacuum of 30Å to reduce dimensions. It is found that although the (110) orientation is energetically more favorable than others, the magnetic moment is quite large in (100) and (111) system compared to the (110) and is due to the total DOS variation with orientation.

  18. Suppression of the two-dimensional electron gas in LaGaO3/SrTiO3 by cation intermixing

    PubMed Central

    Nazir, S.; Amin, B.; Schwingenschlögl, U.

    2013-01-01

    Cation intermixing at the n-type polar LaGaO3/SrTiO3 (001) interface is investigated by first principles calculations. Ti⇔Ga, Sr⇔La, and SrTi⇔LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3dxy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface. PMID:24296477

  19. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  20. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  1. A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2011-06-01

    The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.

  2. Probing energetics of Abeta fibril elongation by molecular dynamics simulations.

    PubMed

    Takeda, Takako; Klimov, Dmitri K

    2009-06-03

    Using replica exchange molecular dynamics simulations and an all-atom implicit solvent model, we probed the energetics of Abeta(10-40) fibril growth. The analysis of the interactions between incoming Abeta peptides and the fibril led us to two conclusions. First, considerable variations in fibril binding propensities are observed along the Abeta sequence. The peptides in the fibril and those binding to its edge interact primarily through their N-termini. Therefore, the mutations affecting the Abeta positions 10-23 are expected to have the largest impact on fibril elongation compared with those occurring in the C-terminus and turn. Second, we performed weak perturbations of the binding free energy landscape by scanning partial deletions of side-chain interactions at various Abeta sequence positions. The results imply that strong side-chain interactions--in particular, hydrophobic contacts--impede fibril growth by favoring disordered docking of incoming peptides. Therefore, fibril elongation may be promoted by moderate reduction of Abeta hydrophobicity. The comparison with available experimental data is presented.

  3. Level structure of 154Ho

    NASA Astrophysics Data System (ADS)

    Moon, Chang-Bum; Komatsubara, Tetsuro; Furuno, Kohei

    2013-10-01

    The excited states of the odd-odd 154Ho nucleus have been studied by using in-beam γ-ray spectroscopy with the 141Pr (16O, 3n) 154Ho reaction at Elab=75 MeV. The beam was provided by the 12UD Pelletron accelerator at the University of Tsukuba. In this work, the complicated decay pattern of low energy transitions just above the T1/2=3.10 min isomer have been established. In addition, a number of new states and γ-ray transitions, especially those associated with energetically favored band termination, have been observed for the first time in 154Ho. A negative collective band and its signature partner built on the 11- level are interpreted as being based on the πh11/2⊗νi13/2 configuration. A positive band built on the 10+ level is based on the πh11/2⊗νh9/2 configuration while another positive band built on the 9+ level is being associated with the πh11/2⊗νf7/2 configuration. An energetically favored level Jπ=19- can be interpreted as being attributed to the πh11/2⊗νi13/2 configuration coupled to the 8+ state in neighboring core 152Dy, namely, a four-quasiparticle alignment based on the [πh11/2νi13/2]11-⊗[ν(h9/2f7/2)]8- configuration. Another energetically favored state at Jπ=27- is assigned the six-quasiparticle [π(h11/2)3]27/2-⊗[ν(f7/2h9/2i13/2)]27/2- configuration.

  4. H2 CONSUMPTION DURING THE MICROBIAL REDUCTIVE DEHALOGENATION OF CHLORINATED PHENOLS AND TETRACHLOROETHENE

    EPA Science Inventory

    Competition for molecular hydrogen exists among hydrogen-utilizing microorganisms in anoxic environments, and evidence suggests that lower hydrogen concentrations are observed with more energetically favorable electron-accepting processes. The transfer of electrons to organochlor...

  5. New insights into hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds by rhenium(V)-dioxo complexes.

    PubMed

    Huang, Liangfang; Wang, Wenmin; Wei, Xiaoqin; Wei, Haiyan

    2015-04-23

    The hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds catalyzed by high-valent rhenium(V)-dioxo complex ReO2I(PPh3)2 (1) were studied computationally to determine the underlying mechanism. Our calculations revealed that the ionic outer-sphere pathway in which the organic substrate attacks the Si center in an η(1)-silane rhenium adduct to prompt the heterolytic cleavage of the Si-H bond is the most energetically favorable process for rhenium(V)-dioxo complex 1 catalyzed hydrosilylation of imines. The activation energy of the turnover-limiting step was calculated to be 22.8 kcal/mol with phenylmethanimine. This value is energetically more favorable than the [2 + 2] addition pathway by as much as 10.0 kcal/mol. Moreover, the ionic outer-sphere pathway competes with the [2 + 2] addition mechanism for rhenium(V)-dioxo complex 1 catalyzing the hydrosilylation of carbonyl compounds. Furthermore, the electron-donating group on the organic substrates would induce a better activity favoring the ionic outer-sphere mechanistic pathway. These findings highlight the unique features of high-valent transition-metal complexes as Lewis acids in activating the Si-H bond and catalyzing the reduction reactions.

  6. The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon

    NASA Technical Reports Server (NTRS)

    Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.; Beahm, L. P.; Dietrich, W. F.; Kleis, T.

    1995-01-01

    We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.

  7. Specificity in cationic interaction with poly(N-isopropylacrylamide).

    PubMed

    Du, Hongbo; Wickramasinghe, Sumith Ranil; Qian, Xianghong

    2013-05-02

    Classical molecular dynamics (MD) simulations were conducted for PNIPAM in 1 M monovalent alkali chloride salt solutions as well as in 0.5 M divalent Mg(2+) and Ca(2+) chloride salt solutions. It was found that the strength for the direct alkali ion-amide O binding is strongly correlated with the size of the ionic radius. The smallest Li(+) ion binds strongest to amide O, and the largest Cs(+) ion has the weakest interaction with the amide bond. For the divalent Mg(2+) and Ca(2+) ions, their interactions with the amide bond are weak and appear to be mediated by the water molecules, particularly in the case of Mg(2+), resulting from their strong hydration. The direct binding between the cations and amide O requires partial desovlation of the ions that is energetically unfavorable for Mg(2+) and also to a great extent for Ca(2+). The higher cation charge makes the electrostatic interaction more favorable but the dehydration process less favorable. This competition between electrostatic interaction and the dehydration process largely dictates whether the direct binding between the cation and amide O is energetically preferred or not. For monovalent alkali ions, it is energetically preferred to bind directly with the amide O. Moreover, Li(+) ion is also found to associate strongly with the hydrophobic residues on PNIPAM.

  8. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  9. Dynamical characterization of inactivation path in voltage-gated Na+ ion channel by non-equilibrium response spectroscopy

    PubMed Central

    Pal, Krishnendu; Gangopadhyay, Gautam

    2016-01-01

    ABSTRACT Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena. PMID:27367642

  10. Ab initio and density functional study on the mechanism of the C2H2++methanol reaction

    NASA Astrophysics Data System (ADS)

    Irle, Stephan; Morokuma, Keiji

    1999-09-01

    High level ab initio (G2MS and CASSCF) and density functional (B3LYP) calculations were carried out to study the mechanism of the ion-molecule reaction C2H2++CH3OH for four reaction channels: hydride abstraction from methanol (HA), proton transfer from acetylene cation (PT), charge transfer (CT), and covalent complex formation (CC) channel. For the CT channel, two pathways have been found: a usual nonadiabatic pathway via A'/A″ seam of crossing, and a low-energy adiabatic pathway through an initial intermediate; the latter may be the dominant process with favorable energies and a large impact parameter. The HA process involves a low-energy direct intermediate and a very low barrier to form C2H3+CH2OH+ and is also energetically favorable. The PT processes require passage over a high-energy transition state (TS) and are not important. One of the experimentally unobserved CC channels, formation of the COCC skeleton, is energetically favorable and there is no energetic reason for it not to take place; a "dynamic bottleneck" argument may have to be invoked to explain the experiment. The increase in reaction efficiency with the C-C stretch excitation may be justified by considering the TSs for two CT pathways, where the C-C distance changed substantially from that in the reactant C2H2+. Very qualitatively, the C2H2++CH3OH potential energy surface looks more like that of the C2H2++NH3 system than the C2H2++CH4 system, because of the differences in the ionization potentials: NH3˜CH3OH

  11. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE PAGES

    Alfonso, Dominic R.; Kauffman, Douglas R.

    2017-08-14

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  12. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, Dominic R.; Kauffman, Douglas R.

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  13. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

    PubMed

    Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W

    2012-06-01

    The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.

  14. Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential

    NASA Astrophysics Data System (ADS)

    Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk

    2018-06-01

    The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.

  15. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  16. Acid and alkali effects on the decomposition of HMX molecule: a computational study.

    PubMed

    Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei

    2011-11-03

    The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).

  17. Transmembrane helices containing a charged arginine are thermodynamically stable.

    PubMed

    Ulmschneider, Martin B; Ulmschneider, Jakob P; Freites, J Alfredo; von Heijne, Gunnar; Tobias, Douglas J; White, Stephen H

    2017-10-01

    Hydrophobic amino acids are abundant in transmembrane (TM) helices of membrane proteins. Charged residues are sparse, apparently due to the unfavorable energetic cost of partitioning charges into nonpolar phases. Nevertheless, conserved arginine residues within TM helices regulate vital functions, such as ion channel voltage gating and integrin receptor inactivation. The energetic cost of arginine in various positions along hydrophobic helices has been controversial. Potential of mean force (PMF) calculations from atomistic molecular dynamics simulations predict very large energetic penalties, while in vitro experiments with Sec61 translocons indicate much smaller penalties, even for arginine in the center of hydrophobic TM helices. Resolution of this conflict has proved difficult, because the in vitro assay utilizes the complex Sec61 translocon, while the PMF calculations rely on the choice of simulation system and reaction coordinate. Here we present the results of computational and experimental studies that permit direct comparison with the Sec61 translocon results. We find that the Sec61 translocon mediates less efficient membrane insertion of Arg-containing TM helices compared with our computational and experimental bilayer-insertion results. In the simulations, a combination of arginine snorkeling, bilayer deformation, and peptide tilting is sufficient to lower the penalty of Arg insertion to an extent such that a hydrophobic TM helix with a central Arg residue readily inserts into a model membrane. Less favorable insertion by the translocon may be due to the decreased fluidity of the endoplasmic reticulum (ER) membrane compared with pure palmitoyloleoyl-phosphocholine (POPC). Nevertheless, our results provide an explanation for the differences between PMF- and experiment-based penalties for Arg burial.

  18. Design of highly selective ethanol dehydration nanocatalysts for ethylene production.

    PubMed

    Austin, Natalie; Kostetskyy, Pavlo; Mpourmpakis, Giannis

    2018-02-22

    Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal-oxide-protected metal nanoclusters (M 13 X 4 O 12 , with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters (e.g. Cu 13 Al 4 O 12 ) make them attractive catalysts for the selective dehydration of alcohols to olefins.

  19. Comparative surface energetic study of Matrigel® and collagen I interactions with endothelial cells.

    PubMed

    Hill, Michael J; Sarkar, Debanjan

    2017-07-01

    Understanding of the surface energetic aspects of the spontaneously deposited proteins on biomaterial surfaces and how this influences cell adhesion and differentiation is an area of regenerative medicine that has not received adequate attention. Current controversies surround the role of the biomaterial substratum surface chemistry, the range of influence of said substratum, and the effects of different surface energy components of the protein interface. Endothelial cells (ECs) are a highly important cell type for regenerative medicine applications, such as tissue engineering, and In-vivo they interact with collagen I based stromal tissue and basement membranes producing different behavioral outcomes. The surface energetic properties of these tissue types and how they control EC behavior is not well known. In this work we studied the surface energetic properties of collagen I and Matrigel ® on various previously characterized substratum polyurethanes (PU) via contact angle analysis and examined the subsequent EC network forming characteristics. A combinatorial surface energy approach was utilized that compared Zisman's critical surface tension, Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT). We found that the unique, rapid network forming characteristics of ECs on Matrigel ® could be attributed to the apolar or monopolar basic interfacial characteristics according to Zisman/Kaelble or vOGCT, respectively. We also found a lack of significant substratum influence on EC network forming characteristics for Matrigel ® but collagen I showed a distinct influence where more apolar PU substrata tended to produce higher Lewis acid character collagen I interfaces which led to a greater interaction with ECs. Collagen I interfaces on more polar PU substrata lacked Lewis acid character and led to similar EC network characteristics as Matrigel ® . We hypothesized that bipolar character of the protein film favored cell-substratum over cell-cell adhesive interactions which resulted in less rapidly forming but more stable networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface

    PubMed Central

    Ou, Shuching; Patel, Sandeep

    2014-01-01

    We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166

  1. Energetics of global ocean tides from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  2. The Structural Basis for Matrix Metalloproteinase 1 Catalyzed Collagenolysis

    PubMed Central

    Bertini, Ivano; Fragai, Marco; Luchinat, Claudio; Melikian, Maxime; Toccafondi, Mirco; Lauer, Janelle L.; Fields, Gregg B.

    2012-01-01

    The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782–785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray “closed” conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally-derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function. PMID:22239621

  3. Cu doped diamond: Effect of charge state and defect aggregation on spin interactions in a 3d transition metal doped wide band-gap semiconductor

    NASA Astrophysics Data System (ADS)

    Benecha, E. M.; Lombardi, E. B.

    2018-05-01

    We present a first principles study of Cu in diamond using DFT+U electronic structure methods, by carefully considering the impact of co-doping, charge state, and Fermi level position on its stability, lattice location, spin states, and electronic properties. We show that the energetic stability and spin states of Cu are strongly dependent on the Fermi level position and the type of diamond co-doping, with Cu being energetically more favorable in n-type or p-type co-doped diamond compared to intrinsic diamond. Since Cu has been predicted to order magnetically in a number of other wide band-gap semiconductors, we have also evaluated this possibility for Cu doped diamond. We show that while Cu exhibits strong spin interactions at specific interatomic separations in diamond, a detailed consideration of the impact of Fermi level position and Cu aggregation precludes magnetic ordering, with Cu forming non-magnetic, antiferromagnetic, or paramagnetic clusters. These results have important implications in the understanding of the properties of transition metal dopants in diamond for device applications.

  4. NO Chemisorption on Cu/SSZ-13: a Comparative Study from Infrared Spectroscopy and DFT Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Renqin; McEwen, Jean-Sabin; Kollar, Marton

    The locations and energies of Cu ions in a Cu/SSZ-13 zeolite catalyst were investigated by density functional theory (DFT) calculations. For 'naked' Cu2+ ions (i.e., Cu2+ ions with no ligands in their coordination spheres other than zeolite lattice oxygen atoms), the more energetically favorable sites are within a 6-membered ring. However, with the presence of various adsorbates, the energy difference between 6- and 8-membered ring locations greatly diminishes. Specifically, Cu2+ ions are substantially stabilized by -OH ligands (as [CuII(OH)]+), making the extra-framework sites in an 8-membered ring energetically more favorable than 6-membered ring sites. Under fully dehydrated high vacuum conditionsmore » with different Si/Al and Cu/Al ratios, three chemisorbed NO species coexist upon exposure of NO to Cu/SSZ-13: NO+, Cu2+-NO and Cu+-NO. The relative signal intensities for these bands vary greatly with Si/Al ratios. The vibrational frequency of chemisorbed NO was found to be very sensitive to the location of Cu2+ ions. On the one hand, with the aid from DFT calculations, the nature for these vibrations can be assigned in detail. On the other hand, the relative intensities for various Cu2+-NO species provide a good measure of the nature of Cu2+ ions as functions of Si/Al and Cu/Al ratios and the presence of humidity. These new findings cast doubt on the generally accepted proposal that only Cu2+ ions located in 6-membered rings are catalytically active for NH3-SCR.« less

  5. Co-doped phosphorene: Enhanced sensitivity of CO gas sensing

    NASA Astrophysics Data System (ADS)

    Lei, S. Y.; Luan, S.; Yu, H.

    2018-03-01

    First-principle calculation was carried out to systematically investigate carbon monoxide (CO) adsorption on pristine and cobalt (Co)-doped phosphorenes (Co-bP). Whether or not CO is adsorped, pristine phosphorene is a direct-band-gap semiconductor. However, the bandgap of Co-bP experiences direct-to-indirect transition after CO molecule adsorption, which will affect optical absorption considerably, implying that Co doping can enhance the sensitivity of phosphorene as a CO gas sensor. Moreover, Co doping can improve an adsorption energy of CO to 1.31 eV, as compared with pristine phosphorene (0.12 eV), also indicating that Co-bP is energetically favorable for CO gas sensing.

  6. Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-04-01

    The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.

  7. Seasonal Energetic Stress in a Tropical Forest Primate: Proximate Causes and Evolutionary Implications

    PubMed Central

    Foerster, Steffen; Cords, Marina; Monfort, Steven L.

    2012-01-01

    Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis) we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs) as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items) and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves) and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species of similar body size. Our findings highlight how the study of stress responses can provide insights into the proximate control of reproductive strategies. PMID:23209651

  8. Seasonal energetic stress in a tropical forest primate: proximate causes and evolutionary implications.

    PubMed

    Foerster, Steffen; Cords, Marina; Monfort, Steven L

    2012-01-01

    Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis) we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs) as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items) and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves) and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species of similar body size. Our findings highlight how the study of stress responses can provide insights into the proximate control of reproductive strategies.

  9. Energy Level Alignment at the Interface between Linear-Structured Benzenediamine Molecules and Au(111) Surface

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhenfei; Cooper, Valentino; Neaton, Jeffrey

    Using density functional theory with model self-energy corrections, we calculate the adsorption energetics and geometry, and the energy level alignment of benzenediamine (BDA) molecules adsorbed on Au(111) surfaces. Our calculations show that linear structures of BDA, stabilized via hydrogen bonds between amine groups, are energetically more favorable than monomeric phases. Moreover, our self-energy-corrected calculations of energy level alignment show that the highest occupied molecular orbital energy of the BDA linear structure is deeper relative to the Fermi level relative to the isolated monomer and agrees well with the values measured with photoemission spectroscopy. This work supported by DOE.

  10. Small-scale Detonation Velocity Measurement of Select CL-20 Cocrystals

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Vasant; Gunduz, I. Emre; Son, Steven F.

    2017-06-01

    The challenge of developing novel energetic materials makes cocrystallization using existing energetic molecules useful. Cocrystallization of CL-20 with other high explosives such as HMX has been demonstrated previously to yield novel energetic materials and may have favorable detonation performance. However, detonation performance characterization of these cocrystals is challenging due to limited availability of material. Also, the contribution of bonding energy between coformers contained within the cocrystal is not well-understood. We present the comparison of steady detonation velocities of CL-20 cocrystals to their corresponding physical mixtures using microwave interferometry. With less than 1.5 g of the cocrystal material contained within 6.52 mm diameter charges, shot-to-shot variation in detonation velocity of only about 100 m/s are achievable with this technique. This variation is adequate to resolve relatively small differences between physical mixed explosive molecules and cocrystals.

  11. Reactivity of CF(n) (n = 1-3) Radicals with a Silica Surface

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra

    1999-01-01

    The trends in reactivity of CF(n) radicals with SiO2 and the site selectivity of the attack are studied using two different cluster models. The reaction barriers for the most energetically favorable reaction are computed. It is shown that CF(n) radicals are fairly unreactive towards SiO2.

  12. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.

    PubMed

    Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph

    2016-03-07

    There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.

  13. Electronic structure and optical properties of Ta-doped and (Ta, N)-codoped SrTiO3 from hybrid functional calculations

    NASA Astrophysics Data System (ADS)

    Liu, Yanyu; Zhou, Wei; Wu, Ping

    2017-02-01

    A systematic study has been carried out to research the effect of Ta monodoping and (Ta, N)-codoping on the electronic structure and optical properties of SrTiO3. The results indicate that the incorporation of N into the SrTiO3 lattice is in favor of the substitution of Ta at a Ti site, which is the most favorable structure with respect to both the energetic stability and high photocatalytic activity. Furthermore, the carrier recombination centers induced by Ta monodoping are passivated in the (Ta, N)-codoped SrTiO3 system with Ta at a Ti site. Simultaneous incorporation of N and Ta results in a band gap decreasing about 0.7 eV due to the appearance of the new states hybridized by N-p states with the O-p states above the valence band. The band alignment verifies that the (Ta, N)-codoped SrTiO3 simultaneously meets the criteria of band-edge energetic positions and band gap for the overall water splitting under visible light.

  14. Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation

    PubMed Central

    Nabeebaccus, Adam A.; Zoccarato, Anna; Hafstad, Anne D.; Santos, Celio X.C.; Brewer, Alison C.; Zhang, Min; Beretta, Matteo; West, James A.; Eykyn, Thomas R.; Shah, Ajay M.

    2017-01-01

    Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. PMID:29263294

  15. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  16. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    PubMed

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  17. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  18. Oxygen vacancy chain and conductive filament formation in hafnia

    NASA Astrophysics Data System (ADS)

    Xue, Kan-Hao; Miao, Xiang-Shui

    2018-04-01

    The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.

  19. Clinical Potential of Prefusion RSV F-specific Antibodies.

    PubMed

    Rossey, Iebe; McLellan, Jason S; Saelens, Xavier; Schepens, Bert

    2018-03-01

    Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in the very young. The RSV fusion protein (F) is essential for virus entry because it mediates viral and host membrane fusion. During this fusion process F is converted from a metastable prefusion conformation into an energetically favored postfusion state. Antibodies that target F can prevent viral entry and reduce disease caused by RSV. During recent years, many prefusion F-specific antibodies have been described. These antibodies typically have stronger RSV-neutralizing activity compared to those that also bind F in the postfusion conformation. Here, we describe how F-specific antibodies protect against RSV and why specifically targeting prefusion F could have great clinical potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Investigation of copper(II) binding to the protein precursor of Non-Amyloid-Beta Component of Alzheimer Disease Amyloid Plaque

    NASA Astrophysics Data System (ADS)

    Rose, Francis; Hodak, Miroslav; Bernholc, Jerry

    2007-03-01

    The Non-Amyloid-Beta Component Precursor (NACP) is a natively unfolded synaptic protein that is implicated in Alzheimers and Parkinsons diseases. Its aggregation into fibrillar structures is accelerated by the binding of copper(II). Experimental studies suggest that the dominant copper binding site is located at the histidine residue in NACP. Based on this evidence we assembled a model fragment of the binding site and used DFT to analyze the conformational details of the most probable binding motifs. We investigated the overall conformational effects with classical MD by constraining the copper binding site to the most energetically favorable geometry obtained from the DFT calculations. These results are compared and contrasted with those of the unbound NACP.

  1. Stability of hydrogenated graphene: a first-principles study

    DOE PAGES

    Yi, Ding; Yang, Liu; Xie, Shijie; ...

    2015-02-10

    In order to explain the disagreement between present theoretical and experimental investigations on the stability of hydrogenated graphene, we have systematically studied hydrogenated graphene with different configurations from the consideration of single-side and double-side adsorption using first-principles calculations. Both binding energy and formation energy are calculated to characterize the stability of the system. It is found that single-side hydrogenated graphene is always unstable. However, for double-side hydrogenation, some configurations are stable due to the increased carbon–carbon sp 3 hybridization compared to single-side hydrogenation. Furthermore, it is found that the system is energetically favorable when an equal number of hydrogen atomsmore » are adsorbed on each side of the graphene.« less

  2. An improved quasi-diabatic representation of the 1, 2, 3{sup 1}A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Malbon, Christopher L., E-mail: clmalbon@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-03-28

    In a recent work we constructed a quasi-diabatic representation, H{sup d}, of the 1, 2, 3{sup 1}A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H{sup d} accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H{sup d} for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accuratemore » H{sup d} compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λ{sub phot} ∼ 248 nm.« less

  3. C-PCM based calculation of energy profiles for proton transfer in phosphorus-containing acid- N, N-dimethylformamide complexes

    NASA Astrophysics Data System (ADS)

    Fedorova, I. V.; Khatuntseva, E. A.; Krest'yaninov, M. A.; Safonova, L. P.

    2016-02-01

    Proton transfer along the hydrogen bond in complexes of DMF with H3PO4, H3PO3, CH3H2PO3, and their dimers has been investigated by the B3LYP/6-31++G** method in combination with the C-PCM model. When the Oacid···ODMF distance ( R) in the scanning procedure is not fixed, the energy profile in all cases has a single well. When this distance is fixed, there can be a proton transfer in all of the complexes in the gas phase at R > 2.6 Å; if solvation is taken into account, proton transfer can take place at R > 2.4 Å ( R > 2.5 Å for DMF complexes with CH3H2PO3 and its dimer). The height of the energy barrier to proton transfer increases with increasing R. Proton transfer is energetically most favorable in the DMF-phosphoric acid complexes. The structural and energetic characteristics of the hydrogen-bonded complexes calculated on the basis of the solvation model are compared with the same parameters for the complexes in the gas phase.

  4. Analysis of inter-residue contacts reveals folding stabilizers in P-loops of potassium, sodium, and TRPV channels.

    PubMed

    Korkosh, V S; Zhorov, B S; Tikhonov, D B

    2016-05-01

    The family of P-loop channels includes potassium, sodium, calcium, cyclic nucleotide-gated and TRPV channels, as well as ionotropic glutamate receptors. Despite vastly different physiological and pharmacological properties, the channels have structurally conserved folding of the pore domain. Furthermore, crystallographic data demonstrate surprisingly similar mutual disposition of transmembrane and membrane-diving helices. To understand determinants of this conservation, here we have compared available high-resolution structures of sodium, potassium, and TRPV1 channels. We found that some residues, which are in matching positions of the sequence alignment, occur in different positions in the 3D alignment. Surprisingly, we found 3D mismatches in well-packed P-helices. Analysis of energetics of individual residues in Monte Carlo minimized structures revealed cyclic patterns of energetically favorable inter- and intra-subunit contacts of P-helices with S6 helices. The inter-subunit contacts are rather conserved in all the channels, whereas the intra-subunit contacts are specific for particular types of the channels. Our results suggest that these residue-residue contacts contribute to the folding stabilization. Analysis of such contacts is important for structural and phylogenetic studies of homologous proteins.

  5. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties and defect energetics, important properties for UO2 because of the high temperature and defective reactor environment.. Previously published potentials could only yield accurate defect energetics or accurate phonons, but never both.

  6. A theoretical comparison between two ruminal electron sinks

    PubMed Central

    Ungerfeld, Emilio M.

    2013-01-01

    Dihydrogen accumulation resulting from methanogenesis inhibition in the rumen is an energy loss and can inhibit fermentation. The objective of this analysis was to compare the energetic and nutritional consequences of incorporating H2 into reductive acetogenesis or additional propionate production beyond the acetate to propionate shift occurring along with methanogenesis inhibition. Stoichiometric consequences were calculated for a simulated fermentation example. Possible nutritional consequences are discussed. Incorporating H2 into reductive acetogenesis or additional propionate production resulted in equal heat of combustion output in volatile fatty acids (VFA). Incorporation of H2 into reductive acetogenesis could result in moderate decrease in ruminal pH, although whole-animal buffering mechanisms make pH response difficult to predict. Research would be needed to compare the microbial protein production output. There could be post-absorptive implications due to differences in VFA profile. Electron incorporation into reductive acetogenesis could favor energy partition toward milk, but increase risk of ketosis in high-producing dairy cows on ketogenic diets. Greater propionate production could favor milk protein production, but may be less desirable in animals whose intake is metabolically constrained, like feedlot steers. Because of the different nutritional implications, and because practical solutions to incorporate H2 into either pathway are not yet available, it is recommended to research both alternatives. PMID:24198813

  7. A combined calorimetric and computational study of the energetics of rare earth substituted UO 2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Solomon, Jonathan M.; Asta, Mark

    2015-09-01

    The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less

  8. The energetics of rearrangement and water elimination reactions in the radiolysis of the DNA bases in aqueous solution (eaq- and *OH attack): DFT calculations.

    PubMed

    Naumov, Sergej; von Sonntag, Clemens

    2008-03-01

    DFT calculations on the relative stability of various nucleobase radicals induced by e(aq)(-) and (*)OH have been carried out for assessing the energetics of rearrangements and water elimination reactions, taking the solvent effect of water into account. Uracil and thymine radical anions are protonated fast at O2 and O4, whereby the O2-protonated anions are higher in energy (50 kJ mol(-1), equivalent to a 9-unit lower pK(a)). The experimentally observed pK(a)=7 is thus that of the O4-protonated species. Thermodynamically favored protonation occurs slowly at C6 (driving force, thymine: 49 kJ mol(-1), uracil: 29 kJ mol(-1)). The cytosine radical anion is rapidly protonated by water at N3. Final protonation at C6 is disfavored here. The kinetically favored pyrimidine C5 (*)OH adducts rearrange into the thermodynamically favored C6 (*)OH adducts (driving force, thymine: 42 kJ mol(-1)). Very similar in energy is a water elimination that leads to the Ura-5-methyl radical. Purine (*)OH adducts at C4 and C5 (plus C2 in guanine) eliminate water in exothermic reactions, while water elimination from the C8 (*)OH adducts is endothermic. The latter open the ring en route to the FAPY products, an H transfer from the C8(*)OH to N9 being the most likely process.

  9. An insight into the origin of room-temperature ferromagnetism in SnO2 and Mn-doped SnO2 quantum dots: an experimental and DFT approach.

    PubMed

    Manikandan, Dhamodaran; Boukhvalov, D W; Amirthapandian, S; Zhidkov, I S; Kukharenko, A I; Cholakh, S O; Kurmaev, E Z; Murugan, Ramaswamy

    2018-02-28

    SnO 2 and Mn-doped SnO 2 single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO 2 under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO 2 QDs. X-ray photoelectron spectroscopy (XPS) and first-principles modeling of doped QDs revealed that the lower doping concentration of Mn favored the formation of MnO-like (Mn 2+ ) structures in defect-rich areas and the higher doping concentration of Mn led to the formation of multiple configurations of Mn (Mn 2+ and Mn 3+ ) in the stable surfaces of SnO 2 QDs. Electronic absorption spectra indicated the characteristic spin allowed ligand field transitions of Mn 2+ and Mn 3+ and the red shift in the band gap. DFT calculations clearly indicated that only the substitutional dopant antiferromagnetic configurations were more energetically favorable. The gradual increase of magnetization at a low level of Mn-doping could be explained by the prevalence of antiferromagnetic manganese-vacancy pairs. Higher concentrations of Mn led to the appearance of ferromagnetic interactions between manganese and oxygen vacancies. The increase in the concentration of metallic dopants caused not just an increase in the total magnetic moment of the system but also changed the magnetic interactions between the magnetic moments on the metal ions and oxygen. The present study provides new insight into the fundamental understanding of the origin of ferromagnetism in transition metal-doped QDs.

  10. First-principles study of uranium carbide: Accommodation of point defects and of helium, xenon, and oxygen impurities

    NASA Astrophysics Data System (ADS)

    Freyss, Michel

    2010-01-01

    Point defects and volatile impurities (helium, xenon, oxygen) in uranium monocarbide UC are studied by first-principles calculations. Preliminarily, bulk properties of UC and of two other uranium carbide phases, UC2 and U2C3 , are calculated in order to compare them to experimental data and to get confidence in the use of the generalized gradient approximation for this class of compounds. The subsequent study of different types of point defects shows that the carbon sublattice best accommodates the defects. The perturbation of the crystal structure induced by the defects is weak and the interaction between defects is found short range. Interstitial carbon dumbbells possibly play an important role in the diffusion of carbon atoms. The most favorable location of diluted helium, xenon, and oxygen impurities in the UC crystal lattice is then determined. The rare-gas atoms occupy preferably a uranium substitution site or a uranium site in a U-C bivacancy. But their incorporation in UC is, however, not energetically favorable, especially for xenon, suggesting their propensity to diffuse in the material and/or form bubbles. On the other hand, oxygen atoms are very favorably incorporated as diluted atoms in the UC lattice, confirming the easy oxidation of UC. The oxygen atoms preferably occupy a carbon substitution site or the carbon site of a U-C bivacancy. Our results are compared to available experimental data on UC and to similar studies by first-principles calculations for other carbides and nitrides with the rock-salt structure.

  11. Investigating Differences in Gas-Phase Conformations of 25-Hydroxyvitamin D3 Sodiated Epimers using Ion Mobility-Mass Spectrometry and Theoretical Modeling

    NASA Astrophysics Data System (ADS)

    Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Beekman, Christopher R.; Roitberg, Adrian E.; Yost, Richard A.

    2017-08-01

    Drift tube ion mobility coupled with mass spectrometry was used to investigate the gas-phase structure of 25-hydroxyvitamin D3 (25OHD3) and D2 (25OHD2) epimers, and to evaluate its potential in rapid separation of these compounds. Experimental results revealed two distinct drift species for the 25OHD3 sodiated monomer, whereas only one of these conformations was observed for its epimer (epi25OHD3). The unique species allowed 25OHD3 to be readily distinguished, and the same pattern was observed for 25OHD2 epimers. Theoretical modeling of 25OHD3 epimers identified energetically stable gas-phase structures, indicating that both compounds may adopt a compact "closed" conformation, but that 25OHD3 may also adopt a slightly less energetically favorable "open" conformation that is not accessible to its epimer. Calculated theoretical collision cross-sections for these structures agreed with experimental results to <2%. Experimentation indicated that additional energy in the ESI source (i.e., increased temperature, spray voltage) affected the ratio of 25OHD3 conformations, with the less energetically favorable "open" conformation increasing in relative intensity. Finally, LC-IM-MS results yielded linear quantitation of 25OHD3, in the presence of the epimer interference, at biologically relevant concentrations. This study demonstrates that ion mobility can be used in tandem with theoretical modeling to determine structural differences that contribute to drift separation. These separation capabilities provide potential for rapid (<60 ms) identification of 25OHD3 and 25OHD2 in mixtures with their epimers.

  12. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    PubMed

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  13. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments

    PubMed Central

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-01-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933

  14. Holographic superconductor vortices.

    PubMed

    Montull, Marc; Pomarol, Alex; Silva, Pedro J

    2009-08-28

    A gravity dual of a superconductor at finite temperature has been recently proposed. We present the vortex configuration of this model and study its properties. In particular, we calculate the free energy as a function of an external magnetic field, the magnetization, and the superconducting density. We also find the two critical magnetic fields that define the region in which the vortex configurations are energetically favorable.

  15. A New Paradigm to Identify Reaction Pathways in Gas-phase

    DTIC Science & Technology

    2015-04-27

    uses a history-dependent bias to favor the exploration of new states. Briefly, the well - tempered Metadynamics (WTM) technique was introduced to...Social PeRmutation INvarianT coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 WTM well - tempered Metadynamics ...overcome energetic barriers is not new [13], we used the basic algorithm that is use in Metadynamics (META) [14], an already well -tested method [15] that

  16. Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics

    PubMed Central

    Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián

    2009-01-01

    Abstract The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics. PMID:19527656

  17. Interstitial loop transformations in FeCr

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less

  18. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    PubMed

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  19. Insight into the effect of promoter Co on C2 oxygenate formation from syngas on CoCu(100) and Cu(100): A comparative DFT study

    NASA Astrophysics Data System (ADS)

    Sun, Xuanyu; Yu, Yingzhe; Zhang, Minhua

    2018-03-01

    Density functional theory calculations have been employed to investigate the effect of promoter Co on C2 oxygenate formation from syngas on pure Cu(100) and two kinds of Co-Cu bimetallic surfaces. Based on the results of previous studies that CH3O is a key intermediate in ethanol formation on Cu catalyst, five reactions starting from CH3O were taken into consideration. Different from the results on Cu(100) that CH3OH is the most favorable product on pure Co sites, CH3 formation is more favorable both kinetically and thermodynamically than CH3OH formation, which leads to more CH3 available for CHO insertion to form C2 oxygenates. On the other hand, Co-Cu bimetallic sites can facilitate CHO insertion into CH3 energetically, which is favorable for carbon chain growth. And the addition of Co can make the barrier of CH3 hydrogenation and CH3 coupling to CH4 and CH3CH3 higher, making CH3CHO much more selective than hydrocarbons. In conclusion, by introducing Co into Cu catalyst, the productivity and selectivity of C2 oxygenate precursor of ethanol can be effectively improved. The optimum Co-Cu catalyst should contain Cu ensembles and Co ensembles with proper sizes, and offer enough Co-Cu bimetallic sites at the same time.

  20. B 36N 36 fullerene-like nanocages: A novel material for drug delivery

    NASA Astrophysics Data System (ADS)

    Ganji, M. D.; Yazdani, H.; Mirnejad, A.

    2010-07-01

    We study interaction between B 36N 36 fullerene-like nanocage and glycine amino acid from the first- principles. Binding energy is calculated and glycine binding to the pure C 60 fullerene is compared. We also analyze the electronic structure and charge Mulliken population for the energetically most favorable complexes. Our results indicate that glycine can form stable bindings with B 36N 36 nanocage via their carbonyl oxygen (O) active site while, the C 60 fullerene might be unable to form stable bindings to glycine amino acid via their active sites, which is consistence with recent experimental and theoretical investigations. Thus, we arrive at the prediction that the B 36N 36 nanocage can be implemented as a novel material for drug delivery applications.

  1. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2017-10-18

    The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.

  2. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (deltaG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.

  3. Chemical Constraints Governing the Origin of Metabolism: The Thermodynamic Landscape of Carbon Group Transformations under Mild Aqueous Conditions

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2002-08-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (ΔG) were estimated for four types of reactions of biochemical importance - carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (ΔG < -3.5 kcal/mol), reversible (ΔG between +/-3.5 kcal/mol), or unfavorable (ΔG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.

  4. Mechanisms and Kinetics of Alkaline Hydrolysis of the Energetic Nitroaromatic Compounds 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Ritchie, Julia J.

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH– has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation ofmore » an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH–. For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions—and potential variability between the hydrolysis mechanisms for different NACs—mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure–activity relationships, QSARs) for hydrolysis of other NACs.« less

  5. Mechanisms and kinetics of alkaline hydrolysis of the energetic nitroaromatic compounds 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN).

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Ritchie, Julia J; Tratnyek, Paul G

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH(-) has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation of an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH(-). For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions-and potential variability between the hydrolysis mechanisms for different NACs-mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure-activity relationships, QSARs) for hydrolysis of other NACs.

  6. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  7. Variation in testosterone and corticosterone in amphibians and reptiles: relationships with latitude, elevation, and breeding season length.

    PubMed

    Eikenaar, Cas; Husak, Jerry; Escallón, Camilo; Moore, Ignacio T

    2012-11-01

    Latitudinal variation in life-history traits has been the focus of numerous investigations, but underlying hormonal mechanisms have received much less attention. Steroid hormones play a central role in vertebrate reproduction and may be associated with life-history trade-offs. Consequently, circulating concentrations of these hormones vary tremendously across vertebrates, yet interspecific geographic variation in male hormone concentrations has been studied in detail only in birds. We here report on such variation in amphibians and reptiles, confirming patterns observed in birds. Using phylogenetic comparative analyses, we found that in amphibians, but not in reptiles, testosterone and baseline corticosterone were positively related to latitude. Baseline corticosterone was negatively related to elevation in amphibians but not in reptiles. For both groups, testosterone concentrations were negatively related to breeding-season length. In addition, testosterone concentrations were positively correlated with baseline corticosterone in both groups. Our findings may best be explained by the hypothesis that shorter breeding seasons increase male-male competition, which may favor increased testosterone concentrations that modulate secondary sexual traits. Elevated energetic demands resulting from greater reproductive intensity may require higher baseline corticosterone. Thus, the positive relationship between testosterone and corticosterone in both groups suggests an energetic demand for testosterone-regulated behavior that is met with increased baseline glucocorticoid concentrations.

  8. Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of m-Cresol over Pt/C and Pt/TiO 2 Catalysts

    DOE PAGES

    Griffin, Michael B.; Ferguson, Glen A.; Ruddy, Daniel A.; ...

    2016-03-23

    The catalytic deoxygenation of biomass fast pyrolysis vapors offers a promising route for the sustainable production of liquid transportation fuels. However, a clear understanding of the mechanistic details involved in this process has yet to be achieved, and questions remain regarding the role of the catalyst support and the influence of reaction conditions. In order to gain insight into these questions, the deoxygenation of m-cresol was investigated over Pt/C and Pt/TiO 2 catalysts using experimental and computational techniques. The performance of each catalyst was evaluated in a packed-bed reactor under two conditions (523 K, 2.0 MPa and 623 K, 0.5more » MPa), and the energetics of the ring hydrogenation, direct deoxygenation, and tautomerization mechanisms were calculated over hydrogen-covered Pt(111) and oxygen vacancies on the surface of TiO 2(101). Over Pt(111), ring hydrogenation to 3-methylcyclohexanone and 3-methylcyclohexanol was found to be the most energetically favorable pathway. Over TiO 2(101), tautomerization and direct deoxygenation to toluene were identified as additional energetically favorable routes. These calculations are consistent with the experimental data, in which Pt/TiO 2 was more active on a metal site basis and exhibited higher selectivity to toluene at 623 K relative to Pt/C. On the basis of these results, it is likely that the reactivity of Pt/TiO 2 and Pt/C is driven by the metallic phase at 523 K, while contributions from the TiO 2 support enhance deoxygenation at 623 K. These results highlight the synergistic effects between hydrogenation catalysts and reducible metal oxide supports and provide insight into the reaction pathways responsible for their enhanced deoxygenation performance.« less

  9. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.

    2018-03-01

    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.

  10. An ab initio molecular orbital study of the mechanism for the gas-phase water-mediated decomposition and the formation of hydrates of peroxyacetyl nitrate (PAN).

    PubMed

    Li, Yumin; Francisco, Joseph S

    2005-08-31

    There is uncertainty in the mechanism for the hydrolysis of peroxyacetyl nitrate (PAN), and experimental attempts to detect products of the direct reaction have been unsuccessful. Ab initio calculations are used to examine the energetics of water-mediated decomposition of gas-phase PAN into acetic acid and peroxynitric acid. On the basis of ab initio calculations, an alternative reaction mechanism for the decomposition of PAN is proposed. The calculations indicate that the barrier for one water addition to PAN is large. However, including additional water molecules reveals a substantially lower energy route. The calculations suggest that the formation of PAN hydrate complexes are energetically favorable and stable. Additional waters are increasingly efficient at stabilizing hydrated PAN.

  11. Structure and topology of three-dimensional hydrocarbon polymers.

    PubMed

    Kondrin, Mikhail V; Lebed, Yulia B; Brazhkin, Vadim V

    2016-08-01

    A new family of three-dimensional hydrocarbon polymers which are more energetically favorable than benzene is proposed. Although structurally these polymers are closely related to well known diamond and lonsdaleite carbon structures, using topological arguments we demonstrate that they have no known structural analogs. Topological considerations also give some indication of possible methods of synthesis. Taking into account their exceptional optical, structural and mechanical properties these polymers might have interesting applications.

  12. Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Thomas E., E-mail: zoomtotom@gmail.com; Goldberg, Alexander; Halls, Mat D.

    2016-01-15

    Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si{sub 9}H{sub 12} truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF{sub 3}, PCl{sub 3}, and PBr{sub 3}) and disilane (Si{sub 2}H{sub 6}). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF{sub 3} and Si{sub 2}H{sub 6} reactions and featuring SiFH{sub 3} as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactionsmore » for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated.« less

  13. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations

    PubMed Central

    Huang, Johnny X.; Cooper, Matthew A.; Baker, Mark A.; Azad, Mohammad A.K.; Nation, Roger L.; Li, Jian; Velkov, Tony

    2012-01-01

    This study utilizes sensitive, modern isothermal titration calorimetric (ITC) methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α-1-acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug-AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug-binding thermodynamics were characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed enthalpy-entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (ΔH°) and favorable (positive) entropic (ΔS°) contributions to the Gibbs free energy (ΔG°). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug-serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side-chain sub-domains within the multi-lobed AGP ligand binding cavity. PMID:23192962

  14. Exploring the free energy landscape of a model β-hairpin peptide and its isoform.

    PubMed

    Narayanan, Chitra; Dias, Cristiano L

    2014-10-01

    Secondary structural transitions from α-helix to β-sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β-hairpin peptides form basic components of anti-parallel β-sheets and are suitable model systems for characterizing the fundamental forces stabilizing β-sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β-hairpin peptide GB1 and its E2 isoform that preferentially adopts α-helical conformations at ambient conditions. Umbrella sampling simulations using all-atom models and explicit solvent are performed over a large range of end-to-end distances. Our results show the strong preference of GB1 and the E2 isoform for β-hairpin and α-helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β-hairpin structures which differ from each other in the position of the β-turn. We discuss the energetic factors contributing favorably to the formation of α-helix and β-hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non-bonded interactions. © 2014 Wiley Periodicals, Inc.

  15. Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    2016-10-01

    We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.

  16. Mechanics of the scrolling and folding of graphene.

    PubMed

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-15

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  17. Effect of stretching on the ballistic conductance of Au nanocontacts in presence of CO: A density functional study

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    CO adsorption on an Au monatomic chain is studied within density functional theory in nanocontact geometries as a function of the contact stretching. We compare the bridge and atop adsorption sites of CO, finding that the bridge site is energetically favored at all strains studied here. Atop adsorption gives rise to an almost complete suppression of the ballistic conductance of the nanocontact, while adsorption at the bridge site results in a conductance value close to 0.6G0, in agreement with previous experimental data. We show that only the bridge site can qualitatively account for the evolution of the conductance as a function of the contact stretching observed in the experimental conductance traces. The numerical discrepancy between the theoretical and experimental conductance slopes is rationalized through a simple model for the elastic response of the metallic leads. We also verify that our conductance values are not affected by the specific choice of the nanocontact geometry by comparing two different atomistic models for the tips.

  18. Mechanics of the scrolling and folding of graphene

    NASA Astrophysics Data System (ADS)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-01

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  19. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.

    PubMed

    Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo

    2015-03-01

    This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym®435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym®435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym®435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  1. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  2. [Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].

    PubMed

    Kostiukov, V V

    2011-01-01

    The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.

  3. Ethidium and proflavine binding to a 2',5'-linked RNA duplex.

    PubMed

    Horowitz, Eric D; Hud, Nicholas V

    2006-12-06

    Despite over 40 years of physical investigations, fundamental questions persist regarding the energetics of RNA and DNA intercalation. The dramatic unwinding of a nucleic acid duplex upon intercalation immediately suggests that the nucleic acid backbone should play a significant role in dictating the free energy of intercalation. However, the contribution of the backbone to intercalation free energy is difficult to appreciate given the intertwined energetics associated with intercalation (e.g., pi-pi stacking and solvent effects). Fluorescence titrations were used to determine the association constants of two known intercalators, proflavine and ethidium, for duplex 2',5'-linked RNA. Proflavine was found to bind 2',5' RNA with an association constant 25-fold greater than that measured for standard, 3',5'-linked RNA. In contrast, ethidium binds 2',5' RNA less favorably than standard RNA.

  4. Atomic and molecular adsorption on Au(111)

    DOE PAGES

    Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...

    2014-05-02

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH

  5. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  6. Density Functional Investigation of the Inclusion of Gold Clusters on a CH 3 S Self-Assembled Lattice on Au(111)

    DOE PAGES

    Allen, Darnel J.; Archibald, Wayne E.; Harper, John A.; ...

    2016-01-01

    We employ first-principles density functional theoretical calculations to address the inclusion of gold (Au) clusters in a well-packed CH 3 S self-assembled lattice. We compute CH 3 S adsorption energies to quantify the energetic stability of the self-assembly and gold adsorption and dissolution energies to characterize the structural stability of a series of Au clusters adsorbed at the SAM-Au interface. Our results indicate that the inclusion of Au clusters with less than four Au atoms in the SAM-Au interface enhances the binding of CH 3 S species. In contrast, larger Au clusters destabilize the self-assembly. We attribute this effect tomore » the low-coordinated gold atoms in the cluster. For small clusters, these low-coordinated sites have significantly different electronic properties compared to larger islands, which makes the binding with the self-assembly energetically more favorable. Our results further indicate that Au clusters in the SAM-Au interface are thermodynamically unstable and they will tend to dissolve, producing Au adatoms incorporated in the self-assembly in the form of CH 3 S-Au-SCH 3 species. This is due to the strong S-Au bond which stabilizes single Au adatoms in the self-assembly. Our results provide solid insight into the impact of adatom islands at the CH 3 S-Au interface.« less

  7. Paramecia swimming in viscous flow

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  8. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  9. Mechanics of graben formation in crustal rocks - A finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Williams, C. A., Jr.

    1989-01-01

    The mechanics of the initial stages of graben formation are examined, showing that the configuration of a graben (a pair of antithetically dipping normal faults) is the most energetically favorable fault configuration in elastic-brittle rocks subjected to pure extension. The stress field in the vicinity of a single initial normal fault is computed with a two-dimensional FEM. It is concluded that the major factor controlling graben width is the depth of the initial fault.

  10. Plasma-resistivity-induced strong damping of the kinetic resistive wall mode.

    PubMed

    He, Yuling; Liu, Yueqiang; Liu, Yue; Hao, Guangzhou; Wang, Aike

    2014-10-24

    An energy-principle-based dispersion relation is derived for the resistive wall mode, which incorporates both the drift kinetic resonance between the mode and energetic particles and the resistive layer physics. The equivalence between the energy-principle approach and the resistive layer matching approach is first demonstrated for the resistive plasma resistive wall mode. As a key new result, it is found that the resistive wall mode, coupled to the favorable average curvature stabilization inside the resistive layer (as well as the toroidal plasma flow), can be substantially more stable than that predicted by drift kinetic theory with fast ion stabilization, but with the ideal fluid assumption. Since the layer stabilization becomes stronger with decreasing plasma resistivity, this regime is favorable for reactor scale, high-temperature fusion devices.

  11. Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90

    PubMed Central

    Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas

    2012-01-01

    The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030

  12. Quantum chemical investigation of the primary thermal pyrolysis reactions of the sodium carboxylate group in a brown coal model.

    PubMed

    Li, Jian; Zhang, Baisheng; Zhang, Zhiqiang; Yan, Kefeng; Kang, Lixun

    2014-12-01

    The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.

  13. Bonding and Mobility of Alkali Metals in Helicenes.

    PubMed

    Barroso, Jorge; Murillo, Fernando; Martínez-Guajardo, Gerardo; Ortíz-Chi, Filiberto; Pan, Sudip; Fernández-Herrera, María A; Merino, Gabriel

    2018-06-04

    In this work, we analyze the interaction of alkali metal cations with [6]- and [14]helicene and the cation mobility of therein. We found that the distortion of the carbon skeleton is the cause that some of the structures that are local minima for the smallest cations are not energetically stable for K+, Rb+, and Cs+. Also, the most favorable complexes are those where the cation is interacting with two rings forming a metallocene-like structure, except for the largest cation Cs+, where the distortion provoked by the size of the cation desestabilizes the complex. As far as mobility is concerned, the smallest cations, particularly Na+, are the ones that can move most efficiently. In [6]helicene, the mobility is limited by the capture of the cation forming the metallocene-like structure. In larger helicenes, the energy barriers for the cation to move are similar both inside and outside the helix. However, complexes with the cation between two layers are more energetically favored so that the movement will be preferred in that region. The bonding analysis reveals that interactions with no less than 50% of orbitalic contribution are taking place for the series of E+-[6]helicene. Particularly, the complexes of Li+ stand out showing a remarkably orbitalic character bonding (72.5 - 81.6%). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hybrid quantum and molecular mechanics embedded cluster models for chemistry on silicon and silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Shoemaker, James Richard

    Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.

  15. Energetics of the formation of Cu-Ag core–shell nanoparticles

    DOE PAGES

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was foundmore » that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.« less

  16. Infrared spectroscopy of hydrated naphthalene cluster anions.

    PubMed

    Knurr, Benjamin J; Adams, Christopher L; Weber, J Mathias

    2012-09-14

    We present infrared spectra of mass-selected C(10)H(8)(-)·(H(2)O)(n)·Ar(m) cluster anions (n = 1-6) obtained by Ar predissociation spectroscopy. The experimental spectra are compared with predicted spectra from density functional theory calculations. The OH groups of the water ligands are involved in H-bonds to other water molecules or to the π system of the naphthalene anion, which accommodates the excess electron. The interactions in the water network are generally found to be more important than those between water molecules and the ion. For 2 ≤ n ≤ 4 the water molecules form single layer water networks on one side of the naphthalene anion, while for n = 5 and 6, cage and multilayer structures become more energetically favorable. For cluster sizes with more than 3 water molecules, multiple conformers are likely to be responsible for the experimental spectra.

  17. Quark Matter May Not Be Strange.

    PubMed

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  18. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    DOE PAGES

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2016-08-23

    Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less

  19. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less

  20. Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data

    PubMed Central

    Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David

    2007-01-01

    S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371

  1. Quark Matter May Not Be Strange

    NASA Astrophysics Data System (ADS)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u , d , and s quarks. The possibility of quark matter with only u and d quarks (u d QM ) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that u d QM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, u d QM can be the ground state of baryonic matter only for baryon number A >Amin with Amin≳300 . This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  2. Hydrophobically stabilized open state for the lateral gate of the Sec translocon

    PubMed Central

    Zhang, Bin; Miller, Thomas F.

    2010-01-01

    The Sec translocon is a central component of cellular pathways for protein translocation and membrane integration. Using both atomistic and coarse-grained molecular simulations, we investigate the conformational landscape of the translocon and explore the role of peptide substrates in the regulation of the translocation and integration pathways. Inclusion of a hydrophobic peptide substrate in the translocon stabilizes the opening of the lateral gate for membrane integration, whereas a hydrophilic peptide substrate favors the closed lateral gate conformation. The relative orientation of the plug moiety and a peptide substrate within the translocon channel is similarly dependent on whether the substrate is hydrophobic or hydrophilic in character, and the energetics of the translocon lateral gate opening in the presence of a peptide substrate is governed by the energetics of the peptide interface with the membrane. Implications of these results for the regulation of Sec-mediated pathways for protein translocation vs. membrane integration are discussed. PMID:20203009

  3. Chlorination of zirconium (0001) surface: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.; Weck, Philippe F; Poineau, F.

    The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl 2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl 2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism formore » Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl 4 molecular products is also found to be dominant during Zr(0001) chlorination.« less

  4. Chlorination of zirconium (0001) surface: A first-principles study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eunja; Weck, Philippe F; Borjas, Rosendo

    Here, the mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl 2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by ~3 eV/Cl for dissociative adsorption of a single Cl 2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanismmore » for Zr(0001) surface dissolution. Consistent with experimental findings, formation of ZrCl 4 molecular products is also found to be dominant during Zr(0001) chlorination.« less

  5. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    DOE PAGES

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen -Fei; ...

    2016-03-24

    Using density functional theory (DFT) with van der Waals functionals, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously-studied monomeric phases. Moreover, using a model based on many-body perturbation theory within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. As a result, we find that, independent of coverage, the HOMO energy of the linear chain phase ismore » lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.« less

  6. Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min

    2018-03-01

    A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.

  7. Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, G. A.; Kalinin, M. S.; Kvashnin, A. N.; Krainev, M. B.; Makhmutov, V. S.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Stozhkov, Yu. I.; Balabin, Yu. V.; Gvozdevsky, B. B.

    2017-03-01

    From 1957 up to the present time, the Lebedev Physical Institute (LPI) has performed regular monitoring of ionizing radiation in the Earth's atmosphere. There are cases when the X-ray radiation generated by energetic magnetospheric electrons penetrates the atmosphere and is observed at polar latitudes. The vast majority of these events occurs against the background of high-velocity solar wind streams, while magnetospheric perturbations related to interplanetary coronal mass ejections (ICMEs) are noneffective for precipitation. It is shown in the paper that ICMEs do not cause acceleration of a sufficient amount of electrons in the magnetosphere. Favorable conditions for acceleration and subsequent scattering of electrons into the loss cone are created by magnetic storms with an extended recovery phase and with sufficiently frequent periods of negative Bz component of the interplanetary magnetic field (IMF). Such geomagnetic perturbations are typical for storms associated with high-velocity solar wind streams.

  8. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen-Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-01

    Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

  9. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  10. Theoretical study on the reaction mechanism of CH 4 with CaO

    NASA Astrophysics Data System (ADS)

    Yang, Hua-Qing; Hu, Chang-Wei; Qin, Song

    2006-11-01

    The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH 4 → CaOCH 4 → [TS] → CaOH + CH 3, CaO + CH 4 → OCaCH 4 → [TS] → HOCaCH 3 → CaOH + CH 3 or [TS] → CaCH 3OH → Ca + CH 3OH, and OCaCH 4 → [TS] → HCaOCH 3 → CaOCH 3 + H or [TS] → CaCH 3OH → Ca + CH 3OH. The gas-phase methane-methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH 3 and HCaOCH 3, and the reaction pathway via the hydroxy intermediate (HOCaCH 3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH 3). The hydroxy intermediate HOCaCH 3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH 4. Meanwhile, these three product channels (CaOH + CH 3, CaOCH 3 + H and Ca + CH 3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH 3 and HOCaCH 3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH 3OH, which is precisely the reverse reaction of methane hydroxylation.

  11. Collision-based energetic comparison of rolling and hopping over obstacles

    PubMed Central

    Iida, Fumiya

    2018-01-01

    Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals’ preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally. PMID:29538459

  12. A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, Stephen A.

    1994-01-01

    Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.

  13. The shape of Au8: gold leaf or gold nugget?

    NASA Astrophysics Data System (ADS)

    Serapian, Stefano A.; Bearpark, Michael J.; Bresme, Fernando

    2013-06-01

    The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4h ``cloverleaf'' isomer competes with the nonplanar Td, C2v and D2d ``nugget'' isomers for greatest energetic stability. We here examine the 2D vs. 3D preference in Au8 by presenting our own B2PLYP, MP2 and CCSD(T) calculations on these isomers: these methods afford a better treatment of long-range correlation, which is at the root of gold's characteristic aurophilicity. We then use findings from these high-accuracy computations to evaluate two less expensive DFT approaches, applicable to much larger nanoclusters: alongside the standard functional PBE, we consider M06-L (highly parametrized to incorporate long-range dispersive interactions). We find that increasing basis set size within the B2PLYP framework has a greater destabilizing effect on the nuggets than it has on the Au8 cloverleaf. Our CCSD(T) and B2PLYP predictions, replicated by DFT-PBE, all identify the cloverleaf as the most stable isomer; MP2 and DFT-M06-L show overestimation of aurophilicity, and favor, respectively, the nonplanar D2d and Td nuggets in its stead. We conclude that PBE, which more closely reproduces CCSD(T) findings, may be a better candidate density functional for the simulation of gold nanoclusters in this context.The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4h ``cloverleaf'' isomer competes with the nonplanar Td, C2v and D2d ``nugget'' isomers for greatest energetic stability. We here examine the 2D vs. 3D preference in Au8 by presenting our own B2PLYP, MP2 and CCSD(T) calculations on these isomers: these methods afford a better treatment of long-range correlation, which is at the root of gold's characteristic aurophilicity. We then use findings from these high-accuracy computations to evaluate two less expensive DFT approaches, applicable to much larger nanoclusters: alongside the standard functional PBE, we consider M06-L (highly parametrized to incorporate long-range dispersive interactions). We find that increasing basis set size within the B2PLYP framework has a greater destabilizing effect on the nuggets than it has on the Au8 cloverleaf. Our CCSD(T) and B2PLYP predictions, replicated by DFT-PBE, all identify the cloverleaf as the most stable isomer; MP2 and DFT-M06-L show overestimation of aurophilicity, and favor, respectively, the nonplanar D2d and Td nuggets in its stead. We conclude that PBE, which more closely reproduces CCSD(T) findings, may be a better candidate density functional for the simulation of gold nanoclusters in this context. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01500a

  14. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe{sub 2}O{sub 3}(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less

  15. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1981-01-01

    Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.

  16. Dual fuel diesel engine operation using LPG

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  17. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    PubMed

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may show higher charge carrier mobility because of the lower electron effective mass.

  18. Dynamic Behavior of Nano-Sized Particles in Novel Energetic Materials for Space Propulsion

    DTIC Science & Technology

    2009-08-11

    independent of direction); then I(rw,s) = Jwir^/ir, n • s > 0, (8) where Jw = enlb + pH (9) is the surface radiosity and the subscript w denotes a...of the surface radiosity yields G + 2q„ =4JW. (28) In addition to this relation, we require that the normal radiative heat flux is the sum of the...incident and reflected ( radiosity ) contributions: qn = Jw - H. (29) The incident radiation is eliminated in favor of the radiosity using (9) and the

  19. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  20. The efficacy and tolerability of azilsartan in obese insulin-resistant mice with left ventricular pressure overload.

    PubMed

    Tarikuz Zaman, A K M; McLean, Danielle L; Sobel, Burton E

    2013-10-01

    Angiotensin II receptor blockers (ARBs) are used widely for the treatment of heart failure. However, their use in obese and insulin-resistant patients remains controversial. To clarify their potential efficacy in these conditions, we administered azilsartan medoxomil (azilsartan), a prodrug of an angiotensin II receptor blocker to mice fed a high-fat diet (HFD) with left ventricular (LV) pressure overload (aortic banding). LV fibrosis (hydroxyproline), cardiac plasminogen activator inhibitor-1 (PAI-1; a marker of profibrosis), and creatine kinase (a marker of myocardial viability and energetics) were assessed. LV wall thickness and cardiac function were assessed echocardiographically. Mice given a HFD were obese and insulin resistant. Their LV hypertrophy was accompanied by greater LV PAI-1 and reduced LV creatine kinase compared with normal diet controls. Drug treatment reduced LV wall thickness, hypertrophy, and PAI-1 and increased cardiac output after aortic banding compared with results in HFD vehicle controls. Thus, azilsartan exerted favorable biological effects on the hearts of obese insulin-resistant mice subjected to LV pressure overload consistent with its potential utility in patients with analogous conditions.

  1. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    DOE PAGES

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong; ...

    2017-03-08

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activitymore » in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less

  2. A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils.

    PubMed

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2014-12-03

    Theoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.

  3. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong

    2017-03-22

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn. iNPs (3.2 +/- 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO(2)) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic andmore » basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less

  4. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.

    PubMed

    Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter

    2018-06-05

    Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Computational Investigation of Technetium(IV) Incorporation into Inverse Spinels: Magnetite (Fe 3 O 4 ) and Trevorite (NiFe 2 O 4 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Frances N.; Um, Wooyong; Taylor, Christopher D.

    2016-05-17

    Iron oxides and oxyhydroxides play an important role in minimizing the mobility of redox-sensitive elements in engineered and natural environments. For the radionuclide technetium-99 (Tc), these phases hold promise as primary hosts for increasing Tc loading into glass waste form matrices, or as secondary sinks during the long-term storage of nuclear materials. Recent experiments show that the inverse spinel, magnetite [Fe(II)Fe(III)2O4], can incorporate Tc(IV) into its octahedral sub-lattice, and in that same class of materials, trevorite [Ni(II)Fe(III)2O4] is also being investigated for its ability to host Tc(IV). However, questions remain regarding the most energetically favorable charge-compensation mechanism for Tc(IV) incorporationmore » in each structure, which will affect Tc behavior under changing waste processing or storage conditions. Here, quantum-mechanical methods were used to evaluate incorporation energies and optimized lattice bonding environments for three different, charge-balanced Tc(IV) incorporation mechanisms in magnetite and trevorite. In both cases, the removal of two octahedral Fe(II) or Ni(II) ions upon the addition of Tc(IV) to an octahedral site is the most stable mechanism, relative to the creation of octahedral Fe(III) defects or increasing octahedral Fe(II) content. Following hydration-energy corrections, Tc(IV) incorporation into magnetite is energetically favorable while an energy barrier exists for trevorite.« less

  6. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  7. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE PAGES

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    2018-02-07

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  8. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    DOE PAGES

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; ...

    2017-11-27

    Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less

  9. Analysis of the substrate influence on the ordering of epitaxial molecular layers: The special case of point-on-line coincidence

    NASA Astrophysics Data System (ADS)

    Mannsfeld, S. C.; Fritz, T.

    2004-02-01

    The physical structure of organic-inorganic heteroepitaxial thin films is usually governed by a fine balance between weak molecule-molecule interactions and a weakly laterally varying molecule-substrate interaction potential. Therefore, in order to investigate the energetics of such a layer system one has to consider large molecular domains. So far, layer potential calculations for large domains of organic thin films on crystalline substrates were difficult to perform concerning the computational effort which stems from the vast number of atoms which have to be included. Here, we present a technique which enables the calculation of the molecule-substrate interaction potential for large molecular domains by utilizing potential energy grid files. This technique allows the investigation of the substrate influence in systems prepared by organic molecular beam epitaxy (OMBE), like 3,4,9,10-perylenetetracarboxylicdianhydride on highly oriented pyrolytic graphite. For this system the so-called point-on-line coincidence was proposed, a growth mode which has been controversially discussed in literature. Furthermore, we are able to provide evidence for a general energetic advantage of such point-on-line coincident domain orientations over arbitrarily oriented domains which substantiates that energetically favorable lattice structures in OMBE systems are not restricted to commensurate unit cells or coincident super cells.

  10. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan

    Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less

  11. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  12. Understanding Rubredoxin Redox Sites by Density Functional Theory Studies of Analogues

    PubMed Central

    Luo, Yan; Niu, Shuqiang; Ichiye, Toshiko

    2012-01-01

    Determining the redox energetics of redox site analogues of metalloproteins is essential in unraveling the various contributions to electron transfer properties of these proteins. Since studies of the [4Fe-4S] analogues show that the energies are dependent on the ligand dihedral angles, broken symmetry density functional theory (BS-DFT) with the B3LYP functional and double-ζ basis sets calculations of optimized geometries and electron detachment energies of [1Fe] rubredoxin analogues are compared to crystal structures and gas-phase photoelectron spectroscopy data, respectively, for [Fe(SCH3)4]0/1-/2-, [Fe(S2-o-xyl2)]0/1-/2-, and Na+[Fe(S2-o-xyl)2]1-/2- in different conformations. In particular, the study of Na+[Fe(S2-o-xyl)2]1-/2- is the only direct comparison of calculated and experimental gas phase detachment energies for the 1-/2- couple found in the rubredoxins. These results show that variations in the inner sphere energetics by up to ~0.4 eV can be caused by differences in the ligand dihedral angles in either or both redox states. Moreover, these results indicate that the protein stabilizes the conformation that favors reduction. In addition, the free energies and reorganization energies of oxidation and reduction as well as electrostatic potential charges are calculated, which can be used as estimates in continuum electrostatic calculations of electron transfer properties of [1Fe] proteins. PMID:22881577

  13. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    NASA Astrophysics Data System (ADS)

    Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile

    2017-01-01

    Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.

  14. Development Of Nanoenergetic Micro-fluidic Jet Injectors

    DTIC Science & Technology

    2012-01-01

    resulting in a uniform solder coating on to the exposed solder pads. Following solder coating , the material chamber and fluid reservoir were brought...assembly, and packaging of first generation nanoenergetic fluidic jet generators. The generators consist of an energetic material chamber, elastic...thickness, energetic material composition, and energetic material mass using high-speed photography and compared with theoretical calculations

  15. Registration of X-rays at 2500 m altitude in association with lightning flashes and thunderstorms

    NASA Astrophysics Data System (ADS)

    Montanyà, Joan; Fabró, Ferran; van der Velde, Oscar; Romero, David; Solà, Gloria; Hermoso, Juan Ramon; Soula, Serge; Williams, Earle R.; Pineda, Nicolau

    2014-02-01

    Electric fields and high-energy radiation of natural lightning measured at close range from a mountaintop tower are discussed. In none of the 12 negative cloud-to-ground upward flashes were X-rays observed. Also no energetic radiation was found in one negative upward leader at close range (20 m). In the first of two consecutive negative cloud-to-ground flashes, X-rays were detected during the last 1.75 ms of the leader. During the time of energetic radiation in the flash an intense burst of intracloud VHF sources was located by the interferometers. The X-ray production is attributed to the high electric field runaway electron mechanism during leader stepping. Even though the second flash struck closer than the previous one, no X-rays were detected. The absence of energetic radiation is attributed to being outside of the beam of X-ray photons from the leader tip or to the stepping process not allowing sufficiently intense electric fields ahead of the leader tip. High-speed video of downward negative leaders at the time when X-rays are commonly detected on the ground revealed the increase of speed and luminosity of the leader. Both phenomena allow higher electric fields at the leader front favoring energetic radiation. Background radiation was also measured during thunderstorms. The count rate of a particular day is presented and discussed. The increases in the radiation count rate are more coincident with radar reflectivity levels above 30 dBZ than with the total lightning activity close to the site. The increases of dose are attributed to radon daughter-ion precipitation.

  16. Energetics and magnetic properties of V-doped MgO bulk and (001) surface: A GGA, GGA+U , and hybrid density functional study

    NASA Astrophysics Data System (ADS)

    Århammar, C.; Moyses Araujo, C.; Rao, K. V.; Norgren, Susanne; Johansson, Börje; Ahuja, Rajeev

    2010-10-01

    In this work, a first-principles study of the energetic and magnetic properties of V-doped MgO is presented, where both the bulk and (001) surface were investigated. It is found that V assumes a high-spin state with a local moment of about 3μB . In the bulk, the interaction between these local moments is very short ranged and the antiferromagnetic (AFM) ordering is energetically more favorable. The formation of V-VMg-V defect clusters is found to weaken the antiferromagnetic coupling in bulk MgO, degenerating the AFM and ferromagnetic state. However, these clusters are high in energy and will not form at equilibrium conditions. By employing the GGA+U approach, with U=5eV , the V3d states on the (001) surface are shifted below the Fermi level, and a reasonable surface geometry was achieved. A calculation with the hybrid HSE03 functional, contradicts the GGA+U results, indicating that the V-MgO surface should be metallic at this concentration. From the energetics it is concluded that, at the modeled concentration, VxOy phases will limit the solubility of V in MgO at equilibrium conditions, which is in agreement with previous experimental findings. In order to achieve higher concentrations of V, an off-equilibrium synthesis method is needed. Finally, we find that the formation energy of V at the surface is considerably higher than in the bulk and V is thus expected to diffuse from the surface into the bulk of MgO.

  17. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    NASA Astrophysics Data System (ADS)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions than for Y. Additionally, calculations performed for different atomic configurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent with related calculations and calorimetric measurements of heats of formation in other trivalent doped fluorite oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. We expand this investigation by considering a series of trivalent rare earth fission product cations, specifically, Y3+ (1.02 A, Shannon radius with eightfold coordination), Dy3+ (1.03 A), Gd 3+ (1.05 A), Eu3+ (1.07 A), Sm3+ (1.08 A), Pm3+ (1.09 A), Nd3+ (1.11 A), Pr3+ (1.13 A), Ce3+ (1.14 A) and La3+ (1.16 A). Compounds with ionic radius of the M3+ species smaller or larger than 1.09 A are found to have energetically preferred defect ordering arrangements. Systems with preferred defect ordering arrangements are suggestive of defect clustering in short range ordered solid solutions, which is expected to limit oxygen ion mobility and therefore the rate of oxidation of spent nuclear fuel. Finally, the energetics of rare earth substituted (M3+= La, Y, and Nd) UO2 solid solutions are investigated by employing a combination of calorimetric measurements and DFT based computations. The calorimetric studies are performed by Lei Zhang and Professor Alexandra Navrotsky at the University of Calfornia, Davis, as part of a joint computational/ experimental collaborative effort supported through the Materials Science of Actinides Energy Frontier Research Center. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides. A consistent trend towards increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of M cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors compositions with higher oxygen-to-metal ratios where charge compensation occurs through the formation of uranium cations with higher oxidation states.

  18. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  19. High-energy radiation from the relativistic jet of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.

    2010-12-01

    Cygnus X-3 is an accreting high-mass X-ray binary composed of a Wolf-Rayet star and an unknown compact object, possibly a black hole. The gamma-ray space telescope Fermi found definitive evidence that high-energy emission is produced in this system. We propose a scenario to explain the GeV gamma-ray emission in Cygnus X-3. In this model, energetic electron-positron pairs are accelerated at a specific location in the relativistic jet, possibly related to a recollimation shock, and upscatter the stellar photons to high energies. The comparison with Fermi observations shows that the jet should be inclined close to the line of sight and pairs should not be located within the system. Energetically speaking, a massive compact object is favored. We report also on our investigations of the gamma-ray absorption of GeV photons with the radiation emitted by a standard accretion disk in Cygnus X-3. This study shows that the gamma-ray source should not lie too close to the compact object.

  20. On cooperative effects and aggregation of GNNQQNY and NNQQNY peptides

    NASA Astrophysics Data System (ADS)

    Nochebuena, Jorge; Ireta, Joel

    2015-10-01

    Some health disturbances like neurodegenerative diseases are associated to the presence of amyloids. GNNQQNY and NNQQNY peptides are considered as prototypical examples for studying the formation of amyloids. These exhibit quite different aggregation behaviors despite they solely differ in size by one residue. To get insight into the reasons for such difference, we have examined association energies of aggregates (parallel β-sheets, fibril-spines, and crystal structures) from GNNQQNY and NNQQY using density functional theory. As we found that GNNQQNY tends to form a zwitterion in the crystal structure, we have investigated the energetics of parallel β-sheets and fibril-spines in the canonical and zwitterionic states. We found that the formation of GNNQQNY aggregates is energetically more favored than the formation of the NNQQNY ones. We show that the latter is connected to the network of hydrogen bonds formed by each aggregate. Moreover, we found that the formation of some NNQQNY aggregates is anticooperative, whereas cooperative with GNNQQNY. These results have interesting implications for deciphering the factors determining peptide aggregation propensities.

  1. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  2. Surface regulated arsenenes as Dirac materials: From density functional calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian; Wang, Jiafu

    2017-02-01

    Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  3. Halogenated arsenenes as Dirac materials

    NASA Astrophysics Data System (ADS)

    Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin

    2016-07-01

    Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155-3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.

  4. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui

    Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less

  5. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    NASA Astrophysics Data System (ADS)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  6. Incorporating isolated molybdenum (Mo) atoms into Bilayer Epitaxial Graphene on 4H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Huang, Han; Wan, Wen; Li, Hui; Wong, Swee Liang; Lv, Lu; Gao, Yongli; Wee, Andrew T. S.

    2014-03-01

    The atomic structures and electronic properties of isolated Mo atoms in bilayer epitaxial graphene (BLEG) on 4H-SiC(0001) are investigated by low temperature scanning tunneling microscopy (LT-STM). LT-STM results reveal that isolated Mo dopants prefer to substitute C atoms at α-sites, and preferentially locate between the graphene bilayers. First-principles calculations confirm that the embedding of single Mo dopants within BLEG is energetically favorable as compared to monolayer graphene. The calculated bandstructures show that Mo-doped BLEG is n-doped, and each Mo atom introduces a local magnetic moment of 1.81 μB. Our findings demonstrate a simple and stable method to incorporate single transition metal dopants into the graphene lattice to tune its electronic and magnetic properties for possible use in graphene spin devices. NRF-CRP (Singapore) grants R-143-000-360-281and R-144-000-295-281. ``Shenghua Professorship'' startup funding from CSU and the support from the NSF of China (Grant No.11304398).

  7. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    DOE PAGES

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; ...

    2017-09-05

    Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less

  8. First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Jaiswal, Neeraj K.; Sharma, Varun

    2014-09-01

    The present work exhibits density functional theory (DFT) based first-principles calculations to explore the sensing properties of bare armchair boron nitride nanoribbons (ABNNR) for PH3 gas molecules. Edges of the ribbon were considered as the sites of possible adsorption with two different configurations i.e. adsorption at one edge and adsorption at both edges of the ribbon. It is revealed that B atoms of the ribbons are more energetically favorable sites for the adsorption of PH3 molecules as compared with N atoms. The adsorption of PH3 affects the electronic properties of nanoribbons. One edge PH3 adsorbed ribbons are metallic whereas in both edges PH3 adsorption, the band gap is decreased than that of bare ribbon. The changes in electronic properties caused by PH3 adsorption are further supported by the current-voltage (I-V) characteristics of the considered configurations. The results show that ABNNR can serve as a potential candidate for PH3 sensing applications.

  9. Shear localization in three-dimensional amorphous solids.

    PubMed

    Dasgupta, Ratul; Gendelman, Oleg; Mishra, Pankaj; Procaccia, Itamar; Shor, Carmel A B Z

    2013-09-01

    In this paper we extend the recent theory of shear localization in two-dimensional (2D) amorphous solids to three dimensions. In two dimensions the fundamental instability of shear localization is related to the appearance of a line of displacement quadrupoles that makes an angle of 45^{∘} with the principal stress axis. In three dimensions the fundamental plastic instability is also explained by the formation of a lattice of anisotropic elastic inclusions. In the case of pure external shear stress, we demonstrate that this is a 2D triangular lattice of similar elementary events. It is shown that this lattice is arranged on a plane that, similarly to the 2D case, makes an angle of 45^{∘} with the principal stress axis. This solution is energetically favorable only if the external strain exceeds a yield-strain value that is determined by the strain parameters of the elementary events and the Poisson ratio. The predictions of the theory are compared to numerical simulations and very good agreement is observed.

  10. Superhard sp{sup 2}–sp{sup 3} hybrid carbon allotropes with tunable electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Meng; Ma, Mengdong; Zhao, Zhisheng

    Four sp{sup 2}–sp{sup 3} hybrid carbon allotropes are proposed on the basis of first principles calculations. These four carbon allotropes are energetically more favorable than graphite under suitable pressure conditions. They can be assembled from graphite through intralayer wrinkling and interlayer buckling, which is similar to the formation of diamond from graphite. For one of the sp{sup 2}–sp{sup 3} hybrid carbon allotropes, mC24, the electron diffraction patterns match these of i-carbon, which is synthesized from shock-compressed graphite (H. Hirai and K. Kondo, Science, 1991, 253, 772). The allotropes exhibit tunable electronic characteristics from metallic to semiconductive with band gaps comparablemore » to those of silicon allotropes. They are all superhard materials with Vickers hardness values comparable to that of cubic BN. The sp{sup 2}–sp{sup 3} hybrid carbon allotroes are promising materials for photovoltaic electronic devices, and abrasive and grinding tools.« less

  11. Experimental and theoretical study of Co sorption in clay montmorillonites

    NASA Astrophysics Data System (ADS)

    Gil Rebaza, A. V.; Montes, M. L.; Taylor, M. A.; Errico, L. A.; Alonso, R. E.

    2018-03-01

    Montmorillonite (MMT) clays are 2:1 layered structures which in natural state may allocate different hydrated cations such as M-nH2O (M = Na, Ca, Fe, etc) in its interlayer space. Depending on the capability for ion sorption, these materials are interesting for environmental remediation. In this work we experimentally study the Co sorption in a natural Na-MMT using UV-visible spectrometry and XRD on semi-oriented samples, and then analyze the sorption ability of this clay by means of ab initio calculation performed on pristine MMT. The structural properties of Na-MMT and Co-adsorbed MMT, and the hyperfine parameters at different atomic sites were analyzed and compared with the experimental ones for the first, and for the case of the hyperfine parameters, presented for the first time for the last. The theoretical predictions based on total energy considerations confirm that Co incorporation replacing Na is energetically favorable. Also, the basal spacing d001 experimentally obtained is well reproduced.

  12. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  13. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties.

    PubMed

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-25

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi 4 , NLi 5 , CLi 6 , BLI 7 and Al 12 Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability ([Formula: see text]) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  14. Crystalline phases by an improved gradient expansion technique

    NASA Astrophysics Data System (ADS)

    Carignano, S.; Mannarelli, M.; Anzuini, F.; Benhar, O.

    2018-02-01

    We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical considerations. The method is remarkably reliable and fast as compared to performing the full numerical diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with previous results, we find that the energetically favored modulation is the so-called one-dimensional real-kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.

  15. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate

    DOE PAGES

    Morrell-Falvey, Jennifer L.; Elkins, James G.; Wang, Zhi-Wu

    2015-05-30

    This study took advantage of resorufin cellobioside as a fluorescent substrate to determine the distribution of cellulase activity in cellulosic biomass fermentation systems. Cellulolytic biofilms were found to express nearly four orders greater cellulase activity compared to planktonic cultures of Clostridium thermocellum and Caldicellulosiruptor obsidiansis, which can be primarily attributed to the high cell concentration and surface attachment. The formation of biofilms results in cellulases being secreted close to their substrates, which appears to be an energetically favorable stategy for insoluble substrate utilization. For the same reason, cellulases should be closely associated with the surfaces of suspended cell in solublemore » substrate-fed culture, which has been verified with cellobiose-fed cultures of C. thermocellum and C. obsidiansis. This study addressed the importance of cellulase activity distribution in cellulosic biomass fermentation, and provided theoretical foundation for the leading role of biofilm in cellulose degradation. System optimization and reactor designs that promote biofilmformation in cellulosic biomass hydrolysismay promise an improved cellulosic biofuel process.« less

  16. An LDA+U study of the photoemission spectra of ground state phase of americium and curium

    NASA Astrophysics Data System (ADS)

    Islam, Md; Ray, Asok

    2009-03-01

    We have investigated the photoemission spectra and other ground state properties such as equilibrium volume and bulk modulus of dhcp americium and the density of states and magnetic properties of dhcp curium using LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities much better than that calculated using spin polarized configuration. The DOS calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, U is observed to increase the splitting between occupied and unoccupied bands by enhancing Stoner parameter. The results are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium, exchange interaction appears to play the dominant role in its magnetic stability.

  17. Neptune's inner magnetosphere and aurora: Energetic particle constraints

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Krimigis, S. M.; Acuna, M. H.

    1994-01-01

    A dramatic and peculiar dropout of greater than 500-keV ions (but not electrons) was observed within Neptune's inner magnetosphere near 2 R(sub N) as the Voyager 2 spacecraft approached the planet. Unlike a number of other energetic particle features this feature could not be accounted for by known material bodies in the context of the most utilized magnetic field models (neither the offset tilted dipole models nor the spehrical harmonic model 'O8'). However, the configuration of Neptune's inner magnetosphere is highly uncertain. By applying a novel technique, utilizing energetic particle measurements, to constrain the magnetic field configuration of the inner regions, we show that appeals to unobserved materials within Neptune's system are unnecessary, and that the ion dropout feature was, in all likelihood, the result of ion interactions with maximum L excursions of the ring 1989N1R. The constraints also favor the se of the M2 magnetic field model (Selesnick, 1992) over the previous models. An electron feature was probably absent because the electron interactions with the ring occurred substantially before the ion interactions (about 2 hours for the electrons versus a few minutes for the ions). Pitch-angle scattering apparently eliminated the electron signature. Minimum scattering rates determined based on this premise yield enough electron precipitation power to explain the brightest component of Neptune's aurora. We propose that this bright component is analogous to the Earth's diffuse aurora.

  18. Theoretical prediction of the ionization energies of the C4H7 radicals: 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals.

    PubMed

    Lau, Kai-Chung; Zheng, Wenxu; Wong, Ning-Bew; Li, Wai-Kee

    2007-10-21

    The ionization energies (IEs) for the 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals have been calculated by the wave function based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction are included in these calculations. The present CCSD(T)/CBS results are then compared with the IEs determined in the photoelectron experiment by Schultz et al. [J. Am. Chem. Soc. 106, 7336 (1984)] The predicted IE value (7.881 eV) of 2-methylallyl radical is found to compare very favorably with the experimental value of 7.90+/-0.02 eV. Two ionization transitions for cis-1-methylallyl and trans-1-methylallyl radicals have been considered here. The comparison between the predicted IE values and the previous measurements shows that the photoelectron peak observed by Schultz et al. likely corresponds to the adiabatic ionization transition for the trans-1-methylallyl radical to form trans-1-methylallyl cation. Although a precise IE value for the cyclopropylmethyl radical has not been directly determined, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. We expect that the Franck-Condon factor for ionization transition of c-C4H7-->bicyclobutonium is much less favorable than that for ionization transition of c-C4H7-->planar-C4H7+, and the observed IE in the previous photoelectron experiment is likely due to the ionization transition for c-C4H7-->planar-C4H7+. Based on our CCSD(T)/CBS prediction, the ionization transition of c-C4H7-->bicyclobutonium with an IE value around 6.92 eV should be taken as the adiabatic ionization transition for the cyclobutyl radical. The present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energetic corrections can be used to provide reliable IE predictions for C4 hydrocarbon radicals with an uncertainty of +/-22 meV. The CCSD(T)/CBS predictions to the heats of formation for the aforementioned radicals and cations are also presented.

  19. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  20. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE PAGES

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario; ...

    2017-04-25

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  1. Body composition and energetic efficiency in two lines of mice selected for rapid growth rate and their F1 crosses.

    PubMed

    Eisen, E J; Bakker, H; Nagai, J

    1977-01-01

    Correlated responses to selection for increased growth rate were compared in two mouse populations (M16 and H6) of distinct genetic origin. Traits studied were body composition, feed intake, constituent gains and energetic efficiency. When compared with their respective controls (ICR and C2) at 6 and 9 weeks of age, body weight increased more in M16 (57%and 69 % of the control mean) than in H6 (40 % and 34%). The M16 showed correlated responses in fat percent of 2.6% (P <.05), 8.4% (P <.01) and 11.2% (P <.01) at 3, 6 and 9 weeks, respectively, whereas corresponding values in H6 were -2.4% (P <.05), 3.3% (P <.05) and 2.09 % (P >.05). The correlated responses in fat percent were 2.7 and 4.7 times higher in M16 than H6 at 6 and 9 weeks. The regression of ln fat weight on ln empty body weight was larger in M16 (P <.05) compared to ICR and larger (P <.01) in H6 compared to C2. Both M16 and H8 exhibited positive correlated responses from 3 to 6 weeks of age in feed intake and gain and efficiency in fat, protein, calories and ash; fat and caloric gain and efficiency exhibited higher correlated responses in M16 than H6. During the 6- to 9-week interval, the M16 population continued to evince positive correlated responses in gains and efficiencies of fat, protein and calories, whereas H6 did not. Several possible explanations are presented to account for the differences in correlated responses between the selected populations. Partitioning of correlated response differences between M16 and H6 into average direct and average maternal genetic effects indicated that average direct genetic effects, favoring M16, were responsible for the major difference between the selected populations. Direct heterosis in F1 crosses of the selected populations were generally not significant, although there was a tendency for fat percent and fat weight to show heterosis.

  2. Feeding habitat quality and behavioral trade-offs in chimpanzees: a case for species distribution models.

    PubMed

    Foerster, Steffen; Zhong, Ying; Pintea, Lilian; Murray, Carson M; Wilson, Michael L; Mjungu, Deus C; Pusey, Anne E

    2016-01-01

    The distribution and abundance of food resources are among the most important factors that influence animal behavioral strategies. Yet, spatial variation in feeding habitat quality is often difficult to assess with traditional methods that rely on extrapolation from plot survey data or remote sensing. Here, we show that maximum entropy species distribution modeling can be used to successfully predict small-scale variation in the distribution of 24 important plant food species for chimpanzees at Gombe National Park, Tanzania. We combined model predictions with behavioral observations to quantify feeding habitat quality as the cumulative dietary proportion of the species predicted to occur in a given location. This measure exhibited considerable spatial heterogeneity with elevation and latitude, both within and across main habitat types. We used model results to assess individual variation in habitat selection among adult chimpanzees during a 10-year period, testing predictions about trade-offs between foraging and reproductive effort. We found that nonswollen females selected the highest-quality habitats compared with swollen females or males, in line with predictions based on their energetic needs. Swollen females appeared to compromise feeding in favor of mating opportunities, suggesting that females rather than males change their ranging patterns in search of mates. Males generally occupied feeding habitats of lower quality, which may exacerbate energetic challenges of aggression and territory defense. Finally, we documented an increase in feeding habitat quality with community residence time in both sexes during the dry season, suggesting an influence of familiarity on foraging decisions in a highly heterogeneous landscape.

  3. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to experimental data.

  4. A Comparison of the Energetic Cost of Running in Marathon Racing Shoes.

    PubMed

    Hoogkamer, Wouter; Kipp, Shalaya; Frank, Jesse H; Farina, Emily M; Luo, Geng; Kram, Rodger

    2018-04-01

    Reducing the energetic cost of running seems the most feasible path to a sub-2-hour marathon. Footwear mass, cushioning, and bending stiffness each affect the energetic cost of running. Recently, prototype running shoes were developed that combine a new highly compliant and resilient midsole material with a stiff embedded plate. The aim of this study was to determine if, and to what extent, these newly developed running shoes reduce the energetic cost of running compared with established marathon racing shoes. 18 high-caliber athletes ran six 5-min trials (three shoes × two replicates) in prototype shoes (NP), and two established marathon shoes (NS and AB) during three separate sessions: 14, 16, and 18 km/h. We measured submaximal oxygen uptake and carbon dioxide production during minutes 3-5 and averaged energetic cost (W/kg) for the two trials in each shoe model. Compared with the established racing shoes, the new shoes reduced the energetic cost of running in all 18 subjects tested. Averaged across all three velocities, the energetic cost for running in the NP shoes (16.45 ± 0.89 W/kg; mean ± SD) was 4.16 and 4.01% lower than in the NS and AB shoes, when shoe mass was matched (17.16 ± 0.92 and 17.14 ± 0.97 W/kg, respectively, both p < 0.001). The observed percent changes were independent of running velocity (14-18 km/h). The prototype shoes lowered the energetic cost of running by 4% on average. We predict that with these shoes, top athletes could run substantially faster and achieve the first sub-2-hour marathon.

  5. Cobalt intercalation at the graphene/iridium(111) interface: Influence of rotational domains, wrinkles, and atomic steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlaic, S.; Kimouche, A.; Coraux, J.

    Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.

  6. The binding energies of one and two water molecules to the first transition-row metal positive ions. II

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1990-01-01

    The present investigation of H2O's binding energy to transition-metal ions proceeds from the D(2h) structure and bends the two water molecules out of plane. The molecule is constrained to have C(2v) symmetry, so that each water molecule and metal ion lies on a plane. The ground states are bent only for Mn(H2O)2(+) and Zn(H2O)2(+), where only 4s4p hybridization is energetically favorable; 4s4p hybridization reduces repulsion.

  7. Elliptical flux vortices in YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hickman, H.; Dekker, A. J.; Chen, T. M.

    1991-01-01

    The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape.

  8. Orbital magnetism: pros and cons for enhancing the cluster magnetism.

    PubMed

    Andriotis, Antonis N; Menon, Madhu

    2004-07-09

    The discrepancy seen in the experimental and theoretical results on the magnetic moment of a small magnetic cluster has been attributed to the contribution arising from orbital magnetism. In this Letter we show that the magnetic states with large orbital magnetic moment are not always energetically favorable; they could, however, be realizable by coating the cluster or deposing it on appropriate substrates. More importantly, our work shows that the crucial factors that determine the cluster magnetism are found to be the intrinsic, and consequently, the extrinsic properties of the constituent atoms of the cluster.

  9. Zero curvature-surface driven small objects

    NASA Astrophysics Data System (ADS)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  10. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites

    NASA Astrophysics Data System (ADS)

    Legrain, Fleur; Manzhos, Sergei

    2017-01-01

    Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).

  11. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites.

    PubMed

    Legrain, Fleur; Manzhos, Sergei

    2017-01-21

    Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).

  12. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    NASA Astrophysics Data System (ADS)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  13. Ion energetics at Saturn's magnetosphere using Cassini/MIMI measurements: A simple model for the energetic ion integral moments

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Paranicas, C.; Roussos, E.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.

    2015-12-01

    We present a composite analysis (H+ and O+) of energetic ion spectra and kappa distribution fits, using combined ion measurements from Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetospheric Measurements System (LEMMS, 0.024 < E < 18 MeV), and the Ion Neutral Camera (INCA, ~5.2 to >220 keV for H+). The modeled expressions of these energetic ion distributions are then used to obtain the four integral particle moments (from zeroth to 3rd moment: n, In, P, IE, i.e. Density, Integral number intensity, Pressure, Integral energy intensity) as well as the characteristic energy (EC=IE/In) of these ions as a function of Local Time and L-Shell. We find that a) protons dominate the energetic ion (>30 keV) integral number and energy intensity at all radial distances (L>5 Rs) and local times, while the H+ and O+ partial pressures and densities are comparable; b) the 12

  14. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE PAGES

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    2016-08-12

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  15. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  16. Spreading of lithium on a stainless steel surface at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  17. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  18. Structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks.

    PubMed

    Karttunen, Antti J; Fässler, Thomas F

    2013-06-24

    We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate-II polytypes is ten times smaller than the difference between the experimentally known 3C-Ge (α-Ge) and 4H-Ge polytypes. The thermoelectric properties of guest-occupied clathrate-II structures were investigated for compositions Na-Rb-Ga-Ge and Ge-As-I. The clathrate-II structures show promising thermoelectric properties and the highest Seebeck coefficients and thermoelectric power factors were predicted for the 3C polytype. The structural anisotropy of the largest studied hexagonal polytypes affects their thermoelectric power factors by over a factor of two. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Spreading of lithium on a stainless steel surface at room temperature

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.

  20. In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex.

    PubMed

    Dong, Ming; Gonzalez, Tara D; Klems, Meghan M; Steinberg, Lisa M; Chen, Wilfred; Papoutsakis, Eleftherios T; Bahnson, Brian J

    2017-09-01

    Methanol:coenzyme M methyltransferase is an enzyme complex composed of three subunits, MtaA, MtaB, and MtaC, found in methanogenic archaea and is needed for their growth on methanol ultimately producing methane. MtaABC catalyzes the energetically favorable methyl transfer from methanol to coenzyme M to form methyl coenzyme M. Here we demonstrate that this important reaction for possible production of methanol from the anaerobic oxidation of methane can be reversed in vitro. To this effect, we have expressed and purified the Methanosarcina barkeri MtaABC enzyme, and developed an in vitro functional assay that demonstrates MtaABC can catalyze the energetically unfavorable (ΔG° = 27 kJ/mol) reverse reaction starting from methyl coenzyme M and generating methanol as a product. Demonstration of an in vitro ability of MtaABC to produce methanol may ultimately enable the anaerobic oxidation of methane to produce methanol and from methanol alternative fuel or fuel-precursor molecules. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1243-1249, 2017. © 2017 American Institute of Chemical Engineers.

  1. Valency configuration of transition metal impurities in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Leon; Schulthess, Thomas C; Svane, Axel

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less

  2. Molecular dynamics and principal components of potassium binding with human telomeric intra-molecular G-quadruplex.

    PubMed

    Wang, Zhiguo; Chen, Ruping; Hou, Ling; Li, Jianfeng; Liu, Jun-Ping

    2015-06-01

    Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3 + 1] form-one human telomeric intra-molecular G-quadruplex. We show here that the binding of a potassium ion to a G-tetrad core is mediated by two alternative pathways. Principal component analysis illustrated the dominant concerted motions of G-quadruplex occurred at the loop domains. MM-PBSA calculations revealed that binding was energetically favorable and driven by the electrostatic interactions. The lower binding site was found more constructive favorable for binding. Our data provide useful information on a potassium-mediated stable structure of human telomeric intra-molecular G-quadruplex, implicating in ion disorder associated conformational changes and targeted drug design.

  3. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2

    DOE PAGES

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-10-26

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less

  4. Microtubule assembly governed by tubulin allosteric gain in flexibility and lattice induced fit

    PubMed Central

    2018-01-01

    Microtubules (MTs) are key components of the cytoskeleton and play a central role in cell division and development. MT assembly is known to be associated with a structural change in αβ-tubulin dimers from kinked to straight conformations. How GTP binding renders individual dimers polymerization-competent, however, is still unclear. Here, we have characterized the conformational dynamics and energetics of unassembled tubulin using atomistic molecular dynamics and free energy calculations. Contrary to existing allosteric and lattice models, we find that GTP-tubulin favors a broad range of almost isoenergetic curvatures, whereas GDP-tubulin has a much lower bending flexibility. Moreover, irrespective of the bound nucleotide and curvature, two conformational states exist differing in location of the anchor point connecting the monomers that affects tubulin bending, with one state being strongly favored in solution. Our findings suggest a new combined model in which MTs incorporate and stabilize flexible GTP-dimers with a specific anchor point state. PMID:29652248

  5. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan Anh; Ilgen, Anastasia

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less

  6. Floating stacking faults on the (111) surface of FCC metals: a finite-temperature first-principles study

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola

    2003-03-01

    The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.

  7. Theoretical study on the identity ion pair SN2 reactions of LiX with CH3SX (X=Cl, Br, and I): structure, mechanism, and potential energy surface.

    PubMed

    Ren, Yi; Gai, Jing-Gang; Xiong, Yan; Lee, Kuo-Hsing; Chu, San-Yan

    2007-07-26

    Three archetypal ion pair nucleophilic substitution reactions at the methylsulfenyl sulfur atom LiX+CH3SX-->XSCH3+LiX (X=Cl, Br, and I) are investigated by the modified Gaussian-2 theory. Including lithium cation in the anionic models makes the ion pair reactions proceed along an SN2 mechanism, contrary to the addition-elimination pathway occurring in the corresponding anionic nucleophilic substitution reactions X-+CH3SX-->XSCH3+X-. Two reaction pathways for the ion pair SN2 reactions at sulfur, inversion and retention, are proposed. Results indicate the inversion pathway is favorable for all the halogens. Comparison of the transition structures and energetics for the ion pair SN2 at sulfur with the potential competition ion pair SN2 reactions at carbon LiX+CH3SX-->XCH3+LiXS shows that the SN2 reactions at carbon are not favorable from the viewpoints of kinetics and thermodynamics.

  8. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation.

    PubMed

    Rohs, Remo; Sklenar, Heinz

    2004-04-01

    The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute-solvent interactions, which are assumed to be nearly constant for the compared complexes of MB with DNA, seem to be justified by the results.

  9. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    NASA Astrophysics Data System (ADS)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to find the critical limit of binder when the output of the SCB declines. The binder was evaluated at 13, 17 and 20% and it was found that the limit amount of binder falls between 17 and 20% by weight of material. Scaling of the SCB bridge was evaluated using a 36x15 mum bridge size and tested using 5, 7 and 9% nAl/Bi2O 3 FC 2175 slurry, creating a functioning SCB compared to previous no-ignition results using TSPP. It was also postulated that the compaction of a secondary material onto the SCB would alter the SCB output during testing. It was found that increased energy values where required for both the 5 and 7% binder amounts and no change was seen at the 9% level.

  10. Dynamic properties of individual water molecules in a hydrophobic pore lined with acyl chains: a molecular dynamics study.

    PubMed

    Qi, Z; Sokabe, M

    1998-03-30

    Recently, a certain class of synthetic molecules has been shown to form ion channels, the pore of which is lined with hydrophobic acyl chains [M. Sokabe, in: F. Oosawa, H. Hayashi, T. Yoshioka (Eds.), Transmembrane Signaling and Sensation, JSSP/VNU Science Press BV, Tokyo, 1984, p. 119; F. Hayashi, M. Sokabe, M. Takagi, K. Hayashi, U. Kishimoto, Biochim. Biophys. Acta, 510 (1978) 305; M.J. Pregel, L. Jullien, J. Canceill, L. Lacombe, J.M. Lehn, J. Chem. Soc. Perkin Trans., 2 (1995) 417; Y. Tanaka, Y. Kobuke, M. Sokabe, Angew. Chem. Int. Ed. Engl., 34 (1995) 693; M. Sokabe, Z. Qi, K. Donowaki, H. Ishida, K. Okubo, Biophys. J., 70 (1996) A201; H. Ishida, K. Donowaki, Y. Inoue, Z. Qi, M. Sokabe, Chem. Lett. (1997) p. 953]. As an initial step towards understanding the physical mechanisms of ion permeation across such a hydrophobic pore, systematic molecular dynamics simulations were performed to investigate dynamic and energetic properties of water molecules inside the pore using a dimer of alanine-N'-acylated cyclic peptide as a channel model. Dynamic energy profiles for water molecules indicated that the energy barrier at the middle region of the pore is approximately 2-3 kcal/mol higher than that in the cap water region which was defined as a vicinity region of the channel entrance. Energetics analyses demonstrated that the mutual interactions among intrapore water molecules are the major factor to give favorable interaction (negative energy contribution) for themselves. The pore, despite being lined with acyl chains, has a favorable van der Waals interaction with intrapore water molecules. These results may help to explain why water-filled channels can be formed by the hydrophobic helices in natural channels.

  11. Mechanisms of stability of armored bubbles: FY 1996 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossen, W.R.; Kam, S.I.

    1996-11-01

    Theoretical and experimental studies examine how a coating, or {open_quotes}armor,{close_quotes} of partially wetted solid particles can stabilize tiny bubbles against diffusion of gas into the surrounding liquid, in spite of the high capillary pressures normally associated with such bubbles. Experiments with polymethylmethacrylate (PNMA) beads and carbonated water demonstrate that armored bubbles can persist for weeks in liquid unsaturated with respect to the gas in the bubbles. This question is of concern regarding gas discharges from waste tanks at the Hanford reservation. The stresses on the solid-solid contacts between particles in such cases is large and could drive sintering of themore » particles into a rigid framework. Stability analysis suggests that a slightly shrunken bubble would not expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Expulsion of particles from more stressed bubbles at zero capillary pressure is energetically favored in some cases. It is not clear, however, whether this expulsion would proceed spontaneously from a small perturbation or require a large initial disturbance of the bubble. In some cases, it appears that a bubble would expel some particles and shrink, but the bubble would approach a final, stable size rather than disappear completely. This simplified analysis leaves out several factors. For instance, only one perturbation toward expelling a solid from the armor is considered; perhaps other perturbations would be more energetically favored than that tested. Other considerations (particle deformation, surface roughness, contact-angle hysteresis, and adhesion or physical bonding between adjacent particles) would make expelling solids more difficult than indicated by this theoretical study.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Qiao, Weiye; Li, Yuliang

    The structure stabilities and electronic properties are investigated by using ab initio self-consistent-field crystal orbital method based on density functional theory for the one-dimensional (1D) double-wall nanotubes made of n-gon SiO{sub 2} nanotubes encapsulated inside zigzag carbon nanotubes. It is found that formation of the combined systems is energetically favorable when the distance between the two constituents is around the Van der Waals scope. The obtained band structures show that all the combined systems are semiconductors with nonzero energy gaps. The frontier energy bands (the highest occupied band and the lowest unoccupied band) of double-wall nanotubes are mainly derived frommore » the corresponding carbon nanotubes. The mobilities of charge carriers are calculated to be within the range of 10{sup 2}–10{sup 4} cm{sup 2} V{sup −1} s{sup −1} for the hybrid double-wall nanotubes. Young’s moduli are also calculated for the combined systems. For the comparison, geometrical and electronic properties of n-gon SiO{sub 2} nanotubes are also calculated and discussed. - Graphical abstract: Structures and band structures of the optimum 1D Double walls nanotubes. The optimized structures are 3-gon SiO2@(15,0), 5-gon SiO2@(17,0), 6-gon SiO2@(18,0) and 7-gon SiO2@(19,0). - Highlights: • The structure and electronic properties of the 1D n-gon SiO{sub 2}@(m,0)s are studied using SCF-CO method. • The encapsulation of 1D n-gon SiO{sub 2} tubes inside zigzag carbon nanotubes can be energetically favorable. • The 1D n-gon SiO{sub 2}@(m,0)s are all semiconductors. • The mobility of charge carriers and Young’s moduli are calculated.« less

  13. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  14. Fluorine-substitution induced switching of dissociation patterns of C6H4*+ produced by photoelimination of MgF2 from the complexes of mg*+ (multifluorobenzene).

    PubMed

    Liu, Hai-Chuan; Zhang, Xin-Hao; Wu, Yun-Dong; Yang, Shihe

    2005-03-07

    Complexes of fluorinated benzenes (o-C6H4-nF2+n) and Mg*+ are subjected to ultraviolet photodissociation (260-340 nm), producing efficiently benzyne radical cations (C6H4-nFn*+) besides Mg*+ and MgF+. We show that the consecutive dissociation of C6H4-nFn*+ follows the [C4(+) + C2] pattern exclusively for n < or = 2 after the parent complexes absorb one or two photons. However, the dissociation pattern is switched to [C5(+) + C1] and [C1 + C5] for n > or = 3. In particular, upon two-photon absorption at 340 nm by the complexes of Mg*+ (C6HF5) (1) and Mg*+ (C6F6) (2), photoproducts of CF+, C5H+, and C5HF*+ from C6HF3*+ and CF+, C5F+, C5F2*+, and C5F3+ from C6F4*+ are detected, respectively. Theoretical calculations are used to explain the switching of the dissociation patterns induced by the fluorine substitutions. It was found that the formation of C5+ + C1 is energetically more favorable than that of C4(+) + C2 from C6HF3*+ and C6F4*+ and of C1(+) + C5. Except for C5H2F(+) + CF, all the channels of [C5(+) + C1] and [C1(+) + C5] are energetically less favorable than those of [C4(+) + C2] from C6H3F*+ and C6H2F2*+. In most cases, the calculated results agree well with the experimental observations.

  15. Shock Sensitivity of energetic materials

    NASA Technical Reports Server (NTRS)

    Kim, K.

    1980-01-01

    Viscoplastic deformation is examined as the principal source of hot energy. Some shock sensitivity data on a proposed model is explained. A hollow sphere model is used to approximate complex porous matrix of energetic materials. Two pieces of shock sensitivity data are qualitatively compared with results of the proposed model. The first is the p2 tau law. The second is the desensitization of energetic materials by a ramp wave applied stress. An approach to improve the model based on experimental observations is outlined.

  16. Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS.

    PubMed

    Shiiba, Takuro; Kuga, Naoya; Kuroiwa, Yasuyoshi; Sato, Tatsuhiko

    2017-10-01

    We assessed the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels (DPKs) calculated using the particle and heavy ion transport code system (PHITS) for patient-specific dosimetry in targeted radionuclide treatment (TRT) and compared our data with published data. All mono-energetic and beta-emitting isotope DPKs calculated using PHITS, both in water and compact bone, were in good agreement with those in literature using other MC codes. PHITS provided reliable mono-energetic electron and beta-emitting isotope scaled DPKs for patient-specific dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Weigand, Bernhard; Vaikuntanathan, Visakh

    2018-06-01

    Microscopic analysis of turbulence topology in a regular porous medium is presented with a series of direct numerical simulation. The regular porous media are comprised of square cylinders in a staggered array. Triply periodic boundary conditions enable efficient investigations in a representative elementary volume. Three flow patterns—channel with sudden contraction, impinging surface, and wake—are observed and studied quantitatively in contrast to the qualitative experimental studies reported in the literature. Among these, shear layers in the channel show the highest turbulence intensity due to a favorable pressure gradient and shed due to an adverse pressure gradient downstream. The turbulent energy budget indicates a strong production rate after the flow contraction and a strong dissipation on both shear and impinging walls. Energy spectra and pre-multiplied spectra detect large scale energetic structures in the shear layer and a breakup of scales in the impinging layer. However, these large scale structures break into less energetic small structures at high Reynolds number conditions. This suggests an absence of coherent structures in densely packed porous media at high Reynolds numbers. Anisotropy analysis with a barycentric map shows that the turbulence in porous media is highly isotropic in the macro-scale, which is not the case in the micro-scale. In the end, proper orthogonal decomposition is employed to distinguish the energy-conserving structures. The results support the pore scale prevalence hypothesis. However, energetic coherent structures are observed in the case with sparsely packed porous media.

  18. Feasibility and energetic evaluation of air stripping for bioethanol production.

    PubMed

    Schläfle, Sandra; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2017-05-01

    Stripping of mashes with air as stripping gas and low ethanol contents between 3 and 5wt% was investigated in terms of its suitability for continuous bioethanol production. Experiments in a Blenke cascade system were carried out and the results were compared with values obtained from theoretical vapour-liquid-equilibrium calculations. The whole stripping process was energetically evaluated by a simulation in ChemCAD and compared to conventional distillation. Therefore several parameters such as temperature, air volume flow and initial ethanol load of the mash were varied. Air stripping was found to be a suitable separation method for bioethanol from mashes with low concentrations. However, energetic aspects have to be considered, when developing a new process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2017-01-01

    Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549

  20. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.

    PubMed

    Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A

    2018-03-27

    Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic degradation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    PubMed

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  2. Structure and Growth of Quasi One-Dimensional YSi2 Nanophases on Si(100)

    PubMed Central

    Iancu, V.; Kent, P.R.C.; Hus, S.; Hu, H.; Zeng, C.G.; Weitering, H.H.

    2013-01-01

    Quasi one-dimensional YSi2 nanostructures are formed via self-assembly on the Si(100) surface. These epitaxial nanowires are metastable and their formation strongly depends on the growth parameters. Here, we explore the various stages of yttrium silicide formation over a range of metal coverages and growth temperatures, and establish a rudimentary phase diagram for these novel and often coexisting nanophases. In addition to previously identified stoichiometric wires, we identify several new nanowire systems. These nanowires exhibit a variety of surface reconstructions, which sometimes coexist on a single wire. From a comparison of scanning tunneling microcopy images, tunneling spectra, and first-principles density functional theory calculations, we determine that these surface reconstructions arise from local orderings of yttrium vacancies. Nanowires often agglomerate into nanowire bundles, the thinnest of which are formed by single wire pairs. The calculations show that such bundles are energetically favored compared to well-separated single wires. Thicker bundles are formed at slightly higher temperature. They extend over several microns, forming a robust network of conducting wires that could possibly be employed in nanodevice applications. PMID:23221350

  3. Proposed correlation of structure network inherited from producing techniques and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations

    PubMed Central

    Yang, M. H.; Li, J. H.; Liu, B. X.

    2016-01-01

    Based on the newly constructed n-body potential of Ni-Ti-Mo system, Molecular Dynamics and Monte Carlo simulations predict an energetically favored glass formation region and an optimal composition sub-region with the highest glass-forming ability. In order to compare the producing techniques between liquid melt quenching (LMQ) and solid-state amorphization (SSA), inherent hierarchical structure and its effect on mechanical property were clarified via atomistic simulations. It is revealed that both producing techniques exhibit no pronounced differences in the local atomic structure and mechanical behavior, while the LMQ method makes a relatively more ordered structure and a higher intrinsic strength. Meanwhile, it is found that the dominant short-order clusters of Ni-Ti-Mo metallic glasses obtained by LMQ and SSA are similar. By analyzing the structural evolution upon uniaxial tensile deformation, it is concluded that the gradual collapse of the spatial structure network is intimately correlated to the mechanical response of metallic glasses and acts as a structural signature of the initiation and propagation of shear bands. PMID:27418115

  4. Kinetic Monte Carlo Investigation of the Effects of Vacancy Pairing on Oxygen Diffusivity in Yttria-Stabilized Zirconia

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2011-01-01

    Yttria-stabilized zirconia s high oxygen diffusivity and corresponding high ionic conductivity, and its structural stability over a broad range of temperatures, have made the material of interest for use in a number of applications, for example, as solid electrolytes in fuel cells. At low concentrations, the stabilizing yttria also serves to increase the oxygen diffusivity through the presence of corresponding oxygen vacancies, needed to maintain charge neutrality. At higher yttria concentration, however, diffusivity is impeded by the larger number of relatively high energy migration barriers associated with yttrium cations. In addition, there is evidence that oxygen vacancies preferentially occupy nearest-neighbor sites around either dopant or Zr cations, further affecting vacancy diffusion. We present the results of ab initio calculations that indicate that it is energetically favorable for oxygen vacancies to occupy nearest-neighbor sites adjacent to Y ions, and that the presence of vacancies near either species of cation lowers the migration barriers. Kinetic Monte Carlo results from simulations incorporating this effect are presented and compared with results from simulations in which the effect is not present.

  5. Ab initio studies of Th3N4, Th2N3 and Th2N2(NH)

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2014-09-01

    Using density functional theory within the Perdew-Burke-Ernzerhof generalized gradient approximation [GGA (PBE)] implemented in the VASP codes, we investigate the structural, elastic and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated structural properties of these thorium-based nitrides are in good agreement with experimental data. We observe that all the Th-N based compounds that we considered are energetically favorable and elastically stable. We find that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares well with the experimental band gap of 1.7 eV and we find Th2N3 to be metallic. Th2N2(NH), which is crystallographically equivalent to Th2N3, is insulating with a band gap of 2.12 eV. This is due to the -(NH) group that effects a shifting of the energy bands that results in the opening of a gap at the Fermi-level. The Th-N based compounds that we considered are predominantly ionic.

  6. The Relaxation of Vicinal (001) with ZigZag [110] Steps

    NASA Astrophysics Data System (ADS)

    Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.

    2012-02-01

    This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In our work, we compare co-doping with Nb to NH 3 treatment of CaTiO 3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb 5+ in the phosphor. Furthermore, the oxidationmore » state of the Pr was probed by NEXAFS and revealed that both Nb 5+ co-doping and NH 3 treatment reduced the number of non-fluorescing Pr 4+ centers. We performed calculations in order to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH 3 treatments reduce the number of Pr 4+ non-fluorescing centers, while Nb 5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.« less

  8. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation.

    PubMed

    Elder, Thomas; Berstis, Laura; Beckham, Gregg T; Crowley, Michael F

    2016-06-15

    The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-hydroxyconiferyl alcohol are linear homopolymers and, as such, may have properties that make them amenable for use in value-added products, such as lignin-based carbon fibers. In the current work, results from density functional theory calculations for the reactions of 5-hydroxyconiferyl alcohol, taking stereochemistry into account, are reported. Dehydrogenation and quinone methide formation are found to be thermodynamically favored for 5-hydroxyconiferyl alcohol, over coniferyl alcohol. The comparative energetics of the rearomatization reactions suggest that the formation of the benzodioxane linkage is under kinetic control. Ring-opening reactions of the benzodioxane groups show that the bond dissociation enthalpy of the α-O cleavage reaction is lower than that of the β-O reaction. The catechol lignins represent a novel form of the polymer that may offer new opportunities for bioproducts and genetic targets.

  9. A LDA + U study of the photoemission spectra of the double hexagonal close packed phases of Am and Cm

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Ray, Asok K.

    2010-05-01

    We have investigated the photoemission spectra and other electronic structure properties such as equilibrium volume and bulk modulus of double hexagonal close packed (dhcp) americium and the density of states (DOS) and magnetic properties of dhcp curium using the LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities significantly better than those calculated using the spin polarized configuration. The density of states calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, the onsite interaction parameter, U, is observed to increase the splitting between occupied and unoccupied bands by enhancing the Stoner parameter. The DOS of both non-magnetic americium and anti-ferromagnetic curium are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium exchange interaction appears to play a dominant role in magnetic stability.

  10. Ultra-intense laser interaction with specially-designed targets as a source of energetic protons

    NASA Astrophysics Data System (ADS)

    Psikal, J.; Matys, M.

    2017-05-01

    In this contribution, we discuss the optimization of laser driven proton acceleration efficiency by nanostructured targets, interpret the experimental results showing the manipulation of proton beam profiles by nanosctructured rear surface of the targets and investigate the acceleration of protons from hydrogen solid ribbon by PW-class lasers, with the help of multidimensional particle-in-cell simulations. Microstructured hollow targets are proposed to enhance the absorption of the laser pulse energy while keeping the target thickness to minimum, which is both favorable for enhanced efficiency of the acceleration of protons. Thin targets with grating structures of various configurations on their rear sides stretch the proton beams in the perpendicular direction to the grating orientation due to transverse electric fields generated inside the target grooves and can reduce the proton beam divergence in the parallel direction to the grating due to a lower density of the stretched beam compared with flat foils. Finally, it is shown that when multiPW laser pulse interacts with hydrogen solid ribbon, hole boring radiation pressure acceleration (RPA) dominates over the target normal sheath acceleration (TNSA).

  11. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Thiel, Patricia A.

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  12. Comparison of the Internal Energy Deposition of Venturi-Assisted Electrospray Ionization and a Venturi-Assisted Array of Micromachined UltraSonic Electrosprays (AMUSE)

    PubMed Central

    Hampton, Christina Y.; Silvestri, Catherine J.; Forbes, Thomas P.; Varady, Mark J.; Meacham, J. Mark; Fedorov, Andrei G.; Degertekin, F. Levent; Fernández, Facundo M.

    2008-01-01

    The internal energy deposition of a Venturi-assisted array of micromachined ultrasonic electrosprays (AMUSE), with and without the application of a DC charging potential, is compared with equivalent experiments for Venturi-assisted electrospray ionization (ESI) using the “survival yield” method on a series of para-substituted benzylpyridinium salts. Under conditions previously shown to provide maximum ion yields for standard compounds, the observed mean internal energies were nearly identical (1.93–2.01eV). Operation of AMUSE without nitrogen flow to sustain the air amplifier focusing effect generated energetically-colder ions with mean internal energies that were up to 39% lower than those for ESI. A balance between improved ion transfer, adequate desolvation and favorable ion energetics was achieved by selection of optimum operational ranges for the parameters that most strongly influence the ion population, namely the air amplifier gas flow rate and API capillary temperature. Examination of the energy landscapes obtained for combinations of these parameters showed that a low internal energy region (≤ 1.0 eV) was present at nitrogen flow rates between 2 – 4 L min−1 and capillary temperatures up to 250°C using ESI (9% of all parameter combinations tested). Using AMUSE, this region was present at nitrogen flow rates up to 2.5 L min−1 and all capillary temperatures (13% of combinations tested). The signal-to-noise ratio (S/N) of the intact p-methylbenzylpyridinium ion obtained from a 5 μM mixture of thermometer compounds using AMUSE at the extremes of the studied temperature range was at least 5 times higher than that of ESI demonstrating the potential of AMUSE ionization as a soft method for the characterization of labile species by mass spectrometry. PMID:18650100

  13. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture

    NASA Astrophysics Data System (ADS)

    Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.

    2008-09-01

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  14. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture.

    PubMed

    Spickermann, C; Thar, J; Lehmann, S B C; Zahn, S; Hunger, J; Buchner, R; Hunt, P A; Welton, T; Kirchner, B

    2008-09-14

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C(2)C(1)im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C(2)C(1)im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H(2)O)-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C(2)C(1)im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  15. Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer.

    PubMed

    Seo, Young Hun; Singh, Ajay; Cho, Hong-Jun; Kim, Youngsun; Heo, Jeongyun; Lim, Chang-Keun; Park, Soo Young; Jang, Woo-Dong; Kim, Sehoon

    2016-04-01

    H2O2-specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (∼26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation-induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE PAGES

    Liu, Da-Jiang; Thiel, Patricia A.

    2018-03-28

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  17. Novel germanetellones: XYGe=Te (X, Y = H, F, Cl, Br, I and CN) - structures and energetics. Comparison with the first synthetic successes.

    PubMed

    Jaufeerally, Naziah B; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2014-03-14

    No stable germanetellone was described until Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl, Dis = bis(trimethylsilyl)methyl and Tip = 2,4,6-triisopropylphenyl) were reported in 1997. Following these initial experiments, there has arisen considerable interest in Ge[double bond, length as m-dash]Te systems. An obvious question is: why have the simple XYGe=Te (X, Y = H, F, Cl, Br, I and CN) molecules not yet been isolated? In view of the present situation, theoretical information may be of great help for further advances in germanetellone chemistry. A systematic investigation of the XYGe=Te molecules is carried out using the second order Møller-Plesset perturbation theory (MP2) and density functional theory (DFT). The structures and energetics, including ionization potentials (IPad and IPad(ZPVE)), four different forms of neutral-anion separations (EAad, EAad(ZPVE), VEA and VDE) and the singlet-triplet gaps, are reported. The electronegativity (χ) reactivity descriptor for the halogens (F, Cl, Br and I) and the natural charge separations of the Ge=Te moiety are used to assess the interrelated properties of germanetellone and its derivatives. The results are analyzed, discussed and compared with analogous studies of telluroformaldehyde, silanetellone and their derivatives. The thermodynamic viabilities of some of the novel germanetellones have also been evaluated in terms of the bond dissociation enthalpies of Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te. The simple mono-substituted germanetellones appear to be slightly more thermodynamically favored than Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te, since the bond dissociation enthalpies of these kinetically stabilized germanetellones are about 28 and 51 kcal mol(-1) lower, respectively.

  18. From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave.

    PubMed

    Sanlı, Ceyda; Lohse, Detlef; van der Meer, Devaraj

    2014-05-01

    A hydrophilic floating sphere that is denser than water drifts to an amplitude maximum (antinode) of a surface standing wave. A few identical floaters therefore organize into antinode clusters. However, beyond a transitional value of the floater concentration ϕ, we observe that the same spheres spontaneously accumulate at the nodal lines, completely inverting the self-organized particle pattern on the wave. From a potential energy estimate we show (i) that at low ϕ antinode clusters are energetically favorable over nodal ones and (ii) how this situation reverses at high ϕ, in agreement with the experiment.

  19. Spontaneous pion emission as a new natural radioactivity

    NASA Astrophysics Data System (ADS)

    Ion, D. B.; Ivascu, M.; Ion-Mihai, R.

    1986-10-01

    In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Qπ-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F π/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.

  20. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  1. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; ...

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  2. Energy Intake and Exercise as Determinants of Brain Health and Vulnerability to Injury and Disease

    PubMed Central

    Mattson, Mark P.

    2012-01-01

    Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA repair proteins, autophagy and mitochondrial biogenesis. By suppressing adaptive cellular stress responses, overeating and a sedentary lifestyle may increase the risk of Alzheimer’s and Parkinson’s diseases, stroke, and depression. Intense concerted efforts of governments, families, schools and physicians will be required to successfully implement brain-healthy lifestyles that incorporate ER and exercise. PMID:23168220

  3. The ODTX System for the Study of Thermal Sensitivity and Thermal Explosion Violence of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon

    2013-06-01

    Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Neutral vs zwitterionic glycine forms at the water/silica interface: structure, energies, and vibrational features from B3LYP periodic simulations.

    PubMed

    Rimola, Albert; Civalleri, Bartolomeo; Ugliengo, Piero

    2008-12-16

    B3LYP periodic calculations with a triple-xi-polarized Gaussian basis set have been used to study adsorption of glycine on a hydroxylated silica surface (2.2 OH/nm2) model derived from the (001) surface of edingtonite. The simulation envisages glycine adsorbed either as a gas-phase molecule or when microsolvated by up to five H20 molecules. Both neutral and zwitterionic forms of glycine have been considered and their structural, energetic, and spectroscopic vibrational features compared internally and with experiments. As a gas phase glycine sticks in its neutral form at the silica surface, the zwitterion being highly unstable and with transition-state character. When glycine is microsolvated at the silica interface, two H20 molecules render the zwitterion population comparable to that of the neutral form whereas with four H2O molecules the neutral glycine population is wiped out in favor of the zwitterion. With four H20 molecules the most stable structure shows no direct contact between glycine and the silica surface, H20 acting as a mediator via H-bond interactions. The B3LYP energies and structural data were also supported by comparing the scaled harmonic vibrational features with literature FTIR data of glycine adsorbed on an amorphous silica surface either from the gas phase or in water solution.

  5. Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian

    2008-11-01

    On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).

  6. Surface segregation and surface tension of polydisperse polymer melts.

    PubMed

    Minnikanti, Venkatachala S; Qian, Zhenyu; Archer, Lynden A

    2007-04-14

    The effect of polydispersity on surface segregation of a lower molecular weight polymer component in a higher molecular weight linear polymer melt host is investigated theoretically. We show that the integrated surface excess zM of a polymer component of molecular weight M satisfies a simple relation zM=2Ue(M/Mw-1)phiM, where Mw is the weight averaged molecular weight, phiM is the polymer volume fraction, and Ue is the attraction of polymer chain ends to the surface. Ue is principally of entropic origin, but also reflects any energetic preference of chain ends to the surface. We further show that the surface tension gammaM of a polydisperse melt of high molar mass components depends on the number average degree of polymerization Mn as, gammaM=gammainfinity+2UerhobRT/Mn. The parameter gammainfinity is the asymptotic surface tension of an infinitely long polymer of the same chemistry, rhob is the bulk density of the polymer, R is the universal gas constant, and T is the temperature. The predicted gammaM compare favorably with surface tension values obtained from self-consistent field theory simulations that include equation of state effects, which account for changes in polymer density with molecular weight. We also compare the predicted surface tension with available experimental data.

  7. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    PubMed

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  8. Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties.

    PubMed

    Yurenko, Yevgen P; Novotný, Jan; Nikolaienko, Tymofii Yu; Marek, Radek

    2016-01-21

    The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.

  9. The Effects of Iodine Attenuation on Pulmonary Nodule Volumetry using Novel Dual-Layer Computed Tomography Reconstructions.

    PubMed

    den Harder, A M; Bangert, F; van Hamersvelt, R W; Leiner, T; Milles, Julien; Schilham, A M R; Willemink, M J; de Jong, P A

    2017-12-01

    To assess the effect of iodine attenuation on pulmonary nodule volumetry using virtual non-contrast (VNC) and mono-energetic reconstructions. A consecutive series of patients who underwent a contrast-enhanced chest CT scan were included. Images were acquired on a novel dual-layer spectral CT system. Conventional reconstructions as well as VNC and mono-energetic images at different keV levels were used for nodule volumetry. Twenty-four patients with a total of 63 nodules were included. Conventional reconstructions showed a median (interquartile range) volume and diameter of 174 (87 - 253) mm 3 and 6.9 (5.4 - 9.9) mm, respectively. VNC reconstructions resulted in a significant volume reduction of 5.5% (2.6 - 11.2%; p<0.001). Mono-energetic reconstructions showed a correlation between nodule attenuation and nodule volume (Spearman correlation 0.77, (0.49 - 0.94)). Lowering the keV resulted in increased volumes while higher keV levels resulted in decreased pulmonary nodule volumes compared to conventional CT. Novel dual-layer spectral CT offers the possibility to reconstruct VNC and mono-energetic images. Those reconstructions show that higher pulmonary nodule attenuation results in larger nodule volumes. This may explain the reported underestimation in nodule volume on non-contrast enhanced compared to contrast-enhanced acquisitions. • Pulmonary nodule volumes were measured on virtual non-contrast and mono-energetic reconstructions • Mono-energetic reconstructions showed that higher attenuation results in larger volumes • This may explain the reported nodule volume underestimation on non-contrast enhanced CT • Mostly metastatic pulmonary nodules were evaluated, results might differ for benign nodules.

  10. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1982-01-01

    Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.

  11. Energetic electrons driven in the polarization direction of an intense laser beam incident normal to a solid target

    DOE PAGES

    Seely, J. F.; Hudson, L. T.; Pereira, N.; ...

    2016-02-24

    Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic electrons propagated through vacuum to spectator metal wires in the polarization direction and in the perpendicular direction, and the K shell spectra from the different wire materials were recorded as functions of the distance from the laser focal spot. It was found that the fluence of the energetic electrons driven into the spectator wires in the polarization direction compared to themore » perpendicular direction was larger and increased with the distance from the focal spot. Finally, this indicates that energetic electrons are preferentially driven in the direction of the intense oscillating electric field of the incident laser beam in agreement with the multiphoton inverse Bremsstrahlung absorption process.« less

  12. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  13. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    DOE PAGES

    Wang, Feng; Yu, L. M.; Fu, G. Y.; ...

    2017-03-22

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835–8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energymore » $$\\delta {{W}_{k}}$$ is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work. For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. As a result, numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold $${{\\beta}_{c}}$$ for instability and decrease mode frequency.« less

  14. Energetic costs of performance in trained and untrained Anolis carolinensis lizards.

    PubMed

    Lailvaux, Simon P; Wang, Andrew Z; Husak, Jerry F

    2018-04-23

    The energetic costs of performance constitute a non-trivial component of animals' daily energetic budgets. However, we currently lack an understanding of how those costs are partitioned among the various stages of performance development, maintenance and production. We manipulated individual investment in performance by training Anolis carolinensis lizards for endurance or sprinting ability. We then measured energetic expenditure both at rest and immediately following exercise to test whether such training alters the maintenance and production costs of performance. Trained lizards had lower resting metabolic rates than controls, suggestive of a maintenance saving associated with enhanced performance as opposed to a cost. Production costs also differed, with sprint-trained lizards incurring a larger energetic performance cost and experiencing longer recovery times compared with endurance trained and control animals. Although performance training modifies metabolism, production costs are probably the key drivers of trade-offs between performance and other life-history traits in this species. © 2018. Published by The Company of Biologists Ltd.

  15. Prospective Symbiosis of Green Chemistry and Energetic Materials.

    PubMed

    Kuchurov, Ilya V; Zharkov, Mikhail N; Fershtat, Leonid L; Makhova, Nina N; Zlotin, Sergey G

    2017-10-23

    A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO 2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.

    PubMed

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Mabuchi, Hideo; Herschlag, Daniel

    2017-09-12

    Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔG align , the probability of aligning tertiary contact partners, and ΔG tert , the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔG HJH ) or from changes in the electrostatic environment (ΔG +/- ) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔG tert ). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔG tert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.

  17. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.

    2017-11-01

    Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.

  18. Choline Triggers Exacerbations of Chronic Obstructive Pulmonary Disease in Patients Infected with Pseudomonas aeruginosa.

    PubMed

    Grumelli, Sandra

    2016-01-01

    Although exacerbations of chronic obstructive pulmonary disease produced by Pseudomonas aeruginosa infections are a major cause of death, the molecular mechanism that produces them is not well known. Here we focused on the energetic basis of dyspnoea, hypercapnia and acidosis symptoms. We used an in vivo exacerbation model exposing mice to cigarette smoke and LPS, to mimic emphysema and infections, and choline challenges to trigger exacerbations, that showed 31% increased in the airway resistance for naïve mice and 250% for smoke/LPS treatment. Tissue resistance was increased 32%, in naïve mice, and 169% for smoke/LPS treatment. A decreased tissue elastance, was confirmed by decreased collagen content and increased alveoli chord length. Consequently, the O 2 demanded was 260% greater for smoke/LPS treated mice, to provide the energy required to pump the same volume of air then for naïve mice. The extra CO 2 produced per ml of air pumped caused hypercapnia and acidosis by 4% decrease in pH.In addition, the bacteria grown with choline had a decrease of 67% in phosphate, 23% ATP and 85% phospholipids with an increase of 57% in polyphosphates, 50% carbohydrates, 100% LPS, consuming 45% less energy relative to the bacteria grown with succinate. choline, released by P. aeruginosa , triggers exacerbation symptoms by increasing lung resistance, O 2 consumption and producing more pCO 2 in blood with dyspnea, hypercapnia and acidosis. The energetic shift of decreased O 2 bacterial demand and increased lung demand benefits the infection, thus restoring the energetic balance on the host will favor P. aeruginosa eradication.

  19. High-Resolution Mapping of a Repeat Protein Folding Free Energy Landscape.

    PubMed

    Fossat, Martin J; Dao, Thuy P; Jenkins, Kelly; Dellarole, Mariano; Yang, Yinshan; McCallum, Scott A; Garcia, Angel E; Barrick, Doug; Roumestand, Christian; Royer, Catherine A

    2016-12-06

    A complete description of the pathways and mechanisms of protein folding requires a detailed structural and energetic characterization of the conformational ensemble along the entire folding reaction coordinate. Simulations can provide this level of insight for small proteins. In contrast, with the exception of hydrogen exchange, which does not monitor folding directly, experimental studies of protein folding have not yielded such structural and energetic detail. NMR can provide residue specific atomic level structural information, but its implementation in protein folding studies using chemical or temperature perturbation is problematic. Here we present a highly detailed structural and energetic map of the entire folding landscape of the leucine-rich repeat protein, pp32 (Anp32), obtained by combining pressure-dependent site-specific 1 H- 15 N HSQC data with coarse-grained molecular dynamics simulations. The results obtained using this equilibrium approach demonstrate that the main barrier to folding of pp32 is quite broad and lies near the unfolded state, with structure apparent only in the C-terminal region. Significant deviation from two-state unfolding under pressure reveals an intermediate on the folded side of the main barrier in which the N-terminal region is disordered. A nonlinear temperature dependence of the population of this intermediate suggests a large heat capacity change associated with its formation. The combination of pressure, which favors the population of folding intermediates relative to chemical denaturants; NMR, which allows their observation; and constrained structure-based simulations yield unparalleled insight into protein folding mechanisms. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  1. Polymer amide as an early topology.

    PubMed

    McGeoch, Julie E M; McGeoch, Malcolm W

    2014-01-01

    Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.

  2. Understanding the Mechanism of SiC Plasma-Enhanced Chemical Vapor Deposition (PECVD) and Developing Routes toward SiC Atomic Layer Deposition (ALD) with Density Functional Theory.

    PubMed

    Filatova, Ekaterina A; Hausmann, Dennis; Elliott, Simon D

    2018-05-02

    Understanding the mechanism of SiC chemical vapor deposition (CVD) is an important step in investigating the routes toward future atomic layer deposition (ALD) of SiC. The energetics of various silicon and carbon precursors reacting with bare and H-terminated 3C-SiC (011) are analyzed using ab initio density functional theory (DFT). Bare SiC is found to be reactive to silicon and carbon precursors, while H-terminated SiC is found to be not reactive with these precursors at 0 K. Furthermore, the reaction pathways of silane plasma fragments SiH 3 and SiH 2 are calculated along with the energetics for the methane plasma fragments CH 3 and CH 2 . SiH 3 and SiH 2 fragments follow different mechanisms toward Si growth, of which the SiH 3 mechanism is found to be more thermodynamically favorable. Moreover, both of the fragments were found to show selectivity toward the Si-H bond and not C-H bond of the surface. On the basis of this, a selective Si deposition process is suggested for silicon versus carbon-doped silicon oxide surfaces.

  3. Interactions of L-3,5,3'-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes

    PubMed Central

    Westergard, Thomas; Salari, Reza; Martin, Joseph V.; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone. PMID:26421724

  4. Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes.

    PubMed

    Westergard, Thomas; Salari, Reza; Martin, Joseph V; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.

  5. Photoelectron Spectroscopy Study of Quinonimides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekram; Deng, Shihu M.; Gozem, Samer

    Structures and energetics of o-, m- and p-quinonimide anions (OC6H4N) and quinoniminyl radicals have been investigated by using negative ion photoelectron spectroscopy. Modeling of the photoelectron spectrum of the ortho isomer shows that the ground state of the anion is a triplet, while the quinoniminyl radical has a doublet ground state with a doublet-quartet splitting of 35.5 kcal/mol. The para radical has doublet ground state, but a band for a quartet state is missing from the photoelectron spectrum indicating that the anion has a singlet ground state, in contrast to previously reported calculations. The theoretical modeling is revisited here, andmore » it is shown that accurate predictions for the electronic structure of the para quinonimide anion require both an accurate account of electron correlation and a sufficiently diffuse basis set. Electron affinities of o- and p-quinoniminyl radicals are measured to be 1.715 ± 0.010 and 1.675 ± 0.010 eV, respectively. The photoelectron spectrum of the m-quinonimide anion shows that the ion undergoes several different rearrangements, including a rearrangement to the energetically favorable para isomer. Such rearrangements preclude a meaningful analysis of the experimental spectrum.« less

  6. Solar Energetic Particle Warnings from a Coronagraph

    NASA Technical Reports Server (NTRS)

    St Cyr, O. C.; Posner, A.; Burkepile, J. T.

    2017-01-01

    We report here the concept of using near-real time observations from a coronagraph to provide early warning of a fast coronal mass ejection (CME) and the possible onset of a solar energetic particle (SEP) event. The 1 January 2016, fast CME, and its associated SEP event are cited as an example. The CME was detected by the ground-based K-Cor coronagraph at Mauna Loa Solar Observatory and by the SOHO Large Angle and Spectrometric Coronagraph. The near-real-time availability of the high-cadence K-Cor observations in the low corona leads to an obvious question: Why has no one attempted to use a coronagraph as an early warning device for SEP events? The answer is that the low image cadence and the long latency of existing spaceborne coronagraphs make them valid for archival studies but typically unsuitable for near-real-time forecasting. The January 2016 event provided favorable CME viewing geometry and demonstrated that the primary component of a prototype ground-based system for SEP warnings is available several hours on most days. We discuss how a conceptual CME-based warning system relates to other techniques, including an estimate of the relative SEP warning times, and how such a system might be realized.

  7. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism.

    PubMed

    Lehnen, Tatiana Ederich; da Silva, Marcondes Ramos; Camacho, Augusto; Marcadenti, Aline; Lehnen, Alexandre Machado

    2015-01-01

    Conjugated linoleic acid (CLA) is highly found in fats from ruminants and it appears to favorably modify the body composition and cardiometabolic risk factors. The capacity of CLA to reduce the body fat levels as well as its benefic actions on glycemic profile, atherosclerosis and cancer has already been proved in experimental models. Furthermore, CLA supplementation may modulate the immune function, help re-synthetize of glycogen and potentiate the bone mineralization. CLA supplementation also could increase the lipolysis and reduce the accumulation of fatty acids on the adipose tissue; the putative mechanisms involved may be its action in reducing the lipase lipoprotein activity and to increase the carnitine-palmitoil-transferase-1 (CAT-1) activity, its interaction with PPARγ, and to raise the expression of UCP-1. Although studies made in human have shown some benefits of CLA supplementation as the weight loss, the results are still discordant. Moreover, some have shown adverse effects, such as negative effects on glucose metabolism and lipid profile. The purpose of this article is to review the available data regarding the benefits of CLA on the energetic metabolism and body composition, emphasizing action mechanisms.

  8. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  9. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology.

    PubMed

    Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius

    2012-12-28

    As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.

  10. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interaction Heterogeneity can Favorably Impact Colloidal Crystal Nucleation

    NASA Astrophysics Data System (ADS)

    Jenkins, Ian C.; Crocker, John C.; Sinno, Talid

    2017-10-01

    Colloidal particles with short-ranged attractions, e.g., micron-scale spheres functionalized with single-stranded DNA oligomers, are susceptible to becoming trapped in disordered configurations even when a crystalline arrangement is the ground state. Moreover, for reasons that are not well understood, seemingly minor variations in the particle formulation can lead to dramatic changes in the crystallization outcome. We demonstrate, using a combination of equilibrium and nonequilibrium computer simulations, that interaction heterogeneity—variations in the energetic interactions among different particle pairs in the population—may favorably impact crystal nucleation. Specifically, interaction heterogeneity is found to lower the free energy barrier to nucleation via the formation of clusters comprised preferentially of strong-binding particle pairs. Moreover, gelation is inhibited by "spreading out over time" the nucleation process, resulting in a reduced density of stable nuclei, allowing each to grow unhindered and larger. Our results suggest a simple and robust approach for enhancing colloidal crystallization near the "sticky sphere" limit, and support the notion that differing extents of interaction heterogeneity arising from various particle functionalization protocols may contribute to the otherwise unexplained variations in crystallization outcomes reported in the literature.

  12. First-principles study of native defects in bulk Sm2CuO4 and its (001) surface structure

    NASA Astrophysics Data System (ADS)

    Zheng, Fubao; Zhang, Qinfang; Meng, Qiangqiang; Wang, Baolin; Song, Fengqi; Yunoki, Seiji; Wang, Guanghou

    2018-04-01

    Using the first-principles calculations based on the density functional theory, we have studied the bulk defect formation and surface structures of Sm2CuO4. To ensure the accuracy of calculations, the spin order of Cu atoms is rechecked and it is the well-known nearest-neighbor antiferromagnetic ground state, which can be attributed to the hole-mediated superexchange through the strong pdσ hybridization interaction between Cu dx2-y2 electron and the neighboring oxygen px (or py) electron. Under each present experimental condition, the Sm vacancy has a very high formation energy and is unlikely to be stable. The Cu vacancy is a shallow acceptor, which is preferred under O-rich conditions, whereas the O vacancy is a donor and energetically favorable under O-poor conditions. To construct its (001) surface structure, CuOO, CuO, and Cu terminated surfaces are found to be most favorable under different experimental conditions. The stable surface structures are always accompanied by significant surface atomic reconstructions and electron charge redistribution, which are intimately correlated to each other.

  13. Molecular Basis for the Recognition of Higher Fullerenes into Ureidopyrimidinone-Cyclotriveratrylene Self-Assembled Capsules.

    PubMed

    Huerta, Elisa; Serapian, Stefano Artin; Santos, Eva; Cequier, Enrique; Bo, Carles; de Mendoza, Javier

    2016-09-12

    Fullerenes C60 , C70 , and C84 may be readily encaged within a hydrogen-bonded dimeric capsule, based on two concave cyclotriveratrylene (CTV) scaffolds, each containing three self-complementary 2-ureido-4-[1H]-pyrimidinone (UPy) subunits. NMR spectroscopy and circular dichroism studies, complemented by dispersion-corrected DFT calculations, are reported with the aim of characterizing such capsule-fullerene complexes both structurally and energetically. Six fullerenes are considered: in agreement with experiments, calculations find that encapsulation is most favorable for C84 (on a par with C90 ), and follows the trend C60

  14. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    PubMed

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The role of mineral heterogeneity on the hydrogeochemical response of two fractured reservoir rocks in contact with dissolved CO2

    NASA Astrophysics Data System (ADS)

    Garcia Rios, Maria; Luquot, Linda; Soler, Josep M.; Cama, Jordi

    2017-04-01

    In this study we compare the hydrogeochemical response of two fractured reservoir rocks (limestone composed of 100 wt.% calcite and sandstone composed of 66 wt.% calcite, 28 wt.% quartz and 6 wt.% microcline) in contact with CO2-rich sulfate solutions. Flow-through percolation experiments were performed using artificially fractured limestone and sandstone cores and injecting a CO2-rich sulfate solution under a constant volumetric flow rate (from 0.2 to 60 mL/h) at P = 150 bar and T = 60 °C. Measurements of the pressure difference between the inlet and the outlet of the samples and of the aqueous chemistry enabled the determination of fracture permeability changes and net reaction rates. Additionally, X-ray computed microtomography (XCMT) was used to characterize and localized changes in fracture volume induced by dissolution and precipitation reactions. In all reacted cores an increase in fracture permeability and in fracture volume was always produced even when gypsum precipitation happened. The presence of inert silicate grains in sandstone samples favored the occurrence of largely distributed dissolution structures in contrast to localized dissolution in limestone samples. This phenomenon promoted greater dissolution and smaller precipitation in sandstone than in limestone experiments. As a result, in sandstone reservoirs, the larger increase in fracture volume as well as the more extended distribution of the created volume would favor the CO2 storage capacity. The different distribution of created volume between limestone and sandstone experiments led to a different variation in fracture permeability. The progressive stepped permeability increase for sandstone would be preferred to the sharp permeability increase for limestone to minimize risks related to CO2 injection, favor capillary trapping and reduce energetic storage costs. 2D reactive transport simulations that reproduce the variation in aqueous chemistry and the fracture geometry (dissolution pattern) were performed using CrunchFlow. The calcite reactive surface area had to be diminished with respect to the geometric surface area in order to account for the transport control of the calcite dissolution reaction at pH < 5. The fitted reactive surface area was higher under faster flow conditions, reflecting a decrease in transport control and a more distributed reaction in sandstone compared to limestone.

  16. Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Herbert, Bruce; Rhue, Roy D.

    2011-06-01

    Interest in biochars and their role in the biogeochemical cycling of metals have increased in recent years. However, a systematic understanding of the mechanisms involved in biochar-metal interactions and conditions under which a given mechanism is predominant is still needed. We used flow adsorption micro-calorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals of different ionization potential (Ip). Biochar structure influenced the amount of K+ (Ip = 419 kJ mol-1) or Cd(II) (Ip = 868 kJ mol-17 ) sorption but had no effect on the mechanism of sorption. Irrespective of the biochar, K+ sorption was exothermic, surface-controlledmore » and occurred via an ion-exchange mechanism on negatively- charged sites with molar heats of adsorption (_Hads) of -4 kJ mol-1 on wood versus -8 kJ mol-1 on grass biochars. In contrast, Cd(II) sorption was endothermic and favored surface complexation on uncharged biochar surfaces with _Hads of around +17 kJ mol-1. Cadmium sorption transitioned from surface- to diffusion-controlled on biochars formed at ≥ 350 oC and _Hads for Cd(II) sorption was the same on grass and wood biochars. We concluded that, in general, metals with lower Ip favor electrostatic interactions with biochars, while metals of higher Ip favor more covalent-like interactions.« less

  17. Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses

    PubMed Central

    Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.

    2015-01-01

    For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale. PMID:26592568

  18. Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.

    2015-11-01

    For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale.

  19. Carbocations from Oxidized Metabolites of Benzo[a]anthracene. A Computational Study of Their Methylated and Fluorinated Derivatives and Guanine Adducts

    PubMed Central

    Borosky, Gabriela L.; Laali, Kenneth K.

    2008-01-01

    Structure-reactivity relationships and substituent effects on carbocation stability in benzo[a] anthracene (BA) derivatives have been studied computationally at the B3LYP/6-31G* and MP2/6-31G** levels. Bay-region carbocations are formed by O-protonation of the 1,2-epoxides in barrierless processes. This process is energetically more favored as compared to carbocation generation via zwitterion formation/O-protonation, via single electron oxidation to generate a radical cation, or via benzylic hydroxylation. Relative carbocation stabilities were determined in the gas phase and in water as solvent (PCM method). Charge delocalization mode in the BA carbocation framework was deduced from NPA-derived changes in charges, and substitution by methyl or fluorine was studied at different positions selected on basis of the carbocation charge density. A bay-region methyl group produces structural distortion with consequent deviation from planarity of the aromatic system, which destabilizes the epoxide, favoring ring opening. Whereas fluorine substitution at sites bearing significant positive charge leads to carbocation stabilization by fluorine p-π back-bonding, a fluorine atom at a ring position which presented negative charge density leads to inductive destabilization. Methylated derivatives are less sensitive to substituent effects as compared to the fluorinated analogues. Although the solvent decreases the exothermicity of the epoxide ring opening reactions due to greater stabilization of the reactants, it provokes no changes in relative reactivities. Relative energies in the resulting bay-region carbocations are examined taking into account the available biological activity data on these compounds. In selected cases, quenching of bay-region carbocations was investigated by analyzing relative energies (in the gas phase and in water) and geometries of their guanine adducts formed via covalent bond formation with the exocyclic amino group and with the N-7. PMID:16841957

  20. Ab Initio Density Functional Calculations and Infra-Red Study of CO Interaction with Pd Atoms on θ-Al2O3 (010) Surface.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili

    2017-07-24

    The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

  1. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene

    NASA Astrophysics Data System (ADS)

    Dolinskii, I. Yu.; Katin, K. P.; Grishakov, K. S.; Prudkovskii, V. S.; Kargin, N. I.; Maslov, M. M.

    2018-04-01

    This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.

  2. Spontaneous pion emission as a new natural radioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    In this paper the pionic nuclear radioactivity or spontaneous pion emission by a nucleus from its ground state is investigated. The Q/sub ..pi../-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z>80. This new type of natural radioactivity is statistically favored especially for Z = 92-106 for which F/sub ..pi..//F/sub S//sub F/ = 40-200 (MeV)/sup 2/. Experimental detection of the neutral pion and also some possible emission mechanismsmore » are discussed.« less

  3. Structural transition of (InSb)n clusters at n = 6-10

    NASA Astrophysics Data System (ADS)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De

    2016-10-01

    An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.

  4. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization.

    PubMed

    Ellis, J Michael; Altman, Michael D; Cash, Brandon; Haidle, Andrew M; Kubiak, Rachel L; Maddess, Matthew L; Yan, Youwei; Northrup, Alan B

    2016-12-08

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.

  5. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization

    PubMed Central

    2016-01-01

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain. PMID:27994755

  6. Bond strength and interface energy between Pd membranes and TiAl supports

    NASA Astrophysics Data System (ADS)

    Gong, H. R.; He, Y. H.; Huang, B. Y.

    2008-09-01

    Intermetallic TiAl alloy is proposed as a promising support for Pd membranes. First principles calculations reveal that coherent Pd/TiAl interfaces possess high values of bond strengths. Calculations also show that Ti-terminated (100) Pd/(100) TiAl and (110) Pd/(110) TiAl interfaces are energetically favorable with negative interface energies of about -3.1 J/m2, and that the bond strengths of Pd-Ti are bigger than those of Pd-Al. In addition, densities of states calculations suggest that a stronger chemical bonding is formed in the Pd/TiAl interface than corresponding Pd or TiAl bulks, which agrees well with similar experimental observations in literature.

  7. NMR Hole-Burning Experiments on Superionic Conductor Glasses

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Kuwata, N.; Hattori, T.

    2004-04-01

    Inhomogeneity is an inherent nature of glass, which is the density and concentration fluctuation frozen at glass transition temperature. The inhomogeneity of the glass plays significant role in so called superionic conductor glasses (SIG), since the mobile ions seek to move through energetically favorable paths. The localization of mobile ions in SIG near the 2nd glass transition is a remaining issue, where the trapping, percolation and many-body interactions are playing the roles. In order to investigate the trapping process in SIG, the authors have applied 109Ag NMR Hole-Burning technique to AgI containing SIG glasses. By using this technique, the slowing down process of the site-exchange rates between different sites were evaluated.

  8. A density-functional-theory study of biradicals from benzene to hexacene

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Wang, Xingyong; Ma, Jing; Cho, Jun-Hyung

    2011-11-01

    The singlet-triplet energy gap of biradicals created in benzene and polyacenes is investigated by density-functional-theory calculations. For the biradicals in benzene, naphthalene, anthracene, tetracene, pentacene, and hexacene, we find that the singlet state is energetically favored over the triplet state by 189, 191, 184, 199, 218, and 244 meV, respectively. The monotonous increase of the singlet-triplet energy gap from anthracene to hexacene is attributed to the enhanced stability of the singlet state for longer polyacenes. Our analysis shows that the spin density of the singlet state is delocalized over all benzene rings, but such a spin delocalization is not present for the triplet state.

  9. Tuning the conductivity along atomic chains by selective chemisorption

    NASA Astrophysics Data System (ADS)

    Edler, F.; Miccoli, I.; Stöckmann, J. P.; Pfnür, H.; Braun, C.; Neufeld, S.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2017-03-01

    Adsorption of Au on vicinal Si(111) surfaces results in growth of long-range ordered metallic quantum wires. In this paper, we utilized site-specific and selective adsorption of oxygen to modify chemically the transport via different channels in the systems Si(553)-Au and Si(557)-Au. They were analyzed by electron diffraction and four-tip STM-based transport experiments. Modeling of the adsorption process by density functional theory shows that the adatoms and rest atoms on Si(557)-Au provide energetically favored adsorption sites, which predominantly alter the transport along the wire direction. Since this structural motif is missing on Si(553)-Au, the transport channels remain almost unaffected by oxidation.

  10. Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges

    NASA Astrophysics Data System (ADS)

    Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann

    2017-10-01

    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.

  11. Microscopic modelling of ignition and burning for well-arranged energetic crystals in response to drop-weight impact

    NASA Astrophysics Data System (ADS)

    Wu, Yanqing; Huang, Fenglei; Zhou, Min

    2014-05-01

    To probe into impact sensitivity of energetic crystals, a theoretical approach was developed for modelling a single layer of energetic particles between upper striker and below base. Considering the particle plasticity, frictional heating, melting, fracture, and chemical reaction at particle level, effects of loading parameters and sample characteristics on time-to-ignition and burning rate were compared. Finite element numerical simulations were simultaneously performed to provide supporting evidence for thermo-mechanical interactions among energetic particles. Once hot- spots ignition occurred during impact, the macrokinetics of chemical reactions were formulated by hot-spots density, combustion wave velocity and geometric factor. The resulting reaction may or may not develop into a violent event, may be sustained or be extinguished, which can be revealed from the subsequent burn reaction rate.

  12. New Observation of Wave Excitation and Inverse Cascade in the Foreshock Region

    NASA Astrophysics Data System (ADS)

    He, Jiansen; Duan, Die; Yan, Limei; Huang, Shiyong; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Tian, Hui

    2016-04-01

    Foreshock with nascent plasma turbulence is regarded as a fascinating region to understand the basic plasma physical processes, e.g., wave-particle interactions as well as wave-wave couplings. Although there have been a bunch of intensive studies on this topic, some key clues about the chain of the physical processes still lacks from observations, e.g., the co-existence of upstream energetic particles as the free energy source, excited pump waves as the wave seed, inverse cascaded daughter waves, and scattered energetic particles as the end of nonlinear processes. A relatively comprehensive case study with some new observations is presented in this work. In our case, upstream energetic protons drifting at tens of Alfvén speed with respect to the background plasma protons is observed from 3DP/PESA-High onboard the WIND spacecraft. When looking at the wave magnetic activities, we are surprised to find the co-existence of high-frequency (0.1-0.5 Hz) large-amplitude right-hand polarized (RHP) waves and low-frequency (0.02-0.1 Hz) small-amplitude left-hand polarized (LHP) waves in the spacecraft (SC) frame. The anti-correlation between magnetic and velocity fluctuations along with the sunward magnetic field direction indicates the low-frequency LHP waves in the SC frame is in fact the sunward upstream RHP waves in the solar wind frame. This new observation lays solid foundation for the applicability of plasma non-resonance instability theory and inverse cascade theory to the foreshock region, in which the downstream high-frequency RHP pump waves are excited by the upstream reflected energetic protons through non-resonance instability and low-frequency RHP daughter waves are generated by the pump waves due to nonlinear parametric decay. The weak signal of alpha particle flux in the foreshock region concerned is also favorable to the occurrence of nonlinear decay process. Furthermore, enhanced downstream energetic proton fluxes are found and inferred to be scattered by the nascent turbulent fluctuations. Therefore, some key clues about the newborn turbulence in the foreshock are supplemented in this work. Nevertheless, the more complete scenario about the fundamental plasma physical processes in the foreshock is left for the newly launched MMS project and the proposed THOR mission.

  13. Evaluation of water displacement energetics in protein binding sites with grid cell theory.

    PubMed

    Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J

    2015-04-07

    Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.

  14. Unreacted equation of states of typical energetic materials under static compression: A review

    NASA Astrophysics Data System (ADS)

    Zhaoyang, Zheng; Jijun, Zhao

    2016-07-01

    The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050).

  15. Cancer: a profit-driven biosystem?

    PubMed

    Deisboeck, Thomas S

    2008-08-01

    The argument is made that solid malignant tumors behave as profit-driven biological systems in that they expand their nutrient-uptaking surface to increase energetic revenue, at a comparably low metabolic cost. Within this conceptual framework, cancer cell migration is a critical mechanism as it maximizes systemic surface expansion while minimizing diffusion distance. Treating these tumor systems with adjuvant anti-proliferative regimen only should increase the energetic net gain of the viable cancer cells left behind, hence would facilitate tumor recurrence. Therapeutic attempts to better control tumor (re)growth should therefore aim primarily at containing its surface expansion, thus reducing its energetic revenue, or increasing its metabolic costs or better yet, both.

  16. Cancer: A profit-driven biosystem ?

    PubMed Central

    Deisboeck, Thomas S.

    2008-01-01

    The argument is made that solid malignant tumors behave as profit-driven biological systems in that they expand their nutrient-uptaking surface to increase energetic revenue, at a comparably low metabolic cost. Within this conceptual framework, cancer cell migration is a critical mechanism as it maximizes systemic surface expansion while minimizing diffusion distance. Treating these tumor systems with adjuvant anti-proliferative regimen only should increase the energetic net gain of the viable cancer cells left behind, hence would facilitate tumor recurrence. Therapeutic attempts to better control tumor (re)growth should therefore aim primarily at containing its surface expansion, thus reducing its energetic revenue, or increasing its metabolic costs or better yet, both. PMID:18420354

  17. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  18. Impact of canine overweight and obesity on health-related quality of life.

    PubMed

    Yam, P S; Butowski, C F; Chitty, J L; Naughton, G; Wiseman-Orr, M L; Parkin, T; Reid, J

    2016-05-01

    Canine obesity is increasing in prevalence in the UK and raises concerns about dog welfare. This study compares the health-related quality of life (HRQL) of dogs of varying body condition: overweight and obese (BCS 4 and 5) versus non-overweight dogs (BCS 2 and 3), obese (BCS 5) versus non-overweight (BCS 2 and 3) and an overall comparison between all four BCS (BCS 2, 3, 4 and 5) using a novel, validated HRQL instrument which is both web and mobile tablet/phone app based. Of 271 dog owners who were approached, 174 completed a web-based instrument (2013) or a mobile tablet app instrument (2014) during the summers of 2013 and 2014. Automatically generated scores in four domains of HRQL (energetic/enthusiastic, happy/content, active/comfortable, calm/relaxed) were compared for dogs with each of the body condition scores (BCS 2-5). For all body condition scores a statistically significant difference was found between the HRQL scores in two of the domains: energetic/enthusiastic (p=0.02) and active comfortable (p=0.004). When BCS 2 and 3 were compared to BCS 4 and 5, statistical significance was found in the same two domains - energetic/enthusiastic (p=0.01) and active comfortable (p=0.001) - as it was in comparison of non-overweight (BCS 2 and 3) compared to obese dogs (BCS 5): energetic/enthusiastic (p=0.012) and active comfortable (p=0.004). These results suggest that overweight and obese dogs have a reduced HRQL in two of the domains compared to non-overweight dogs, and that differences in HRQL are detectable between BCS scores 2, 3, 4 and 5. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements

    NASA Astrophysics Data System (ADS)

    Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.

    2017-12-01

    The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.

  20. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    NASA Astrophysics Data System (ADS)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  1. The energetics of low browsing in sauropods.

    PubMed

    Ruxton, Graeme D; Wilkinson, David M

    2011-10-23

    It has recently been argued that the probable high cost of travel for sauropod dinosaurs would have made exploiting high forage energetically attractive, if this reduced the need to travel between food patches. This argument was supported by simple calculations. Here, we take a similar approach to evaluate the energetics of foraging close to the ground. We predict that small extensions of the neck beyond the minimum required for the mouth to reach the ground bring substantial energetic savings. Each increment of length brings a further saving, but the sizes of such benefits decrease with increasing neck length. However, the observed neck length of around 9 m for Brachiosaurus (for example) is predicted to reduce the overall cost of foraging by 80 per cent, compared with a minimally necked individual. We argue that the long neck of the sauropods may have been under positive selection for low foraging (instead of, or as well as, exploitation of high foraging), if this long neck allowed a greater area of food to be exploited from a given position and thus reduced the energetically expensive movement of the whole animal.

  2. Energetic Particles: From Sun to Heliosphere - and vice versa

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Elftmann, R.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Steinhagen, J.; Tammen, J.; Terasa, C.; Yu, J.

    2016-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  3. Energetic Particles: From Sun to Heliosphere - and vice versa

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  4. Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes

    PubMed Central

    Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam

    2003-01-01

    We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433

  5. The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil

    1999-01-01

    We show that (1) the newly discovered supernova remnant (SNR) GROJ0852-4642/RXJ0852.0-4622 was created by a core-collapse supernova of a massive star and (2) the same supernova event that produced the Ti-44 detected by COMPTEL from this source is probably also responsible for a large fraction of the observed Al-26 emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type la supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15 solar mass. Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km/s, as derived naively from X-ray data, a much more energetic supernova is required to have occurred at approximately 250 pc away in a dense environment at the edge of the Gum Nebula. This progenitor has a preferred ejecta mass of less than or equal to 10(Solar Mass), and therefore it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of n(sub H) greater than or equal to 100 cu cm in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL Al-26 emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case in which both Ti-44 and Al-26 are detected from the same young SNR, and together they can be used to select preferred theoretical core-collapse supernova models.

  6. Salt-Bridge Energetics in Halophilic Proteins

    PubMed Central

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K.

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its specific electrostatic interactions which we hope would help in protein engineering and bioinformatics studies. PMID:24743799

  7. B38: an all-boron fullerene analogue

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhu, Li; Ma, Yanming

    2014-09-01

    Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (~2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue.Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (~2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01846j

  8. Salt-bridge energetics in halophilic proteins.

    PubMed

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its specific electrostatic interactions which we hope would help in protein engineering and bioinformatics studies.

  9. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  10. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    PubMed Central

    Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.

    2010-01-01

    Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434

  11. Electron transfer and docking between cytochrome cd1 nitrite reductase and different redox partners - A comparative study.

    PubMed

    Pedroso, Humberto A; Silveira, Célia M; Almeida, Rui M; Almeida, Ana; Besson, Stéphane; Moura, Isabel; Moura, José J G; Almeida, M Gabriela

    2016-09-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the reduction of nitrite to nitric oxide in denitrifying bacteria, such as Marinobacter hydrocarbonoclasticus. Previous work demonstrated that the enzymatic activity depends on a structural pre-activation triggered by the entry of electrons through the electron transfer (ET) domain, which houses a heme c center. The catalytic activity of M. hydrocarbonoclasticus cd1NiR (Mhcd1NiR) was tested by mediated electrochemistry, using small ET proteins and chemical redox mediators. The rate of enzymatic reaction depends on the nature of the redox partner, with cytochrome (cyt) c552 providing the highest value. In situations where cyt c552 is replaced by either a biological (cyt c from horse heart) or a chemical mediator the catalytic response was only observed at very low scan rates, suggesting that the intermolecular ET rate is much slower. Molecular docking simulations with the 3D model structure of Mhcd1NiR and cyt c552 or cyt c showed that hydrophobic interactions favor the formation of complexes where the heme c domain of the enzyme is the principal docking site. However, only in the case of cyt c552 the preferential areas of contact and Fe-Fe distances between heme c groups of the redox partners allow establishing competent ET pathways. The coupling of the enzyme with chemical redox mediators was also found not to be energetically favorable. These results indicate that although low activity functional complexes can be formed between Mhcd1NiR and different types of redox mediators, efficient ET is only observed with the putative physiological electron donor cyt c552. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansel, Berrin, E-mail: tanselb@fiu.edu; Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditionsmore » in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.« less

  13. Structures and Energetics of (MgCO 3 ) n Clusters ( n ≤ 16)

    DOE PAGES

    Chen, Mingyang; Jackson, Virgil E.; Felmy, Andrew R.; ...

    2015-03-13

    There is significant interest in the role of carbonate minerals for the storage of CO 2 and the role of prenucleation dusters in their formation. Global minima for (MgCO 3) n (n ≤ 16) structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. The most stable isomers for (MgCO 3) n (n < 5) are approximately 2-dimensional. Mg can be bonded to one or two 0 atoms of a CO 3 2-, and the 1-O bonding scheme is more favored asmore » the cluster becomes larger. The average C-Mg coordination number increases as the cluster size increases, and at n = 16, the average C-Mg coordination number was calculated to be 5.2. The normalized dissociation energy to form monomers increases as n increases. At n = 16, the normalized dissociation energy is calculated to be 116.2 kcal/mol, as compared to the bulk value of 153.9 kcal/mol. The adiabatic reaction energies for the recombination reactions of (MgO) nclusters and CO 2 to form (MgCO 3) n were calculated. The exothermicity of the normalized recombination energy < RE >(CO 2) decreases as n increases and converged to the experimental bulk limit rapidly. The normalized recombination energy < RE >(CO 2) was calculated to be -52.2 kcal/mol for the monomer and -30.7 kcal/mol for n = 16, as compared to the experimental value of -27.9 kcal/mol for the solid phase reaction. Infrared spectra for the lowest energy isomers were calculated, and absorption bands in the previous experimental infrared studies were assigned with our density functional theory predictions. The 13C, 17O, and 25Mg NMR chemical shifts for the clusters were predicted. We found that the results provide insights into the structural and energetic transitions from nanoclusters of (MgCO 3) n to the bulk and the spectroscopic properties of clusters for their experimental identification.« less

  14. Increased fluorescence intensity in CaTiO3:Pr3+ phosphor due to NH3 treatment and Nb Co-doping

    NASA Astrophysics Data System (ADS)

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; Åberg, D.; Seeley, Z. M.; Bagge-Hansen, M.; Srivastava, A. M.; Cherepy, N. J.; Payne, S. A.

    2016-10-01

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In this work, we compare co-doping with Nb to NH3 treatment of CaTiO3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb5+ in the phosphor. The oxidation state of the Pr was probed by NEXAFS and revealed that both Nb5+ co-doping and NH3 treatment reduced the number of non-fluorescing Pr4+ centers. Calculations were performed to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH3 treatments reduce the number of Pr4+ non-fluorescing centers, while Nb5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.

  15. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    PubMed

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  16. RNA-SSPT: RNA Secondary Structure Prediction Tools

    PubMed Central

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  17. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  18. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  19. Energetics of genome ejection from phage revealed by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Jeembaeva, Meerim; Jonsson, Bengt; Castelnovo, Martin; Evilevitch, Alex

    2009-03-01

    It has been experimentally shown that ejection of double-stranded DNA from phage is driven by internal pressure reaching tens of atmospheres. This internal pressure is partially responsible for delivery of DNA into the host cell. While several theoretical models and simulations nicely describe the experimental data of internal forces either resisting active packaging or equivalently favoring spontaneous ejection, there are no direct energy measurements available that would help to verify how quantitative these theories are. We performed direct measurements of the enthalpy responsible for DNA ejection from phage λ, using Isothermal Titration Calorimetry. The phage capsids were ``opened'' in vitro by titrating λ into a solution with LamB receptor and the enthalpy of DNA ejection process was measured. In his way, enthalpy stored in λ was determined as a function of packaged DNA length comparing wild-type phage λ (48.5 kb) with a shorter λ-DNA length mutant (37.7 kb). The temperature dependence of the ejection enthalpy was also investigated. The values obtained were in good agreement with existing models and provide a better understanding of ds- DNA packaging and release mechanisms in motor-packaged viruses (e.g., tailed bacteriophages, Herpes Simplex, and adenoviruses).

  20. Exploring the low friction of diamond-like carbon films in carbon dioxide atmosphere by experiments and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Huo, Lei; Wang, Shunhua; Pu, Jibin; Sun, Junhui; Lu, Zhibin; Ju, Pengfei; Wang, Liping

    2018-04-01

    The friction behavior and the mechanism of DLC films in CO2 atmosphere are rarely explored, which is a significant obstacle for the potential practical application of DLC films in primarily CO2 environment. Here, the experiments and first-principles calculations are performed to simultaneously investigate this theme. We find that DLC films in CO2 atmosphere exhibit astoundingly low friction coefficient compared with in ambient air and vacuum atmospheres. The XPS and Raman spectrums demonstrate the possibly activation of CO2 molecule in the shearing interfaces, which may be critical for the low friction of DLC films in CO2 atmosphere. The calculated results reveal that the lactone groups can easily form during the horizontally chemisorption of CO2 molecule on the DLC surface, which is energetic and is a favorable process under the interfacial stress. Because of the presence of the lone-pairs of the lactone group, the lactone-terminated surfaces appear to be responsible for the low friction of DLC films in CO2 atmosphere. The studies may open up the possibility for DLC films usage in Mars applications.

  1. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE PAGES

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.; ...

    2017-09-09

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  2. Elastic energy of polyhedral bilayer vesicles

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397

  3. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, Thomas; Berstis, Laura; Beckham, Gregg T.

    The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-hydroxyconiferyl alcohol are linear homopolymers and, as such, may have properties that make them amenable for use in value-added products, such as lignin-based carbon fibers. In the current work, results from density functional theory calculations for the reactions of 5-hydroxyconiferyl alcohol, taking stereochemistry into account, are reported. Dehydrogenation and quinone methide formation are found to be thermodynamically favored for 5-hydroxyconiferyl alcohol, over coniferyl alcohol. The comparative energetics of the rearomatization reactions suggest that the formation of the benzodioxane linkage is under kinetic control. Ring-opening reactions of the benzodioxane groups show that the bond dissociation enthalpy of themore » $$\\alpha$$-O cleavage reaction is lower than that of the $$\\beta$$-O reaction. In conclusion, the catechol lignins represent a novel form of the polymer that may offer new opportunities for bioproducts and genetic targets.« less

  4. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation

    DOE PAGES

    Elder, Thomas; Berstis, Laura; Beckham, Gregg T.; ...

    2016-05-28

    The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-hydroxyconiferyl alcohol are linear homopolymers and, as such, may have properties that make them amenable for use in value-added products, such as lignin-based carbon fibers. In the current work, results from density functional theory calculations for the reactions of 5-hydroxyconiferyl alcohol, taking stereochemistry into account, are reported. Dehydrogenation and quinone methide formation are found to be thermodynamically favored for 5-hydroxyconiferyl alcohol, over coniferyl alcohol. The comparative energetics of the rearomatization reactions suggest that the formation of the benzodioxane linkage is under kinetic control. Ring-opening reactions of the benzodioxane groups show that the bond dissociation enthalpy of themore » $$\\alpha$$-O cleavage reaction is lower than that of the $$\\beta$$-O reaction. In conclusion, the catechol lignins represent a novel form of the polymer that may offer new opportunities for bioproducts and genetic targets.« less

  5. Application of B{sub 12}N{sub 12} and B{sub 12}P{sub 12} as two fullerene-like semiconductors for adsorption of halomethane: Density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rad, Ali Shokuhi, E-mail: a.shokuhi@gmail.com

    We examined and discussed the interaction of two halomethanes (mono-chloromethane (MCM), and mono-fluoromethane (MFM)) with B{sub 12}N{sub 12} and B{sub 12}P{sub 12} fullerene-like nanocages as semiconductor based on density functional theory (DFT). We calculated adsorption energies and followed the changes in the electronic structure of semiconductors upon adsorption of MCM and MFM. We found that the adsorption on the B{sub 12}N{sub 12} nano-cluster is energetically more favorable compared to B{sub 12}P{sub 12} nano-cluster. Also for both systems we found higher values of adsorption energy for MFM than for MCM. We found that upon adsorption of above-mentioned species on these twomore » fullerene-like semiconductors, the HOMO–LUMO distributions and also the gap energy for each system did not change significantly, which correspond to the physisorption process. As a result, B{sub 12}N{sub 12} is a more appropriate nano-cluster to be used as a selective sensor for halomethanes, especially for MFM.« less

  6. First Principles Study of Adsorption of Hydrogen on Typical Alloying Elements and Inclusions in Molten 2219 Al Alloy.

    PubMed

    Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Jia, Guangze

    2017-07-19

    To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al₂O₃, MgO and Al₄C₃, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al₄C₃ and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al₂O₃ and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al₂O₃, compared with other sites. It was found that alloying elements Cu and Mn and including Al₂O₃ may increase the hydrogen adsorption in the molten 2219 Al alloy with Al₂O₃ being the most sensitive component in this regard.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedralmore » shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.« less

  8. Adsorption and oligomerization of 1,3-phenylene diisocyanide on Au(111)

    DOE PAGES

    Kestell, John; Walker, Joshua; Bai, Yun; ...

    2016-04-18

    The adsorption and self-assembly of 1,3-phenylene diisocyanide (1,3-PDI) are studied on Au(111) using reflection–adsorption infrared spectroscopy (RAIRS), scanning tunneling microscopy (STM), and temperature-programmed desorption (TPD) supplemented by density functional theory (DFT) calculations and the results compared with the structures formed from 1,4-PDI where it assembled to form –(Au–PDI)– oligomer chains that incorporate gold adatoms. The infrared spectra display a single isocyanide feature consistent with the isocyanide binding to gold adatoms, while DFT calculations confirm that isocyanide binding to gold adatoms is more energetically favorable than binding to the surface. STM images show that 1,3-PDI forms zigzag chains containing hairpin bendsmore » that cause the chains to double back on each other, consistent with the 120° angle between the isocyanide groups. Hexagonal structural motifs are also observed that are proposed to be due to the self-assembly of three isocyanides as well as small structures that are assigned to 1,3-PDI dimers. Furthermore, the results suggest that the formation of gold-containing oligomers from isocyanide-containing molecules is a general phenomenon.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śniadecki, Z.; Werwiński, M.; Szajek, A.

    Intermetallic YCo{sub 2} compound is a Pauli exchange-enhanced paramagnet. Structural and magnetic properties melt-spun YCo{sub 2} pure and alloyed with Nb or Ti are presented. The samples crystallize in MgCu{sub 2}-type phase with lattice constant a changing from 7.223 Å for YCo{sub 2}, through 7.213 Å for Y{sub 0.9}Nb{sub 0.1}Co{sub 2} to 7.192 Å for Y{sub 0.9}Ti{sub 0.1}Co{sub 2}, where Y atoms are replaced by Nb or Ti atoms. Nanocrystalline phases can be produced by appropriate cooling rates for the solidification process. By the synthesis process free volumes, vacancies, and alloyed atoms are introduced into the YCo{sub 2} intermetallic. Ab-initio calculations have beenmore » performed to investigate the effects of substitution on the spin-split electronic band structure in the ordered YCo{sub 2}. A ferrimagnetic ground state is found in the alloyed systems with substitution on the Y-site which is energetically favorable compared to point defects on Co-sites. However, the experimentally found increased magnetic ordering in alloyed YCo{sub 2} appears to be based on microstructure effects.« less

  10. Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA

    PubMed Central

    Linder, Tobias; de Groot, Bert L.; Stary-Weinzinger, Anna

    2013-01-01

    The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activation gating process. In the first phase, local structural rearrangements in TM2 are observed leading to an intermediate channel conformation, followed by large structural rearrangements leading to full opening of KcsA. Conformational changes of a highly conserved phenylalanine, F114, at the bundle crossing region are crucial for the transition from a closed to an intermediate state. 3.9 µs umbrella sampling calculations reveal that there are two well-defined energy barriers dividing closed, intermediate, and open channel states. In agreement with mutational studies, the closed state was found to be energetically more favorable compared to the open state. Further, the simulations provide new insights into the dynamical coupling effects of F103 between the activation gate and the selectivity filter. Investigations on individual subunits support cooperativity of subunits during activation gating. PMID:23658510

  11. Energetic studies on DNA-peptide interaction in relation to the enthalpy-entropy compensation paradox.

    PubMed

    Yang, Robin C K; Huang, Jonathan T B; Chien, Shih-Chuan; Huang, Roy; Jeng, Kee-Ching G; Chen, Yen-Chung; Liao, Mokai; Wu, Jia-Rong; Hung, Wei-Kang; Hung, Chia-Chun; Chen, Yu-Ling; Waring, Michael J; Sheh, Leung

    2013-01-07

    This study aims to interpret the energetic basis of complex DNA-peptide interactions according to a novel allosteric interaction network approach. In common with other designed peptides, five new conjugates incorporating the XPRK or XHypRK motif (Hyp = hydroxyproline) attached to a N-methylpyrrole (Py) tract with a basic tail have been found to display cooperative binding to DNA involving multiple monodentate as well as interstrand bidentate interactions. Using quantitative DNase I footprinting it appears that allosteric communication via cooperative binding to multiple sites on complementary DNA strands corresponds to two different types of DNA-peptide interaction network. Temperature variation experiments using a dodecapeptide RY-12 show that lower temperature (25 °C) favor a circuit type of allosteric interaction network, whereas higher temperatures (31 and 37 °C) afford only a partial-circuit type of network. Circular dichroism studies show that our five peptides induce significant local conformational changes in DNA via the minor groove, with apparently dimeric binding stoichiometry. Isothermal titration calorimetry reveals that these peptides, together with another seven for comparison, are strongly exothermic upon binding to a model 13-mer DNA duplex, characterized by ΔH ranging from -14.7 to -74.4 kcal mol(-1), and also high TΔS ranging from -6.5 to -65.9 kcal mol(-1). Multiple monodentate and bidentate interactions, as well as ionic forces that mediate positive cooperativity in sequence recognition, are consistent with a dramatic decrease in entropy and a 'tightening' effect of DNA conformation. Distinctive enthalpy-entropy compensation (EEC) relationships are demonstrated for the interaction of all twelve designed peptides with DNA, affording a straight line of slope close to unity when ΔH is plotted versus TΔS, with a y-axis intercept (average ΔG) corresponding to -8.5 kcal mol(-1), while the observed ΔG ranges from -8.2 to -9.1 kcal mol(-1) for the peptides. The EEC seen with peptide RY-12 binding to the model duplex persists throughout various incubation temperatures. The net compensation of energy between the favorable negative ΔH and unfavorable negative ΔS components thus constrains the value of net binding free energy ΔG within a remarkably constant range, as is clearly visible in a 3-dimensional energetic plot. We conclude that the preservation of a rather narrowly-defined ΔG value is central to the EEC in DNA-peptide interactions, illuminating the universal EEC paradox commonly found in diverse biochemical reactions.

  12. Choline Triggers Exacerbations of Chronic Obstructive Pulmonary Disease in Patients Infected with Pseudomonas aeruginosa

    PubMed Central

    Grumelli, Sandra

    2017-01-01

    Background Although exacerbations of chronic obstructive pulmonary disease produced by Pseudomonas aeruginosa infections are a major cause of death, the molecular mechanism that produces them is not well known. Here we focused on the energetic basis of dyspnoea, hypercapnia and acidosis symptoms. Methods and Findings We used an in vivo exacerbation model exposing mice to cigarette smoke and LPS, to mimic emphysema and infections, and choline challenges to trigger exacerbations, that showed 31% increased in the airway resistance for naïve mice and 250% for smoke/LPS treatment. Tissue resistance was increased 32%, in naïve mice, and 169% for smoke/LPS treatment. A decreased tissue elastance, was confirmed by decreased collagen content and increased alveoli chord length. Consequently, the O2 demanded was 260% greater for smoke/LPS treated mice, to provide the energy required to pump the same volume of air then for naïve mice. The extra CO2 produced per ml of air pumped caused hypercapnia and acidosis by 4% decrease in pH. In addition, the bacteria grown with choline had a decrease of 67% in phosphate, 23% ATP and 85% phospholipids with an increase of 57% in polyphosphates, 50% carbohydrates, 100% LPS, consuming 45% less energy relative to the bacteria grown with succinate. Conclusion choline, released by P. aeruginosa, triggers exacerbation symptoms by increasing lung resistance, O2 consumption and producing more pCO2 in blood with dyspnea, hypercapnia and acidosis. The energetic shift of decreased O2 bacterial demand and increased lung demand benefits the infection, thus restoring the energetic balance on the host will favor P. aeruginosa eradication. PMID:29386986

  13. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  14. Tomographic reconstruction of storm time RC ion distribution from ENA images on board multiple spacecraft

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Ying; Yan, Wei-Nan; Xu, Liang

    2015-11-01

    A quantitative retrieval of 3-D distribution of energetic ions as energetic neutral atoms (ENA) sources is a challenging task. In this paper the voxel computerized tomography (CT) method is initially applied to reconstruct the 3-D distribution of energetic ions in the magnetospheric ring current (RC) region from ENA emission images on board multiple spacecraft. To weaken the influence of low-altitude emission (LAE) on the reconstruction, the LAE-associated ENA intensities are corrected by invoking the thick-target approximation. To overcome the divergence in iteration due to discordant instrument biases, a differential ENA voxel CT method is developed. The method is proved reliable and advantageous by numerical simulation for the case of constant bias independent of viewing angle. Then this method is implemented with ENA data measured by the Two Wide-angle Imaging Neutral-atom Spectrometers mission which performs stereoscopic ENA imaging. The 3-D spatial distributions and energy spectra of RC ion flux intensity are reconstructed for energies of 4-50 keV during the main phase of a major magnetic storm. The retrieved ion flux distributions seem to correspond to an asymmetric partial RC, located mainly around midnight favoring the postmidnight with L = 3.5-7.0 in the equatorial plane. The RC ion distributions with magnetic local time depend on energy, with major equatorial flux peak for lower energy located east of that for higher energy. In comparison with the ion energy spectra measured by Time History of Events and Macroscale Interactions during Substorms-D satellite flying in the RC region, the retrieved spectrum from remotely sensed ENA images are well matched with the in situ measurements.

  15. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  16. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

    NASA Astrophysics Data System (ADS)

    Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2018-06-01

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

  17. Indirect dynamics in SN2@N: insight into the influence of central atoms.

    PubMed

    Liu, Xu; Zhao, Chenyang; Yang, Li; Zhang, Jiaxu; Sun, Rui

    2017-08-30

    Central atoms have a significant influence on the reaction kinetics and dynamics of nucleophilic substitution (S N 2). Herein, atomistic dynamics of a prototype S N 2@N reaction F - + NH 2 Cl is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for a S N 2@C congener F - + CH 3 Cl. Indirect scattering is found to prevail, which proceeds predominantly through a hydrogen-bonded F - -HNHCl complex in the reactant entrance channel. This unexpected finding of a pronounced contribution of indirect reaction dynamics, even at a high collision energy, is in strong contrast to a general evolution from indirect to direct dynamics with enhanced energy that characterizes S N 2@C. This result suggests that the relative importance of different atomic-level mechanisms may depend essentially on the interaction potential of reactive encounters and the coupling between inter- and intramolecular modes of the pre-reaction complex. For F - + NH 2 Cl the proton transfer pathway is less competitive than S N 2. A remarkable finding is that the more favorable energetics for NH 2 Cl proton transfer, as compared to that for CH 3 Cl, does not manifest itself in the reaction dynamics. The present work sheds light on the underlying reaction dynamics of S N 2@N, which remain largely unclear compared to well-studied S N 2@C.

  18. Soliton matter in the two-dimensional linear sigma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, L.R.; Lohe, M.A.; Rossi, M.

    1987-10-01

    We consider a one-dimensional model of nuclear matter where the quark clusters are described by solutions of the sigma model on a linear lattice in the self-consistent mean field approximation. Exact expressions are given for the baglike solutions confined to a finite interval, corresponding in the infinite interval limit to the free solitons previously found by Campbell and Liao. Periodic, self-consistent solutions which satisfy Bloch's theorem are constructed. Their energies and associated quark sigma field distributions are calculated numerically as functions of the baryon spacing, and compared with those of the uniform quark plasma. The predicted configuration of the groundmore » state depends critically on the assumed manner of filling the lowest band of quark single-particle levels, and on the density. In the absence of additional repulsive forces in the model, we find that the high density massless quark plasma is energetically favored and that there is a smooth transition from the baglike state to a uniform plasma with nonvanishing sigma field at comparatively large lattice constants 2dapprox. =10m/sub q//sup -1/ (m/sub q/ is the quark mass). If dilute filling of the entire band is employed, the clustered state is stable and a first order phase transition can occur for a range of much smaller lattice spacings 2dapprox. =4m/sub q//sup -1/. .AE« less

  19. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  20. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    PubMed

    Sun, Yunxiang; Ming, Dengming

    2014-01-01

    Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  1. Advances in aluminum powder usage as an energetic material and applications for rocket propellant

    NASA Astrophysics Data System (ADS)

    Sadeghipour, S.; Ghaderian, J.; Wahid, M. A.

    2012-06-01

    Energetic materials have been widely used for military purposes. Continuous research programs are performing in the world for the development of the new materials with higher and improved performance comparing with the available ones in order to fulfill the needs of the military in future. Different sizes of aluminum powders are employed to produce composite rocket propellants with the bases of Ammonium Perchlorate (AP) and Hydroxyl-Terminated-Polybutadiene (HTPB) as oxidizer and binder respectively. This paper concentrates on recent advances in using aluminum as an energetic material and the properties and characteristics pertaining to its combustion. Nano-sized aluminum as one of the most attractable particles in propellants is discussed particularly.

  2. Electrical and structural properties of In-implanted Si 1–xGe x alloys

    DOE PAGES

    Feng, Ruixing; Kremer, F.; Sprouster, D. J.; ...

    2016-01-14

    Here, we report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si 1–xGe x alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si 1–xGe x alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with densitymore » functional theory calculations of two In atoms in a Si 1–xGe x supercell that demonstrated that In–In pairing was energetically favorable for x ≲ 0.7 and energetically unfavorable for x ≳ 0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si 1–xGe x alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si 1–xGe x alloys, and this combination of dopant and substrate represents an effective doping protocol.« less

  3. Spatial Offsets in Flare-CME Current Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, John C.; Giordano, Silvio; Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emissionmore » features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.« less

  4. Structural, energetic, and UV-Vis spectral analysis of UVA filter 4-tert-butyl-4'-methoxydibenzoylmethane.

    PubMed

    Pinto da Silva, Luís; Ferreira, Paulo J O; Duarte, Darío J R; Miranda, Margarida S; Esteves da Silva, Joaquim C G

    2014-02-27

    The growing awareness of the harmful effects of ultraviolet (UV) solar radiation has increased the production and consumption of sunscreen products, which contain organic and inorganic molecules named UV filters that absorb, reflect, or scatter UV radiation, thus minimizing negative human health effects. 4-tert-Butyl-4'-methoxydibenzoylmethane (BMDBM) is one of the few organic UVA filters and the most commonly used. BMDBM exists in sunscreens in the enol form which absorbs strongly in the UVA range. However, under sunlight irradiation tautomerization occurs to the keto form, resulting in the loss of UV protection. In this study we have performed quantum chemical calculations to study the excited-state molecular structure and excitation spectra of the enol and keto tautomers of BMDBM. This knowledge is of the utmost importance as the starting point for studies aiming at the understanding of its activity when applied on human skin and also its fate once released into the aquatic environment. The efficiency of excitation transitions was rationalized based on the concept of molecular orbital superposition. The loss of UV protection was attributed to the enol → keto phototautomerism and subsequent photodegradation. Although this process is not energetically favorable in the singlet bright state, photodegradation is possible because of intersystem crossing to the first two triplet states.

  5. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  6. Investigations of possible states for coexistence of superconductivity and ferromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, T.E.

    1984-01-01

    Ginzburg-Landau theory is used to investigate states in which both superconductivity and ferromagnetism exist simultaneously in certain rare-earth ternary compounds. The spontaneous vortex state of Kuper, Revzen and Ron is reexamined and extended to include magnetic oscillations within each vortex cell and the existence of antiferromagnetically aligned vortices. The linearly polarized state of Greenside, Blount and Varma is reinvestigated in what appears to be a more physically acceptable range of parameters that are used in the Ginzburg-Landau free energy functional. The square antiferromagnetic vortex lattice state proposed by Hu and Ham is investigated here for the first time, energetically comparedmore » to the states proposed by Kuper, et al. and Greenside, et al., and used to model the observed coexistence state observed in ErRh/sub 4/B/sub 4/. The results show that this square antiferromagnetic vortex lattice state is energetically favored over the linearly polarized state in large parameter and temperature range. Such a lattice also appears to be a good model to explain many of the experimental observations made on ErRh/sub 4/B/sub 4/. Thus, it is felt that this vortex lattice is the best model, yet examined, to explain the coexistence state in ErRh/sub 4/B/sub 4/.« less

  7. Structural Rearrangement of Energetic Materials under an External Electric Field: A Case Study of Nitromethane.

    PubMed

    Liu, Yingzhe; Ma, Yiding; Yu, Tao; Lai, Weipeng; Guo, Wangjun; Ge, Zhongxue; Ma, Zhinan

    2018-03-01

    As a significant stimulus, the external electric field (EEF) can change the decomposition mechanism and energy release of energetic materials (EMs). Hence, understanding the response of EMs to an EEF is greatly meaningful for their safe usage. Herein, the structural arrangement, a crucial factor in the impact sensitivity and detonation performance of EMs, under the EEF ranging from 0.0 to 0.5 V/Å was investigated via molecular dynamics simulation. Nitromethane (NM) was taken as a case study due to the simple structure. The simulation results show that there exists a critical EEF strength between 0.2 and 0.3 V/Å, which can induce the transition of NM molecules from relatively disordered distribution to solidlike ordered and compacted arrangement with a large density. In this ordered structure, NM dipoles are aligned in a head-to-tail pattern parallel to the EEF direction because of the favored dipole-dipole interactions and weak C-H···O hydrogen bonds. As the EEF strength is enhanced, the potential energy and cohesive energy density of the NM system gradually decrease and increase, respectively, indicative of high thermodynamics stability of ordered arrangement. The results reported here also shed light on the potential of the EEF to induce the nucleation and crystallization to explore new polymorphs of EMs.

  8. Interaction of CO with an Au monatomic chain at different strains: Electronic structure and ballistic transport

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    We study the energetics, the electronic structure, and the ballistic transport of an infinite Au monatomic chain with an adsorbed CO molecule. We find that the bridge adsorption site is energetically favored with respect to the atop site, both at the equilibrium Au-Au spacing of the chain and at larger spacings. Instead, a substitutional configuration requires a very elongated Au-Au bond, well above the rupture distance of the pristine Au chain. The electronic structure properties can be described by the Blyholder model, which involves the formation of bonding/antibonding pairs of 5σ and 2π states through the hybridization between molecular levels of CO and metallic states of the chain. In the atop geometry, we find an almost vanishing conductance due to the 5σ antibonding states giving rise to a Fano-like destructive interference close to the Fermi energy. In the bridge geometry, instead, the same states are shifted to higher energies and the conductance reduction with respect to pristine Au chain is much smaller. We also examine the effects of strain on the ballistic transport, finding opposite behaviors for the atop and bridge conductances. Only the bridge geometry shows a strain dependence compatible with the experimental conductance traces.

  9. Electronic Structure and Band Alignment at the NiO and SrTiO3 p-n Heterojunctions.

    PubMed

    Zhang, Kelvin H L; Wu, Rui; Tang, Fengzai; Li, Weiwei; Oropeza, Freddy E; Qiao, Liang; Lazarov, Vlado K; Du, Yingge; Payne, David J; MacManus-Driscoll, Judith L; Blamire, Mark G

    2017-08-09

    Understanding the energetics at the interface, including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multifunctionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the heterointerface of wide-band-gap p-type NiO and n-type SrTiO 3 (STO). We show that despite a large lattice mismatch (∼7%) and dissimilar crystal structure, high-quality NiO and Li-doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain-matching epitaxy mechanism. X-ray photoelectron spectroscopy studies indicate that NiO/STO heterojunctions form a type II "staggered" band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb-doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit not only a large rectification ratio of 2 × 10 3 but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implications for applications in photocatalysis and photodetectors as the interface provides favorable energetics for facile separation and transport of photogenerated electrons and holes.

  10. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachhuber, F.; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland; Rothballer, J.

    2013-12-07

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2},more » and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.« less

  11. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGES

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  12. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  13. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming

    2017-02-01

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.

  14. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection

    PubMed Central

    Buscaglia, Robert; Miller, M. Clarke; Dean, William L.; Gray, Robert D.; Lane, Andrew N.; Trent, John O.; Chaires, Jonathan B.

    2013-01-01

    Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation. PMID:23804761

  15. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility

    PubMed Central

    Fontana, Roberta; Della Torre, Sara

    2016-01-01

    In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women’s health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a “fertility diet”, lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women. PMID:26875986

  16. Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study

    NASA Astrophysics Data System (ADS)

    Re Fiorentin, Michele; Gaspari, Roberto; Quaglio, Marzia; Massaglia, Gulia; Saracco, Guido

    2018-04-01

    Nitrogen-doped graphene has raised considerable interest for its possible applications as carbon dioxide adsorber and catalyst. In this paper, we provide a theoretical study of graphitic, pyridiniclike and pyrroliclike nitrogen defects in a free-standing graphene layer, focusing on their formation and adsorption behavior. Using density functional theory and thermodynamics, we analyze the various defects, highlighting the great stability of graphitic nitrogen in a wide temperature and pressure range. CO2 adsorption proves to be moderately thermodynamically disfavored around standard conditions for the most stable nitrogen defects and slightly favored for the more energetic ones. The combination of the results on defect stability and CO2 adsorption may open interesting possibilities in the design of carbon-based materials with promising adsorption performances.

  17. Structure of caa(3) cytochrome c oxidase--a nature-made enzyme-substrate complex.

    PubMed

    Noor, Mohamed Radzi; Soulimane, Tewfik

    2013-05-01

    Aerobic respiration, the energetically most favorable metabolic reaction, depends on the action of terminal oxidases that include cytochrome c oxidases. The latter forms a part of the heme-copper oxidase superfamily and consists of three different families (A, B, and C types). The crystal structures of all families have now been determined, allowing a detailed structural comparison from evolutionary and functional perspectives. The A2-type oxidase, exemplified by the Thermus thermophilus caa(3) oxidase, contains the substrate cytochrome c covalently bound to the enzyme complex. In this article, we highlight the various features of caa(3) enzyme and provide a discussion of their importance, including the variations in the proton and electron transfer pathways.

  18. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    PubMed Central

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  19. Delocalization via Sliding in Solid 4He: Is It Plausible?

    NASA Astrophysics Data System (ADS)

    Krainyukova, N. V.

    2010-02-01

    The modified Debye approach was used to calculate the Gibbs free energy for solid 4He and energetic profiles for different atomic displacements with respect to an equilibrium lattice. Atoms interact via the applied Aziz potential. We have found that individual atomic displacements may hardly give rise to any delocalization because of huge barriers but cooperative plane sliding is highly plausible especially in the intermediate phase, which was found to be more favorable than hcp for small cluster sizes. In the latter case the roughness of the potential profile is less than one kelvin. In some particular sliding cases the energy levels in the nearest wells nearly coincide that is a well-known precursor for the delocalization effect.

  20. Theoretical Investigation of the NO3 Radical Addition to Double Bonds of Limonene

    PubMed Central

    Jiang, Lei; Wang, Wei; Xu, Yi-Sheng

    2009-01-01

    The addition reactions of NO3 to limonene have been investigated using ab initio methods. Six different possibilities for NO3 addition to the double bonds, which correspond to the two C–C double bonds (endocyclic or exocyclic) have been considered. The negative activation energies for the addition of NO3 to limonene are calculated and the energies of NO3-limonene radical adducts are found to be 14.55 to 20.17 kcal mol-1 more stable than the separated NO3 and limonene at the CCSD(T)/6–31G(d) + CF level. The results also indicate that the endocyclic addition reaction is more energetically favorable than the exocyclic one. PMID:19865516

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isobe, Hiroki; Fu, Liang

    Here, we study the pairing symmetry of the interlayer paired state of composite fermions in quantum Hall bilayers. Based on the Halperin-Lee-Read (HLR) theory, the effect of the long-range Coulomb interaction and the internal Chern-Simons gauge fluctuation is analyzed with the random-phase approximation beyond the leading order contribution in small momentum expansion, and we observe that the interlayer paired states with a relative angular momentummore » $l=+1$ are energetically favored for filling ν=$$\\frac{1}2$$+$$\\frac{1}2$$ and $$\\frac{1}4$$+$$\\frac{1}4$$. The degeneracy between states with $±l$ is lifted by the interlayer density-current interaction arising from the interplay of the long-range Coulomb interaction and the Chern-Simons term in the HLR theory.« less

  2. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.

    2016-03-01

    The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.

  3. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padama, Allan Abraham B.; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp; Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrencemore » of reconstructed surface.« less

  4. A structural study of the K adsorption site on a Si(001)2 × 1 surface: Dimer, caves or both

    NASA Astrophysics Data System (ADS)

    Asensio, M. C.; Michel, E. G.; Alvarez, J.; Ocal, C.; Miranda, R.; Ferrer, S.

    1989-04-01

    The atomic structure of the clean Si(100) and K covered surfaces has been investigated by Auger electron diffraction (AED) monitoring the intensities along polar scans. This technique is sensitive to the asymmetric-dimer nature of the 2 × 1 reconstruction of the Si(001) surface. Data taken at room temperature for submonolayer coverages are consistent with adsorption of K on the troughs (cave position) existing between two consecutive dimer chains along the [110] direction. At 110 K both dimer and cave sites are occupied. A mild annealing to 300 K produces an overlayer redistribution in favor of the "cave" site further indicating that this site is energetically favoured as found in some recent calculations.

  5. [Tripeptides slow down aging process in renal cell culture].

    PubMed

    Khavinson, V Kh; Tarnovskaia, S I; Lin'kova, N S; Poliakova, V O; Durnova, A O; Nichik, T E; Kvetnoĭ, I M; D'iakonov, M M; Iakutseni, P P

    2014-01-01

    The mechanism of geroprotective effect of peptides AED and EDL was studied in ageing renal cell culture. Peptide AED and EDL increase cell proliferation, decreasing expression of marker of aging p16, p21, p53 and increasing expression of SIRT-6 in young and aged renal cell culture. The reduction of SIRT-6 synthesis in cell is one of the causes of cell senescence. On the basis of experimental data models of interaction of peptides with various sites of DNA were constructed. Both peptides form most energetically favorable complexes with d(ATATATATAT)2 sequences in minor groove of DNA. It is shown that interaction of peptides AED and EDL with DNA is the cause of gene expression, encoded marker of ageing in renal cells.

  6. Calculation of thermal expansion coefficient of glasses based on topological constraint theory

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi

    2016-10-01

    In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.

  7. Transnitrilation from Dimethylmalononitrile to Aryl Grignard and Lithium Reagents: A Practical Method for Aryl Nitrile Synthesis.

    PubMed

    Reeves, Jonathan T; Malapit, Christian A; Buono, Frederic G; Sidhu, Kanwar P; Marsini, Maurice A; Sader, C Avery; Fandrick, Keith R; Busacca, Carl A; Senanayake, Chris H

    2015-07-29

    An electrophilic cyanation of aryl Grignard or lithium reagents, generated in situ from the corresponding aryl bromides or iodides, by a transnitrilation with dimethylmalononitrile (DMMN) was developed. DMMN is a commercially available, bench-stable solid. The transnitrilation with DMMN avoids the use of toxic reagents and transition metals and occurs under mild reaction conditions, even for extremely sterically hindered substrates. The transnitrilation of aryllithium species generated by directed ortho-lithiation enabled a net C-H cyanation. The intermediacy of a Thorpe-type imine adduct in the reaction was supported by isolation of the corresponding ketone from the quenched reaction. Computational studies supported the energetic favorability of retro-Thorpe fragmentation of the imine adduct.

  8. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    NASA Astrophysics Data System (ADS)

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-08-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth.

  9. Split and sealing of dislocated pipes at the front of a growing crystal

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Sheinerman, A. G.

    2004-07-01

    A model is suggested for the split of dislocated pipes at the front a growing crystal. Within the model, the pipe split occurs through the generation of a dislocation semi-loop at the pipe and crystal surfaces and its subsequent expansion into the crystal interior. The strain energy of such a dislocation semi-loop as well as the stress field of a dislocated pipe perpendicular to a flat crystal surface are calculated. The parameter regions are determined at which the expansion of the dislocation semi-loop is energetically favorable and, thus, the pipe split becomes irreversible. A mechanism is proposed for the formation of a stable semi-loop resulting in the split and possible subsequent overgrowth of the dislocated pipe.

  10. Modeling of oxygen incorporation in Th, ThC, and ThN by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2017-12-01

    Oxygen incorporation in nuclear fuel materials is an important issue deserving investigation due to its influence on thermophysical and structural properties. Even if there has been a renewed interest in thorium and thorium compounds in the last years, there is still not much research done on this topic. In this work, we study, by means of density functional theory calculations, the incorporation of oxygen in Th, ThC, and ThN. We analyze the electronic structure finding a characteristic peak to be attributed to oxygen incorporation. We also calculate incorporation and solution energies and obtain migration energies of oxygen through different paths finding that migration through vacancy sites is more energetically favorable than through interstitial ones.

  11. Correlation study of sodium-atom chemisorption on the GaAs(110) surface

    NASA Astrophysics Data System (ADS)

    Song, K. M.; Khan, D. C.; Ray, A. K.

    1994-01-01

    Different possible adsorption sites of sodium atoms on a gallium arsenide surface have been investigated using ab initio self-consistent unrestricted Hartree-Fock total-energy cluster calculations with Hay-Wadt effective core potentials. The effects of electron correlation have been included by invoking the concepts of many-body perturbation theory and are found to be highly significant. We find that the Na-atom adsorption at a site modeled with an NaGa5As4H12 cluster is most favored energetically followed by Na adsorption at the site modeled with the NaGa4As5H12 cluster. The effects of charge transfer from Na to the GaAs surface as also possibilities of metallization are also analyzed and discussed.

  12. Polymorphic transformation of dense ZnO nanoparticles: Implications for chair/boat-type Peierls distortions of AB semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.-Y.; Shen Pouyan; Jiang Jianzhong

    2004-12-08

    Peierls distortion path was proved experimentally for dense ZnO nanoparticles prepared by static compression. Electron irradiation caused rock salt (R) to wurtzite (W) transition, following preferential (11-bar1){sub R}//(01-bar11){sub W}; [011]{sub R}//[1-bar21-bar3]{sub W} and then transformation strain induced (111-bar){sub R}//(1-bar011){sub W}; [011]{sub R}//[011-bar1]{sub W}. The two relationships can be rationalized by specified extent of chair- and boat-type Peierls distortions accompanied with band gap opening and intermediate {l_brace}111{r_brace}{sub R} slip for energetically favorable {l_brace}111{r_brace}{sub R}/(01-bar11){sub W} match.

  13. Influence of poisoned prey on foraging behavior of ferruginous hawks

    USGS Publications Warehouse

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  14. First-principle study of geometric stabilities, electronic and magnetic properties of low coverage vanadium adsorption on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullahi, Yusuf Zuntu; Rahman, Md. Mahmudur, E-mail: mahmudur@upm.edu.my; Zainuddin, H.

    2014-03-05

    Stable geometries, electronic and magnetic properties of low coverage vanadium (V) atoms adsorption on graphene sheet have been investigated by first principles calculations, using generalized gradient approximation. Calculation shows that center of the ring is energetically favorable for both V adatom and perpendicular dimer after relaxation. Moreover, the proportion of orbital contribution of C-V bonding are mainly dominated by 2p{sub z} orbital of C and partially occupied by the 3d like states of V. It is also found that the low coverage V atom adsorbed graphene system is metallic and magnetic, and has demonstrated additional hint on its usefulness inmore » magnetic devices.« less

  15. Bio oil synthesis by coupling biological biomass pretreatment and catalytic hydroliquefaction process.

    PubMed

    Hamieh, S; Beauchet, R; Lemee, L; Toufaily, J; Koubaissy, B; Hamieh, T; Pouilloux, Y; Pinard, L

    2014-03-01

    The bio-oil synthesis from a mixture of wastes (7wt.% straw, 38wt.% wood, and 45wt.% grass) was carried out by direct liquefaction reaction using Raney Nickel as catalyst and tetralin as solvent. The green wastes were biologically degraded during 3 months. Longer the destructuration time; higher the yield into oil is. Biological pretreatment of green wastes promotes the liquefaction process. Among the components of degraded biomass, Humin, the major fraction (60-80wt.%) that was favored by the biological treatment, yields to a bio oil extremely energetic with a HHV close to biopetroleum (40MJ kg(-1)), contrariwise, Fulvic acids (2-12wt.%), the minor fraction is refractory to liquefaction reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  17. Multiscale study of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum nanoparticles in the range of 2.4 nm to 3.1 nm: energetically favorable structures have been determined in terms of semi-continuum binding energy, and the reactivity of the selected nanoparticle has been investigated based on local density of states from first principles calculations. The calculation suggests that the reactivity landscape of particles is more complex than the simple reactivity of clean surfaces, and the reactivity towards a particular reactant can be predicted for a given structure.

  18. Theoretical study on the gas-phase reaction mechanism between palladium monoxide and methane.

    PubMed

    Yang, Hua-Qing; Hu, Chang-Wei; Gao, Chao; Yang, Meng-Yao; Li, Fang-Ming; Li, Cai-Qin; Li, Xiang-Yuan

    2011-12-01

    The gas-phase reaction mechanism between palladium monoxide and methane has been theoretically investigated on the singlet and triplet state potential energy surfaces (PESs) at the CCSD(T)/AVTZ//B3LYP/6-311+G(2d, 2p), SDD level. The major reaction channel leads to the products PdCH(2) + H(2)O, whereas the minor channel results in the products Pd + CH(3)OH, CH(2)OPd + H(2), and PdOH + CH(3). The minimum energy reaction pathway for the formation of main products (PdCH(2) + H(2)O), involving one spin inversion, prefers to start at the triplet state PES and afterward proceed along the singlet state PES, where both CH(3)PdOH and CH(3)Pd(O)H are the critical intermediates. Furthermore, the rate-determining step is RS-CH(3) PdOH → RS-2-TS1cb → RS-CH(2)Pd(H)OH with the rate constant of k = 1.48 × 10(12) exp(-93,930/RT). For the first C-H bond cleavage, both the activation strain ΔE(≠)(strain) and the stabilizing interaction ΔE(≠)(int) affect the activation energy ΔE(≠), with ΔE(≠)(int) in favor of the direct oxidative insertion. On the other hand, in the PdCH(2) + H(2) O reaction, the main products are Pd + CH(3)OH, and CH(3)PdOH is the energetically preferred intermediate. In the CH(2)OPd + H(2) reaction, the main products are Pd + CH(3)OH with the energetically preferred intermediate H(2)PdOCH(2). In the Pd + CH(3)OH reaction, the main products are CH(2)OPd + H(2), and H(2)PdOCH(2) is the energetically predominant intermediate. The intermediates, PdCH(2), H(2) PdCO, and t-HPdCHO are energetically preferred in the PdC + H(2), PdCO + H(2), and H(2)Pd + CO reactions, respectively. Besides, PdO toward methane activation exhibits higher reaction efficiency than the atom Pd and its first-row congener NiO. Copyright © 2011 Wiley Periodicals, Inc.

  19. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.

    PubMed

    Abelein, Axel; Jarvet, Jüri; Barth, Andreas; Gräslund, Astrid; Danielsson, Jens

    2016-06-01

    Protein misfolding and formation of cross-β structured amyloid fibrils are linked to many neurodegenerative disorders. Although recently developed quantitative approaches have started to reveal the molecular nature of self-assembly and fibril formation of proteins and peptides, it is yet unclear how these self-organization events are precisely modulated by microenvironmental factors, which are known to strongly affect the macroscopic aggregation properties. Here, we characterize the explicit effect of ionic strength on the microscopic aggregation rates of amyloid β peptide (Aβ40) self-association, implicated in Alzheimer's disease. We found that physiological ionic strength accelerates Aβ40 aggregation kinetics by promoting surface-catalyzed secondary nucleation reactions. This promoted catalytic effect can be assigned to shielding of electrostatic repulsion between monomers on the fibril surface or between the fibril surface itself and monomeric peptides. Furthermore, we observe the formation of two different β-structured states with similar but distinct spectroscopic features, which can be assigned to an off-pathway immature state (Fβ*) and a mature stable state (Fβ), where salt favors formation of the Fβ fibril morphology. Addition of salt to preformed Fβ* accelerates transition to Fβ, underlining the dynamic nature of Aβ40 fibrils in solution. On the basis of these results we suggest a model where salt decreases the free-energy barrier for Aβ40 folding to the Fβ state, favoring the buildup of the mature fibril morphology while omitting competing, energetically less favorable structural states.

  20. Linking nanoscale mechanical behavior to bulk physical properties and phenomena of energetic materials

    NASA Astrophysics Data System (ADS)

    Taw, Matthew R.

    The hardness and reduced modulus of aspirin, RDX, HMX, TATB, FOX-7, ADAAF, and TNT/CL-20 were experimentally measured with nanoindentation. These values are reported for the first time using as-received micron sized crystals of energetic materials with no additional mechanical processing. The results for TATB, ADAAF, and TNT/CL-20 are the first of their kind, while comparisons to previous nanoindentation studies on large, carefully grown single crystals of the other energetic materials show that mechanical properties of the larger crystals are comparable to crystals in the condition they are practically used. Measurements on aspirin demonstrate the variation that can occur between nanoindentation indents based on the orientation of a Berkovich tip relative to the surface of the sample. The Hertzian elastic contact model was used to analyze the materials initial yield, or pop-in, behavior. The length, energy, indentation load, and shear stress at initial yielding were used to characterize each material. For the energetic materials the length and energy of the yield excursions were compared to the drop weight sensitivity. This comparison revealed a general trend that more impact sensitive materials have longer, more severe pop-in excursions. Hot spot initiation mechanisms involving crystal defects such as void collapses and dislocation pile-up followed by avalanche are supported by these trends. While this only takes one aspect of impact sensitivity into consideration, if this trend is observed in a larger range of energetics these methods could possibly be used to great advantage in the early stages of new explosives synthesis to obtain an estimation of drop weight sensitivity.

  1. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men.

    PubMed

    Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut

    2010-09-01

    Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.

  2. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea.

    PubMed

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-04-14

    Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.

  3. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea

    PubMed Central

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-01-01

    Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644

  4. MMS Observation of Inverse Energy Dispersion in Shock Drift Acceleration Ions

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K. J.; Wang, Y.; Silveira, M. D.; Mauk, B.; Cohen, I. J.; Chu, C. S.; Mason, G. M.; Gold, R. E.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Wei, H.

    2016-12-01

    The Energetic Particle Detector (EPD) on the Magnetospheric Multiscale (MMS) spacecraft observed bursts of energetic ions (50 keV-1000 keV) both in the foreshock and in the magnetosheath near the bow shock on December 6, 2015. Three species (protons, helium, and oxygen) exhibit inverse energy dispersions. Angular distributions for all three species indicate acceleration at the perpendicular bow shock. Acceleration that energizes the seed solar population by a factor of 2 and 4 is required for the protons and helium ions, respectively. The energy of the ions increases with θBn (the angle between the IMF and the local shock normal) since the induced electric field that energizes the charged particles increases as θBn increases towards 90°. We compare events upstream and downstream from the bow shock. We compare the MMS observations with those of the solar wind seed populations by the Ultra Low Energy Isotope Spectrometer (ULEIS) instrument on the Advanced Composition Explorer (ACE) mission and by the WIND 3-D Plamsa and Energetic Particle Experiment.

  5. Effects of Echinostoma trivolvis metacercariae infection during development and metamorphosis of the wood frog (Lithobates sylvaticus).

    PubMed

    Orlofske, Sarah A; Belden, Lisa K; Hopkins, William A

    2017-01-01

    Many organisms face energetic trade-offs between defense against parasites and other host processes that may determine overall consequences of infection. These trade-offs may be particularly evident during unfavorable environmental conditions or energetically demanding life history stages. Amphibian metamorphosis, an ecologically important developmental period, is associated with drastic morphological and physiological changes and substantial energetic costs. Effects of the trematode parasite Echinostoma trivolvis have been documented during early amphibian development, but effects during later development and metamorphosis are largely unknown. Using a laboratory experiment, we examined the energetic costs of late development and metamorphosis coupled with E. trivolvis infection in wood frogs, Lithobates [=Rana] sylvaticus. Echinostoma infection intensity did not differ between tadpoles examined prior to and after completing metamorphosis, suggesting that metacercariae were retained through metamorphosis. Infection with E. trivolvis contributed to a slower growth rate and longer development period prior to the initiation of metamorphosis. In contrast, E. trivolvis infection did not affect energy expenditure during late development or metamorphosis. Possible explanations for these results include the presence of parasites not interfering with pronephros degradation during metamorphosis or the mesonephros compensating for any parasite damage. Overall, the energetic costs of metamorphosis for wood frogs were comparable to other species with similar life history traits, but differed from a species with a much shorter duration of metamorphic climax. Our findings contribute to understanding the possible role of energetic trade-offs between parasite defense and host processes by considering parasite infection with simultaneous energetic demands during a sensitive period of development. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dynamic heterogeneity in crossover spin facilitated model of supercooled liquid and fractional Stokes-Einstein relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seo-Woo; Kim, Soree; Jung, YounJoon, E-mail: yjjung@snu.ac.kr

    Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einsteinmore » relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.« less

  7. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    PubMed

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Activation of Carbon-Hydrogen and Hydrogen-Hydrogen Bonds by Copper-Nitrenes: A Comparison of Density Functional Theory with Single- and Multireference Correlation Consistent Composite Approaches.

    PubMed

    Tekarli, Sammer M; Williams, T Gavin; Cundari, Thomas R

    2009-11-10

    The kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bonds (the former of methane) have been studied using several levels of theory: B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-pVTZ, and ccCA (correlation consistent Composite Approach). The results show no significant difference among the DFT methods. All three DFT methods predict the ground state of the copper-nitrene model complex, L'Cu(NH), to be a triplet, while single reference ccCA predicts the singlet to be the ground state. The contributions to the total ccCA energy indicate that the singlet state is favored at the MP2/CBS level of theory, while electron correlation beyond this level (CCSD(T)) favors a triplet state, resulting in a close energetic balance between the two states. A multireference ccCA method is applied to the nitrene active species and supports the assignment of a singlet ground state. In general, the largest difference in the model reaction cycles between DFT and ccCA methods is for processes involving radicals and bond dissociation.

  9. Toward the definition of stereochemical requirements for MT2-selective antagonists and partial agonists by studying 4-phenyl-2-propionamidotetralin derivatives.

    PubMed

    Bedini, Annalida; Lucarini, Simone; Spadoni, Gilberto; Tarzia, Giorgio; Scaglione, Francesco; Dugnani, Silvana; Pannacci, Marilou; Lucini, Valeria; Carmi, Caterina; Pala, Daniele; Rivara, Silvia; Mor, Marco

    2011-12-22

    New derivatives of 4-phenyl-2-propionamidotetralin (4-P-PDOT) were prepared and tested on cloned MT1 and MT2 receptors, with the purpose of merging previously reported pharmacophores for nonselective agonists and for MT2-selective antagonists. A 8-methoxy group increases binding affinity of both (±)-cis- and (±)-trans-4-P-PDOT, and it can be bioisosterically replaced by a bromine. Conformational analysis of 8-methoxy-4-P-PDOT by molecular dynamics, supported by NMR data, revealed an energetically favored conformation for the (2S,4S)-cis isomer and a less favorable conformation for the (2R,4S)-trans one, fulfilling the requirements of a pharmacophore model for nonselective melatonin receptor agonists. A new superposition model, including features characteristic of MT2-selective antagonists, suggests that MT1/MT2 agonists and MT2 antagonists can share the same arrangement for their pharmacophoric elements. The model correctly predicted the eutomers of (±)-cis- and (±)-trans-4-P-PDOT. The model was validated by preparing three dihydronaphthalene derivatives, either able or not able to reproduce the putative active conformation of 4-P-PDOT.

  10. Quasiperiodic modulations of energetic electron fluxes in the ULF range observed by the ERG satellite

    NASA Astrophysics Data System (ADS)

    Teramoto, M.; Hori, T.; Kurita, S.; Yoshizumi, M.; Saito, S.; Higashio, N.; Mitani, T.; Matsuoka, A.; Park, I.; Takashima, T.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016. The Extremely High-Energy Electron Experiment (XEP) and High-Energy Electron Experiments (HEP-L and HEP-H) are carried by the ERG satellite to observe energetic electrons. These instruments frequently observed quasiperiodic modulations of energetic electron fluxes with period of 100-600 sec. Continuous flux modulations with the period of 600 s appeared in the 700keV-3.6MeV energy range during the period 0920UT-1120UT on March 31, 2017 when the ERG satellite was located at L 5.5-6.1 and MLT 3-4 h. We compare these flux modulations with the magnetic field observed by the Magnetic Field Experiment (MGF) on the ERG satellite. It is found that these flux modulations are not accompanied by corresponding magnetic signatures. It indicates that these quasiperiodic flux modulations are not caused by drift-resonant interactions between ULF waves and energetic electrons, at least locally. In this study, we will show several events and discuss possible mechanism for quasiperiodic flux modulations of energetic electrons on XEP and HEP.

  11. The energetics of central nervous system white matter

    PubMed Central

    Harris, Julia J.; Attwell, David

    2012-01-01

    The energetics of CNS white matter are poorly understood. We derive a signalling energy budget for rodent white matter (based on data from the optic nerve and corpus callosum) which can be compared to previous energy budgets for the grey matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of grey matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than grey matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes. PMID:22219296

  12. The evolution of different maternal investment strategies in two closely related desert vertebrates

    USGS Publications Warehouse

    Ennen, Joshua R.; Lovich, Jeffrey E.; Averill-Murray, Roy C.; Yackulic, Charles B.; Agha, Mickey; Loughran, Caleb; Tennant, Laura A.; Sinervo, Barry

    2017-01-01

    We compared egg size phenotypes and tested several predictions from the optimal egg size (OES) and bet-hedging theories in two North American desert-dwelling sister tortoise taxa, Gopherus agassizii and G. morafkai, that inhabit different climate spaces: relatively unpredictable and more predictable climate spaces, respectively. Observed patterns in both species differed from the predictions of OES in several ways. Mean egg size increased with maternal body size in both species. Mean egg size was inversely related to clutch order in G. agassizii, a strategy more consistent with the within-generation hypothesis arising out of bet-hedging theory or a constraint in egg investment due to resource availability, and contrary to theories of density dependence, which posit that increasing hatchling competition from later season clutches should drive selection for larger eggs. We provide empirical evidence that one species, G. agassizii, employs a bet-hedging strategy that is a combination of two different bet-hedging hypotheses. Additionally, we found some evidence for G. morafkai employing a conservative bet-hedging strategy. (e.g., lack of intra- and interclutch variation in egg size relative to body size). Our novel adaptive hypothesis suggests the possibility that natural selection favors smaller offspring in late-season clutches because they experience a more benign environment or less energetically challenging environmental conditions (i.e., winter) than early clutch progeny, that emerge under harsher and more energetically challenging environmental conditions (i.e., summer). We also discuss alternative hypotheses of sexually antagonistic selection, which arise from the trade-offs of son versus daughter production that might have different optima depending on clutch order and variation in temperature-dependent sex determination (TSD) among clutches. Resolution of these hypotheses will require long-term data on fitness of sons versus daughters as a function of incubation environment, data as yet unavailable for any species with TSD.

  13. The evolution of different maternal investment strategies in two closely related desert vertebrates.

    PubMed

    Ennen, Joshua R; Lovich, Jeffrey E; Averill-Murray, Roy C; Yackulic, Charles B; Agha, Mickey; Loughran, Caleb; Tennant, Laura; Sinervo, Barry

    2017-05-01

    We compared egg size phenotypes and tested several predictions from the optimal egg size (OES) and bet-hedging theories in two North American desert-dwelling sister tortoise taxa, Gopherus agassizii and G. morafkai , that inhabit different climate spaces: relatively unpredictable and more predictable climate spaces, respectively. Observed patterns in both species differed from the predictions of OES in several ways. Mean egg size increased with maternal body size in both species. Mean egg size was inversely related to clutch order in G. agassizii , a strategy more consistent with the within-generation hypothesis arising out of bet-hedging theory or a constraint in egg investment due to resource availability, and contrary to theories of density dependence, which posit that increasing hatchling competition from later season clutches should drive selection for larger eggs. We provide empirical evidence that one species, G. agassizii , employs a bet-hedging strategy that is a combination of two different bet-hedging hypotheses. Additionally, we found some evidence for G. morafkai employing a conservative bet-hedging strategy. (e.g., lack of intra- and interclutch variation in egg size relative to body size). Our novel adaptive hypothesis suggests the possibility that natural selection favors smaller offspring in late-season clutches because they experience a more benign environment or less energetically challenging environmental conditions (i.e., winter) than early clutch progeny, that emerge under harsher and more energetically challenging environmental conditions (i.e., summer). We also discuss alternative hypotheses of sexually antagonistic selection, which arise from the trade-offs of son versus daughter production that might have different optima depending on clutch order and variation in temperature-dependent sex determination (TSD) among clutches. Resolution of these hypotheses will require long-term data on fitness of sons versus daughters as a function of incubation environment, data as yet unavailable for any species with TSD.

  14. Electrospray ionization study of tricarbonyl fac-[Re(CO)3 (PO)(X)]-type complexes: influence of ancillary co-ligands in the release of carbon monoxide.

    PubMed

    Tisato, Francesco; Porchia, Marina; Shegani, Antoni; Maina, Theodosia; Papadopoulos, Minas S; Seraglia, Roberta; Traldi, Pietro

    2018-05-08

    fac-[Re(CO) 3 (PO)(X)]-type complexes (PO = chelated bidentate tertiary phosphine(1-), X = various neutral, mono-dentate ligands) represent a class of compounds that meets the synthetic criteria for the preparation of potential carbon monoxide (CO) release molecules (CORMs) for medicinal application. The aim of our investigation was to achieve qualitative information whether the nature of the ancillary X ligand might influence the release of CO. The release of CO has been investigated by means of product ion spectrometry of electrospray ionization-generated [M + H] + species, produced by multiple collisional experiments, using an ion trap mass spectrometer. Tandem mass spectrometry applied to the protonated species [Re(CO) 3 (PO)(X) + H] + of seven complexes (those including X = OH 2 (1), isonitrile (2, 3), imidazole (4), pyridine (5) and phosphine (6, 7) show initial loss of coordinated water (1) or pyridine (5), whereas the majority of investigated entries display initial, sequential release of CO groups. The energetics of CO release have been investigated by breakdown curves for selected collisionally-activated decomposition processes involving CO, and compared with those involving X groups. The nature of the co-ligand X drives the primary loss in the MS n processes of [Re(CO) 3 (PO)(X) + H] + compounds. When X = solvent, the energetics of these decompositions follow the trend H 2 O < MeOH < CO. In each case, loss of CO is a favored fragmentation route with associated energies following the trend: N-py ≤ P-phosphine < C-isonitrile. Overall, MS n pathways indicate that [Re(PO)] (Re with chelated PO phosphine) constitutes the residual moiety. This behavior indicates that the presence of a functionalized phosphine is essential for a sequential, controlled release of CO. This article is protected by copyright. All rights reserved.

  15. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase.

    PubMed

    Martínez-Andújar, Cristina; Ghanem, Michel Edmond; Albacete, Alfonso; Pérez-Alfocea, Francisco

    2013-05-01

    Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. In situ energetic particle observations at Comet Halley recorded by instrumentation aboard the Giotto and VEGA 1 missions

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.; Coates, A.

    1989-04-01

    Energetic particle data on quasi-periodic variations of cometary ion fluxes recorded by instrumentation aboard the Vega 1 and Giotto spacecraft during March 1986 are compared. It is suggested that the ion fluxes measured by the Giotto EPONA instrument were of the water group. Large fluxes of electrons and ions recorded by the EPONA instrument in the magnetic cavity appear to be cometary in origin.

  17. Microscale Electromagnetic Heating in Heterogeneous Energetic Materials Based on X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  18. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  19. Determination of in situ biomass and energetics in seagrass beds on the west coast of Florida. Topical report, May 1982-January 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawes, C.J.

    1984-01-01

    The Gulf Coastal region of Florida supports extensive grass beds that almost continuously cover the shallow (1-5m) depths from Apalachicola Bay to Anclote Bay and in Tampa Bay. Attached and drift benthic seaweeds occur as well and may have higher energetic yields than the seagrasses. The shallow and continuous beds offer a possible source for plant biomass use in methane production, if sufficient material is available throughout the year and the energetics are high enough. Triweekly samplings at three sites around Tampa Bay and bimonthly samplings at four sites along the west coast of Florida showed highest biomass occurring duringmore » the spring through fall months. The available biomass of combined attached and drift seagrasses and seaweeds was lower than that predicted when compared with terrestrial crops. Naturally occurring seagrass and seaweed beds do not have sufficient biomass to justify harvesting for biogass production, although energetics levels are high.« less

  20. Compact Dual Ion Composition Experiment for space plasmas—CoDICE

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Ogasawara, K.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Livi, S.; Weidner, S. E.

    2016-07-01

    The Compact Dual Ion Composition Experiment—CoDICE—simultaneously provides high-quality plasma and energetic ion composition measurements over six decades in energy in a wide variety of space plasma environments. CoDICE measures two critical ion populations in space plasmas: (1) Elemental and charge state composition, and 3-D velocity distributions of <10 eV/q-40 keV/q plasma ions; and (2) Elemental composition, energy spectra, and angular distributions of ˜30 keV->10 MeV energetic ions. CoDICE uses a novel, integrated, common time-of-flight subsystem that provides several advantages over the commonly used separate plasma and energetic ion sensors currently flying on several space missions. These advantages include reduced mass and volume compared to two separate instruments, reduced shielding in high-radiation environments, and simplified spacecraft interface and accommodation requirements. This paper describes the operation principles, electro-optic simulation results and applies the CoDICE concept for measuring plasma and energetic ion populations in Jupiter's magnetosphere.

  1. Energetic neutral atoms from a trans-Europa gas torus at Jupiter.

    PubMed

    Mauk, B H; Mitchell, D G; Krimigis, S M; Roelof, E C; Paranicas, C P

    2003-02-27

    The space environments--or magnetospheres--of magnetized planets emit copious quantities of energetic neutral atoms (ENAs) at energies between tens of electron volts to hundreds of kiloelectron volts (keV). These energetic atoms result from charge exchange between magnetically trapped energetic ions and cold neutral atoms, and they carry significant amounts of energy and mass from the magnetospheres. Imaging their distribution allows us to investigate the structure of planetary magnetospheres. Here we report the analysis of 50-80 keV ENA images of Jupiter's magnetosphere, where two distinct emission regions dominate: the upper atmosphere of Jupiter itself, and a torus of emission residing just outside the orbit of Jupiter's satellite Europa. The trans-Europa component shows that, unexpectedly, Europa generates a gas cloud comparable in gas content to that associated with the volcanic moon Io. The quantity of gas found indicates that Europa has a much greater impact than hitherto believed on the structure of, and the energy flow within, Jupiter's magnetosphere.

  2. Nonexercise movement in elderly compared with young people.

    PubMed

    Harris, Ann M; Lanningham-Foster, Lorraine M; McCrady, Shelly K; Levine, James A

    2007-04-01

    The association between free-living daily activity and aging is unclear because nonexercise movement and its energetic equivalent, nonexercise activity thermogenesis, have not been exhaustively studied in the elderly. We wanted to address the hypothesis that free-living nonexercise movement is lower in older individuals compared with younger controls matched for lean body mass. Ten lean, healthy, sedentary elderly and 10 young subjects matched for lean body mass underwent measurements of nonexercise movement and body posture over 10 days using sensitive, validated technology. In addition, energy expenditure was assessed using doubly labeled water and indirect calorimetry. Total nonexercise movement (acceleration arbitrary units), standing time, and standing acceleration were significantly lower in the elderly subjects; this was specifically because the elderly walked less distance per day despite having a similar number of walking bouts per day compared with the young individuals. The energetic cost of basal metabolic rate, thermic effect of food, total daily energy expenditure, and nonexercise activity thermogenesis were not different between the elderly and young groups. Thus, the energetic cost of walking in the elderly may be greater than in the young. Lean, healthy elderly individuals may have a biological drive to be less active than the young.

  3. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores.

    PubMed

    Williams, Terrie M; Fuiman, Lee A; Davis, Randall W

    2015-10-01

    Foraging by large (>25 kg), mammalian carnivores often entails cryptic tactics to surreptitiously locate and overcome highly mobile prey. Many forms of intermittent locomotion from stroke-and-glide maneuvers by marine mammals to sneak-and-pounce behaviors by terrestrial canids, ursids, and felids are involved. While affording proximity to vigilant prey, these tactics are also associated with unique energetic costs and benefits to the predator. We examined the energetic consequences of intermittent locomotion in mammalian carnivores and assessed the role of these behaviors in overall foraging efficiency. Behaviorally-linked, three-axis accelerometers were calibrated to provide instantaneous locomotor behaviors and associated energetic costs for wild adult Weddell seals (Leptonychotes weddellii) diving beneath the Antarctic ice. The results were compared with previously published values for other marine and terrestrial carnivores. We found that intermittent locomotion in the form of extended glides, burst-and-glide swimming, and rollercoaster maneuvers while hunting silverfish (Pleuragramma antarcticum) resulted in a marked energetic savings for the diving seals relative to continuously stroking. The cost of a foraging dive by the seals decreased by 9.2-59.6%, depending on the proportion of time gliding. These energetic savings translated into exceptionally low transport costs during hunting (COTHUNT) for diving mammals. COTHUNT for Weddell seals was nearly six times lower than predicted for large terrestrial carnivores, and demonstrates the importance of turning off the propulsive machinery to facilitate cost-efficient foraging in highly active, air-breathing marine predators. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE PAGES

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  5. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  6. Structural and energetic processes related to P300: LORETA findings in depression and effects of antidepressant drugs.

    PubMed

    Anderer, P; Saletu, B; Semlitsch, H V; Pascual-Marqui, R D

    2002-01-01

    Noninvasive electrophysiological neuroimaging applied to cognitive components of event-related potentials (ERPs) may differentiate between structural and energetic processes related to information processing. The structural level, revealed by the location of the local maxima of the current source density distribution, describes the time-dependent network of activated brain areas. The magnitude of the source strength, a measure of the energetic component, describes the allocation of processing resources. ERPs were recorded in an odd-ball paradigm and low-resolution brain electromagnetic tomography (LORETA) was applied for standard and target ERP components. In a group of 60 menopausal depressed patients of 45-60 years of age, reduced P300 source strength was observed bilaterally, temporally and medially prefrontally reaching to rostal parts of the anterior cingulate, compared with 29 age-matched controls. In a double-blind, placebo-controlled study, 2 mg of the antidepressant citalopram induced a significant increase of P300 source strength in the (left) prefrontal cortex and precuneus compared with placebo, reaching to the posterior cingulate. Similar increases were observed after 800 mg S-adenosyl-L-methionine (SAMe) administered intravenously in ten young healthy subjects aged 22-33, and they were even more pronounced in ten elderly healthy subjects aged 56-71. Thus, ERP-tomography identified changes in energetic sources in brain areas predominantly involved in depression and in antidepressant action.

  7. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons at Long Standoff Distances

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Sterbentz, J. W.; Yoon, W. Y.; Norman, D. R.

    2009-12-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung) or as a set of one or more discrete photon energies (i.e., monoenergetic). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). Our previous paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). This paper will pursue higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions in air and for an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening air environment.

  8. Energetics and Dynamics of Dissociation of Deprotonated Peptides: Fragmentation of Angiotensin Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Yang, Zhibo

    2011-12-01

    We present a first study of the energetics and dynamics of dissociation of deprotonated peptides using time- and collision-energy resolved surface-induced dissociation (SID) experiments. SID of four model peptides: RVYIHPF, HVYIHPF, DRVYIHPF, and DHVYIHPF was studied using a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for studying ion-surface collisions. Energy and entropy effects for the overall decomposition of the precursor ion were deduced by modeling the time- and collision energy-resolved survival curves using an RRKM based approach developed in our laboratory. The results were compared to the energetics and dynamics of dissociation of the correspondingmore » protonated species. We demonstrate that acidic peptides are less stable in the negative mode because of the low threshold associated with the kinetically hindered loss of H2O from [M-H]- ions. Comparison between the two basic peptides indicates that the lower stability of the [M-H]- ion of RVYIHPF as compared to HVYIHPF towards fragmentation is attributed to the differences in fragmentation mechanisms. Specifically, threshold energy associated with losses of NH3 and NHCNH from RVYIHPF is lower than the barrier for backbone fragmentation that dominates gas-phase decomposition of HVYIHPF. The results provide a first quantitative comparison between the energetics and dynamics of dissociation of [M+H]+ and [M-H]- ions of acidic and basic peptides.« less

  9. Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging.

    PubMed

    Schrack, Jennifer A; Zipunnikov, Vadim; Simonsick, Eleanor M; Studenski, Stephanie; Ferrucci, Luigi

    2016-07-01

    Slow gait is a robust biomarker of health and a predictor of functional decline and death in older adults, yet factors contributing to the decline in gait speed with aging are not well understood. Previous research suggests that the energetic cost of walking at preferred speed is inversely associated with gait speed, but whether individuals with a rising energetic cost of walking experience a steeper rate of gait speed decline has not been investigated. In participants of the Baltimore Longitudinal Study of Aging, the energetic cost of overground walking at preferred speed (mL/kg/m) was assessed between 2007 and 2014 using a portable indirect calorimeter. The longitudinal association between the energetic cost of walking and usual gait speed over 6 meters (m/s) was assessed with multivariate linear regression models, and the risk of slow gait (<1.0 m/s) was analyzed using Cox proportional hazards models. The study population consisted of 457 participants aged 40 and older who contributed 1,121 person-visits to the analysis. In fully adjusted models, increases in the energetic cost of walking predicted the rate of gait speed decline in those older than 65 years (β = -0.008 m/s, p < .001). Moreover, those with a higher energetic cost of walking (>0.17mL/kg/m) had a 57% greater risk of developing slow gait compared with a normal energetic cost of walking (≤0.17mL/kg/m; adjusted hazard ratio = 1.57, 95% confidence interval: 1.01-2.46). These findings suggest that strategies to maintain walking efficiency hold significant implications for maintaining mobility in late life. Efforts to curb threats to walking efficiency should focus on therapies to treat gait and balance impairments, and reduce clinical disease burden. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Computational screening of oxetane monomers for novel hydroxy terminated polyethers.

    PubMed

    Sarangapani, Radhakrishnan; Ghule, Vikas D; Sikder, Arun K

    2014-06-01

    Energetic hydroxy terminated polyether prepolymers find paramount importance in search of energetic binders for propellant applications. In the present study, density functional theory (DFT) has been employed to screen the various novel energetic oxetane derivatives, which usually construct the backbone for these energetic polymers. Molecular structures were investigated at the B3LYP/6-31G* level, and isodesmic reactions were designed for calculating the gas phase heats of formation. The condensed phase heats of formation for designed compounds were calculated by the Politzer approach using heats of sublimation. Among the designed oxetane derivatives, T4 and T5 possess condensed phase heat of formation above 210 kJ mol(-1). The crystal packing density of the designed oxetane derivatives varied from 1.2 to 1.6 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and HOFCond. It was found that most of the designed oxetane derivatives have detonation performance comparable to the monomers of benchmark energetic polymers viz., NIMMO, AMMO, and BAMO. The strain energy (SE) for the oxetane derivatives were calculated using homodesmotic reactions, while intramolecular group interactions were predicted through the disproportionation energies. The concept of chemical hardness is used to analyze the susceptibility of designed compounds to reactivity and chemical transformations. The heats of formation, density, and predicted performance imply that the designed molecules are expected to be candidates for polymer synthesis and potential molecules for energetic binders.

  11. Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics

    NASA Astrophysics Data System (ADS)

    Musset, S.; Kontar, E. P.; Vilmer, N.

    2018-02-01

    Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.

  12. Experimental conformational energy maps of proteins and peptides.

    PubMed

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-06-01

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol -1 ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. A favorable course of palliative sedation: searching for indicators using caregivers' perspectives.

    PubMed

    Brinkkemper, Tijn; Rietjens, Judith A C; Deliens, Luc; Ribbe, Miel W; Swart, Siebe J; Loer, Stephan A; Zuurmond, Wouter W A; Perez, Roberto S G M

    2015-03-01

    Comparing characteristics of a favorable sedation course during palliative sedation to a less favorable course based on the reports Dutch physicians and nurses. Cases identified as having a favorable sedation course less often concerned a male patient (P = .019 nurses' cases), reached the intended sedation depth significantly quicker (P < .05 both nurses and physicians' cases), reached a deeper level of sedation (P = .015 physicians' cases), and had a shorter total duration of sedation compared (P < .001 physicians' cases) to patients with a less favorable sedation course. A favorable course during palliative sedation seems more probable when health care professionals report on a (relatively) shorter time to reach the required depth of sedation and when a deeper level of sedation can be obtained. © The Author(s) 2013.

  14. Analysis of historical and recent PBX 9404 cylinder tests using FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, Hasani Omar; Whitley, Von Howard

    2017-01-31

    Cylinder test experiments using aged PBX-9404 were recently conducted. When compared to similar historical tests using the same materials, but different diagnostics, the data indicate that PBX 9404 imparts less energy to surrounding copper. The purpose of this work was to simulate historical and recent cylinder tests using the Lagrangian hydrodynamics code, FLAG, and identify any differences in the energetic behavior of the material. Nine experiments spanning approximately 4.5 decades were simulated, and radial wall expansions and velocities were compared. Equation-of-state parameters were adjusted to obtain reasonable matches with experimental data. Pressure-volume isentropes were integrated, and resultant energies at specificmore » volume expansions were compared. FLAG simulations matched to experimental data indicate energetic changes of approximately -0.57% to -0.78% per decade.« less

  15. Nanobubbles: a new paradigm for air-seeding in xylem.

    PubMed

    Schenk, H Jochen; Steppe, Kathy; Jansen, Steven

    2015-04-01

    Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. On the conditions for nonlinear growth in magnetospheric chorus and triggered emissions

    NASA Astrophysics Data System (ADS)

    Gołkowski, Mark; Gibby, Andrew R.

    2017-09-01

    The nonlinear whistler mode instability associated with magnetospheric chorus and VLF triggered emissions continues to be poorly understood. Following up on formulations of other authors, an analytical exploration of the stability of the phenomenon from a new vantage point is given. This exploration derives an additional requirement on the anisotropy of the energetic electron distribution relative to the linear treatment of the instability, and shows that the nonlinear instability is most favorable to increasing growth rate when electrons become initially trapped in the wave potential of a constant frequency wave. These results imply that the initiation of the nonlinear instability at the equator requires a positive frequency sweep rate, while the initiation of the instability by a constant frequency triggering wave must occur at a location downstream of the geomagnetic equator.

  17. Interplay between intramolecular and intermolecular structures of 1,1,2,2-tetrachloro-1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Rovira-Esteva, M.; Murugan, N. A.; Pardo, L. C.; Busch, S.; Tamarit, J. Ll.; Pothoczki, Sz.; Cuello, G. J.; Bermejo, F. J.

    2011-08-01

    We report on the interplay between the short-range order of molecules in the liquid phase of 1,1,2,2-tetrachloro-1,2-difluoroethane and the possible molecular conformations, trans and gauche. Two complementary approaches have been used to get a comprehensive picture: analysis of neutron-diffraction data by a Bayesian fit algorithm and a molecular dynamics simulation. The results of both show that the population of trans and gauche conformers in the liquid state can only correspond to the gauche conformer being more stable than the trans conformer. Distinct conformer geometries induce distinct molecular short-range orders around them, suggesting that a deep intra- and intermolecular interaction coupling is energetically favoring one of the conformers by reducing the total molecular free energy.

  18. Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands.

    PubMed

    Kume, Satoshi; Lee, Young-Ho; Nakatsuji, Masatoshi; Teraoka, Yoshiaki; Yamaguchi, Keisuke; Goto, Yuji; Inui, Takashi

    2014-03-18

    The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy-entropy compensation using combined effects of hydrophilic and hydrophobic interactions. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Interlayer Pairing Symmetry of Composite Fermions in Quantum Hall Bilayers

    DOE PAGES

    Isobe, Hiroki; Fu, Liang

    2017-04-17

    Here, we study the pairing symmetry of the interlayer paired state of composite fermions in quantum Hall bilayers. Based on the Halperin-Lee-Read (HLR) theory, the effect of the long-range Coulomb interaction and the internal Chern-Simons gauge fluctuation is analyzed with the random-phase approximation beyond the leading order contribution in small momentum expansion, and we observe that the interlayer paired states with a relative angular momentummore » $l=+1$ are energetically favored for filling ν=$$\\frac{1}2$$+$$\\frac{1}2$$ and $$\\frac{1}4$$+$$\\frac{1}4$$. The degeneracy between states with $±l$ is lifted by the interlayer density-current interaction arising from the interplay of the long-range Coulomb interaction and the Chern-Simons term in the HLR theory.« less

  20. Self-assembly behavior of β-cyclodextrin and imipramine. A Free energy perturbation study

    NASA Astrophysics Data System (ADS)

    Sun, Tingting; Shao, Xueguang; Cai, Wensheng

    2010-05-01

    The self-assembly behavior of β-cyclodextrin (β-CD) and imipramine (IMI), an antidepressant drug, was investigated by molecular dynamics simulations in the gas phase and in an aqueous solution. The binding free energies for 10 possible arrangements of β-CD/IMI complexes with stoichiometries of 1:1, 2:1, and 1:2 were determined using free energy perturbation calculations. The calculations suggest that the 2:1 inclusion mode is the most energetically favored in both phases, in good agreement with experiment. The environment and the neutral and charged IMI influence the stability of the aggregates. The electrostatic interactions constitute the main contribution to the stability. The results reported in this contribution shed new light on the mechanism of association of β-CD with IMI.

  1. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  2. Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics.

    PubMed

    Mooij, Lennard; Dam, Bernard

    2013-07-21

    We use a combination of hydrogenography and Johnson-Mehl-Avrami-Kolmogorov (JMAK) analyses to identify (1) the driving force dependence of the nucleation and growth mechanism of MgH2 in thin film multilayers of Mg (10 nm) and (2) the nucleation and growth mechanism of Mg in the earlier formed MgH2, i.e. the hydrogen desorption process. We conclude that JMAK may be successfully applied to obtain the nucleation and growth mechanism of hydrogen absorption. The desorption mechanism, however, is not simply the reverse of the absorption mechanism. We find evidence that the barrier for nucleation of Mg is small. The dehydrogenation probably involves the formation of voids, which is energetically more favorable than elastic and plastic deformation of the multilayer.

  3. Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions.

    PubMed

    Nguyen, Thi Mong Diep

    2017-01-01

    As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.

  4. Ab Initio Study of Structural and Electronic Properties of (ZnO) n "Magical" Nanoclusters n = (34, 60)

    NASA Astrophysics Data System (ADS)

    Bovhyra, Rostyslav; Popovych, Dmytro; Bovgyra, Oleg; Serednytski, Andrew

    2017-01-01

    Density functional theory studies of the structural and electronic properties of nanoclusters (ZnO) n ( n = 34, 60) in different geometric configurations were conducted. For each cluster, an optimization (relaxation) of structure geometry was performed, and the basic properties of the band structure were investigated. It was established that for the (ZnO)34 nanoclusters, the most stable are fullerene-like hollow structures that satisfy the rule of six isolated quadrangles. For the (ZnO)60 nanoclusters, different types of isomers, including hollow structures and sodalite-like structures composed from (ZnO)12 nanoclusters, were investigated. It was determined that the most energetically favorable structure was sodalite-type structure composed of seven (ZnO)12 clusters with common quadrangle edges.

  5. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  6. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids.

    PubMed

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2015-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Karlson, M.; Colin, J. J.

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on themore » grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.« less

  8. The Formation and Evolution of Energetic Transient Proton Belts Near L = 3

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Roeder, J. L.; Blake, J. B.; Fennell, J. F.

    2011-12-01

    Solar energetic particle (SEP) events are one of many space weather events that can be hazardous to spacecraft operating in the near-Earth plasma environment. During an SEP, energetic protons (~20 MeV) can penetrate deep into the magnetosphere, at times to very low L shells (L~3). Under some circumstances, these injected protons can become stably trapped and persist for many days, thus forming a new proton belt in a region that is typically devoid of energetic protons. This can serve as a potential unforeseen hazard for spacecraft operating in this region of geospace. We use recent observations from the Polar-CEPPAD investigation and HEO spacecraft to examine the formation and evolution of energetic transient proton belts near L = 3. We consider several events where transient proton belts are associated with storm-sudden commencements driven by interplanetary shocks. Angular distributions obtained from the CEPPAD-HIST sensor on-board the Polar spacecraft reveal features that are difficult to reconcile with standard trapped particle theory. For example, the pitch-angle distributions are observed to vary substantially on timescales faster than what would be expected for a diffusive mechanism. We compare the HIST observations with simultaneous measurements in HEO and explore possible explanations for the rapid changes observed in the angular distributions.

  9. Characteristics of Energetic Particle Acceleration in Hot Flow Anomalies Observed by MMS

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Schwartz, S. J.; Wilson, L. B., III; Liu, T. Z.; Osmane, A.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Goodrich, K.; Mauk, B.; Gershman, D. J.; Avanov, L. A.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.; Leonard, T. W.

    2017-12-01

    During its orbital transits with apogees on Earth's dayside, NASA's Magnetospheric Multiscale (MMS) mission captured high resolution observations from several transient ion foreshock phenomena, including multiple hot flow anomalies (HFAs). With MMS' four identically instrumented spacecraft, those events offer unprecedented multipoint observations and resolution of plasma, energetic particles, and electric and magnetic fields and waves within and around HFAs. In this presentation, we compare and contrast the geometries and characteristics of fully-developed HFAs observed by MMS in the interest of determining which HFAs are most efficient at accelerating energetic particles (i.e. >1 to 100s of keV electrons, protons, and heavy ions) and how those HFAs may do so. In particular, we focus on: 1) the orientation of the fast magnetosonic shocks and wave activity that form at the upstream edge of HFAs and 2) how the unique structures and activity characteristic of HFAs may result in enhanced acceleration of energetic particles via shock acceleration processes and shock-shock interactions between the HFA shock and Earth's bow shock. The results of this study are of interest to previous studies of foreshock transients from missions such as THEMIS and Cluster, are relevant to the dayside science objectives of the MMS extended mission, and may have implications for energetic particle acceleration at other astrophysical shocks throughout the Universe.

  10. An evaluation of complementary approaches to elucidate fundamental interfacial phenomena driving adhesion of energetic materials

    DOE PAGES

    Hoss, Darby J.; Knepper, Robert; Hotchkiss, Peter J.; ...

    2016-03-23

    In this study, cohesive Hamaker constants of solid materials are measured via optical and dielectric properties (i.e., Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. To date, however, a comparison across these measurement techniques for common energetic materials has not been reported. This has been due to the inability of the community to produce samples of energetic materials that are readily compatible with contact angle measurements. Here we overcome this limitation by using physical vapor deposition to produce thin films of five common energetic materials, and the contact angle measurement approach is applied to estimate the cohesive Hamakermore » constants and surface energy components of the materials. The cohesive Hamaker constants range from 85 zJ to 135 zJ across the different films. When these Hamaker constants are compared to prior work using Lifshitz theory and nonpolar probe IGC, the relative magnitudes can be ordered as follows: contact angle > Lifshitz > IGC. Furthermore, the dispersive surface energy components estimated here are in good agreement with those estimated by IGC. Due to these results, researchers and technologists will now have access to a comprehensive database of adhesion constants which describe the behavior of these energetic materials over a range of settings.« less

  11. Barnacle geese achieve significant energetic savings by changing posture.

    PubMed

    Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  12. Erosion tests of materials by energetic particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods ofmore » application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.« less

  13. Impact Of Resolving Submesoscale Features On Modeling The Gulf Stream System

    NASA Astrophysics Data System (ADS)

    Chassignet, E.; Xu, X.

    2016-02-01

    Despite being one the best-known circulation pattern of the world ocean, the representation of the Gulf Stream, especially its energetic extension east of the New England Seamounts Chains in the western North Atlantic Ocean, has been a major challenge for ocean general circulation models even at eddy-rich resolutions. Here we show that, for the first time, a simulation of the North Atlantic circulation at 1/50° resolution realistically represents the narrow, energetic jet near 55°W when compared to observations, whereas similarly configured simulations at 1/25° and 1/12° resolution do not. This result highlights the importance of submesoscale features in driving the energetic Gulf Stream extension in the western North Atlantic. The results are discussed in terms of mesoscale and submesoscale energy power spectra.

  14. Barnacle Geese Achieve Significant Energetic Savings by Changing Posture

    PubMed Central

    Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture. PMID:23071672

  15. Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Bucholz, Eric W.; Haskins, Justin B.; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2017-01-01

    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of phenolic chain structure and solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered, ethylene glycol (EGL) and H2O. In addition, three phenolic chain structures were considered including two novolac-type chains with either an ortho-ortho (OON) or ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through structural analysis of the solvation shell and hydrogen bonding environment as well as through quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of the simulations and analyses indicate that EGL provides a larger solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, phenolic chain structure significantly impacts solvation performance with OON having limited intermolecular hydrogen bond formations while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents.

  16. Ab initio X-ray absorption modeling of Cu-SAPO-34: Characterization of Cu exchange sites under different conditions

    DOE PAGES

    Zhang, Renqin; Helling, Kathy; McEwen, Jean-Sabin

    2016-03-29

    Copper-exchanged SAPO-34 (Cu-SAPO-34) provides excellent catalytic activity and hydrothermal sta-bility in the selective catalytic reduction (SCR) of NOxby using NH3as a reductant. Here, we find that the6-membered ring (6MR) site is the most energetically favorable for a Cu+ion while the 8-memberedring (8MR) sites are less favorable by about 0.5 eV with respect to the 6MR site in Cu-SAPO-34. Uponadsorption of molecular species (H2O, O, OH, O2), the energy differences between Cu in the 8MR and 6MRsites decreases and almost disappears. Further, a thermodynamic phase diagram study shows that a Cu+ion bound to a single H2O molecule is the most stablemore » species at low oxygen potential values while aCu2+ion bound to 2 OH species is more stable when the oxygen chemical potential is sufficiently high. Bycomparing Cu K-edge XANES between Cu-SSZ-13 and Cu-SAPO-34 with Cu in different oxidation states,we conclude that it is difficult to differentiate the simulated XANES of Cu in these structures at a givenoxidation state. By studying the Cu K-edge XANES of several favorable structures in Cu-SAPO-34 in thepresence of adspecies, the simulated XANES results capture the real trend of the edge shift with oxidationstate and gives new insights into the experimentally determined XANES of Cu-SAPO-34 obtained understandard SCR conditions.« less

  17. Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations.

    PubMed

    Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W

    2017-04-06

    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final postcured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of the phenolic chain structure and the solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered: ethylene glycol (EGL) and H 2 O. In addition, three phenolic chain structures are considered, including two novolac-type chains with either an ortho-ortho (OON) or an ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through a structural analysis of the solvation shell and the hydrogen-bonding environment as well as through a quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of simulations and the analyses indicate that EGL provides a higher solvation free energy than H 2 O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, the phenolic chain structure significantly affects the solvation performance, with OON having limited intermolecular hydrogen-bond formations, while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H 2 O, and other similar solvents.

  18. On-line catalogs of solar energetic protons at SRTI-BAS

    NASA Astrophysics Data System (ADS)

    Miteva, R.; Danov, D.

    2017-08-01

    We outline the status of the on-line catalogs of solar energetic particles supported by the Space Climate group at the Space Research and Technology, Bulgarian Academy of Sciences (SRTI-BAS). In addition to the already compiled proton catalog from Wind/EPACT instrument, in the current report we present preliminary results on the high energy SOHO/ERNE proton enhancement identifications as well as comparative analysis with two other proton lists. The future plans for the on-line catalogs are briefly summarized.

  19. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.

    PubMed

    Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung

    2017-07-05

    Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.

  20. Searching for low-workfunction phases in the Cs-Te system: The case of Cs2Te5

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Németh, Károly; Harkay, Katherine C.; Terdik, Joseph Z.; Spentzouris, Linda; Terry, Jeff

    2013-05-01

    We have computationally explored workfunction values of Cs2Te5 surfaces, an existing crystalline phase of the Cs-Te system and a small bandgap semiconductor, in order to search for reduced workfunction alternatives of Cs2Te that preserve the exceptionally high quantum efficiency of the Cs2Te seasoned photoemissive material. We have found that the Cs2Te5(010) surface exhibits a workfunction value of ≈1.9 eV when it is covered by Cs atoms. Cs2Te5 is analogous to our recently proposed low-workfunction materials, Cs2TeC2, and other ternary acetylides [J. Z. Terdik et al., Phys. Rev. B 86, 035142 (2012)], in as much as it also contains quasi one-dimensional substructures embedded in a Cs-matrix, forming the foundation for anomalous workfunction anisotropy and low workfunction values. The one-dimensional substructures in Cs2Te5 are polytelluride ions in a tetragonal rod-like packing. Cs2Te5 has the advantage of simpler composition and availability as compared to Cs2TeC2; however, its low workfunction surface is less energetically favored to the other surfaces than in Cs2TeC2. A significant and remarkable advantage of Cs2Te5 as compared to Cs2Te is its high optical absorption of visible photons that can allow for high quantum efficiency electron emission at visible photon energies.

  1. Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-06-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.

  2. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions

    DOE PAGES

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; ...

    2016-12-07

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedralmore » shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.« less

  3. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Suresh Kumar, Gopinatha

    2008-03-01

    The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.

  4. Increased fluorescence intensity in CaTiO 3:Pr 3+ phosphor due to NH 3 treatment and Nb Co-doping

    DOE PAGES

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; ...

    2016-08-28

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In our work, we compare co-doping with Nb to NH 3 treatment of CaTiO 3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb 5+ in the phosphor. Furthermore, the oxidationmore » state of the Pr was probed by NEXAFS and revealed that both Nb 5+ co-doping and NH 3 treatment reduced the number of non-fluorescing Pr 4+ centers. We performed calculations in order to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH 3 treatments reduce the number of Pr 4+ non-fluorescing centers, while Nb 5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.« less

  5. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions.

    PubMed

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent

    2016-12-07

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.

  6. Tuning Optoelectronic Properties of the Graphene-Based Quantum Dots C16- xSi xH10 Family.

    PubMed

    Ramadan, F-Z; Ouarrad, H; Drissi, L B

    2018-06-07

    The electronic and optical properties of graphene-based quantum dots (QDs) are investigated using DFT and many-body perturbation theory. Formation energy, hardeness and electrophilicity show that all structures, from pyrene to silicene QD passing through 15 CSi QD configurations, are energetically and chemically stable. It is also found that they are reactive which implies their favorable character for the possible electronic transport and conductivity. The electronic and optical properties are very sensitive to the number and position of the substituted silicon atoms as well as the directions of the light polarization. Moreover, quantum confinement effects make the exciton binding energy of CSi quantum dots larger than those of their higher dimensional allotropes such as silicene, graphene, and SiC sheet and nanotube. It is also higher those of other shapes of quantum dots like hexagonal graphene QDs and can be tailored from the ultraviolet region to the visible one. The values of the singlet-triplet splitting determined for the X- and Y-light polarized indicate that all configurations have a high fluorescence quantum yield compared to the yield of typical semiconductors, which makes them very promising for various applications such as the light-emitting diode material and nanomedicine.

  7. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.

    PubMed

    Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco

    2015-12-28

    Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.

  8. Improved hybrid algorithm with Gaussian basis sets and plane waves: First-principles calculations of ethylene adsorption on β-SiC(001)-(3×2)

    NASA Astrophysics Data System (ADS)

    Wieferink, Jürgen; Krüger, Peter; Pollmann, Johannes

    2006-11-01

    We present an algorithm for DFT calculations employing Gaussian basis sets for the wave function and a Fourier basis for the potential representation. In particular, a numerically very efficient calculation of the local potential matrix elements and the charge density is described. Special emphasis is placed on the consequences of periodicity and explicit k -vector dependence. The algorithm is tested by comparison with more straightforward ones for the case of adsorption of ethylene on the silicon-rich SiC(001)-(3×2) surface clearly revealing its substantial advantages. A complete self-consistency cycle is speeded up by roughly one order of magnitude since the calculation of matrix elements and of the charge density are accelerated by factors of 10 and 80, respectively, as compared to their straightforward calculation. Our results for C2H4:SiC(001)-(3×2) show that ethylene molecules preferentially adsorb in on-top positions above Si dimers on the substrate surface saturating both dimer dangling bonds per unit cell. In addition, a twist of the molecules around a surface-perpendicular axis is slightly favored energetically similar to the case of a complete monolayer of ethylene adsorbed on the Si(001)-(2×1) surface.

  9. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor

    PubMed Central

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-01-01

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates — an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed. PMID:27684439

  10. Which one among the Pt-containing anticancer drugs more easily forms monoadducts with G and A DNA bases? A comparative study among oxaliplatin, nedaplatin, and carboplatin.

    PubMed

    Alberto, Marta E; Butera, Valeria; Russo, Nino

    2011-08-01

    The platination processes of DNA bases with second- and third-generation Pt(II) anticancer drugs have been investigated using density functional theory (DFT) combined with the conductor-like dielectric continuum model (CPCM) approach, in order to describe their binding mechanisms and to obtain detailed data on the reaction energy profiles. Although there is no doubt that a Pt-N7 bond forms during initial attack, the energetic profiles for the formation of the monofunctional adducts are not known. Herein, a direct comparison between the rate of formation of the monofunctional adducts of the second- and third-generation anticancer drugs with guanine (G) and adenine (A) DNA bases has been made in order to spotlight possible common or different behavior. The guanine as target for platination process is confirmed to be preferred over adenine for all the investigated compounds and for both the hydrolyzed forms considered in our investigation. The preference for G purine base is dominated by electronic factors and promoted by a more favorable hydrogen-bonds pattern, confirming the important role played by H-bonds in determining both structural and kinetic control on the purine platination process. © 2011 American Chemical Society

  11. Formation and size distribution of self-assembled vesicles

    PubMed Central

    Huang, Changjin; Quinn, David; Suresh, Subra

    2017-01-01

    When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods. PMID:28265065

  12. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.

    PubMed

    Yu, Z L; Wang, D; Zhu, Z; Zhang, Z H

    2015-10-07

    The electronic and magnetic structures of graphene nanoribbons (GNRs) with various edge structures passivated by P atoms are investigated systematically, and compared with H passivation as well. GNRs with the entire reconstructed Klein edge or armchair edge are found to be nonmagnetic regardless of P or H passivation. However, if the edge of GNRs is a mixture of zigzag edge and reconstructed Klein edge, they are nonmagnetic for H passivation but significantly magnetic for P passivation, which could be attributed to the "charge transfer doping" effect. And the corresponding magnetic device shows a noticeable negative differential resistance phenomenon and an excellent spin filtering effect under AP configuration, which originate from the special energy band structure. The GNRs with zigzag edge, reconstructed Klein edge, or mixed edge shapes are all metals in the nonmagnetic state regardless of the H or P atoms involved. The relationship between the energy gap and the width in armchair-edged GNRs by P passivation with a dimer structure also satisfies the 3p periodicity, but different in detail from the case of H passivation. The calculated edge formation energy indicates that P-passivated GNRs are energetically more favorable, suggesting that they can stably exist in the experiment.

  13. Modeling shape selection of buckled dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Langham, Jacob; Bense, Hadrien; Barkley, Dwight

    2018-02-01

    A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.

  14. Co-Binding of Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation at Goethite/Water Interfaces.

    PubMed

    Xu, Jing; Marsac, Rémi; Costa, Dominique; Cheng, Wei; Wu, Feng; Boily, Jean-François; Hanna, Khalil

    2017-08-01

    The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) bound at goethite (α-FeOOH) used as a model mineral surface. Our multidisciplinary study, which makes use of batch sorption experiments, vibration spectroscopy and periodic density functional theory calculations, reveals enhanced binding of the otherwise weakly bound NFA caused by unforeseen intermolecular interactions with mineral-bound NA. This enhancement is ascribed to the formation of a NFA-NA dimer whose energetically favored formation (-0.5 eV compared to free molecules) is predominantly driven by van der Waals interactions. A parallel set of efforts also showed that no cobinding occurred with sulfamethoxazole (SMX) because of the lack of molecular interactions with coexisting contaminants. As such, this article raises the importance of recognizing drug cobinding, and lack of cobinding, for predicting and developing policies on the fate of complex mixtures of antibiotics and anti-inflammatory agents in nature.

  15. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions

    PubMed Central

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent

    2016-01-01

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape. PMID:27924857

  16. First Principles Study of Adsorption of Hydrogen on Typical Alloying Elements and Inclusions in Molten 2219 Al Alloy

    PubMed Central

    Liu, Yu; Huang, Yuanchun; Jia, Guangze

    2017-01-01

    To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al2O3, MgO and Al4C3, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al4C3 and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al2O3 and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al2O3, compared with other sites. It was found that alloying elements Cu and Mn and including Al2O3 may increase the hydrogen adsorption in the molten 2219 Al alloy with Al2O3 being the most sensitive component in this regard. PMID:28773185

  17. The cost of being queen: investment across Pogonomyrmex harvester ant gynes that differ in degree of claustrality.

    PubMed

    Enzmann, Brittany L; Gibbs, Allen G; Nonacs, Peter

    2014-11-01

    The role of the ant colony largely consists of non-reproductive tasks, such as foraging, tending brood, and defense. However, workers are vitally linked to reproduction through their provisioning of sexual offspring, which are produced annually to mate and initiate new colonies. Gynes (future queens) have size-associated variation in colony founding strategy (claustrality), with each strategy requiring different energetic investments from their natal colony. We compared the per capita production cost required for semi-claustral, facultative, and claustral gynes across four species of Pogonomyrmex harvester ants. We found that the claustral founding strategy is markedly expensive, costing approximately 70% more energy than that of the semi-claustral strategy. Relative to males, claustral gynes also had the largest differential investment and smallest size variation. We applied these investment costs to a model by Brown and Bonhoeffer (2003) that predicts founding strategy based on investment cost and foraging survivorship. The model predicts that non-claustral foundresses must survive the foraging period with a probability of 30-36% in order for a foraging strategy to be selectively favored. These results highlight the importance of incorporating resource investment at the colony level when investigating the evolution of colony founding strategies in ants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of stuffing on the atomic and electronic structure of the pyrochlore Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Ghosh, Soham S.; Manousakis, Efstratios

    2018-06-01

    There are reasons to believe that the ground state of the magnetic rare-earth pyrochlore Yb2Ti2O7 is on the boundary between competing ground states. We have carried out ab initio density functional calculations to determine the most stable chemical formula as a function of the oxygen chemical potential and the likely location of the oxygen atoms in the unit cell of the "stuffed" system. We find that it is energetically favorable in the stuffed crystal (with an Yb replacement on a Ti site) to contain oxygen vacancies which dope the Yb 4 f orbitals and qualitatively change the electronic properties of the system. In addition, with the inclusion of the contribution of spin-orbit coupling (SOC) on top of the GGA + U approach, we investigated the electronic structure and the magnetic moments of the most stable stuffed system. In our determined stuffed structure the valence bands as compared to those of the pure system are pushed down and a change in hybridization between the O 2 p orbitals and the metal ion states is found. Our first-principle findings should form a foundation for effective models describing the low-temperature properties of this material whose true ground state remains controversial.

  19. Structure and cation ordering in La 2UO 6, Ce 2UO 6, LaUO 4, and CeUO 4 by first principles calculations

    DOE PAGES

    Casillas-Trujillo, Luis; Xu, H.; McMurray, Jake W.; ...

    2016-07-06

    In the present work, we have used density functional theory (DFT) and DFT+U to investigate the crystal structure and phase stability of four model compounds in the Ln 2O 3-UO 2-UO 3 ternary oxide system: La2UO 6, Ce 2UO 6, LaUO 4, CeUO 4, due to the highly-correlated nature of the f-electrons in uranium. We have considered both hypothetical ordered compounds and compounds in which the cations randomly occupy atomic sites in a fluorite-like lattice. We determined that ordered compounds are stable and are energetically favored compared to disordered configurations, though the ordering tendencies are weak. To model and analyzemore » the structures of these complex oxides, we have used supercells based on a layered atomic model. In the layer model, the supercell is composed of alternating planes of anions and cations. We have considered two different ordering motifs for the cations, namely single species (isoatomic) cation layers versus mixed species cation layers. Energy differences between various ordered cationic arrangements were found to be small. This may have implications regarding radiation stability, since cationic arrangements should be able to change under irradiation with little cost in energy.« less

  20. Structural stability and O{sub 2} dissociation on nitrogen-doped graphene with transition metal atoms embedded: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mingye; Wang, Lu, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn; Li, Min

    2015-06-15

    By using first-principles calculations, we investigate the structural stability of nitrogen-doped (N-doped) graphene with graphitic-N, pyridinic-N and pyrrolic-N, and the transition metal (TM) atoms embedded into N-doped graphene. The structures and energetics of TM atoms from Sc to Ni embedded into N-doped graphene are studied. The TM atoms at N{sub 4}V {sub 2} forming a 4N-centered structure shows the strongest binding and the binding energies are more than 7 eV. Finally, we investigate the catalytic performance of N-doped graphene with and without TM embedding for O{sub 2} dissociation, which is a fundamental reaction in fuel cells. Compared to the pyridinic-N,more » the graphitic-N is more favorable to dissociate O{sub 2} molecules with a relatively low reaction barrier of 1.15 eV. However, the catalytic performance on pyridinic-N doped structure can be greatly improved by embedding TM atoms, and the energy barrier can be reduced to 0.61 eV with V atom embedded. Our results provide the stable structure of N-doped graphene and its potential applications in the oxygen reduction reactions.« less

  1. Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Fartab, Dorsa S.; Kordbacheh, Amirhossein Ahmadkhan

    2018-06-01

    The first-principles calculations based on spin-polarized density functional theory is carried out to investigate the structural, electronic and magnetic properties of a hexagonal boron nitride sheet (h-BNS) doped by one or two lithium atom(s). Moreover, a vacancy in the neighborhood of one Li-substituted atom is introduced into the system. All optimized structures indicate significant local deformations with Li atom(s) protruded to the exterior of the sheet. The defects considered at N site are energetically more favorable than their counterpart structures at B site. The spin-polarized impurity states appear within the bandgap region of the pristine h-BNS, which lead to a spontaneous magnetization with the largest magnetic moments of about 2 μB in where a single or two B atom(s) are replaced by Li atom(s). Furthermore, the Li substitution for a single B atom increases the density of holes compared to that of electrons forming a p-type semiconductor. More interestingly, the structure in which two Li are substituted two neighboring B atoms appears to show desired half-metallic behavior that may be applicable in spintronic. The results provide a way to enhance the conductivity and magnetism of the pristine h-BNS for potential applications in BN-based nanoscale devices.

  2. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  3. Free energy landscape of a minimalist salt bridge model.

    PubMed

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  4. Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions.

    PubMed

    Mailloux, Ryan J; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E; Kennedy, Christopher R J; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen

    2014-05-23

    Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2(-/-)) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2(-/-) hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2(+/-)) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2(+/-) mice were far less hypertensive than Grx2(-/-) mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai

    2017-02-10

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factormore » correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.« less

  6. Interstellar Communication Channel Based on a Biological Universal

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Cellular biosynthesis starts with sugar substrates and continues energetically downhill to yield amino acid, rapid, and nucleotide products. To understand the energetics of these processes, we calculated the energy for biosynthesis from sugars of E. cali's amino acids, nucleotides, and lipids. We found that the biosynthesis of amino acids and lipids from sugar substrates proceeds by redox disproportionation. of sugar carbon with a favorable energy of about -11 kcal/mole of carbon. Overall, redox disproportion of sugar carbon accounted for 84% and 96% (ATP only 6% and 1%) of the total biosynthetic energy of amino acids and lipids (the major cellular constituents). Next, we calculated for all 48 possible 3-carbon substrates the energy of maximal disproportionation to carbon dioxide and methane. We found no other carbon substrates than matched sugars in biosynthetic energy, efficiency, and simplicity. From this, we concluded that sugars are the optimal biosynthetic substrate. Since this conclusion is based on universal properties of carbon chemistry, other carbon-based life throughout the Universe would also use optimal sugar substrates. Furthermore, this rather obvious universal role of sugars as the optimal biosubstrate would probably be common knowledge of technological civilizations throughout the Universe. Since the elemental building block of all sugars is formaldehyde, the common knowledge that sugars are the universal optimal biosubstrate could reasonably lead to the selection of a line(s) in the microwave spectrum of formaldehyde as a frequency for interstellar communication.

  7. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  8. IgG1 adsorption to siliconized glass vials-influence of pH, ionic strength, and nonionic surfactants.

    PubMed

    Höger, Kerstin; Mathes, Johannes; Frieß, Wolfgang

    2015-01-01

    In this study, the adsorption of an IgG1 antibody to siliconized vials was investigated with focus on the formulation parameters pH, ionic strength, and nonionic surfactants. Electrophoretic mobility measurements were performed to investigate the charge characteristics of protein and siliconized glass particles at different pH values. Calculation of the electrokinetic charge density allowed further insight into the energetic conditions in the protein-sorbent interface. Maximum adsorption of IgG1 was found at acidic pH values and could be correlated with energetically favorable minimal ion incorporation into the interface. The importance of electrostatic interactions for IgG1 adsorption at acidic pH values was also confirmed by the efficient adsorption reduction at decreased solution ionic strength. A second adsorption maximum around the pI of the protein was assigned to hydrophobic interactions with the siliconized surface. Addition of the nonionic surfactants poloxamer 188 or polysorbate 80 resulted in almost complete suppression of adsorption at pH 7.2, and a strong but less efficient effect at pH 4 on siliconized glass vials. This adsorption suppression was much less pronounced on borosilicate glass vials. From these results, it can be concluded that electrostatic interactions contribute substantially to IgG1 adsorption to siliconized glass vials especially at acidic formulation pH. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Relativistic DFT investigation of electronic structure effects arising from doping the Au25 nanocluster with transition metals.

    PubMed

    Alkan, Fahri; Muñoz-Castro, Alvaro; Aikens, Christine M

    2017-10-26

    We perform a theoretical investigation using density functional theory (DFT) and time-dependent DFT (TDDFT) on the doping of the Au 25 (SR) 18 -1 nanocluster with group IX transition metals (M = cobalt, rhodium and iridium). Different doping motifs, charge states and spin multiplicities were considered for the single-atom doped nanoclusters. Our results show that the interaction (or the lack of interaction) between the d-type energy levels that mainly originate from the dopant atom and the super-atomic levels plays an important role in the energetics, the electronic structure and the optical properties of the doped systems. The evaluated MAu 24 (SR) 18 q (q = -1, -3) systems favor an endohedral disposition of the doping atom typically in a singlet ground state, with either a 6- or 8-valence electron icosahedral core. For the sake of comparison, the role of the d energy levels in the electronic structure of a variety of doped Au 25 (SR) 18 -1 nanoclusters was investigated for dopant atoms from other families such as Cd, Ag and Pd. Finally, the effect of spin-orbit coupling (SOC) on the electronic structure and absorption spectra was determined. The information in this study regarding the relative energetics of the d-based and super-atom energy levels can be useful to extend our understanding of the preferred doping modes of different transition metals in protected gold nanoclusters.

  10. Roles of the amino group of purine bases in the thermodynamic stability of DNA base pairing.

    PubMed

    Nakano, Shu-ichi; Sugimoto, Naoki

    2014-08-05

    The energetic aspects of hydrogen-bonded base-pair interactions are important for the design of functional nucleotide analogs and for practical applications of oligonucleotides. The present study investigated the contribution of the 2-amino group of DNA purine bases to the thermodynamic stability of oligonucleotide duplexes under different salt and solvent conditions, using 2'-deoxyriboinosine (I) and 2'-deoxyribo-2,6-diaminopurine (D) as non-canonical nucleotides. The stability of DNA duplexes was changed by substitution of a single base pair in the following order: G • C > D • T ≈ I • C > A • T > G • T > I • T. The apparent stabilization energy due to the presence of the 2-amino group of G and D varied depending on the salt concentration, and decreased in the water-ethanol mixed solvent. The effects of salt concentration on the thermodynamics of DNA duplexes were found to be partially sequence-dependent, and the 2-amino group of the purine bases might have an influence on the binding of ions to DNA through the formation of a stable base-paired structure. Our results also showed that physiological salt conditions were energetically favorable for complementary base recognition, and conversely, low salt concentration media and ethanol-containing solvents were effective for low stringency oligonucleotide hybridization, in the context of conditions employed in this study.

  11. BATS RECOVERING FROM WHITE-NOSE SYNDROME ELEVATE METABOLIC RATE DURING WING HEALING IN SPRING.

    PubMed

    Meierhofer, Melissa B; Johnson, Joseph S; Field, Kenneth A; Lumadue, Shayne S; Kurta, Allen; Kath, Joseph A; Reeder, DeeAnn M

    2018-04-04

      Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.

  12. Energetic costs of protein synthesis do not differ between red- and white-blooded Antarctic notothenioid fishes.

    PubMed

    Lewis, Johanne M; Grove, Theresa J; O'Brien, Kristin M

    2015-09-01

    Antarctic icefishes (Family Channichthyidae) within the suborder Notothenioidei lack the oxygen-binding protein hemoglobin (Hb), and six of the 16 species of icefishes lack myoglobin (Mb) in heart ventricle. As iron-centered proteins, Hb and Mb can promote the formation of reactive oxygen species (ROS) that damage biological macromolecules. Consistent with this, our previous studies have shown that icefishes have lower levels of oxidized proteins and lipids in oxidative muscle compared to red-blooded notothenioids. Because oxidized proteins are usually degraded by the 20S proteasome and must be resynthesized, we hypothesized that rates of protein synthesis would be lower in icefishes compared to red-blooded notothenioids, thereby reducing the energetic costs of protein synthesis and conferring a benefit to the loss of Hb and Mb. Rates of protein synthesis were quantified in hearts, and the fraction of oxygen consumption devoted to protein synthesis was measured in isolated hepatocytes and cardiomyocytes of notothenioids differing in the expression of Hb and cardiac Mb. Neither rates of protein synthesis nor the energetic costs of protein synthesis differed among species, suggesting that red-blooded species do not degrade and replace oxidatively modified proteins at a higher rate compared to icefishes but rather, persist with higher levels of oxidized proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Acceleration and Storage of Energetic Electrons in Magnetic Loops in the Course of Electric Current Oscillations

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    2017-10-01

    A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25 - 180 MHz, 110 - 600 MHz, 0.7 - 3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh-Taylor instability.

  14. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  15. Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems

    NASA Astrophysics Data System (ADS)

    Minotti, Luca; Savaré, Giuseppe

    2018-02-01

    We propose the new notion of Visco-Energetic solutions to rate-independent systems {(X, E,} d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction {δ} (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.

  16. Solar Energetic Electrons detected in the Earth's cusp region by the BD-IES instrument

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zong, Q. G.; Shi, Q.; Wimmer-Schweingruber, R. F.; He, J.; Bale, S. D.

    2017-12-01

    Here we present a comprehensive study of three solar energetic electron events observed in the Earth's cusp region by the BeiDa Image Electron Spectrometer (BD-IES) instrument onboard an inclined (55°) geosynchronous orbit (IGSO) satellite, respectively, in 2015 October, 2015 November and 2016 January. In all the three events at 50-200 keV, the omnidirectional differential fluxes from the BD-IES show a strong ( 0.7-0.9) correlation with the electron fluxes measured by the WIND 3DP instrument in the solar wind, but with a generally smaller intensity (especially at lower energies). Compared to the WIND 3DP electron flux versus energy spectra, the BD-IES electron spectra also fit well to a power-law function, J E-γ, but the observed spectral index γ appears to be smaller and decrease with time, for all the three events. These results suggest that solar energetic electrons can continuously enter the planets' cusp and get trapped there, probably leading to a contribution to the energetic electrons in the magnetosphere, e.g., in the radiation belts.

  17. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  18. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  19. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes

    PubMed Central

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R.; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active growth could be expected, and phylotypes that are most likely in the state of endospores, in all the sites. In summary, our results suggest that diversified survival strategies, including sporulation and metabolic adaptations, explain the biological success of EFF in geothermal and natural springs, and that multiple extreme environmental factors favor the prevalence of EFF. PMID:27857706

  20. Critical Role of Water and Oxygen Defects in C-O Scission during CO2 Reduction on Zn2GeO4(010).

    PubMed

    Yang, Jing; Li, Yanlu; Zhao, Xian; Fan, Weiliu

    2018-03-27

    Exploration of catalyst structure and environmental sensitivity for C-O bond scission is essential for improving the conversion efficiency because of the inertness of CO 2 . We performed density functional theory calculations to understand the influence of the properties of adsorbed water and the reciprocal action with oxygen vacancy on the CO 2 dissociation mechanism on Zn 2 GeO 4 (010). When a perfect surface was hydrated, the introduction of H 2 O was predicted to promote the scission step by two modes based on its appearance, with the greatest enhancement from dissociative adsorbed H 2 O. The dissociative H 2 O lowers the barrier and reaction energy of CO 2 dissociation through hydrogen bonding to preactivate the C-O bond and assisted scission via a COOH intermediate. The perfect surface with bidentate-binding H 2 O was energetically more favorable for CO 2 dissociation than the surface with monodentate-binding H 2 O. Direct dissociation was energetically favored by the former, whereas monodentate H 2 O facilitated the H-assisted pathway. The defective surface exhibited a higher reactivity for CO 2 decomposition than the perfect surface because the generation of oxygen vacancies could disperse the product location. When the defective surface was hydrated, the reciprocal action for vacancy and surface H 2 O on CO 2 dissociation was related to the vacancy type. The presence of H 2 O substantially decreased the reaction energy for the direct dissociation of CO 2 on O 2c1 - and O 3c2 -defect surfaces, which converts the endoergic reaction to an exoergic reaction. However, the increased decomposition barrier made the step kinetically unfavorable and reduced the reaction rate. When H 2 O was present on the O 2c2 -defect surface, both the barrier and reaction energy for direct dissociation were invariable. This result indicated that the introduction of H 2 O had little effect on the kinetics and thermodynamics. Moreover, the H-assisted pathway was suppressed on all hydrated defect surfaces. These results provide a theoretical perspective for the design of highly efficient catalysts.

Top