NASA Astrophysics Data System (ADS)
Nascimento, F. S.; Mól, L. A. S.; Pereira, A. R.; Moura-Melo, W. A.
2012-10-01
In a recent comment [Phys. Lett. A 375 (2011) 2680] some of us argued that a misleading evaluation of dipolar interactions in spin ice systems studied by Li et al. [Phys. Lett. A 375 (2011) 1548], does not lead to the ground-state transitions that they observed. However, a bug found in our computational code showed that there is indeed the predicted transitions even for a proper evaluation of dipolar interactions.
NASA Astrophysics Data System (ADS)
El-Orany, Faisal A. A.
2010-02-01
In [J.S. Shaari, M. Lucamarini, M.R.B. Wahiddin, Phys. Lett. A 358 (2006) 85] the deterministic six states protocol (6DP) for quantum communication has been developed. This protocol is based on three mutually unbiased bases and four encoding operators. Information is transmitted between the users via two qubits from different bases. Three attacks have been studied; namely intercept-resend attack (IRA), double-CNOT attack (2CNOTA) and quantum man-in-the-middle attack. In this Letter, we show that the IRA and 2CNOTA are not properly addressed. For instance, we show that the probability of detecting Eve in the control mode of the IRA is 70% instead of 50% in the previous study. Moreover, in the 2CNOTA, Eve can only obtain 50% of the data not all of it as argued earlier.
NASA Astrophysics Data System (ADS)
Lu, Chunsheng
2008-05-01
In a recent letter, Barber, Andrews, Schadler, and Wagner, Appl. Phys. Lett. 87, 203106 (2005). indicated that Weibull-Poisson statistics could accurately model the nanotube tensile strength data, and then concluded that the apparent strengthening mechanism in a multiwalled carbon nanotube (MWCNT) grown by chemical vapor deposition (CVD) is most likely caused by an enhanced interaction between the walls of the nanotube. In this comment, we show that their conclusion seems to be inconsistent with the assumption introduced in the data analysis by using a two-parameter Weibull distribution. Further statistical analysis provides a new explanation on the scattered strengths of MWCNTs. The effectiveness of Weibull-Poisson statistics at nanoscales is also discussed.
Lee, S.; Saw, S. H.
2009-02-16
The main point of the comment [Appl. Phys. Lett. 94, 076101 (2009)] is that Eq. (2) and consequentially Eq. (3) of the commented paper [Appl. Phys. Lett. 92, 021503 (2008)] require correction. The alternative equation suggested in the comment is derived using Kirchhoff's voltage rule. The comment consider only the energy distribution in the inductive components and the resultant equation confirms a progressive lowering of the I{sub pinch}/I{sub peak} ratio as the static inductance L{sub 0} is reduced, lowering from 0.87 to 0.31 as L{sub 0} is reduced from 100 to 5 nH according to the revised formula corresponding to Eq. (3), compared to 0.63-0.25 according to Eq. (3). This progressive lowering of the ratio I{sub pinch}/I{sub peak} due to the inductive energy distribution is one of two factors responsible for the pinch current limitation. The other factor is the progressive reduction in the L-C interaction time compared to the current dip duration denoted by {delta}{sub cap} in Eq. (2). The comment does not deal with {delta}{sub cap} at all; hence, its conclusion based on inductive energy distribution only is not useful, since in the low L{sub 0} region when pinch current limitation begins to manifest, {delta}{sub cap} becomes more and more the dominant factor. In any case, the results of the paper do not depend on Eqs. (2) and (3), which are used in the paper only for illustrative purposes.
NASA Astrophysics Data System (ADS)
Nishioka, Tsuyoshi; Hasegawa, Toshio; Ishizuka, Hirokazu; Imafuku, Kentaro; Imai, Hideki
2005-10-01
In a recent paper titled “Comment on: ‘How much security does the Y-00 protocol provide us?’ ” [H.P. Yuen, P. Kumar, E. Corndorf, Phys. Lett. A 346 (2005) 1 6], the authors critically examine our idea [T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai, Phys. Lett. A 327 (2004) 28 32] that the Y-00 protocol is essentially as secure as classical stream ciphers. We clarify our idea in more detail than our previous paper and show that the Y-00 protocol can be considered as a classical non-random stream cipher, as was claimed in [T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai, Phys. Lett. A 327 (2004) 28 32]. We also provide an analysis on key generation with the improved Y-00 protocol, which is implemented with weak coherent states.
NASA Astrophysics Data System (ADS)
Moretti, S.; Nolten, M. R.; Ross, D. A.
2008-03-01
This is an Erratum to a Letter of ours [S. Moretti, M.R. Nolten, D.A. Ross, Phys. Lett. B 639 (2006) 513]. After its publication, we have discovered a mistake in a numerical program that affects the results presented therein. We provide here the corrected version.
Comment on: ‘How much security does Y-00 protocol provide us?’ [Phys. Lett. A 327 (2004) 28
NASA Astrophysics Data System (ADS)
Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Nair, Ranjith
2005-10-01
It is claimed by T. Nishioka et al. in [T. Nishioka, T. Hasegawa, H. Ishiziuka, K. Imafuku, H. Imai, Phys. Lett. A 327 (2004) 28 32] that the security of Y-00 is equivalent to that of a classical stream cipher. In this Letter it is shown that the claim is false in either the use of Y-00 for direct encryption or key generation, in all the parameter ranges it is supposed to operate including those of the experiments reported thus far. The security of Y-00 type protocols is clarified.
NASA Astrophysics Data System (ADS)
Mól, L. A. S.; Pereira, A. R.; Moura-Melo, W. A.
2011-07-01
In a recent letter Li et al. [Phys. Lett. A 375 (2011) 1548] have investigated some geometric effects on the ordering of artificial spin ice materials. They have argued that the system ground-state undergoes a transition when the lattice spacing in one direction is sufficiently larger than in the other. Their results were obtained by evaluating the dipolar interactions using a restrict set of spin pairs. In this comment we show that by taking into account all the dipolar interactions among the spins no ground-state transition is observed.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Hao; Chen, Han-Wu; Liu, Wen-Jie; Xu, Juan
2013-03-01
Two quantum secret sharing (QSS) protocols in a multiuser quantum direct communication (QDC) network system were put forward by Hong et al. [Chin. Phys. Lett. 29 (2012) 050303]. However, we find that either agent (Bob or Charlie) alone can obtain half the information about the sender's secret without collaboration with the other, which does not satisfy the security requirement of QSS. Moreover, the secret message sent by Alice in the second protocol can be eavesdropped on or its communication can be disturbed by the builder of quantum channels (Trent).
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2016-07-01
In a recent paper Abdel Aziz [Phys. Lett. A 376 (2012) 169] obtained the dispersion properties of TE surface modes propagating at the interface between a magnetized quantum plasma and vacuum in the Faraday configuration, where these TE surface waves are excited during the interaction of relativistic electron beam with magnetized quantum plasma. The present Comment points out that in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the TE surface waves cannot propagate on surface of the present system and the general dispersion relations for surface waves, derived by Abdel Aziz are incorrect.
NASA Astrophysics Data System (ADS)
Charreau, Julien; Chen, Yan; Gilder, Stuart; Barier, Laurie
2008-04-01
The recent publication of "Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range,Western China" by B.C. Huang, J.D.A. Piper, S.T. Peng, T. Liu, Z. Li, Q.C. Wang, R.X. Zhu [Earth Planet. Sci. Lett., 2006, doi:10.1016/j.epsl.2006.09.020] discusses the Cenozoic uplift history of the Tianshan Mountains by studying the magnetostratigraphy of Paleogene to Neogene continental sediments from two sections located in the Kuche basin at the northern edge of the Tarim basin. To support their conclusion they reinterpreted a magnetostratigraphic study of the Yaha section, which lies ~ 10 km south of their sections, we previously published [J. Charreau, S. Gilder, Y. Chen, S. Dominguez, J.-P. Avouac, S. Sen, M. Jolivet, Y. Li and W. Wang, Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tianshan Mountains, Geology 34(3), 2006, 181184.]. Here, (1) we argue that the interpretations of the sedimentation rate changes they proposed for the Kuche sections are partially invalid, (2) we disagree with their reinterpretation of the age of the Yaha section, and (3) we think that the way they interpret their AMS data is incorrect.
Addendum to "Updating neutrino magnetic moment constraints" [Phys. Lett. B 753 (2016) 191-198
NASA Astrophysics Data System (ADS)
Cañas, B. C.; Miranda, O. G.; Parada, A.; Tórtola, M.; Valle, J. W. F.
2016-06-01
After the publication of this work we noticed that the uncertainties in the considered backgrounds in Borexino may affect our reported limit on the neutrino magnetic moment from Borexino data. Indeed, we have found that a more precise treatment of the uncertainties in the total normalization of these backgrounds results in a weaker sensitivity on the neutrino magnetic moment. This point will be hopefully improved in the near future thanks to the purification processes carried out in the second phase of the Borexino experiment. Meanwhile, however, we think it would be more reliable to adopt the bound on the neutrino magnetic moment reported by Borexino: μν < 5.4 ×10-11μB[1].
NASA Astrophysics Data System (ADS)
Consoli, M.; Costanzo, E.
2007-02-01
We present some arguments that should induce to re-consider from a new perspective the interference experiments in moving media (Michelson Morley, Fizeau, …). These considerations are useful to understand and appreciate the experimental test recently proposed by Guerra and de Abreu.
NASA Astrophysics Data System (ADS)
Iminniyaz, Hoernisa
2013-06-01
We reexamine the effect of kinetic decoupling on the relic density of the non-relativistic particles whose annihilation rate is increased by Sommerfeld enhancement. I claim that the result in Dent et al. (2010) [1] is wrong in the case of kinetic decoupling for small coupling constant α.
NASA Astrophysics Data System (ADS)
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Battaglia, M.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Day, C. T.; Gill, M. S.; Gritsan, A. V.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Wenzel, W. A.; Barrett, M.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Morgan, S. E.; Watson, A. T.; Fritsch, M.; Goetzen, K.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schroeder, T.; Steinke, M.; Boyd, J. T.; Burke, J. P.; Chevalier, N.; Cottingham, W. N.; Kelly, M. P.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Kyberd, P.; Saleem, M.; Teodorescu, L.; Blinov, A. E.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Yushkov, A. N.; Best, D.; Bondioli, M.; Bruinsma, M.; Chao, M.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Buchanan, C.; Hartfiel, B. L.; Foulkes, S. D.; Gary, J. W.; Long, O.; Shen, B. C.; Wang, K.; Zhang, L.; Del Re, D.; Hadavand, H. K.; Hill, E. J.; Macfarlane, D. B.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Schalk, T.; Schumm, B. A.; Seiden, A.; Spradlin, P.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Andreassen, R.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Blanc, F.; Bloom, P.; Chen, S.; Ford, W. T.; Nauenberg, U.; Olivas, A.; Rankin, P.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Zeng, Q.; Altenburg, D.; Feltresi, E.; Hauke, A.; Spaan, B.; Brandt, T.; Brose, J.; Dickopp, M.; Klose, V.; Lacker, H. M.; Nogowski, R.; Otto, S.; Petzold, A.; Schott, G.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Bernard, D.; Bonneaud, G. R.; Grenier, P.; Schrenk, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Bard, D. J.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Xie, Y.; Andreotti, M.; Azzolini, V.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Piemontese, L.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.; Buzzo, A.; Capra, R.; Contri, R.; Vetere, M. Lo; Macri, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Morii, M.; Won, E.; Wu, J.; Dubitzky, R. S.; Langenegger, U.; Marks, J.; Schenk, S.; Uwer, U.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Taylor, G. P.; Vazquez, W. P.; Charles, M. J.; Mader, W. F.; Mallik, U.; Mohapata, A. K.; Cochran, J.; Crawley, H. B.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Yi, J.; Arnaud, N.; Davier, M.; Giroux, X.; Grosdidier, G.; Hocker, A.; Diberder, F. Le; Lepeltier, V.; Lutz, A. M.; Oyanguren, A.; Petersen, T. C.; Pierini, M.; Plaszcynski, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Cheng, C. H.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bevan, A. J.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, K. A.; Hutchcroft, D. E.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Cormack, C. M.; Lodovico, F. Di; Sacco, R.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Brown, D.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Hodgkinson, M. C.; Lafferty, G. D.; Naisbit, M. T.; Williams, J. C.; Chen, C.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Kovalskyi, D.; Lae, C. K.; Lillard, V.; Roberts, D. A.; Simi, G.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Saremi, S.; Staengle, H.; Willocq, S.; Cowan, R.; Koeneke, K.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Kim, H.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Cote, D.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; Nardo, G. De; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M.; Bulten, H.; Raven, G.; Snoek, H. L.; Wilden, L.; Jessop, C. P.; Losecco, J. M.; Allmendinger, T.; Benelli, G.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Jackson, P. D.; Kagan, H.; Kass, R.; Pulliam, T.; Rahimi, A. M.; Ter-Antonyan, R.; Wong, Q. K.; Brau, J.; Frey, R.; Igonkina, O.; Lu, M.; Potter, C. T.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Dorigo, A.; Galeazzi, F.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; Buono, L. Del; de La Vaissiere, Ch.; Hamon, O.; John, M. J. J.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Roos, L.; Therin, G.; Behera, P. K.; Gladney, L.; Guo, Q. H.; Panetta, J.; Biasini, M.; Covarelli, R.; Pacetti, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J.; Haire, M.; Judd, D.; Wagoner, D. E.; Biesiada, J.; Danielson, N.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Marco, E. Di; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Tehrani, F. Safai; Voena, C.; Schroder, H.; Wagner, G.; Waldi, R.; Adye, T.; Groot, N. De; Franek, B.; Gopal, G. P.; Olaiya, E. O.; Wilson, F. F.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Graziani, G.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; London, G. W.; Mayer, B.; Vasseur, G.; Yeche, Ch.; Zito, M.; Purohit, M. V.; Weidemann, W.; Wilson, J. R.; Yumiceva, F. X.; Abe, T.; Allen, M. T.; Aston, D.; Bartoldus, R.; Berger, N.; Boyarski, A. M.; Buchmueller, O. L.; Claus, R.; Convery, M. R.; Cristinziani, M.; Dingfelder, J. C.; Dong, D.; Dorfan, J.; Dujmic, D.; Dunwoodie, W.; Fan, S.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Hadig, T.; Halyo, V.; Hast, C.; Hryn'Ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Libby, J.; Luitz, S.; Luth, V.; Lynch, H. L.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S.; Thompson, J. M.; Va'Vra, J.; Weaver, M.; Weinstein, A. J. R.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Satpathy, A.; Schwitters, R. F.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Ricca, G. Della; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Pavini, R. S.; Banerjee, Sw.; Bhuyan, B.; Brown, C. M.; Fortin, D.; Hamano, K.; Kowalewski, R.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Flood, K. T.; Hollar, J. J.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Pan, Y.; Prepost, R.; Tan, P.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Neal, H.
2008-05-01
We present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B -> K pi pi gamma in the range m_Kpipi < 1.8 GeV/c^2. We reconstruct four final states: K+ pi- pi+ gamma, K+ pi- pi0 gamma, Ks pi- pi+ gamma, and Ks pi+ pi- gamma, where Ks -> pi+ pi-. Using 232 million e+ e- -> B Bbar events recorded by the BaBar experiment at the PEP-II asymmetric-energy storage ring, we measure the branching fractions BR(B+ -> K+ pi- pi+ gamma) = (2.95 +- 0.13 (stat.) +- 0.20 (syst.)) x 10^-5, BR(B0 -> K+ pi- pi0 gamma) = (4.07 +- 0.22 (stat.) +- 0.31 (syst.)) x 10^-5, BR(B0 -> K0 pi+ pi- gamma) = (1.85 +- 0.21 (stat.) +- 0.12 (syst.)) x 10^-5, and BR(B+ -> K0 pi+ pi0 gamma) = (4.56 +- 0.42 (stat.) +- 0.31 (syst.)) x 10^-5.
Erratum to “The dimension formula for the Lorenz attractor” [Phys. Lett. A 375 (8) (2011) 1179
NASA Astrophysics Data System (ADS)
Leonov, G. A.; Pogromsky, A. Yu.; Starkov, K. E.
2012-10-01
In our recent publication (G.A. Leonov et al., 2011 [1]) we formulated a result on Lyapunov dimension formula for the Lorenz system. The proof of this result contains a flaw which is corrected in this Erratum.
Poutsma, Marvin L.
2016-04-21
The recently proposed term radicalicity was described as a measure of the reactivity of a free radical Q*, i.e., a kinetic quantity. Here it is shown that in fact it is simply a frame-shifted version of the well-known bond dissociation energy, a thermodynamic quantity. Hence its use is discouraged.
NASA Astrophysics Data System (ADS)
Kamenetsky, Vadim S.
2016-04-01
Brett et al. (2015) proposed a kimberlite factory model that "…involves carbonatitic proto-kimberlite melts preferentially assimilating Opx xenocrysts as they transit the cratonic mantle lithosphere to evolve into silicic-hydrous melts that reach olivine saturation during ascent" (p. 130). A cornerstone of this model is a specific, carbonatitic composition of proto-kimberlite melts ascending through the subcratonic lithospheric mantle "…whereby parental carbonatitic magmas are progressively converted to kimberlite (e.g., Russell et al., 2012, 2013; Bussweiler et al., 2015)" (p. 120). The model by Brett et al. (2015) is based on observations of "the carbonate-sealed cracks" in olivine that "…strongly support to the hypothesis that all kimberlite magmas originate as carbonatitic-melts (e.g., Russell et al., 2012, 2013; Kamenetsky et al., 2013; Pilbeam et al., 2013; Kamenetsky and Yaxley, 2015; Bussweiler et al., 2015)." (p. 129). While the major thrust of the study by Brett et al. (2015) hinges on the premise that the parental kimberlite melt is carbonatitic, the overwhelming majority in the kimberlite community still prefers a carbonated ultramafic/ultrabasic composition for parental kimberlite melts. Thus the suggestion that kimberlites have an initial carbonatite composition is not less than "a paradigm shift" in the kimberlite petrology. It appears that a carbonatite origin for kimberlites has been proposed in many studies that significantly pre-date the publications starting from 2012 that they cite, but which unfortunately are overlooked by Brett et al. (2015). It is, therefore, worth acknowledging the research which has previously advanced this unorthodox idea.
NASA Astrophysics Data System (ADS)
Brett, R. Curtis; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.
2016-04-01
The Kamenetsky (2016) comment on the Kimberlite Factory model proposed by Brett et al. (2015) asserts, "A cornerstone of this model is a specific, carbonatitic composition of proto-kimberlite melts ascending through the sub-cratonic lithospheric mantle" and "… the major thrust of the study hinges on the premise that the parental kimberlite melt is carbonatitic". This is a clear misstatement of our central thesis, which is to utilize the attributes of olivine xenocrysts to constrain the physical ascent of kimberlite. Brett et al.'s study does not hinge on the premise that parental kimberlite melt is carbonatitic. Rather, our interpretation that kimberlite melt originates as near carbonatitic hinges on our novel observation that early "carbonate sealed cracks provide evidence of melt being drawn into decompression cracks and precipitating" (p. 129). Our connection between this observation and our interpretation is tied explicitly to earlier published works "in this regard, the carbonate-filled sealed cracks strongly support to the hypothesis that all kimberlite magmas originate as carbonatitic-melts (e.g.,Russell et al., 2012, 2013;Kamenetsky et al., 2013; Pilbeam et al., 2013; Kamenetsky and Yaxley, 2015; Bussweiler et al., 2015)" (p. 129). To state that our interpretation is based on a pre-existing bias towards a model of a carbonatitic origin of kimberlite magmas is incorrect. Rather, our new observational data independently demonstrates that the presence of carbonate-sealed cracks formed during kimberlite ascent.
NASA Astrophysics Data System (ADS)
2015-09-01
We have identified an issue in the calculation of the uncertainties of the mean transverse momentum
NASA Astrophysics Data System (ADS)
Hamilton, Joseph; Luo, Y. X.
2010-08-01
We have noticed that we made a typographical error on spelling of one of the author's names. “Z. Jang” should be changed to “Z. Jiang” and add the following address: AdValue Photonics, Inc., Tucson, AZ 85714, USA.
Giovannini, L.; Montoncello, F.; Nizzoli, F.; Vavassori, P.; Grimsditch, M.
2011-11-04
The authors reported in their letter some outstanding experimental results of spin excitations in nano-particles investigated by near-field Brillouin scattering. They conclude from their observations that existing theories -- in particular micromagnetic simulations -- do not correctly describe the behavior of the spin modes. Since excellent agreement has been reported between spin-wave mode frequencies obtained from Brillouin scattering experiments and those obtained from micromagnetic-based simulations, it is somewhat surprising that the simulations should fail for the particles investigated in Ref. 1. In the literature, there is also evidence of various kinds and degrees of mode localization when exchange competes with dipolar interactions. When dipolar long-range interactions are taken into account, the eigenmodes can be seen as the superposition of plane waves, leading to different localizations and in particular to the appearence of bulk-dead modes. We have simulated the normal modes of the particles used in Ref. 1, with the dynamical matrix method; the results are shown in Fig. 1 for different values of the applied field. In addition to the lowest frequency non-localized mode (1-BA), several localized modes are present. Large particles exhibit modes with oscillations along the field direction;8 for such modes, we use the label n-BA-loc, with n the number of nodes. While the profile of the pure end-mode, i.e., 0-BA-loc, has its maximum at the edge with the amplitude monotonously decreasing toward the interior of the ellipse, as correctly described by the authors, the localized modes with n > 0, not considered by them, do not have this characteristic: see inset of Fig. 1. Based on Fig. 1, we believe that the assumption that the mode they observe is 'the' localized spin mode is not correct. Instead, we believe that the mode detected in the experiment at H > 700 Oe is a combinations (due to non-linear excitation conditions of the experiment) of several n-BA-loc modes, with n?>?0. In this picture, the sharp peaks of the n-BA-loc modes are smoothed in the experimental measurements, thanks to the superposition of modes with different nodal lines. Finally, at 350 Oe, the measured profile and frequency suggest that the mode seen in the experiment may be well due to the 1-BA mode. The observed change in mode profile at 350 Oe is substantiated by the frequency behavior shown in Fig. 3(b) of Ref. 1, where it can be observed that the frequency of the low-field point does not lie on the same curve as the high-field points. In summary, before concluding that micromagnetic-based simulations of spin wave modes in nano-particles are unreliable, we believe that it is necessary to await either the simulation of large particles using small cell sizes or for more exhaustive experiments reaching lower frequencies on particles of varying size. The comparison of calculations with experiment would greatly benefit if the authors were to provide the field dependence of all the modes detected in their experiment (in order to achieve a proper assignment).
NASA Astrophysics Data System (ADS)
Saltiel, Jack; Turek, Andrzej M.
2015-10-01
This is in response to Catalán's objection to our use of isopolarizability conditions in the resolution of the absorption and fluorescence spectra of the s-cis and s-trans all-trans-1.6-diphenyl-1,3,5-hexatriene (ttt-DPH) conformers and the resolution of the fluorescence spectrum of the s-trans conformer to 21Ag → 11Ag and 11Bu → 11Ag spectra. Contrary to Catalán's assertion, we did not assume identical solvatochromic and thermochromic responses of ttt-DPH to medium changes. Those responses depend on a complex combination of factors that can differ from molecule to molecule.
NASA Astrophysics Data System (ADS)
Zhao, Yulong; Liu, Zhifei; Zhang, Yanwei; Li, Jianru; Wang, Meng; Wang, Wenguang; Xu, Jingping
2015-12-01
The authors regret that the tick labels of Fig. 7d of our article were incorrect. Both the caption of the figure and the discussion in the text were correct, so the conclusions in the article were not affected. The corrected Fig. 7 appears on the next page for the readers' convenience.
NASA Astrophysics Data System (ADS)
Rohrmann, Alexander; Heermance, Richard; Kapp, Paul; Cai, Fulong
2015-12-01
The authors regret that the longitude coordinates are incorrect for some of the samples displayed in Table 1 (they are correct in Fig. 2). The corrected Table 1 appears below for the reader's convenience.
NASA Astrophysics Data System (ADS)
Jackson, W. Andrew; Davila, Alfonso F.; Sears, Derek; Coates, John D.; McKay, Christopher P.; Brundrett, Maeghan; Estrada, Nubia; Böhlke, J. K.
2016-02-01
The authors regret that two sets of data (Atacama (Rao et al., 2010) and Mars Meteorite Range (Kounaves et al., 2014)) in Fig. 2 of our article were plotted in the wrong units. The correction does not change the relationship between ClO3- and ClO4- ; it only shifts the magnitude of the concentrations. The conclusions of the article are not affected. The corrected Fig. 2 appears below.
Chatrchyan, S.
2015-07-10
In our Letter, there was a component of the statistical uncertainty from the simulated PbPb Monte Carlo samples. This uncertainty was not propagated to all of the results. Figures 3 and 4 have been updated to reflect this source of uncertainty. In this case, the statistical uncertainties remain smaller than the systematic uncertainties in all cases such that the conclusions of the Letter are unaltered.
NASA Astrophysics Data System (ADS)
Yamgoué, Serge Bruno; Pelap, François Beceau
2016-05-01
We revisit the derivation of the equation modeling envelope waves in a discrete nonlinear electrical transmission line (NLTL) considered a few years back in Physics Letters A 373 (2009) 3801-3809. Using a combination of rotating wave approximation and the Gardner-Morikawa transformation, we show that the modulated waves are described by a new type of extended nonlinear Schrödinger equation. In addition the expressions of several coefficients of this equation are found to be strongly different from those given earlier. As a consequence, key relationships between these coefficients that sustained the previous analysis are broken.
NASA Astrophysics Data System (ADS)
Larranaga, Alexis; Cardenas-Avendano, Alejandro; Torres, Daniel Alexdy
2015-07-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor-in-Chief. The authors have plagiarized part of a paper that had already appeared in Adv. High Energy Physics, P. Nicolini, A. Orlandi, E. Spallucci, The Final Stage of Gravitationally Collapsed Thick Matter Layers, Vol 2013 (2013), Article ID 812084 http://dx.doi.org/10.1155/2013/812084. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
NASA Astrophysics Data System (ADS)
Lundell, J.; Khriachtchev, L.; Pettersson, M.; Räsänen, M.
2004-04-01
A recent computational study published in this journal suggests that a novel metastable molecule HKrSH exists and calculations at the MP2/6-311++G(2d,2p) level indicate a barrier high enough to trap this molecule in its local stable configuration. However, the report fails to present all factors influencing its stability and these inadequacies greatly affect the conclusions on the existence and experimental characterisation of such species.
NASA Astrophysics Data System (ADS)
McDowell, Sean A. C.; Joseph, Jerelle A.; Buckingham, A. David
2015-02-01
A computational study at various levels of theory was undertaken for protonated NCX (X = F, Cl, Br) complexes, which were previously characterized using the MP2/6-311++G(d,p) procedure. It is shown that the apparent destabilization of the halogen bond in some of these complexes is due to a basis set deficiency. The protonated species were re-optimized at MP2/6-311++G(2df,2pd) and found to be more strongly bound than their unprotonated counterparts. These new results suggest that only H+NCF⋯F- may be considered to be destabilized, since no local minimum was found.
NASA Astrophysics Data System (ADS)
Friedberg, Richard; Manassah, Jamal T.
2008-08-01
We compute the emission amplitude for the collective emission from a sphere of identical atoms in the scalar photon theory for both the cases of the complex kernel (i.e. including virtual photons) and real kernel. We explicitly show that the single mode theory based on the real kernel neglects the effects of the different decay rates and frequency shifts associated with the eigenfunctions belonging to the same angular index but with different radial indices. We show that these effects modify, for kR≫1, both the time dependence of the emission amplitude and its angular distribution, in clear contradiction to the assertions made by the Comment's authors.
Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen; Nyengaard, Jens R; Møller, Arne
2015-02-19
The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20 mg/kg or 100 mg/kg) continuously during the last 9–12 days of pregnancy and during the lactation period until sacrifice on the 23rd postnatal day. Total number of neocortical neurons was estimated using the optical fraction at or and frontal cortical thicknesses were sampled in VPA exposed pups compared with an unexposed control group. We found that pups exposed to 20 mg/kg and 100 mg/kg doses of VPA had statistically significant higher total number of neurons in neocortex by 15.8% and 12.3%, respectively, (p < 0.05) compared to controls amounting to 15.5??106 neocortical neurons (p < 0.01). There was no statistical difference between the two VPA groups. Pups exposed to 100 mg/kg, but not to 20 mg/kg VPA displayed a significant (p < 0.05) broader (7.5%) of frontal cortical thickness compared to controls. Our results support the hypothesis that fetal exposure of VPA may interfere with normal brain development by disturbing neocortical organization, resulting in overgrowth of frontal lobes and increased neuronal cell numbers. The results indirectly suggest that prenatal VPA may contribute as a causative factor in the brain developmental disturbances equivalent to those seen inhuman autism spectrum disorders. We therefore suggest that this version of the VPA model may provide a translational model of autism. PMID:26060869
Adamczyk, L.
2015-04-01
We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in the rapidity range |y| < 1 in d + Au collisions of R_{dAu} = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.
NASA Astrophysics Data System (ADS)
2016-06-01
An error was found in the published version in the right plot in Fig. 4. The bin-by-bin normalization for data and MC prediction in this plot is incorrect. The corrected figure is shown in Fig. 1. The physics conclusion of the paper remains unchanged.
NASA Astrophysics Data System (ADS)
Gough, R. V.; Chevrier, V. F.; Baustian, K. J.; Wise, M. E.; Tolbert, M. A.
2014-02-01
Perchlorate salts, recently discovered on Mars, are known to readily absorb water vapor from the atmosphere and deliquesce into the aqueous phase at room temperature. Here we study the deliquescence (crystalline solid to liquid transition) and efflorescence (liquid to crystalline solid transition) of perchlorate salts at low temperatures relevant to Mars. A Raman microscope and environmental cell were used to determine the deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of NaClO4 and Mg(ClO4)2 as a function of temperature and hydration state. We find that the deliquescence of anhydrous NaClO4 is only slightly dependent on temperature and occurs at ∼38% RH. The DRH of NaClO4ṡH2O increases with decreasing temperature from 51% at 273 K to 64% at 228 K. The DRH of Mg(ClO4)2ṡ6H2O also increases with decreasing temperature from 42% at 273 K to 55% at 223 K. The efflorescence of both NaClO4 and Mg(ClO4)2 salt solutions occurs at a lower RH than deliquescence due to the kinetic inhibition of crystallization. For all temperatures studied, the ERH values of NaClO4 and Mg(ClO4)2 are 13% and 19%, respectively. These results indicate perchlorate salts can exist as metastable, supersaturated solutions over a wide range of RH and temperature conditions. Summer diurnal temperature and relative humidity cycles at low latitudes on Mars could allow the surface salts to be aqueous for several hours per day.
NASA Astrophysics Data System (ADS)
Karaoğlu, Özgür; Erkül, Fuat
2015-10-01
In a recent article published in EPSL, Uzel et al. (2015) reported a paleomagnetic evidence on various rock types from Western Anatolia. It has been suggested that vertical axis rotations driven by the differential stretching along the İzmir Balıkesir Transfer Zone (İBTZ) were caused by slab detachment and slab tear processes at the northern edge of subducting African slab. Although the paper supplies high quality data regarding the geological evolution of western Anatolia, some points need to clarified in light of recently published data.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, A. K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Fischer, P.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howard, J.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imbault, D.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Lester, C. M.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Pengo, R.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schneider, B.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, Hs.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendland, D.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2012-05-01
The legend of the y-axis of both figures in http://dx.doi.org/10.1016/j.physletb.2012.02.004 Fig. 4 should read σ (pp → LQLQbar) as shown in the corrected Fig. 4 attached, rather than σ × BR. This correction is purely presentational, and does not change any of the quoted results, nor the conclusions, of the original version of the Letter.
NASA Astrophysics Data System (ADS)
Pignatelli, Isabella; Vacher, Lionel G.; Marrocchi, Yves
2015-10-01
Peng and Jing (2014) recently reported the results of hydrothermal experiments designed to produce synthetic tochilinite/cronstedtite assemblages analogous to those found in the matrix of CM chondrites (Tomeoka and Buseck, 1982, 1983a, 1983b, 1985; Mackinnon and Zolensky, 1984; Zolensky and Mackinnon, 1986; Rubin et al., 2007; Bourot-Denise et al., 2010; Hewins et al., 2014; Marrocchi et al., 2014). The assemblage was obtained from an alloyed metal particle mixture of Fe, Mg, Al, Si, Cr and Ni under basic, reducing and S2--rich conditions. The hydrothermal syntheses were conducted in Teflon-lined stainless-steel autoclaves at temperature of 106-160 °C for short-duration runs and at 153 °C for long-duration runs. The phases in the assemblage were characterized by XRD and TEM, but only the analytical results of long-duration runs were reported in the article and in the Appendix as supplementary material. The phases identified were: cronstedtite and tochilinite (both present in all run products), tochilinite-cronstedtite intergrowths, polyhedral serpentine, a chrysotile-like phase, nanotube-like structures, and lizardite-like and brucite-like phases. Based on their experimental results, the authors put forward a hypothesis to explain the formation of matrix minerals in CM chondrites proposing that the precursors may be nanometer- to micrometer-sized particles of metal alloys that were altered at low temperatures by interaction with S-rich water under reducing and dynamic pressurized conditions.
NASA Astrophysics Data System (ADS)
Baksi, Ajoy K.
2005-11-01
Knight et al. presented age and chemical data on two (sets of) lava flows from the Rajahmundry area, on either bank of the Godavari River. The age and petrogenesis of these flows and their possible link to sections of the main Deccan Province are of importance to the understanding of many aspects of flood basalt volcanism. I comment on (a) the use of geochemical fingerprints for lava identification/correlation at Rajahmundry, superceding (apparent) field relations, (b) their 40Ar / 39Ar data and its refinement based on statistical tests and the alteration state of the samples (c) correlation of age data and the magnetic polarity of the lavas to the geomagnetic polarity time scale and (d) the possibility that both lavas at Rajahmundry were formed by intracanyon flows derived from ˜1000 km away.
Adamczyk, L.
2015-04-01
We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore » rapidity range |y| < 1 in d + Au collisions of RdAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less
NASA Astrophysics Data System (ADS)
Quesne, C.
2016-02-01
The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.
NASA Astrophysics Data System (ADS)
Symons, Martyn C. R.
2000-08-01
It has been suggested by Dunsyuryun, Karpov and Morozov that two different terms should be used to describe the solvation of halide ions in aqueous solutions. The term co-ordination number gives the primary `solvation number' (ca. 6), whilst the term hydration number gives the number of water molecules that stay co-ordinated to the anions as they move through the liquid (ca. 2). Here it is suggested that since these two terms are widely used to mean the same thing, it is better not to change one of them. It is also suggested that the number of water molecules that move with ions is variable and ill defined and that it is not appropriate to specify a precise number for this.
Chatrchyan, S.
2015-07-10
In our Letter, there was a component of the statistical uncertainty from the simulated PbPb Monte Carlo samples. This uncertainty was not propagated to all of the results. Figures 3 and 4 have been updated to reflect this source of uncertainty. In this case, the statistical uncertainties remain smaller than the systematic uncertainties in all cases such that the conclusions of the Letter are unaltered.
NASA Astrophysics Data System (ADS)
Woodward, T. K.; Chiu, T.-H.; Sizer, Theodore, II
1992-12-01
The last sentence in the paragraph at the top of the second column of the second page of the article should read: ``Since previously reported samples like B have been described with sharper excitonic features (HWHM of 6 meV at 300 K and 2 meV at 10 K) it is reasonable to expect that sample C could be further improved.4''
NASA Astrophysics Data System (ADS)
Wang, Zaicong; Becker, Harry
2015-05-01
The abundances and ratios of S, Se and Te in rocks from the Earth's mantle may yield valuable constraints on the partitioning of these chalcophile elements between the mantle and basaltic magmas and on the compositions of these elements in the primitive mantle (PM) (e.g. Wang and Becker, 2013). Recently, König et al. (2014) proposed a model in which the CI chondrite-like Se/Te of mantle lherzolites (Se /Te = 8 ± 2, 1σ) are explained by mixing of sulfide melts with low Se/Te with harzburgites containing supposedly residual sulfides with high Se/Te. In this model sulfide melts and platinum group element (PGE) rich telluride phases with low Se/Te are assumed to have precipitated during refertilization of harzburgites by basic melts to form lherzolites. Because of the secondary nature of these re-enrichment processes, the authors state that abundances and ratios of S, Se and Te in fertile lherzolites cannot reflect the composition of the PM.
Interpretation of the I-Regime and transport associated with relevant heavy particle modes
Coppi, B.; Zhou, T.
2012-01-15
The excitation of a novel kind of heavy particle [B. Coppi et al., Phys. Rev. Lett. 17, 377 (1966); B. Coppi and T. Zhou, MIT(LNS) Report HEP 09/04, 2009, Cambridge, MA [Phys. Lett. A 375, 2916 (2011)
Comment on ``Sodium Pyroxene NaTiSi2O6: Possible Haldane Spin-1 Chain System''
NASA Astrophysics Data System (ADS)
Streltsov, S. V.; Popova, O. A.; Khomskii, D. I.
2006-06-01
A Comment on the Letter by Zoran S. Popović, Zeljko V. Šlijivančanin, and Filip R. Vukajlović, Phys. Rev. Lett. 93, 036401 (2004).PRLTAO0031-900710.1103/PhysRevLett.93.036401. The authors of the Letter offer a Reply.
Walsh, Da Silva, and Wei Reply
Walsh, A.; Da Silva, J. L. F.; Wei, S. H.
2009-04-17
This is a reply to Stefano Sanvito and Chaitanya Das Pemmaraju's, Comment on Theoretical Description of Carrier Mediated Magnetism in Cobalt Doped ZnO, Phys. Rev. Lett. 102, 159701 (2009); and the original article is Theoretical Description of Carrier Mediated Magnetism in Cobalt Doped ZnO, Phys. Rev. Lett. 100, 256401 (2008).
Strong monogamy of quantum entanglement for multiqubit W -class states
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2014-12-01
We provide strong evidence for the strong monogamy inequality of multiqubit entanglement recently proposed [B. Regula et al., Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501]. We consider a large class of multiqubit generalized W -class states and analytically show that the strong monogamy inequality of multiqubit entanglement is saturated by this class of states.
Comment on ``Low-Dimensional Models for Vertically Falling Viscous Films''
NASA Astrophysics Data System (ADS)
Ruyer-Quil, Christian; Manneville, Paul
2004-11-01
A Comment on the Letter by Mohan K. R. Panga and Vemuri Balakotaiah,
NASA Astrophysics Data System (ADS)
Kammen, Dan; Wright, Guillaume
2011-12-01
To celebrate the 5th anniversary of Environmental Research Letters (ERL) the publishers of the journal, IOP Publishing, have awarded a prize for the five best articles published in ERL since the journal began in 2006. The procedure for deciding the winning articles was as thorough as possible to ensure that the most outstanding articles would win the prize. A shortlist of 25 nominated research articles, five for each year since ERL was launched, which were chosen based on a range of criteria including novelty, scientific impact, readership, broad appeal and wider media coverage, was selected. The ERL Editorial Board then assessed and rated these 25 articles in order to choose a winning article for each year. We would like to announce that the following articles have been awarded ERL's 5th anniversary best article prize: 2006/7 The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest Ilan Koren, Yoram J Kaufman, Richard Washington, Martin C Todd, Yinon Rudich, J Vanderlei Martins and Daniel Rosenfeld 2006 Environ. Res. Lett. 1 014005 2008 Causes and impacts of the 2005 Amazon drought Ning Zeng, Jin-Ho Yoon, Jose A Marengo, Ajit Subramaniam, Carlos A Nobre, Annarita Mariotti and J David Neelin 2008 Environ. Res. Lett. 3 014002 2009 How difficult is it to recover from dangerous levels of global warming? J A Lowe, C Huntingford, S C B Raper, C D Jones, S K Liddicoat and L K Gohar 2009 Environ. Res. Lett. 4 014012 2010 Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia Matti Kummu, Philip J Ward, Hans de Moel and Olli Varis 2010 Environ. Res. Lett. 5 034006 2011 Implications of urban structure on carbon consumption in metropolitan areas Jukka Heinonen and Seppo Junnila 2011 Environ. Res. Lett. 6 014018 Our congratulations go to these authors. In recognition of their outstanding work, we are delighted to offer all of the authors of the winning articles free
NASA Astrophysics Data System (ADS)
Kammen, Dan; Wright, Guillaume
2011-12-01
To celebrate the 5th anniversary of Environmental Research Letters (ERL) the publishers of the journal, IOP Publishing, have awarded a prize for the five best articles published in ERL since the journal began in 2006. The procedure for deciding the winning articles was as thorough as possible to ensure that the most outstanding articles would win the prize. A shortlist of 25 nominated research articles, five for each year since ERL was launched, which were chosen based on a range of criteria including novelty, scientific impact, readership, broad appeal and wider media coverage, was selected. The ERL Editorial Board then assessed and rated these 25 articles in order to choose a winning article for each year. We would like to announce that the following articles have been awarded ERL's 5th anniversary best article prize: 2006/7 The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest Ilan Koren, Yoram J Kaufman, Richard Washington, Martin C Todd, Yinon Rudich, J Vanderlei Martins and Daniel Rosenfeld 2006 Environ. Res. Lett. 1 014005 2008 Causes and impacts of the 2005 Amazon drought Ning Zeng, Jin-Ho Yoon, Jose A Marengo, Ajit Subramaniam, Carlos A Nobre, Annarita Mariotti and J David Neelin 2008 Environ. Res. Lett. 3 014002 2009 How difficult is it to recover from dangerous levels of global warming? J A Lowe, C Huntingford, S C B Raper, C D Jones, S K Liddicoat and L K Gohar 2009 Environ. Res. Lett. 4 014012 2010 Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia Matti Kummu, Philip J Ward, Hans de Moel and Olli Varis 2010 Environ. Res. Lett. 5 034006 2011 Implications of urban structure on carbon consumption in metropolitan areas Jukka Heinonen and Seppo Junnila 2011 Environ. Res. Lett. 6 014018 Our congratulations go to these authors. In recognition of their outstanding work, we are delighted to offer all of the authors of the winning articles free
Comment on {open_quotes}Confirmation of the Sigma Meson{close_quote}{close_quote}
Harada, M.; Sannino, F.; Schechter, J.; Sannino, F.
1997-02-01
A Comment on the Letter by Nils A. Tornqvist and Matts Roos, Phys.Rev.Lett.{bold 76}, 1575 (1996). The authors of the Letter offer a Reply. {copyright} {ital 1997} {ital The American Physical Society}
Comment on {open_quote}{open_quote}Confirmation of the Sigma Meson{close_quote}{close_quote}
Isgur, N.; Speth, J.
1996-09-01
A Comment on the Letter by Nils A. T{umlt o}rnqvist and Matts Roos, Phys. Rev. Lett. {bold 76}, 1575 (1996). The authors of the Letter offer a Reply. {copyright} {ital 1996 The American Physical Society.}
Completeness of classical φ4 theory on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Karimipour, Vahid; Zarei, Mohammad Hossein
2012-03-01
We formulate a quantum formalism for the statistical mechanical models of discretized field theories on lattices and then show that the discrete version of φ4 theory on 2D square lattice is complete in the sense that the partition function of any other discretized scalar field theory on an arbitrary lattice with arbitrary interactions can be realized as a special case of the partition function of this model. To achieve this, we extend the recently proposed quantum formalism for the Ising model [M. Van den Nest, W. Dur, and H. J. Briegel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.117207 98, 117207 (2007)] and its completeness property [M. Van den Nest, W. Dur, and H. J. Briegel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.110501 100, 110501 (2008)] to the continuous variable case.
Hosing instability in the blow-out regime for plasma-wakefield acceleration.
Huang, C; Lu, W; Zhou, M; Clayton, C E; Joshi, C; Mori, W B; Muggli, P; Deng, S; Oz, E; Katsouleas, T; Hogan, M J; Blumenfeld, I; Decker, F J; Ischebeck, R; Iverson, R H; Kirby, N A; Walz, D
2007-12-21
The electron hosing instability in the blow-out regime of plasma-wakefield acceleration is investigated using a linear perturbation theory about the electron blow-out trajectory in Lu et al. [in Phys. Rev. Lett. 96, 165002 (2006)10.1103/PhysRevLett.96.165002]. The growth of the instability is found to be affected by the beam parameters unlike in the standard theory Whittum et al. [Phys. Rev. Lett. 67, 991 (1991)10.1103/PhysRevLett.67.991] which is strictly valid for preformed channels. Particle-in-cell simulations agree with this new theory, which predicts less hosing growth than found by the hosing theory of Whittum et al. PMID:18233526
NASA Astrophysics Data System (ADS)
Gusynin, V. P.; Miransky, V. A.; Shovkovy, I. A.
2003-02-01
A Comment on the Letter by A. V. Kuznetsov and N. V. Mikheev,
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh
2010-06-01
We consider quantum states under the renormalization-group (RG) transformations introduced by Verstraete [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.140601 94, 140601 (2005)] and propose a quantification of entanglement under such RGs (via the geometric measure of entanglement). We examine the resulting entanglement under RG transformations for the ground states of “matrix-product-state” Hamiltonians constructed by Wolf [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.110403 97, 110403 (2006)] that possess quantum phase transitions. We find that near critical points, the ground-state entanglement exhibits singular behavior. The singular behavior within finite steps of the RG obeys a scaling hypothesis and reveals the correlation length exponent. However, under the infinite steps of RG transformation, the singular behavior is rendered different and is universal only when there is an underlying conformal-field-theory description of the critical point.
Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory
NASA Astrophysics Data System (ADS)
Sjostrom, Travis; Daligault, Jérôme
2015-12-01
We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014), 10.1103/PhysRevLett.113.155006;] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001].
Gao, Simon S; Liu, Gangjun; Huang, David; Jia, Yali
2016-02-01
An erratum is presented to include conflict of interest disclosures that were unintentionally left out of our recent Letter [Opt. Lett.40, 2305 (2015)10.1364/OL.40.002305OPLEDP0146-9592]. PMID:26907406
NASA Astrophysics Data System (ADS)
Huang, Yu-Kun; Chen, Pochung; Kao, Ying-Jer; Xiang, Tao
2014-05-01
By using a different quantum-to-classical mapping from the Trotter-Suzuki decomposition, we identify the entanglement structure of the maximal eigenvectors for the associated quantum transfer matrix. This observation provides a deeper insight into the problem of linear growth of the entanglement entropy in time evolution using conventional methods. Based on this observation, we propose a general method for arbitrary temperatures using the biorthonormal transfer-matrix renormalization group. Our method exhibits a competitive accuracy with a much cheaper computational cost in comparison with two recently proposed methods for long-time dynamics based on a folding algorithm [Phys. Rev. Lett. 102, 240603 (2009), 10.1103/PhysRevLett.102.240603] and a modified time-dependent density-matrix renormalization group [Phys. Rev. Lett. 108, 227206 (2012), 10.1103/PhysRevLett.108.227206].
NASA Astrophysics Data System (ADS)
van den Broeck, C.; Cleuren, B.; Kawai, R.; Kambon, M.
A previously introduced model (B. Cleuren and C. Van den Broeck, Europhys. Lett. 54, 1 (2001)) is studied numerically. Pure negative mobility is found for the minimum number of three interacting walkers.
NASA Astrophysics Data System (ADS)
Martínez-Lorente, R.; Esteban-Martín, A.; Roldán, E.; Staliunas, K.; de Valcárcel, G. J.; Silva, F.
2015-11-01
We demonstrate experimentally that a broad-area laserlike optical oscillator (a nondegenerate photorefractive oscillator) with structured injected signal displays two-phase patterns. The technique [de Valcárcel and Staliunas, Phys. Rev. Lett. 105, 054101 (2010), 10.1103/PhysRevLett.105.054101] consists in spatially modulating the injection, so that its phase alternates periodically between two opposite values, i.e., differing by π .
Finite-key-size security of the Phoenix-Barnett-Chefles 2000 quantum-key-distribution protocol
NASA Astrophysics Data System (ADS)
Mafu, Mhlambululi; Garapo, Kevin; Petruccione, Francesco
2014-09-01
The postselection technique was introduced by Christandl, König, and Renner [Phys. Rev. Lett. 102, 020504 (2009), 10.1103/PhysRevLett.102.020504] in order to simplify the security of quantum-key-distribution schemes. Here, we present how it can be applied to study the security of the Phoenix-Barnett-Chefles 2000 trine-state protocol, a symmetric version of the Bennett 1992 protocol.
Note: Energy convexity and density matrices in molecular systems
NASA Astrophysics Data System (ADS)
Bochicchio, Roberto C.; Rial, Diego
2012-12-01
A novel appropriate definition for the density matrix for an interacting Coulombic driven atomic or molecular system with non-integer number of particles is given. Our approach leads to a direct derivation of the proposal reported by Perdew et al. [Phys. Rev. Lett. 49, 1691 (1982)], 10.1103/PhysRevLett.49.1691 and points out its suitability and perspective advances.
Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Gadzhimuradov, T. A.; Agalarov, A. M.
2016-06-01
It is shown that the nonlocal nonlinear Schrödinger equation recently proposed by Ablowitz and Musslimani [Phys. Rev. Lett. 110, 064105 (2013), 10.1103/PhysRevLett.110.064105] is gauge equivalent to the unconventional system of coupled Landau-Lifshitz equations. The first integrals of motion and one-soliton solution of an obtained model are given. The physical and geometrical aspects of model and their effect on expected metamagnetic structures are studied.
Dasso, C.H.; Dasso, C.H.; Fernandez-Niello, J.
1997-05-01
The authors comment on the Letter by J.D. Bierman et al., Phys. Rev. Lett. 76, 1587(1996), and show the method by which they have been constructed is not the most appropriate. A Comment on the Letter by J.D. Bierman, {ital et al. }, Phys.Rev.Lett.{bold 76}, 1587 (1996). The authors of the Letter offer a Reply. {copyright} {ital 1997} {ital The American Physical Society}
Binggeli and Chelikowsky reply
Binggeli, N. ); Chelikowsky, J.R. )
1993-10-18
This is a response to a comment (Phys. Rev. Lett. 71, 2674 (1993)) on the authors' previous work titled Elastic Instability in Alpha[minus] Quartz under Pressure (Phys. Rev. Lett. 69, 2220 (1992)). The initiation mechanism for amorphous transition in alpha[minus]quartz under pressure being a soft optic phonon in the Brillouin zone boundary as suggested by the comment does not contradict the authors' early suggestion which is the transverse acoustic mode near the zone center. (AIP)
Eavesdropping on the quantum dialogue protocol in lossy channel
NASA Astrophysics Data System (ADS)
Liu, Heng; Zhang, Xiu-Lan; Lü, Hui
2011-07-01
We present an improved eavesdropping scheme on the quantum dialogue protocol in lossy channel, which is based on the strategies of Wójcik [Phys. Rev. Lett. 90 157901 (2003)] and ZML [Phys. Lett. A 333 46 (2004)] attack schemes. We show that our attack scheme doubles the domain of Eve's eavesdropping and Eve can gain more information of the communication with less risk of being detected. Finally, a possible improvement for the dialogue protocol security is proposed.
How to upload a physical quantum state into correlation space
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2011-04-01
In the framework of the computational tensor network [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.220503 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.050503 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.050503 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.
Usefulness of entanglement-assisted quantum metrology
NASA Astrophysics Data System (ADS)
Huang, Zixin; Macchiavello, Chiara; Maccone, Lorenzo
2016-07-01
Entanglement-assisted quantum communication employs preshared entanglement between sender and receiver as a resource. We apply the same framework to quantum metrology, introducing shared entanglement between the probe and the ancilla in the preparation stage and allowing entangling operations at the measurement stage, i.e., using some entangled ancillary system that does not interact with the system to be sampled. This is known to be useless in the noiseless case, but was recently shown to be useful in the presence of noise [R. Demkowicz-Dobrzanski and L. Maccone, Phys. Rev. Lett. 113, 250801 (2014), 10.1103/PhysRevLett.113.250801; W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, Phys. Rev. Lett. 112, 080801 (2014), 10.1103/PhysRevLett.112.080801; E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D. Lukin, Phys. Rev. Lett. 112, 150802 (2014);, 10.1103/PhysRevLett.112.150802 R. Demkowicz-Dobrzański and J. Kolodynski, New J. Phys. 15, 073043 (2013), 10.1088/1367-2630/15/7/073043]. Here we detail how and when it can be of use. For example, surprisingly it is useful when two channels are randomly alternated, for both of which ancillas do not help (depolarizing). We show that it is useful for all levels of noise for many noise models and propose a simple optical experiment to test these results.
NASA Astrophysics Data System (ADS)
Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783
Lifetime Measurements of Trapped ^232Th^3+
NASA Astrophysics Data System (ADS)
Depalatis, Michael; Chapman, Michael
2012-06-01
In recent years, there has been considerable interest in the low lying nuclear isomer state of ^229Th which is only several eV above the nuclear ground state [1]. To date, several groups are taking a variety of approaches to finding and exciting this unique state [2], including the use of trapped Th^3+ ions. Despite this attention, few precise measurements have been made of atomic lifetimes. In this work we present experiments to measure the 6D3/2 and 6D5/2 states using laser cooled ^232Th^3+ confined in a linear Paul trap.[4pt] [1] E. Peik and Chr. Tamm, Europhys. Lett. 61, 181 (2003); V. V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006); B. R. Beck et al., Phys. Rev. Lett. 98, 142501 (2007).[0pt] [2] W. G. Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010); S. G. Porsev et al., Phys. Rev. Lett. 105, 182501 (2010); C. J. Campbell et al., Phys. Rev. Let. 106, 223001 (2011).
Quantum-Critical Dynamics of the Skyrmion Lattice.
NASA Astrophysics Data System (ADS)
Green, Andrew G.
2002-03-01
Slightly away from exact filling of the lowest Landau level, the quantum Hall ferromagnet contains a finite density of magnetic vortices or Skyrmions[1,2]. These Skyrmions are expected to form a square lattice[3], the low energy excitations of which (translation/phonon modes and rotation/breathing modes) lead to dramatically enhanced nuclear relaxation[4,5]. Upon changing the filling fraction, the rotational modes undergo a quantum phase transition where zero-point fluctuations destroy the orientational order of the Skyrmions[4,6]. I will discuss the effect of this quantum critical point upon nuclear spin relaxation[7]. [1]S. L. Sondhi et al., Phys. Rev. B47, 16419 (1993). [2]S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995), A. Schmeller et al., Phys. Rev. Lett. 75, 4290 (1995). [3]L. Brey et al, Phys. Rev. Lett. 75, 2562 (1995). [4]R. Côté et al., Phys. Rev. Lett. 78, 4825 (1997). [5]R. Tycko et al., Science 268, 1460 (1995). [6]Yu V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576 (1998). [7]A. G. Green, Phys. Rev. B61, R16 299 (2000).
Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.
2014-04-28
High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.
NASA Astrophysics Data System (ADS)
Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.
2014-04-01
High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.
How to upload a physical quantum state into correlation space
Morimae, Tomoyuki
2011-04-15
In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.
COMMENT: Comment on 'Synthesis of nanowires and nanoparticles of cubic aluminium nitride'
NASA Astrophysics Data System (ADS)
Tondare, V. N.
2004-09-01
Contradictory claims about synthesized nanoscopic aluminium nitride material have been communicated in the same month to two different journals (Balasubramanian et al 2004 Nanotechnology 15 370; 2004 Chem. Phys. Lett. 383 188) when citing an article in Applied Physics Letters (Tondare et al 2002 Appl. Phys. Lett. 80 4813). The contradiction arises because two different claims have been made about the synthesized nanoscopic material as aluminium nitride nanotubes and as aluminium nitride nanowires. The authors of the article published in Nanotechnology have re-interpreted the results of the field emission micrographs published in the article mentioned above (2002 Appl. Phys. Lett. 80 4813). This comment explains in detail that their re-interpretation lacks a scientific basis. It also provides a few prominent articles for the reader to refer to on the synthesis of aluminium nitride nanotubes and nanowires, which have not been cited in the articles mentioned above by Balasubramanian and co-workers.
Trojan-horse attacks on quantum key distribution with classical Bob
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Sun, Si-Jia; Zhao, Qian-Qian
2015-02-01
Recently, Boyer et al. (Phys Rev Lett 99:140501, 2007) introduced a conceptually novel semi-quantum key distribution scheme (BKM07). Tan et al. (Phys Rev Lett 102:098901, 2009) showed that classical Bob is unable to detect Eve's eavesdropping by giving a special implementation of BKM07 protocol. In the reply, Boyer et al. (Phys Rev Lett 102:098902, 2009) gave a solution against the eavesdropping, i.e., Bob may place a filter that allows only photons with approximately specific frequency to pass just at the expected time . However, their improvement contradicts the descriptions about "classical." If the assumption of "classical" is not considered, we give a delay-photon Trojan-horse attack on BKM07 protocol and its improvement and further present a possible improvement.
On different integrable systems sharing the same nondynamical r-matrix
NASA Astrophysics Data System (ADS)
Qiao, Zhijun; Strampp, Walter
1998-06-01
In a recent paper [Zhijun Qiao and Ruguang Zhou, Phys. Lett. A 235, 35 (1997)], the amazing fact was reported that a discrete and a continuous integrable system share the same r-matrix with the interesting property of being nondynamical. Now, we present three further pairs of different continuous integrable systems sharing the same r-matrix again being nondynamical. The first pair is the finite-dimensional constrained system (FDCS) of the famous AKNS hierarchy and the Dirac hierarchy; the second pair is the FDCS of the well-known geodesic flows on the ellipsoid and the Heisenberg spin chain hierarchy; and the third pair is the FDCS of one hierarchy studied by Xianguo Geng [Phys. Lett. A 162, 375 (1992)] and another hierarchy proposed by Zhijun Qiao [Phys. Lett. A 192, 316 (1994)]. All those FDCSs possess Lax representations and from the viewpoint of r-matrix can be shown to be completely integrable in Liouville's sense.
Instability on the Free Surface of Superfluid He-II Induced by a Steady Heat Flow in Bulk
NASA Astrophysics Data System (ADS)
Remizov, I. A.; Levchenko, A. A.; Mezhov-Deglin, L. P.
2016-06-01
We report observations of the onset of irregular motion on a free surface of superfluid He-II induced by a quasi-stationary heat flow in a rectangular container. The container open from the top is mounted inside an optical cell partly filled with superfluid He-II. Three holes in the container walls provide free circulation of the normal and superfluid components inside and outside the container. The results of measurements are discussed in terms of the Korshunov theory (Eurphys Lett 16:673, 1991; JETP Lett 75:423, 2002) of the Kelvin-Helmholtz instability on an initially flat He-II surface induced by a relative motion of superfluid and normal components of the liquid along the surface when the counterflow velocity exceeds the threshold value. The experimental data are qualitatively consistent with the theoretical predictions (Korshunov in JETP Lett 75:423, 2002) taking into account the finite viscosity of He-II.
Analytic expressions of quantum correlations in qutrit Werner states
NASA Astrophysics Data System (ADS)
Ye, Biaoliang; Liu, Yimin; Chen, Jianlan; Liu, Xiansong; Zhang, Zhanjun
2013-07-01
Quantum correlations in qutrit Werner states are extensively investigated with five popular methods, namely, original quantum discord (OQD) (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008), ameliorated MID (AMID) (Girolami et al. in J Phys A Math Theor 44:352002, 2011), relative entropy (RE) (Modi et al. in Phys Rev Lett 104:080501, 2010) and geometric discord (GD) (Dakić et al. in Phys Rev Lett 105:190502, 2010). Two different analytic expressions of quantum correlations are derived. Quantum correlations captured by the former four methods are same and bigger than those obtained via the GD method. Nonetheless, they all qualitatively characterize quantum correlations in the concerned states. Moreover, as same as the qubit case, there exist quantum correlations in separable qutrit Werner states, too.
Supercurrent Drag via the Coulomb Interaction
NASA Astrophysics Data System (ADS)
Duan, Ji-Min; Yip, Sungkit
1996-03-01
We predict a supercurrent drag effect due to the Coulomb interaction between two parallel superconducting wires/layers. In contrast to previously explored frictional drag effect between two semiconducting quantum wells, our nondissipative drag mechanism ( J.-M. Duan and S. K. Yip, Phys. Rev. Lett.70), 3647 (1993). is based on considerations of the free energy of collective charge fluctuations. Our prediction has been confirmed experimentally ( X. Huang et al.), Phys. Rev. Lett.74, 4051 (1995). This mechanism generally exists in other nondissipative systems, such as double-layer quantum Hall syatems ( J.-M. Duan, Europhys. Lett.29), 489 (1995)., or between the two edge channels of a Hall bar, and between one-dimensional Luttinger Liquids.
Complexity and white-dwarf structure
NASA Astrophysics Data System (ADS)
Sañudo, J.; Pacheco, A. F.
2009-02-01
From the low-mass non-relativistic case to the extreme relativistic limit, the density profile of a white dwarf is used to evaluate the C complexity measure [R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209 (1995) 321]. Similarly to the recently reported atomic case where, by averaging shell effects, complexity grows with the atomic number [C.P. Panos, K.Ch. Chatzisavvas, Ch.C. Moustakidis, E.G. Kyrkou, Phys. Lett. A 363 (2007) 78; A. Borgoo, F. De Proft, P. Geerlings, K.D. Sen, Chem. Phys. Lett. 444 (2007) 186; J. Sañudo, R. López-Ruiz, Int. Rev. Phys. 2 (2008) 223], here complexity grows as a function of the star mass reaching a maximum finite value in the Chandrasekhar limit.
NASA Astrophysics Data System (ADS)
Tursunmahatov, Q. I.; Yarmukhamedov, R.
2012-04-01
A new analysis of the modern astrophysical S factors for the direct-capture 3He(α,γ)7Be reaction, precisely measured in recent works [B.S. Nara Singh , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.93.262503 93, 262503 (2004); D. Bemmerer , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.122502 97, 122502 (2006);F. Confortola , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.065803 75, 065803 (2007), Gy. Gyürky , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.035805 75, 035805 (2007), T. A. D. Brown , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.76.055801 76, 055801 (2007), and A. Di Leva, , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.232502 102, 232502 (2009)], has been carried out within the modified two-body potential approach. New estimates are obtained for the “indirectly determined” values of the asymptotic normalization constants and the respective nuclear vertex constants for 3He+α→7Be(g.s.) and 3He+α→7Be(0.429 MeV) as well as the astrophysical S factors S34(E) at E≤90 keV, including E=0. The values of asymptotic normalization constants have been used to obtain the values of the ratio of the α-particle spectroscopic factors for the mirror (7Li7Be) pair.
Classical model for measurements of an entanglement witness
NASA Astrophysics Data System (ADS)
La Cour, Brian R.; Sudarshan, E. C. George
2015-09-01
We describe a classical model that may serve as an analog for joint and local measurements of an entanglement witness. The analogous experimental procedure and data analysis protocol of the model follow those of a previous experiment to measure an entanglement witness with polarized photons prepared in a mixed state [Phys. Rev. Lett. 91, 227901 (2003), 10.1103/PhysRevLett.91.227901]. Numerical simulations show excellent agreement with both experimental results and quantum-mechanical predictions. This agreement is made possible by the fact that the model exhibits contextuality due to the postselection of coincident detection events.
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
Realization of geometric Landau-Zener-Stückelberg interferometry
NASA Astrophysics Data System (ADS)
Zhang, Junhua; Zhang, Jingning; Zhang, Xiang; Kim, Kihwan
2014-01-01
We report an experimental realization of the geometric Landau-Zener-Stückelberg (LZS) interferometry proposed by Gasparinetti et al. [Phys. Rev. Lett. 107, 207002 (2011), 10.1103/PhysRevLett.107.207002] in a single-trapped-ion system. Unlike those in a conventional LZS interferometer, the interference fringes of our geometric interferometer originate solely from a geometric phase. We also observe the robustness of the interference contrast against noise or fluctuations in the experimental parameters. Our scheme can be applied to other complex systems subject to relatively large errors in system control.
Family of continuous-variable entanglement criteria using general entropy functions
NASA Astrophysics Data System (ADS)
Saboia, A.; Toscano, F.; Walborn, S. P.
2011-03-01
We derive a family of entanglement criteria for continuous-variable systems based on the Rényi entropy of complementary distributions. We show that these entanglement witnesses can be more sensitive than those based on second-order moments, as well as previous tests involving the Shannon entropy [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.160505 103, 160505 (2009)]. We extend our results to include the case of discrete sampling. We provide several numerical results which show that our criteria can be used to identify entanglement in a number of experimentally relevant quantum states.
Advances in time-dependent current-density functional theory
NASA Astrophysics Data System (ADS)
Berger, Arjan
In this work we solve the problem of the gauge dependence of molecular magnetic properties (magnetizabilities, circular dichroism) using time-dependent current-density functional theory [1]. We also present a new functional that accurately describes the optical absorption spectra of insulators, semiconductors and metals [2] N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger Phys. Rev. Lett. 114, 066404 (2015) J.A. Berger, Phys. Rev. Lett. 115, 137402 (2015) This study has been partially supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the Programme des Investissements d'Avenir.
Mutated hybrid inflation in f(R,squareR)-gravity
NASA Astrophysics Data System (ADS)
Iihoshi, Masao
2011-02-01
A new hybrid inflationary scenario in the context of f(R,squareR)-gravity is proposed. Demanding the waterfall field to `support the potential from below' [unlike the original proposal by Stewart in Phys. Lett. B 345, 414 (1995)], we demonstrate that the scalar potential is similar to that of the large-field chaotic inflation model proposed by Linde in Phys. Lett. B 129, 177 (1983). Inflationary observables are used to constrain the parameter space of our model; in the process, an interesting limit on the number of e-folds N is found.
NASA Astrophysics Data System (ADS)
Nizamoglu, Sedat; Erdem, Talha; Sun, Xiao Wei; Demir, Hilmi Volkan
2011-08-01
The correlated color temperatures and the corresponding color rendering indices calculated using actual experimental data (and not any prediction) in the original Letter [Opt. Lett. 35, 3372 (2010)] are correct. In addition, here the color rendering of our white LEDs integrated with nanocrystal quantum dots (NQDs) is provided for all test samples. Also, a new NQD-LED design with both high luminous efficacy of optical radiation and CRI is presented to have a chromaticity point in the quadrangle stated in the comment Letter [Opt. Lett. 36, 2851 (2011)]. The points made in the original Letter and all the calculation results provided therein are valid.
Measuring and manipulating the temperature of cold molecules trapped on a chip
NASA Astrophysics Data System (ADS)
Marx, S.; Adu Smith, D.; Insero, G.; Meek, S. A.; Sartakov, B. G.; Meijer, G.; Santambrogio, G.
2015-12-01
Following Marx et al. [Phys. Rev. Lett. 111, 243007 (2013), 10.1103/PhysRevLett.111.243007], we discuss the measurement and manipulation of the temperature of cold CO molecules in a microchip environment. In particular, we present a model to explain the observed and calculated velocity distributions. We also show that a translational temperature can be extracted directly from the measurements. Finally, we discuss the conditions needed for an effective adiabatic cooling of the molecular ensemble trapped on the microchip.
Disturbing the random-energy landscape
NASA Astrophysics Data System (ADS)
Halpin-Healy, Timothy; Herbert, Devorah
1993-09-01
We examine the effects of correlated perturbations upon globally optimal paths through a random-energy landscape. Motivated by Zhang's early numerical investigations [Phys. Rev. Lett. 59, 2125 (1987)] into ground-state instabilities of disordered systems, as well as the work of Shapir [Phys. Rev. Lett. 66, 1473 (1991)] on random perturbations of roughened manifolds, we have studied the specific case of random bond interfaces unsettled by small random fields, confirming recent predictions for the instability exponents. Implications for disordered magnets and growing surfaces are discussed.
Manipulation of collective quantum states in Bose-Einstein condensates by continuous imaging
NASA Astrophysics Data System (ADS)
Wade, Andrew C. J.; Sherson, Jacob F.; Mølmer, Klaus
2016-02-01
We develop a Gaussian state treatment that allows a transparent quantum description of the continuous, nondestructive imaging of and feedback on a Bose-Einstein condensate. We have previously demonstrated [A. C. J. Wade et al., Phys. Rev. Lett. 115, 060401 (2015), 10.1103/PhysRevLett.115.060401] that the measurement backaction of stroboscopic imaging leads to selective squeezing and entanglement of quantized density oscillations. Here, we investigate how the squeezing and entanglement are affected by the finite spatial resolution and geometry of the probe laser beam and of the detector and how they can be optimized.
Cellular ability to sense spatial gradients in the presence of multiple competitive ligands
NASA Astrophysics Data System (ADS)
Liou, Shu-Hao; Chen, Chia-Chu
2012-01-01
Many eukaryotic and prokaryotic cells can exhibit remarkable sensing ability under small gradients of chemical compounds. In this study, we approach this phenomenon by considering the contribution of multiple ligands to the chemical kinetics within the Michaelis-Menten model. This work was inspired by the recent theoretical findings of Hu [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.048104 105, 048104 (2010)]. Our treatment with practical binding energies and chemical potentials provides results that are consistent with experimental observations.
Radial distribution function for hard spheres in fractal dimensions: A heuristic approximation
NASA Astrophysics Data System (ADS)
Santos, Andrés; de Haro, Mariano López
2016-06-01
Analytic approximations for the radial distribution function, the structure factor, and the equation of state of hard-core fluids in fractal dimension d (1 ≤d ≤3 ) are developed as heuristic interpolations from the knowledge of the exact and Percus-Yevick results for the hard-rod and hard-sphere fluids, respectively. In order to assess their value, such approximate results are compared with those of recent Monte Carlo simulations and numerical solutions of the Percus-Yevick equation for a fractal dimension [M. Heinen et al., Phys. Rev. Lett. 115, 097801 (2015), 10.1103/PhysRevLett.115.097801], a good agreement being observed.
Electronic structure of III-V zinc-blende semiconductors from first principles
NASA Astrophysics Data System (ADS)
Wang, Yin; Yin, Haitao; Cao, Ronggen; Zahid, Ferdows; Zhu, Yu; Liu, Lei; Wang, Jian; Guo, Hong
2013-06-01
For analyzing quantum transport in semiconductor devices, accurate electronic structures are critical for quantitative predictions. Here we report theoretical analysis of electronic structures of all III-V zinc-blende semiconductor compounds. Our calculations are from density functional theory with the semilocal exchange proposed recently [Tran and Blaha, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.226401 102, 226401 (2009)], within the linear muffin tin orbital scheme. The calculated band gaps and effective masses are compared to experimental data and good quantitative agreement is obtained. Using the theoretical scheme presented here, quantum transport in nanostructures of III-V compounds can be confidently predicted.
Black hole constraints on varying fundamental constants.
MacGibbon, Jane H
2007-08-10
We apply the generalized second law of thermodynamics and derive upper limits on the variation in the fundamental constants. The maximum variation in the electronic charge permitted for black holes accreting and emitting in the present cosmic microwave background corresponds to a variation in the fine-structure constant of Deltaalpha/alpha approximately 2 x 10(-23) per second. This value matches the variation measured by Webb et al. [Phys. Rev. Lett. 82, 884 (1999); Phys. Rev. Lett. 87, 091301 (2001)] using absorption lines in the spectra of distant quasars and suggests the variation mechanism may be a coupling between the electron and the cosmic photon background. PMID:17930813
Infinite randomness fixed point of the superconductor-metal quantum phase transition.
Del Maestro, Adrian; Rosenow, Bernd; Müller, Markus; Sachdev, Subir
2008-07-18
We examine the influence of quenched disorder on the superconductor-metal transition, as described by a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos et al. [Phys. Rev. Lett. 99, 230601 (2007)10.1103/PhysRevLett.99.230601] that the transition is characterized by the same strong-disorder fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field. PMID:18764263
Khinchin Theorem and Anomalous Diffusion
NASA Astrophysics Data System (ADS)
Lapas, Luciano C.; Morgado, Rafael; Vainstein, Mendeli H.; Rubí, J. Miguel; Oliveira, Fernando A.
2008-12-01
A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.190601] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchin theorem holds.
Survival of Rydberg atoms in intense laser fields and the role of nondipole effects
NASA Astrophysics Data System (ADS)
Klaiber, Michael; Dimitrovski, Darko
2015-02-01
We consider the interaction of Rydberg atoms with strong infrared laser pulses using an approach based on the Magnus expansion of the time evolution operator. First-order corrections beyond the electric dipole approximation are also included in the theory. We illustrate the dynamics of the interaction at the parameters of the experiment [Eichmann et al., Phys. Rev. Lett. 110, 203002 (2013), 10.1103/PhysRevLett.110.203002]. It emerges that the depletion of Rydberg atoms in this regime comes predominantly from the nondipole effects.
Infinite Randomness Fixed Point of the Superconductor-Metal Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Del Maestro, Adrian; Rosenow, Bernd; Müller, Markus; Sachdev, Subir
2008-07-01
We examine the influence of quenched disorder on the superconductor-metal transition, as described by a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos et al. [Phys. Rev. Lett. 99, 230601 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.230601] that the transition is characterized by the same strong-disorder fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field.
Sub- and Superluminal Propagation of Intense Pulses in Media with Saturated and Reverse Absorption
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Dey, Tarak Nath
2004-05-01
We develop models for the propagation of intense pulses in solid state media which can have either saturated absorption or reverse absorption. We model subluminal propagation in ruby and superluminal propagation in alexandrite as three and four level systems, respectively, coupled to Maxwell's equations. We present results well beyond the traditional pump-probe approach and explain the experiments of Bigelow et al. [
Measurement of the ion drag force on free falling microspheres in a plasma
Hirt, Markus; Block, Dietmar; Piel, Alexander
2004-12-01
Experiments on the quantitative determination of the ion drag force on free-falling dust particles in a collisionless regime are presented. The ion drag forces are measured for ion energies up to 40 eV and the obtained results are compared in detail with theories. Good agreement is found with the Barnes model [Barnes et al., Phys. Rev. Lett. 68, 313 (1992)] of the ion drag force for high ion energies (E>3 eV). At lower ion energies the model of Khrapak [Khrapak et al., Phys. Rev. Lett. 90, 225002 (2003)] is found to give a better description of the capture of slowly streaming ions by highly charged particles.
Experimental observation of lasing shutdown via asymmetric gain
NASA Astrophysics Data System (ADS)
Chitsazi, M.; Factor, S.; Schindler, J.; Ramezani, H.; Ellis, F. M.; Kottos, T.
2014-04-01
Using a pair of coupled RLC cavities we experimentally demonstrate that amplification action can be tamed by a spatially inhomogeneous gain. Under specific conditions we observe the counterintuitive phenomenon of stabilization of the system even when the overall gain provided is increased. This behavior is directly related to lasing shutdown via asymmetric pumping, recently proposed in M. Liertzer et al. [Phys. Rev. Lett. 108, 173901 (2012), 10.1103/PhysRevLett.108.173901]. The analysis of other simple systems reveals the universal nature of the lasing shutdown phenomenon as having its roots in managing impedance matching.
NASA Astrophysics Data System (ADS)
Toyoda, Tadashi; Fujita, Maho; Uchida, Tomohisa; Hiraiwa, Nobuyoshi; Fukuda, Taturo; Koizumi, Hideki; Zhang, Chao
2013-08-01
The intriguing difference between far-infrared photoconductivity spectroscopy and absorption spectroscopy in the measurement of the magnetoplasmon frequency in GaAs quantum wells reported by Holland et al. [Phys. Rev. Lett. 93, 186804 (2004)] remains unexplained to date. This Letter provides a consistent mechanism to solve this puzzle. The mechanism is based on the electron reservoir model for the integer quantum Hall effect in graphene [Phys. Lett. A 376, 616 (2012)]. We predict sharp kinks to appear in the magnetic induction dependence of the magnetoplasmon frequency at very low temperatures such as 14 mK in the same GaAs quantum well sample used by Holland et al..
NASA Astrophysics Data System (ADS)
Lankinen, Juho; Lyyra, Henri; Sokolov, Boris; Teittinen, Jose; Ziaei, Babak; Maniscalco, Sabrina
2016-05-01
We present a general model of qubit dynamics which entails pure dephasing and dissipative time-local master equations. This allows us to describe the combined effect of thermalization and dephasing beyond the usual Markovian approximation. We investigate the complete positivity conditions and introduce a heuristic model that is always physical and provides the correct Markovian limit. We study the effects of temperature on the non-Markovian behavior of the system and show that the noise additivity property discussed by Yu and Eberly [Phys. Rev. Lett. 97, 140403 (2006), 10.1103/PhysRevLett.97.140403] holds beyond the Markovian limit.
The experimental observation on Lyapunov exponent in type V intermittency
NASA Astrophysics Data System (ADS)
Wang, Yingmei; He, Da-Ren; Hou, Yuqing
1998-03-01
We have obtained the first experimental proof for the scaling law of Lyapunov exponent in type V intermittency[1] in an electronic relaxation oscillator[2]. The results are in good agreement with the theoretical prediction obtained by a simplified model[1], and with numerical computations conducted with the theoretical model of the oscillator. [1]: S.Wu,E.J.Ding,D.-R.He, Phys.Lett.A, 197(1995)287. [2]: F.Ji and D.-R.He, Phys.Lett.A, 177(1993)125.
Thermopower signatures and spectroscopy of the canyon of conductance suppression
NASA Astrophysics Data System (ADS)
Kiršanskas, G.; Hammarberg, S.; Karlström, O.; Wacker, A.
2016-07-01
Interference effects in quantum dots between different transport channels can lead to a strong suppression of conductance, which cuts like a canyon through the common conductance plot [Phys. Rev. Lett. 104, 186804 (2010), 10.1103/PhysRevLett.104.186804]. In the present work we consider the thermoelectric transport properties of the canyon of conductance suppression using the second-order von Neumann approach. We observe a characteristic signal for the zeros of the thermopower. This demonstrates that thermoelectric measurements are an interesting complimentary tool to study complex phenomena for transport through confined systems.
Angular momentum in spin-phonon processes
NASA Astrophysics Data System (ADS)
Garanin, D. A.; Chudnovsky, E. M.
2015-07-01
Quantum theory of spin relaxation in the elastic environment is revised with account of the concept of a phonon spin recently introduced by Zhang and Niu [L. Zhang and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014), 10.1103/PhysRevLett.112.085503]. Similar to the case of the electromagnetic field, the division of the angular momentum associated with elastic deformations into the orbital part and the part due to phonon spins proves to be useful for the analysis of the balance of the angular momentum. Such analysis sheds important light on microscopic processes leading to the Einstein-de Haas effect.
Rotational Spectroscopy Unveils Eleven Conformers of Adrenaline
NASA Astrophysics Data System (ADS)
Cabezas, C.; Cortijo, V.; Mata, S.; Lopez, J. C.; Alonso, J. L.
2013-06-01
Recent improvements in our LA-MB-FTMW instrumentation have allowed the characterization of eleven and eight conformers for the neurotransmitters adrenaline and noradrenaline respectively. The observation of this rich conformational behavior is in accordance with the recent observation of seven conformers for dopamine and in sharp contrast with the conformational reduction proposed for catecholamines. C. Cabezas, I. Peña, J. C. López, J. L. Alonso J. Phys. Chem. Lett. 2013, 4, 486. H. Mitsuda, M. Miyazaki, I. B. Nielsen, P. Carcabal,C. Dedonder, C. Jouvet, S. Ishiuchi, M. Fujii J. Phys. Chem. Lett. 2010, 1, 1130.
Hawking radiation, effective actions and covariant boundary conditions
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Kulkarni, Shailesh
2008-01-01
From an appropriate expression for the effective action, the Hawking radiation from charged black holes is derived, using only covariant boundary conditions at the event horizon. The connection of our approach with the Unruh vacuum and the recent analysis [S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95 (2005) 011303, arxiv:gr-qc/0502074; S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96 (2006) 151302, arxiv:hep-th/0602146; R. Banerjee, S. Kulkarni, arxiv:arXiv: 0707.2449 [hep-th
NASA Astrophysics Data System (ADS)
Sharma, A.; Kumar, P.; Rani, V.; Ray, N.; Ghosh, S.
2016-06-01
We study charge transport in molecular organic semiconductors using two terminal and three terminal field effect transistor devices. Using phthalocyanines as examples, we achieve unification of carrier mobility between the different configurations in a Gaussian density of states. We find that the current density–voltage characteristics for two terminal devices can be understood by introducing a concentration dependence of the carrier mobility, as described by Oelerich et al (2012 Phys. Rev. Lett. 108 226403, 2010 Appl. Phys. Lett. 97 143302). Studying the evolution of the activation energy with the carrier density, we find results consistent with a percolation picture and a density dependent transport energy.
Stochastic model of nanomechanical electron shuttles and symmetry breaking
NASA Astrophysics Data System (ADS)
Zhao, Mo; Blick, Robert H.
2016-06-01
Nanomechanical electron shuttles can work as ratchets for radio-frequency rectification. We develop a full stochastic model of coupled shuttles, where the mechanical motion of nanopillars and the incoherent electronic tunneling are modeled by a Markov chain. In particular, the interaction of their randomness is taken into account, so that a linear master equation is constructed. Numerical solutions from our fast approximate method and analytical derivation reveal the symmetry breaking, which results in the direct current observed in earlier measurements [Phys. Rev. Lett. 105, 067204 (2010), 10.1103/PhysRevLett.105.067204]. Additionally, the method can facilitate device simulation of more complex designs such as shuttle arrays.
Mutated hybrid inflation in f(R,□R)-gravity
Iihoshi, Masao
2011-02-01
A new hybrid inflationary scenario in the context of f(R,□R)-gravity is proposed. Demanding the waterfall field to 'support the potential from below' [unlike the original proposal by Stewart in Phys. Lett. B 345, 414 (1995)], we demonstrate that the scalar potential is similar to that of the large-field chaotic inflation model proposed by Linde in Phys. Lett. B 129, 177 (1983). Inflationary observables are used to constrain the parameter space of our model; in the process, an interesting limit on the number of e-folds N is found.
NASA Astrophysics Data System (ADS)
Stejner, M.; Korsholm, S. B.; Nielsen, S. K.; Salewski, M.; Bindslev, H.; Leipold, F.; Michelsen, P. K.; Meo, F.; Moseev, D.; Bürger, A.; Kantor, M.; de Baar, M.
2012-10-01
Fusion plasma composition measurements by collective Thomson scattering (CTS) were demonstrated in recent proof-of-principle measurements in TEXTOR [S. B. Korsholm et al., Phys. Rev. Lett. 106, 165004 (2011), 10.1103/PhysRevLett.106.165004]. Such measurements rely on the ability to resolve and interpret ion cyclotron structure in CTS spectra. Here, we extend these techniques to enable temporally resolved plasma composition measurements by CTS in TEXTOR, and we discuss the prospect for such measurements with newly installed hardware upgrades for the CTS system on ASDEX Upgrade.
NASA Astrophysics Data System (ADS)
Darabi Sahneh, Faryad; Scoglio, Caterina; Van Mieghem, Piet
2015-10-01
An interconnected network features a structural transition between two regimes [F. Radicchi and A. Arenas, Nat. Phys. 9, 717 (2013), 10.1038/nphys2761]: one where the network components are structurally distinguishable and one where the interconnected network functions as a whole. Our exact solution for the coupling threshold uncovers network topologies with unexpected behaviors. Specifically, we show conditions that superdiffusion, introduced by Gómez et al. [Phys. Rev. Lett. 110, 028701 (2013), 10.1103/PhysRevLett.110.028701], can occur despite the network components functioning distinctly. Moreover, we find that components of certain interconnected network topologies are indistinguishable despite very weak coupling between them.
Metal Nanoparticles as Optical Nano-Sensors
NASA Astrophysics Data System (ADS)
Feldmann, Jochen
2003-03-01
When molecules approach metal nanoparticles their fluorescent properties are drastically changed [1]. In addition, the optical scattering spectra of individual nanoparticles [2] are shifted in energy. Potential biophotonic applications for resonant energy transfer (RET) studies and for molecular recognition are discussed. [1] E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S. Levi, F.C. van Veggel, D.N. Reinhoudt, and M. Moeller, Phys. Rev. Lett. 89, 203002 (2002). [2] C. Soennichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
Scaling of a collapsed polymer globule in two dimensions.
Baiesi, Marco; Orlandini, Enzo; Stella, Attilio L
2006-02-01
Extensive Monte Carlo data analysis gives clear evidence that collapsed linear polymers in two dimensions fall in the universality class of athermal, dense self-avoiding walks, as conjectured by Duplantier [Phys. Rev. Lett. 71, 4274 (1993)].10.1103/PhysRevLett.71.4274 However, the boundary of the globule has self-affine roughness and does not determine the anticipated nonzero topological boundary contribution to entropic exponents. Scaling corrections are due to subleading contributions to the partition function corresponding to polymer configurations with one end located on the globule-solvent interface. PMID:16486799
Comment on "A new integrable two-parameter model of strongly correlated electrons in one dimension"
NASA Astrophysics Data System (ADS)
Hibberd, K. E.
1996-06-01
In a recent letter [Bariev R. Z., Klümper A. and Zittartz J., Europhys. Lett. bf 32, 1995, 85.], a Hamiltonian for a system of correlated electrons in one-dimension was presented. (...) The objective of this comment is to make it apparent that the above model, with appropriate modifications, is the quantum analogue of the supersymmetric U model of ref.[2]. [2] Bracken A. J., Gould M. D., Links J. R. and Zhang Y.-Z., Phys. Rev. Lett. 74, 1994, 2768.
Sharma, A; Kumar, P; Rani, V; Ray, N; Ghosh, S
2016-06-15
We study charge transport in molecular organic semiconductors using two terminal and three terminal field effect transistor devices. Using phthalocyanines as examples, we achieve unification of carrier mobility between the different configurations in a Gaussian density of states. We find that the current density-voltage characteristics for two terminal devices can be understood by introducing a concentration dependence of the carrier mobility, as described by Oelerich et al (2012 Phys. Rev. Lett. 108 226403, 2010 Appl. Phys. Lett. 97 143302). Studying the evolution of the activation energy with the carrier density, we find results consistent with a percolation picture and a density dependent transport energy. PMID:27160656
Hasan, Mehedi; Guemri, Rabiaa; Maldonado-Basilio, Ramón; Lucarz, Frédéric; de Bougrenet de la Tocnaye, Jean-Louis; Hall, Trevor
2015-12-15
A novel photonic circuit design for implementing frequency 8-tupling and 24-tupling was presented [Opt. Lett.39, 6950 (2014)10.1364/OL.39.006950OPLEDP0146-9592], and although its key message remains unaltered, there were typographical errors in the equations that are corrected in this erratum. PMID:26670492
Verification of bifurcation diagrams for polynomial-like equations
NASA Astrophysics Data System (ADS)
Korman, Philip; Li, Yi; Ouyang, Tiancheng
2008-03-01
The results of our recent paper [P. Korman, Y. Li, T. Ouyang, Computing the location and the direction of bifurcation, Math. Res. Lett. 12 (2005) 933-944] appear to be sufficient to justify computer-generated bifurcation diagram for any autonomous two-point Dirichlet problem. Here we apply our results to polynomial-like nonlinearities.
Raman-dressed spin-1 spin-orbit-coupled quantum gas
NASA Astrophysics Data System (ADS)
Lan, Zhihao; Öhberg, Patrik
2014-02-01
The recently realized spin-orbit-coupled quantum gases [Lin et al., Nature (London) 471, 83 (2011), 10.1038/nature09887; Wang et al., Phys. Rev. Lett. 109, 095301 (2012), 10.1103/PhysRevLett.109.095301; Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012), 10.1103/PhysRevLett.109.095302] mark a breakthrough in the cold atom community. In these experiments, two hyperfine states are selected from a hyperfine manifold to mimic a pseudospin-1/2 spin-orbit-coupled system by the method of Raman dressing, which is applicable to both bosonic and fermionic gases. In this paper, we show that the method used in these experiments can be generalized to create any large pseudospin spin-orbit-coupled gas if more hyperfine states are coupled equally by the Raman lasers. As an example, we study, in detail, a quantum gas with three hyperfine states coupled by the Raman lasers and show, when the state-dependent energy shifts of the three states are comparable, triple-degenerate minima will appear at the bottom of the band dispersions, thus, realizing a spin-1 spin-orbit-coupled quantum gas. A novel feature of this three-minima regime is that there can be two different kinds of stripe phases with different wavelengths, which has an interesting connection to the ferromagnetic and polar phases of spin-1 spinor Bose-Einstein condensates without spin-orbit coupling.
Is Bare Band Description of Carrier Transport Appropriate in Pentacene?
NASA Astrophysics Data System (ADS)
Andersen, John D.; Giuggioli, Luca; Kenkre, V. M.
2002-03-01
Experiments on injected charges in pentacene single crystals reveal mobilities typical of inorganic semiconductors and temperature dependence (for T<430K) suggesting bandlike behavior.(J. H. Schon, C. Kloc, and B. Batlogg, Phys. Rev. Lett. 86, 3843 (2001)) Polaronic bands, particularly their narrowing with increasing temperature, were invoked(V. M. Kenkre, John D. Andersen, D.H. Dunlap, and C.B. Duke, Phys. Rev. Lett. 62, 1165 (1989)) in the related naphthalene problem.(L. B. Schein, C. B. Duke, and A.R. McGhie, Phys. Rev. Lett. 40, 197 (1978); L. B. Schein, W. Warta, and N. Karl, Chem. Phys. Lett. 100, 34 (1983)) Because the low temperature mobility values in pentacene suggest moderately large bandwidths, we address two questions. Does a bare wide (effectively infinite) band description work for pentacene for T<400K? And, is a bare finite band description compatible with those data? These questions are answered by modifications of a theory originally constructed for inorganic materials and a newly developed mobility theory.
Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.
1997-05-01
reply to the Comment by C.H.Dasso et al., Phys. Rev. Lett. 78,XXX(1997). A Reply to the Comment by C.H. Dasso and J. Fern{acute a}ndez-Niello. {copyright} {ital 1997} {ital The American Physical Society}
Thome, Kathreen E. [University of Wisconsin-Madison] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)
2016-04-27
This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak,' Phys. Rev. Lett. 116, 175001 (2016).
NASA Astrophysics Data System (ADS)
Dornheim, T.; Groth, S.; Schoof, T.; Hann, C.; Bonitz, M.
2016-05-01
In a recent publication [S. Groth et al., Phys. Rev. B 93, 085102 (2016), 10.1103/PhysRevB.93.085102], we have shown that the combination of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402] and permutation blocking path integral Monte Carlo [T. Dornheim et al., New J. Phys. 17, 073017 (2015), 10.1088/1367-2630/17/7/073017], allows for the accurate computation of thermodynamic properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] for different energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially deviate.
Recent Results for the Bak-Sneppen Model
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Paczuski, Maya
2001-03-01
We discuss our recent result that determines the upper critical dimension of the Bak-Sneppen model to be d_c=4 [see Phys. Rev. Lett. /bf 84, 2267-2270 (2000)], and the theoretical arguments supporting it. Also, we review other aspects of recent interest, such as the aging behavior of the model.
Spin orbit torques and chiral spin textures in ultrathin magnetic films (Presentation Recording)
NASA Astrophysics Data System (ADS)
Beach, Geoffrey S.
2015-09-01
Spin orbit coupling at interfaces can give rise to chiral magnetic textures such as homochiral domain walls and skyrmions, as well as current-induced torques that can effectively manipulate them [1-3]. This talk will describe interface-driven spin-orbit torques and Dzyaloshinskii-Moriya interactions (DMIs) in ultrathin metallic ferromagnets adjacent to nonmagnetic heavy metals. We show that the DMI depends strongly on the heavy metal, differing by a factor of ~20 between Pt and Ta [4], and describe the influence of strong DMI on domain wall dynamics and spin Hall effect switching [5]. We present high-resolution magnetic force microscopy imaging of static magnetic textures that directly reveal the role of DMI and allow its strength to be quantified. Finally, we will describe how SOTs can be enhanced through interface engineering [6] and tuned by a gate voltage [7] by directly controlling the interfacial oxygen coordination at a ferromagnet/oxide interface [8]. [1] A. Thiaville, et al., Europhys. Lett. 100, 57002 (2012). [2] S. Emori, et al., Nature Mater. 12, 611 (2013). [3] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nano. 8, 839 (2013). [4] S. Emori, et al., Phys. Rev. B 90, 184427 (2014). [5] N. Perez, et al., Appl. Phys. Lett. 104, 092403 (2014). [6] S. Woo, et al., Appl. Phys. Lett. 105, 212404 (2014). [7] S. Emori, et al., Appl. Phys. Lett. 105, 222401 (2014). [8] U. Bauer, et al., Nature Mater. 14, 174 (2015).
Goldschmidt, Y.Y.
1998-09-01
A Comment on the Letter by Uwe C. T{umlt a}uber, Martin J. Howard, and Haye Hinrichsen, Phys.thinspthinspRev.thinspthinspLett.thinspthinsp{bold 80}, 2165 (1998). The authors of the Letter offer a Reply. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Wu, Lian-Ao
1994-12-01
It is shown that the cyclic evolution posed by Aharonov and Anandan [Phys. Rev. Lett. 58, 1593 (1987)] universally exists in any quantum system: cyclic evolution occurs for special initial wave functions, whatever the concrete form of the Hamiltonian. The above results are illustrated and some specific geometric phases are given.
Electromagnetic thermal corrections to Casimir energy
NASA Astrophysics Data System (ADS)
Nazari, Borzoo
2016-07-01
In [B. Nazari, Mod. Phys. Lett. A 31, 1650007 (2016)], we calculated finite temperature corrections to the energy of the Casimir effect of two conducting parallel plates in a general weak gravitational field. The calculations was done for the case a scalar field was present between the plates. Here we find the same results in the presence of an electromagnetic field.
Excitations in the chiral spin liquid
NASA Astrophysics Data System (ADS)
Schroeter, Darrell
2009-03-01
Recently, a spin-Hamiltonian was presented [Schroeter et al, Phys. Rev. Lett. 99, 097202 (2007)] for which the chiral spin liquid is the exact ground state. This poster will present a numerical study of the excitations of the model, including results obtained by exact diagonalization of the model on 16 and 25-site lattices.
Deng Fuguo
2005-09-15
The multipartite state in the Rigolin's protocol [Phys. Rev. A 71, 032303 (2005)] for teleporting an arbitrary two-qubit state is just a product state of N Einstein-Podolsky-Rosen pairs in essence, not a genuine multipartite entangled state, and this protocol in principle is equivalent to the Yang-Guo protocol [Chin. Phys. Lett. 17, 162 (2000)].
NASA Astrophysics Data System (ADS)
Martiniani, Stefano; Schrenk, K. Julian; Stevenson, Jacob D.; Wales, David J.; Frenkel, Daan
2016-01-01
We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V . To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011), 10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014), 10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom.
Bernstein-Greene-Kruskal waves in relativistic cold plasma
NASA Astrophysics Data System (ADS)
Singh Verma, Prabal; Sengupta, Sudip; Kaw, Predhiman
2012-03-01
We construct the longitudinal traveling wave solution [Akhiezer and Polovin, Sov. Phys. JETP 3, 696 (1956)] from the exact space and time dependent solution of relativistic cold electron fluid equations [Infeld and Rowlands, Phys. Rev. Lett. 62, 1122 (1989)]. Ions are assumed to be static. We also suggest an alternative derivation of the Akhiezer Polovin solution after making the standard traveling wave Ansatz.
Has dark energy really been discovered in the Lab?
NASA Astrophysics Data System (ADS)
Jetzer, Philippe; Straumann, Norbert
2005-01-01
We show that dark energy contributions can not be determined from noise measurements of Josephson junctions, as was recently suggested in a paper by C. Beck and M.C. Mackey [Phys. Lett. B 605 (2005) 295, http://arXiv.org/astro-ph/0406504].
Impact of the valence band structure of Cu2O on excitonic spectra
NASA Astrophysics Data System (ADS)
Schweiner, Frank; Main, Jörg; Feldmaier, Matthias; Wunner, Günter; Uihlein, Christoph
2016-05-01
We present a method to calculate the excitonic spectra of all direct semiconductors with a complex valence band structure. The Schrödinger equation is solved using a complete basis set with Coulomb-Sturmian functions. This method also allows for the computation of oscillator strengths. Here we apply this method to investigate the impact of the valence band structure of cuprous oxide (Cu2O ) on the yellow exciton spectrum. Results differ from those of J. Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015), 10.1103/PhysRevLett.115.027402]; the differences are discussed and explained. The difference between the second and third Luttinger parameter can be determined by comparisons with experiments; however, the evaluation of all three Luttinger parameters is not uniquely possible. Our results are consistent with band structure calculations. Considering also a finite momentum ℏ K of the center of mass, we show that the large K -dependent line splitting observed for the 1 S exciton state by G. Dasbach et al. [Phys. Rev. Lett. 91, 107401 (2003), 10.1103/PhysRevLett.91.107401] is not related to an exchange interaction but rather to the complex valence band structure of Cu2O .
Universal behavior of the spin-echo decay rate in La2CuO4
NASA Astrophysics Data System (ADS)
Chubukov, Andrey V.; Sachdev, Subir; Sokol, Alexander
1994-04-01
We present a theoretical expression for the spin-echo decay rate 1/T2G in the quantum-critical regime of square-lattice quantum antiferromagnets. Our results are in good agreement with recent experimental data by Imai et al. [Phys. Rev. Lett. 71, 1254 (1993)] for La2CuO4.
NASA Astrophysics Data System (ADS)
CotleÅ£, Ovidiu; ZeytinoÇ§lu, Sina; Sigrist, Manfred; Demler, Eugene; ImamoÇ§lu, Ataç
2016-02-01
Interacting Bose-Fermi systems play a central role in condensed matter physics. Here, we analyze a novel Bose-Fermi mixture formed by a cavity exciton-polariton condensate interacting with a two-dimensional electron system. We show that that previous predictions of superconductivity [F. P. Laussy, Phys. Rev. Lett. 104, 106402 (2010), 10.1103/PhysRevLett.104.106402] and excitonic supersolid formation [I. A. Shelykh, Phys. Rev. Lett. 105, 140402 (2010), 10.1103/PhysRevLett.105.140402] in this system are closely intertwined, resembling the predictions for strongly correlated electron systems such as high-temperature superconductors. In stark contrast to a large majority of Bose-Fermi systems analyzed in solids and ultracold atomic gases, the renormalized interaction between the polaritons and electrons in our system is long-ranged and strongly peaked at a tunable wave vector, which can be rendered incommensurate with the Fermi momentum. We analyze the prospects for experimental observation of superconductivity and find that critical temperatures on the order of a few kelvins can be achieved in heterostructures consisting of transition metal dichalcogenide monolayers that are embedded in an open cavity structure. All-optical control of superconductivity in semiconductor heterostructures could enable the realization of new device concepts compatible with semiconductor nanotechnology. In addition the possibility to interface quantum Hall physics, superconductivity, and nonequilibrium polariton condensates is likely to provide fertile ground for investigation of completely new physical phenomena.
Statistics of polymer extensions in turbulent channel flow
NASA Astrophysics Data System (ADS)
Bagheri, Faranggis; Mitra, Dhrubaditya; Perlekar, Prasad; Brandt, Luca
2012-11-01
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF) of finite-time Lyapunov exponents and from them the corresponding Cramer's function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number Wi<1) and the FENE model. We use the location of the minima of the Cramer's function to define the Weissenberg number precisely such that we observe coil-stretch transition at Wi ≈1. We find agreement with earlier analytical predictions for PDF of polymer extensions made by Balkovsky, Fouxon, and Lebedev [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.4765 84, 4765 (2000)] for linear polymers (Oldroyd-B model) with Wi <1 and by Chertkov [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.4761 84, 4761 (2000)] for nonlinear FENE-P model of polymers. For Wi >1 (FENE model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency to orient along the streamwise direction of the flow, but near the center line the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.
Quantum vacuum radiation in optical glass
NASA Astrophysics Data System (ADS)
Liberati, Stefano; Prain, Angus; Visser, Matt
2012-04-01
A recent experimental claim of the detection of analogue Hawking radiation in an optical system [Phys. Rev. Lett. 105, 203901 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.203901] has led to some controversy [Phys. Rev. Lett. 107, 149401 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.149401]. While this experiment strongly suggests some form of particle creation from the quantum vacuum (and hence it is per se very interesting), it is also true that it seems difficult to completely explain all features of the observations by adopting the perspective of a Hawking-like mechanism for the radiation. For instance, the observed photons are emitted parallel to the optical horizon, and the relevant optical horizon is itself defined in an unusual manner by combining group and phase velocities. This raises the question: Is this really Hawking radiation, or some other form of quantum vacuum radiation? Naive estimates of the amount of quantum vacuum radiation generated due to the rapidly changing refractive index—sometimes called the dynamical Casimir effect—are not encouraging. However we feel that naive estimates could be misleading depending on the quantitative magnitude of two specific physical effects: “pulse steepening” and “pulse cresting”. Plausible bounds on the maximum size of these two effects results in estimates much closer to the experimental observations, and we argue that the dynamical Casimir effect is now worth additional investigation.
Cosmic-ray Tests of Lorentz Invariance Violations
NASA Astrophysics Data System (ADS)
Cowsik, Ramanath; Nussinov, Shmuel; Sarkar, Utpal
2012-07-01
The recent report of superluminal velocities for muon neutrinos by the OPERA collaboration working at the particle accelerators at CERN has stimulated considerable interest amongst cosmic ray scientists. The violations of Lorentz Invariance is studied within the context of the model due to Coleman and Glashow that allows for the possibility of different terminal velocities for different particles, some of which may exceed the speed of light in vacuum. We review the data on cosmic ray neutrinos and muons and on neutrinos of astrophysical origins to show that these imply very strict bounds on any such violations of Lorentz Invariance. The observations of GZK neutrinos with instruments such as ANITA will push these bounds to extremely small values. References: S. Coleman & S. Glashow, Phys. Lett. B405, 249 (1997), Phys. Rev, D 59, 116008 (1999); R. Cowsik * B.V. Sreekantan, Phys. Lett. B 449, 219 (1999), T Adam et al., arXiv:1109.4897v1 [hep-ex]; A.G. Cohen & S. Glashow, Phys Rev. Lett, 107, 181803 (2011); R. Cowsik et al., Phys Rev Lett. 107, 251801 (2011).
Comment on ‘Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy’
NASA Astrophysics Data System (ADS)
Darvin, Maxim E.; Lademann, Juergen; Brandt, Nikolay N.
2016-04-01
The results of the letter ‘Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy’ authored by Firdous and Anwar (2015 Laser Phys. Lett. 12 085601) are discussed. We show that the original interpretation of the results is not correct and does not correspond to data in the literature.
Scott, J F
2015-12-16
Unusual domains with curved walls and failure to satisfy the Landau-Lifshitz-Kittel Law are modeled as folding catastrophes (saddle-node bifurcations). This description of ballistic motion in a viscous medium is based upon early work by Dawber et al 2003 Appl. Phys. Lett. 82 436. It suggests that ferroelectric films can exhibit folds or vortex patterns but not both. PMID:26575273
Axially Symmetric Cosmological Model with Bulk Stress in Saez-Ballester Theory of Gravitation
NASA Astrophysics Data System (ADS)
Mete, V. G.; Nimkar, A. S.; Elkar, V. D.
2016-01-01
An Axially symmetric non-static space time is considered in presence of bulk stress in scalar tensor theory formulated by Saez and Ballester (Phys. Lett. A113, 467 1985). For solving the field equations, relation between metric potential and shear velocity is proportional to scale expansion are used. Also various physical and geometrical properties of the model have been discussed.
NASA Astrophysics Data System (ADS)
Schweflinghaus, Benedikt; dos Santos Dias, Manuel; Lounis, Samir
2016-01-01
Spin excitations in atomic-scale nanostructures have been investigated with inelastic scanning tunneling spectroscopy, sometimes with conflicting results. In this work, we present a theoretical viewpoint on a recent experimental controversy regarding the spin excitations of Co adatoms on Pt(111). While one group [Balashov et al., Phys. Rev. Lett. 102, 257203 (2009), 10.1103/PhysRevLett.102.257203] claims to have detected them, another group reported their observation only after the hydrogenation of the Co adatom [Dubout et al., Phys. Rev. Lett. 114, 106807 (2015), 10.1103/PhysRevLett.114.106807]. Utilizing time-dependent density functional theory in combination with many-body perturbation theory, we demonstrate that, although inelastic spin excitations are possible for Cr, Mn, Fe, and Co adatoms, their efficiency differs. While the excitation signature is less pronounced for Mn and Co adatoms, it is larger for Cr and Fe adatoms. We find that the tunneling matrix elements or the tunneling cross-section related to the nature and symmetry of the relevant electronic states are more favorable for triggering the spin excitations in Fe than in Co. An enhancement of the tunneling and of the inelastic spectra is possible by attaching hydrogen to the adatom at the appropriate position.
Relativistic calculation of the electron-momentum shift in tunneling ionization
NASA Astrophysics Data System (ADS)
Ivanov, I. A.
2015-04-01
We describe a procedure for the solution of the time-dependent Dirac equation. The procedure is based on the relativistic generalization of the matrix iteration method. We use this procedure to study electron-momentum distribution along the laser-beam propagation direction for the process of the tunneling ionization of a hydrogen atom. We found, in agreement with the experimental observations [C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M. Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106, 193002 (2011), 10.1103/PhysRevLett.106.193002], that relativistic effects lead to appreciable deviation of the distribution from the strict left-right symmetry present in the nonrelativistic case. The expectation value of the momentum along the laser-beam propagation direction grows linearly with intensity and follows closely the behavior of the expectation value of the kinetic energy divided by the speed of light. These features agree with the experimental results [C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M. Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106, 193002 (2011), 10.1103/PhysRevLett.106.193002].
Comment on "Searching for Topological Defect Dark Matter via Nongravitational Signatures"
NASA Astrophysics Data System (ADS)
Avelino, P. P.; Sousa, L.; Lobo, Francisco S. N.
2016-04-01
In the letter by Stadnik and Flambaum [Phys. Rev. Lett. 113, 151301 (2014)] it is claimed that topological defects passing through pulsars could be responsible for the observed pulsar glitches. Here, we show that, independently of the detailed network dynamics and defect dimensionality, such proposal is faced with serious difficulties.
Scaling of the conductance distribution near the Anderson transition
NASA Astrophysics Data System (ADS)
Slevin, Keith; Markoš, Peter; Ohtsuki, Tomi
2003-04-01
The scaling hypothesis is the foundation of our understanding of the Anderson transition. We present a direct numerical demonstration of the scaling of the conductance distribution of a disordered system in the critical regime. This complements a previous demonstration of the scaling of certain averages of the conductance distribution [K. Slevin et al., Phys. Rev. Lett. 86, 3594 (2001)].
Tilted Bianchi Type III Wet Dark Fluid Cosmological Model in Saez and Ballester Theory
NASA Astrophysics Data System (ADS)
Sahu, Subrata Kumar; Kantila, Endale Nigatu; Gebru, Dawit Melese
2016-01-01
Tilted Bianchi-III wet dark fluid cosmological model is investigated in the frame work of Saez and Ballester theory (Phys. Lett. A. 113:467, 1986). Exact solutions to the field equations are derived when the metric potentials are functions of cosmic time only. Some physical and geometrical properties of the solutions are also discussed.
77 FR 67381 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... Functionalized with siRNAs. Nano Lett. 2012 Oct 10;12(10):5192-5. 2. Grabow WW, et al. ``RNA Nanotechnology in... emerging field of RNA nanotechnology. ACS Nano. 2011 May 24;5(5):3405-18. 4. Afonin KA, et al. Design and... nanostructure design including pseudoknots. ACS Nano. 2011 Dec 27;5(12):9542-51. 6. Grabow WW, et al....
78 FR 43216 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-19
... modified RNA nanoparticles functionalized with siRNAs. Nano Lett. 2012 Oct 10;12(10):5192-5. . 2. Grabow WW.... . 3. Shukla GC, et al. A boost for the emerging field of RNA nanotechnology. ACS Nano. 2011 May 24;5(5.... Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS Nano....
Scaling theory of depinning in the Sneppen model
Maslov, S.; Paczuski, M. Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11790 The Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB4 0EH )
1994-08-01
We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. [bold 69], 3539 (1992)]. This theory is based on a gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, [nu][sub [parallel
Wohl; Cahn, R.N.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Porter, F.; Hernandez, J.J.; Montanet, L.; Hendrick, R.E.; Crawford, R.L.
1984-04-01
This review of the properties of leptons, mesons, and baryons is an updating of the Review of Particle Properties, Particle Data Group (Phys. Lett. 111B (1982)). Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.
Relativistic calculations of cross sections for ionization of U90+ and U91+ ions by electron impact
NASA Astrophysics Data System (ADS)
Fontes, Christopher J.; Sampson, Douglas H.; Zhang, Hong Lin
1995-01-01
Relativistic distorted-wave calculations have been made of the cross sections for electron-impact ionization of U90+ and U91+ ions with the generalized Breit interaction included between bound and free electrons. Good agreement is obtained with recent electron-beam ion-trap experiments [R. E. Marrs, S. R. Elliott, and D. A. Knapp, Phys. Rev. Lett. 72, 4082 (1994)].
Theory of enhanced performance emerging in a sparsely connected competitive population.
Lo, T S; Chan, K P; Hui, P M; Johnson, N F
2005-05-01
We provide an analytic theory to explain Anghel et al's recent numerical finding whereby a maximum in the global performance emerges for a sparsely connected competitive population [Phys. Rev. Lett. 92, 058701 (2004)]. We show that the effect originates in the highly correlated dynamics of strategy choice, and can be significantly enhanced using a simple modification to the model. PMID:16089509
NASA Astrophysics Data System (ADS)
Raju, P.; Sobhanbabu, K.; Reddy, D. R. K.
2016-02-01
Five-dimensional spherically symmetric space-time filled with two minimally interacting fields, matter and holographic dark energy components, is investigated in a scalar tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). An explicit solution of the field equations is obtained. Some physical and kinematic properties of the model are also studied.
Mathematics in Literature and Cinema: An Interdisciplinary Course
ERIC Educational Resources Information Center
Chabrán, H. Rafael; Kozek, Mark
2016-01-01
We describe our team-taught, interdisciplinary course "Numb3rs in Lett3rs & Fi1ms: Mathematics in Literature and Cinema," which explores mathematics in the context of modern literature and cinema. Our goal with this course is to advance collaborations between mathematics and the written/theatre-based creative arts.
Intermittently Decreased Beat-To-Beat Variability in Congestive Heart Failure
NASA Astrophysics Data System (ADS)
Wessel, Niels; Schirdewan, Alexander; Kurths, Jürgen
2003-09-01
A Comment on the Letter by
Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm
Zhang Jingfu; Long, G.C; Liu Wenzhang; Deng Zhiwei; Lu Zhiheng
2004-12-01
The quantum clock synchronization (QCS) algorithm proposed by Chuang [Phys. Rev. Lett. 85, 2006 (2000)] has been implemented in a three qubit nuclear magnetic resonance quantum system. The time difference between two separated clocks can be determined by measuring the output states. The experimental realization of the QCS algorithm also demonstrates an application of the quantum phase estimation.
Self-truncation and scaling in Euler-Voigt-α and related fluid models
NASA Astrophysics Data System (ADS)
Di Molfetta, Giuseppe; Krstlulovic, Giorgio; Brachet, Marc
2015-07-01
A generalization of the 3D Euler-Voigt-α model is obtained by introducing derivatives of arbitrary order β (instead of 2) in the Helmholtz operator. The β →∞ limit is shown to correspond to Galerkin truncation of the Euler equation. Direct numerical simulations (DNS) of the model are performed with resolutions up to 20483 and Taylor-Green initial data. DNS performed at large β demonstrate that this simple classical hydrodynamical model presents a self-truncation behavior, similar to that previously observed for the Gross-Pitaeveskii equation in Krstulovic and Brachet [Phys. Rev. Lett. 106, 115303 (2011), 10.1103/PhysRevLett.106.115303]. The self-truncation regime of the generalized model is shown to reproduce the behavior of the truncated Euler equation demonstrated in Cichowlas et al. [Phys. Rev. Lett. 95, 264502 (2005), 10.1103/PhysRevLett.95.264502]. The long-time growth of the self-truncation wave number kst appears to be self-similar. Two related α -Voigt versions of the eddy-damped quasinormal Markovian model and the Leith model are introduced. These simplified theoretical models are shown to reasonably reproduce intermediate time DNS results. The values of the self-similar exponents of these models are found analytically.
NASA Astrophysics Data System (ADS)
Blanco, R.
1992-09-01
I show the incorrectness of a hypothetical new solution of the Lorentz-Dirac equation (LDE) recently proposed by Barut [Phys. Lett. A 145 (1990) 387] having neither preaccelaration nor runaway behaviour. I recover the well-known result that the cited unphysical features of the LDE cannot be simultaneously eliminated.
NASA Astrophysics Data System (ADS)
Jukimenko, O.; Modestov, M.; Marklund, M.; Bychkov, V.
2015-03-01
Experimentally detected ultrafast spin avalanches spreading in crystals of molecular (nano)magnets [Decelle et al., Phys. Rev. Lett. 102, 027203 (2009), 10.1103/PhysRevLett.102.027203] have recently been explained in terms of magnetic detonation [Modestov et al., Phys. Rev. Lett. 107, 207208 (2011), 10.1103/PhysRevLett.107.207208]. Here magnetic detonation structure is investigated by taking into account transport processes of the crystals such as thermal conduction and volume viscosity. The transport processes result in smooth profiles of the most important thermodynamical crystal parameters, temperature, density, and pressure, all over the magnetic detonation front, including the leading shock, which is one of the key regions of magnetic detonation. In the case of zero volume viscosity, thermal conduction leads to an isothermal discontinuity instead of the shock, for which temperature is continuous while density and pressure experience jump. It is also demonstrated that the thickness of the magnetic detonation front may be controlled by applying the transverse-magnetic field, which is important for possible experimental observations of magnetic detonation.
Bounds on the Number and Size of Extra Dimensions from Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Salumbides, Edcel John; Schellekens, Bert; Gato-Rivera, Beatriz; Ubachs, Wim
2015-06-01
Modern string theories, which seek to produce a consistent description of physics beyond the Standard Model that also includes the gravitational interaction, appear to be most consistent if a large number of dimensions are postulated. For example the mysterious M-theory, which generalizes all consistent versions of superstring theories, require 11 dimensions. We demonstrate that investigations of quantum level energies in simple molecular systems provide a testing ground to constrain the size of compactified extra dimensions, for example those proposed in the ADD [1] and RS scenarios [2]. This is made possible by the recent progress in precision metrology with ultrastable lasers on energy levels in neutral molecular hydrogen (H_2, HD and D_2) [3] and the molecular hydrogen ions (H_2^+, HD^+ and D_2^+) [4]. Comparisons between experiment and quantum electrodynamics calculations for these molecular systems can be interpreted in terms of probing large extra dimensions, under which conditions gravity will become much stronger. Molecules are a probe of space-time geometry at typical distances where chemical bonds are effective, i.e. at length scales of an Å. [1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998) [2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). [3] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [4] J. C. J. Koelemeij et al., Phys. Rev. Lett. 98, 173002 (2007).
Oscillator strengths for a Li I 207-A laser.
Nussbaumer, H
1980-06-01
Atomic data crucial for a proposed 207-A lithium laser have been calculated in a multiconfiguration approximation. The values obtained for the intercombination oscillator strengths ls2s2p 4 P(o)-1s2p2 2P are approximately a factor of 15 smaller than those assumed in the proposal of Harris [Opt. Lett. 5,1 (1980)]. PMID:19693180
NASA Astrophysics Data System (ADS)
de Graaf, Joost; Filion, Laura; Marechal, Matthieu; van Roij, René; Dijkstra, Marjolein
2012-12-01
In this paper, we describe the way to set up the floppy-box Monte Carlo (FBMC) method [L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, and M. Dijkstra, Phys. Rev. Lett. 103, 188302 (2009), 10.1103/PhysRevLett.103.188302] to predict crystal-structure candidates for colloidal particles. The algorithm is explained in detail to ensure that it can be straightforwardly implemented on the basis of this text. The handling of hard-particle interactions in the FBMC algorithm is given special attention, as (soft) short-range and semi-long-range interactions can be treated in an analogous way. We also discuss two types of algorithms for checking for overlaps between polyhedra, the method of separating axes and a triangular-tessellation based technique. These can be combined with the FBMC method to enable crystal-structure prediction for systems composed of highly shape-anisotropic particles. Moreover, we present the results for the dense crystal structures predicted using the FBMC method for 159 (non)convex faceted particles, on which the findings in [J. de Graaf, R. van Roij, and M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011), 10.1103/PhysRevLett.107.155501] were based. Finally, we comment on the process of crystal-structure prediction itself and the choices that can be made in these simulations.
Quantum-tomographic cryptography with a semiconductor single-photon source
Kaszlikowski, D.; Yang, L.J.; Yong, L.S.; Willeboordse, F.H.; Kwek, L.C.
2005-09-15
We analyze the security of so-called quantum-tomographic cryptography with the source producing entangled photons via an experimental scheme proposed by Fattal et al. [Phys. Rev. Lett. 92, 37903 (2004)]. We determine the range of the experimental parameters for which the protocol is secure against the most general incoherent attacks.
Martiniani, Stefano; Schrenk, K Julian; Stevenson, Jacob D; Wales, David J; Frenkel, Daan
2016-01-01
We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V. To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011)10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014)10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom. PMID:26871142
Influence of shape resonances on minima in cross sections for photoionization of excited atoms
Felfli, Z.; Manson, S.T. Department of Astronomy, Georgia State University, Atlanta, Georgia 30303 )
1990-02-01
A relationship between the location of Cooper minima and the difference between the quantum defect of the initial state and the threshold phase shift (in units of {pi}) of the final state in excited photoionization has been suggested earlier (Phys. Rev. Lett. 48, 473 (1982)). The existence of a shape resonance in the final state is shown to modify this relationship.
Colliding gravitational plane waves with noncollinear polarization. I
Ernst, F.J.; Garcia D., A.; Hauser, I.
1987-09-01
An Ehlers transformation on the Ernst potential for the Nutku--Halil solution (Phys. Rev. Lett. 39, 1379 (1977)) provides a new solution of the Einstein field equations describing colliding gravitational plane waves with noncollinear polarization, the first of an infinite sequence of solutions that can be generated using techniques described in this paper.
Colliding gravitational plane waves with noncollinear polarization. I
NASA Astrophysics Data System (ADS)
Ernst, Frederick J.; García D., Alberto; Hauser, Isidore
1987-09-01
An Ehlers transformation on the Ernst potential for the Nutku-Halil solution [Phys. Rev. Lett. 39, 1379 (1977)] provides a new solution of the Einstein field equations describing colliding gravitational plane waves with noncollinear polarization, the first of an infinite sequence of solutions that can be generated using techniques described in this paper.
Abrupt changes in the dynamics of quantum disentanglement
Lastra, F.; Romero, G.; Lopez, C. E.; Retamal, J. C.; Franca Santos, M.
2007-06-15
The evolution of the lower bound of entanglement proposed by Chen et al. [Phys. Rev. Lett. 95, 210501 (2005)] in high-dimensional bipartite systems under dissipation is studied. Discontinuities for the time derivative of this bound are found depending on the initial conditions for entangled states. These abrupt changes along the evolution of the entanglement bound appear as precursors of sudden death.
Stochastic Schroedinger equations with general complex Gaussian noises
Bassi, Angelo
2003-06-01
Within the framework of non-Markovian stochastic Schroedinger equations, we generalize the results of [W. T. Strunz, Phys. Lett. A 224, 25 (1996)] to the case of general complex Gaussian noises; we analyze the two important cases of purely real and purely imaginary stochastic processes.
Comment on ``Nature of the Collapse Transition for Polymers''
NASA Astrophysics Data System (ADS)
Pretti, Marco
2002-09-01
A Comment on the Letter by
Charging time for dust grain on surface exposed to plasma
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2013-04-01
We consider the charging of a dust grain sitting on a surface exposed to plasma. The stochastic model of Sheridan and Hayes [Appl. Phys. Lett. 98, 091501 (2011)] is solved analytically for the charging time, which is found to be directly proportional to the square root of the electron temperature and inversely proportional to both the grain radius and plasma density.
Hawking fluxes, back reaction and covariant anomalies
NASA Astrophysics Data System (ADS)
Kulkarni, Shailesh
2008-11-01
Starting from the chiral covariant effective action approach of Banerjee and Kulkarni (2008 Phys. Lett. B 659 827), we provide a derivation of the Hawking radiation from a charged black hole in the presence of gravitational back reaction. The modified expressions for charge and energy flux, due to the effect of one-loop back reaction are obtained.
Bloch-Landau-Zener dynamics in single-particle Wannier-Zeeman systems
NASA Astrophysics Data System (ADS)
Ke, Yongguan; Qin, Xizhou; Zhong, Honghua; Huang, Jiahao; He, Chunshan; Lee, Chaohong
2015-05-01
Stimulated by the experimental realization of spin-dependent tunneling via a gradient magnetic field [C. J. Kennedy et al., Phys. Rev. Lett. 111, 225301 (2013);, 10.1103/PhysRevLett.111.225301 M. Aidelsburger et al., Phys. Rev. Lett. 111, 185301 (2013), 10.1103/PhysRevLett.111.185301], we investigate the dynamics of Bloch oscillations and Landau-Zener tunneling of single spin-half particles in a periodic potential under the influence of a spin-dependent constant force. In analogy to the Wannier-Stark system, we call our system the Wannier-Zeeman system. If there is no coupling between the two spin states, the system can be described by two crossing Wannier-Stark ladders with opposite tilts. The spatial crossing between two Wannier-Stark ladders becomes a spatial anticrossing if the two spin states are coupled by external fields. For a wave packet away from the spatial anticrossing, due to the spin-dependent constant force, it will undergo spatial Landau-Zener transitions assisted by the intrinsic intraband Bloch oscillations, which we call the Bloch-Landau-Zener dynamics. If the interspin coupling is sufficiently strong, the system undergoes adiabatic Bloch-Landau-Zener dynamics, in which the spin dynamics follows the local dressed states. Otherwise, for nonstrong interspin couplings, the system undergoes nonadiabatic Bloch-Landau-Zener dynamics.
NASA Astrophysics Data System (ADS)
Bellotti, U.; Bornatici, M.
1997-12-01
With reference to a radiating pointlike charge, the energy conservation equation comprising the effect of the Abraham-Lorentz radiation-reaction force is contrasted with the incorrect energy conservation equation obtained by Hartemann and Luhmann [Phys. Rev. Lett. 74, 1107 (1995)] on considering instead the Abraham-Becker force that accounts only for a part of the instantaneous radiation-reaction force.
Hydrodynamics of Leidenfrost droplets in one-component fluids
NASA Astrophysics Data System (ADS)
Xu, Xinpeng; Qian, Tiezheng
2013-04-01
Using the dynamic van der Waals theory [Phys. Rev. E10.1103/PhysRevE.75.036304 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett.10.1103/PhysRevLett.109.074301 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett.10.1103/PhysRevLett.109.034501 109, 034501 (2012)].
NASA Astrophysics Data System (ADS)
Li, Fengyu; Jin, Peng; Jiang, De-en; Wang, Lu; Zhang, Shengbai B.; Zhao, Jijun; Chen, Zhongfang
2012-02-01
Prompted by the very recent claim that the volleyball-shaped B80 fullerene [X. Wang, Phys. Rev. B 82, 153409 (2010), 10.1103/PhysRevB.82.153409] is lower in energy than the B80 buckyball [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007), 10.1103/PhysRevLett.98.166804] and core-shell structure [J. Zhao, L. Wang, F. Li, and Z. Chen, J. Phys. Chem. A 114, 9969 (2010), 10.1021/jp1018873], and inspired by the most recent finding of another core-shell isomer as the lowest energy B80 isomer [S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecher, Phys. Rev. Lett. 106, 225502 (2011), 10.1103/PhysRevLett.106.225502], we carefully evaluated the performance of the density functional methods in the energetics of boron clusters and confirmed that the core-shell construction (stuffed fullerene) is thermodynamically the most favorable structural pattern for B80. Our global minimum search showed that both B101 and B103 also prefer a core-shell structure and that B103 can reach the complete core-shell configuration. We called for great attention to the theoretical community when using density functionals to investigate boron-related nanomaterials.
NASA Astrophysics Data System (ADS)
Molotkov, S. N.; Potapova, T. A.
2015-06-01
The problem of quantum key distribution security in channels with large losses is still open. Quasi-single-photon sources of quantum states with losses in the quantum communication channel open up the possibility of attacking with unambiguous state discrimination (USD) measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting the classic reference pulses. Conservation of the number of counts of intense coherent pulses makes it impossible to conduct USD measurements. Moreover, the losses in the communication channel are considered to be unknown in advance and are subject to change throughout the series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the protocol makes it possible to carry out a complete analysis of its security.
Theoretical study of Fourier-transform acousto-optic imaging.
Barjean, Kinia; Ramaz, François; Tualle, Jean-Michel
2016-05-01
We propose a full theoretical study of Fourier-transform acousto-optic imaging, which we recently introduced and experimentally assessed in [Opt. Lett.40, 705-708 (2015)OPLEDP0146-959210.1364/OL.40.000705] as an alternative to achieve axial resolution in acousto-optic imaging with a higher signal-to-noise ratio. PMID:27140883
a Mean-Field Version of the Ssb Model for X-Chromosome Inactivation
NASA Astrophysics Data System (ADS)
Gaeta, Giuseppe
Nicodemi and Prisco recently proposed a model for X-chromosome inactivation in mammals, explaining this phenomenon in terms of a spontaneous symmetry-breaking mechanism [{\\it Phys. Rev. Lett.} 99 (2007), 108104]. Here we provide a mean-field version of their model.
Optimal eavesdropping on quantum key distribution without quantum memory
NASA Astrophysics Data System (ADS)
Bocquet, Aurélien; Alléaume, Romain; Leverrier, Anthony
2012-01-01
We consider the security of the BB84 (Bennett and Brassard 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing pp 175-9), six-state (Bruß 1998 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.81.3018) and SARG04 (Scarani et al 2004 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.92.057901) quantum key distribution protocols when the eavesdropper does not have access to a quantum memory. In this case, Eve’s most general strategy is to measure her ancilla with an appropriate positive operator-valued measure designed to take advantage of the post-measurement information that will be released during the sifting phase of the protocol. After an optimization on all the parameters accessible to Eve, our method provides us with new bounds for the security of six-state and SARG04 against a memoryless adversary. In particular, for the six-state protocol we show that the maximum quantum bit error ratio for which a secure key can be extracted is increased from 12.6% (for collective attacks) to 20.4% with the memoryless assumption.
Developments in Laser and Plasma-Based Accelerators
NASA Astrophysics Data System (ADS)
Downer, Michael
2001-04-01
-based injection technologies to meet this challenge [4]. The talk will focus on these and other recent developments. 1. E. Esarey et al., IEEE Trans. Plasma Sci. 24, 252 (1996). 2. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979). 3. C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993); Ehrlich et al., Phys. Rev. Lett. 77, 4186 (1996); S. P. Nikitin et al., Phys. Rev. E 59, R3839 (1999); P. Volfbeyn et al., Phys.of Plasmas 6, 2269 (1999); D. Kaganovich et al., Phys. Rev. E 59, R4769 (1999); F. Dorchies et al., Phys. Rev. Lett. 82, 4655 (1999); T. Hosokai et al., Opt. Lett. 25, 10 (2000); E. W. Gaul et al., Appl. Phys. Lett. 77, 4112 (2000). 4. D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C. I. Moore et al., Phys. Rev. Lett. 82, 1688 (1999); S. Y. Tochitsky et al. Opt. Lett. 24, 1717 (1999).
Physics Beyond the Standard Model from Molecular Hydrogen Spectroscopy
NASA Astrophysics Data System (ADS)
Ubachs, Wim; Salumbides, Edcel John; Bagdonaite, Julija
2015-06-01
The spectrum of molecular hydrogen can be measured in the laboratory to very high precision using advanced laser and molecular beam techniques, as well as frequency-comb based calibration [1,2]. The quantum level structure of this smallest neutral molecule can now be calculated to very high precision, based on a very accurate (10-15 precision) Born-Oppenheimer potential [3] and including subtle non-adiabatic, relativistic and quantum electrodynamic effects [4]. Comparison between theory and experiment yields a test of QED, and in fact of the Standard Model of Physics, since the weak, strong and gravitational forces have a negligible effect. Even fifth forces beyond the Standard Model can be searched for [5]. Astronomical observation of molecular hydrogen spectra, using the largest telescopes on Earth and in space, may reveal possible variations of fundamental constants on a cosmological time scale [6]. A study has been performed at a 'look-back' time of 12.5 billion years [7]. In addition the possible dependence of a fundamental constant on a gravitational field has been investigated from observation of molecular hydrogen in the photospheres of white dwarfs [8]. The latter involves a test of the Einsteins equivalence principle. [1] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] K. Pachucki, Phys. Rev. A82, 032509 (2010). [4] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [5] E.J. Salumbides et al., Phys. Rev. D87, 112008 (2013). [6] F. van Weerdenburg et al., Phys. Rev. Lett. 106, 180802 (2011). [7] J. Badonaite et al., Phys. Rev. Lett. 114, 071301 (2015). [8] J. Bagdonaite et al., Phys. Rev. Lett. 113, 123002 (2014).
NASA Astrophysics Data System (ADS)
Cornell, Eric A.
1997-04-01
In the two years since Bose-Einstein condensation was first observed [1,2,3] in dilute vapors of the alkali metals, a wide variety of experimental studies has been performed on these exotic systems. Some of the recent results out of JILA (for instance a critical temperature measurement [4]) have been in excellent agreement with theeoretical expectations. Others (for instance the behavior of low-lying condensate excitations at finite-T [5]) have been more puzzling. I will discuss the recently observed two-component condensates [6] and provide also an overview of recent studies [7] of the coherence properties of condensates. ([1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995). [2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Kettle, Phys. Rev. Lett. 75, 3696 (1995). [3] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. (in press). [4] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 77, 4984 (1996). [5] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. (in press). [6] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Phys. Rev. Lett. (in press). [7] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Science (in press).)
NASA Astrophysics Data System (ADS)
Grazioso, Fabio; Grosshans, Frédéric
2013-11-01
We propose a family of sifting-less quantum-key-distribution protocols which use reverse reconciliation, and are based on weak coherent pulses (WCPs) polarized along m different directions. When m=4, the physical part of the protocol is identical to most experimental implementations of BB84 [Bennett and Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984)] and SARG04 [Scarani, Acín, Ribordy, and Gisin, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.057901 92, 057901 (2004); Acín, Gisin, and Scarani, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.69.012309 69, 012309 (2004)] protocols and they differ only in classical communications and data processing. We compute their total key rate as a function of the channel transmission T, using general information theoretical arguments, and we show that they have a higher key rate than the more standard protocols, both for fixed and optimized average photon number of the WCPs. When no decoy-state protocols (DSPs) [Hwang, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.057901 91, 057901 (2003); Lo, Ma, and Chen, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.230504 94, 230504 (2005); Wang, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.72.012322 72, 012322 (2005)] are applied, the scaling of the key rate with transmission is improved from T2 for BB84 to T1+(1)/(m-2). If a DSP is applied, we show how the key rates scale linearly with T, with an improvement of the prefactor by 75.96% for m=4. High values of m allow one to asymptotically approach the key rate obtained with ideal single-photon pulses. The fact that the key rates of these sifting-less protocols are higher compared to those of the aforementioned more standard protocols show that the latter are not optimal, since they do not extract all the available secret keys from the experimental correlations.
NASA Astrophysics Data System (ADS)
Nghiem, H. T. M.; Costi, T. A.
2014-02-01
The time-dependent numerical renormalization group (TDNRG) method [Anders et al., Phys. Rev. Lett. 95, 196801 (2005), 10.1103/PhysRevLett.95.196801] offers the prospect of investigating in a nonperturbative manner the time dependence of local observables of interacting quantum impurity models at all time scales following a quantum quench. Here, we present a generalization of this method to arbitrary finite temperature by making use of the full density matrix approach [Weichselbaum et al., Phys. Rev. Lett. 99, 076402 (2007), 10.1103/PhysRevLett.99.076402]. We show that all terms in the projected full density matrix ρi →f=ρ+++ρ--+ρ+-+ρ-+ appearing in the time evolution of a local observable may be evaluated in closed form at finite temperature, with ρ+-=ρ-+=0. The expression for ρ-- is shown to be finite at finite temperature, becoming negligible only in the limit of vanishing temperatures. We prove that this approach recovers the short-time limit for the expectation value of a local observable exactly at arbitrary temperatures. In contrast, the corresponding long-time limit is recovered exactly only for a continuous bath, i.e., when the logarithmic discretization parameter Λ →1+. Since the numerical renormalization group approach breaks down in this limit, and calculations have to be carried out at Λ >1, the long-time behavior following an arbitrary quantum quench has a finite error, which poses an obstacle for the method, e.g., in its application to the scattering-states numerical renormalization group method for describing steady-state nonequilibrium transport through correlated impurities [Anders, Phys. Rev. Lett. 101, 066804 (2008), 10.1103/PhysRevLett.101.066804]. We suggest a way to overcome this problem by noting that the time dependence, in general, and the long-time limit, in particular, become increasingly more accurate on reducing the size of the quantum quench. This suggests an improved generalized TDNRG approach in which the system is time
Phase diagram of fractional quantum Hall effect of composite fermions in multicomponent systems
NASA Astrophysics Data System (ADS)
Balram, Ajit C.; Tőke, Csaba; Wójs, A.; Jain, J. K.
2015-01-01
While the integer quantum Hall effect of composite fermions manifests as the prominent fractional quantum Hall effect (FQHE) of electrons, the FQHE of composite fermions produces further, more delicate states, arising from a weak residual interaction between composite fermions. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu and co-workers [Phys. Rev. Lett. 113, 246803 (2014), 10.1103/PhysRevLett.113.246803 and private communication] of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11, and 10/13 in GaAs systems. We show that the FQHE of composite fermions is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N components for an SU(N ) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. The aim of this paper is to provide a fairly comprehensive list of possible incompressible fractional quantum Hall states of composite fermions, their SU(N ) spin content, their energies, and their phase diagram as a function of the generalized "Zeeman" energy. We obtain results at three levels of approximation: from ground-state wave functions of the composite fermion theory, from composite fermion diagonalization, and, whenever possible, from exact diagonalization. Effects of finite quantum well thickness and Landau-level mixing are neglected in this study. We compare our theoretical results with the experiments of Liu and co-workers [Phys. Rev. Lett. 113, 246803 (2014), 10.1103/PhysRevLett.113.246803 and private communication] as well as of Yeh et al., [Phys. Rev. Lett. 82, 592 (1999), 10.1103/PhysRevLett.82.592] for a two-component system.
Impact of Duality Violations on Spectral Sum Rule analyses
NASA Astrophysics Data System (ADS)
Catà, Oscar
2007-02-01
Recent sum rule analyses on the
Fault-tolerant logical gates in quantum error-correcting codes
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Yoshida, Beni
2015-01-01
Recently, S. Bravyi and R. König [Phys. Rev. Lett. 110, 170503 (2013), 10.1103/PhysRevLett.110.170503] have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically local circuit and are thus fault tolerant by construction. In particular, they show that, for local stabilizer codes in D spatial dimensions, locality-preserving gates are restricted to a set of unitary gates known as the D th level of the Clifford hierarchy. In this paper, we explore this idea further by providing several extensions and applications of their characterization to qubit stabilizer and subsystem codes. First, we present a no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. This result implies that non-Clifford gates do not admit such implementations in Haah's cubic code and Michnicki's welded code. Second, we prove that the code distance of a D -dimensional local stabilizer code with a nontrivial locality-preserving m th -level Clifford logical gate is upper bounded by O (LD +1 -m) . For codes with non-Clifford gates (m >2 ), this improves the previous best bound by S. Bravyi and B. Terhal [New. J. Phys. 11, 043029 (2009), 10.1088/1367-2630/11/4/043029]. Topological color codes, introduced by H. Bombin and M. A. Martin-Delgado [Phys. Rev. Lett. 97, 180501 (2006), 10.1103/PhysRevLett.97.180501; Phys. Rev. Lett. 98, 160502 (2007), 10.1103/PhysRevLett.98.160502; Phys. Rev. B 75, 075103 (2007), 10.1103/PhysRevB.75.075103], saturate the bound for m =D . Third, we prove that the qubit erasure threshold for codes with a nontrivial transversal m th -level Clifford logical gate is upper bounded by 1 /m . This implies that no family of fault-tolerant codes with
Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling
NASA Astrophysics Data System (ADS)
Yan, H.; Guo, Hao
2012-01-01
We study a thermal engine model for which Newton's cooling law is obeyed during heat transfer processes. The thermal efficiency and its bounds at maximum output power are derived and discussed. This model, though quite simple, can be applied not only to Carnot engines but also to four other types of engines. For the long thermal contact time limit, new bounds, tighter than what were known before, are obtained. In this case, this model can simulate Otto, Joule-Brayton, Diesel, and Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle, the same efficiency bounds as that from Esposito [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)] are derived. In both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working medium during heating and cooling stages increases. This might provide instructions for designing real engines.
Crossover from Quantum to Classical Creep in YBCO
NASA Astrophysics Data System (ADS)
Shung, E.; Beauchamp, K. M.; Rosenbaum, T. F.; Welp, U.; Crabtree, G. W.
1996-03-01
We use a miniature Hall probe array to measure the local magnetization relaxation S in single crystals of YBCO with columnar defects from milliKelvin to tens of Kelvin. In addition to the usual quantum signature of temperature independence of the relaxation, we probe the relationship between S and the critical current density J_c, tuned by varying columnar defect density. S can increase concurrently with Jc in the Bose glass when quantum effects dominate (K. M. Beauchamp et al., Phys. Rev. Lett. 75), 3942 (1995). Moreover, we test recent theoretical predictions of the dependence of the quantum to classical crossover temperature on critical current density (L. Radzihovsky, Phys Rev. Lett. 74), 4923 (1995).
Scalable engineering of multipartite W states in a spin chain
NASA Astrophysics Data System (ADS)
Balachandran, Vinitha; Gong, Jiangbin
2012-06-01
We propose a scalable scheme for engineering multipartite entangled W states in a Heisenberg spin chain. The rather simple scheme is mainly built on the accumulative angular squeezing technique first proposed in the context of quantum kicked rotor for focusing a rotor to a delta-like angular distribution [I. Sh. Averbukh and R. Arvieu, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.87.163601 87, 163601 (2001)]. We show how the efficient generation of various W states may be achieved by engineering the interaction between a spin chain (short or long) and a time-dependent parabolic magnetic field. Our results may further motivate the use of spin chains as a test bed to investigate complex properties of multipartite entangled states. We further numerically demonstrate that our scheme can be extended to engineer arbitrary spin chain quasimomentum states as well as their superposition states.
Tunable spin-polaron state in a singly clamped semiconducting carbon nanotube
NASA Astrophysics Data System (ADS)
Pistolesi, F.; Shekhter, R.
2015-07-01
We consider a semiconducting carbon nanotube (CNT) lying on a ferromagnetic insulating substrate with one end passing the substrate and suspended over a metallic gate. We assume that the polarized substrate induces an exchange interaction acting as a local magnetic field for the electrons in the nonsuspended CNT side. Generalizing the approach of I. Snyman and Yu.V. Nazarov [Phys. Rev. Lett. 108, 076805 (2012), 10.1103/PhysRevLett.108.076805], we show that one can generate electrostatically a tunable spin-polarized polaronic state localized at the bending end of the CNT. We argue that at low temperatures manipulation and detection of the localized quantum spin state are possible.
Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.
Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng
2016-07-01
We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work. PMID:27575141
Performance improvement of a permanent magnet helicon plasma thruster
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2013-09-01
The performance of a permanent magnet helicon plasma thruster (PM-HPT) is improved by modifying the magnetic field configuration and increasing the magnetic field strength for operating source conditions of 13.56 MHz radiofrequency power up to 2 kW and 24 sccm of argon (pressure of ˜0.8 mTorr). A convergent-divergent magnetic nozzle giving a maximum field strength of ˜300 G is provided by arrays of permanent magnets, giving a higher plasma density downstream of the thruster exit (hence a larger Lorentz force within the magnetic nozzle) compared with that measured in the previous PM-HPT experiments (Takahashi et al 2011 Appl.Phys. Lett. 98 141503; Takahashi et al 2011 Phys. Rev. Lett. 107 235001). The directly measured thrust and specific impulse are about 15 mN and 2000 s, respectively, for a thrust efficiency of 7.5%.
Direct Acceleration of Electrons in a Corrugated Plasma Channel
Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.
2009-01-22
Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.
Intrinsic randomness as a measure of quantum coherence
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Zhou, Hongyi; Cao, Zhu; Ma, Xiongfeng
2015-08-01
Based on the theory of quantum mechanics, intrinsic randomness in measurement distinguishes quantum effects from classical ones. From the perspective of states, this quantum feature can be summarized as coherence or superposition in a specific (classical) computational basis. Recently, by regarding coherence as a physical resource, Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401] presented a comprehensive framework for coherence measures. Here, we propose a quantum coherence measure essentially using the intrinsic randomness of measurement. The proposed coherence measure provides an answer to the open question in completing the resource theory of coherence. Meanwhile, we show that the coherence distillation process can be treated as quantum extraction, which can be regarded as an equivalent process of classical random number extraction. From this viewpoint, the proposed coherence measure also clarifies the operational aspect of quantum coherence. Finally, our results indicate a strong similarity between two types of quantumness—coherence and entanglement.
Heralded-qubit amplifiers for practical device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Curty, Marcos; Moroder, Tobias
2011-07-01
Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.070501 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.
Temporally correlated zero-range process with open boundaries: Steady state and fluctuations
NASA Astrophysics Data System (ADS)
Cavallaro, Massimo; Mondragón, Raúl J.; Harris, Rosemary J.
2015-08-01
We study an open-boundary version of the on-off zero-range process introduced in Hirschberg et al. [Phys. Rev. Lett. 103, 090602 (2009)], 10.1103/PhysRevLett.103.090602. This model includes temporal correlations which can promote the condensation of particles, a situation observed in real-world dynamics. We derive the exact solution for the steady state of the one-site system, as well as a mean-field approximation for larger one-dimensional lattices, and also explore the large deviation properties of the particle current. Analytical and numerical calculations show that, although the particle distribution is well described by an effective Markovian solution, the probability of rare currents differs from the memoryless case. In particular, we find evidence for a memory-induced dynamical phase transition.
NASA Astrophysics Data System (ADS)
Rakshit, D.; Blume, D.
2012-06-01
It has been predicted that four-body systems with angular momentum L=1 and parity π=+1 exhibit four-body resonances [1,2] and Efimov physics [3]. To treat these phenomena in the hyperspherical framework, we extend the work of von Stecher and Greene [4] to finite angular momenta. In particular, we employ explicitly correlated Gaussian basis functions with global vectors to solve the hyperangular Schr"odinger equation for four-body systems with L^π=1^+ and 1^- symmetry. We apply the approach to four-fermion systems with unequal masses.[4pt] [1] K. M. Daily and D. Blume, Phys. Rev. Lett. 105, 170403 (2010).[0pt] [2] S. Gandolfi and J. Carlson, arXiv: 1006.5186v1.[0pt] [3] Y. Castin, C. Mora and L. Pricoupenko, Phys. Rev. Lett. 105, 223201 (2010).[0pt] [4] J. von Stecher and C. H. Greene, Phys. Rev. A. 80, 022504 (2009).
Three-tangle of the nine classes of four-qubit states
NASA Astrophysics Data System (ADS)
Osterloh, Andreas
2016-07-01
I calculate the mixed three-tangle τ3[ρ ] for the reduced density matrices of the four-qubit representant states found in Phys. Rev. A 65, 052112 (2002), 10.1103/PhysRevA.65.052112. In most of the cases, the convex roof is obtained, except for one class, where I provide with an upper bound, which is assumed to be very close to the convex roof. I compare with results published in Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501. Since the method applied there usually results in higher values for the upper bound, in certain cases it can be understood that the convex roof is obtained exactly, namely, when the zero-polytope where τ3 vanishes shrinks to a single point.
Magnetically induced phonon splitting in A Cr2O4 spinels from first principles
NASA Astrophysics Data System (ADS)
Wysocki, Aleksander L.; Birol, Turan
2016-04-01
We study the magnetically-induced phonon splitting in cubic A Cr2O4 (A =Mg , Zn, Cd) spinels from first principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in CdCr2O4 compared to ZnCr2O4 and MgCr2O4 , is determined solely by the particular magnetic ordering pattern observed in these compounds. We further show that this interaction between magnetism and phonon frequencies can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006)], 10.1103/PhysRevLett.96.205505 that includes only the nearest neighbor exchange. Using this model with materials specific parameters calculated from first principles, we provide additional insights into the physics of spin-phonon coupling in this intriguing family of compounds.
Experimental study of multichromatic terahertz wave propagation through planar micro-channels
Shin, Young-Min -Min; Baig, Anisullah; Barchfeld, Robert; Gamzina, Diana; Barnett, Larry R.; Luhmann, Jr., Neville C.
2012-04-10
Previous theoretical and numerical studies [Y. M. Shin and L. R. Barnett, Appl. Phys. Lett. 92, 091501 (2008) and Y. M. Shin et al., Appl. Phys. Lett. 93, 221504 (2008)] have reported that a planar micro-channel with an asymmetric corrugation array supports strongly confined propagation of broadband THz plasmonic waves. The highly broad spectral response is experimentally demonstrated in the near-THz regime of 0.19-0.265 THz. Signal reflection and transmission tests on the three designed micro-channels including directional couplers resulted in a full-width-half-maximum bandwidth of ~ 50-60GHz with an insertion loss of approximately -5 dB, which is in good agreement with simulation data. As a result, these micro-structures can be utilized for free electron beam and electronic/optic integrated devices
Lattice gas hydrodynamics in two and three dimensions
Frisch, U.; d'Humieres, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.P.
1986-01-01
Hydrodynamical phenomena can be simulated by discrete lattice gas models obeing cellular automata rules (U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505, (1986); D. d'Humieres, P. Lallemand, and U. Frisch, Europhys. Lett. 2, 291, (1986)). It is here shown for a class of D-dimensional lattice gas models how the macrodynamical (large-scale) equations for the densities of microscopically conserved quantities can be systematically derived from the underlying exact ''microdynamical'' Boolean equations. With suitable restrictions on the crystallographic symmetries of the lattice and after proper limits are taken, various standard fluid dynamical equations are obtained, including the incompressible Navier-Stokes equations in two and three dimensions. The transport coefficients appearing in the macrodynamical equations are obtained using variants of fluctuation-dissipation and Boltzmann formalisms adapted to fully discrete situations.
Radial distribution function for hard spheres in fractal dimensions: A heuristic approximation.
Santos, Andrés; de Haro, Mariano López
2016-06-01
Analytic approximations for the radial distribution function, the structure factor, and the equation of state of hard-core fluids in fractal dimension d (1≤d≤3) are developed as heuristic interpolations from the knowledge of the exact and Percus-Yevick results for the hard-rod and hard-sphere fluids, respectively. In order to assess their value, such approximate results are compared with those of recent Monte Carlo simulations and numerical solutions of the Percus-Yevick equation for a fractal dimension [M. Heinen et al., Phys. Rev. Lett. 115, 097801 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.097801], a good agreement being observed. PMID:27415227
Photon Events at MiniBooNE Experiment
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Serot, Brian D.
2012-03-01
The neutral-current production of photon at MiniBooNE experiment is analyzed, which is motivated by the low-energy excess-event puzzle in the experiment [A. A. Aquilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett. 100, 032301 (2008); Phys. Rev. Lett. 105, 181801 (2010)]. The calculation is done in a manifestly Lorentz-covariant framework, and includes contributions from Delta resonance's radiative decay and from non-resonance diagrams. The medium-effects are considered, including the modifications of Delta's behavior and nucleon's spectrum and Pauli blocking. Different kinds of event distributions are calculated based on the experimental setup. The possibility of the photon event to be the excess event will be discussed. The model-dependence of the results will also be presented. Possible connections of this analysis to other neutrino-oscillation experiment will be mentioned.
Can neutrino-induced photon production explain the low energy excess in MiniBooNE?
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Serot, Brian D.
2013-02-01
This report summarizes our study of Neutral Current (NC)-induced photon production in MiniBooNE, as motivated by the low energy excess in this experiment [A.A. Aquilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 98 (2007) 231801; A.A. Aquilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 103 (2009) 111801]. It was proposed that NC photon production with two anomalous photon-Z boson-vector meson couplings might explain the excess. However, our computed event numbers in both neutrino and antineutrino runs are consistent with the previous MiniBooNE estimate that is based on their pion production measurement. Various nuclear effects discussed in our previous works, including nucleon Fermi motion, Pauli blocking, and the Δ resonance broadening in the nucleus, are taken into account. Uncertainty due to the two anomalous terms and nuclear effects are studied in a conservative way.
Ghizzo, A.; Palermo, F.
2015-08-15
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.
NASA Astrophysics Data System (ADS)
Myatt, J.; Delettrez, J. A.; Maximov, A. V.; Meyerhofer, D. D.; Short, R. W.; Stoeckl, C.; Storm, M.
2009-06-01
Expressions for the yield of electron-positron pairs, their energy spectra, and production rates have been obtained in the interaction of multi-kJ pulses of high-intensity laser light interacting with solid targets. The Bethe-Heitler conversion of hard x-ray bremsstrahlung [D. A. Gryaznykh, Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002)] is shown to dominate over direct production (trident process) [E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)]. The yields and production rates have been optimized as a function of incident laser intensity by the choice of target material and dimensions, indicating that up to 5×1011 pairs can be produced on the OMEGA EP laser system [L. J. Waxer , Opt. Photonics News 16, 30 (2005)]. The corresponding production rates are high enough to make possible the creation of a pair plasma.
Entropy and density of states from isoenergetic nonequilibrium processes
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2005-05-01
Two identities in statistical mechanics involving entropy differences (or ratios of densities of states) at constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the microcanonical ensemble [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)], which can be seen as a “fast-switching” version of the adiabatic switching method for computing entropies [M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)]. The second is a thermodynamic integration formula analogous to a well-known expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be conveniently used in conjunction with a scaling relation (herein derived) that allows one to extrapolate measurements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the context of numerical simulations are discussed.
Spatially anisotropic Heisenberg kagome antiferromagnet
NASA Astrophysics Data System (ADS)
Apel, W.; Yavors'kii, T.; Everts, H.-U.
2007-04-01
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.
Amplification effects in optomechanics via weak measurements
NASA Astrophysics Data System (ADS)
Li, Gang; Wang, Tao; Song, He-Shan
2014-07-01
We revisit the scheme of single-photon weak-coupling optomechanics using postselection, proposed by Pepper, Ghobadi, Jeffrey, Simon, and Bouwmeester [Phys. Rev. Lett. 109, 023601 (2012), 10.1103/PhysRevLett.109.023601], by analyzing the exact solution of the dynamical evolution. Positive and negative amplification effects of the displacement of the mirror's position can be generated when the Kerr phase is considered. This effect occurs when the postselected state of the photon is orthogonal to the initial state, which cannot be explained by the usual weak measurement results. The amplification effect can be further modulated by a phase shifter, and the maximal displacement state can appear within a short evolution time.
Universal Pulse Sequence to Minimize Spin Dephasing in the Central Spin Decoherence Problem
NASA Astrophysics Data System (ADS)
Lee, B.; Witzel, W. M.; Das Sarma, S.
2008-04-01
We present a remarkable finding that a recently discovered [G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.100504] series of pulse sequences, designed to optimally restore coherence to a qubit in the spin-boson model of decoherence, is in fact completely model independent and generically valid for arbitrary dephasing Hamiltonians given sufficiently short delay times between pulses. The series maximizes qubit fidelity versus number of applied pulses for sufficiently short delay times because the series, with each additional pulse, cancels successive orders of a time expansion for the fidelity decay. The “magical” universality of this property, which was not appreciated earlier, requires that a linearly growing set of “unknowns” (the delay times) must simultaneously satisfy an exponentially growing set of nonlinear equations that involve arbitrary dephasing Hamiltonian operators.
Control of Intermittently Synchronized Coupled Systems
NASA Astrophysics Data System (ADS)
Olsen, Thomas; Trail, Collin; Wiener, Richard; Snyder, Michael
2001-11-01
We have previously reported on the experimental control of chaotic pattern dynamics in Taylor Vortex Flow(R. J. Wiener, et al., Phys. Rev. Lett. 83), 2340 (1999). and numerical demonstrations of the control of coupled pendula which demonstrate intermittent synchronization in the absence of feedback(T. Olsen, A. Smiley, & R. J. Wiener, Bull. Am. Phys. Soc. 45), 92 (2000).. We now report further numerical studies of attempts to control systems of 2 and more coupled chaotic pendula. We describe methods of obtaining fixed points and OGY control parameters(Ott, C., Grebogi, C., and Yorke, J. A., Phys. Rev. Lett. 64), 1196 (1990). for these systems. We examine the consequences of symmetric and asymmetric couplings. Various interesting phenomenologies have been observed. We discuss the prospects for experimental realization of related phenomenologies in Taylor Vortex Flow and control of spatio-temporal chaos.
Quantum limit for nuclear spin polarization in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Hildmann, Julia; Kavousanaki, Eleftheria; Burkard, Guido; Ribeiro, Hugo
2014-05-01
A recent experiment [E. A. Chekhovich et al., Phys. Rev. Lett. 104, 066804 (2010), 10.1103/PhysRevLett.104.066804] has demonstrated that high nuclear spin polarization can be achieved in self-assembled quantum dots by exploiting an optically forbidden transition between a heavy hole and a trion state. However, a fully polarized state is not achieved as expected from a classical rate equation. Here, we theoretically investigate this problem with the help of a quantum master equation and we demonstrate that a fully polarized state cannot be achieved due to formation of a nuclear dark state. Moreover, we show that the maximal degree of polarization depends on structural properties of the quantum dot.
NASA Astrophysics Data System (ADS)
Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi
2016-08-01
Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.
Casimir-lifshitz force out of thermal equilibrium and asymptotic nonadditivity.
Antezza, Mauro; Pitaevskii, Lev P; Stringari, Sandro; Svetovoy, Vitaly B
2006-12-01
We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et al., Phys. Rev. Lett. 95, 113202 (2005)10.1103/PhysRevLett.95.113202. The asymptotic behavior of the force at large distances is explicitly discussed. In particular when one of the two bodies is a rarefied gas the force is not additive, being proportional to the square root of the density. Nontrivial crossover regions at large distances are also identified. PMID:17155801
NASA Astrophysics Data System (ADS)
Li, Dong-Peng; Chen, Shou-Wan; Niu, Zhong-Ming; Liu, Quan; Guo, Jian-You
2015-02-01
Following a recent letter [J.-Y. Guo, S.-W. Chen, Z.-M. Niu, D.-P. Li, and Q. Liu, Phys. Rev. Lett. 112, 062502 (2014), 10.1103/PhysRevLett.112.062502], we present more details for the relativistic symmetry research by using the similarity renormalization group. With the theoretical formalism expressed in detail, we explore the origin and breaking mechanism of relativistic symmetries for an axially deformed nucleus. By comparing the energy splitting between the (pseudo-) spin doublets, it is shown that the spin energy splitting arises almost completely from the spin-orbit coupling, while the pseudospin energy splitting arises from a combination of the nonrelativistic, dynamical, and spin-orbit terms. Furthermore, these splittings are correlated with nuclear deformation as well as with the quantum numbers of the doublets. The origin of relativistic symmetries is disclosed and the breaking mechanism of spin and pseudospin symmetries is clarified.
NASA Astrophysics Data System (ADS)
Jafarzadeh, H.
2015-04-01
The spontaneously generated coherence (SGC) effects on optical bistability (OB) are investigated in a five-level K-type system. It is found that SGC makes the system phase dependent. Thus, the OB and the absorption behavior of the system can be controlled by the relation phase of applied fields. In addition, the pump field intensity effect on the OB behavior is discussed. The experimental viability of the model in semiconductor quantum well system is also discussed [A. V. Germanenko et al., J. Phys.: Conf. Ser. 376, 012024 (2012); D. S. Chemla et al., IEEE J. Quantum Electron. 20(3), 265 (1984); L. V. Butov et al., J. Exp. Theor. Phys. 88(5), 1036 (1999); J. F. Dynes et al., Phys. Rev. Lett. 94, 157403 (2005); S. Schmitt-Rinka et al., Adv. Phys. 38(2), 89 (1989); and H. W. Liu et al., Appl. Phys. Lett. 54, 2082 (1989)].
NASA Astrophysics Data System (ADS)
Likforman, Jean-Pierre; Tugayé, Vincent; Guibal, Samuel; Guidoni, Luca
2016-05-01
We measured the branching fractions for the decay of the 5 p 1/2 2P state of +88Sr by applying a recently demonstrated photon-counting sequential method [M. Ramm, T. Pruttivarasin, M. Kokish, I. Talukdar, and H. Häffner, Phys. Rev. Lett. 111, 023004 (2013), 10.1103/PhysRevLett.111.023004] to a single ion laser cooled in a microfabricated surface trap. The branching fraction for the decay into the 5 s 1/2 2S ground level was found to be p =0.9449 (5 ) . This result is in good agreement with recent theoretical calculations but disagrees with previous experimental measurements, however affected by a one-order-of-magnitude larger uncertainty. This experiment demonstrates that microtrap technology is also applicable in the domain of precision measurements and spectroscopy.
NASA Astrophysics Data System (ADS)
Perfetto, E.; Stefanucci, G.
2012-08-01
We show that the energy functional of ensemble density functional theory (DFT) [Perdew , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.49.1691 49, 1691 (1982)] in systems with attractive interactions is a convex function of the fractional particle number N and is given by a series of straight lines joining a subset of ground-state energies. As a consequence the exchange-correlation (XC) potential is not discontinuous for all N. We highlight the importance of this exact result in the ensemble-DFT description of the negative-U Anderson model. In the atomic limit the discontinuity of the XC potential is missing for odd N while for finite hybridizations the discontinuity at even N is broadened. We demonstrate that the inclusion of these properties in any approximate XC potential is crucial to reproduce the characteristic signatures of the charge-Kondo effect in the conductance and charge susceptibility.
Jafarzadeh, H.
2015-04-28
The spontaneously generated coherence (SGC) effects on optical bistability (OB) are investigated in a five-level K-type system. It is found that SGC makes the system phase dependent. Thus, the OB and the absorption behavior of the system can be controlled by the relation phase of applied fields. In addition, the pump field intensity effect on the OB behavior is discussed. The experimental viability of the model in semiconductor quantum well system is also discussed [A. V. Germanenko et al., J. Phys.: Conf. Ser. 376, 012024 (2012); D. S. Chemla et al., IEEE J. Quantum Electron. 20(3), 265 (1984); L. V. Butov et al., J. Exp. Theor. Phys. 88(5), 1036 (1999); J. F. Dynes et al., Phys. Rev. Lett. 94, 157403 (2005); S. Schmitt-Rinka et al., Adv. Phys. 38(2), 89 (1989); and H. W. Liu et al., Appl. Phys. Lett. 54, 2082 (1989)].
Development of Glucose Sensors by Modified Carbon Nanotube Arrays
NASA Astrophysics Data System (ADS)
Moscatello, Jason; Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke
2009-03-01
In 2007 the CDC estimates 7.8% of the US population had diabetes, and the percentage is rising [1]. Such numbers lead to a large demand for highly selective, sensitive glucose sensors. We have used vertically-aligned multiwalled carbon nanotube (VA-MWCNT) arrays [2] to fabricate glucose sensors. VA-MWCNTs were embedded in PMMA and polished to expose the tips. The tips were functionalized by carboxyl groups, then modified by immobilization of glucose oxidase. Initial results on sensors of this type were previously reported [3], but we have further characterized to include lowest detection limits, enzyme lifetime, and performance stability. Comprehensive electrochemical data will be presented along with Raman, IR, and SEM. 1. National Diabetes Fact Sheet, Centers for Disease Control and Prevention, U.S. Department of Health (2007) 2. J. Menda et al., Appl. Phys. Lett., 87, 173106-3 (2005) 3. Y. Lin, F. Lu, Y. Tu, Z. Ren, Nano Lett., 4, 191-195 (2004)
Pauli equation for a charged spin particle on a curved surface in an electric and magnetic field
NASA Astrophysics Data System (ADS)
Wang, Yong-Long; Du, Long; Xu, Chang-Tan; Liu, Xiao-Jun; Zong, Hong-Shi
2014-10-01
We derive the Pauli equation for a charged spin particle confined to move on a spatially curved surface S in an electromagnetic field. Using the thin-layer quantization scheme to constrain the particle on S , and in the transformed spinor representations, we obtain the well-known geometric potential Vg and the presence of e-i φ, which can generate additive spin connection geometric potentials by the curvilinear coordinates derivatives, and we find that the two fundamental evidences in the literature [Giulio Ferrari and Giampaolo Cuoghi, Phys. Rev. Lett. 100, 230403 (2008), 10.1103/PhysRevLett.100.230403] are still valid in the present system without source current perpendicular to S . Finally, we apply the surface Pauli equation to spherical, cylindrical, and toroidal surfaces, in which we obtain expectantly the geometric potentials and new spin connection geometric potentials, and find that only the normal Pauli matrix appears in these equations.
Wei, T.-C.
2010-06-15
We consider quantum states under the renormalization-group (RG) transformations introduced by Verstraete et al. [Phys. Rev. Lett. 94, 140601 (2005)] and propose a quantification of entanglement under such RGs (via the geometric measure of entanglement). We examine the resulting entanglement under RG transformations for the ground states of ''matrix-product-state'' Hamiltonians constructed by Wolf et al. [Phys. Rev. Lett. 97, 110403 (2006)] that possess quantum phase transitions. We find that near critical points, the ground-state entanglement exhibits singular behavior. The singular behavior within finite steps of the RG obeys a scaling hypothesis and reveals the correlation length exponent. However, under the infinite steps of RG transformation, the singular behavior is rendered different and is universal only when there is an underlying conformal-field-theory description of the critical point.
Extended dynamic Mott transition in the two-band Hubbard model out of equilibrium
NASA Astrophysics Data System (ADS)
Behrmann, Malte; Fabrizio, Michele; Lechermann, Frank
2013-07-01
We reformulate the time-dependent Gutzwiller approximation by M. Schiró and M. Fabrizio, [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.076401 105, 076401 (2010)] in the framework of slave-boson mean-field theory, which is used to investigate the dynamical Mott transition of the generic two-band Hubbard model at half filling upon an interaction quench. Interorbital fluctuations lead to notable changes with respect to the single-band case. The singular dynamical transition is replaced by a broad regime of long-lived fluctuations between metallic and insulating states, accompanied by intriguing precursor behavior. A mapping to a spin model proves helpful to analyze the different regions in terms of the evolution of an Ising-like order parameter. Contrary to the static case, singlet occupations remain vital in the Mott-insulating regime with finite Hund's exchange.
NASA Astrophysics Data System (ADS)
Bamps, Cédric; Pironio, Stefano
2015-05-01
We introduce two families of sum-of-squares (SOS) decompositions for the Bell operators associated with the tilted Clauser-Horne-Shimony-Holt (CHSH) expressions introduced in Acín et al. [Phys. Rev. Lett. 108, 100402 (2012), 10.1103/PhysRevLett.108.100402]. These SOS decompositions provide tight upper bounds on the maximal quantum value of these Bell expressions. Moreover, they establish algebraic relations that are necessarily satisfied by any quantum state and observables yielding the optimal quantum value. These algebraic relations are then used to show that the tilted CHSH expressions provide robust self-tests for any partially entangled two-qubit state. This application to self-testing follows closely the approach of Yang and Navascués [Phys. Rev. A 87, 050102(R) (2013), 10.1103/PhysRevA.87.050102], where we identify and correct two nontrivial flaws.
Stationary three-dimensional entanglement via dissipative Rydberg pumping
NASA Astrophysics Data System (ADS)
Shao, Xiao-Qiang; You, Jia-Bin; Zheng, Tai-Yu; Oh, C. H.; Zhang, Shou
2014-05-01
We extend the recent result of a bipartite Bell singlet [A. W. Carr and M. Saffman, Phys. Rev. Lett. 111, 033607 (2013), 10.1103/PhysRevLett.111.033607] to a stationary three-dimensional entanglement between two-individual neutral Rydberg atoms. This proposal makes full use of the coherent dynamics provided by a Rydberg-mediated interaction and the dissipative factor originating from the spontaneous emission of a Rydberg state. The numerical simulation of the master equation reveals that both the target state negativity N (ρ̂∞) and fidelity F (ρ̂∞) can exceed 99.90%. Furthermore, a steady three-atom singlet state |S3> is also achievable based on the same mechanism.
Simplified scheme for entanglement preparation with Rydberg pumping via dissipation
NASA Astrophysics Data System (ADS)
Su, Shi-Lei; Guo, Qi; Wang, Hong-Fu; Zhang, Shou
2015-08-01
Inspired by recent work [Carr and Saffman, Phys. Rev. Lett. 111, 033607 (2013), 10.1103/PhysRevLett.111.033607], we propose a simplified scheme to prepare the two-atom maximally entangled states via dissipative Rydberg pumping. Compared with the former scheme, the simplified one involves fewer classical laser fields and Rydberg interactions, and the asymmetric Rydberg interactions are avoided. Master equation simulations demonstrate that the fidelity and the Clauser-Horne-Shimony-Holt correlation of the maximally entangled state could reach up to 0.999 and 2.821, respectively, under certain conditions. Furthermore, we extend the physical thoughts to prepare the three-dimensional entangled state, and the numerical simulations show that, in theory, both the fidelity and the negativity of the desired entanglement could be very close to unity under certain conditions.
Phonon sidebands of photoluminescence in single wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Yu, Guili; Liang, Qifeng; Jia, Yonglei; Dong, Jinming
2010-01-01
The multiphonon-assisted photoluminescence (PL) of the single wall carbon nanotubes (SWNTs) have been studied by solving the Schrödinger equation, showing a set of phonon sidebands, both the Stokes and anti-Stokes lines, which are induced by the longitudinal optical phonon and radial breathing mode phonon. All the calculated results are in a good agreement with the recent experimental PL spectra of the SWNTs [F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, and M. A. Pimenta, Phys. Rev. Lett. 95, 247401 (2005)] and J. Lefebvre and P. Finnie, Phys. Rev. Lett. 98, 167406 (2007)]. In addition, it is very interesting to find in the calculated PL several additional phonon sidebands with rather weak intensities, which are caused by the exciton's coupling with two kinds of phonons, and expected to be observed in future experiments.
Randall-Sundrum scenario with bulk dilaton and torsion
Mukhopadhyaya, Biswarup; Sen, Somasri; SenGupta, Soumitra
2009-06-15
We consider a string-inspired torsion-dilaton-gravity action in a Randall-Sundrum braneworld scenario and show that, in an effective four-dimensional theory on the visible brane, the rank-2 antisymmetric Kalb-Ramond field (source of torsion) is exponentially suppressed. The result is similar to our earlier result in [B. Mukhopadhyaya, S. Sen, and S. SenGupta, Phys. Rev. Lett. 89, 121101 (2002); Phys. Rev. Lett. 89, 259902(E) (2002)], where no dilaton was present in the bulk. This offers an explanation of the apparent invisibility of torsion in our space-time. However, in this case the trilinear couplings {approx}TeV{sup -1} between the dilaton and torsion may lead to new signals in TeV-scale experiments, bearing the stamp of extra warped dimensions.
Number-state filter for pulses of light
NASA Astrophysics Data System (ADS)
Lauk, Nikolai; Fleischhauer, Michael
2016-06-01
We present a detailed theoretical analysis of a Fock-state filter based on the photon-number-dependent group delay in cavity-induced transparency proposed by Nikoghosyan and Fleischhauer [G. Nikoghosyan and M. Fleischhauer, Phys. Rev. Lett. 105, 013601 (2010)], 10.1103/PhysRevLett.105.013601. We derive a general expression for the propagation velocity of different photon-number components of a light pulse interacting with an optically dense ensemble of three-level atoms coupled to a resonator mode under conditions of cavity-induced transparency. These predictions are compared to numerical simulations of the propagation of few-photon wave packets, and an estimation for experimental realization is made.
Adaptive networks: Coevolution of disease and topology
NASA Astrophysics Data System (ADS)
Marceau, Vincent; Noël, Pierre-André; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.
2010-09-01
Adaptive networks have been recently introduced in the context of disease propagation on complex networks. They account for the mutual interaction between the network topology and the states of the nodes. Until now, existing models have been analyzed using low complexity analytical formalisms, revealing nevertheless some novel dynamical features. However, current methods have failed to reproduce with accuracy the simultaneous time evolution of the disease and the underlying network topology. In the framework of the adaptive susceptible-infectious-susceptible (SIS) model of Gross [Phys. Rev. Lett. 96, 208701 (2006)]10.1103/PhysRevLett.96.208701, we introduce an improved compartmental formalism able to handle this coevolutionary task successfully. With this approach, we analyze the interplay and outcomes of both dynamical elements, process and structure, on adaptive networks featuring different degree distributions at the initial stage.
Revivals in quantum walks with a quasiperiodically-time-dependent coin
NASA Astrophysics Data System (ADS)
Cedzich, C.; Werner, R. F.
2016-03-01
We provide an explanation of recent experimental results of Xue et al. [P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, Phys. Rev. Lett. 114, 140502 (2015), 10.1103/PhysRevLett.114.140502], where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for "electric" walks with a space-dependent, rather than a time-dependent, coin, we provide a full explanation of the observations of Xue et al. We extend the analysis from periodic time dependence to quasiperiodic behavior with periods incommensurate to the step size. Spectral analysis, one of the principal tools for the study of electric walks, fails for time-dependent systems, but we find qualitative propagation behavior of the time-dependent system in close analogy to the electric case.
Deformation mechanisms of irradiated metallic nanofoams
NASA Astrophysics Data System (ADS)
Zepeda-Ruiz, L. A.; Martinez, E.; Caro, M.; Fu, E. G.; Caro, A.
2013-07-01
It was recently proposed that within a particular window in the parameter space of temperature, ion energy, dose rate, and filament diameter, nanoscale metallic foams could show radiation tolerance [Bringa et al., Nano Lett. 12, 3351 (2012)]. Outside this window, damage appears in the form of vacancy-related stacking fault tetrahedra (SFT), with no effects due to interstitials [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. These SFT could be natural sources of dislocations within the ligaments composing the foam and determine their mechanical response. We employ molecular dynamics simulations of cylindrical ligaments containing an SFT to obtain an atomic-level picture of their deformation behavior under compression. We find that plastic deformation originates at the edges of the SFT, at lower stress than needed to create dislocations at the surface. Our results predict that nanoscale foams soften under irradiation, a prediction not yet tested experimentally.
Collimated proton acceleration in light sail regime with a tailored pinhole target
Wang, H. Y.; Zepf, M.; Yan, X. Q.
2014-06-15
A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.
Brunner, S.; Berger, R. L.; Cohen, B. I.; Hausammann, L.; Valeo, E. J.
2014-10-01
Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.
Experimental quantum error correction with high fidelity
NASA Astrophysics Data System (ADS)
Zhang, Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond
2011-09-01
More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.81.2152 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from ɛ to ˜ɛ2. In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.
Two-center approach to fully differential positron-impact ionization of hydrogen
NASA Astrophysics Data System (ADS)
Kadyrov, A. S.; Bailey, J. J.; Bray, I.; Stelbovics, A. T.
2014-01-01
The two-center approach to positron-impact ionization of atomic hydrogen is shown to follow from the exact post form of the breakup amplitude [Kadyrov, Bray, Mukhamedzhanov, and Stelbovics, Phys. Rev. Lett. 101, 230405 (2008), 10.1103/PhysRevLett.101.230405]. In such approaches distinct ionization amplitudes arise from each center for the same ionization process. The fully differential cross section for the positron-impact breakup of atomic hydrogen is calculated including direct ionization of the target and electron capture into the positronium continuum. We show that the coherent combination of the amplitudes leads to oscillations in the differential cross sections, whereas the incoherent combination does not. The latter has also the advantage of being consistent with the unitary close-coupling formalism.
Short granular chain under vibration: Spontaneous switching of states
NASA Astrophysics Data System (ADS)
Sun, Y.-C.; Fei, H.-T.; Huang, P.-C.; Juan, W.-T.; Huang, J.-R.; Tsai, J.-C.
2016-03-01
We study experimentally a short chain of N (≤8 ) loosely connected spheres bouncing against a horizontal surface that vibrates sinusoidally at intensity Γ . Distinct states are identified: a base state of uniform bouncing in-sync with the substrate prevails at low values of Γ , whereas increasing Γ can induce transitions to two excited states with appreciable storage of energy around one or both ends of the chain. We find that, in a transitional window of Γ , the chain can even switch spontaneously among states, resolving the mystery why different modes of motion can be initiated at the same position in our previous work along a gradient of vibration [Phys. Rev. Lett. 112, 058001 (2014), 10.1103/PhysRevLett.112.058001]. Preliminary interpretations on the parametric dependences and the optimal frequency window for seeing these transitions are offered, based on the microscopic and statistical evidence in our experiments up to date.
NASA Astrophysics Data System (ADS)
Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu
2015-10-01
We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].
NASA Astrophysics Data System (ADS)
Schaffhauser, Philipp; Kümmel, Stephan
2016-07-01
We discuss a scheme for calculating atomic force microscope images within the framework of density functional theory (DFT). As in earlier works [T. L. Chan et al., Phys. Rev. Lett. 102, 176101 (2009), 10.1103/PhysRevLett.102.176101; M. Kim and J. R. Chelikowsky, Appl. Surf. Sci. 303, 163 (2014), 10.1016/j.apsusc.2014.02.127] we do not simulate the cantilever explicitly, but consider it as a polarizable object. We go beyond previous studies by discussing the role of exchange and correlation effects; i.e., we approximately take into account the Pauli interaction between sample and cantilever. The good agreement that we find when comparing our calculated images to experimental images for the difficult case of the 8-hydroxyquinoline molecule demonstrates that exchange-correlation effects can play an important role in the DFT-based interpretation of AFM images.
Inner-shell electron effects in strong-field double ionization of Xe
NASA Astrophysics Data System (ADS)
Yuan, Zongqiang; Ye, Difa; Liu, Jie; Fu, Libin
2016-06-01
We investigate theoretically the inner-shell electron effects in strong-field double ionization of Xe by a comparative study with two different three-dimensional semiclassical models, i.e., the widely used helium-like model and an improved Green-Sellin-Zachor (GSZ) model. The enhanced double-ionization signals through sequential ionization and recollision-induced excitation with subsequent field ionization are identified as two origins of the nonstructured pattern in the correlated electron momentum spectrum observed in a recent experiment [Phys. Rev. Lett. 113, 103001 (2014), 10.1103/PhysRevLett.113.103001]. The relationship between these enhancements and the inner-shell electrons is revealed by back analysis of the classical trajectories.
Optimal control of the power adiabatic stroke of an optomechanical heat engine.
Bathaee, M; Bahrampour, A R
2016-08-01
We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained. PMID:27627280
Hierarchy of multipartite nonlocality in the nonsignaling scenario
NASA Astrophysics Data System (ADS)
Wang, Xiaoxu; Zhang, Chengjie; Chen, Qing; Yu, Sixia; Yuan, Haidong; Oh, C. H.
2016-08-01
We propose a hierarchy of Bell-type inequalities for arbitrary n -partite systems that identifies the different degrees of nonlocality ranging from standard to genuine multipartite nonlocality. After introducing the definition of nonsignaling m locality, we show that the observed joint probabilities in any nonsignaling m -local realistic models should satisfy the (m -1 )th Bell-type inequality. When m =2 , the corresponding inequality reduces to the one shown earlier [Q. Chen et al., Phys. Rev. Lett. 112, 140404 (2014), 10.1103/PhysRevLett.112.140404] whose violation indicates genuine multipartite nonlocality, and when m =n , the corresponding inequality is just Hardy's inequality whose violation indicates standard multipartite nonlocality. Furthermore, several examples are provided to demonstrate their hierarchy of multipartite nonlocality.
Quantum correlations of identical particles subject to classical environmental noise
NASA Astrophysics Data System (ADS)
Beggi, Andrea; Buscemi, Fabrizio; Bordone, Paolo
2016-06-01
In this work, we propose a measure for the quantum discord of indistinguishable particles, based on the definition of entanglement of particles given in Wiseman and Vaccaro (Phys Rev Lett 91:097902, 2003. doi: 10.1103/PhysRevLett.91.097902). This discord of particles is then used to evaluate the quantum correlations in a system of two identical bosons (fermions), where the particles perform a quantum random walk described by the Hubbard Hamiltonian in a 1D lattice. The dynamics of the particles is either unperturbed or subject to a classical environmental noise—such as random telegraph, pink or brown noise. The observed results are consistent with those for the entanglement of particles, and we observe that on-site interaction between particles have an important protective effect on correlations against the decoherence of the system.
Classical simulation of infinite-size quantum lattice systems in two spatial dimensions.
Jordan, J; Orús, R; Vidal, G; Verstraete, F; Cirac, J I
2008-12-19
We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F. Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)10.1103/PhysRevLett.98.070201]. The present algorithm allows for the computation of the ground state and the simulation of time evolution in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase transition. PMID:19113687
Virtual topological insulators with real quantized physics
NASA Astrophysics Data System (ADS)
Prodan, Emil
2015-06-01
A concrete strategy is presented for generating strong topological insulators in d +d' dimensions which have quantized physics in d dimensions. Here, d counts the physical and d' the virtual dimensions. It consists of seeking d -dimensional representations of operator algebras which are usually defined in d +d' dimensions where topological elements display strong topological invariants. The invariants are shown, however, to be fully determined by the physical dimensions, in the sense that their measurement can be done at fixed virtual coordinates. We solve the bulk-boundary correspondence and show that the boundary invariants are also fully determined by the physical coordinates. We analyze the virtual Chern insulator in 1 +1 dimensions realized in Y. E. Kraus et al., Phys. Rev. Lett. 109, 106402 (2012), 10.1103/PhysRevLett.109.106402 and predict quantized forces at the edges. We generate a topological system in (3 +1 ) dimensions, which is predicted to have quantized magnetoelectric response.
NASA Astrophysics Data System (ADS)
Dittmore, Andrew; Trail, Collin; Olsen, Thomas; Wiener, Richard J.
2003-11-01
We have previously demonstrated the experimental control of chaos in a Modified Taylor-Couette system with hourglass geometry( Richard J. Wiener et al), Phys. Rev. Lett. 83, 2340 (1999).. Identifying fixed points susceptible to algorithms for the control of chaos is key. We seek to learn about this process in the accessible numerical model of the damped, driven pendulum. Following Baker(Gregory L. Baker, Am. J. Phys. 63), 832 (1995)., we seek points susceptible to the OGY(E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64), 1196 (1990). algorithm. We automate the search for fixed points that are candidates for control. We present comparisons of the space of candidate fixed points with the bifurcation diagrams and Poincare sections of the system. We demonstrate control at fixed points which do not appear on the attractor. We also show that the control algorithm may be employed to shift the system between non-communicating branches of the attractor.
Exact path integral for 3D quantum gravity. II.
NASA Astrophysics Data System (ADS)
Honda, Masazumi; Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji
2016-03-01
Continuing the work [Phys. Rev. Lett. 115, 161304 (2015)], we discuss various aspects of three-dimensional quantum gravity partition function in anti-de Sitter spacetime in the semiclassical limit. The partition function is holomorphic and is the one which we obtained by using the localization technique of Chern-Simons theory in Phys. Rev. Lett. 115, 161304 (2015). We obtain a good expression for it in the summation form over Virasoro characters for the vacuum and primaries. A key ingredient for that is an interpretation of boundary-localized fermion. We also check that the coefficients in the summation form over Virasoro characters of the partition function are positive integers and satisfy the Cardy formula. These give a physical interpretation that these coefficients represent the number of primary fields in the dual conformal field theory in the large k limit.
Nonlocality of orthogonal product basis quantum states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Wen, Qiao-Yan
2014-08-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum systems. In the Hilbert space of 3⊗3, Walgate and Hardy [Phys. Rev. Lett. 89, 147901 (2002), 10.1103/PhysRevLett.89.147901] presented a very simple proof for nonlocality of nine orthogonal product basis quantum states which are given by Bennett et al. [Phys. Rev. A 59, 1070 (1999), 10.1103/PhysRevA.59.1070]. In the quantum system of d⊗d, where d is odd, we construct d2 orthogonal product basis quantum states and prove these states are locally indistinguishable. Then we are able to construct some locally indistinguishable product basis quantum states in the multipartite systems. All these results reveal the phenomenon of "nonlocality without entanglement."
Steady-state spin squeezing generation in diamond nanostructures
NASA Astrophysics Data System (ADS)
Ma, Yong-Hong; Zhang, Xue-Feng
2014-04-01
As one kind of many body entangled states, spin squeezed states can be used to implement the high precise measurement beyond the standard quantum limit. Inspired by the novel spin squeezing scheme based on phonon-induced spin-spin interactions [S. D. Bennett et al., Phys. Rev. Lett. 110, 156402 (2013), 10.1103/PhysRevLett.110.156402], we reexamine the steady-state behaviors for the spin ensemble in diamond nanostructures by exerting a controllable microwave field. By using the phase-space approach we calculate analytically fluctuations of collective spin operators. We find that there is bistability and spin squeezing for the steady-state spin ensemble, despite the mechanical damping considered. Moreover, our work shows that bistability and spin squeezing can be controlled by microwave field and Zeeman splitting. The present scheme can be used to increase the stability of spin clocks, magnetometers, and other measurements based on spin-spin interaction in diamond nanostructures.
Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects
NASA Astrophysics Data System (ADS)
Liang, Liangbo; Meunier, Vincent
2012-11-01
Experimentally measured electronic band gaps of atomically sharp straight and chevronlike armchair graphene nanoribbons (GNRs) adsorbed on a gold substrate are smaller than theoretically predicted quasiparticle band gaps of their free-standing counterparts [Linden , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.216801 108, 216801 (2012)]. The influence of the substrate on electronic properties of both straight and chevronlike GNRs is here investigated including many-body effects beyond semilocal density-functional theory. The predicted small electron transfer from a straight or chevronlike GNR to the gold surface is found to lead to a surface polarization at the GNR-metal interface responsible for a significant reduction of the quasiparticle band gap of the GNR. This reduction is quantified using a semiclassical image charge model. By considering both quasiparticle and surface polarization corrections, we obtain theoretical band gaps that are consistent with experimental ones for gold-supported GNRs.
Doubly infinite separation of quantum information and communication
NASA Astrophysics Data System (ADS)
Liu, Zi-Wen; Perry, Christopher; Zhu, Yechao; Koh, Dax Enshan; Aaronson, Scott
2016-01-01
We prove the existence of (one-way) communication tasks with a subconstant versus superconstant asymptotic gap, which we call "doubly infinite," between their quantum information and communication complexities. We do so by studying the exclusion game [C. Perry et al., Phys. Rev. Lett. 115, 030504 (2015), 10.1103/PhysRevLett.115.030504] for which there exist instances where the quantum information complexity tends to zero as the size of the input n increases. By showing that the quantum communication complexity of these games scales at least logarithmically in n , we obtain our result. We further show that the established lower bounds and gaps still hold even if we allow a small probability of error. However in this case, the n -qubit quantum message of the zero-error strategy can be compressed polynomially.
Photocatalytic Solar Fuel Generation on Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Feldmann, Jochen
2015-03-01
I will review our scientific work on photocatalytic solar fuel generation utilizing colloidal semiconductor nanocrystals decorated with catalytic metal clusters. In particular, nanocrystals made of CdS, TiO2 and organo-metal halide perovskites will be discussed. Key issues are the role of hole scavangers (M. Berr et al., Appl. Phys. Lett. 100, 223903 (2012)), the size and density of catalytic clusters (M. Berr et al.: Appl. Phys. Lett. 97, 093108 (2010) and Nano Letters 12, 5903 (2012) , and dependencies on external parameters such as pH (T. Simon et al., Nature Mat. 13, 1013 (2014)). Financially supported by the Bavarian Research Cluster ``Solar Technologies Go Hybrid: SolTech''.
Of bulk and boundaries: Generalized transfer matrices for tight-binding models
NASA Astrophysics Data System (ADS)
Dwivedi, Vatsal; Chua, Victor
2016-04-01
We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is noninvertible. Following Hatsugai [Phys. Rev. Lett. 71, 3697 (1993), 10.1103/PhysRevLett.71.3697], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems such as Chern insulator, Dirac semimetal, and graphene. The edge states can then be interpreted as noncontractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on Sp (2 ,R ) and interpret the corresponding winding number as a Maslov index.
NASA Astrophysics Data System (ADS)
Robey, H. F.; Moody, J. D.; Celliers, P. M.; Ross, J. S.; Ralph, J.; Le Pape, S.; Berzak Hopkins, L.; Parham, T.; Sater, J.; Mapoles, E. R.; Holunga, D. M.; Walters, C. F.; Haid, B. J.; Kozioziemski, B. J.; Dylla-Spears, R. J.; Krauter, K. G.; Frieders, G.; Ross, G.; Bowers, M. W.; Strozzi, D. J.; Yoxall, B. E.; Hamza, A. V.; Dzenitis, B.; Bhandarkar, S. D.; Young, B.; Van Wonterghem, B. M.; Atherton, L. J.; Landen, O. L.; Edwards, M. J.; Boehly, T. R.
2013-08-01
The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.
Impact of microphysics on the growth of one-dimensional breath figures
NASA Astrophysics Data System (ADS)
Stricker, L.; Vollmer, J.
2015-10-01
Droplet patterns condensing on solid substrates (breath figures) tend to evolve into a self-similar regime, characterized by a bimodal droplet size distribution. The distributions comprise a bell-shaped peak of monodisperse large droplets and a broad range of smaller droplets. The size distribution of the latter follows a scaling law characterized by a nontrivial polydispersity exponent. We present here a numerical model for three-dimensional droplets on a one-dimensional substrate (fiber) that accounts for droplet nucleation, growth, and merging. The polydispersity exponent retrieved using this model is not universal. Rather it depends on the microscopic details of droplet nucleation and merging. In addition, its values consistently differ from the theoretical prediction by Blackman and Brochard [Phys. Rev. Lett. 84, 4409 (2000), 10.1103/PhysRevLett.84.4409]. Possible causes of this discrepancy are pointed out.
Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation
NASA Astrophysics Data System (ADS)
Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.
2016-06-01
A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.
Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R
2013-08-01
The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique. PMID:23971581
Landau-like states in neutral particles
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Ågren, Hans; Balatsky, A. V.
2016-06-01
We show the emergence of a new type of dispersion relation for neutral atoms with an interesting similarity to the spectrum of two-dimensional electrons in an applied perpendicular constant magnetic field. These neutral atoms can be confined in toroidal optical traps and give quasi-Landau spectra. In strong contrast to the equidistant infinitely degenerate Landau levels for charged particles, the spectral gap for such two-dimensional neutral particles increases in particular electric-field configurations. The idea in the paper is motivated by the development in cold atom experiments and builds on the seminal paper of Aharonov and Casher [Phys. Rev. Lett. 53, 319 (1984), 10.1103/PhysRevLett.53.319].
Rim instability of bursting thin smectic films
NASA Astrophysics Data System (ADS)
Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf
2013-05-01
The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.
Dissociation dynamics of noble-gas dimers in intense two-color IR laser fields
NASA Astrophysics Data System (ADS)
Magrakvelidze, M.; Thumm, U.
2013-07-01
We numerically model the dissociation dynamics of the noble-gas dimer ions He2+, Ne2+, Ar2+, Kr2+, and Xe2+ in ultrashort pump and probe laser pulses of different wavelengths. Our calculations reveal a distinguished “gap” in the kinetic energy spectra, observed experimentally for the Ar2 dimer [J. Wu , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.110.033005 110, 033005 (2013)], for all noble-gas dimers for appropriate wavelength combinations. This striking phenomenon can be explained by the dissociation of dimer ions on dipole-coupled Born-Oppenheimer adiabatic potential curves. Comparing pump-probe-pulse-delay-dependent kinetic-energy-release spectra for different noble-gas dimer cations of increasing mass, we discuss increasingly prominent (i) fine-structure effects in and (ii) classical aspects of the nuclear vibrational motion.
NASA Astrophysics Data System (ADS)
Bao, Xiao Jun; Zhang, Hai Fei; Dong, Jian Min; Li, Jun Qing; Zhang, Hong Fei
2014-06-01
A recent proposed universal decay law (UDL) for α-decay and cluster radioactivity (CR) half-lives [C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett 103, 072501 (2009), 10.1103/PhysRevLett.103.072501] that can accurately reproduce the experimental data was introduced starting from α-like R-matrix theory. The UDL formula depends only on the mass and charge numbers of the charged particle and the Q value. The new mass table AME2012 and the theoretical FRDM95, KTUY05, and WS2011 masses are used to determine the Q values. We systematically investigate the branching ratios of cluster radioactivity with respect to α decay for even-even superheavy nuclei (SHN) with Z =104-120 using the UDL formula. It is found that cluster radioactivity can be compared to α decay in neutron-rich SHN.
Quantized Pumping and Topology of the Phase Diagram for a System of Interacting Bosons
NASA Astrophysics Data System (ADS)
Berg, Erez; Levin, Michael; Altman, Ehud
2011-03-01
Interacting lattice bosons at integer filling can support two distinct insulating phases, which are separated by a critical point: the Mott insulator and the Haldane insulator [E. G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev. Lett. 97, 260401 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.260401]. The critical point can be gapped out by breaking lattice inversion symmetry. Here, we show that encircling this critical point adiabatically pumps one boson across the system. When multiple chains are coupled, the two insulating phases are no longer sharply distinct, but the pumping property survives. This leads to strict constraints on the topology of the phase diagram of systems of quasi-one-dimensional interacting bosons.
Superfluid-insulator transition of ultracold bosons in disordered one-dimensional traps
NASA Astrophysics Data System (ADS)
Vosk, Ronen; Altman, Ehud
2012-01-01
We derive an effective quantum Josephson array model for a weakly interacting one-dimensional condensate that is fragmented into weakly coupled puddles by a disorder potential. The distribution of coupling constants, obtained from first principles, indicates that weakly interacting bosons in a disorder potential undergo a superfluid insulator transition controlled by a strong randomness fixed point [E. Altman , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.93.150402 93, 150402 (2004)]. We compute renormalization-group flows for concrete realizations of the disorder potential to facilitate finite size scaling of experimental results and allow comparison to the behavior dictated by the strong randomness fixed point. The phase diagram of the system is obtained with corrections to mean-field results.
Chern mosaic: Topology of chiral superconductivity on ferromagnetic adatom lattices
NASA Astrophysics Data System (ADS)
Röntynen, Joel; Ojanen, Teemu
2016-03-01
In this work, we will explore the properties of superconducting surfaces decorated by two-dimensional ferromagnetic adatom lattices. As discovered recently [Röntynen and Ojanen, Phys. Rev. Lett. 114, 236803 (2015), 10.1103/PhysRevLett.114.236803], in the presence of a Rashba spin-orbit coupling these systems may support topological superconductivity with complex phase diagrams and high Chern numbers. We show how the long-range hopping nature of the effective low-energy theory generically gives rise to a phase diagram covered by a Chern mosaic, a rich pattern of topological phases with large Chern numbers. We study different lattice geometries and the dependence of energy gaps and abundance of different phases as a function of system parameters. Our findings establish the studied system as one of the richest platforms for topological matter known to date.
Testing Hypotheses about Sun-Climate Complexity Linking
NASA Astrophysics Data System (ADS)
Rypdal, M.; Rypdal, K.
2010-03-01
We reexamine observational evidence presented in support of the hypothesis of a sun-climate complexity linking by N. Scafetta and B. J. West, Phys. Rev. Lett. 90, 248701 (2003)PRLTAO0031-900710.1103/PhysRevLett.90.248701, which contended that the integrated solar flare index (SFI) and the global temperature anomaly (GTA) both follow Lévy walk statistics with the same waiting-time exponent μ≈2.1. However, their analysis does not account for trends in the signal, cannot deal correctly with infinite variance processes (Lévy flights), and suffers from considering only the second moment. Our analysis shows that properly detrended, the integrated SFI is well described as a Lévy flight, and the integrated GTA as a persistent fractional Brownian motion. These very different stochastic properties of the solar and climate records do not support the hypothesis of a sun-climate complexity linking.
Flexoelectric effect in a bent-core liquid crystal measured by Dynamic Light Scattering
NASA Astrophysics Data System (ADS)
Majumdar, Madhabi; Neupane, K.; Gleeson, James. T.; Jakli, Antal; Sprunt, Samuel
2008-03-01
Flexoelectricity is a linear coupling between electric polarization and elastic flexure in liquid crystals [1]. Although typically quite weak in calamitic LCs, the flexoelectric effect has recently been shown, by direct (electromechanical) measurement of the flexure-induced polarization, to be enhanced by several orders of magnitude in certain bent-core nematic (BCN) liquid crystals [2]. We report here an application of dynamic light scattering to measure the flexoelectric coefficient (e1 + e3) of BCNs through coupling of polarization to elastic fluctuation modes of the optic axis. Our results agree in order of magnitude with the values obtained by the electromechanical method. [1] R.B. Meyer, Phys. Rev. Lett. 22, 918 (1969). [2] J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, A. Jakli, Phys. Rev. Lett. 97, 157802 (2006).
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas
2006-11-01
In 1922 Otto Stern and Walther Gerlach split a beam of silver atoms using a transverse gradient field. This experiment, which lead to the understanding that electrons have intrinsic spin, oddly enough does not work for free electrons due to the interplay between the Lorentz force and Heisenberg uncertainly principle. Recent calculations, Phys. Rev. Lett. 79 (1997) 4517 and Phys. Rev. Lett. 86 (2001) 4508, have shown that a dismissed idea of L. Brillouin from 1928 to use a longitudinal gradient field to minimize the effect of the Lorentz force may in fact be possible. The history of the Stern-Gerlach device will be presented along with the revived ideas for separating a beam of free electrons into its two spin states.
Superfluidity of grain boundaries and supersolid behavior
NASA Astrophysics Data System (ADS)
Balibar, Sebastien
2007-03-01
We have found that, at the liquid-solid equilibrium pressure Pm, supersolid behavior is due to the superfluidity of grain boundaries in solid helium [1]. After describing this experiment and reviewing some of the related theoretical work [2], we discuss the possibility that , at larger pressure (P > Pm), grain boundaries could also explain the supersolid behavior which was observed with torsional oscillators [3-6]. [1] S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, and S. Balibar, Science 313, 1098 (2006)[2] E. Burovski, E. Kozik, A. Kuklov, N. Prokof'ev, and B. Svistunov, Phys. Rev. Lett. 94, 165301 (2005)[3] E. Kim and M.H. Chan, Nature 427, 225 (2004)[4] E. Kim and M.H. Chan, Science 305, 1941 (2004)[5] A.S.C. Rittner and J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006)[6] K. Shirahama, Bull. Am. Phys. Soc. 51, 302 (2006)
Exciton Radiative Lifetimes and Their Temperature Dependence in Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Miyauchi, Yuhei; Matsunaga, Ryusuke; Hirori, Hideki; Matsuda, Kazunari; Kanemitsu, Yoshihiko
2009-03-01
We have investigated the radiative lifetimes of excitons in single-walled carbon nanotubes (SWNTs) from simultaneous measurements of the photoluminescence (PL) lifetimes [1] and the PL quantum yields. A high-quality sample of PFO dispersed-SWNTs was used for the PL measurements. The evaluated radiative lifetimes were ˜5-15 ns for SWNTs with diameters ˜0.8-1.1 nm at room temperature. The radiative lifetimes increased with the tube diameter. The exciton spatial coherence volume (length) was of the order 10 ^2 nm along the tube axis, as deduced from the radiative lifetimes. Furthermore, we discuss the dynamics of bright and dark excitons [2] from the temperature dependence of the radiative lifetime (10 to 300 K).[3pt] [1] H. Hirori, K. Matsuda, Y. Miyauchi, S. Maruyama, and Y. Kanemitsu, Phys. Rev. Lett. 97, 257401 (2006). [0pt] [2] R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 101, 147404 (2008).
NASA Astrophysics Data System (ADS)
Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko
2009-03-01
We have performed micro-photoluminescence (PL) spectroscopy for single carbon nanotubes under magnetic fields at various temperatures. Sharp PL spectra of single carbon nanotubes allow us to directly observe the dark exciton PL peak a few meV below the bright exciton PL peak due to the Aharonov-Bohm effect [1]. From the PL intensity ratio of the dark to the bright excitons under magnetic fields, we found that the non-equilibrium (non-Boltzmann) distribution occurs between the bright and dark states, because phonons cannot scatter excitons between the two states with different parities [2]. Furthermore, we discuss the diameter dependence of the exciton population of the bright and dark states in single carbon nanotubes. [1] R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 101, 147404 (2008). [2] V. Perebeinos, J. Tersoff, and Ph. Avouris, Nano Lett. 5, 2495 (2005).
Experimental study of multichromatic terahertz wave propagation through planar micro-channels
Shin, Young-Min -Min; Northern Illinois Univ., Dekalb, IL; Fermi National Accelerator Lab.; Baig, Anisullah; Barchfeld, Robert; Gamzina, Diana; Barnett, Larry R.; Luhmann, Jr., Neville C.
2012-04-10
Previous theoretical and numerical studies [Y. M. Shin and L. R. Barnett, Appl. Phys. Lett. 92, 091501 (2008) and Y. M. Shin et al., Appl. Phys. Lett. 93, 221504 (2008)] have reported that a planar micro-channel with an asymmetric corrugation array supports strongly confined propagation of broadband THz plasmonic waves. The highly broad spectral response is experimentally demonstrated in the near-THz regime of 0.19-0.265 THz. Signal reflection and transmission tests on the three designed micro-channels including directional couplers resulted in a full-width-half-maximum bandwidth of ~ 50-60GHz with an insertion loss of approximately -5 dB, which is in good agreement withmore » simulation data. As a result, these micro-structures can be utilized for free electron beam and electronic/optic integrated devices« less
Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence
NASA Astrophysics Data System (ADS)
Inubushi, Masanobu; Takehiro, Shin-ichi; Yamada, Michio
2015-08-01
Considering a wall turbulence as a chaotic dynamical system, we study regeneration cycles in a minimal wall turbulence from the viewpoint of orbital instability by employing the covariant Lyapunov analysis developed by [F. Ginelli et al. Phys. Rev. Lett. 99, 130601 (2007), 10.1103/PhysRevLett.99.130601]. We divide the regeneration cycle into two phases and characterize them with the local Lyapunov exponents and the covariant Lyapunov vectors of the Navier-Stokes turbulence. In particular, we show numerically that phase (i) is dominated by instabilities related to the sinuous mode and the streamwise vorticity, and there is no instability in phase (ii). Furthermore, we discuss a mechanism of the regeneration cycle, making use of an energy budget analysis.
Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices.
de Oliveira, Marcelo M; Alves, Sidiney G; Ferreira, Silvio C
2016-01-01
We study absorbing-state phase transitions (APTs) in two-dimensional Voronoi-Delaunay (VD) random lattices with quenched coordination disorder. Quenched randomness usually changes the criticality and destroys discontinuous transitions in low-dimensional nonequilibrium systems. We performed extensive simulations of the Ziff-Gulari-Barshad model, and verified that the VD disorder does not change the nature of its discontinuous transition. Our results corroborate recent findings of Barghathi and Vojta [H. Barghathi and T. Vojta, Phys. Rev. Lett. 113, 120602 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.120602], stating the irrelevance of topological disorder in a class of random lattices that includes VD, and raise the interesting possibility that disorder in nonequilibrium APT may, under certain conditions, be irrelevant for the phase coexistence. We also verify that the VD disorder is irrelevant for the critical behavior of models belonging to the directed percolation and Manna universality classes. PMID:26871027
Mathematical modeling of genome replication
NASA Astrophysics Data System (ADS)
Retkute, Renata; Nieduszynski, Conrad A.; de Moura, Alessandro
2012-09-01
Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known about the global and local regulation of replication. We present a mathematical model for the spatial dynamics of DNA replication, which offers insight into the kinetics of replication in different types of organisms. Most biological experiments involve average quantities over large cell populations (typically >107 cells) and therefore can mask the cell-to-cell variability present in the system. Although the model is formulated in terms of a population of cells, using mathematical analysis we show that one can obtain signatures of stochasticity in individual cells from averaged quantities. This work generalizes the result by Retkute [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.068103 107, 068103 (2011)] to a broader set of parameter regimes.
Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model
NASA Astrophysics Data System (ADS)
Xun, Zhipeng; Tang, Gang; Han, Kui; Xia, Hui; Hao, Dapeng; Li, Yan
2012-04-01
Extensive kinetic Monte Carlo simulations are presented for the Wolf-Villain model in (1+1) dimensions. Asymptotic dynamic scaling is found for lattice sizes L⩾2048. The exponents obtained from our simulations, α=0.50±0.02 and β=0.25±0.02, are in excellent agreement with the exact values α=1/2 and β=1/4 for the one-dimensional Edwards-Wilkinson equation. Our findings explain the widespread discrepancies of previous reports for exponents of the Wolf-Villain model in (1+1) dimensions, and the results are also consistent with the theoretical predictions of López [J. M. López, M. Castro, and R. Gallego, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.166103 94, 166103 (2005)].
Impact of third-harmonic generation on the filamentation process
NASA Astrophysics Data System (ADS)
Doussot, J.; Béjot, P.; Faucher, O.
2016-03-01
The impact of third-harmonic generation on the propagation dynamics of a filament is revisited in light of recent theoretical and experimental results [P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, Phys. Rev. Lett. 112, 203902 (2014), 10.1103/PhysRevLett.112.203902] showing the extreme sensitivity of ionization to a bichromatic field. By performing a thorough parametric study, it is shown that third-harmonic generation can deeply influence the propagation of filaments in realistic focusing and pressure conditions. Demonstrated in the case of third-harmonic generation for different gases, this result sheds light on the effect of secondary radiations emitted during the filamentation process.
Precursor of transition to turbulence: spatiotemporal wave front.
Bhaumik, S; Sengupta, T K
2014-04-01
To understand transition to turbulence via 3D disturbance growth, we report here results obtained from the solution of Navier-Stokes equation (NSE) to reproduce experimental results obtained by minimizing background disturbances and imposing deterministic excitation inside the shear layer. A similar approach was adopted in Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a route of transition from receptivity to fully developed turbulent stage was explained for 2D flow in terms of the spatio-temporal wave-front (STWF). The STWF was identified as the unit process of 2D turbulence creation for low amplitude wall excitation. Theoretical prediction of STWF for boundary layer was established earlier in Sengupta, Rao, and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] from the Orr-Sommerfeld equation as due to spatiotemporal instability. Here, the same unit process of the STWF during transition is shown to be present for 3D disturbance field from the solution of governing NSE. PMID:24827343
Experimental quantum-cryptography scheme based on orthogonal states
NASA Astrophysics Data System (ADS)
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-12-01
Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.1239 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.
Vacuum-induced Berry phases in single-mode Jaynes-Cummings models
NASA Astrophysics Data System (ADS)
Liu, Yu; Wei, L. F.; Jia, W. Z.; Liang, J. Q.
2010-10-01
Motivated by work [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.89.220404 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.
Generation of atom-light entanglement in an optical cavity for quantum enhanced atom interferometry
NASA Astrophysics Data System (ADS)
Haine, Simon A.; Lau, Wing Yung Sarah
2016-02-01
We theoretically investigate the generation of atom-light entanglement via Raman superradiance in an optical cavity, and show how this can be used to enhance the sensitivity of atom interferometry. We model a realistic optical cavity, and show that by careful temporal shaping of the optical local oscillator used to measure the light emitted from the cavity, information in the optical mode can be combined with the signal from the atom interferometer to reduce the quantum noise, and thus increase the sensitivity. It was found in Phys. Rev. Lett. 110, 053002 (2013), 10.1103/PhysRevLett.110.053002 that an atomic "seed" was required in order to reduce spontaneous emission and allow for single mode behavior of the device. In this paper we find that the optical cavity reduces the need for an atomic seed, which allows for stronger atom-light correlations and a greater level of quantum enhancement.
Black, Carrie; Ng, C. S.
2013-01-15
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein (LB) collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set [C.-S. Ng et al., Phys. Rev. Lett. 83, 1974 (1999) and C. S. Ng et al., Phys. Rev. Lett. 96, 065002 (2004)]. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
Attosecond delay of xenon 4 d photoionization at the giant resonance and Cooper minimum
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Madjet, Mohamed El-Amine; Chakraborty, Himadri S.
2016-07-01
A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4 d photoionization that involves the 4 d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al., Phys. Rev. A 91, 033413 (2015), 10.1103/PhysRevA.91.033413]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3 p minimum [S. B. Schoun et al., Phys. Rev. Lett. 112, 153001 (2014), 10.1103/PhysRevLett.112.153001] is found. The result should encourage attosecond measurements of Xe 4 d photoemission.
Exploring the saturation levels of stimulated Raman scattering in the absolute regime.
Michel, D T; Depierreux, S; Stenz, C; Tassin, V; Labaune, C
2010-06-25
This Letter reports new experimental results that evidence the transition between the absolute and convective growth of stimulated Raman scattering (SRS). Significant reflectivities were observed only when the instability grows in the absolute regime. In this case, saturation processes efficiently limit the SRS reflectivity that is shown to scale linearly with the laser intensity, and the electron density and temperature. Such a scaling agrees with the one established by T. Kolber et al. [Phys. Fluids B 5, 138 (1993)10.1063/1.860861] and B Bezzerides et al. [Phys. Rev. Lett. 70, 2569 (1993)10.1103/PhysRevLett.70.2569], from numerical simulations where the Raman saturation is due to the coupling of electron plasma waves with ion waves dynamics. PMID:20867387
Simulation of the generation and long distance transport of proton beams at LULI
NASA Astrophysics Data System (ADS)
Welch, Dale; Cuneo, Michael; Campbell, Robert; Mehlhorn, Thomas
2004-11-01
High current, energetic protons are produced by irradiating thin metal foils with intense lasers[1]. At LULI[2], the current and energy of these protons as well as that of their accompanying electron cloud have been measured using magnetized and filtered Faraday cups. Here, the laser plasma interaction produced relativistic electrons at the critical surface. These electrons were transported through a 10-μm Au foil and created a space charge cloud that accelerates protons contaminants on the back side. The energetic protons and electrons drift several centimeters before reaching the Faraday cup. Self-consistent electromagnetic simulations of this process using a hybrid code are presented with comparisons to data. The neutralization of the high quality proton beam by the electron cloud is then studied. 1. R. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000). 2. M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).
Electronic correlations in the ferroelectric metallic state of LiOsO3
NASA Astrophysics Data System (ADS)
Lo Vecchio, I.; Giovannetti, G.; Autore, M.; Di Pietro, P.; Perucchi, A.; He, Jianfeng; Yamaura, K.; Capone, M.; Lupi, S.
2016-04-01
LiOsO3 has been recently identified as the first unambiguous "ferroelectric metal," experimentally realizing a prediction by Anderson and Blount [Phys. Rev. Lett. 14, 217 (1965), 10.1103/PhysRevLett.14.217]. In this Rapid Communication, we investigate the metallic state in LiOsO3 by means of infrared spectroscopy supplemented by density functional theory and dynamical mean-field theory calculations. Our measurements and theoretical calculations clearly show that LiOsO3 is a very bad metal with a small quasiparticle weight, close to a Mott-Hubbard localization transition. The agreement between experiments and theory allows us to ascribe all the relevant features in the optical conductivity to strong electron-electron correlations within the t2 g manifold of the osmium atoms.
Bell inequalities with communication assistance
NASA Astrophysics Data System (ADS)
Maxwell, Katherine; Chitambar, Eric
2014-04-01
In this paper, we consider the possible correlations between two parties using local machines and shared randomness with an additional amount of classical communication. This is a continuation of the work initiated by Bacon and Toner [Phys. Rev. Lett. 90, 157904 (2003), 10.1103/PhysRevLett.90.157904] who characterized the correlation polytope for 2×2 measurement settings with binary outcomes plus one bit of communication. Here, we derive a complete set of Bell inequalities for 3×2 measurement settings and a shared bit of communication. When the communication direction is fixed, nine Bell inequalities characterize the correlation polytope, whereas when the communication direction is bidirectional, 143 inequalities describe the correlations. We then prove a tight lower bound on the amount of communication needed to simulate all no-signaling correlations for a given number of measurement settings.
NASA Astrophysics Data System (ADS)
Fahmi, Akbar
2015-11-01
Bell's theorem states that quantum mechanics is not a locally causal theory. This state is often interpreted as nonlocality in quantum mechanics. Toner and Bacon [Phys. Rev. Lett. 91, 187904 (2003), 10.1103/PhysRevLett.91.187904] have shown that a shared random-variable theory augmented by one bit of classical communication exactly simulates the Bell correlation in a singlet state. In this paper, we show that in Toner and Bacon protocol, one of the parties (Bob) can deduce another party's (Alice) measurement outputs, if she only informs Bob of one of her own outputs. Afterwards, we suggest a nonlocal version of Toner and Bacon protocol wherein classical communications is replaced by nonlocal effects, so that Alice's measurements cause instantaneous effects on Bob's outputs. In the nonlocal version of Toner and Bacon's protocol, we get the same result again. We also demonstrate that the same approach is applicable to Svozil's protocol.
Motion of Euglena gracilis: Active fluctuations and velocity distribution
NASA Astrophysics Data System (ADS)
Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.
2015-07-01
We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.
Fermions tunneling from a general static Riemann black hole
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2015-05-01
In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.
NASA Astrophysics Data System (ADS)
Ghizzo, A.; Palermo, F.
2015-08-01
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.
Vortices in a toroidal Bose-Einstein condensate with a rotating weak link
NASA Astrophysics Data System (ADS)
Yakimenko, A. I.; Bidasyuk, Y. M.; Weyrauch, M.; Kuriatnikov, Y. I.; Vilchinskii, S. I.
2015-03-01
Motivated by a recent experiment [K. C. Wright et al., Phys. Rev. Lett. 110, 025302 (2013), 10.1103/PhysRevLett.110.025302], we investigate deterministic discontinuous jumps between quantized circulation states in a toroidally trapped Bose-Einstein condensate. These phase slips are induced by vortex excitations created by a rotating weak link. We analyze the influence of a localized condensate density depletion and atomic superflows, governed by the rotating barrier, on the energetic and dynamical stability of the vortices in the ring-shaped condensate. We simulate in a three-dimensional dissipative mean-field model the dynamics of the condensate using parameters similar to the experimental conditions. Moreover, we consider the dynamics of the stirred condensate far beyond the experimentally explored region and reveal surprising manifestations of complex vortex dynamics.
Transport through graphenelike flakes with intrinsic spin-orbit interactions
NASA Astrophysics Data System (ADS)
Weymann, I.; Barnaś, J.; Krompiewski, S.
2015-07-01
It was shown recently [J. L. Lado and J. Fernández-Rossier, Phys. Rev. Lett. 113, 027203 (2014), 10.1103/PhysRevLett.113.027203] that edge magnetic moments in graphene-like nanoribbons are strongly influenced by the intrinsic spin-orbit interaction. Due to this interaction an anisotropy comes about which makes the in-plane arrangement of magnetic moments energetically more favorable than that corresponding to the out-of-plane configuration. In this paper we raise both the edge magnetism problem and the differential conductance and shot noise Fano factor issues, in the context of finite-size flakes within the Coulomb blockade (CB) transport regime. Our findings elucidate the following problems: (i) modification of CB diamonds by the appearance of in-plane magnetic moments and (ii) modification of CB diamonds by the intrinsic spin-orbit interaction.
Sjostrom, Travis; Daligault, Jérôme
2015-12-01
We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)]. PMID:26764850
Competing ferromagnetic and nematic alignment in self-propelled polar particles
NASA Astrophysics Data System (ADS)
Ngo, Sandrine; Ginelli, Francesco; Chaté, Hugues
2012-11-01
We study a Vicsek-style model of self-propelled particles where ferromagnetic and nematic alignment compete in both the usual “metric” version and in the “metric-free” case where a particle interacts with its Voronoi neighbors. We show that the phase diagram of this out-of-equilibrium XY model is similar to that of its equilibrium counterpart: The properties of the fully nematic model, studied before by Ginelli [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.184502 104, 184502 (2010)], are thus robust to the introduction of a modest bias of interactions toward ferromagnetic alignment. The direct transitions between polar and nematic ordered phases are shown to be discontinuous in the metric case, and continuous, belonging to the Ising universality class, in the metric-free version.
Collective Flocking Dynamics: Long Rang Order in a Non-Equilibrium 2D XY Model
NASA Astrophysics Data System (ADS)
Tu, Yuhai
1996-03-01
We propose and study a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, schools of fishs, etc.) (J. Toner and Y. Tu, Phys. Rev. Lett.), 75(23), 4326(1995) Our model becomes highly non-trivial, and different from the equilibrium model, for d
Population-dynamics method with a multicanonical feedback control
NASA Astrophysics Data System (ADS)
Nemoto, Takahiro; Bouchet, Freddy; Jack, Robert L.; Lecomte, Vivien
2016-06-01
We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large deviations of time-averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006), 10.1103/PhysRevLett.96.120603]. This method exhibits systematic errors which can be large in some circumstances, particularly for systems with weak noise, with many degrees of freedom, or close to dynamical phase transitions. We show how these errors can be mitigated by introducing control forces within the algorithm. These forces are determined by an iteration-and-feedback scheme, inspired by multicanonical methods in equilibrium sampling. We demonstrate substantially improved results in a simple model, and we discuss potential applications to more complex systems.
Kamarchik, Eugene; Mazziotti, David A
2007-12-14
The global energy minima of pure and binary molecular clusters with 5-12 particles interacting pairwise are computed in polynomial time as a function of only the two-particle reduced density function (2-RDF). We derive linear matrix inequalities from the classical analogue of quantum N-representability constraints to ensure that the 2-RDF represents realistic N-particle configurations. The 2-RDF reformulation relaxes a combinatorial optimization into a convex optimization that scales polynomially in computer time. Clusters are optimized with a code for large-scale semidefinite programming developed for the quantum representability problem [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)10.1103/PhysRevLett.93.213001]. PMID:18233446
On the structure of the master equation for a two-level system coupled to a thermal bath
NASA Astrophysics Data System (ADS)
de Vega, Inés
2015-04-01
We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).
NASA Astrophysics Data System (ADS)
Moreno-Bote, Rubén; Parga, Néstor
2006-01-01
An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced previously by Moreno-Bote and Parga [Phys. Rev. Lett.PRLTAO0031-9007 92, 028102 (2004)10.1103/PhysRevLett.92.028102]. These two functions define the firing variability and firing synchronization between neurons, and are of much importance for understanding neuron communication.
Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family.
Wu, Menghao; Fu, Huahua; Zhou, Ling; Yao, Kailun; Zeng, Xiao Cheng
2015-05-13
We predict a new class of monolayer phosphorus allotropes, namely, ε-P, ζ-P, η-P, and θ-P. Distinctly different from the monolayer α-P (black) and previously predicted β-P (Phys. Rev. Lett. 2014, 112, 176802), γ-P, and δ-P (Phys. Rev. Lett. 2014, 113, 046804) with buckled honeycomb lattice, the new allotropes are composed of P4 square or P5 pentagon units that favor tricoordination for P atoms. The new four polymorphs, together with five additional hybrid polymorphs, greatly enrich the phosphorene structures, and their stabilities are confirmed by first-principles calculations. In particular, the θ-P is shown to be equally stable as the α-P (black) and more stable than all previously reported phosphorene polymorphs. Prediction of nonvolatile ferroelastic switching and structural transformation among different polymorphs under strains points out their potential applications via strain engineering. PMID:25844524
Phosphorenes with Non-Honeycomb Structures: A Much Extended Family
NASA Astrophysics Data System (ADS)
Wu, Menghao; Fu, Huahua; Zhou, Ling; Yao, Kailun; Zeng, Xiao Cheng; Huazhong University of Science; Technology Team; University of Nebraska-Lincoln Team
We predict a new class of monolayer phosphorous allotropes, namely, ɛ-P, ζ-P, η-P and θ-P. Distinctly different from the monolayer α-P (black) and previously predicted β-P (Phys. Rev. Lett. 112, 176802 (2014)), γ-P and δ-P (Phys. Rev. Lett. 113, 046804 (2014)) with buckled honeycomb lattice, the new allotropes are composed of P4 square or P5 pentagon units that favor tricoordination for P atoms. The new four phases, together with 5 hybrid phases, are confirmed stable by first-principles calculations. In particularly, the θ-P is shown to be equally stable as the α-P (black) and more stable than all previously reported phosphorene allotropes. Prediction of nonvolatile ferroelastic switching and structural transformation among different phases under strains points out their potential applications via strain engineering. MHW was supported by start-up fund from Huazhong University of Science and Technology.
Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices
NASA Astrophysics Data System (ADS)
de Oliveira, Marcelo M.; Alves, Sidiney G.; Ferreira, Silvio C.
2016-01-01
We study absorbing-state phase transitions (APTs) in two-dimensional Voronoi-Delaunay (VD) random lattices with quenched coordination disorder. Quenched randomness usually changes the criticality and destroys discontinuous transitions in low-dimensional nonequilibrium systems. We performed extensive simulations of the Ziff-Gulari-Barshad model, and verified that the VD disorder does not change the nature of its discontinuous transition. Our results corroborate recent findings of Barghathi and Vojta [H. Barghathi and T. Vojta, Phys. Rev. Lett. 113, 120602 (2014), 10.1103/PhysRevLett.113.120602], stating the irrelevance of topological disorder in a class of random lattices that includes VD, and raise the interesting possibility that disorder in nonequilibrium APT may, under certain conditions, be irrelevant for the phase coexistence. We also verify that the VD disorder is irrelevant for the critical behavior of models belonging to the directed percolation and Manna universality classes.
NASA Astrophysics Data System (ADS)
Yue, Z.; Prestgard, M. C.; Tiwari, A.; Raikh, M. E.
2015-05-01
The recently suggested mechanism [Y. Song and H. Dery, Phys. Rev. Lett. 113, 047205 (2014), 10.1103/PhysRevLett.113.047205] of the three-terminal spin transport is based on the resonant tunneling of electrons between ferromagnetic and normal electrodes via an impurity. The sensitivity of current to a weak external magnetic field stems from a spin blockade, which, in turn, is enabled by strong on-site repulsion. We demonstrate that this sensitivity exists even in the absence of repulsion when a single-particle description applies. Within this description, we calculate exactly the resonant-tunneling current between the electrodes. The mechanism of magnetoresistance, completely different from the spin blocking, has its origin in the interference of virtual tunneling amplitudes. Spin imbalance in ferromagnetic electrodes is responsible for this interference and the resulting coupling of the Zeeman levels. This coupling also affects the current in the correlated regime.
First-principles simulations of electrostatic interactions between dust grains
Itou, H. Amano, T.; Hoshino, M.
2014-12-15
We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181–186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152–158 (2000)], indicating the absence of the ODS attractive force.
Theory of thermopower in two-dimensional graphene
NASA Astrophysics Data System (ADS)
Hwang, E. H.; Rossi, E.; Das Sarma, S.
2009-12-01
Motivated by recent experiments by Yuri M. Zuev [Phys. Rev. Lett. 102, 096807 (2009)], Peng Wei [Phys. Rev. Lett. 102, 166808 (2009)], and Joseph G. Checkelsky [Phys. Rev. B 80, 081413(R) (2009)], we calculate the thermopower of graphene incorporating the energy dependence of various transport scattering times. We find that scattering by screened charged impurities gives a reasonable explanation for the measured thermopower. The calculated thermopower behaves as 1/n at high densities, but saturates at low densities. We also find that the thermopower scales with the normalized temperature T/TF and does not depend on the impurity densities, but strongly depends on the fine-structure constant rs and on the location of the impurities. We discuss the deviation from the Mott formula in graphene thermopower and use an effective-medium theory to calculate thermopower at low carrier density regimes where electron-hole puddles dominate.
Bliokh, K Yu; Bliokh, Yu P
2007-06-01
We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described. PMID:17677378
Leidenfrost effect: Accurate drop shape modeling and refined scaling laws.
Sobac, B; Rednikov, A; Dorbolo, S; Colinet, P
2014-11-01
We here present a simple fitting-parameter-free theory of the Leidenfrost effect (droplet levitation above a superheated plate) covering the full range of stable shapes, i.e., from small quasispherical droplets to larger puddles floating on a pocketlike vapor film. The geometry of this film is found to be in excellent quantitative agreement with the interferometric measurements of Burton et al. [Phys. Rev. Lett. 109, 074301 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.074301]. We also obtain new scalings generalizing classical ones derived by Biance et al. [Phys. Fluids 15, 1632 (2003)PHFLE61070-663110.1063/1.1572161] as far as the effect of plate superheat is concerned and highlight the relative role of evaporation, gravity, and capillarity in the vapor film. To further substantiate these findings, a treatment of the problem by matched asymptotic expansions is also presented. PMID:25493885
Differential ablator-fuel adiabat tuning in indirect-drive implosions
NASA Astrophysics Data System (ADS)
Peterson, J. L.; Berzak Hopkins, L. F.; Jones, O. S.; Clark, D. S.
2015-03-01
We propose a design adjustment to the high foot laser pulse [T. R. Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014), 10.1103/PhysRevLett.112.055002] that is predicted to lower the fuel adiabat, increase compression and neutron production, but maintain similar ablation front growth. This is accomplished by lowering the laser power between the first and the second pulses (the "trough") so that the first shock remains strong initially but decays as it transits the ablator and enters the capsule fuel in a process similar to direct-drive "adiabat shaping" [S. E. Bodner et al., Phys. Plasmas 7, 2298 (2000), 10.1063/1.874063]. Integrated hohlraum simulations show that hohlraum cooling is sufficient to launch decaying shocks with adequate symmetry control, suggesting that adiabat shaping may be possible with indirect-drive implosions. Initial experiments show the efficacy of this technique.
Quantum synchronization in an optomechanical system based on Lyapunov control
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Quantum rms error and Heisenberg's error-disturbance relation
NASA Astrophysics Data System (ADS)
Busch, Paul
2014-09-01
Reports on experiments recently performed in Vienna [Erhard et al, Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg's error-disturbance relation. In contrast, a Heisenberg-type tradeoff relation for joint measurements of position and momentum has been formulated and proven in [Phys. Rev. Lett. 111, 160405 (2013)]. Here I show how the apparent conflict is resolved by a careful consideration of the quantum generalization of the notion of root-mean-square error. The claim of a violation of Heisenberg's principle is untenable as it is based on a historically wrong attribution of an incorrect relation to Heisenberg, which is in fact trivially violated. We review a new general trade-off relation for the necessary errors in approximate joint measurements of incompatible qubit observables that is in the spirit of Heisenberg's intuitions. The experiments mentioned may directly be used to test this new error inequality.
NASA Astrophysics Data System (ADS)
Iwahara, Naoya; Sato, Tohru; Tanaka, Kazuyoshi; Chibotaru, Liviu F.
2010-12-01
The vibronic coupling constants of C60- are derived from the photoelectron spectrum measured by Wang [J. Chem. Phys. 123, 051106 (2005)]10.1063/1.1998787 at low temperature with high resolutions. We find that the couplings of the Jahn-Teller modes of C60- are weaker than the couplings reported by Gunnarsson [Phys. Rev. Lett. 74, 1875 (1995)10.1103/PhysRevLett.74.1875]. The total stabilization energy after hg and ag modes is reduced with respect to the previous derivation of Gunnarsson by 30%. The computed vibronic coupling constants using density-functional theory with B3LYP functional agree well with the new experimental constants, so the discrepancy between theory and experiment persistent in the previous studies is basically solved.
Effects of disordered isovalent substitution in Fe-based superconductor
NASA Astrophysics Data System (ADS)
Wang, Limin; Berlijn, Tom; Wang, Yan; Lin, Chai-Hui; Hirschfeld, P. J.; Ku, Wei
2012-02-01
Using a recently developed first-principles method for disordered materials [1-2], we investigate the effect of isovalent substitution in Fe-based superconductors, BaFe2(As1-xPx)2, FeTe1-xSex, and Ba(Fe1-xRux)2As2. For anion substitutions (the first two cases) effects of impurity scattering are found mostly in the anion bands. By contrast, the Ru substitution introduces much stronger scattering in the Fe bands. Surprisingly, in all the cases, the pockets near the chemical potential are the least affected, due to the low density of states near the chemical potential. Together, our results suggest an interesting scenario of enhancing superconductivity.[4pt] [1] T. Berlijn, D. Volja, W. Ku, Phys. Rev. Lett. 106, 077005 (2011).[0pt] [2] W.Ku, T. Berlijn, CC. Lee, Phys. Rev. Lett. 104, 216401 (2010).
High-fidelity composite adiabatic passage in nonlinear two-level systems
NASA Astrophysics Data System (ADS)
Dou, Fu-Quan; Cao, Hui; Liu, Jie; Fu, Li-Bin
2016-04-01
We investigate the composite adiabatic passage (CAP) reported by B. T. Torosov et al. [Phys. Rev. Lett. 106, 233001 (2011), 10.1103/PhysRevLett.106.233001] in a nonlinear two-level system in which the level energies depend on the occupation of the levels, representing a mean-field type of interaction between the particles. A high-fidelity, fast, and robust quantum manipulation is achieved in the system. We consider the effect of interparticle interaction and find that it tends to increase the number of the pulse sequences. The CAP technique can suppress the nonadiabatic oscillations below the quantum-information benchmark 10-4, as long as there exist sufficiently long composite sequences. We analyze the robustness against the variations in the field parameters. The difference between the nonlinear and linear systems on the CAP technique is also discussed.
Core conditions for alpha heating attained in direct-drive inertial confinement fusion
NASA Astrophysics Data System (ADS)
Bose, A.; Woo, K. M.; Betti, R.; Campbell, E. M.; Mangino, D.; Christopherson, A. R.; McCrory, R. L.; Nora, R.; Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; Forrest, C. J.; Frenje, J.; Gatu Johnson, M.; Glebov, V. Yu; Knauer, J. P.; Marshall, F. J.; Stoeckl, C.; Theobald, W.
2016-07-01
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016), 10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.
Bray, I. ); Stelbovics, A.T. )
1994-04-01
The total and total ionization cross sections for positron scattering on atomic hydrogen are calculated by applying the convergent-close-coupling method to the model where positronium-formation channels are omitted. This model accurately describes the physics of the scattering whenever the positronium formation cross section is negligible, in particular, above 100 eV for this system. The total ionization cross section results in this energy region are in excellent agreement with the recent measurements of Jones [ital et] [ital al]. [J. Phys. B 26, L483 (1993)], and so lie below the earlier measurements of Spicher [Phys. Rev. Lett. 64, 1019 (1990)], and the recent calculations of Acacia [ital et] [ital al]. [Phys. Rev. Lett. (to be published)]. The total cross section is in very good agreement with the recent measurements of Zhou [ital et] [ital al]. (unpublished) down to 30 eV.
Quantum nonlocality of four-qubit entangled states
Wu, Chunfeng; Yeo, Ye; Oh, C. H.; Kwek, L. C.
2007-03-15
We derive a Bell inequality for testing violation of local realism. Quantum nonlocality of several four-qubit states is investigated. These include the Greenberger-Zeilinger-Horne (GHZ) state, W state, linear cluster state, and the state |{chi}> that has recently been proposed in [Phys. Rev. Lett. 96, 060502 (2006)]. The Bell inequality is optimally violated by |{chi}> but not violated by the GHZ state. The linear cluster state also violates the Bell inequality though not optimally. The state |{chi}> can thus be discriminated from the linear cluster state by using the inequality. Different aspects of four-partite entanglement are also studied by considering the usefulness of a family of four-qubit mixed states as resources for two-qubit teleportation. Our results generalize those in [Phys. Rev. Lett. 72, 797 (1994)].
Relativistic corrections to the nuclear Schiff moment
Dmitriev, V.F.; Flambaum, V.V.
2005-06-01
Parity- and time-invariance-violating (P,T-odd) atomic electric dipole moments (EDM) are induced by the interaction between atomic electrons and nuclear P,T-odd moments, which are themselves produced by P,T-odd nuclear forces. The nuclear EDM is screened by atomic electrons. The EDM of a nonrelativistic atom with closed electron subshells is induced by the nuclear Schiff moment. For heavy relativistic atoms EDM is induced by the nuclear local dipole moments, which differ by 10-50% from the Schiff moments calculated previously. We calculate the local dipole moments for {sup 199}Hg and {sup 205}Tl where the most accurate atomic [Romalis et al., Phys. Rev. Lett. 86, 2505 (2001)] and molecular [Cho et al., Phys. Rev. Lett. 63, 2559 (1989); Phys. Rev. A 44, 2783 (1991)] EDM measurements have been performed.
Thermophoresis of confined colloids in the near-contact limit
NASA Astrophysics Data System (ADS)
Yariv, Ehud
2016-06-01
In a recent Letter [Phys. Rev. Lett. 116, 138302 (2016), 10.1103/PhysRevLett.116.138302] Würger calculated the thermophoretic velocity of a colloidal sphere towards a solid boundary due to an imposed temperature gradient perpendicular to that wall in the limit where the particle-wall separation distance h is small compared to the particle radius a . Würger obtained the approximation u /u0=3 (h /a ) [ln(a /h ) -2.25 ] for the particle velocity u towards the wall, u0 being the corresponding velocity in the bulk. In deriving that approximation an ad hoc procedure was employed to circumvent the calculation of a diverging integral that emerges in the course of a lubrication analysis. We show here how to systematically address this problem, obtaining the approximation u /u0=3 (h /a ) [ln(a /h ) +0.1087 ] .
Structure, scaling, and phase transition in the optimal transport network.
Bohn, Steffen; Magnasco, Marcelo O
2007-02-23
The structure and properties of optimal networks depend on the cost functional being minimized and on constraints to which the minimization is subject. We show here two different formulations that lead to identical results: minimizing the dissipation rate of an electrical network under a global constraint is equivalent to the minimization of a power-law cost function introduced by Banavar et al. [Phys. Rev. Lett. 84, 4745 (2000)10.1103/PhysRevLett.84.4745]. An explicit scaling relation between the currents and the corresponding conductances is derived, proving the potential flow nature of the latter. Varying a unique parameter, the topology of the optimized networks shows a transition from a tree topology to a very redundant structure with loops; the transition corresponds to a discontinuity in the slope of the power dissipation. PMID:17359138
Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng
2016-07-01
We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F -expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008), 10.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.
Emergence and decline of scientific paradigms in a dynamic complex network
NASA Astrophysics Data System (ADS)
Yao, Chao; Zhang, Mei
2013-01-01
We study the idea spreading process by extending a recent model proposed by Bornholdt [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.058701 106, 058701 (2011)] to the population on a two-dimensional square area either in the presence of static topological randomness or in which agents are allowed to freely move. We find that the static topological randomness induced by the random distribution of agents in the square area disfavors the common pattern of scientific paradigms, which is characterized by quick rise and slow decline of an arbitrary dominant idea. However, the common pattern of scientific paradigms is recovered when the movement of agents is enabled. In addition, we find that, when the moving speed of agents is low, the average lifetime of a dominant idea displays an optimal behavior. In contrast, the evolution of the model is no more sensitive to the movement speed once it is high enough.
Population-dynamics method with a multicanonical feedback control.
Nemoto, Takahiro; Bouchet, Freddy; Jack, Robert L; Lecomte, Vivien
2016-06-01
We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large deviations of time-averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.120603]. This method exhibits systematic errors which can be large in some circumstances, particularly for systems with weak noise, with many degrees of freedom, or close to dynamical phase transitions. We show how these errors can be mitigated by introducing control forces within the algorithm. These forces are determined by an iteration-and-feedback scheme, inspired by multicanonical methods in equilibrium sampling. We demonstrate substantially improved results in a simple model, and we discuss potential applications to more complex systems. PMID:27415224
Finite-temperature interatomic exchange and magnon softening in Fe overlayers on Ir(001)
NASA Astrophysics Data System (ADS)
Rodrigues, D. C. M.; Szilva, A.; Klautau, A. B.; Bergman, A.; Eriksson, O.; Etz, C.
2016-07-01
We evaluate how thermal effects soften the magnon dispersion in 6 layers of Fe(001) on top of Ir(001). We perform a systematic study considering noncollinear spin arrangement and calculate configuration-dependent exchange parameters Jij n c following the methodology described by Szilva et al. [Phys. Rev. Lett. 111, 127204 (2013)], 10.1103/PhysRevLett.111.127204. In addition, Monte Carlo simulations were performed in order to estimate the noncollinear spin arrangement as a function of temperature. Hence the Jij n c's related to these configurations were calculated and used in an atomistic spin dynamics approach to evaluate the magnon spectra. Our results show good agreement with recent room-temperature measurements, and highlights how thermal effects produce magnon softening in this, and similar, systems.
Rheological properties of the soft-disk model of two-dimensional foams.
Langlois, Vincent J; Hutzler, Stefan; Weaire, Denis
2008-08-01
The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization is found. Its nonexponential form and the variation of localization length with boundary velocity are well described by a continuum model in the spirit of Janiaud etal [Phys. Rev. Lett. 97, 038302 (2006)]. Other results satisfactorily link localization to model parameters, and hence tie together continuum and local descriptions. PMID:18850830
Linear spin-wave study of a quantum kagome ice
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Burkov, A. A.; Melko, Roger G.
2016-04-01
We present a large-S study of a quantum spin ice Hamiltonian, introduced by Huang et al. [Phys. Rev. Lett. 112, 167203 (2014), 10.1103/PhysRevLett.112.167203], on the kagome lattice. This model involves a competition between the frustrating Ising term of classical kagome ice, a Zeeman magnetic field h , and a nearest-neighbor transverse spin-flip term SixSjx-SiySjy . Recent quantum Monte Carlo (QMC) simulations by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421], uncovered lobes of a disordered phase for large Ising interaction and h ≠0 —a putative quantum spin liquid phase. Here, we examine the nature of this model using large-S expansion. We show that the ground state properties generally have the same trends with those observed in QMC simulations. In particular, the large-S ground state phase diagram captures the existence of the disordered lobes.
NASA Astrophysics Data System (ADS)
Lu, Tingyu; Zhou, Jun; Nakayama, Tsuneyoshi; Yang, Ronggui; Li, Baowen
2016-02-01
We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance, of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the surface states allowed in a thin region near the interface. Our detailed calculations demonstrate that the interfacial thermal conductance across Pb/Pt/Al/Au-diamond interfaces are only slightly different among these metals, and reproduce well the experimental results of the interfacial thermal conductance across metal-diamond interfaces observed by Stoner et al. [Phys. Rev. Lett. 68, 1563 (1992), 10.1103/PhysRevLett.68.1563] and most recently by Hohensee et al. [Nat. Commun. 6, 6578 (2015), 10.1038/ncomms7578].
Parra-Rivas, P; Gomila, D; Matías, M A; Colet, P; Gelens, L
2016-01-01
We have reported in Phys. Rev. Lett. 110, 064103 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.064103 that in systems which otherwise do not show oscillatory dynamics, the interplay between pinning to a defect and pulling by drift allows the system to exhibit excitability and oscillations. Here we build on this work and present a detailed bifurcation analysis of the various dynamical instabilities that result from the competition between a pulling force generated by the drift and a pinning of the solitons to spatial defects. We show that oscillatory and excitable dynamics of dissipative solitons find their origin in multiple codimension-2 bifurcation points. Moreover, we demonstrate that the mechanisms leading to these dynamical regimes are generic for any system admitting dissipative solitons. PMID:26871077
NASA Astrophysics Data System (ADS)
Liu, Jian-Heng; Tu, Matisse Wei-Yuan; Zhang, Wei-Min
2016-07-01
By considering a nanoscale Aharonov-Bohm (AB) interferometer consisting of a laterally coupled double dot coupled to the source and drain electrodes, we investigate the AB phase dependence of the bonding and antibonding states and the transport currents via the bonding and antibonding state channels. The relations of the AB phase dependence between the quantum states and the associated transport current components are analyzed, which provides useful information for the reconstruction of quantum states through the measurement of the transport current in such systems. We also obtain the validity of the experimental analysis [given in T. Hatano et al., Phys. Rev. Lett. 106, 076801 (2011), 10.1103/PhysRevLett.106.076801] that bonding state currents in different energy configurations are almost the same. With the coherent properties in the quantum dot states as well as in the transport currents, we also provide a way to manipulate the bonding and antibonding states through the AB magnetic flux.
Top Quarks Spin Correlations with Graviton in ADD and RS Models at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Arai, Masato; Okada, Nobuchika; Smolek, Karel; Šimák, Vladislav
2008-03-01
In LHC physics we study the spin correlation of top-antitop pairs production to investigate the production mechanism of heavy quarks[F. Hubard et al. Eur. Phys. J. C 44 (2006) 13]. The s-channel process mediated by graviton Kaluza-Klein modes in ADD model with several extra dimensions[N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. 429B (1998) 263, hep-ph/9803315] or in the Randall-Sundrum model with only one extra dimension[L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 hep-ph/9905221] contribute to the top-antitop pair production and affects the resulting top spin correlations. We calculated the full density matrix for the top-antitop pair production. We find a sizable deviation of the top spin correlations from the Standard.
Nonlinear Single Spin Spectrum Analyzer
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2014-03-01
Qubits have been used as linear spectrum analyzers of their environments, through the use of decoherence spectroscopy. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013). Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: NIST, Boulder, CO.
Depinning of stiff directed lines in random media
NASA Astrophysics Data System (ADS)
Boltz, Horst-Holger; Kierfeld, Jan
2014-07-01
Driven elastic manifolds in random media exhibit a depinning transition to a state with nonvanishing velocity at a critical driving force. We study the depinning of stiff directed lines, which are governed by a bending rigidity rather than line tension. Their equation of motion is the (quenched) Herring-Mullins equation, which also describes surface growth governed by surface diffusion. Stiff directed lines are particularly interesting as there is a localization transition in the static problem at a finite temperature and the commonly exploited time ordering of states by means of Middleton's theorems [Phys. Rev. Lett. 68, 670 (1992), 10.1103/PhysRevLett.68.670] is not applicable. We employ analytical arguments and numerical simulations to determine the critical exponents and compare our findings with previous works and functional renormalization group results, which we extend to the different line elasticity. We see evidence for two distinct correlation length exponents.
Comparison of different measures for quantum discord under non-Markovian noise
NASA Astrophysics Data System (ADS)
Xu, Z. Y.; Yang, W. L.; Xiao, X.; Feng, M.
2011-09-01
Two geometric measures for quantum discord were recently proposed by Modi et al (2010 Phys. Rev. Lett.104 080501) and Dakić et al (2010 Phys. Rev. Lett.105 190502). We study the similarities and differences for total quantum correlations of Bell-diagonal states using these two geometry-based quantum discord and the original quantum discord. We show that, under non-Markovian dephasing channels, quantum discord and one of the geometric measures remain constant for a finite amount of time, but not the other geometric measure. However, all the three measures share a common sudden change point. Our study on critical point of sudden transition might be useful for keeping long-time total quantum correlations under decoherence.
NASA Astrophysics Data System (ADS)
Zawadzki, Piotr
2016-04-01
Quantum attacks that provide an undetectable eavesdropping of the ping-pong protocol operating over lossy quantum channels have already been demonstrated by Wójcik (Phys Rev Lett 90(15):157901, 2003) and Zhang et al. (Phys Lett A 333(12):46-50, 2004). These attacks provide a maximum information gain of 0.311 bits per protocol cycle as long as the induced loss rate remains acceptable. Otherwise, the skipping of some protocol cycles is advised to stay within an accepted loss limit. Such policy leads to a reduction in information gain proportional to the number of skipped cycles. The attack transformation parametrized by the induced loss ratio is proposed. It provides smaller reduction in information gain when the losses accepted by the communicating parties are too low to mount the most effective attack. Other properties of the attack remain the same.
NASA Astrophysics Data System (ADS)
Wu, Jun; Gygi, François
2012-06-01
We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.
Loading a fountain clock with an enhanced low-velocity intense source of atoms
NASA Astrophysics Data System (ADS)
Dobrev, G.; Gerginov, V.; Weyers, S.
2016-04-01
We present experimental work for improved atom loading in the optical molasses of a cesium fountain clock, employing a low-velocity intense source of atoms [Lu et al., Phys. Rev. Lett 77, 3331 (1996), 10.1103/PhysRevLett.77.3331], which we modify by adding a dark-state pump laser. With this modification the atom source has a mean flux of 4 ×108 atoms/s at a mean atom velocity of 8.6 m/s. Compared to fountain operation using background gas loading, we achieve a significant increase of the loaded and detected atom number by a factor of 40. Operating the fountain clock with a total number of detected atoms Nat=2.9 ×106 in the quantum projection noise-limited regime, a frequency instability σy(1 s ) =2.7 ×10-14 is demonstrated.
Reconstruction of a neural network from a time series of firing rates
NASA Astrophysics Data System (ADS)
Pikovsky, A.
2016-06-01
Randomly coupled neural fields demonstrate irregular variation of firing rates, if the coupling is strong enough, as has been shown by Sompolinsky et al. [Phys. Rev. Lett. 61, 259 (1988)], 10.1103/PhysRevLett.61.259. We present a method for reconstruction of the coupling matrix from a time series of irregular firing rates. The approach is based on the particular property of the nonlinearity in the coupling, as the latter is determined by a sigmoidal gain function. We demonstrate that for a large enough data set and a small measurement noise, the method gives an accurate estimation of the coupling matrix and of other parameters of the system, including the gain function.
Pair neutron transfer in 60Ni+116Sn probed via γ -particle coincidences
NASA Astrophysics Data System (ADS)
Montanari, D.; Corradi, L.; Szilner, S.; Pollarolo, G.; Goasduff, A.; Mijatović, T.; Bazzacco, D.; Birkenbach, B.; Bracco, A.; Charles, L.; Courtin, S.; Désesquelles, P.; Fioretto, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Haas, F.; Hess, H.; Jelavić Malenica, D.; Jungclaus, A.; Karolak, M.; Leoni, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Montagnoli, G.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Soić, N.; Stefanini, A. M.; Stezowski, O.; Theisen, Ch.; Ur, C. A.; Valiente-Dobón, J. J.; Varga Pajtler, M.
2016-05-01
We performed a γ -particle coincidence experiment for the 60Ni + 116Sn system to investigate whether the population of the two-neutron pickup channel leading to 62Ni is mainly concentrated in the ground-state transition, as has been found in a previous work [D. Montanari et al., Phys. Rev. Lett. 113, 052501 (2014), 10.1103/PhysRevLett.113.052501]. The experiment has been performed by employing the PRISMA magnetic spectrometer coupled to the Advanced Gamma Tracking Array (AGATA) demonstrator. The strength distribution of excited states corresponding to the inelastic, one- and two-neutron transfer channels has been extracted. We found that in the two-neutron transfer channel the strength to excited states corresponds to a fraction (less than 24%) of the total, consistent with the previously obtained results that the 2 n channel is dominated by the ground-state to ground-state transition.
Random pinning limits the size of membrane adhesion domains
NASA Astrophysics Data System (ADS)
Speck, Thomas; Vink, Richard L. C.
2012-09-01
Theoretical models describing specific adhesion of membranes predict (for certain parameters) a macroscopic phase separation of bonds into adhesion domains. We show that this behavior is fundamentally altered if the membrane is pinned randomly due to, e.g., proteins that anchor the membrane to the cytoskeleton. Perturbations which locally restrict membrane height fluctuations induce quenched disorder of the random-field type. This rigorously prevents the formation of macroscopic adhesion domains following the Imry-Ma argument [Imry and Ma, Phys. Rev. Lett.10.1103/PhysRevLett.35.1399 35, 1399 (1975)]. Our prediction of random-field disorder follows from analytical calculations and is strikingly confirmed in large-scale Monte Carlo simulations. These simulations are based on an efficient composite Monte Carlo move, whereby membrane height and bond degrees of freedom are updated simultaneously in a single move. The application of this move should prove rewarding for other systems also.
Quantum Optics Theory of Electronic Noise in Coherent Conductors
NASA Astrophysics Data System (ADS)
Grimsmo, Arne L.; Qassemi, Farzad; Reulet, Bertrand; Blais, Alexandre
2016-01-01
We consider the electromagnetic field generated by a coherent conductor in which electron transport is described quantum mechanically. We obtain an input-output relation linking the quantum current in the conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements on the field in terms of the statistical properties of the current. We moreover show how under ac bias the conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015)].
NASA Astrophysics Data System (ADS)
Kevrekidis, P. G.
2014-01-01
In a recent publication [5 Galley, Phys. Rev. Lett. 110, 174301 (2013), 10.1103/PhysRevLett.110.174301], Galley proposed an initial value problem formulation of Hamilton's principle that enables consideration of dissipative systems. Here we explore this formulation at the level of field theories with infinite degrees of freedom. In particular, we illustrate that it affords a previously unwarranted and appealing as well as broadly relevant possibility, namely, to generalize the popular collective coordinate or variational method to open systems, i.e., nonconservative ones. To showcase the relevance or validity of the method we explore two case examples from the timely area of PT-symmetric variants of field theories, in this case for a sine-Gordon and for a ϕ4 model.
Matching and funneling light at the plasmonic Brewster angle
NASA Astrophysics Data System (ADS)
Argyropoulos, Christos; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Bloemer, Mark J.; Alù, Andrea
2012-01-01
The ultrabroadband impedance matching of metallic gratings at the plasmonic Brewster angle [A. Alù , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.123902 106, 123902 (2011)] is analyzed here in several realistic scenarios and configurations, and in the case of nonmonochromatic excitation. This phenomenon is the analogy of the well-known Brewster transmission for dielectric slabs but, when applied to plasmonic gratings, has the remarkable property of funneling and concentrating light within subwavelength slits. We analyze here how the presence of absorption and of realistic substrates and/or superstrates may influence the phenomenon, its beamwidth and angular selectivity, and its overall performance in the case of broadband, ultrashort incident pulses in the time domain. We prove that broadband signals may be concentrated and transmitted almost unaffected through narrow apertures, even in the presence of absorption, very different from conventional extraordinary optical transmission based on resonant phenomena.
Double sided surface stress cantilever sensor
NASA Astrophysics Data System (ADS)
Rasmussen, P. A.; Grigorov, A. V.; Boisen, A.
2005-05-01
Micromachined cantilevers, originally developed for use in atomic force microscopy, are gaining more and more interest as biochemical sensors, where the way in which the binding of chemical species changes the mechanical properties of the cantilever is utilized. Mass and stiffness changes are measured on resonating structures (Cherian and Thundat 2002 Appl. Phys. Lett. 80 2219-21 Gupta et al 2004 Appl. Phys. Lett. 84 1976-8), whereas changes in surface energy from the binding event are measured as static deflections of cantilevers (Savran et al 2004 Anal. Chem. 76 3194-8). The latter measurement type is referred to as a surface stress sensor and it is the description of a new and more sensitive cantilever surface stress measurement technique that is the topic of this paper.
Evidence for Nanoparticles in Microwave-Generated Fireballs Observed by Synchrotron X-Ray Scattering
NASA Astrophysics Data System (ADS)
Mitchell, J. B. A.; Legarrec, J. L.; Sztucki, M.; Narayanan, T.; Dikhtyar, V.; Jerby, E.
2008-02-01
The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett.PRLTAO0031-9007 96 045002 (2006)10.1103/PhysRevLett.96.045002]. The fireball’s particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of ˜50nm with average number densities on the order of ˜109. Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London)NATUAS0028-0836 403, 519 (2000)10.1038/35000525].
Mitchell, J B A; LeGarrec, J L; Sztucki, M; Narayanan, T; Dikhtyar, V; Jerby, E
2008-02-15
The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett. 96 045002 (2006)10.1103/PhysRevLett.96.045002]. The fireball's particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of approximately 50 nm with average number densities on the order of approximately 10(9). Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)10.1038/35000525]. PMID:18352481
Analysis of photon count data from single-molecule fluorescence experiments
NASA Astrophysics Data System (ADS)
Burzykowski, T.; Szubiakowski, J.; Rydén, T.
2003-03-01
We consider single-molecule fluorescence experiments with data in the form of counts of photons registered over multiple time-intervals. Based on the observation schemes, linking back to works by Dehmelt [Bull. Am. Phys. Soc. 20 (1975) 60] and Cook and Kimble [Phys. Rev. Lett. 54 (1985) 1023], we propose an analytical approach to the data based on the theory of Markov-modulated Poisson processes (MMPP). In particular, we consider maximum-likelihood estimation. The method is illustrated using a real-life dataset. Additionally, the properties of the proposed method are investigated through simulations and compared to two other approaches developed by Yip et al. [J. Phys. Chem. A 102 (1998) 7564] and Molski [Chem. Phys. Lett. 324 (2000) 301].
Quantum Optics Theory of Electronic Noise in Coherent Conductors.
Grimsmo, Arne L; Qassemi, Farzad; Reulet, Bertrand; Blais, Alexandre
2016-01-29
We consider the electromagnetic field generated by a coherent conductor in which electron transport is described quantum mechanically. We obtain an input-output relation linking the quantum current in the conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements on the field in terms of the statistical properties of the current. We moreover show how under ac bias the conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015)]. PMID:26871330
Asymmetric, Helical, and Mirror-Symmetric Traveling Waves in Pipe Flow
NASA Astrophysics Data System (ADS)
Pringle, Chris C. T.; Kerswell, Rich R.
2007-08-01
New families of three-dimensional nonlinear traveling waves are discovered in pipe flow. In contrast with known waves [H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.224502; H. Wedin and R. R. Kerswell, J. Fluid Mech. 508, 333 (2004)JFLSA70022-112010.1017/S0022112004009346], they possess no discrete rotational symmetry and exist at a significantly lower Reynolds numbers (Re). First to appear is a mirror-symmetric traveling wave which is born in a saddle node bifurcation at Re=773. As Re increases, “asymmetric” modes arise through a symmetry-breaking bifurcation. These look to be a minimal coherent unit consisting of one slow streak sandwiched between two fast streaks located preferentially to one side of the pipe. Helical and nonhelical rotating waves are also found, emphasizing the richness of phase space even at these very low Reynolds numbers.
Experimental investigation of the stronger uncertainty relations for all incompatible observables
NASA Astrophysics Data System (ADS)
Wang, Kunkun; Zhan, Xiang; Bian, Zhihao; Li, Jian; Zhang, Yongsheng; Xue, Peng
2016-05-01
The Heisenberg-Robertson uncertainty relation quantitatively expresses the impossibility of jointly sharp preparation of incompatible observables. However, it does not capture the concept of incompatible observables because it can be trivial even for two incompatible observables. We experimentally demonstrate that the new stronger uncertainty relations proposed by Maccone and Pati [Phys. Rev. Lett. 113, 260401 (2014), 10.1103/PhysRevLett.113.260401] relating to the sum of variances are valid in a state-dependent manner and that the lower bound is guaranteed to be nontrivial when two observables are incompatible on the state of the system being measured. The behavior we find agrees with the predictions of quantum theory and obeys the new uncertainty relations even for the special states which trivialize the Heisenberg-Robertson relation. We realize a direct measurement model and perform an experimental investigation of the strengthened relations.
Superconducting Resonators with Parasitic Electromagnetic Environments
NASA Astrophysics Data System (ADS)
Hornibrook, John; Mitchell, Emma; Reilly, David
2012-02-01
Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).
On the correctness of cosmology from quantum potential
NASA Astrophysics Data System (ADS)
Lashin, E. I.
2016-02-01
We examine in detail the cosmology based on quantal (Bohmian) trajectories as suggested in a recent study [A. F. Ali and S. Das, Phys. Lett. B 741, 276 (2014)]. We disagree with the conclusions regarding predicting the value of the cosmological constant Λ and evading the Big Bang singularity. Furthermore, we show that the approach of using a quantum corrected Raychaudhuri equation (QRE), as suggested in A. F. Ali and S. Das, Phys. Lett. B 741, 276 (2014), is unsatisfactory, because, essentially, it uses the Raychaudhuri equation (RE), which is a kinematical equation, in order to predict dynamics. In addition, even within this inconsistent framework, the authors have adopted unjustified assumptions and carried out incorrect steps leading to doubtful conclusions.
Optimal-path cracks in correlated and uncorrelated lattices
NASA Astrophysics Data System (ADS)
Oliveira, E. A.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.; Andrade, J. S., Jr.
2011-04-01
The optimal path crack model on uncorrelated surfaces, recently introduced by Andrade [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.225503 103, 225503 (2009).], is studied in detail and its main percolation exponents computed. In addition to β/ν=0.46±0.03, we report γ/ν=1.3±0.2 and τ=2.3±0.2. The analysis is extended to surfaces with spatial long-range power-law correlations, where nonuniversal fractal dimensions are obtained when the degree of correlation is varied. The model is also considered on a three-dimensional lattice, where the main crack is found to be a surface with a fractal dimension of 2.46±0.05.
Electronic Griffiths Phases and Quantum Criticality at Disordered Mott Transitions
NASA Astrophysics Data System (ADS)
Dobrosavljevic, Vladimir
2012-02-01
The effects of disorder are investigated in strongly correlated electronic systems near the Mott metal-insulator transition. Correlation effects are foundootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 102, 206403 (2009). to lead to strong disorder screening, a mechanism restricted to low-lying electronic states, very similar to what is observed in underdoped cuprates. These results suggest, however, that this effect is not specific to disordered d-wave superconductors, but is a generic feature of all disordered Mott systems. In addition, the resulting spatial inhomogeneity rapidly increasesootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 104 (23), 236401 (2010). as the Mott insulator is approached at fixed disorder strength. This behavior, which can be described as an Electronic Griffiths Phase, displays all the features expected for disorder-dominated Infinite-Randomness Fixed Point scenario of quantum criticality.
Quantum control of spin correlations in ultracold lattice gases
NASA Astrophysics Data System (ADS)
Hauke, P.; Sewell, R. J.; Mitchell, M. W.; Lewenstein, M.
2013-02-01
We describe a technique for the preparation of quantum spin correlations in a lattice gas of ultracold atoms using an atom-light interaction of the kind routinely employed in quantum spin polarization spectroscopy. Our method is based on entropic cooling via quantum nondemolition measurement and feedback, and allows the creation and detection of quantum spin correlations, as well as a certain degree of multipartite entanglement which we verify using a generalization of the entanglement witness described previously M. Cramer , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.020401 106, 020401 (2011). We illustrate the procedure with examples drawn from the bilinear-biquadratic Hamiltonian, which can be modeled by a one-dimensional chain of spin-1 atoms.
Information flow during the quantum-classical transition
NASA Astrophysics Data System (ADS)
Kowalski, A. M.; Martin, M. T.; Plastino, A.; Zunino, L.
2010-04-01
We have exhaustively investigated the classical limit of the semi-classical evolution with reference to a well-known model that represents the interaction between matter and a given field. In this Letter we approach this issue by recourse to a new statistical quantifier called the “symbolic transfer entropy” [T. Schreiber, Phys. Rev. Lett. 85 (2000) 461; M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100 (2008) 158101]. We encounter that the quantum-classical transition gets thereby described as the sign reversal of the dominating direction of the information flow between classical and quantal variables. This can be considered as an evidence of the physical useful of this new statistical quantifier.
Breakdown of hydrodynamics in the radial breathing mode of a strongly interacting Fermi gas
Kinast, J.; Turlapov, A.; Thomas, J.E.
2004-11-01
We measure the magnetic-field dependence of the frequency and damping time for the radial breathing mode of an optically trapped Fermi gas of {sup 6}Li atoms near a Feshbach resonance. The measurements address the apparent discrepancy between the results of Kinast et al. [Phys. Rev. Lett. 92, 150402 (2004)] and those of Bartenstein et al. [Phys. Rev. Lett. 92, 203201 (2004)]. Over the range of magnetic field from 770 to 910 G, the measurements confirm the results of Kinast et al. Close to resonance, the measured frequencies are in excellent agreement with predictions for a unitary hydrodynamic gas. At a field of 925 G, the measured frequency begins to decrease below predictions. For fields near 1080 G, we observe a breakdown of hydrodynamic behavior, which is manifested by a sharp increase in frequency and damping rate. The observed breakdown is in qualitative agreement with the sharp transition observed by Bartenstein et al. at 910 G.
Stochastic models of gene expression and post-transcriptional regulation
NASA Astrophysics Data System (ADS)
Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao
2011-10-01
The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)
Hawking radiation and near horizon universality of chiral Virasoro algebra
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Gangopadhyay, Sunandan; Kulkarni, Shailesh
2010-12-01
We show that the diffeomorphism anomaly together with the trace anomaly reveal a chiral Virasoro algebra near the event horizon of a black hole. This algebra is the same irrespective of whether the anomaly is covariant or consistent, thereby manifesting its universal character and the fact that only the outgoing modes are relevant near the horizon. Our analysis therefore clarifies the role of the trace anomaly in the diffeomorphism anomaly approach [Robinson and Wilczek in Phys. Rev. Lett. 95:011303, 2005; Iso et al. in Phys. Rev. Lett. 96:151302, 2006; Banerjee and Kulkarni in Phys. Rev. D 77:024018, 2008; Gangopadhyay and Kulkarni in Phys. Rev. D 77:024038, 2008] to the Hawking radiation.
Electron-phonon superconductivity in APt3P (A=Sr, Ca, La) compounds: From weak to strong coupling
NASA Astrophysics Data System (ADS)
Subedi, Alaska; Ortenzi, Luciano; Boeri, Lilia
2013-04-01
We study the newly discovered Pt phosphides APt3P (A=Sr, Ca, La) [T. Takayama , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.237001 108, 237001 (2012)] using first-principles calculations and Migdal-Eliashberg theory. Given the remarkable agreement with the experiment, we exclude the charge-density wave scenario proposed by previous first-principles calculations, and give conclusive answers concerning the superconducting state in these materials. The pairing increases from La to Ca and Sr due to changes in the electron-phonon matrix elements and low-frequency phonons. Although we find that all three compounds are well described by conventional s-wave superconductivity and spin-orbit coupling of Pt plays a marginal role, we show that it could be possible to tune the structure from centrosymmetric to noncentrosymmetric opening new perspectives towards the understanding of unconventional superconductivity.
Experimental system design for the integration of trapped-ion and superconducting qubit systems
NASA Astrophysics Data System (ADS)
De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.
2016-07-01
We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.
Cellular senescence in the Penna model of aging
NASA Astrophysics Data System (ADS)
Periwal, Avikar
2013-11-01
Cellular senescence is thought to play a major role in age-related diseases, which cause nearly 67% of all human deaths worldwide. Recent research in mice showed that exercising mice had higher levels of telomerase, an enzyme that helps maintain telomere length, than nonexercising mice. A commonly used model for biological aging was proposed by Penna. I propose a modification of the Penna model that incorporates cellular senescence and find an analytical steady-state solution following Coe, Mao, and Cates [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.89.288103 89, 288103 (2002)]. I find that models corresponding to delayed cellular senescence have younger populations that live longer. I fit the model to the United Kingdom's death distribution, which the original Penna model cannot do.
OPNMR measurements of electron spin polarization as a function of Landau filling factor around ν=1/3
NASA Astrophysics Data System (ADS)
Kuzma, N. N.; Khandelwal, P.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.
1998-03-01
Optically Pumped Nuclear Magnetic Resonance measurements of the Knight Shift(S.E.Barrett et al.,Phys.Rev.Lett.72),1368(1994).^,footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995)^,footnote R. Tycko et al., Science 268, 1460 (1995) (K_S) of ^71Ga in two different electron doped multiple quantum well samples are presented. These are the first direct measurements of the electron spin magnetization around Landau Level ν=1/3. The talk will focus on the electron spin polarization in the range of filling factors around ν=1/3 and compare these results with existing models(Kamilla,Wu,Jain,Solid State Comm.99),283(1996). for quasiparticle excitations. First evidence for the breakdown of motional narrowing regime, probed by NMR, will be presented. The onset of such breakdown may be a result of localization of quasiparticles below ν=1/3. No evidence for a sharp phase transition is observed.
Optically Pumped Nuclear Magnetic Resonance near Landau level fillings ν = 1/2 and ν = 2/3
NASA Astrophysics Data System (ADS)
Kuzma, N. N.; Khandelwal, P.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.
1997-03-01
Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. In this talk will present our recent measurements of KS and T1 near Landau level fillings ν = 1/2 and ν = 2/3, which were carried out in high magnetic fields (up to 12 Tesla) and at low temperatures (T < 1 Kelvin). We will discuss these results in light of our current understanding of the data obtained near ν = 1.
Optically Pumped Nuclear Magnetic Resonance near Landau level filling ν = 1/3
NASA Astrophysics Data System (ADS)
Khandelwal, P.; Kuzma, N. N.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.
1997-03-01
Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. In this talk will present our recent measurements of KS and T1 near Landau level filling ν = 1/3, which were carried out in high magnetic fields (up to 12 Tesla) and at low temperatures (T < 1 Kelvin). We will compare these results to the data obtained near ν = 1 and ν = 2/3.
Two-Dimensional Ferromagnet: 1/N Expansion for SU(N) and O(N) Models
NASA Astrophysics Data System (ADS)
Timm, Carsten; Henelius, Patrik; Girvin, Steven M.
1997-03-01
In the quantum Hall system the Zeeman interaction between electronic spins and the external magnetic field is typically weak compared to both the Landau-level splitting and the exchange interaction. Therefore, quantum Hall systems at integer filling factors can be ferromagnets. The magnetization and, recently, the nuclear magnetic relaxation rate 1/T1 have been measured for these magnets.(S.E. Barrett et al.), Phys. Rev. Lett. 72, 1368 (1994); 74, 5112 (1995) These quantities have been calculated in a Schwinger-boson mean-field approach.(N. Read and S. Sachdev, Phys. Rev. Lett. 75), 3509 (1995) Going one step further, we calculate the 1/N corrections for these results, for both the SU(N) and the O(N) generalization of the SU \\cong O(3) ferromagnetic symmetry group. The results are compared with Monte Carlo results of our group and with experiment.
Optically Pumped NMR in the Fractional Quantum Hall Regime
NASA Astrophysics Data System (ADS)
Barrett, S. E.; Kuzma, N. N.; Khandelwal, P.; Pfeiffer, L. N.; West, K. W.
1998-03-01
Optically Pumped Nuclear Magnetic Resonance measurements are a local probe of the electron spin degree of freedom in n-type GaAs quantum wells.(S.E.Barrett et al.,Phys.Rev.Lett.72),1368(1994).^, footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995)^, footnote R. Tycko et al., Science 268, 1460 (1995). We have recently shown that this OPNMR technique can be carried out in fields up to B=12 Tesla and temperatures down to T=0.3 K, making this technique a viable new probe of the Fractional Quantum Hall regime. We will discuss our latest measurements in these conditions, and compare our new results with previous measurements and the existing theoretical models for this regime.
Two-Dimensional Ferromagnet: Quantum Monte Carlo results
NASA Astrophysics Data System (ADS)
Henelius, Patrik; Timm, Carsten; Girvin, Steven M.; Sandvik, Anders
1997-03-01
In the quantum Hall system the Zeeman interaction between electronic spins and the external magnetic field is typically weak compared to both the Landau-level splitting and the exchange interaction. Therefore, quantum Hall systems at integer filling factors can be ferromagnets. The magnetization and, recently, the nuclear magnetic relaxation rate 1/T1 have been measured for these magnets.(S.E. Barrett et al.), Phys. Rev. Lett. 72, 1368 (1994); 74, 5112 (1995) These quantities have been calculated in a Schwinger-boson mean-field approach.(N. Read and S. Sachdev, Phys. Rev. Lett. 75), 3509 (1995) We have calculated these same quantities using a Stochastic Series Expansion Monte Carlo Method. The results are compared with the experimental data, the mean-field results and with 1/N corrections for the mean-field results, calculated by our group.
Quantum RLC circuits: Charge discreteness and resonance
NASA Astrophysics Data System (ADS)
Utreras-Díaz, Constantino A.
2008-10-01
In a recent article [C.A. Utreras-Díaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandía et al. [K. Chandía, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit.
Shifted-action expansion and applicability of dressed diagrammatic schemes
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Werner, Félix; Prokof'ev, Nikolay; Svistunov, Boris
2016-04-01
While bare diagrammatic series are merely Taylor expansions in powers of interaction strength, dressed diagrammatic series, built on fully or partially dressed lines and vertices, are usually constructed by reordering the bare diagrams, which is an a priori unjustified manipulation, and can even lead to convergence to an unphysical result [E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114, 156402 (2015), 10.1103/PhysRevLett.114.156402]. Here we show that for a broad class of partially dressed diagrammatic schemes, there exists an action S(ξ ) depending analytically on an auxiliary complex parameter ξ , such that the Taylor expansion in ξ of correlation functions reproduces the original diagrammatic series. The resulting applicability conditions are similar to the bare case. For fully dressed skeleton diagrammatics, analyticity of S(ξ ) is not granted, and we formulate a sufficient condition for converging to the correct result.
Electron Paramagnetic Resonance (EPR) Studies of Near-Surface Magnetic Properties of YBCO Thin Films
NASA Astrophysics Data System (ADS)
Pugel, D. E.; Xia, Y.-M.; Salamon, M. B.; Greene, L. H.
2000-03-01
Several thin film planar tunneling experiments are consistent with a broken time-reversal symmetry (BTRS) state [1-4].To compliment tunneling measurements, we have developed a technique to measure electron paramagnetic resonance (EPR) effects of the near-surface region of a superconductor. Preliminary data are consistent with the spontaneous formation of magnetic moments at low temperature on YBCO thin films and may prove to be an important confirmation of BTRS. 1. Covington,M. et al., Phys. Rev. Lett., 79, 277, (1997). 2. Kashiwaya, S. et al., J. Phys. Chem. Solids, 59, 2034, (1997). 3. Krupke, R. and Deutscher,G., Phys. Rev. Lett., 83, 4634, (1999). 4. Lesueur,J., Grison,X., Aprili,M. and Kontos,T., cond-mat/9909212. -------------------------------------------------------------
Strong monogamy conjecture in a four-qubit system
NASA Astrophysics Data System (ADS)
Karmakar, Sumana; Sen, Ajoy; Bhar, Amit; Sarkar, Debasis
2016-01-01
Monogamy is a defining feature of entanglement, having far-reaching applications. Recently, Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501] proposed a stronger version of monogamy relation for concurrence. We have extended the strong monogamy inequality for another entanglement measure, viz., negativity. In particular, we have concentrated on the four-qubit system and provided a detailed study on the status of strong monogamy on pure states. Further, we have analytically provided some classes of states for which negativity and squared negativity satisfy strong monogamy. Numerical evidences have also been shown in proper places. Our analysis also provides cases where strong monogamy is violated.
Observation of wave turbulence in vibrating plates.
Boudaoud, Arezki; Cadot, Olivier; Odille, Benoît; Touzé, Cyril
2008-06-13
The nonlinear interaction of waves in a driven medium may lead to wave turbulence, a state such that energy is transferred from large to small length scales. Here, wave turbulence is observed in experiments on a vibrating plate. The frequency power spectra of the normal velocity of the plate may be rescaled on a single curve, with power-law behaviors that are incompatible with the weak turbulence theory of Düring et al. [Phys. Rev. Lett. 97, 025503 (2006)10.1103/PhysRevLett.97.025503]. Alternative scenarios are suggested to account for this discrepancy -- in particular the occurrence of wave breaking at high frequencies. Finally, the statistics of velocity increments do not display an intermittent behavior. PMID:18643508
Gillen, K.T.
1989-02-15
In four recent papers Pradel et al. (Phys. Rev. Lett. 54, 2600 (1985); Phys. Rev. A 35, 1062 (1987)) and Monchicourt et al. (Phys. Rev. A 33, 3515 (1986); Chem. Phys. Lett. 152, 336 (1988)) give arguments claiming the observation of laser-assisted ionization of the short-lived collision complex formed during collisions of He/sup */(2 /sup 1,3/S) with He. However, estimates of the relative sizes of the assisted and unassisted ion signals observed make it very unlikely that laser-assisted ionization has been observed in those experiments. Collisional excitation to higher He/sup */ states, followed by (single-photon) ionization of the excited states, seems a more likely explanation at all energies considered.
Leidenfrost effect: Accurate drop shape modeling and refined scaling laws
NASA Astrophysics Data System (ADS)
Sobac, B.; Rednikov, A.; Dorbolo, S.; Colinet, P.
2014-11-01
We here present a simple fitting-parameter-free theory of the Leidenfrost effect (droplet levitation above a superheated plate) covering the full range of stable shapes, i.e., from small quasispherical droplets to larger puddles floating on a pocketlike vapor film. The geometry of this film is found to be in excellent quantitative agreement with the interferometric measurements of Burton et al. [Phys. Rev. Lett. 109, 074301 (2012), 10.1103/PhysRevLett.109.074301]. We also obtain new scalings generalizing classical ones derived by Biance et al. [Phys. Fluids 15, 1632 (2003), 10.1063/1.1572161] as far as the effect of plate superheat is concerned and highlight the relative role of evaporation, gravity, and capillarity in the vapor film. To further substantiate these findings, a treatment of the problem by matched asymptotic expansions is also presented.
Critical points of the O(n) loop model on the martini and the 3-12 lattices
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Fu, Zhe; Guo, Wenan
2012-06-01
We derive the critical line of the O(n) loop model on the martini lattice as a function of the loop weight n basing on the critical points on the honeycomb lattice conjectured by Nienhuis [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.49.1062 49, 1062 (1982)]. In the limit n→0 we prove the connective constant μ=1.7505645579⋯ of self-avoiding walks on the martini lattice. A finite-size scaling analysis based on transfer matrix calculations is also performed. The numerical results coincide with the theoretical predictions with a very high accuracy. Using similar numerical methods, we also study the O(n) loop model on the 3-12 lattice. We obtain similarly precise agreement with the critical points given by Batchelor [J. Stat. Phys.JSTPBS0022-471510.1023/A:1023065215233 92, 1203 (1998)].
Geometric spin Hall effect of light in tightly focused polarization-tailored light beams
NASA Astrophysics Data System (ADS)
Neugebauer, Martin; Banzer, Peter; Bauer, Thomas; Orlov, Sergej; Lindlein, Norbert; Aiello, Andrea; Leuchs, Gerd
2014-01-01
Recently, it was shown that a nonzero transverse angular momentum manifests itself in a polarization-dependent intensity shift of the barycenter of a paraxial light beam [Aiello et al., Phys. Rev. Lett. 103, 100401 (2009), 10.1103/PhysRevLett.103.100401]. The underlying effect is phenomenologically similar to the spin Hall effect of light but does not depend on the specific light-matter interaction and can be interpreted as a purely geometric effect. Thus, it was named the geometric spin Hall effect of light. Here, we experimentally investigate the appearance of this effect in tightly focused vector beams. We use an experimental nanoprobing technique in combination with a reconstruction algorithm to verify the relative shifts of the components of the electric energy density and the shift of the intensity in the focal plane. By that, we experimentally demonstrate the geometric spin Hall effect of light in a highly nonparaxial beam.
NASA Astrophysics Data System (ADS)
Farhat, Mohamed; Guenneau, Sebastien; Enoch, Stefan
2012-01-01
A cylindrical cloak is designed to control the bending waves propagating in isotropic thin plates. This is achieved through homogenization of a multiply perforated coating of isotropic homogeneous elastic material, which greatly simplifies the design of the multilayered cloak we proposed [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.024301 103, 024301 (2009)]. We first derive the homogenized biharmonic equation, which involves an anisotropic Young's modulus and an isotropic mass density. We then numerically show that a clamped obstacle is cloaked over a finite range of frequencies for an acoustic source located a couple of wavelengths away from its surrounding cloak. The reduced backward and forward scattering is confirmed by both the profile of the total field computed along a line passing through the source and the center of the cloak (near field confirmation), and the computation of the scattered far field.
Conformal Invariance Predictions for the Three-Dimensional Self-Avoiding Walk
NASA Astrophysics Data System (ADS)
Kennedy, Tom
2015-03-01
If the three dimensional self-avoiding walk (SAW) is conformally invariant, then one can compute the hitting densities for the SAW in a half-space and in a sphere (Kennedy in Phys Rev Lett 111: 165703, 2013). The ensembles of SAW's used to define these hitting densities involve walks of arbitrary lengths, and so these ensembles cannot be directly studied by the pivot Monte Carlo algorithm for the SAW. We show that these mixed length ensembles should have the same scaling limit as certain weighted ensembles that only involve walks with a single length, thus providing a fast method for simulating these ensembles. Preliminary simulations which found good agreement between the predictions and Monte Carlo simulations for the SAW were reported in Kennedy (Phys Rev Lett 111: 165703, 2013). In this paper we present more accurate simulations testing the predictions and find even stronger support for the prediction that the SAW is conformally invariant in three dimensions.
Comment on breakup densities of hot nuclei
NASA Astrophysics Data System (ADS)
Viola, V. E.; Kwiatkowski, K.; Yennello, S. J.; Natowitz, J. B.
2006-06-01
In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy.
Realizing a topological transition in a non-Hermitian quantum walk with circuit QED
NASA Astrophysics Data System (ADS)
Huang, Yizhou; Yin, Zhang-qi; Yang, W. L.
2016-08-01
We extend the non-Hermitian one-dimensional quantum walk model [Phys. Rev. Lett. 102, 065703 (2009), 10.1103/PhysRevLett.102.065703] by taking the dephasing effect into account. We prove that the feature of topological transition does not change even when dephasing between the sites within units is present. The potential experimental observation of our theoretical results in the circuit QED system consisting of superconducting qubit coupled to a superconducting resonator mode is discussed and numerically simulated. The results clearly show a topological transition in quantum walk and display the robustness of such a system to the decay and dephasing of qubits. We also discuss how to extend this model to higher dimension in the circuit QED system.
Statistical physics model of an evolving population
NASA Astrophysics Data System (ADS)
Sznajd-Weron, K.; Pȩkalski, A.
1999-12-01
There are many possible approaches by a theoretical physicist to problems of biological evolution. Some focus on physically interesting features, like the self-organized criticality (P. Bak, K. Sneppen, Phys. Rev. Lett 71 (1993); N. Vadewalle, M. Ausloos, Physica D 90 (1996) 262). Others put on more effort taking into account factors considered by biologists to be important in determining one or another aspect of biological evolution (D. Derrida, P.G. Higgs, J. Phys. A 24 (1991) L985; I. Mróz, A. Pȩkalski, K. Sznajd-Weron, Phys. Rev. Lett. 76 (1996) 3025; A. Pȩkalski, Physica A 265 (1999) 255). The intrinsic complexity of the problem enforces nevertheless drastic simplifications. Certain consolation may come from the fact that the mathematical models used by biologists themselves are quite often even more “coarse grained”.
Band gap engineering via doping: A predictive approach
Andriotis, Antonis N.; Menon, Madhu
2015-03-28
We employ an extension of Harrison's theory at the tight binding level of approximation to develop a predictive approach for band gap engineering involving isovalent doping of wide band gap semiconductors. Our results indicate that reasonably accurate predictions can be achieved at qualitative as well as quantitative levels. The predictive results were checked against ab initio ones obtained at the level of DFT/SGGA + U approximation. The minor disagreements between predicted and ab initio results can be attributed to the electronic processes not incorporated in Harrison's theory. These include processes such as the conduction band anticrossing [Shan et al., Phys. Rev. Lett. 82, 1221 (1999); Walukiewicz et al., Phys. Rev. Lett. 85, 1552 (2000)] and valence band anticrossing [Alberi et al., Phys. Rev. B 77, 073202 (2008); Appl. Phys. Lett. 92, 162105 (2008); Appl. Phys. Lett. 91, 051909 (2007); Phys. Rev. B 75, 045203 (2007)], as well as the multiorbital rehybridization. Another cause of disagreement between the results of our predictive approach and the ab initio ones is shown to be the result of the shift of Fermi energy within the impurity band formed at the edge of the valence band maximum due to rehybridization. The validity of our approach is demonstrated with example applications for the systems GaN{sub 1−x}Sb{sub x}, GaP{sub 1−x}Sb{sub x}, AlSb{sub 1−x}P{sub x}, AlP{sub 1−x}Sb{sub x}, and InP{sub 1−x}Sb{sub x}.
Mechanical analogy of the nonlinear dynamics of a driven unstable mode near marginal stability
NASA Astrophysics Data System (ADS)
Zaleśny, J.; Marczyński, S.; Lisak, M.; Anderson, D.; Gałkowski, A.; Berczyński, P.; Berczyński, S.; Rogowski, R.
2009-02-01
The universal integrodifferential model equation derived by Berk et al. [Phys. Rev. Lett. 76, 1256 (1996)] for studying the nonlinear evolution of unstable modes driven by kinetic wave particle resonances near the instability threshold is reduced to a differential equation and next as a further simplification to a nonlinear oscillator equation. This mechanical analogy properly reproduces most of the essential physics of the system and allows an understanding of the qualitative features of the theory of Berk et al.
Bell diagonal states with maximal Abelian symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2010-12-15
We provide a simple class of 2-qudit states for which one is able to formulate necessary and sufficient conditions for separability. As a by-product, we generalize the well-known construction provided by Horodecki et al. [Phys. Rev. Lett. 82, 1056 (1999)] for d=3. It is hoped that these states with known separability and entanglement properties may be used to test various notions in entanglement theory.
Derivation of the density matrix of a single photon produced in parametric down-conversion
Kolenderski, Piotr; Wasilewski, Wojciech
2009-07-15
We discuss an effective numerical method of density matrix determination of fiber coupled single photon generated in process of spontaneous parametric down conversion in type I noncollinear configuration. The presented theory has been successfully applied in case of source utilized to demonstrate the experimental characterization of spectral state of single photon, what was reported in Wasilewski, Kolenderski, and Frankowski [Phys. Rev. Lett. 99, 123601 (2007)].
NASA Astrophysics Data System (ADS)
Wang, Enliang; Shan, Xu; Shen, Zhenjie; Gong, Maomao; Tang, Yaguo; Pan, Yi; Lau, Kai-Chung; Chen, Xiangjun
2015-05-01
We report nonsequential and sequential fragmentation dynamics of CO2 3 + investigated by electron collision at an impact energy of 500 eV. The dissociation mechanisms are clearly distinguished by combined use of the Dalitz plot together with momentum correlation spectra. The angular distributions and kinetic-energy releases (KERs) of different fragmentation processes are obtained. The dissociation channels of higher excited states of the CO2 3 + molecular ion are opened, which are quite different from the previous studies of heavy-ion collision [N. Neumann, D. Hant, L. Ph. H. Schmidt, J. Titze, T. Jahnke, A. Czasch, M. S. Schöffler, K. Kreidi, O. Jagutzki, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. 104, 103201 (2010), 10.1103/PhysRevLett.104.103201] and intense laser field [C. Wu, C. Wu, D. Song, H. Su, Y. Yang, Z. Wu, X. Liu, H. Liu, M. Li, Y. Deng, Y. Liu, L.-Y. Peng, H. Jiang, and Q. Gong, Phys. Rev. Lett. 110, 103601 (2013), 10.1103/PhysRevLett.110.103601]. By analyzing KERs together with the help of potential-energy curves exploration at the multireference configuration interaction level, we conclude that the sequential fragmentation occurs in the 2Π ,4Π , and 2Σ+ states of the CO2 3 + ion. The bond length and bond angle are also determined based on the linear fragmentation, indicating that electron impact fragmentation is a potential method to precisely reconstruct the geometry of neutral molecules.
Robust method of trapping self-propelling particles
NASA Astrophysics Data System (ADS)
Lacubtan, Roger Joseph L.; Confesor, Mark Nolan P.
2015-01-01
The ability to collect self-propelling particles (SPP) is an essential requirement for possible use of SPP in technological applications. In this paper we proposed a novel way of trapping SPP's, through guided trapping of SPP's in V-shaped trap. We performed brownian dynamic simulation via a modified Escape and Predation model developed by L. Angelani (Phys. Rev. Lett., 2012) to assess the validity of the proposed trapping method.
Entanglement properties of kaons and tests of hidden-variable models
Genovese, M.
2004-02-01
In this paper we discuss entanglement properties of neutral kaons systems and their use for testing local realism. In particular, we analyze a Hardy-type scheme [A. Bramon and G. Garbarino, Phys. Rev. Lett. 89, 160401 (2002)] recently suggested for performing a test of hidden-variable theories against standard quantum mechanics. Our result is that this scheme could, in principle, lead to a conclusive test of local realism, but only if higher identification efficiencies than in today's experiments will be reached.
Quantum discord and geometry for a class of two-qubit states
Li Bo; Wang Zhixi; Fei Shaoming
2011-02-15
We study the level surfaces of quantum discord for a class of two-qubit states with parallel nonzero Bloch vectors. The dynamic behavior of quantum discord under decoherence is investigated. It is shown that a class of X states has sudden transition between classical and quantum correlations under decoherence. Our results include the ones in M. D. Lang and C. M. Caves [Phys. Rev. Lett. 105, 150501 (2010)] as a special case and show new pictures and structures of quantum discord.
NASA Astrophysics Data System (ADS)
Hu, Li-Yun; Fan, Hong-Yi
2010-07-01
In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.
Thermal expansion of Fe3C at high pressure and carbon in the Earth's inner core
NASA Astrophysics Data System (ADS)
Gao, L.; Chen, B.; Wang, Y.; Li, J.
2008-12-01
Carbon is one of the major candidates for the principal light element in the Earth's core. Wood [1993] proposed that Fe3C, rather than iron-nickel alloy, is the dominant phase in the Earth's solid inner core. Testing the model of Fe3C-rich inner core requires knowledge on the thermal equation-of-state (EoS) of Fe3C under core conditions. To date, EoS data of Fe3C are only available at high pressure and 0 or 300 K [Scott et al., 2001, Li et al., 2002, Vocadlo et al., 2002] or at high temperature and 1 bar [Wood et al., 2004]. Wood et al. [2004] found that the thermal expansion coefficient is significantly affected by the ferromagnetic to paramagnetic transition above the Curie temperature. In this study, we have determined the thermal expansion coefficient of Fe3C up to 20 GPa and 1273 K, using a T-cup device and synchrotron x-ray diffraction techniques at beamline 13-ID of the Advanced Photon Source. Our results place constraints on the abundance of carbon the Earth's inner core. This work is supported by NSF EAR 06-09639. References: Gao et al. (2008), Geophys. Res. Lett., doi:10.1029/2008GL034817. Li, J. et al. (2002), Phys. Chem. Miner., 29(3), 166-169. Scott, H. P. et al. (2001), Geophys. Res. Lett., 28, 1875-1878 Vocadlo, L., et al. (2002), Earth Planet. Sci. Lett., 203(1), 567-575. 347. Wood, B. J. (1993), Earth Planet. Sci. Lett., 117(3-4), 593-607. Wood, I. G. et al. (2004), J. Appl. Crystallogr., 37, 82-90.
Laser propagation and channel formation in laser-produced plasmas
NASA Astrophysics Data System (ADS)
Young, P. E.
1996-05-01
The understanding of laser beam propagation through underdense plasmas is of vital importance to inertial confinement fusion schemes, as well as being a fundamental physics issue. Formation of plasma channels has numerous applications including table-top x-ray lasers and laser-plasma induced particle accelerators. The fast ignitor concept (M. Tabak et al., Phys. Plasmas 1), 1626 (1994)., for example, requires the formation of an evacuated channel through a large, underdense plasma. Scaled experiments (P.E. Young et al., Phys. Rev. Lett. 63), 2812 (1989). (S. Wilks et al., Phys. Rev. Lett. 73), 2994 (1994). (P.E. Young et al, Phys. Plasmas 2), 2825 (1995). have shown that the axial extent of a channel formed by a 100 ps pulse is limited by the onset of the filamentation instability (P.E. Young et al., Phys. Rev. Lett. 61), 2336 (1988).. We have obtained quantitative comparison between filamentation theory and experiment (P.E. Young, Phys. Plasmas 2), 2815 (1995).. More recent experiments (P.E. Young et al., Phys. Rev. Lett. 75), 1082 (1995). have shown that by increasing the length of the channel-forming pulse, the filamentation instability is overcome and the channel forms at higher densities. This result has important implications for the fast ignitor design and the understanding of time-dependent beam dynamics. In addition, we will present measurements of ion energies ejected by the ponderomotive force which is a measurement of the peak laser intensity in the plasma; the ion energies indicate filamented laser intensities above 1.5× 10^17 W/cm^2. * Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under contract W-7405-ENG-48. ^ In collaboration with S. Wilks, J. Hammer, W. Kruer, M. Foord, G. Guethlein, and M. Tabak.
Gaussian operations and privacy
Navascues, Miguel; Acin, Antonio
2005-07-15
We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states.
General spin precession and betatron oscillation in storage rings
NASA Astrophysics Data System (ADS)
Fukuyama, Takeshi
2016-07-01
Spin precession of particles having both anomalous magnetic and electric dipole moments (EDMs) is considered. We give the generalized expression of spin precession of these particles injected with transversal extent in magnetic storage rings. This is the generalization of the Farley’s pitch correction [F. J. N. Farley, Phys. Lett. B 42, 66 (1972)], including radial oscillation as well as vertical one. The transversal betatron oscillation formulae of these particles are also reproduced.
Pseudo-casimir structural force drives spinodal dewetting in nematic liquid crystals
Ziherl; Podgornik; Zumer
2000-02-01
We analyze theoretically the fluctuation-induced force in thin nematic films subject to competing surface interactions, and we find that the force is attractive at small distances and repulsive otherwise. The results provide a consistent interpretation of a recent study of spinodal dewetting of 5CB on a silicon wafer [F. Vandenbrouck et al., Phys. Rev. Lett. 82, 2693 (1999)], implying that this experiment can be regarded as the first observation of the pseudo-Casimir effect in liquid crystals. PMID:11017485
Aharonov-Casher and scalar Aharonov-Bohm topological effects.
Dulat, Sayipjamal; Ma, Kai
2012-02-17
We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect. PMID:22401183
Universality of State-Independent Violation of Correlation Inequalities for Noncontextual Theories
Badziag, Piotr; Bengtsson, Ingemar; Cabello, Adan; Pitowsky, Itamar
2009-07-31
We show that the state-independent violation of inequalities for noncontextual hidden variable theories introduced in [Phys. Rev. Lett. 101, 210401 (2008)] is universal, i.e., occurs for any quantum mechanical system in which noncontextuality is meaningful. We describe a method to obtain state-independent violations for any system of dimension d>=3. This universality proves that, according to quantum mechanics, there are no 'classical' states.
Physical peculiarities of divergences emerging in q-deformed statistics
NASA Astrophysics Data System (ADS)
Rocca, Mario; Plastino, Angel; Ferri, Gustavo
2016-06-01
It was found in [A. Plastino, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)] that classical Tsallis theory exhibits poles in the partition function 𝓩 and the mean energy <𝓤>. These occur at a countably set of the q-line. We give here, via a simple procedure, a mathematical account of them. Further, by focusing attention upon the pole-physics, we encounter interesting effects. In particular, for the specific heat, we uncover hidden gravitational effects.
High Tc: The Discovery of RBCO
NASA Astrophysics Data System (ADS)
Chu, C. W.
2007-03-01
It was said by Emerson that ``there is no history; there is only biography.'' This is especially true when the events are recounted by a person who, himself, has been heavily involved and the line between history and autobiography can become blurred. However, it is reasonable to say that discovery itself is not a series of accidents but an inevitable product of each development stage of scientific knowledge as was also pointed out by Holden et al. (1) The discovery of RBCO (2,3) with R = Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu is no exception. In this presentation, I will briefly recount several events that were crucial to the discovery of RBCO: those before 1986 (4) that sowed the seeds in our group important to our later high temperature superconductivity effort; those in 1986 (5) that were critical to our discovery of the 93 K RBCO soon after the discovery of the 35 K high temperature superconductor by M"uller and Bednorz (6); and those in 1987 when the barrier of the liquid nitrogen boiling temperature of 77 K was finally conquered. 1. G. J. Holton et al., American Scientist 84, 364 (1996). 2. M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987). 3. P. H. Hor et al., Phys. Rev. Lett. 58, 1891 (1987). 4. C. W. Chu et al., S. S. Comm. 18, 977 (1976); C. W. Chu and V. Diatchenko, Phys. Rev. Lett. 41, 572 (1978); T. H. Lin et al., Phys. Rev. B(RC) 29, 1493 (1984); J. H. Lin et al., J. Low Temp. Phys. 58, 363 (1985). 5. C. W. Chu et al., Phys. Rev. Lett. 58, 405 (1987); C. W. Chu et al., Science 235, 567 (1987). 6. J. G. Bednorz and K. A. M"uller, Z. Phys. B64, 189 (1986).
Gravitational Collapse with Cosmological Constant and Anisotropic Pressure
NASA Astrophysics Data System (ADS)
Ahmad, Zahid; Malik, Sania Abdul
2016-01-01
We investigate the gravitational collapse of anisotropic perfect fluid by applying junction conditions and spherically symmetric space-times in the presence of cosmological constant. We show that the cosmological constant slows down the collapsing process and also reduces the size of black hole.This work provides a generalization of the previous studies by Cissoko et al. (arXiv: gr-qc/9809057) for dust and by Sharif and Ahmad (Mod. Phys. Lett. A, 22:1493, 2007) for perfect fluid.
Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain
Yeo Ye
2002-12-01
Recently, entanglement teleportation has been investigated by Lee and Kim [Phys. Rev. Lett. 84, 4236 (2000)]. In this paper we study entanglement teleportation via two separate thermally entangled states of a two-qubit Heisenberg XX chain. We established the condition under which the parameters of the model have to satisfy in order to teleport entanglement. The necessary minimum amount of thermal entanglement for some fixed strength of exchange coupling is a function of the magnetic field and the temperature.
Stejner, M.; Korsholm, S. B.; Nielsen, S. K.; Salewski, M.; Leipold, F.; Michelsen, P. K.; Meo, F.; Bindslev, H.; Moseev, D.; Buerger, A.; Kantor, M.; Baar, M. de
2012-10-15
Fusion plasma composition measurements by collective Thomson scattering (CTS) were demonstrated in recent proof-of-principle measurements in TEXTOR [S. B. Korsholm et al., Phys. Rev. Lett. 106, 165004 (2011)]. Such measurements rely on the ability to resolve and interpret ion cyclotron structure in CTS spectra. Here, we extend these techniques to enable temporally resolved plasma composition measurements by CTS in TEXTOR, and we discuss the prospect for such measurements with newly installed hardware upgrades for the CTS system on ASDEX Upgrade.
Quantizing the Discrete Painlevé VI Equation: The Lax Formalism
NASA Astrophysics Data System (ADS)
Hasegawa, Koji
2013-08-01
A discretization of Painlevé VI equation was obtained by Jimbo and Sakai (Lett Math Phys 38:145-154, 1996). There are two ways to quantize it: (1) use the affine Weyl group symmetry (of {D_5^{(1)}}) (Hasegawa in Adv Stud Pure Math 61:275-288, 2011), (2) Lax formalism, i.e. monodromy preserving point of view. It turns out that the second approach is also successful and gives the same quantization as in the first approach.
Episodic tectonic plate reorganizations driven by mantle convection
NASA Astrophysics Data System (ADS)
King, Scott D.; Lowman, Julian P.; Gable, Carl W.
2002-10-01
Periods of relatively uniform plate motion were interrupted several times throughout the Cenozoic and Mesozoic by rapid plate reorganization events [R. Hey, Geol. Soc. Am. Bull. 88 (1977) 1404-1420; P.A. Rona, E.S. Richardson, Earth Planet. Sci. Lett. 40 (1978) 1-11; D.C. Engebretson, A. Cox, R.G. Gordon, Geol. Soc. Am. Spec. Pap. 206 (1985); R.G. Gordon, D.M. Jurdy, J. Geophys. Res. 91 (1986) 12389-12406; D.A. Clague, G.B. Dalrymple, US Geol. Surv. Prof. Pap. 1350 (1987) 5-54; J.M. Stock, P. Molnar, Nature 325 (1987) 495-499; C. Lithgow-Bertelloni, M.A. Richards, Geophys. Res. Lett. 22 (1995) 1317-1320; M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. It has been proposed that changes in plate boundary forces are responsible for these events [M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. We present an alternative hypothesis: convection-driven plate motions are intrinsically unstable due to a buoyant instability that develops as a result of the influence of plates on an internally heated mantle. This instability, which has not been described before, is responsible for episodic reorganizations of plate motion. Numerical mantle convection experiments demonstrate that high-Rayleigh number convection with internal heating and surface plates is sufficient to induce plate reorganization events, changes in plate boundary forces, or plate geometry, are not required.
Waves in a 1D electrorheological dusty plasma lattice
NASA Astrophysics Data System (ADS)
Rosenberg, M.
2015-08-01
The behavior of waves in a one-dimensional (1D) dusty plasma lattice where the dust interacts via Yukawa and electric dipole interactions is discussed theoretically. This study is motivated by recent reports on electrorheological dusty plasmas (e.g. Ivlev et al. 2008 Phys. Rev. Lett. 100, 095003) where the dipole interaction arises due to an external uniaxial AC electric field that distorts the Debye sphere surrounding each grain. Application to possible dusty plasma experimental parameters is discussed.
Quantum Theory for Cold Avalanche Ionization in Solids
Deng, H. X.; Zu, X. T.; Xiang, X.; Sun, K.
2010-09-10
A theory of photon-assisted impact ionization in solids is presented. Our theory makes a quantum description of the new impact ionization--cold avalanche ionization recently reported by P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner [Phys. Rev. Lett. 102, 083001 (2009)]. The present theory agrees with the experiments and can be reduced to the traditional impact ionization expression in the absence of a laser.
US agricultural policy, land use change, and biofuels: are we driving our way to the next dust bowl?
NASA Astrophysics Data System (ADS)
Wright, Christopher K.
2015-05-01
Lark et al (2015 Environ. Res. Lett. 10 044003), analyze recent shifts in US agricultural land use (2008-2012) using newly-available, high-resolution geospatial information, the Cropland Data Layer. Cropland expansion documented by Lark et al suggests the need to reform national agricultural policies in the wake of an emerging, new era of US agriculture characterized by rapid land cover/land use change.
Optical second harmonic spectroscopy of silicon-adsorbate surfaces and silicon nanocrystals
NASA Astrophysics Data System (ADS)
Downer, Michael
2002-03-01
Second harmonic generation (SHG) provides a surface-specific, noninvasive probe of adsorbates. However, microscopic first-principles theory of adsorbate-specific spectroscopic SHG responses has proven elusive. Here we present experimental SHG spectra for six well-characterized, technologically important Si(001) surfaces in ultrahigh vacuum (UHV): clean Si(001)-2x1 and Si(001) terminated with hydrogen (H), [1] germanium (Ge), Ge and H, [2] boron (B) and B and H. [3] Each adsorbate (combination) alters SHG uniquely. Our microscopic theories based on ab initio pseudopotential or semi-empirical tight-binding (SETB) methods then explain observed trends, and predict new features in unexplored spectral regions. [3,4] Charge transfer among surface bonds is found to govern SHG spectroscopy of surface-adsorbate systems strongly. New results on SHG from Si nanocrystals embedded in SiO2 will also be presented. [5] SHG is sensitive to Si/SiO2 interface states, electrostatic charge on the nanocrystals, and macroscopic particle density gradients. Finally, a new frequency-domain interferometric second-harmonic (FDISH) spectroscopic technique to measure simultaneously the intensity and phase of SH radiation over a broad spectral range without laser tuning will be described. [6] 1. J. Dadap et al., Phys. Rev. B 56, 13367 (1997). 2. P. Parkinson et al., Appl. Phys. B 68, 641 (1999). 3. D. Lim et al., Phys. Rev. Lett. 84, 3406 (2000); Appl. Phys. Lett. 77, 181 (2000). 4. V. Gavrilenko et al., Phys. Rev. B 63, 1653 (2001); M. C. Downer et al., Surf. Interface Anal. 31, 966 (2001); M. C. Downer et al., phys. stat. sol. (a), in press (2001). 5. Y. Jiang et al., Appl. Phys. Lett. 78, 766 (2001). 6. P. T. Wilson et al., Opt. Lett. 24, 496 (1999).
Double and triple photoionization of Li and Be
Colgan, J.; Pindzola, M.S.; Robicheaux, F.
2005-08-15
We present calculations for the double photoionization (with excitation) and the triple photoionization of Li and Be. We extend and more fully discuss the previous calculations made for Li by Colgan et al. [Phys. Rev. Lett. 93, 053201 (2004)] and present calculations for Be. The Be triple photoionization cross sections are compared with previous double shake-off model calculations of Kheifets and Bray [J. Phys. B 36, L211 (2003)], and our calculations are found to be significantly lower.
Differential cross sections of double photoionization of lithium
Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.
2010-08-15
We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].
Five dimensional FRW cosmological models in a scalar-tensor theory of gravitation
NASA Astrophysics Data System (ADS)
Rao, V. U. M.; PapaRao, D. C.; Reddy, D. R. K.
2015-06-01
A five dimensional FRW cosmological space-time is considered in the scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 2003) in the presence of a perfect fluid source. Cosmological models corresponding to stiff fluid, disordered radiation, dust and false vacuum are obtained. Some physical and kinematical properties of each of the models are also studied.
Tsang, Mankei
2010-01-15
The time-symmetric quantum smoothing theory [Tsang, Phys. Rev. Lett. 102, 250403 (2009); Phys. Rev. A 80, 033840 (2009)] is extended to account for discrete jumps in the classical random process to be estimated, discrete variables in the quantum system, such as spin, angular momentum, and photon number, and Poisson measurements, such as photon counting. The extended theory is used to model atomic magnetometers and study Hardy's paradox in phase space.
Communication: phase space approach to laser-driven electronic wavepacket propagation.
Takemoto, Norio; Shimshovitz, Asaf; Tannor, David J
2012-07-01
We propose a phase space method to propagate a quantum wavepacket driven by a strong external field. The method employs the periodic von Neumann basis with biorthogonal exchange recently introduced for the calculation of the energy eigenstates of time-independent quantum systems [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. (in press) [e-print arXiv:1201.2299v1
Three-qubit Protocol to Purify Generalized Werner States
NASA Astrophysics Data System (ADS)
Jafarpour, M.; Ashrafpouri, F.
2015-05-01
Generalizing the two-qubit purification method of Bennett et al. (Phys. Rev. Lett. 76, 722-725 1996), we present a three-qubit protocol, to purify partially entangled pairs of generalized Werner states, with application of controlled-not gates, projective measurements and Pauli rotations. The protocol is simple and recyclable and the fidelity of the purified states converge rapidly to 1, after a few cycles.
Yu, Chang-shui; Yi, X. X.; Song, He-shan
2007-02-15
Bounds on the concurrence of the superposition state in terms of the concurrences of the states being superposed are found in this paper. The bounds on concurrence are quite different from those on the entanglement measured by von Neumann entropy [Linden et al., Phys. Rev. Lett. 97, 100502 (2006)]. In particular, a nonzero lower bound can be provided if the states being superposed are properly constrained.
Green, Anthony J; Space, Brian
2015-07-23
Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features. PMID:25415752
The multipole resonance probe: characterization of a prototype
NASA Astrophysics Data System (ADS)
Lapke, Martin; Oberrath, Jens; Schulz, Christian; Storch, Robert; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Brinkmann, Ralf Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona
2011-08-01
The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements.
Economical phase-covariant cloning with multiclones
NASA Astrophysics Data System (ADS)
Zhang, Wen-Hai; Ye, Liu
2009-09-01
This paper presents a very simple method to derive the explicit transformations of the optimal economical 1 to M phase-covariant cloning. The fidelity of clones reaches the theoretic bound [D'Ariano G M and Macchiavello C 2003 Phys. Rev. A 67 042306]. The derived transformations cover the previous contributions [Delgado Y, Lamata L et al., 2007 Phys. Rev. Lett. 98 150502] in which M must be odd.
Interplay of Spin and Orbital Angular Momentum in the Proton
Thomas, Anthony
2008-09-01
We derive the consequences of the Myhrer-Thomas explanation of the proton spin problem for the distribution of orbital angular momentum on the valence and sea quarks. After QCD evolution these results are found to be in very good agreement with both recent lattice QCD calculations and the experimental contraints from Hermes and JLab.
http://dx.doi.org/10.1103/PhysRevLett.101.102003
Generalization of continuous-variable quantum cloning with linear optics
NASA Astrophysics Data System (ADS)
Zhai, Zehui; Guo, Juan; Gao, Jiangrui
2006-05-01
We propose an asymmetric quantum cloning scheme. Based on the proposal and experiment by Andersen [Phys. Rev. Lett. 94, 240503 (2005)], we generalize it to two asymmetric cases: quantum cloning with asymmetry between output clones and between quadrature variables. These optical implementations also employ linear elements and homodyne detection only. Finally, we also compare the utility of symmetric and asymmetric cloning in an analysis of a squeezed-state quantum key distribution protocol and find that the asymmetric one is more advantageous.
Bose-Einstein distribution of money in a free-market economy. II
NASA Astrophysics Data System (ADS)
Kürten, K. E.; Kusmartsev, F. V.
2011-01-01
We argue about the application of methods of statistical mechanics to free economy (Kusmartsev F. V., Phys. Lett. A, 375 (2011) 966) and find that the most general distribution of money or income in a free-market economy has a general Bose-Einstein distribution form. Therewith the market is described by three parameters: temperature, chemical potential and the space dimensionality. Numerical simulations and a detailed analysis of a generic model confirm this finding.
Quantum defragmentation algorithm
Burgarth, Daniel; Giovannetti, Vittorio
2010-08-15
In this addendum to our paper [D. Burgarth and V. Giovannetti, Phys. Rev. Lett. 99, 100501 (2007)] we prove that during the transformation that allows one to enforce control by relaxation on a quantum system, the ancillary memory can be kept at a finite size, independently from the fidelity one wants to achieve. The result is obtained by introducing the quantum analog of defragmentation algorithms which are employed for efficiently reorganizing classical information in conventional hard disks.
NASA Astrophysics Data System (ADS)
Dolan, G. J.
2000-03-01
We are still not at the state of using single, isolated molecules as individual circuit components but one can make sufficiently small multi-molecule components that individual electron transport in electrical usage will be relevant (as if the component were a microscopic molecule to some extent). As shown in our past decade publication of the awarded research, ( "Observation of Single-Electron Charging Effects in Small Tunnel Junctions", T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).) individual single electron effects could be effective and observable in the characteristics of a small but lithographically fabricated thin film circuit "element". I will predominantly be reviewing and re-describing the particular techniques and requirements to produce the effect at that time. I will also re-cite and describe certain relevant earlier studies, (I. Giaever and H. R. Zeller, Phys. Rev. Lett. 29, 1504 (1968); H. R. Zeller and I. Giaever, Phys. Rev. Lett. 181, 789 (1969). D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986). D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986)) will cite one significantly similar work accomplishment at a similar time, footnote L. S. Kuzmin and K. K. Likharev, Pis'ma Zh. Eksp. Teor. Fiz 45, 389(1987) [JETP Lett. 45, 495 (1987)]. and will allude to some more recent work on even smaller circuit elements, including that in several students' theses. /footnote.U. of P. Ph. D. theses of Dr. .Dan Grupp, Dr. Ning Yue, Dr. Tao Zhang. It is important to emphasize that we will eventually be in the state of manufacturing and using isolated molecules (at least very small fabricated components) as individual circuit components.
Embedding of simply laced hyperbolic Kac-Moody superalgebras
NASA Astrophysics Data System (ADS)
Nayak, Saudamini; Pati, K. C.
2013-03-01
We show that HD(4, 1) hyperbolic Kac-Moody superalgebra of rank 6 contains every simply laced Kac-Moody superalgebra with degenerate odd root as a Lie subalgebra. Our result is the supersymmetric extension of earlier work [S. Viswanath, "Embeddings of HyperbolicKac-Moody Algebras into E10," Lett. Math. Phys. 83, 139-148 (2008)], 10.1007/s11005-007-0214-7 for hyperbolic Kac-Moody algebra.
Two-player quantum pseudotelepathy based on recent all-versus-nothing violations of local realism
Cabello, Adan
2006-02-15
We introduce two two-player quantum pseudotelepathy games based on two recently proposed all-versus-nothing (AVN) proofs of Bell's theorem [A. Cabello, Phys. Rev. Lett. 95, 210401 (2005); Phys. Rev. A 72, 050101(R) (2005)]. These games prove that Broadbent and Methot's claim that these AVN proofs do not rule out local-hidden-variable theories in which it is possible to exchange unlimited information inside the same light cone (quant-ph/0511047) is incorrect.
Jeans instability criterion from the viewpoint of Kaniadakis' statistics
NASA Astrophysics Data System (ADS)
Abreu, Everton M. C.; Ananias Neto, Jorge; Barboza, Edesio M., Jr.; Nunes, Rafael C.
2016-06-01
In this letter we have derived the Jeans length in the context of the Kaniadakis statistics. We have compared this result with the Jeans length already obtained in the nonextensive Tsallis statistics (Jiulin D., Phys. Lett. A, 320 (2004) 347) and we discussed the main differences between these two models. We have also obtained the κ-sound velocity. Finally, we have applied the results obtained here to analyze an astrophysical system.
Surface acoustic wave-driven planar light-emitting device
NASA Astrophysics Data System (ADS)
Cecchini, Marco; De Simoni, Giorgio; Piazza, Vincenzo; Beltram, Fabio; Beere, H. E.; Ritchie, D. A.
2004-10-01
Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed [Cecchini et al., Appl. Phys. Lett. 82, 636 (2003)]. Current-voltage, light-voltage, and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures.
Entanglement spectrum and boundary theories with projected entangled-pair states
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Poilblanc, Didier; Schuch, Norbert; Verstraete, Frank
2011-06-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated with their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using projected entangled-pair states. This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models: a deformed AKLT model [I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.59.799 59, 799 (1987)], an Ising-type model [F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.220601 96, 220601 (2006)], and Kitaev’s toric code [A. Kitaev, Ann. Phys.APNYA60003-491610.1016/S0003-4916(02)00018-0 303, 2 (2003)], both in finite ladders and in infinite square lattices. In the second case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield nonlocal Hamiltonians. Because our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
Carrier mobility and crystal perfection of tetracene thin film FET
NASA Astrophysics Data System (ADS)
Moriguchi, N.; Nishikawa, T.; Anezaki, T.; Unno, A.; Tachibana, M.; Kojima, K.
2006-04-01
It is well-known that the carrier mobility of an organic field effect semiconductor (FET) depended on the crystal quality and/or the crystal perfection of the organic thin films [T.W. Kelly, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, Mater. Res. Soc. Symp. Proc. 771 (2003) L6.5.1; D.J. Gundlach, J.A. Nichols, L. Zhou, T.N. Jackson, Appl. Phys. Lett. 80 (2002) 2925; H.K. Lauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 92 (2002) 5259; M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. Lett. 81 (2002) 268; D. Knipp, R.A. Street, A.R. Volkel, Appl. Phys. Lett. 82 (2003) 3907; R. Ruiz, A.C. Mayer, G.G. Malliaras, Appl. Phys. Lett. 85 (2004) 4926; R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. A 201 (2004) 1031]. To improve the crystal quality of the thin film many efforts were made. One of the important improvements was the surface treatment of the substrate. The tetracene thin film FET (top contact structure) was fabricated using the substrate, which was coated by a spin-coating method with a 0.1% poly α-methylstyrene (AMS) solution. The crystal quality was improved by this treatment so that the carrier mobility was higher than that of non-treatment. The maximum mobility of the AMS-treated sample was obtained to be 0.12 cm 2/V s.
Comment on 'Absolute negative mobility in a one-dimensional overdamped system'
NASA Astrophysics Data System (ADS)
Spiechowicz, J.; Kostur, M.; Łuczka, J.
2016-04-01
Recently Ru-Yin Chen et al. (Phys. Lett. A 379 (2015) 2169-2173) presented results on the absolute negative mobility (ANM) in a one-dimensional overdamped system and claimed that a new minimal model of ANM was proposed. We suggest that the authors introduced a mistake in their calculations. Then we perform a precise numerical simulation of the corresponding Langevin equation to show that the ANM phenomenon does not occur in the considered system.
Smeared quantum phase transition in the dissipative random quantum Ising model
NASA Astrophysics Data System (ADS)
Vojta, Thomas; Hoyos, José A.
2010-01-01
We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation destroys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [J.A. Hoyos, T. Vojta, Phys. Rev. Lett. 100 (2008) 240601] of smeared quantum phase transitions.
CORRIGENDUM: The growth of aligned carbon nanotubes on quartz substrate by spray pyrolysis of hexane
NASA Astrophysics Data System (ADS)
Sadeghian, Zahra
2008-07-01
Some of the text in this paper was copied directly from other papers cited by the author. Whilst this does not affect the scientific content and is therefore not scientific plagiarism, the author acknowledges that such usage of text attributed and copyrighted to other unrelated authors is unacceptable practice. Reference [21] in the paper should read: [21] Afre R A, Soga T, Jimbo T, Kumar M, Ando Y and Sharon M 2005 Chem. Phys. Lett. 414 6-10
The effect of elementary reactions on solitary waves in dusty plasmas
Tahraoui, A.; Annou, R.
2012-01-15
The conditions of existence of solitons have been determined by Wang et al.[Phys. Lett. A 339, 96 (2005)], in negative ions containing dusty plasmas where Boltzmannian ions and electrons are assumed. The study is revisited taking into account actual elementary reactions in plasma conditions, viz., particles attachment by grains as well as neutrals and electron impact ionization of neutrals. Dust charge variation is self-consistently introduced leading to the Boltzmannian approximation relaxation.
Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers
NASA Astrophysics Data System (ADS)
Cowan, Thomas E.
2002-11-01
Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.
NASA Astrophysics Data System (ADS)
Situ, Guohai; Ryle, James P.; Gopinathan, Unnikrishnan; Sheridan, John T.
2008-02-01
In-line digital holography based on two-intensity measurements [Zhang et al. Opt. Lett. 29, 1787 (2004)], is modified by introducing a π shifting in the reference phase. Such an improvement avoids the assumption that the object beam must be much weaker than the reference beam in strength and results in a simplified experimental implementation. Computer simulations and optical experiments are carried out to validate the method, which we refer to as position-phase-shifting digital holography.
NASA Astrophysics Data System (ADS)
Khalili, Farid Ya.; Tarabrin, Sergey P.; Hammerer, Klemens; Schnabel, Roman
2016-07-01
We analyze the radiation-pressure-induced interaction of mirror motion and light fields in Michelson-type interferometers used for the detection of gravitational waves and for fundamental research in tabletop quantum optomechanical experiments, focusing on the asymmetric regime with a (slightly) unbalanced beam splitter and a (small) offset from the dark port. This regime, as it was shown recently, provides new interesting features, in particular a stable optical spring and optical cooling on cavity resonance. We show that, generally, the nature of optomechanical coupling in Michelson-type interferometers does not fit into the standard dispersive-dissipative dichotomy. In particular, a symmetric Michelson interferometer with signal-recycling but without power-recycling cavity is characterized by a purely dissipative optomechanical coupling; only in the presence of asymmetry, additional dispersive coupling arises. In gravitational waves detectors possessing signal- and power-recycling cavities, yet another coherent type of optomechanical coupling takes place. We develop here a generalized framework for the analysis of asymmetric Michelson-type interferometers, which also covers the possibility of the injection of carrier light into both ports of the interferometer. Using this framework, we analyze in depth the anomalous features of the Michelson-Sagnac interferometer, which have been discussed and observed experimentally previously [A. Xuereb et al., Phys. Rev. Lett. 107, 213604 (2011), 10.1103/PhysRevLett.107.213604; S. P. Tarabrin et al., Phys. Rev. A 88, 023809 (2013);, 10.1103/PhysRevA.88.023809 A. Sawadsky et al., Phys. Rev. Lett. 114, 043601 (2015), 10.1103/PhysRevLett.114.043601].
Microwave Realization of the Gaussian Symplectic Ensemble
NASA Astrophysics Data System (ADS)
Rehemanjiang, A.; Allgaier, M.; Joyner, C. H.; Müller, S.; Sieber, M.; Kuhl, U.; Stöckmann, H.-J.
2016-08-01
Following an idea by Joyner et al. [Europhys. Lett. 107, 50004 (2014)], a microwave graph with an antiunitary symmetry T obeying T2=-1 is realized. The Kramers doublets expected for such systems are clearly identified and can be lifted by a perturbation which breaks the antiunitary symmetry. The observed spectral level spacings distribution of the Kramers doublets is in agreement with the predictions from the Gaussian symplectic ensemble expected for chaotic systems with such a symmetry.
Double and triple photoionization of Li and Be
NASA Astrophysics Data System (ADS)
Colgan, J.; Pindzola, M. S.; Robicheaux, F.
2005-08-01
We present calculations for the double photoionization (with excitation) and the triple photoionization of Li and Be. We extend and more fully discuss the previous calculations made for Li by Colgan et al. [Phys. Rev. Lett. 93, 053201 (2004)] and present calculations for Be. The Be triple photoionization cross sections are compared with previous double shake-off model calculations of Kheifets and Bray [J. Phys. B 36, L211 (2003)], and our calculations are found to be significantly lower.
Nagata, Koji
2007-08-15
We show that positivity of every partial transpose of N-partite quantum states implies inequalities on Bell correlations which are stronger than standard Bell inequalities by a factor of 2{sup (N-1)/2}. A violation of the inequality implies that the system is in a bipartite distillable entangled state. It turns out that a family of N-qubit bound entangled states proposed by Duer [Phys. Rev. Lett. 87, 230402 (2001)] violates the inequality for N{>=}4.
Experimental Bell-inequality violation without the postselection loophole
Lima, G.; Vallone, G.; Chiuri, A.; Cabello, A.; Mataloni, P.
2010-04-15
We report on an experimental violation of the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality using energy-time-entangled photons. The experiment is not free of the locality and detection loopholes but is the first violation of the Bell-CHSH inequality using energy-time entangled photons which is free of the postselection loophole described by Aerts et al. [Phys. Rev. Lett. 83, 2872 (1999)].
Jimenez-Delgado, Pedro; Hobbs, Timothy J.; Londergan, J. T.; Melnitchouk, Wally
2016-01-05
We reply to the Comment of Brodsky and Gardner on our paper "New limits on intrinsic charm in the nucleon from global analysis of parton distributions" [Phys. Rev. Lett. 114, 082002 (2015)]. We address a number of incorrect claims made about our fitting methodology, and elaborate how global QCD analysis of all available high-energy data provides no evidence for a large intrinsic charm component of the nucleon.
Electromagnetic torque and force in axially symmetric liquid-crystal droplets.
Jánossy, István
2008-10-15
Circularly polarized light exerts torque on birefringent objects. In the case of axially symmetric particles, however, the moment of radiation force balances the direct optical torque. This explains the observation that radial liquid-crystal droplets, in contrast to planar droplets, do not spin in circularly polarized light. The conclusion is in agreement with considerations based on the angular momentum conservation of light [Phys. Rev. Lett.96, 163905 (2006)]. PMID:18923626
Anisotropic Solitons in Dipolar Bose-Einstein Condensates
Tikhonenkov, I.; Vardi, A.; Malomed, B. A.
2008-03-07
Starting with a Gaussian variational ansatz, we predict anisotropic bright solitons in quasi-2D Bose-Einstein condensates consisting of atoms with dipole moments polarized perpendicular to the confinement direction. Unlike isotropic solitons predicted for the moments aligned with the confinement axis [Phys. Rev. Lett. 95, 200404 (2005)], no sign reversal of the dipole-dipole interaction is necessary to support the solitons. Direct 3D simulations confirm their stability.
Schöll-Paschinger, E; Dellago, C
2006-08-01
We present a derivation of the Jarzynski [Phys. Rev. Lett. 78, 2690 (1997)] identity and the Crooks [J. Stat. Phys. 90, 1481 (1998)] fluctuation theorem for systems governed by deterministic dynamics that conserves the canonical distribution such as Hamiltonian dynamics, Nose-Hoover dynamics, Nose-Hoover chains, and Gaussian isokinetic dynamics. The proof is based on a relation between the heat absorbed by the system during the nonequilibrium process and the Jacobian of the phase flow generated by the dynamics. PMID:16942201
NASA Astrophysics Data System (ADS)
Lo, C. F.; Kiang, D.
2003-11-01
We apply Li et al.'s “minimal” quantization rules [Phys. Lett. A 306 (2002) 73] to investigate the quantum version of the Stackelberg duopoly, especially how the quantum entanglement affects the first-mover advantage in the Stackelberg duopoly. It is found that while positive entanglement enhances the first-mover advantage beyond the classical limit, the advantage is dramatically suppressed by negative entanglement.
Fontes, C.J. ); Sampson, D.H.; Zhang, H.L. )
1995-01-01
Relativistic distorted-wave calculations have been made of the cross sections for electron-impact ionization of U[sup 90+] and U[sup 91+] ions with the generalized Breit interaction included between bound and free electrons. Good agreement is obtained with recent electron-beam ion-trap experiments [R. E. Marrs, S. R. Elliott, and D. A. Knapp, Phys. Rev. Lett. [bold 72], 4082 (1994)].
NASA Astrophysics Data System (ADS)
Zang, Chenpeng; Sun, Hong; Tse, John S.; Chen, Changfeng
2012-07-01
Using a recently developed first-principles approach for determining indentation strength [Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett.0031-9007 PRLTAO10.1103/PhysRevLett.98.135505 98, 135505 (2007); Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett.0031-9007 PRLTAO10.1103/PhysRevLett.102.055503 102, 055503 (2009)], we performed calculations of the ideal strength of hexagonal Re, Re3N, Re2N, Re2C, Re2B, and ReB2 in various shear deformation directions beneath the Vickers indentor. Our results show that the normal compressive pressure beneath the indentor weakens the strength of these electron-rich rhenium boride, carbide, and nitride compounds that belong to a distinct class of ultraincompressible and ultrahard materials. The reduction of indentation strength in these materials stems from lateral bond and volume expansions driven by the normal compressive pressure mediated by the high-density valence electrons in these structures. We compare the calculated indentation strength to the Poisson's ratio, which measures the lateral structural expansion, for the rhenium boride, carbide, and nitride compounds as well as diamond and cubic boron nitride. Our analysis indicates that although the normal pressure beneath the indentor generally leads to more significant reduction of indentation strength in materials with larger Poisson's ratios, crystal and electronic structures also play important roles in determining the structural response under indentation. The present study reveals structural deformation modes and the underlying atomistic mechanisms in transition-metal boride, carbide, and nitride compounds under the Vickers indentation. The results are distinctive from those of the traditional covalent superhard materials. The insights obtained from this work have important implications for further exploration and design of ultrahard materials.
METHODOLOGICAL NOTES: Energy density calculations for ball-lightning-like luminous silicon balls
NASA Astrophysics Data System (ADS)
Paiva, Gerson S.; Ferreira, Joacy V.; Bastos, Cristiano C.; dos Santos, Marcus V.; Pavão, Antonio C.
2010-05-01
The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m-3, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model.
Local-dephasing-induced entanglement sudden death in two-component finite-dimensional systems
Ann, Kevin; Jaeger, Gregg
2007-10-15
Entanglement sudden death (ESD), the complete loss of entanglement in finite time, is demonstrated to occur in a class of bipartite states of qudit pairs of any finite dimension d>2, when prepared in so-called 'isotropic states' and subject to multilocal dephasing noise alone. This extends previous results for qubit pairs [T. Yu and J. H. Eberly, Phys. Rev. Lett. 97, 140403 (2006)] to all qudit pairs with d>2.
Direct evidence of three-body interactions in a cold Rb85 Rydberg gas
NASA Astrophysics Data System (ADS)
Han, Jianing
2010-11-01
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.
Ultrasensitive phase estimation with white light
Li Chuanfeng; Xu Xiaoye; Tang Jianshun; Xu Jinshi; Guo Guangcan
2011-04-15
An improvement of the scheme by Brunner and Simon [Phys. Rev. Lett. 105, 010405 (2010)] is proposed in order to show that quantum weak measurements can provide a method to detect ultrasmall longitudinal phase shifts, even with white light. By performing an analysis in the frequency domain, we find that the amplification effect will work as long as the spectrum is large enough, irrespective of the behavior in the time domain. As such, the previous scheme can be notably simplified for experimental implementations.
Choi, I.H.; Yu, P.Y.
1994-08-01
The photoluminescence spectra of AgGaSe{sub 2} obtained at 77 K is reported. Two emission peaks have been observed and their pressure dependence studied. One of these peaks has been identified with emission involving one of the two deep level peak D{sub 1} and D{sub 2} observed previously in absorption measurement [App. Phys. Lett. 64,1717 (1994)]. A simple model for the capture of carriers into these deep levels has been proposed.
Criticality in aqueous solutions of 3-methylpyridine and sodium bromide.
Kostko, A F; Anisimov, M A; Sengers, J V
2004-08-01
We address a controversial issue regarding the nature of critical behavior in ternary electrolyte solutions of water, 3-methylpyridine, and sodium bromide. Earlier light-scattering studies showed an anomalous critical behavior in this system that was attributed to the formation of a microheterogeneous phase associated with ion-molecule clustering [M.A. Anisimov, J. Jacob, A. Kumar, V.A. Agayan, and J. V. Sengers, Phys. Rev. Lett. 85, 2336 (2000)
Extermann, Jérôme; Weber, Stefan M; Kiselev, Denis; Bonacina, Luigi; Lani, Sébastien; Jutzi, Fabio; Noell, Wilfried; de Rooij, Nico F; Wolf, Jean-Pierre
2011-04-11
We describe the performance of a reflective pulse-shaper based on a Micro-ElectroMechanical System (MEMS) linear mirror array. It represents a substantial upgrade of a preceding release [Opt. Lett. 35, 3102 (2010)] as it allows simultaneous piston and tilt mirror motion, allowing both phase- and binary amplitude-shaping with no wavelength restriction. Moreover, we show how the combination of in-axis and tilt movement can be used for active correction of spatial chirp. PMID:21503066
Universality of state-independent violation of correlation inequalities for noncontextual theories.
Badziag, Piotr; Bengtsson, Ingemar; Cabello, Adán; Pitowsky, Itamar
2009-07-31
We show that the state-independent violation of inequalities for noncontextual hidden variable theories introduced in [Phys. Rev. Lett. 101, 210401 (2008)] is universal, i.e., occurs for any quantum mechanical system in which noncontextuality is meaningful. We describe a method to obtain state-independent violations for any system of dimension d> or =3. This universality proves that, according to quantum mechanics, there are no "classical" states. PMID:19792467
Microwave Realization of the Gaussian Symplectic Ensemble.
Rehemanjiang, A; Allgaier, M; Joyner, C H; Müller, S; Sieber, M; Kuhl, U; Stöckmann, H-J
2016-08-01
Following an idea by Joyner et al. [Europhys. Lett. 107, 50004 (2014)], a microwave graph with an antiunitary symmetry T obeying T^{2}=-1 is realized. The Kramers doublets expected for such systems are clearly identified and can be lifted by a perturbation which breaks the antiunitary symmetry. The observed spectral level spacings distribution of the Kramers doublets is in agreement with the predictions from the Gaussian symplectic ensemble expected for chaotic systems with such a symmetry. PMID:27541466
OPNMR evidence for the localization of Skyrmions near ν=1 : Spectra vs. ν
NASA Astrophysics Data System (ADS)
Dementyev, A. E.; Kuzma, N. N.; Khandelwal, P.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.
2000-03-01
Optically pumped Nuclear Magnetic Resonance (OPNMR) measurements of the ^71Ga spectra near ν=1 have been carried out down to 280mK. We compare these results to higher temperature measurements(S. E. Barrett et al.), Phys. Rev. Lett. 74, 5112 (1995). The low temperature spectra appear to be in the ``frozen'' limit consistent with the localization of skyrmions as Tarrow0.
Microscopic Theory of Modified Spontaneous Emission in a Dielectric
NASA Astrophysics Data System (ADS)
Berman, P. R.; Milonni, P. W.
2004-02-01
The modification of the radiative decay rate of a source atom embedded in a uniform, isotropic dielectric is calculated to first order in the density of the dielectric atoms using a microscopic approach. In contrast to the recent results of Crenshaw and Bowden [
NASA Astrophysics Data System (ADS)
Manka, Aaron S.; Dowling, Jonathan P.; Bowden, Charles M.; Fleischhauer, Michael
1994-09-01
We study the effect of near dipole-dipole interactions on the electric susceptibility of a coherently prepared three-level Λ system. We discuss the influence of atomic nonlinearities on the recently predicted enhancement of the absorptionless index of refraction and inversionless gain due to local field effects [J.P. Dowling and C.M. Bowden,
Multipartite quantum correlations and local recoverability
Wilde, Mark M.
2015-01-01
Characterizing genuine multipartite quantum correlations in quantum physical systems has historically been a challenging problem in quantum information theory. More recently, however, the total correlation or multipartite information measure has been helpful in accomplishing this goal, especially with the multipartite symmetric quantum (MSQ) discord (Piani et al. 2008 Phys. Rev. Lett. 100, 090502. (doi:10.1103/PhysRevLett.100.090502)) and the conditional entanglement of multipartite information (CEMI) (Yang et al. 2008 Phys. Rev. Lett. 101, 140501. (doi:10.1103/PhysRevLett.101.140501)). Here, we apply a recent and significant improvement of strong subadditivity of quantum entropy (Fawzi & Renner 2014 (http://arxiv.org/abs/1410.0664)) in order to develop these quantities further. In particular, we prove that the MSQ discord is nearly equal to zero if and only if the multipartite state for which it is evaluated is approximately locally recoverable after performing measurements on each of its systems. Furthermore, we prove that the CEMI is a faithful entanglement measure, i.e. it vanishes if and only if the multipartite state for which it is evaluated is a fully separable state. Along the way, we provide an operational interpretation of the MSQ discord in terms of the partial state distribution protocol, which in turn, as a special case, gives an interpretation for the original discord quantity. Finally, we prove an inequality that could potentially improve upon the Fawzi–Renner inequality in the multipartite context, but it remains an open question to determine whether this is so.
Effect of positron space charge on operation of an antihydrogen trap.
Ordonez, C A
2007-07-01
Experimental conditions have recently been reported [G. Andresen, Phys. Rev. Lett. 98, 023402 (2007)] that are relevant to the prospect of trapping antihydrogen atoms. An analysis of the experimental conditions indicates that positron space charge can have an important effect. The fraction of antiprotons that have an energy suitable for antihydrogen trapping can be reduced by drifts caused by the presence of positron space charge. PMID:17677605
GENERAL: Non-Spherical Gravitational Collapse of Strange Quark Matter
NASA Astrophysics Data System (ADS)
S, Zade S.; D, Patil K.; N, Mulkalwar P.
2008-05-01
We study the non-spherical gravitational collapse of the strange quark null fluid. The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole. We extend the earlier work of Harko and Cheng [Phys. Lett. A 266 (2000) 249] to the non-spherical case.
Tang, X.P.; Sharifi, M.; Chin, S.L.; Becker, A.; Liu, W.; Kosareva, O.; Kandidov, V.P.; Agostini, P.
2005-04-01
Toluene fragmentation by intense femtosecond laser pulses is experimentally investigated. A strong increase of the toluene fragmentation appears to correlate with an increase of the focal area due to changes in the focal geometry and nonlinear small-scale self-focusing. The scenario of Raman modes excitation proposed in an earlier publication [A.M. Mueller et al., Phys. Rev. Lett. 88, 023001 (2002)] is ruled out as the dominant effect for the enhancement.
Statistical Mechanics of Jammed Matter
NASA Astrophysics Data System (ADS)
Behringer, Bob
2009-03-01
Jammed systems consist of large numbers of macroscopic particles. As such, they are inherently statistical in nature. However, in general, key assumptions of ordinary statistical mechanics need not apply. For instance, energy does not flow in a meaningful way from a thermal bath to such systems. And energy need not be conserved. However, experiments and simulations have shown that there are well defined distributions for such important properties as forces, contact numbers, etc. And new theoretical constructions have been proposed, starting with Edwards et al. The present symposium highlights recent developments for the statistics of jammed matter. This talk reviews the overall field, and highlights recent work in granular systems[1]. Brian Tighe[2] will describe new results from a force ensemble approach proposed recently by Snoeijer et al. Silke Henkes will describe a different force-based ensemble approach that yields a generalized partition function[3]. Eric Corwin will describe state-of-the-art experiments on dense emulsions[4]. And Matthias Schr"oter will present novel experiments on fluidized suspensions that address the issue of jamming and glassy behavior[5]. So, do we have a complete description of jammed matter? Not yet, but these talks, as well as other exciting developments in the field, show that there has been enormous progress, towards that end. [4pt] [1] T. S. Majmudar et al., Nature 435, 1079 (2005); Phys. Rev. Lett. 98 058001 (2007). [0pt] [2] B. P. Tighe, A. R. T. van Eerd, and T. J. H. Vlugt , Phys. Rev. Lett. 100, 238001 (2008). [0pt] [3] S. Henkes, C. O'Hern and B. Chakrabory, Phys. Rev. Lett. 99, 038002 (2007). [0pt] [4] J. Bruji'c et al., Phys. Rev. Lett. 98, 248001 (2007). [0pt] [5] M. Schr"ooter, D. I. Goldman, and H. L. Swinney, Phys. Rev. E 71, 030301(R) (2005).
Characterizing single atom optical dipole traps
NASA Astrophysics Data System (ADS)
Shih, Chung-Yu; Gibbons, Michael; Chapman, Michael
2012-06-01
Trapping and manipulating individual neutral atoms in far off-resonant traps (FORTs) is a promising approach for quantum information processing. It is important to characterize the trapping environment of the atom and the atomic level shifts due to the trapping fields. Using non-destructive measurement techniques,ootnotetextM. J. Gibbons et al., Phys. Rev. Lett 106, 133002 (2011). we have measured the level dependent AC Stark shifts, trap frequencies, and temperature of single rubidium atoms confined in optical dipole trap.
Brane worlds in critical gravity
NASA Astrophysics Data System (ADS)
Chen, Feng-Wei; Liu, Yu-Xiao; Zhong, Yuan; Wang, Yong-Qiang; Wu, Shao-Feng
2013-11-01
Recently, Lü and Pope proposed critical gravities in [Phys. Rev. Lett. 106, 181302 (2011)]. In this paper we construct analytic brane solutions in critical gravity with matter. The Gibbons-Hawking surface term and junction condition are investigated, and the thin and thick brane solutions are obtained. All these branes are embedded in five-dimensional anti-de Sitter spacetimes. Our solutions are stable against scalar perturbations, and the zero modes of scalar perturbations cannot be localized on the branes.
Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes
NASA Astrophysics Data System (ADS)
Groth, S.; Schoof, T.; Dornheim, T.; Bonitz, M.
2016-02-01
The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently, results for N =33 spin-polarized electrons at high density, rs=r ¯/aB≲4 , and low temperature have been obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011), 10.1002/ctpp.201100012] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015), 10.1063/1.4936145]. The combination of both approaches is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] allows us to quantify the systematic error arising from the free particle nodes.
On the Interpretation of the Nernst Effect Measurements in the Cuprates
NASA Astrophysics Data System (ADS)
Ussishkin, Iddo; Sondhi, S. L.
We consider the large Nernst signal discovered by Ong and collaborators in hole-doped cuprates, in particular in the pseudogap regime. Based on our previous quantitative calculations together with Huse [Phys. Rev. Lett. 89, 287001 (2002)], we discuss the interpretation of the experimental observations as arising from superconducting fluctuations and its relation to the vortex scenario proposed by Ong. We also comment on the implications of the Nernst analysis for understanding the full range of pseudogap phenomena.
Mechanism of a molecular electronic photoswitch
NASA Astrophysics Data System (ADS)
Zhuang, Min; Ernzerhof, Matthias
2005-08-01
We present a simple non-self-consistent method for the calculation of the molecular conductance under finite bias voltage. Our approach is applied to a molecular photoswitch that has recently been investigated in break junction experiments [D. Dulić , Phys. Rev. Lett. 91, 207402 (2003)]. We obtain I-V characteristics that are qualitatively in agreement with experimental measurements. Employing our electronic structure calculations, we provide a detailed explanation for the switching behavior observed in experiment.
Phylogenetic tree construction based on 2D graphical representation
NASA Astrophysics Data System (ADS)
Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa
2006-04-01
A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.
Cavity-Enhanced Optical Frequency Comb Spectroscopy
NASA Astrophysics Data System (ADS)
Ye, Jun; Thorpe, Michael J.; Adler, Florian; Cossel, Kevin C.
2009-06-01
Cavity-enhanced optical frequency comb spectroscopy is a new technique that realizes simultaneously broad spectral coverage and high spectral resolution provided by an optical frequency comb as well as ultrahigh detection sensitivities enabled with a high-finesse optical cavity [1]. These powerful capabilities have been demonstrated in a series of experiments where real-time detection and identification of many different molecular states or species are achieved in a massively parallel fashion [2,3]. We will discuss the principle, technical requirements, and various implementations for this spectroscopic approach, as well as applications that include trace gas detections, human breath analysis, and characterization of cold and ultracold molecules [4,5,6]. References: [1] M. J. Thorpe, K. D. Moll, B. Safdi, and J. Ye, Science 311, 1595 (2006). [2] M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, Opt. Lett. 32, 307 (2007). [3] C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 99, 263902 (2007). [4] M. J. Thorpe, D. Balslev-Clausen, M. Kirchner, and J. Ye, Opt. Express. 16, 2387 (2008). [5] M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008). [6] M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
NASA Astrophysics Data System (ADS)
Lister, C. J.; Fischer, S. M.; McCutchan, E. A.; Ahn, T.; Casperson, R. J.; Heinz, A.; Ilie, G.; Qian, J.; Williams, E.; Winkler, R.
2009-10-01
One of the original candidates for shape co-existence in nuclei was ^72Se [1,2]. We have collected extensive new data, both ``in-beam'' following the ^40Ca(^36Ar,4p)^72Se reaction using Gammasphere at Argonne's ATLAS accelerator, and from the decay of ^72Br populated in the ^58Ni(^16O,pn) reaction studied at WNSL Yale. A new J^π=0^+ state was found at 1876 keV, the published [2] decay scheme was corrected, and twenty-six new levels were established. This detailed spectroscopy of low-lying states helps to delineate the two shape minima. The mixing of prolate-deformed and near-spherical states can be now quantified, and the gamma decay path from high-spin can be followed. The inferred groundstate shape is consistent with trends in experiment and calculation of the selenium isotopes [3,4]. [4pt] [1] J.H. Hamilton, et al., Phys. Rev. Letts. 32 239 (1974)[0pt] [2] W.E. Collins, et al., Phys.Rev. C9, 1457 (1974)[0pt] [3] S.M. Fischer, et al., Phys.Rev.Lett. 84, 4064 (2000)[0pt] [4] J. Ljungvall, et al., Phys.Rev.Lett. 100, 102502 (2008)
NASA Astrophysics Data System (ADS)
Johnson, J. P.; Zheng, N.; Williams, C. C.
2007-03-01
Electronic defects in dielectric materials are currently in sharp focus, for nano-technology and quantum information processing. A novel technique has been developed for imaging these states with sub-nanometer spatial resolution. It can be applied to completely non-conducting dielectric films, in contrast to the STM. The method is based on force detected single electron tunneling events to and from the defect states [1-3]. The exponential dependence of the tunneling rate on tip-sample gap provides the same spatial resolution as STM. An oscillating AFM tip is scanned at constant height above the sample surface. A voltage waveform, synchronous with the tip motion is applied. When the tip is above an accessible state, individual electrons shuttle between tip and state with the applied voltage (300 Hz). The two-way tunneling causes a detectable change in tip resonance. Images of SiO2 and HfSiOx films show a repeatable, random array of individual ``point-like'' defect states, some with sub-nanometer width. Spectroscopic measurements of the defect energy are also performed by this approach. The new method and an analysis of the defects in SiO2 and HfSiOx will be presented. [1] E Bussman et al., Appl. Phys. Lett. 85, 2538 (2004) [2] E Bussman and CC Williams, Appl. Phys. Lett. 88, 263108 (2006) [3] E Bussman et al., Nano Lett. 6, 2577 (2006)
Role of interference in the photosynthetic heat engine
NASA Astrophysics Data System (ADS)
Xu, Y. Y.; Liu, J.
2014-11-01
The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008), 10.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013), 10.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013), 10.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic.
Helical states with ordered magnetic topology in the Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Cappello, S.; Gobbin, M.; Spizzo, G.
2008-11-01
The reversed field pinch (RFP) configuration for magnetic confinement has shown to develop helical configurations characterized by good magnetic surfaces both in experiments and visco-resistive 3D MHD numerical computations [1]. In the RFX-mod experiment, quasi-single helicity (QSH) states with ordered magnetic topology have been found to develop both spontaneously during high current discharges [2] and in a stimulated way through the periodic oscillation of the toroidal flux (so-called OPCD technique) [3]. In both cases, the expulsion of the separatrix of the dominant mode has proved to be the key for significant chaos healing [4], as expected by theory [5]. In this work, we present results of visco-resistive 3D MHD numerical modeling aiming at clarifying the mechanism and the conditions for separatrix expulsion and chaos healing in spontaneous and stimulated cases. The effect is investigated by reconstruction of the magnetic topology through field line tracing algorithms and by study of test particle dynamics. [1] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein. [2] M. Valisa et al., invited oral, EPS Conf. on Plasma Physics (2008). [3] D. Terranova et al., Phys. Rev. Lett. 99, 095001 (2007). [4] R. Lorenzini et al., Phys. Rev. Lett. 101, 025005 (2008). [5] D. F. Escande, R. Paccagnella et al., Phys. Rev. Lett. 85, 3169 (2000).
NASA Astrophysics Data System (ADS)
Liu, Yuanming; Israelsson, Ulf E.; Larson, Melora
2001-03-01
The superfluid transition in ^4He in the presence of a heat current (Q) provides an ideal system for the study of phase transitions under non-equilibrium, dynamical conditions. Many physical properties become nonlinear and Q-dependent near the transition temperature, T_ λ. For instance, the heat capacity enhancement by a heat current was predicted theoretically(R. Haussmann and V. Dohm, Phys. Rev. Lett. 72), 3060 (1994); T.C.P. Chui phet al., Phys. Rev. Lett. 77, 1793 (1996)., and observed experimentally(A.W. Harter phet al)., Phys. Rev. Lett. 84, 2195 (2000).. Because the thermal expansion coefficient is a linear function of the specific heat near T_ λ, both exhibit similar critical behaviors under equilibrium conditions. An enhancement of the thermal expansion coefficient is also expected if a similar relationship exists under non-equilibrium conditions. We report our experimental search of the enhancement of the thermal expansion of superfluid ^4He by a heat current (0 <= Q <= 100 μW/cm^2). We conducted the measurements in a thermal conductivity cell at sample pressures of SVP and 21.2 bar. The measurements were also performed in a reduced gravity environment of 0.01g provided by the low-gravity simulator we have developed at JPL.
Improvement of Thermoelectric Cooling with Inhomogeneous Thermal Conductivity
NASA Astrophysics Data System (ADS)
Zhou, Jun; Lu, Tingyu; Li, Baowen; CenterPhononics and Thermal Energy Science Team
2014-03-01
Thermal rectifier with inhomogeneous thermal conductivity has been theoretically proposed [ Li, Wang, and Casati, Phys. Rev. Lett. 93, 184301 (2004); Segal and Nitzan, Phys. Rev. Lett. 94, 034301 (2005); Terraneo, Peyrard, and Casati, Phys. Rev. Lett. 88, 094302 (2002)] and been experimentally observed in carbon and boron-nitride nanotubes which are mass-loaded externally and inhomogeneously with heavy molecules [Chang et al., Science 314, 1121 (2006)]. We theoretically investigate the thermal rectification effect on the thermoelectric cooling process with linearly changed spatial dependent thermal conductivity. We find that the dissipation of Joule heat generated in such thermoelectric devices could be inhomogeneous that is very different from the convention thermoelectric devices. Such inhomogeneity of heat dissipation could enhance the heat absorption at the cold end in cooling and therefore enhance the cooling power. The energy conversion efficiency can also be modified with a redefined thermoelectric figure-of-merit ZT. Our finding is believed to be useful for high performance of thermoelectric devices in the future.
Interface structure for growth of epitaxial graphene on SiC(0001)
NASA Astrophysics Data System (ADS)
Rhim, S. H.; Sun, G.; Li, L.; Weinert, M.
2009-03-01
In spite of the enormous effort devoted to the study of the epitaxial growth of graphene on SiC, there is not yet a consensus regarding the structure of the interface between graphene and the substrate. There have been a long standing discrepancy between low energy electron diffraction (LEED) and STM patterns regarding the periodicity of graphene on SiC(0001); the theoretical studies of the of 6√3x6√3 ootnotetextS. Kim, J. Ihm, H. J. Choi, and Y. W. Son, Phys. Rev. Lett. 100, 176802 (2008). or √3x√3 ootnotetextF. Varchon et al, Phys. Rev. Lett. 99, 126805 (2007); A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007 periodicity, while describing some aspects, disagree in important details with scanning tunneling microscopy (STM) images. We present a combined theoretical and experimental study, employing density functional calculations and STM, to investigate this issue. We propose the formation of a defected graphene layer at the interface, and then subsequent growth of graphene. The calculated bias-dependent STM images are in good agreement with our STM images, and provide insight into the details of the interface structure.
Quantum Critical Behavior of the Bose-Fermi Kondo Model with Ising Anisotropy
NASA Astrophysics Data System (ADS)
Park, Tae-Ho
2005-03-01
The existence of a continous quantum phase transition of the Bose-Fermi Kondo Model (BFKM) with a self-consistently determined bosonic bath has been demonstrated within the Extended Dynamical Mean Field Approach to the anisotropic Kondo lattice model and φ/T-scaling near the quantum critical point(QCP)was found[1,2]. We study the quantum critical properties of the anisotropic BFKM with specified bath spectral function, where the spectrum of the bosonic bath vanishes in a power-law fashion with exponent γ for small frequencies. Motivated by very recent results that the quantum to classical mapping for a related class of models fails[3,4]. We determine the critical local susceptibility using both the classical and quantum Monte Carlo approaches of Ref.5. Our results cover several values of γ below and above the upper critical dimension of the classical model for temperatures down to 1% of the bare Kondo scale. [1]D. Grempel and Q. Si, Phys. Rev. Lett. 91, 026402 (2003). [2]J.Zhu, D. Grempel, and Q. Si, Phys. Rev. Lett. 91, 156404 (2003). [3]L. Zhu, S. Kirchner, Q. Si nad A. Georges, Phys. Rev. Lett. in press (cond-mat/0406293). [4]M. Vojta, N. Tong, and R. Bulla, cond-mat/0410132. [5]D. Grempel and M. Rozenberg, Phys. Rev. B 60, 4702 (1999).
The Effect of the Berry Phase on the Quantum Critical Properties of the Bose-Fermi Kondo model
NASA Astrophysics Data System (ADS)
Kirchner, Stefan; Si, Qimiao
2006-03-01
The theory of the quantum critical point of a T=0 transition is traditionally formulated in terms of a quantum-to-classical mapping, leading to a theory of its classical counterpart in elevated dimensions. Recently, it has been shown that this mapping breaks down in an SU(N)xSU(N/2) Bose-Fermi Kondo model (BFKM) [1], a BFKM with Ising anisotropy [2] and the spin-boson model [3]. Here we report the Quantum Monte Carlo results for the scaling properties of the quantum critical point of the BFKM with Ising anisotropy. In addition, using the Lagrangian formulation of the BFKM, we study the critical properties in the presence and absence of the spin Berry phase term. The results of the two cases are compared with the numerical results.[1] L. Zhu, S. Kirchner, Q. Si, and A. Georges, Phys. Rev. Lett. 93,267201 (2004). [2] M. Glossop and K. Ingersent, Phys. Rev. Lett. 95, 067202 (2005). [3] M. Vojta, N-H Tong, and R. Bulla, Phys. Rev. Lett. 94, 070604 (2005).
Quantum noise interference as a route to ground state cooling in cavity electromechanics
NASA Astrophysics Data System (ADS)
Clerk, Aashish; Elste, Florian; Girvin, Steve
2009-03-01
We present a theoretical analysis of a novel cavity electromechanical (or optomechanical) system where a mechanical resonator directly modulates the damping rate κ of a driven microwave (or optical) cavity. We show that due to a destructive interference of quantum noise, the driven cavity can effectively act like a zero-temperature bath irrespective of the ratio κ/ φM, where φM is the mechanical frequency. This scheme thus allows one to cool the mechanical resonator to its ground state without requiring the cavity to be in the so-called good cavity limit κφM. This behavior is in sharp contrast to the more common setup with a parametric coupling (where the mechanics modulates the frequency of the cavity); there, ground state cooling is only possible in the good cavity limit [1,2]. We also show that this system can be used to perform quantum-limited position measurements. The system described here could be implemented directly using setups similar to those used in recent experiments in cavity electromechanics [3]. [4pt] [1] F. Marquardt et al., Phys. Rev.Lett. 99, 093902 (2007).[0pt] [2] I. Wilson-Rae et al., Phys.Rev. Lett. 99, 093901 (2007).[0pt] [3] J. D. Teufel et al., Phys. Rev.Lett. 101, 197203 (2008).
Effective control of a soliton by sliding-frequency guiding filters
Burtsev, S.; Kaup, D.J.
1997-03-01
A singular perturbation method is used to analyze the effect of sliding-frequency guiding filters on an optical soliton, which has been proposed to be used as a bit carrier in fiber-optics communication systems. We find that there is a broad range of physical parameters, only inside of which would the sliding-frequency filter scheme operate stably. The lower limit (in soliton energy) of this parameter regime was found earlier by Mollenauer {ital et al.} [Opt. Lett. {bold 17}, 1575 (1992)] and by Kodama {ital et al.} [Opt. Lett. {bold 18}, 1311 (1993)] and is determined by whether the soliton will continue to stay in synchronization with the array of filters. The upper limit is determined when the comoving dispersive waves that are continually being generated by the filtering are no longer decaying and instead start to grow and generate, finally, a secondary soliton. This upper limit was discovered recently in both experiments and numerical simulations by Mamyshev and Mollenauer [Opt. Lett. {bold 15}, 2083 (1994)]. We have found a simple analytical estimate of this upper limit by the use of a singular perturbation method. Our analytical results agree well with the numerical and experimental findings of Mamyshev and Mollenauer. {copyright} 1997 Optical Society of America
NASA Astrophysics Data System (ADS)
Dohm, Volker
2014-09-01
Thermodynamic Casimir forces of film systems in the O(n) universality classes with Dirichlet boundary conditions are studied below bulk criticality. Substantial progress is achieved in resolving the long-standing problem of describing analytically the pronounced minimum of the scaling function observed experimentally in He4 films (n=2) by Garcia and Chan [Phys. Rev. Lett. 83, 1187 (1999), 10.1103/PhysRevLett.83.1187] and in Monte Carlo simulations for the three-dimensional Ising model (n =1) by O. Vasilyev et al. [Europhys. Lett. 80, 60009 (2007), 10.1209/0295-5075/80/60009]. Our finite-size renormalization-group approach describes the film systems as the limit of finite-slab systems with vanishing aspect ratio. This yields excellent agreement with the depth and the position of the minimum for n =1 and semiquantitative agreement with the minimum for n =2. Our theory also predicts a pronounced minimum for the n =3 Heisenberg universality class.
NASA Astrophysics Data System (ADS)
Bruni, S.; Zerbini, Susanna; Raicich, F.; Errico, M.; Santi, E.
2014-12-01
Global navigation satellite systems (GNSS) data are a fundamental source of information for achieving a better understanding of geophysical and climate-related phenomena. However, discontinuities in the coordinate time series might be a severe limiting factor for the reliable estimate of long-term trends. A methodological approach has been adapted from Rodionov (Geophys Res Lett 31:L09204, 2004; Geophys Res Lett 31:L12707, 2006) and from Rodionov and Overland (J Marine Sci 62:328-332, 2005) to identify both the epoch of occurrence and the magnitude of jumps corrupting GNSS data sets without any a priori information on these quantities. The procedure is based on the Sequential t test Analysis of Regime Shifts (STARS) (Rodionov in Geophys Res Lett 31:L09204, 2004). The method has been tested against a synthetic data set characterized by typical features exhibited by real GNSS time series, such as linear trend, seasonal cycle, jumps, missing epochs and a combination of white and flicker noise. The results show that the offsets identified by the algorithm are split into 48 % of true-positive, 28 % of false-positive and 24 % of false-negative events. The procedure has then been applied to GPS coordinate time series of stations located in the southeastern Po Plain, in Italy. The series span more than 15 years and are affected by offsets of different nature. The methodology proves to be effective, as confirmed by the comparison between the corrected GPS time series and those obtained by other observation techniques.
Non-unique monopole oscillations of harmonically confined Yukawa systems
NASA Astrophysics Data System (ADS)
Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael
2008-11-01
Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)
Feshbach molecules from an atomic Mott insulator
NASA Astrophysics Data System (ADS)
Volz, Thomas; Syassen, Niels; Bauer, Dominik; Hansis, Eberhard; Duerr, Stephan; Rempe, Gerhard
2006-05-01
Feshbach molecules from bosonic atomic species have proven to be very unstable with respect to inelastic collisions [1]. As a result, the typical lifetime observed for a cloud of ultracold ^87Rb2 molecules stored in an optical dipole trap is limited to a few ms.Here, we report on the observation of long-lived Feshbach molecules in an optical lattice. A BEC of ^87Rb atoms is loaded into the lowest Bloch band of a 3D optical lattice operated at a wavelength of 830 nm. By ramping up the lattice depth, the atomic gas enters the Mott insulator regime. A magnetic-field ramp through the Feshbach resonance at 1007 G creates molecules [2]. Lattice sites initially occupied with more than 2 atoms experience fast inelastic collisional losses. The observed lifetime of the remaining molecules is ˜100 ms, which is much longer than for a pure molecular sample in an optical dipole trap. Similar results have recently been reported in Ref.[3]. The increased lifetime is an important step on the route to a BEC of molecules in the vibrational ground state [4].[1] T. Mukaiyama et al., Phys. Rev. Lett. 92, 180402 (2004) [2] S. D"urr et al., Phys. Rev. Lett. 92, 020406 (2004) [3] G. Thalhammer et al., cond-mat/0510755 [4] D. Jaksch et al., Phys. Rev. Lett. 89, 040402 (2002)
QCD breaks Lorentz invariance and colour
NASA Astrophysics Data System (ADS)
Balachandran, A. P.
2016-03-01
In the previous work [A. P. Balachandran and S. Vaidya, Eur. Phys. J. Plus 128, 118 (2013)], we have argued that the algebra of non-Abelian superselection rules is spontaneously broken to its maximal Abelian subalgebra, that is, the algebra generated by its completing commuting set (the two Casimirs, isospin and a basis of its Cartan subalgebra). In this paper, alternative arguments confirming these results are presented. In addition, Lorentz invariance is shown to be broken in quantum chromodynamics (QCD), just as it is in quantum electrodynamics (QED). The experimental consequences of these results include fuzzy mass and spin shells of coloured particles like quarks, and decay life times which depend on the frame of observation [D. Buchholz, Phys. Lett. B 174, 331 (1986); D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982; J. Fröhlich, G. Morchio and F. Strocchi, Phys. Lett. B 89, 61 (1979); A. P. Balachandran, S. Kürkçüoğlu, A. R. de Queiroz and S. Vaidya, Eur. Phys. J. C 75, 89 (2015); A. P. Balachandran, S. Kürkçüoğlu and A. R. de Queiroz, Mod. Phys. Lett. A 28, 1350028 (2013)]. In a paper under preparation, these results are extended to the ADM Poincaré group and the local Lorentz group of frames. The renormalisation of the ADM energy by infrared gravitons is also studied and estimated.
Role of interference in the photosynthetic heat engine.
Xu, Y Y; Liu, J
2014-11-01
The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008)EULEEJ0295-507510.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013)PNASA60027-842410.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic. PMID:25493763
Quantum dynamics of insertion reactions involving metastable atoms and H2
NASA Astrophysics Data System (ADS)
Honvault, Pascal; Launay, Jean-Michel
2004-05-01
Using a time-independent method with body-frame democratic hyperspherical coordinates, we have performed quantum reactive scattering calculations on recent ab initio potential energy surfaces for the O(1D), N(2D), C(1D) and S(1D) + H2 reactions [1]. We have found that these reactions present common features (decrease of the vibrational distribution with the final vibrational state v', forward-backward symmetry in center-of-mass differential cross sections,...). However some features are specific for each reaction : for O(1D) + H2, important role of the first excited potential energy surface for energies larger than 100 meV; tunneling effect in the initial arrangement for N(2D) + H2; dense resonance structures in reaction probabilities for C(1D) and S(1D) + H2. [1] F.J. Aoiz et al., Phys. Rev. Lett., 86, 1729 (2001); N. Balucani et al., Phys. Rev. Lett., 89, 013201 (2002); L. Banares, F.J. Aoiz, P. Honvault, B. Bussery-Honvault, J.-M. Launay, J. Chem. Phys., 118, 565 (2003); P. Honvault, J.-M. Launay, Chem. Phys. Lett., 370, 371 (2003).
Cold Rydberg atoms in circular states
NASA Astrophysics Data System (ADS)
Anderson, David; Schwarzkopf, Andrew; Raithel, Georg
2012-06-01
Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).
Diffraction of picosecond bulk longitudinal and shear waves in micron thick films
NASA Astrophysics Data System (ADS)
Audoin, B.; Perton, M.; Chigarev, N.; Rossignol, C.
2008-01-01
Investigation of thin metallic film properties by means of picosecond ultrasonics [C. Thomsen et al., Phys. Rev. Lett. 53, 989 (1984)] has been under the scope of several studies. Generation of longitudinal and shear waves [T. Pézeril et al., Phys. Rev. B 73, 132301 (2006); O. Matsuda et al., Phys. Rev. Lett. 93, 095501 (2004)] with a wave vector normal to the film free surface has been demonstrated. Such measurements cannot provide complete information about properties of anisotropic films. Extreme focusing of a laser pump beam (≈0.5 μm) on the sample surface has recently allowed us to provide evidence of picosecond acoustic diffraction in thin metallic films (≈1 μm) [C. Rossignol et al., Phys. Rev. Lett. 94, 166106 (2005)]. The resulting longitudinal and shear wavefronts propagate at group velocity through the bulk of the film. To interpret the received signals, source directivity diagrams are calculated taking into account material anisotropy, optical penetration, and laser beam width on the sample surface. It is shown that acoustic diffraction increases with optical penetration, so competing with the increasing of directivity caused by beam width. Reflection with mode conversion at the film-substrate interface is discussed.