77 FR 5246 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...
76 FR 48147 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...
75 FR 6369 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...
78 FR 38696 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...
78 FR 6088 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...
76 FR 41234 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
77 FR 41395 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
75 FR 41838 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...
76 FR 8358 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
78 FR 47677 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...
Geothermal Energy Basics | NREL
Geothermal Energy Basics Geothermal Energy Basics Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... Energy Agency Basic Safety Standards Version 3.0, Draft Safety Requirements DS379 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Public Meeting on the International Atomic Energy Agency Basic... development of U.S. Government comments on this International Atomic Energy Agency (IAEA) draft General Safety...
Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy sun falls on the earth in one hour than is used by everyone in the world in one year. A variety of heat from the sun to provide electricity for large power stations. Solar Process Heat These
10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.385 Cessation of distribution of a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
75 FR 27547 - Notice of Reestablishment of the Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... management, basic science, research, development and technology activities; energy and national security... basis of their broad competence in areas relating to quality management, basic science, renewable energy, energy policy, environmental science, economics, and broad public policy interests. Membership of the...
Alternative Fuels Data Center: Electricity Fuel Basics
, coal, nuclear energy, hydropower, natural gas, wind energy, solar energy, and stored hydrogen. Plug-in Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics
Geothermal Heat Pump Basics | NREL
a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly
ERIC Educational Resources Information Center
National Science Teachers Association, Washington, DC.
This instructional unit contains four classroom lessons dealing with energy for use in grades six and seven. The overall objective is to provide students with a comparative overview of two basic energy concepts: energy is a basic need in all cultures; and energy use affects the way people live. In the lessons, which can easily be integrated into…
Energy and Economics. [Revised Edition.
ERIC Educational Resources Information Center
Walstad, William; Gleason, Joyce
This unit is designed to provide high school students with an introduction to topics of energy and economics. A basic premise of the unit is that energy issues and economics are interrelated. It is believed that the application of basic economic concepts to energy issues can provide students with the tools to improve their analysis of problems and…
DOE R&D Accomplishments Database
Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.
2007-04-04
To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, N. S.; Crabtree, G.; Nozik, A. J.
2005-04-21
World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploitmore » this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.« less
Total energy management for nursing homes and other long-term care institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
Saving Energy around the House = Tien Tan Trong Viec Tieu Thu Nang Luc Trong Nha.
ERIC Educational Resources Information Center
Noyes, Marilyn; Jarrett, Von
This bilingual booklet is intended to help Vietnamese refugees learn basic energy conservation skills. Included in the booklet are Vietnamese and English translations of basic energy conservation practices related to the following areas: heating, cooling, cooking, using refrigerators and freezers, lighting, water heating, doing laundry, pursuing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, G.
1995-10-30
The objective of the workshop was to promote discussions between experts and research managers on developing approaches for assessing the impact of DOE`s basic energy research upon the energy mission, applied research, technology transfer, the economy, and society. The purpose of this impact assessment is to demonstrate results and improve ER research programs in this era when basic research is expected to meet changing national economic and social goals. The questions addressed were: (1) By what criteria and metrics does Energy Research measure performance and evaluate its impact on the DOE mission and society while maintaining an environment that fostersmore » basic research? (2) What combination of evaluation methods best applies to assessing the performance and impact of OBES basic research? The focus will be upon the following methods: Case studies, User surveys, Citation analysis, TRACES approach, Return on DOE investment (ROI)/Econometrics, and Expert panels. (3) What combination of methods and specific rules of thumb can be applied to capture impacts along the spectrum from basic research to products and societal impacts?« less
Basic Science for a Secure Energy Future
NASA Astrophysics Data System (ADS)
Horton, Linda
2010-03-01
Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.
FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, George A.; Simmons, Jerry A.
2006-07-01
This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.
Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.
ERIC Educational Resources Information Center
Cappiello, Jane E.; O'Neil, Karen E.
This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"Electricity: the Energy of Tomorrow" was submitted by the Energy Materials Center at Cornell (emc2) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs)more » in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff
2017-12-09
'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
ERIC Educational Resources Information Center
St. John, Jeanne
The guidelines are intended to familiarize educators with the basics of acupressure and to suggest ways in which the principles may help relieve anxiety and stress in school students. Eight energy exercises are introduced, followed by a review of the basic principles of energy and guidelines for giving and receiving acupressure. Illustrations of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Gary A.
"The Center for Frontiers of Subsurface Energy Security (CFSES)" was submitted to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conductmore » fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Pope, Gary A. (Director, Center for Frontiers of Subsurface Energy Security); CFSES Staff
2017-12-09
'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Burns, Peter (Director, Materials Science of Actinides); MSA Staff
2017-12-09
'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Code of Federal Regulations, 2013 CFR
2013-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Code of Federal Regulations, 2012 CFR
2012-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Code of Federal Regulations, 2010 CFR
2010-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Code of Federal Regulations, 2011 CFR
2011-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption...
78 FR 77442 - Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board AGENCY: Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy... Board was established to provide advice and recommendations to the Secretary on the Department's basic...
77 FR 2053 - Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy... Board was reestablished to provide advice and recommendations to the Secretary on the Department's basic...
Division of energy biosciences: Annual report and summaries of FY 1995 activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.« less
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1983-01-01
The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.
... A calorie is a unit of energy. Most foods and beverages contain calories. To lose weight you need to: • ... Combine the two for the best results The foods you eat and the beverages you drink provide energy and nutrients. The basic ...
Agricultural Energy Practices. Agriculture Energy.
ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with agricultural energy practices. Its objective is for the student to be able to discuss energy use and conservation of resources in the production of agricultural products. Some topics covered are basic uses of direct energy in…
Collecting Solar Energy. Solar Energy Education Project.
ERIC Educational Resources Information Center
O'Brien, Alexander
This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…
Research and Energy Efficiency: Selected Success Stories
DOE R&D Accomplishments Database
Garland, P. W.; Garland, R. W.
1997-06-26
Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.
Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff
2017-12-09
'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations Management (3) Fusion Energy (4) Health and Environmental Research (5) High Energy and Nuclear Physics (6...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Remedies. 431.386 Section 431.386 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.386 Remedies. If the Secretary determines that a basic model of any covered equipment does...
Code of Federal Regulations, 2012 CFR
2012-01-01
... that any represented value of the thermal efficiency or other measure of energy consumption of a basic... 10 Energy 3 2012-01-01 2012-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND...
10 CFR 429.44 - Commercial water heating equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of minimum thermal efficiency or other measure of energy consumption of a basic model for which... 10 Energy 3 2013-01-01 2013-01-01 false Commercial water heating equipment. 429.44 Section 429.44 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER...
Code of Federal Regulations, 2013 CFR
2013-01-01
... that any represented value of the thermal efficiency or other measure of energy consumption of a basic... 10 Energy 3 2013-01-01 2013-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND...
Code of Federal Regulations, 2014 CFR
2014-01-01
... that any represented value of the thermal efficiency or other measure of energy consumption of a basic... 10 Energy 3 2014-01-01 2014-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND...
Fission Energy and Other Sources of Energy
ERIC Educational Resources Information Center
Alfven, Hannes
1974-01-01
Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)
ERIC Educational Resources Information Center
Walker, Harry O.
This book is intended to provide basic information about energy. The first three chapters describe energy supply and demand, uses and sources, and common energy terms. The next two chapters explain environmental and biological effects of energy systems. Twelve chapters that follow outline past history and technological knowledge of the following…
77 FR 38275 - Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board AGENCY: Department of Energy, DoE. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy [[Page... Secretary on the Department's basic and applied research, economic and national security policy, educational...
75 FR 82002 - Secretary of Energy Advisory Board Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board Meeting AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy... recommendations to the Secretary on the Department's basic and applied research, economic and national security...
None
2018-05-30
See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.
Basic Steps to Using the Energy Savings Plus Health Guidelines
he Energy Savings Plus Health Guide equips school districts to integrate indoor air quality protections into school energy efficiency retrofits and other building upgrade projects. This document describes steps to using the Energy Savings Plus Health guide
Global energy regulation in the solar wind-magnetosphere-ionosphere system
NASA Technical Reports Server (NTRS)
Sato, T.
1985-01-01
Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Peter; Lenzen, Meehan
"Energy Frontier Research Center Materials Science of Actinides" was submitted by the EFRC for Materials Science of Actinides (MSA) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Researchmore » Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Kilowatt Counter: A Consumer's Guide to Energy Concepts, Quantities, and Uses.
ERIC Educational Resources Information Center
Friend, Gil; Morris, David
This booklet is a basic introduction to energy and energy usage. The first chapter discusses various forms of energy and how they are measured and converted from one to another with a unit conversion chart included. Tables and figures list annual energy requirements of household electrical appliances and energy requirements for houses with various…
ERIC Educational Resources Information Center
Albracht, James; French, Byron
This core curriculum contains five units of material for teaching energy to vocational agriculture students. Energy uses and the benefits of energy conservation are covered in a unit on the impact of energy on agriculture. Discussed next are tractor performance and Nebraska tractor test data for selecting and evaluating tractors for maximum fuel…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Robert E.
"PARC - Scientific Exchange Program" was submitted by the Photosynthetic Antenna Research Center (PARC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) inmore » 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff
2017-12-09
'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Code of Federal Regulations, 2010 CFR
2010-01-01
... definitions are provided for purposes of this part— Basic and applied research means basic and applied research and that part of development not related to the development of specific systems or products. The... ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM...
Thermodynamics--A Practical Subject.
ERIC Educational Resources Information Center
Jones, Hugh G.
1984-01-01
Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and Enforcement § 430.73 Remedies. If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard or water conservation standard (in the case of faucets...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and Enforcement § 430.73 Remedies. If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard or water conservation standard (in the case of faucets...
The Energy Crisis: A New Chemistry Course for Nonscience Majors
ERIC Educational Resources Information Center
Piraino, Marie J.
1974-01-01
Describes a course structured around nuclear energy, fossil fuel energy, food energy, and the population explosion. The course uses classroom discussion and laboratory sessions to stress basic chemical principles and relevance to the student. A topical outline is included. (GS)
Future Energy Technology. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang
"EFRC: CST at the University of Texas at Austin- A DOE Energy Frontier Research Center" was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC: CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
ERIC Educational Resources Information Center
Eaton, William W.
Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…
1988-11-01
rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction
A Method for Direct-Measurement of the Energy of Rupture of Impact Specimens
1953-01-01
CONTENTS SECTION A - Poreword SFCTION B » ObjectiTes of the Current Investigation SECTION C - Basic Elements of an Impact Testing System ...SECTION D - Discussion lo Linear System 2 c Rotary System 3o Methods for Ifeasui ing the Energy of Rupture SECTION E « The Energy Measuring System ...has followed and to siironarize our techni<»l findings, Co BASIC ELEKEMTS OF AN IMPACT TESTING SYSTEM For the analytical purposes of this
Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff
2017-12-09
'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stocks, G. Malcolm; Ice, Gene
"Center for Defect Physics - Energy Frontier Research Center" was submitted by the Center for Defect Physics (CDP) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from eight institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Ohio State University;more » University of Georgia and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coltrin, Mike; Simmons, Jerry
"Enabling Energy Efficiency" was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratoryl; University of New Mexico; Northwestern University; Philips Lumileds Lighting; University of Californiamore » Merced and Santa Barbara. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"CABS: Green Energy for our Nation's Future" was submitted by the Center for Advanced Biofuel Systems (CABS) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. Themore » Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Coltrin, Mike (Acting Director, EFRC for Solid State Lighting Science); Simmons, Jerry; SSLS Staff
2017-12-09
'Enabling Energy Efficiency' was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratory; University of Massachusetts, Lowell; University of New Mexico; Northwestern University; Philips Lumileds Lighting; and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Energy for Survival: The Alternative to Extinction.
ERIC Educational Resources Information Center
Clark, Wilson
The author initially describes the basic physical principles associated with energy and the rise of energy usage in the United States. Also discussed are the ways energy limits growth and its use in various sectors of society. It is suggested that the decentralization of America's electrical system will save a great deal of energy. A variety of…
How We Make Energy Work: Grades 4, 5, 6 Science.
ERIC Educational Resources Information Center
National Science Teachers Association, Washington, DC.
This packet of units is designed to focus on the technological aspects of energy. Four units are presented, with from 1-4 lessons included in each unit. Units include: (1) basic concepts and applications of energy; (2) steps and processes of energy production and transmission; (3) fuel acquisition; and (4) energy futures and application of…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... of Energy (DOE) test procedure for determining the energy consumption of certain specific electric... procedures may evaluate the basic model in a manner so unrepresentative of its true energy consumption... in a manner representative of its energy consumption. 10 CFR 430.27(b)(1)(iii). The Assistant...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Definitions. 605.3 Section 605.3 Energy DEPARTMENT OF... § 605.3 Definitions. In addition to the definitions provided in 10 CFR part 600, the following definitions are provided for purposes of this part— Basic and applied research means basic and applied...
Chemical Biodynamics Division. Annual report 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nastasi, Michael
"Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL" was submitted by CMIME to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegie Mellon University, the University of Illinois at Urbana-Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff
2017-12-09
'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface.
Ingebrigtsen, Trond S; Toxvaerd, Søren; Heilmann, Ole J; Schrøder, Thomas B; Dyre, Jeppe C
2011-09-14
An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid. © 2011 American Institute of Physics
Energy Education in Elementary Social Studies. Windows On Our World.
ERIC Educational Resources Information Center
Minnesota State Energy Agency, St. Paul.
This document provides elementary teachers with an annotated index according to (Houghton-Mifflin, 1976), followed by suggestions for activities related to the topics. Indexed topics, which comprise a major portion of the document, include basic energy information, society's dependence on energy, problems and advantages of energy alternatives, and…
10 CFR 431.292 - Definitions concerning refrigerated bottled or canned beverage vending machines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... beverage vending machines. 431.292 Section 431.292 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... Vending Machines § 431.292 Definitions concerning refrigerated bottled or canned beverage vending machines. Basic model means, with respect to refrigerated bottled or canned beverage vending machines, all units...
Energy Conservation in School Transportation Systems. Energy Conservation Guidelines 4.
ERIC Educational Resources Information Center
Giesguth, John, Ed.; Scheingold, Edward, Ed.
Fourth in a series of four publications on energy conservation, this booklet offers basic guidelines for sound fuel reduction in school transportation. The pamphlet suggests ways to implement energy-saving practices, guidelines for preventive maintenance of school vehicles, a definition of the drivers' and superintendents' roles, school policies…
Solar Concepts: A Background Text.
ERIC Educational Resources Information Center
Gorham, Jonathan W.
This text is designed to provide teachers, students, and the general public with an overview of key solar energy concepts. Various energy terms are defined and explained. Basic thermodynamic laws are discussed. Alternative energy production is described in the context of the present energy situation. Described are the principal contemporary solar…
Energy-Systems Economic Analysis
NASA Technical Reports Server (NTRS)
Doane, J.; Slonski, M. L.; Borden, C. S.
1982-01-01
Energy Systems Economic Analysis (ESEA) program is flexible analytical tool for rank ordering of alternative energy systems. Basic ESEA approach derives an estimate of those costs incurred as result of purchasing, installing and operating an energy system. These costs, suitably aggregated into yearly costs over lifetime of system, are divided by expected yearly energy output to determine busbar energy costs. ESEA, developed in 1979, is written in FORTRAN IV for batch execution.
Russell, Thomas P; Lahti, Paul M. (PHaSE - Polymer-Based Materials for Harvesting Solar Energy); PHaSE Staff
2017-12-09
'Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst' was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennyslvania State University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pentzer, Emily
"Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst" was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennsylvania Statemore » University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
With Heat You Never Have to Ask Directions. An Energy Primer for Minnesota Teachers.
ERIC Educational Resources Information Center
Minnesota State Dept. of Natural Resources, St. Paul. Environmental Education Board.
This four-part primer is designed to: (1) help Minnesota teachers acquire some familiarity with basic energy structure and language; (2) provide a capsule summary of Minnesota's energy picture; and (3) demonstrate that it is relatively easy to participate in energy education. Part 1 discusses: the fossil fuel age; kinds and forms of energy; energy…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Maureen; Yohe, Sara
"Moving from Petroleum to Plants to Energize our World" was submitted by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. C3Bio, an EFRC directed by Maureen McCann at Purdue University is a partnership between five institutions: Purdue (lead), National Renewable Energy Laboratory, Northeastern University, University of California Santa Barbara and the University of Tennessee. The Office ofmore » Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
McCann, Maureen (Director, Center for Direct Catalytic Conversion of Biomass to Biofuels); C3Bio Staff
2017-12-09
'Moving from Petroleum to Plants to Energize our World' was submitted by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. C3Bio, an EFRC directed by Maureen McCann at Purdue University is a partnership between five institutions: Purdue (lead), Argonne National Laboratory, National Renewable Energy Laboratory, Northeastern University, and the University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Window Insulation: How to Sort Through the Options.
ERIC Educational Resources Information Center
Miller, Barbara
This two-part report explores the efforts of businesses and individuals to improve the thermal performance of windows. Part I discusses the basics of what makes a window product insulate or save energy. Topic areas addressed include saving energy lost through windows, key components of window insulation, three basic types of window insulation,…
10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of commercial HVAC and WH equipment, distribution transformers, and central air conditioners and heat... overrate the efficiency of a basic model. For each basic model of distribution transformer that has a... voltage at which the transformer is rated to operate. (b) Testing. Testing for each covered product or...
10 CFR 430.24 - Units to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... efficiency ratio or other measure of energy consumption of a basic model for which consumers would favor..., and (ii) Any represented value of the annual fuel utilization efficiency or other measure of energy... tested basic models by only the design of oven doors the use of which leads to improved efficiency and...
Energy Security: From Deal Killers to Game Changers
NASA Astrophysics Data System (ADS)
Cooke, Charlie
2010-03-01
Five energy security ``deal killers" are identified: 1) Global warming and CO2 emissions from fossil fuel combustion; 2) Intermittent energy sources (wind, solar) and the presence and stability of the grid; 3) Penetration of plant defenses to produce transportation fuels from biomass; 4) Mimicking nature: artificial photosynthesis for solar energy to fuels; and 5) Spent fuel from nuclear power reactors. Transformational basic research is required to successfully change the ground rules, to transform these ``deal killers" into ``game changers." T hey are: 1) Offsetting carbon capture and storage costs through enhanced oil recovery and methane generation from high temperature geothermal saline aquifers; 2) Electrical energy storage, through batteries and super-capacitors; 3) Genetic modification of plant cell walls, and catalytic methods for transforming plant sugars into fuels; 4) Separation of solar-induced electrons from holes, and catalysis to produce fuels; and 5) Closing the nuclear fuel cycle. Basic research can revolutionize our approach to carbon-free energy by enhancing nature to achieve energy security.
Effect of mechanical denaturation on surface free energy of protein powders.
Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R
2016-10-01
Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
Developing an Energy Policy for the United States
ERIC Educational Resources Information Center
Keefe, Pat
2014-01-01
Al Bartlett's video "Arithmetic, Population, and Energy" spells out many of the complex issues related to energy use in our society. Bartlett makes the point that basic arithmetic is the fundamental obstacle preventing us from being able to grasp the relationships between energy consumption, population, and lifestyles. In an earlier…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... that are reasonably designed to produce results which measure the energy efficiency, energy use, or... contains one or more design characteristics that prevents testing of the basic model according to the... unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... procedures that are reasonably designed to produce results that measure the energy efficiency, energy use, or... contains one or more design characteristics that prevents testing of the basic model according to the... unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... procedures that are reasonably designed to produce results which measure the energy efficiency, energy use... contains one or more design characteristics that prevents testing of the basic model according to the... unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative...
Data and Tools | State, Local, and Tribal Governments | NREL
governments with making informed decisions about clean energy policy and projects. Photo of two people in in our podcasts Clean Energy Policy Basics Understand how to build a clean energy policy portfolio reduce petroleum consumption. Clean Energy Solutions Center No-cost expert policy assistance, webinars
Energy. Overview: ERIC Fact Sheet No. 6.
ERIC Educational Resources Information Center
Arrington, Larry
This fact sheet provides a basic overview of energy problems and programs in the United States and discusses the role that vocational education can play in solving those problems. The National Energy Plan is described including its objectives, strategies, and seven legislative acts: (1) The National Energy Conservation Act; (2) The Power Plant and…
Teachers Environmental Resource Unit: Energy and Power.
ERIC Educational Resources Information Center
Bemiss, Clair W.
Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... Secretary of Energy to prescribe test procedures that are reasonably designed to produce results that... the Department of Energy Residential Dishwasher Test Procedure AGENCY: Office of Energy Efficiency and... (Whirlpool) a waiver from the DOE dishwasher test procedure for certain basic models containing integrated or...
Basic Energy Conservation and Management--Part 2: HVAC
ERIC Educational Resources Information Center
Krueger, Glenn
2012-01-01
Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…
Basic Energy Conservation and Management Part 1: Looking at Lighting
ERIC Educational Resources Information Center
Krueger, Glenn
2012-01-01
Reducing school district energy expenditures has become a universal goal. However, school board members, superintendents, and directors of buildings and grounds are often unaware of the many options available to conserve energy. School energy conservation used to be relatively simple: turn off the lights and turn down the heat in the winter and…
Bright Idea: Solar Energy Primer.
ERIC Educational Resources Information Center
Missouri State Dept. of Natural Resources, Jefferson City.
This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)
Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff
2017-12-09
'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halabi, Linda
"Undergraduate Research at the Center for Energy Efficient Materials (CEEM)" was submitted by CEEM to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.« less
EERE's State & Local Energy Data Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shambarger, Erick; DeCesaro, Jennifer
2014-06-23
EERE's State and Local Energy Data (SLED) Tool provides basic energy market information that can help state and local governments plan and implement clean energy projects, including electricity generation; fuel sources and costs; applicable policies, regulations, and financial incentives; and renewable energy resource potential. Watch this video to learn more about the tool and hear testimonials from real users about the benefits of using this tool.
EERE's State & Local Energy Data Tool
Shambarger, Erick; DeCesaro, Jennifer
2018-05-30
EERE's State and Local Energy Data (SLED) Tool provides basic energy market information that can help state and local governments plan and implement clean energy projects, including electricity generation; fuel sources and costs; applicable policies, regulations, and financial incentives; and renewable energy resource potential. Watch this video to learn more about the tool and hear testimonials from real users about the benefits of using this tool.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC.
This booklet, which highlights and explains the 1975 National Energy Plan, is intended to improve the general public's understanding of U.S. energy policy. Sections in the publication include: (1) The Energy Problem and the Need for Planning; (2) Basic Principles of the Plan and How They Apply; (3) Overcoming the Oil and Gas Shortage; (4) The…
Experimental Research of a New Wave Energy Conversion Device
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-01-01
With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.
10 CFR 605.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... award and administration of grants and cooperative agreements by the DOE Office of Energy Research (ER) and the Science and Technology Advisor (STA) Organization for basic and applied research, educational... OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE...
Employment Trends in Energy Extraction.
ERIC Educational Resources Information Center
Greene, Richard
1981-01-01
Between 1973 and 1980, employment in the basic energy extraction industries--coal, oil, and natural gas--has risen by more than 91 percent. The Arab oil embargo and subsequent emphasis on development of domestic energy sources are responsible for this trend. (Author/SK)
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.172... conservation standard for that product. Basic model means, with respect to a commercial HVAC & WH product, all...
10 CFR 605.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... award and administration of grants and cooperative agreements by the DOE Office of Energy Research (ER) and the Science and Technology Advisor (STA) Organization for basic and applied research, educational... OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE...
Basic Energy Sciences FY 2011 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2012 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2014 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Atomic Energy Basics, Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…
ERIC Educational Resources Information Center
Ortleb, Edward P.; And Others
The world is faced with a variety of environmental problems. No country has escaped pollution and resource depletion. Basic ecological principles are often ignored and sometimes this contributes to ecological disasters. This volume is designed to provide basic information about the quality of the earth's energy resources. The visual aids,…
The Effective Concepts on Students' Understanding of Chemical Reactions and Energy
ERIC Educational Resources Information Center
Ayyildiz, Yildizay; Tarhan, Leman
2012-01-01
The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit…
Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, Samuel
This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.
Obama address touches on research, energy, and environmental issues
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-02-01
President Barack Obama's State of the Union message, delivered on 24 January, touched on the need for basic research, energy production, support for clean energy, and environmental protection, but it included just one passing reference to climate change. In addition, the speech made no note of the Administration's recent denial of a controversial application for the Keystone XL pipeline to transport crude oil from Canada to the United States and made just an elliptical reference regarding the bankrupt Solyndra Corporation, which the administration had touted as a clean energy company. Innovation "demands basic research," Obama said, adding that Congress should not "gut these investments in our budget." Noting that one promise for innovation is American-made energy, Obama said he is directing the administration to "open more than 75% of our potential offshore oil and gas resources."
Energy 101: Wind Turbines - 2014 Update
None
2018-05-11
See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.
Energy: Can We Meet the Increasing Demand?
ERIC Educational Resources Information Center
Roman, Harry T.
2006-01-01
Energy is the lifeblood of the United States. It powers its industries and keeps its economy humming. The nation's progress has relied on making energy abundantly available to support the growth of new ideas and products, and the issue of renewable energy is an increasingly important one. In this article, the author discusses some of the basics of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hules, John
This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... determining the energy consumption of clothes washers. Today's notice also grants an interim waiver of the... evaluate the basic model in a manner so unrepresentative of its true energy consumption characteristics as... manner representative of its energy consumption. 10 CFR 430.27(b)(1)(iii). The Assistant Secretary may...
Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff
2017-12-09
'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide andmore » the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.« less
Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff
2017-12-09
'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.
Review of biomass as a source of energy for Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leszczynski, S.; Brzychczyk, P.; Sekula, R.
To the present day, biomass has not been considered as an energy source for Poland, and over 95% of energy is generated through fossil fuel combustion. However, it is necessary to search for new energy sources because of high prices of traditional energy carriers and massive environmental pollution caused by these fuels. Biomass seems to be one of the best renewable energy sources. Basic components of biomass in Poland and estimations of energetic resources of biomass are presented.
Research progress about chemical energy storage of solar energy
NASA Astrophysics Data System (ADS)
Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun
2018-01-01
In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.
2017-04-01
Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).
Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory
NASA Astrophysics Data System (ADS)
Pang, Xiao-Feng; Zhang, Huai-Wu
We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.
Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1983-01-01
Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.
ERIC Educational Resources Information Center
Canadian School Trustees Association, Ottawa (Ontario).
This booklet provides the basic information for starting an energy conservation program. Guidelines for involving all school personnel and promoting energy conservation throughout the entire Canadian education system are provided. Outlined in the booklet are methods for climate proofing the building envelope and making the system air tight,…
Energy System Basics and Distribution Integration Video Series | Energy
renewablesparticularly solar photovoltaic (PV) technologiesonto the distribution grid. Solar Energy Technologies PV Integration Case Studies Integrating Photovoltaic Systems onto Secondary Network Distribution Systems Standards and Codes for U.S. Photovoltaic System Installation Network-Optimal Control of Photovoltaics on
Translational Science for Energy and Beyond.
McKone, James R; Crans, Debbie C; Martin, Cheryl; Turner, John; Duggal, Anil R; Gray, Harry B
2016-09-19
A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel and chemical feedstocks. In this report, we discuss the importance of translational research-defined as work that explicitly targets basic discovery as well as technology development-in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.
Summaries of FY 1979 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less
Basic Solar Energy Research in Japan (2011 EFRC Forum)
Domen, Kazunari
2018-02-06
Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
Solar radiation as a forest management tool: a primer of principles and application
Howard G. Halverson; James L. Smith
1979-01-01
Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....
Residential energy conservation measures: a penny saved is a penny earned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finklea, E.A.; Treiber, M.P.
The authors are not suggesting that conservation alone will end our dependence on foreign oil. The focus is on basic household energy-conservation measures because they are technically simple, inexpensive, and available compared to more advanced energy-efficiency technologies (e.g., architectural designs and passive solar devices), or to alternative production technologies (e.g., photovoltaics and synthetic fuels). The social, institutional, and economic obstacles to implementing these basic measures are analyzed, and suggestions offered for overcoming these obstacles. During the Carter Administration, Congress enacted four laws to encourage the installation of household energy conservation measures. The laws provide: (1) tax credits for energy conservationmore » expenditures; (2) conservation investment subsidies for low income homeowners; and require: (3) natural gas and electric utilities to implement residential energy conservation programs for their customers; and (4) the federal government to provide loan subsidies for household energy-conservation investments through a conservation bank. The potential effectiveness of these federal programs are analyzed. President Reagan's advisers have indicated that the new administration will place greater emphasis on energy production and less emphasis on conservation. Consequently, the effectiveness of these programs may depend on the priority given them by the Reagan administration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.
This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.
Sandia and General Motors: Advancing Clean Combustion Engines with
Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thackeray, Michael M.
"Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries" was submitted by the Center for Electrochemical Energy Science (CEES) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from four institutions: ANL (lead), Northwestern University, Purdue University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department ofmore » Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrochemical Energy Science (CEES) is "to create a robust fundamental understanding of the phenomena that control the reactivity of electrified oxide interfaces, films and materials relevant to lithium-ion battery chemistries". Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.« less
Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff
2017-12-09
'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.
Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai
2018-04-23
To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described as compared to that of the G-SFED model.
... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...
Division of Energy Biosciences annual report and summaries of FY 1996 activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanism affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes. This report gives summaries on 225 projects on photosynthesis, membrane or ion transport, plant metabolism and biosynthesis, carbohydrate metabolism lipid metabolism, plant growth and development, plant genetic regulation and genetic mechanisms, plant cell wall development, lignin-polysaccharide breakdown, nitrogen fixation and plant-microbial symbiosis, mechanism for plant adaptation, fermentative microbial metabolism, one and two carbon microbial metabolism, extremophilic microbes, microbial respiration, nutrition and metal metabolism, and materials biosynthesis.« less
Bullock, R. Morris (Director, Center for Molecular Electrocatalysis); CME Staff
2017-12-09
'Saving the Sun for a Rainy Day' was submitted by the Center for Molecular Electrocatalysis (CME) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pensylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris
"Saving the Sun for a Rainy Day" was submitted by the Center for Molecular Electrocatalysis (CME) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pennsylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Departmentmore » of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.« less
Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating mattermore » from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.« less
Energy Relations in Russia: Administration, Politics and Security
ERIC Educational Resources Information Center
Makarychev, Andrey
2005-01-01
This chapter analyses energy relations through a prism of three interlinked concepts: administration, politics and security. This triad describes the basic approaches to questions about technical, politicised and securitised energy. These three concepts are logically linked to one another and represent an elementary matrix; a prism through which…
ERIC Educational Resources Information Center
US Department of Energy, 2007
2007-01-01
The Department of Energy's (DOE) Office of Science is among the world's premier supporters of basic research. The Office of Science enables the U.S. to maintain its competitive edge by funding science that can transform its energy future, supports its national security and seeks to understand the fundamentals of matter and energy itself. To do…
A Bibliography of Basic Books on Atomic Energy. Update.
ERIC Educational Resources Information Center
Atomic Energy Commission, Washington, DC. Office of Information Services.
This booklet, part of the United States Atomic Energy Commission's series of information booklets, lists selected commerically published books for the general public on atomic energy and closely related subjects. It includes annotated bibliographies for children (grade level indicated) and adults. The books are arranged by subject, alphabetized by…
Nuclear Power from Fission Reactors. An Introduction.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Technical Information Center.
The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…
Cut Next Winter's Heating Bill Today.
ERIC Educational Resources Information Center
Sturgeon, Julie
1999-01-01
Presents specific steps that help make schools energy efficient and cut costs. Four basic strategies are suggested that include creating a database of energy usage that can also catch the occasional billing error, investigating less obvious ways of cutting energy use, such as applying cellulose commercial spray as an insulation choice, and…
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…
The Energy and Conservation Education Glossary.
ERIC Educational Resources Information Center
Dalton, Ed; And Others
The glossary of approximately 700 energy-related terms provides a useful resource to K-12 classroom teachers and curriculum developers for teaching basic energy concepts and skills. In addition, developers of the glossary suggest that it can help teachers develop supplementary language and word games for students, such as crossword puzzles. The…
Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polly, B.
2011-09-01
This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.
75 Easy Physics Demonstrations. Teacher Book.
ERIC Educational Resources Information Center
Kardos, Thomas
This book is a collection of classroom demonstrations in physics designed to present basic scientific ideas on a concrete level. The topics covered include: physical change and properties of matter; energy waves and energy forms; absorption of heat; radiant energy; vacuum bottles; kinetic molecular theory; states of matter; pressure of air; work…
Renewable Energy Water Pumping Systems Handbook; Period of Performance: April 1--September 1, 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argaw, N.
2004-07-01
Water is one of the most basic necessities of rural development. This book provides valuable information on how renewable energy technologies can be used for irrigation, livestock watering, and domestic water supplies. This report emphasizes wind and solar energy resources, and hybrid water pumping systems.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Nuclear Energy Office.
This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: (1) "The Role of Nuclear Power"; (2) "The Role of Electricity"; (3)…
ERIC Educational Resources Information Center
Indiana Univ., South Bend. Center for Energy Conservation.
This second of four sections in a curriculum guide for training energy extension agents contains general introductory materials, an overview of the total curriculum, and eight modules: Alternative Energy Sources (Solar and Wood), Basic Graphics and Blueprint Reading, Building Materials, Electricity, Introduction to Cooling Systems, Introduction to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Peter F.
"Heart of the Solution- Energy Frontiers" was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its "exemplary explanation of the role of an Energy Frontier Research Center". The Center for Solar and Thermal Energymore » Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less
renewable liquid transportation fuels available. Biomass energy supports U.S. agricultural and forest soybeans (for biodiesel). In the near future-and with NREL-developed technology-agricultural residues such
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zunger, Alex
"Inverse Design: Playing 'Jeopardy' in Materials Science" was submitted by the Center for Inverse Design (CID) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from six institutions: NREL (lead), Northwestern University, University of Colorado, Colorado School of Mines, Stanford University, and Oregon State University. The Office of Basic Energy Sciencesmore » in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.« less
Energy Modeling of IoT Mobile Terminals on WiFi Environmental Impacts †.
Sun, Yuxia; Chen, Junxian; Tang, Yong; Chen, Yanjia
2018-05-28
With the popularity of various IoT mobile terminals such as mobile phones and sensors, the energy problems of IoT mobile terminals have attracted increasingly more attention. In this paper, we explore the impacts of some important factors of WiFi environments on the energy consumption of mobile phones, which are typical IoT end devices. The factors involve the WiFi signal strength under good signal conditions, the type and the amount of protocol packets that are initiated by WiFi APs (Access Points) to maintain basic network communication with the phones. Controlled experiments are conducted to quantitatively study the phone energy impacts by the above WiFi environmental factors. To describe such impacts, we construct a time-based signal strength-aware energy model and packet type/amount-aware energy models. The models constructed in the paper corroborate the following user experience on phone energy consumption: (1) a phone's energy is drawn faster under higher WiFi signal strengths than under lower ones even in normal signal conditions; (2) phones consume energy faster in a public WiFi network than in a private one even in the basic phone state. The energy modeling methods proposed in the paper enable ordinary developers to analyze phone energy draw conveniently by utilizing inexpensive power meters as measurement tools. The modeling methods are general and are able to be used for phones of any type and any platform.
Study on Properties of Energy Spectra of the Molecular Crystals
NASA Astrophysics Data System (ADS)
Pang, Xiao-Feng; Chen, Xiang-Rong
The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..
Institute for Sustainable Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Ajay
2016-03-28
Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.
Field Evaluation of Programmable Thermostats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, O.; Tiefenbeck, V.; Duvier, C.
2012-12-01
Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. The Fraunhofer team hypothesized that home occupants with high-usability thermostats would be more likely to use them to save energy than people with a basic thermostats. In this report, the team discusses results of a project in which the team monitored and compared programmable thermostats with basic thermostats in an affordable housing apartment complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales" was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Science in Washington, DC and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office ofmore » Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO2, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.« less
Atwater, Harry (Director, Light-Material Interactions in Energy Conversion (LMI), California Institute of Technology); LMI Staff
2017-12-09
'Light Matters' was submitted by the Center for Light-Material Interactions in Energy Conversion (LMI) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'striking photography and visual impact'. LMI, an EFRC directed by Harry Atwater at the California Institute of Technology is a partnership of scientists from three institutions: CalTech (lead), University of California, Berkeley, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Light-Material Interactions in Energy Conversion is 'to tailor the morphology, complex dielectric structure, and electronic properties of matter to sculpt the flow of sunlight, enabling light conversion to electrical and chemical energy with unprecedented efficiency.' Research topics are: catalysis (imines hydrocarbons), solar photovoltaic, solar fuels, photonic, solid state lighting, metamaterial, optics, phonons, thermal conductivity, solar electrodes, photsynthesis, CO{sub 2} (convert), greenhouse gas, and matter by design.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... comparative data. As discussed above, the BSH condenser clothes dryer contains a design characteristic--lack... test procedures that are reasonably designed to produce results which measure energy efficiency, energy... basic model for which the petition for waiver was submitted contains one or more design characteristics...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to produce... one or more design characteristics that prevents testing of the basic model according to the... unrepresentative of its true energy consumption characteristics as to provide materially inaccurate comparative...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... that are reasonably designed to produce results which measure energy efficiency, energy use, or... that the basic model for which the petition for waiver was submitted contains one or more design... consumption characteristics as to provide materially inaccurate comparative data. 10 CFR part 430.27(l...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... test procedures that are reasonably designed to produce results that measure energy efficiency, energy... petitioner's basic model contains one or more design characteristics that prevent testing according to the... materially inaccurate comparative data. 10 CFR 430.27(a)(1). Petitioners must include in their petition any...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... procedures that are reasonably designed to produce results that measure energy efficiency, energy use, and... petitioner's basic model contains one or more design characteristics that prevent testing according to the... unrepresentative of its true energy consumption as to provide materially inaccurate comparative data. 10 CFR 431...
29 CFR 1910.147 - The control of hazardous energy (lockout/tagout).
Code of Federal Regulations, 2010 CFR
2010-07-01
... pounds and having the general design and basic characteristics of being at least equivalent to a one... prohibitions of the outside employer's energy control program. (3) Group lockout or tagout. (i) When servicing... 29 Labor 5 2010-07-01 2010-07-01 false The control of hazardous energy (lockout/tagout). 1910.147...
29 CFR 1910.147 - The control of hazardous energy (lockout/tagout).
Code of Federal Regulations, 2011 CFR
2011-07-01
... pounds and having the general design and basic characteristics of being at least equivalent to a one... prohibitions of the outside employer's energy control program. (3) Group lockout or tagout. (i) When servicing... 29 Labor 5 2011-07-01 2011-07-01 false The control of hazardous energy (lockout/tagout). 1910.147...
Energy Education in Elementary Social Studies. Holt Databank System.
ERIC Educational Resources Information Center
Minnesota State Energy Agency, St. Paul.
This document provides elementary teachers with an annotated index according to grade levels 1-6 of energy education topics in the "Holt Databank System" (Holt, Rinehart and Winston), followed by suggestions for activities related to the topics. Indexed topics, which comprise a major portion of the document, include basic energy information,…
Energy and the Environment. Second Edition.
ERIC Educational Resources Information Center
Fowler, John M.
This 17-chapter book (which may also be used as a textbook) provides a thorough insight into the basic facts about energy as well as new and transitional technologies such as synthetic fuels. The book also helps examine the economic, societal, and political aspects of the energy situation in detail, consistently providing technical data to support…
A Survey of Precollege Energy Education Curricula at the State Level.
ERIC Educational Resources Information Center
Jones, Robert M.; Steinbrink, John E.
This publication includes a survey and descriptions of selected state energy education curriculum materials. The basic tasks of the survey were to determine, (1) if states had systematic energy education programs for their elementary and secondary schools, and (2) if existing curriculum materials met national needs. An instrument to evaluate…
48 CFR 926.7003 - Review of the procurement request.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Implementation of Section 3021 of the Energy Policy Act of 1992 926.7003 Review of the procurement request. Any Energy Policy Act procurement, including basic... potential for making Energy Policy Act awards. [60 FR 22300, May 5, 1995, as amended at 61 FR 21977, May 13...
48 CFR 926.7003 - Review of the procurement request.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Implementation of Section 3021 of the Energy Policy Act of 1992 926.7003 Review of the procurement request. Any Energy Policy Act procurement, including basic... potential for making Energy Policy Act awards. [60 FR 22300, May 5, 1995, as amended at 61 FR 21977, May 13...
48 CFR 926.7003 - Review of the procurement request.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Implementation of Section 3021 of the Energy Policy Act of 1992 926.7003 Review of the procurement request. Any Energy Policy Act procurement, including basic... potential for making Energy Policy Act awards. [60 FR 22300, May 5, 1995, as amended at 61 FR 21977, May 13...
48 CFR 926.7003 - Review of the procurement request.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Implementation of Section 3021 of the Energy Policy Act of 1992 926.7003 Review of the procurement request. Any Energy Policy Act procurement, including basic... potential for making Energy Policy Act awards. [60 FR 22300, May 5, 1995, as amended at 61 FR 21977, May 13...
48 CFR 926.7003 - Review of the procurement request.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Implementation of Section 3021 of the Energy Policy Act of 1992 926.7003 Review of the procurement request. Any Energy Policy Act procurement, including basic... potential for making Energy Policy Act awards. [60 FR 22300, May 5, 1995, as amended at 61 FR 21977, May 13...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... submittals for consistency with the requirements of Office of Management and Budget's (OMB) Cost Principles... classes (Basic Financial Assistance and Cost Principles--see the Acquisition Career Management Program... not provided from the National Environmental Policy Act (NEPA) or the Office of Management and Budget...
Alternative Fuels Data Center: Ethanol Fuel Basics
ethanol. Ethanol Energy Balance In the United States, 95% of ethanol is produced from the starch in corn demonstrates a positive energy balance, meaning that the process of producing ethanol fuel does not require energy balance of ethanol because the feedstocks are either waste, co-products of another industry (wood
Sustainable Energy for University Science Majors: Developing Guidelines for Educators
ERIC Educational Resources Information Center
Langbeheim, Elon; Rez, Peter
2017-01-01
This paper describes the basic tenets of a sustainable energy course for university science majors. First, it outlines the three core components of the course: (1) The scientific evidence for the connection between climate change and energy usage; (2) An analysis of the capacity and environmental impact of various renewable and traditional energy…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Refrigerator-Freezer Test Procedures AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... from the DOE electric refrigerator and refrigerator-freezer test procedures for specific basic models set forth in its petition for waiver. In its petition, Samsung provides an alternate test procedure...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Refrigerator-Freezer Test Procedures AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... from the DOE electric refrigerator and refrigerator-freezer test procedures for specific basic models set forth in its petition for waiver. In its petition, Samsung provides an alternate test procedure...
Basic Energy Sciences Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-04
The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less
Translational Science for Energy and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, James R.; Crans, Debbie C.; Martin, Cheryl
A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel andmore » chemical feedstocks. In this report, we discuss the importance of translational research -- defined as work that explicitly targets basic discovery as well as technology development -- in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.
Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands canmore » have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff
2017-12-09
'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breunig, Lloyd
"Liquid Sunshine to Fuel Your Car" was submitted by the Center for Lignocellulose Structure and Formation (CLSF) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CLSF is directed by Daniel Cosgrove at Pennsylvania State University and is a partnership of scientists from three institutions: Penn State (lead), North Carolina State University, and Virginia Tech University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Officemore » of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Lignocellulose Structure and Formation is 'to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.' Research topics are: biofuels (biomass), membrane, interfacial characterization, matter by design, and self-assembly.« less
Cosgrove, Daniel (Director, Center for Lignocellulose Structure and Formation); CLSF Staff
2017-12-09
'Liquid Sunshine to Fuel Your Car' was submitted by the Center for Lignocellulose Structure and Formation (CLSF) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CLSF is directed by Daniel Cosgrove at Pennsylvania State University and is a partnership of scientists from three institutions: Penn State (lead), North Caroline State University, and Virginia Tech University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Lignocellulose Structure and Formation is 'to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.' Research topics are: biofuels (biomass), membrane, interfacial characterization, matter by design, and self-assembly.
Available Energy via Nonequilibrium Thermodynamics.
ERIC Educational Resources Information Center
Woollett, E. L.
1979-01-01
Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)
Episode 2: The Clean Energy Geek Squad (Direct Current – An Energy.gov Podcast)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantero, Allison; Dozier, Matt; Phear, Nicky
2016-06-03
In this episode of Direct Current - An Energy.gov Podcast, Matt calls up the Clean Energy Solutions Center, a "help desk" that provides free expert advice on clean energy policy to governments all over the world. Allison talks to Nicky Phear, a professor who cycles hundreds of miles across Montana to teach her students about climate change. Nicky just received a big award at the C3E Women in Clean Energy Symposium for her education work, and she's basically an energy rockstar. Dan and Paul put their heads together to come up with a better way to measure energy -- startingmore » with the humble burrito.« less
Episode 2: The Clean Energy Geek Squad (Direct Current â An Energy.gov Podcast)
Lantero, Allison; Dozier, Matt; Phear, Nicky; Wood, Daniel; Lester, Paul
2018-05-04
In this episode of Direct Current - An Energy.gov Podcast, Matt calls up the Clean Energy Solutions Center, a "help desk" that provides free expert advice on clean energy policy to governments all over the world. Allison talks to Nicky Phear, a professor who cycles hundreds of miles across Montana to teach her students about climate change. Nicky just received a big award at the C3E Women in Clean Energy Symposium for her education work, and she's basically an energy rockstar. Dan and Paul put their heads together to come up with a better way to measure energy -- starting with the humble burrito.
Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, T.; Takahashi, Y.
1998-08-20
Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, Michael R.; ANSER Staff
2011-05-01
'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy'smore » Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less
Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff
2017-12-09
'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.
Brookhaven highlights: a two year report, July 1974--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
Brief summaries are given of research activities in the areas of high energy physics, basic and applied energy science, and life sciences. Support activities and administrative data are also briefly reviewed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... Basic Impulse Level 4. Dual/Multiple-Voltage Primary Windings 5. Dual/Multiple-Voltage Secondary Windings 6. Loading B. Technological Feasibility 1. General 2. Maximum Technologically Feasible Levels C...
One in three U.S. households faced challenges in paying energy bills in 2015
2017-01-01
Nearly one-third of U.S. households (31%) reported facing a challenge in paying energy bills or sustaining adequate heating and cooling in their home in 2015. According to the most recent results from EIA’s Residential Energy Consumption Survey (RECS), about one in five households reported reducing or forgoing basic necessities like food and medicine to pay an energy bill and 14% reported receiving a disconnection notice for energy service. Households may have also used less energy than they would prefer to: 11% of households surveyed reported keeping their home at an unhealthy or unsafe temperature.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2010-11-01
Originally Einstein proposed the the mass-energy equivalence at low speeds as E=mc^2 + 1/2 mv^2. However, a mass may also be rotating and vibrating as well as moving linearly. Although small, these kinetic energies must be included in formulating a true mathematical statement of the mass-energy equivalence. Also, gravitational, electromagneic and magnetic potential energies must be included in the mass-energy equivalence mathematical statement. While the kinetic energy factors may differ in each physical situation such as types of vibrations and rotations, the basic equation for the mass- energy equivalence is therefore E = m0c^2 + 1/2m0v^2 + 1/2I2̂+ 1/2kx^2 + WG+ WE+ WM.
Quantitative Uncertainty Assessment and Numerical Simulation of Micro-Fluid Systems
2005-04-01
flow at Sandia, that was supported by the Laboratory Directed Research and Devel- opment program, and by the Dept. of Energy , Office of Basic Energy ...finite energy . 6 θ is used to denote the random nature of the corresponding quantity. Being symmetrical and positive definite, REE has all its...Laboratory Directed Research and Development Program at Sandia National Laboratories, funded by the U.S. Department of Energy . Support was also provided
Energy 101: Clean Energy Manufacturing
None
2018-01-16
Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldo, Marc
"Excited about Excitons" was submitted by the Center for Excitonics (CE) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its "outstanding portrayal of young scientists". The Center for Excitonics (CE), an EFRC directed by Marc Baldo at the Massachusetts Institute of Technology (MIT) is a partnership of scientists from three institutions: MITmore » (lead), Brookhaven National Laboratory, and Harvard University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Excitonics (CE) is 'to understand the transport of charge carriers in synthetic disordered systems, which hold promise as new materials for conversion of solar energy to electricity and electrical energy storage.' Research topics are: solar photovoltaic, photonic, solid state lighting, photosynthesis, novel materials synthesis, charge transport, defect tolerant materials, scalable processing, and self-assembly.« less
Chen, Gang (Director, Solid-State Solar-Thermal Energy Conversion Center); S3TEC Staff
2017-12-09
'Battle against Phonons' was submitted by the Solid-State Solar-Thermal Energy Conversion (S3TEC) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, 'Best with Popcorn'. S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MIT (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... that are reasonably designed to produce results which measure energy efficiency, energy use, or... petitioner's basic model for which the petition for waiver was submitted contains one or more design... characteristics as to provide materially inaccurate comparative data. 10 CFR 430.27(a)(1). Petitioners must...
Energy from the Atom. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…
Solar Energy for Space Heating & Hot Water.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…
History of United States Energy. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Intended as a supplement to the units "Oil: Fuel of the Past" and "Coal: Fuel of the Past, Hope of the Future," this 3-4 day unit contains three activities which briefly explain the chronological development of energy resources and the formation and development of the Organization of Petroleum Exporting Countries (OPEC). The…
Gasohol: An Energy Alternative. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
This 2-3 week high school chemistry unit is designed to provide students with an awareness of Gasohol as an energy alternative. Gasohol is a blend of 10 percent pure ethanol and 90 percent unleaded gasoline. The unit consists of nine activities (five laboratory experiments, three informational readings, and a sample problem activity). The five…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... that are reasonably designed to produce results which measure energy efficiency, energy use, or... waiver was submitted contains one or more design characteristics that prevents testing of the basic model... materially inaccurate comparative data. 10 CFR 431.401(f)(4). Petitioners must include in their petition any...
Energy History Chronology from World War II to the Present [1982
DOE R&D Accomplishments Database
Dean, P. C.
1982-08-01
This report provides a basic guide to the major Presidential, Legislative, Judicial, and Federal agency actions relating to energy policy, research, development, and regulation in recent years. The chronology is arranged synoptically, allowing users to reference easily the historical context in which each event occurred. Summaries of Presidential, Legislative, and Judicial actions relating to energy, rosters of federal energy officials, and a genealogy of federal energy agencies are also provided in separate appendices. The Energy History Chronology was prepared in conjunction with the History Division's series of pamphlets on the Institutional Origins of the Department of Energy. The series includes concise histories of the Department of Energy, the Energy Research and Development Administration, the Federal Energy Administration, and the Atomic Energy Commission. All significant events and achievements noted in the institutional history are also listed.
Radial Flux Distribution of Low-Energy Neutrons.
ERIC Educational Resources Information Center
Higinbotham, J.
1979-01-01
Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)
NREL Supports Native American Tribes in Clean Energy Transformational
information to design, fund, and implement renewable energy systems," Ganion said. "And by actively receive a basic evaluative study from NREL on the emerging biomass gasification technology, as applied to
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
Geothermal Systems for School.
ERIC Educational Resources Information Center
Dinse, David H.
1998-01-01
Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)
The future of energy and climate
Steinberger, Jack
2018-04-26
The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.
A Possible Solution to the Smallness Problem of Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; /SLAC; Gu, Je-An
2005-07-08
The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.
Hutchesson, M J; Collins, C E; Morgan, P J; Watson, J F; Guest, M; Callister, R
2014-01-01
The primary aim of this secondary analysis was to compare changes in dietary intake among participants randomized to two versions of a 12-week commercial web-based weight loss program (basic or enhanced) with a waiting-list control. An additional investigation compared changes in dietary intake of successful participants (weight loss ≥5%) with those not successful. Dietary intake was assessed at baseline and 12 weeks using a validated 120-item semiquantitative food frequency questionnaire. Adults (n=268, 60% female participants, body mass index 32.1 ± 3.9) classified as plausible reporters of energy intake were included in the analyses. Analysis of covariance with baseline observations carried forward for drop-outs (n=38) was used. The basic and enhanced groups significantly increased their percentage of energy contribution from fruits and reduced energy-dense, nutrient-poor foods compared with controls (P<0.001). Successful participants (n=49) reported superior improvements in dietary intake including greater reductions in the mean daily energy intake (P<0.001), the percentage of energy from energy-dense, nutrient-poor foods (-12.0% E vs -4.3% E, P<0.001) and greater increases in the energy contribution from fruits (P<0.001), vegetables (P=0.003) and breads/cereals (P=0.02). Use of a commercial web-based weight loss program facilitated some improvements in the dietary intake. The enhanced web-based tools appeared not to have generated greater improvements in reported dietary intake, compared with the basic or control groups. Those who achieved a weight loss of ≥5% improved their dietary intake in line with the program recommendations and dietary guidelines. Further research to determine web-based components that may improve success and the reasons why programs are successful for some participants is required.
Field Evaluation of Programmable Thermostats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, O.; Tiefenbeck, V.; Duvier, C.
2012-12-01
Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. We hypothesized that home occupants with a high-usability thermostats would be more likely to use them to save energy than people with a basic thermostat. We randomly installed a high-usability thermostat in half the 77 apartments of an affordable housing complex, installing a basic thermostat in the other half. During the heating season, we collected space temperature and furnace on-off data to evaluate occupant interaction with the thermostats, foremost nighttime setbacks. We found that thermostat usability did not influence energy-saving behaviors, finding no significantmore » difference in temperature maintained among apartments with high- and low-usability thermostats.« less
Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer
NASA Astrophysics Data System (ADS)
Sanche, Léon
2009-05-01
With the chemotherapeutic agent cisplatin bound to DNA, damage to the molecule by electrons of low and high energies increases by factors varying from 1.3 to 4.4. The enhancement in bond dissociation is triggered by modifications of the interaction of low energy electrons with DNA. From our understanding of the latter, the present Letter attempts to explain the basic radiation-damage mechanism responsible for the efficiency of the concomitant chemoradiation treatment of cancer. Such a basic comprehension of the direct effects of radiation may have implications in the design of new chemotherapeutic and radiosensitizing drugs, as well as in the development of more efficient protocols in chemoradiation therapy.
Tran, N L; Bohrer, F I; Trogler, W C; Kummel, A C
2009-05-28
Density functional theory (DFT) simulations were used to determine the binding strength of 12 electron-donating analytes to the zinc metal center of a zinc phthalocyanine molecule (ZnPc monomer). The analyte binding strengths were compared to the analytes' enthalpies of complex formation with boron trifluoride (BF(3)), which is a direct measure of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated, the ZnPc binding energies were found to correlate linearly with analyte basicities. Based on natural population analysis calculations, analyte complexation to the Zn metal of the ZnPc monomer resulted in limited charge transfer from the analyte to the ZnPc molecule, which increased with analyte-ZnPc binding energy. The experimental analyte sensitivities from chemiresistor ZnPc sensor data were proportional to an exponential of the binding energies from DFT calculations consistent with sensitivity being proportional to analyte coverage and binding strength. The good correlation observed suggests DFT is a reliable method for the prediction of chemiresistor metallophthalocyanine binding strengths and response sensitivities.
Developing an Energy Policy for the United States
NASA Astrophysics Data System (ADS)
Keefe, Pat
2014-12-01
Al Bartlett's video "Arithmetic, Population, and Energy"1 spells out many of the complex issues related to energy use in our society. Bartlett makes the point that basic arithmetic is the fundamental obstacle preventing us from being able to grasp the relationships between energy consumption, population, and lifestyles. In an earlier version of Bartlett's video, he refers to a "Hagar the Horrible" comic strip in which Hagar asks the critical question, "Good…Now can anybody here count?"
Han, Fang; Wang, Zhijie; Fan, Hong
2017-01-01
This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760
The role of universities in energy and environmental R & D: An extended outline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drucker, H.
1995-12-31
Issues related to university research and development roles in energy and environmental areas are very briefly outlined in the paper. Fundamental issues discussed include basic versus applied science, and applied science versus technology development. Some specific issues appropriate for university research are identified, such as desulfurizing coal and managing mixed wastes in groundwater. The Plant Biotechnology consortium is described as a model that builds on university strengths in basic and applied technology.
Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia; ...
2017-05-01
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less
The enigma of energy: A philosophical inquiry
NASA Astrophysics Data System (ADS)
Todaro-Franceschi, Vidette
1998-06-01
A philosophical inquiry was undertaken to examine the enigma of energy in an attempt to clarify and further illuminate the basic ideas of energy. Beginning with the origin of the concept-Aristotle's conceptualization of energeia-and continuing through to the present day with an overview of the historical conceptual development of energy in Western science, an analysis and interpretation of the scientific and philosophic literature was performed. Literature regarding aspects of human sentience was also examined for underlying ideas of energy. And, finally, selected medical and nursing science theoretical frameworks were analyzed with the hope of further grasping the philosophical underpinnings related to the phenomenon of human energy. Certain ideas of energy became evident. Energy can be viewed as a process and this view works well within the physical science domain. When energy is viewed as a process it falls within the mechanistic tradition: things are viewed as particulate, and cause and effect related. However, energy can also be viewed as a phenomenon, a thing. As a phenomenon, energy is continually transforming and actualizing inherent potentials in a communal process. When energy is recognized as the sole phenomenon responsible for everything in existence, it becomes evident that all is essentially one. In addition, when energy is viewed in this manner it becomes increasingly difficult to deny the purposive character underlying all nature. It is argued that the mystery ultimately leads to something far beyond what we know exists. One of the intuitive feelings of this researcher was that there were at least two different ideas of energy in the sciences of medicine and nursing, which, while different, shared some common elements as well. An examination of Hippocrates', Nightingale's, Selye's, Levine's, and Rogers' ideas, as well as the basic tenets of alternative health care, revealed two distinct worldviews regarding human energy which are congruent with the ideas of energy as process and as a phenomenon. Both ideas, energy as process, and energy as a real entity, originated in Aristotle's work (384-322 BC) and both ways of viewing energy are still prevalent as we approach the 21 st century.
less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, David
"The Center for Materials Science of Nuclear Fuels (CMSNF)" was submitted by the CMSNF to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from five institutions: INL (lead), University of Florida, Oak Ridge National Laboratory, Purdue University and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels (CMSNF) is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
"Battle against Phonons" was submitted by the Solid State Solar Thermal Energy Conversion (S3TEC) EFRC to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, "Best with Popcorn". S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MITmore » (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.« less
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.
An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... test procedures that are reasonably designed to produce results which measure energy efficiency, energy... that the basic model for which the petition for waiver was submitted contains one or more design... consumption characteristics as to provide materially inaccurate comparative data. 10 CFR 430.27(l)), 431.401(f...
COMPARE : a method for analyzing investment alternatives in industrial wood and bark energy systems
Peter J. Ince
1983-01-01
COMPARE is a FORTRAN computer program resulting from a study to develop methods for comparative economic analysis of alternatives in industrial wood and bark energy systems. COMPARE provides complete guidelines for economic analysis of wood and bark energy systems. As such, COMPARE can be useful to those who have only basic familiarity with investment analysis of wood...
Energy, Economics, and the Environment: Case Studies and Teaching Activities for Middle School.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.
Educators are faced with the task of teaching students to be responsible stewards of the world's natural resources. This curriculum focuses on three interrelated topics in this area: energy, economics, and the environment. The goal of this book is to: (1) teach students basic knowledge and concepts about energy, the environment, and economics; (2)…
Europe Report, Science and Technology.
1986-11-17
fallout, bio- technology, stimulation, BRITE [Basic Research in Industrial Technologies for Europe] and non-nuclear energy ); -Overall assessment of...must make more use of new technologies," Narjes says. The new program will also pay particular attention to public health, environment, and energy ...nuclear fission and fusion). Concurrently subjects such as security, waste, and energy saving will get more attention. It is evident that the
ERIC Educational Resources Information Center
Serre, Robert
This English-French dictionary on solar energy is intended for translators and purports to contain all the elements necessary for doing quality translations. Each entry contains the following elements: (1) the basic English word with its synonyms and equivalents; (2) the definition in English and reference to its source; and (3) sentences or…
Meyer, Thomas J. (Director, UNC EFRC: Solar Fuels and Next Generation Photovoltaics); UNC EFRC Staff
2017-12-09
'Fuels from Sunlight' was submitted by the University of North Carolina (UNC) EFRC: Solar Fuels and Next Generation Photovoltaics to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The UNC EFRC directed by Thomas J. Meyer is a partnership of scientists from six institutions: UNC (lead), Duke University, University of Florida, North Caroline Central University, North Carolina State University, and the Research Triangle Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Solar Fuels and Next Generation Photovoltaics is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO{sub 2}, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO{sub 2} (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Thomas J.
"Fuels from Sunlight" was submitted by the University of North Carolina (UNC) EFRC: Center for Solar Fuels, to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The Center for Solar Fuels (UNC) EFRC directed by Thomas J. Meyer is a partnership of scientists from four institutions: UNC (lead), Brookhaven National Laboratory, Georgia Institute of Technology and University of Texas at San Antonio. The Office of Basic Energy Sciences inmore » the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Center for Solar Fuels (UNC) is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO2, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO2 (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.« less
Research in the chemical sciences. Summaries of FY 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposalsmore » that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
In the consideration of the meteorological aspects of energy problems, the latter is divided into three main groups: energy production, energy transport and exploration, and new energy resources. Increased energy production will have an impact on the environment. Although at present there is insufficient information for precise forecasts, meteorologists and hydrologists will be able to make reasonable assumptions for the future. Human use of energy is strongly influenced by variations of weather. Such systems as electric power transmission networks, shipping of hydrocarbons by sea, and pipelines for the transportation of large quantities of oil and gas, are all particularly sensitivemore » to weather and climate. The meteorologist provides basic data on weather and climate to facilitate energy exploration. The new energy resources addressed in this article are solar, wind, geothermal, and nuclear. The World Meteorological Organization's Executive Committee established a set of priorities in dealing with energy problems. This paper also briefly examines the burden imposed on global energy resources.« less
Summaries of FY 1996 geosciences research
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and ismore » also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.« less
SU-F-J-200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackin, D; Beddar, S; Polf, J
2016-06-15
Purpose: The uncertainty in the beam range in particle therapy limits the conformality of the dose distributions. Compton scatter cameras (CC), which measure the prompt gamma rays produced by nuclear interactions in the patient tissue, can reduce this uncertainty by producing 3D images confirming the particle beam range and dose delivery. However, the high intensity and short time windows of the particle beams limit the number of gammas detected. We attempt to address this problem by developing a method for filtering gamma ray scattering events from the background by applying the known gamma ray spectrum. Methods: We used a 4more » stage Compton camera to record in list mode the energy deposition and scatter positions of gammas from a Co-60 source. Each CC stage contained a 4×4 array of CdZnTe crystal. To produce images, we used a back-projection algorithm and four filtering Methods: basic, energy windowing, delta energy (ΔE), or delta scattering angle (Δθ). Basic filtering requires events to be physically consistent. Energy windowing requires event energy to fall within a defined range. ΔE filtering selects events with the minimum difference between the measured and a known gamma energy (1.17 and 1.33 MeV for Co-60). Δθ filtering selects events with the minimum difference between the measured scattering angle and the angle corresponding to a known gamma energy. Results: Energy window filtering reduced the FWHM from 197.8 mm for basic filtering to 78.3 mm. ΔE and Δθ filtering achieved the best results, FWHMs of 64.3 and 55.6 mm, respectively. In general, Δθ filtering selected events with scattering angles < 40°, while ΔE filtering selected events with angles > 60°. Conclusion: Filtering CC events improved the quality and resolution of the corresponding images. ΔE and Δθ filtering produced similar results but each favored different events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesolowski, David J.; FIRST Staff
2011-05-01
'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University ofmore » Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.« less
Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center); FIRST Staff
2017-12-09
'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... the Secretary of Energy to prescribe test procedures that are reasonably designed to produce results... one or more design characteristics that prevents testing of the basic model according to the...
Clean Energy Policy Basics | State, Local, and Tribal Governments | NREL
their clean energy goals. To create effective strategies, it is helpful to understand how to build a those directed towards market expansion and saturation. To build such a policy portfolio at the state
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of water consumption of a basic model for which consumers favor lower values....12(b)(13), a certification report shall include the following public product-specific information...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of water consumption of a basic model for which consumers favor lower values....12(b)(13), a certification report shall include the following public product-specific information...
Selected basic economic and energy indicators for Arab countries and world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the following topics: Tables and graphs on the Arab countries' trade; GDP and current account balances; oil and gas reserves; and energy, oil, and gas production and consumption, within a global setting.
Introduction to wind energy systems
NASA Astrophysics Data System (ADS)
Wagner, H.-J.
2017-07-01
This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.
Introduction to wind energy systems
NASA Astrophysics Data System (ADS)
Wagner, H.-J.
2015-08-01
This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.
1988-07-01
I Activities 1. Potential Low Energy Antiproton Sources in the United States 15 D.C. Peaslee (University of Maryland) 2. Low Energy Antiproton...Nieto, R.J. Hughes (Los Alamos National Laboratory) 2. Basic Physics Program for a Low Energy Antiproton Source in North America 245 B.E. Bonner (Rice...J.L. Callas (Jet Propulsioi< Laboratory) 5r> Energy Transfer in Antiproton Annihilation Rockets 577 B.N. Cassenti (United Technologies Research Center
USGS Research on Saline Waters Co-Produced with Energy Resources
,
1997-01-01
The United States energy industry faces the challenge of satisfying our expanding thirst for energy while protecting the environment. This challenge is magnified by the increasing volumes of saline water produced with oil and gas in the Nation's aging petroleum fields. Ultimately, energy-producing companies are responsible for disposing of these waters. USGS research provides basic information, for use by regulators, industry, and the public, about the chemistry of co-produced waters and environmentally acceptable ways of handling them.
Symposium on Molecular Spectroscopy (39th) Held in Columbus, Ohio on 11-15 Jun 84.
1984-06-15
measured infrared absorbances to Gaussian and Voigt profiles. This work was supported by the Director, Office of Energy Research, Office of Basic Energy ...molecules) 7l) Liquid state (12 Solid 0 ate (electroriic) 3) Elect ronic theory IS Mat rix spectra 113) Solid state (i nfraredl 14) Energy transfer q) Mi...Y. CHOW CHIU, Department of Chemistry, Howard University, Washington, D.C., 20059. ME9. CALCULATION OF POTENTIAL ENERGY CURVES & FRANCK CONDON FACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ARES (Automated Residential Energy Standard) User`s Guide is designed to the user successfully operate the ARES computer program. This guide assumes that the user is familiar with basic PC skills such as using a keyboard and loading a disk drive. The ARES computer program was designed to assist building code officials in creating a residential energy standard based on local climate and costs.
Understanding ‘energy insecurity’ and why it matters to health
Hernández, Diana
2016-01-01
Energy insecurity is a multi-dimensional construct that describes the interplay between physical conditions of housing, household energy expenditures and energy-related coping strategies. The present study uses an adapted grounded theory approach based on in-depth interviews with 72 low-income families to advance the concept of energy insecurity. Study results illustrate the layered components of energy insecurity by providing rich and nuanced narratives of the lived experiences of affected households. Defined as an inability to adequately meet basic household energy needs, this paper outlines the key dimensions of energy insecurity-economic, physical and behavioral- and related adverse environmental, health and social consequences. By thoroughly examining this understudied phenomenon, this article serves to raise awareness of an increasingly relevant issue that merits more attention in research and policy. PMID:27592003
Bunch, T Jared; Day, John D; Packer, Douglas L
2009-04-01
The approach to catheter-based radiofrequency ablation of atrial fibrillation has evolved, and as a consequence, more energy is delivered in the posterior left atrium, exposing neighboring tissue to untoward thermal injury. Simultaneously, catheter technology has advanced to allow more efficient energy delivery into the myocardium, which compounds the likelihood of collateral injury. This review focuses on the basic principles of thermodynamics as they apply to energy delivery during radiofrequency ablation. These principles can be used to titrate energy delivery and plan ablative approaches in an effort to minimize complications during the procedure.
The National Ignition Facility: The Path to a Carbon-Free Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2011-03-16
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
The energy expenditure of normal and pathologic gait.
Waters, R L; Mulroy, S
1999-07-01
Physiological energy expenditure measurement has proven to be a reliable method of quantitatively assessing the penalties imposed by gait disability. The purpose of this review is to outline the basic principles of exercise physiology relevant to human locomotion; detail the energy expenditure of normal walking; and summarize the results of energy expenditure studies performed in patients with specific neurologic and orthopedic disabilities. The magnitude of the disabilities and the patients' capacity to tolerate the increased energy requirements are compared. This paper also will examine the effectiveness of rehabilitation interventions at mitigating the energetic penalties of disability during ambulation.
The National Ignition Facility: the path to a carbon-free energy future.
Stolz, Christopher J
2012-08-28
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
High precision measurements on fission-fragment de-excitation
NASA Astrophysics Data System (ADS)
Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas
2017-11-01
In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.
Impact of solar-energy development. The aggregate impact on basic economic objectives
NASA Astrophysics Data System (ADS)
Parker, A.; Kirschner, C.; Roach, F.
Two categories of incentives for the development of solar energy are described: those that increase the benefits associated with the ownership of a solar energy system and those that reduce the cost of the system. The impact of two alternative programs are presented. Short run and long run impacts expected to result from the installation of passive solar designs on existing housing rock are distinguished. Impacts associated with a program to deregulate natural gas and one combining tax credits and low interest loans are compared. The impacts of solar programs on seven basic economic goals are analyzed. The goals are full employment, price stability, economic efficienty, equitable distribution of income, economic growth, balancing the federal budget, and a strong national defense.
Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons
NASA Astrophysics Data System (ADS)
Wang, Tianju; Zhong, Zhong; Wang, Ju
2018-05-01
Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.
Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.
Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh
2014-12-14
The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Uniform Test Method is used to test more than one unit of a basic model to determine the efficiency of... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Short-term integrated forecasting system : 1993 model documentation report
DOT National Transportation Integrated Search
1993-12-01
The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the U.S. Energy Department (DOE) developed the STIFS model to generate shor...
A Bibliography of Basic Books on Atomic Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.
Blasing, T. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (USA); Marland, Gregg [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (USA); Broniak, Christine [Oregon State Univ., Corvallis, OR (United States)
2004-01-01
Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to calculate the amount of heat energy derived from fuel combustion. The thermal conversion factors are given in Appendix A of each issue of Monthly Energy Review, published by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). Results are expressed in terms of heat energy obtained from each fuel type. These energy values were obtained from the State Energy Data Report (EIA, 2003a), ( http://www.eia.doe.gov/emeu/states/sep_use/total/csv/use_csv.html), and served as our basic input. The energy data are also available in hard copy from the Energy Information Administration, U.S. Department of Energy, as the State Energy Data Report (EIA, 2003a,b).
A survey on human behavior towards energy efficiency for office worker in malaysia
NASA Astrophysics Data System (ADS)
Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.
2014-04-01
Green environment has become an important topic around the world. This campaign can be realized if everybody understands and shares similar objectives on managing energy in an efficient way. This paper will present and analyse the survey on energy usage by office workers in Malaysia. The survey will focus on the workers in government sector. In social science surveys, it is important to support the tested data for a project. For issues related to human behaviour we must compare with real situations to verify the tested data and the results in energy monitoring system. The energy monitoring system will improve energy usage efficiency for the basic human activities in different situations and environments.
Energy models and national energy policy
NASA Astrophysics Data System (ADS)
Bloyd, Cary N.; Streets, David G.; Fisher, Ronald E.
1990-01-01
As work begins on the development of a new National Energy Strategy (NES), the role of energy models is becoming increasingly important. Such models are needed to determine and assess both the short and long term effects of new policy initiatives on U.S. energy supply and demand. A central purpose of the model is to translate overall energy strategy goals into policy options while identifying potential costs and environmental benefits. Three models currently being utilized in the NES process are described, followed by a detailed listing of the publicly identified NES goals. These goals are then viewed in light of the basic modeling scenarios that were proposed as part of the NES development process.
Energy structure of MHD flow coupling with outer resistance circuit
NASA Astrophysics Data System (ADS)
Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.
2015-08-01
Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.
Energy consumption estimation of an OMAP-based Android operating system
NASA Astrophysics Data System (ADS)
González, Gabriel; Juárez, Eduardo; Castro, Juan José; Sanz, César
2011-05-01
System-level energy optimization of battery-powered multimedia embedded systems has recently become a design goal. The poor operational time of multimedia terminals makes computationally demanding applications impractical in real scenarios. For instance, the so-called smart-phones are currently unable to remain in operation longer than several hours. The OMAP3530 processor basically consists of two processing cores, a General Purpose Processor (GPP) and a Digital Signal Processor (DSP). The former, an ARM Cortex-A8 processor, is aimed to run a generic Operating System (OS) while the latter, a DSP core based on the C64x+, has architecture optimized for video processing. The BeagleBoard, a commercial prototyping board based on the OMAP processor, has been used to test the Android Operating System and measure its performance. The board has 128 MB of SDRAM external memory, 256 MB of Flash external memory and several interfaces. Note that the clock frequency of the ARM and DSP OMAP cores is 600 MHz and 430 MHz, respectively. This paper describes the energy consumption estimation of the processes and multimedia applications of an Android v1.6 (Donut) OS on the OMAP3530-Based BeagleBoard. In addition, tools to communicate the two processing cores have been employed. A test-bench to profile the OS resource usage has been developed. As far as the energy estimates concern, the OMAP processor energy consumption model provided by the manufacturer has been used. The model is basically divided in two energy components. The former, the baseline core energy, describes the energy consumption that is independent of any chip activity. The latter, the module active energy, describes the energy consumed by the active modules depending on resource usage.
Yu, L; Li, Y P; Huang, G H; Shan, B G
2017-09-01
Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)
75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...
48 CFR 970.2201 - Basic labor policies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Basic labor policies. 970.2201 Section 970.2201 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Application of Labor Policies 970.2201 Basic labor policies. ...
Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein
NASA Astrophysics Data System (ADS)
Filikov, Anton V.; James, Thomas L.
1998-05-01
A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with peptidic and peptidomimetic linkers. The linkers were refined by varying the length and side chains of the linking residues, carrying out BPMC simulations, and evaluation of the binding free energy for the best energy conformation. The dissociation constant of the best ligand designed is estimated to be in the low- to mid-nanomolar range.
NASA Astrophysics Data System (ADS)
Bennett, Kristin
2004-03-01
As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.
Understanding 'energy insecurity' and why it matters to health.
Hernández, Diana
2016-10-01
Energy insecurity is a multi-dimensional construct that describes the interplay between physical conditions of housing, household energy expenditures and energy-related coping strategies. The present study uses an adapted grounded theory approach based on in-depth interviews with 72 low-income families to advance the concept of energy insecurity. Study results illustrate the layered components of energy insecurity by providing rich and nuanced narratives of the lived experiences of affected households. Defined as an inability to adequately meet basic household energy needs, this paper outlines the key dimensions of energy insecurity-economic, physical and behavioral- and related adverse environmental, health and social consequences. By thoroughly examining this understudied phenomenon, this article serves to raise awareness of an increasingly relevant issue that merits more attention in research and policy. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Melkumov, T. M.
1977-01-01
The research for more efficient methods of propelling a spacecraft, than can be achieved with chemical energy, was studied. During a time when rockets for space flight had not actually been built pioneers in rocket technology were already concerned with this problem. Alternative sources proposed at that time, were nuclear and solar energy. Basic engineering problems of each source were investigated.
Basic Mechanisms of Radiation Effects in Electronic Materials and Devices
1987-09-01
power as function of particle energy for electrons and protons Incident on silic,,n...8217-Mev 0000 Neutrons0 0 Fluenoe n/oma e 1-MeV equivalent fluenos n/orm DlSlLAOUMllW Ionizing radltlon O Stopping power (linear energy MeV/(g/om...from the interaction of radiation energy that goes Into ionization Is given by the stop- with electronic materials are Ionization (primarily ping power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Arnab; Ginovska, Bojana; Raugei, Simone
2016-01-01
Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and watermore » are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.« less
LANDSAT-4 TM image data quality analysis for energy-related applications
NASA Technical Reports Server (NTRS)
Wukelic, G. E.; Foote, H. P.
1983-01-01
LANDSAT-4 Thematic Mapper (TM) data performance and utility characteristics from an energy research and technology perspective is evaluated. The program focuses on evaluating applicational implications of using such data, in combination with other digital data, for current and future energy research and technology activities. Prime interest is in using TM data for siting, developing and operating federal energy facilities. Secondary interests involve the use of such data for resource exploration, environmental monitoring and basic scientific initiatives such as in support of the Continental Scientific Drilling Program.
Energy comparison between solar thermal power plant and photovoltaic power plant
NASA Astrophysics Data System (ADS)
Novosel, Urška; Avsec, Jurij
2017-07-01
The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.
Reaffirming Some Basic Principles in Purchasing and Maintenance.
ERIC Educational Resources Information Center
Throop, Harold L., Jr.
1985-01-01
Reaffirms necessary elements for the successful operation of college purchasing and maintenance programs (e.g., purchasing calendar, bidding procedures, vendor selection, contracting services, budgeting for maintenance, and workforce analysis). Discusses ways some colleges are saving on operating costs (e.g., solar energy, energy management,…
Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePaolo, D. J.; Orr, F. M.; Benson, S. M.
2007-06-01
To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
How Living Things Obtain Energy: A Simpler Explanation.
ERIC Educational Resources Information Center
Igelsrud, Donald E.
1989-01-01
Examines five basic reactions which describe the biochemical pathways for living things obtaining energy. Shows the reactions that occur in respiration after glycolysis, the dehydrogenation reaction, decarboxylation, and two kinds of make-ready reactions which prepare molecules for further dehydrogenation and decarboxylation. Diagrams are…
Code of Federal Regulations, 2014 CFR
2014-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...
76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86... the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions of the...
78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science... Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
Summaries of FY 1982 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-09-01
The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less
16 CFR 305.21 - Test data records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... each basic model, or the light output, energy usage, correlated color temperature, and life ratings and, for fluorescent lamps, the color rendering index, for each basic model or lamp type were derived. [52...
Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.
Zahariev, Federico; Levy, Mel
2017-01-12
A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.
A Sustainable Energy Laboratory Course for Non-Science Majors
NASA Astrophysics Data System (ADS)
Nathan, Stephen A.; Loxsom, Fred
2016-10-01
Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).
Rodger A. Arola; Edwin W. Miyata
1981-01-01
Illustrates the potential of harvesting wood for industrial energy, based on the results of five harvesting studies. Presents information on harvesting operations, equipment costs, and productivity. Discusses mechanized thinning of hardwoods, clearcutting of low-value stands and recovery of hardwood tops and limbs. Also includes basic information on the physical and...
16 CFR 305.8 - Submission of data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Testing § 305.8 Submission of... the first submission for each basic model); (v) The product's water use, expressed in gallons and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.
78 FR 716 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...
Technology in the high entropy world.
Tambo, N
2006-01-01
Modern growing society is mainly driven by oils and may be designated "petroleum civilisation". However, the basic energy used to drive the global ecosystem is solar radiation. The amount of fossil energy consumption is minimal in the whole global energy balance. Economic growth is mainly controlled by the fossil (commercial) energy consumption rate in urban areas. Water and sanitation systems are bridging economical activities and global ecosystems. Therefore, vast amounts of high entropy solar energy should always be taken into account in the water industry. Only in urban/industrial areas where most of the GDP is earned, are commercial energy driven systems inevitably introduced with maximum effort for energy saving. A water district concept to ensure appropriate quality use with the least deterioration of the environment is proposed. In other areas, decentralised water and sanitation systems driven on soft energy paths would be recommended. A process and system designed on a high entropy energy system would be the foundation for a future urban metabolic system revolution for when oil-based energy become scarce.
DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff
2017-12-09
'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.
Solar Photovoltaic Technology Basics | NREL
For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the
Home Energy Displays: Consumer Adoption and Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaMarche, J.; Cheney, K.; Akers, C.
2012-12-01
The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 householdsmore » planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM
Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Energetics of basic karate kata.
Bussweiler, Jens; Hartmann, Ulrich
2012-12-01
Knowledge about energy requirements during exercises seems necessary to develop training concepts in combat sport Karate. It is a commonly held view that the anaerobic lactic energy metabolism plays a key role, but this assumption could not be confirmed so far. The metabolic cost and fractional energy supply of basic Karate Kata (Heian Nidan, Shotokan style) with duration of about 30 s were analyzed. Six male Karateka [mean ± SD (age 29 ± 8 years; height 177 ± 5 cm, body mass 75 ± 9 kg)] with different training experience (advanced athletes, experts, elite athletes) were examined while performing one time and two time continuously the sport-specific movements. During Kata performance oxygen uptake was measured with a portable spirometric device, blood lactate concentrations were examined before and after testing and fractional energy supply was calculated. The results have shown that on average 52 % of the energy supply for one Heian Nidan came from anaerobic alactic metabolism, 25 % from anaerobic lactic and 23 % from aerobic metabolism. For two sequentially executed Heian Nidan and thus nearly doubling the duration, the calculated percentages were 33, 25 and 42 %. Total energy demand for one Kata and two Kata was approximately 61 and 99 kJ, respectively. Despite measured blood lactate concentrations up to 8.1 mmol l(-1), which might suggest a dominance of lactic energy supply, a lactic fraction of only 17-31 % during these relatively short and intense sequences could be found. A heavy use of lactic energy metabolism had to be rejected.
State of the art: dual-energy CT of the abdomen.
Marin, Daniele; Boll, Daniel T; Mileto, Achille; Nelson, Rendon C
2014-05-01
Recent technologic advances in computed tomography (CT)--enabling the nearly simultaneous acquisition of clinical images using two different x-ray energy spectra--have sparked renewed interest in dual-energy CT. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT can be used to provide quantitative information about tissue composition, overcoming the limitations of attenuation-based conventional single-energy CT imaging. In the past few years, intensive research efforts have been devoted to exploiting the unique and powerful opportunities of dual-energy CT for a variety of clinical applications. This has led to CT protocol modifications for radiation dose reduction, improved diagnostic performance for detection and characterization of diseases, as well as image quality optimization. In this review, the authors discuss the basic principles, instrumentation and design, examples of current clinical applications in the abdomen and pelvis, and future opportunities of dual-energy CT.
Earth's changing global atmospheric energy cycle in response to climate change
Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.
2017-01-01
The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324
NASA Technical Reports Server (NTRS)
Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.
1992-01-01
The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.
Basic performance and stability of a CdTe solid-state detector panel.
Tsuchiya, Katsutoshi; Takahashi, Isao; Kawaguchi, Tsuneaki; Yokoi, Kazuma; Morimoto, Yuuichi; Ishitsu, Takafumi; Suzuki, Atsurou; Ueno, Yuuichirou; Kobashi, Keiji
2010-05-01
We have developed a prototype gamma camera system (R1-M) using a cadmium telluride (CdTe) detector panel and evaluated the basic performance and the spectral stability. The CdTe panel consists of 5-mm-thick crystals. The field of view is 134 x 268 mm comprising 18,432 pixels with a pixel pitch of 1.4 mm. Replaceable small CdTe modules are mounted on to the circuit board by dedicated zero insertion force connectors. To make the readout circuit compact, the matrix read out is processed by dedicated ASICs. The panel is equipped with a cold-air cooling system. The temperature and humidity in the panel were kept at 20 degrees C and below 70% relative humidity. CdTe polarization was suppressed by the bias refresh technique to stabilize the detector. We also produced three dedicated square pixel-matched collimators: LEGP (20 mm-thick), LEHR (27 mm-thick), and LEUHR (35 mm-thick). We evaluated their basic performance (energy resolution, system resolution, and sensitivity) and the spectral stability in terms of short-term (several hours of continuous acquisition) and long-term (infrequent measurements over more than a year) activity. The intrinsic energy resolution (FWHM) acquired with Tc-99m (140.5 keV) was 6.6%. The spatial resolutions (FWHM at a distance of 100 mm) with LEGP, LEHR, and LEUHR collimators were 5.7, 4.9, and 4.2 mm, and the sensitivities were 71, 39, and 23 cps/MBq, respectively. The energy peak position and the intrinsic energy resolution after several hours of operation were nearly the same as the values a few minutes after the system was powered on; the variation of the peak position was <0.2%, and that of the resolution was about 0.3%. Infrequent measurements conducted over a year showed that the variations of the energy peak position and the intrinsic energy resolution of the system were at a similar level to those described above. The basic performance of the CdTe-gamma camera system was evaluated, and its stability was verified. It was shown that the camera could be operated daily for several months without calibration.
Accelerated Self-Replication under Non-Equilibrium, Periodic Energy Delivery
NASA Astrophysics Data System (ADS)
Zhang, Rui; Olvera de La Cruz, Monica
2014-03-01
Self-replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self-replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self-replication is explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light switchable colloids is considered where light is used to control the interactions. Conditions under which self-replication can be significantly more effective under non-equilibrium, cyclic energy delivery than under equilibrium constant energy conditions are identified. Optimal self-replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates. This work was supported by the Non-Equilibrium Energy Research Center (NERC), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.
Theory of buckling and post-buckling behavior of elastic structures
NASA Technical Reports Server (NTRS)
Budiansky, B.
1974-01-01
The present paper provides a unified, general presentation of the basic theory of the buckling and post-buckling behavior of elastic structures in a form suitable for application to a wide variety of special problems. The notation of functional analysis is used for this purpose. Before the general analysis, simple conceptual models are used to elucidate the basic concepts of bifurcation buckling, snap buckling, imperfection sensitivity, load-shortening relations, and stability. The energy approach, the virtual-work approach, and mode interaction are discussed. The derivations and results are applicable to continua and finite-dimensional systems. The virtual-work and energy approaches are given separate treatments, but their equivalence is made explicit. The basic concepts of stability occupy a secondary position in the present approach.
Steel industry energy consumption: Sensitivity to technology choice, fuel prices, and carbon prices
2016-01-01
Steel industry energy consumption in 2010 totaled 1,158 trillion British thermal units (Btu), representing 8% of total manufacturing energy consumption. Energy consumption in the steel industry is largely for crude steel production using basic oxygen furnace (BOF) and electric arc furnace (EAF) technologies. Overall energy intensity in EAF, used primarily to melt scrap steel, is significantly lower than in BOF which is used to create virgin steel from iron ore. Over the past two decades, a shift from BOF to EAF has contributed to a substantial reduction in the energy intensity of the U.S. steel industry. From 1991 to 2010, the EAF share of total U.S. steel production in physical units increased from 38% to 61%, and the overall energy intensity of crude steel production in Btu per metric ton decreased by 37%.
NASA Astrophysics Data System (ADS)
Faitar, C.; Novac, I.
2017-08-01
Today, the concept of energy efficiency or energy optimization in ships has become one of the main problems of engineers in the whole world. To increase the fiability of a crude oil super tanker ship it means, among other things, to improve the energy performance and optimize the fuel consumption of ship through the development of engines and propulsion system or using alternative energies. Also, the importance of having an effective and reliable Power Management System (PMS) in a vessel operating system means to reduce operational costs and maintain power system of machine parts working in minimum stress in all operating conditions. Studying the Energy Efficiency Design Index and Energy Efficiency Operational Indicator for a crude oil super tanker ship, it allows us to study the reconfiguration of ship power system introducing new generation systems.
NECAP - NASA's Energy Cost Analysis Program. Operations manual
NASA Technical Reports Server (NTRS)
Miner, D. L.
1982-01-01
The use of the NASA'S ENERGY COST ANALYSIS PROGRAM (NECAP) is described. Supplementary information on new capabilities and program options is also provided. The Control Data Corporation (CDC) NETWORK OPERATING SYSTEM (NOS) is discussed. The basic CDC NOS instructions which are required to successfully operate NECAP are provided.
MPA-11: Materials Synthesis and Integrated Devices; Overview of an Applied Energy Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Andrew Martin
Our mission is to provide innovative and creative chemical synthesis and materials science solutions to solve materials problems across the LANL missions. Our group conducts basic and applied research in areas related to energy security as well as problems relevant to the Weapons Program.
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... basic organic chemical manufacturing. Industry 424690 5169 Chemical and allied products merchant... analyzed, including projected yields of feedstock per acre planted, projected fertilizer use, and energy... changes in crop inputs, such as fertilizer, energy used in agriculture, livestock production and other...
ERIC Educational Resources Information Center
Wilson, David A.
The author of this booklet is an engineer who conducts experiments in solar energy. Here he has described basic principles of the field. He also details methods of constructing a variety of solar implements, including solar panels, solar cells, a concentrating collector and a solar furnace. The book is intended for the layman and contains…
Solar Energy Education Packet for Elementary & Secondary Students.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Molecular Mechanics: The Method and Its Underlying Philosophy.
ERIC Educational Resources Information Center
Boyd, Donald B.; Lipkowitz, Kenny B.
1982-01-01
Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…
greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its volume, so new make a hydrogen economy a reality include: Fuel Cells - Improving fuel cell technology and materials needed for fuel cells. Production - Developing technology to efficiently and cost-effectively make
16 CFR 305.8 - Submission of data.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Testing § 305.8 Submission of... information must be included with only the first submission for each basic model); (v) The product's water use...
16 CFR 305.8 - Submission of data.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Testing § 305.8 Submission of... information must be included with only the first submission for each basic model); (v) The product's water use...
Some Basics for Teaching and Evaluating Energy Conservation in the Home
ERIC Educational Resources Information Center
McColl, Robert W.
1978-01-01
Examines methods for determining thermal efficiency and measuring heat loss in the home. Suggests ways to conserve energy based upon (1) climatic environment and its impact on a structure, (2) physical location of buildings and their microclimate, and (3) behavior modification of the inhabitants. (Author)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and...) Certification. Each manufacturer, before distributing in commerce any basic model of a covered product or.... EERE-2010-BT-CE-0014] RIN 1904-AC23 Energy Conservation Program: Certification, Compliance, and...
NASA Astrophysics Data System (ADS)
Prehoda, Emily W.
This thesis presents three examples of U.S. energy policy and demonstrates how these policies violate the principles of energy justice. First, requiring only Federal agencies to obtain a percentage of energy production from renewables violates the distributive energy justice principle through a lack of a federal renewable energy policy which distributes the potential for unequal electrical grid failure to populations. Second, U.S. energy policy violates the procedural energy justice principle through inequitable participation and poor knowledge dissemination that, in some cases, contributes to stagnant renewable targets during the decision-making process and inequitable distribution of the benefits associated with renewable energy arguably resulting from differential representation of economic groups in policy decision making. Third, the United States' continued reliance on and subsidization of fossil fuel extraction and use, violates the prohibitive energy justice principle by causing physical harm to humans and the environment. Finally, a lack of federal renewable energy policy hinders comprehensive energy policy including diversifying the U.S. renewable energy portfolios. Considering energy policy through the framework of energy justice offers a means of evaluating existing policy and can improve future energy policy decision-making. Demanding energy justice ensures that all populations have equitable distribution, participation, and access to affordable, efficient, and clean energy technologies that contribute to obtaining basic needs.
NASA Astrophysics Data System (ADS)
Acosta, Michael Anthony
The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.
Analysis and design of energy monitoring platform for smart city
NASA Astrophysics Data System (ADS)
Wang, Hong-xia
2016-09-01
The development and utilization of energy has greatly promoted the development and progress of human society. It is the basic material foundation for human survival. City running is bound to consume energy inevitably, but it also brings a lot of waste discharge. In order to speed up the process of smart city, improve the efficiency of energy saving and emission reduction work, maintain the green and livable environment, a comprehensive management platform of energy monitoring for government departments is constructed based on cloud computing technology and 3-tier architecture in this paper. It is assumed that the system will provide scientific guidance for the environment management and decision making in smart city.
NASA Astrophysics Data System (ADS)
Tyurina, E. A.; Mednikov, A. S.
2017-11-01
The paper presents the results of studies on the perspective technologies of natural gas conversion to synthetic liquid fuel (SLF) at energy-technology installations for combined production of SLF and electricity based on their detailed mathematical models. The technologies of the long-distance transport of energy of natural gas from large fields to final consumers are compared in terms of their efficiency. This work was carried out at Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences and supported by Russian Science Foundation via grant No 16-19-10174
Yaguchi, A; Nagase, K; Ishikawa, M; Iwasaka, T; Odagaki, M; Hosaka, H
2006-01-01
Computer simulation and myocardial cell models were used to evaluate a low-energy defibrillation technique. A generated spiral wave, considered to be a mechanism of fibrillation, and fibrillation were investigated using two myocardial sheet models: a two-dimensional computer simulation model and a two-dimensional experimental model. A new defibrillation technique that has few side effects, which are induced by the current passing into the patient's body, on cardiac muscle is desired. The purpose of the present study is to conduct a basic investigation into an efficient defibrillation method. In order to evaluate the defibrillation method, the propagation of excitation in the myocardial sheet is measured during the normal state and during fibrillation, respectively. The advantages of the low-energy defibrillation technique are then discussed based on the stimulation timing.
NASA Astrophysics Data System (ADS)
Wciślik, Sylwia
This paper analyses energy efficiency of thermomodernization project on the example of three forest lodges located in the Świętokrzyski National Park. Currently, one of the basic requirements posed for the buildings subjected to modernization is to reduce carbon dioxide emissions even above 80% in comparison with the original values. In order to fulfil such criteria, it is necessary to apply alternative solutions based on renewable energy sources. Due to limited budget, low cubic capacity and location of the buildings, solar collectors with storage tanks and biomass boilers provide a rational option. For such a case, the emissions of basic pollutants such as CO2, SOx, NOx or particulates is obtained. The study also gives the results of calculations of payback time (SPBT) for the investment for exemplary forest lodge.
Solution synthesis of metal oxides for electrochemical energy storage applications.
Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin
2014-05-21
This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.
«Smart Grid» Concept As A Modern Technology For The Power Industry Development
NASA Astrophysics Data System (ADS)
Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.
2017-01-01
The article discusses the main problems of the power industry and energy supply to the distribution networks. One of the suggested solutions for these problems is the use of intelligent energy networks on the basis of digital reality simulation, in particular, the concept of «SMART GRID». The article presents the basic points of the concept and the peculiarities of its application at the enterprises. It was demonstrated that the use of this technology eliminates power shortage, reduces the energy intensity and improves the energy efficiency throughout the operation of an enterprise as a whole.
2010-03-01
his basic conclusions: These advocates of atomic energy [in 1946] were former Manhattan Project scientists familiar with the rigidity of military...Rabinowitch recalled how his father, Eugene Rabinowitch, who contributed to the Manhattan Project , had strong concerns about the use of atomic energy...plutonium production in the Manhattan Project , “was to explore how the development of atomic energy might be controlled after the war.”20 According to
Mulloy, Karen B; Sumner, Steven A; Rose, Cecile; Conway, George A; Reynolds, Stephen J; Davidson, Margaret E; Heidel, Donna S; Layde, Peter M
2013-11-01
Renewable energy production may offer advantages to human health by way of less pollution and fewer climate-change associated ill-health effects. Limited data suggests that renewable energy will also offer benefits to workers in the form of reduced occupational injury, illness and deaths. However, studies of worker safety and health in the industry are limited. The Mountain and Plains Education and Research Center (MAP ERC) Energy Summit held in April 2011 explored issues concerning worker health and safety in the renewable energy industry. The limited information on hazards of working in the renewable energy industry emphasizes the need for further research. Two basic approaches to guiding both prevention and future research should include: (1) applying lessons learned from other fields of occupational safety and health, particularly the extractive energy industry; and (2) utilizing knowledge of occupational hazards of specific materials and processes used in the renewable energy industry. © 2013 Wiley Periodicals, Inc.
Thermodynamic limits to the efficiency of solar energy conversion by quantum devices
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.
1981-01-01
The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.
NASA Technical Reports Server (NTRS)
1976-01-01
The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.
SIMWEST - A simulation model for wind energy storage systems
NASA Technical Reports Server (NTRS)
Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.
1978-01-01
This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.
The elastic energy and character of quakes in solid stars and planets
NASA Technical Reports Server (NTRS)
Pines, D.; Shaham, J.
1972-01-01
The quadrupolar mechanical energy of a rotating axially symmetric solid planet (with or without a liquid interior) is calculated using methods previously developed for neutron stars in which an elastic reference tensor is introduced to describe the build-up of elastic energy in the star. The basic parameters of the theory (the gravitational energy A and elastic energy B) depend upon the internal structure of the planet and may be calculated from specific planetary models. Explicit expressions are obtained for the Love numbers, and for the planetary wobble frequency. The theory provides a simple relationship between changes in shape or axis of figure of the planet and elastic energy release. The theory is extended to describe the Earth by taking into account isostasy, triaxiality and the observed lithospheric configuration.
Basics of Solar Heating & Hot Water Systems.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…
Energy performance of areas for urban development (Arkhangelsk is given as example)
NASA Astrophysics Data System (ADS)
Popova, Olga; Glebova, Yulia
2017-01-01
The present research provides an overview and analysis of the legal framework and the technology to increase energy save and energy efficiency. The challenges of the mentioned activities implementation in urban areas are revealed in the paper. A comparison was made of the principal methods of increasing energy efficiency that is based on payback period. The basic shortcomings of the methods used are found. The way of capital reproducing assets acquisition is proposed with consideration of the rate of wear and tear and upgrading of urban residential development. The present research aims at characterizing energy sustainability of urban areas for forming the information basis that identifies capital construction projects together within the urban area. A new concept - area energy sustainability is introduced in the study to use system-structural approach to energy saving and energy efficiency. Energy sustainability of the area as an integral indicator of the static characteristics of the territory is considered as a complex involving the following terms: energy security, energy intensity and energy efficiency dynamic indicators of all the components of the power system of the area. Dimensions and parameters of energy sustainability of the area are determined. Arkhangelsk is given as example.
Radical-cationic gaseous amino acids: a theoretical study.
Sutherland, Kailee N; Mineau, Philippe C; Orlova, Galina
2007-08-16
Three major forms of gaseous radical-cationic amino acids (RCAAs), keto (COOH), enolic (C(OH)OH), and zwitterionic (COO(-)), as well as their tautomers, are examined for aliphatic Ala(.+), Pro(.+), and Ser(.+), sulfur-containing Cys(.+), aromatic Trp(.+), Tyr(.+), and Phe(.+), and basic His(.+). The hybrid B3LYP exchange-correlation functional with various basis sets along with the highly correlated CCSD(T) method is used. For all RCAAs considered, the main stabilizing factor is spin delocalization; for His(.+), protonation of the basic side chain is equally important. Minor stabilizing factors are hydrogen bonding and 3e-2c interactions. An efficient spin delocalization along the N-C(alpha)-C(O-)O moiety occurs upon H-transfer from C(alpha) to the carboxylic group to yield the captodative enolic form, which is the lowest-energy isomer for Ala(.+), Pro(.+), Ser(.+), Cys(.+), Tyr(.+), and Phe(.+). This H-transfer occurs in a single step as a 1,3-shift through the sigma-system. For His(.+), the lowest-energy isomer is formed upon H-transfer from C(alpha) to the basic side chain, which results in a keto form, with spin delocalized along the N-C(alpha)-C=O fragment. Trp(.+) is the only RCAA that favors spin delocalization over an aromatic system given the low ionization energy of indole. The lowest-energy isomer of Trp(.+) is a keto form, with no H-transfer.
Formalization, equivalence and generalization of basic resonance electrical circuits
NASA Astrophysics Data System (ADS)
Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay
2017-12-01
In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.
Nuclear Reactions in Micro/Nano-Scale Metal Particles
NASA Astrophysics Data System (ADS)
Kim, Y. E.
2013-03-01
Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.
Carter Budget Tilts "Back to Basics" for Research
ERIC Educational Resources Information Center
Hammond, Allen L.
1978-01-01
Reviews the proposed 1979 federal budget for basic research for the National Institutes of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), Environmental Protection Agency (EPA), Department of Defense, and Department of Energy. (SL)
Research on Operation Assessment Method for Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
A Method of Evaluating Operation of Electric Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin
2018-05-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
Remote Determination of Auroral Energy Characteristics During Substorm Activity
NASA Technical Reports Server (NTRS)
Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Cumnock, J.; Lummerzheim, D.; Spann, J. F., Jr.
1997-01-01
Ultraviolet auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength N2 Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. This technique is used in this study to estimate incident electron energy flux and average energy during substorm activity occurring on May 19, 1996. This event was simultaneously observed by WIND, GEOTAIL, INTERBALL, DMSP and NOAA spacecraft as well as by POLAR. Here incident energy estimates derived from Ultraviolet Imager (UVI) are compared with in situ measurements of the same parameters from an overflight by the DMSP F12 satellite coincident with the UVI image times.
New York State energy-analytic information system: first-stage implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allentuck, J.; Carroll, O.; Fiore, L.
1979-09-01
So that energy policy by state government may be formulated within the constraints imposed by policy determined at the national level - yet reflect the diverse interests of its citizens - large quantities of data and sophisticated analytic capabilities are required. This report presents the design of an energy-information/analytic system for New York State, the data for a base year, 1976, and projections of these data. At the county level, 1976 energy-supply demand data and electric generating plant data are provided as well. Data-base management is based on System 2000. Three computerized models provide the system's basic analytic capacity. Themore » Brookhaven Energy System Network Simulator provides an integrating framework while a price-response model and a weather sensitive energy demand model furnished a short-term energy response estimation capability. The operation of these computerized models is described. 62 references, 25 figures, 39 tables.« less
A hierarchical approach for the design improvements of an Organocat biorefinery.
Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H
2015-04-01
Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Summaries of FY 1994 geosciences research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-12-01
The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less
Smart Building: Decision Making Architecture for Thermal Energy Management.
Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo
2015-10-30
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.
Energy minibands degeneration induced by magnetic field effects in graphene superlattices
NASA Astrophysics Data System (ADS)
Reyes-Villagrana, R. A.; Carrera-Escobedo, V. H.; Suárez-López, J. R.; Madrigal-Melchor, J.; Rodríguez-Vargas, I.
2017-12-01
Energy minibands are a basic feature of practically any superlattice. In this regard graphene superlattices are not the exception and recently miniband transport has been reported through magneto-transport measurements. In this work, we compute the energy miniband and transport characteristics for graphene superlattices in which the energy barriers are generated by magnetic and electric fields. The transfer matrix approach and the Landauer-Büttiker formalism have been implemented to calculate the energy minibands and the linear-regime conductance. We find that energy minibands are very sensitive to the magnetic field and become degenerate by rising it. We were also able to correlate the evolution of the energy minibands as a function of the magnetic field with the transport characteristics, finding that miniband transport can be destroyed by magnetic field effects. Here, it is important to remark that although magnetic field effects have been a key element to unveil miniband transport, they can also destroy it.
On the energy density of helical proteins.
Barros, Manuel; Ferrández, Angel
2014-12-01
We solve the problem of determining the energy actions whose moduli space of extremals contains the class of Lancret helices with a prescribed slope. We first see that the energy density should be linear both in the total bending and in the total twisting, such that the ratio between the weights of them is the prescribed slope. This will give an affirmative answer to the conjecture stated in Barros and Ferrández (J Math Phys 50:103529, 2009). Then, we normalize to get the best choice for the helical energy. It allows us to show that the energy, for instance of a protein chain, does not depend on the slope and is invariant under homotopic changes of the cross section which determines the cylinder where the helix is lying. In particular, the energy of a helix is not arbitrary, but it is given as natural multiples of some basic quantity of energy.
Understanding the Relationship Between Kinetics and Thermodynamics in CO 2 Hydrogenation Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeletic, Matthew S.; Hulley, Elliott B.; Helm, Monte L.
Linear free-energy relationships have been identified that link the kinetic activity for catalytic hydrogenation of CO2 to formate with the thermodynamic driving force for the rate-limiting steps of catalysis. Cobalt and rhodium bis(diphosphine) complexes with different hydricities (G°H-), acidities (pKa), and free energies for H2 addition (G°H2) were examined. Catalytic CO2 hydrogenation was studied under 1.8 and 20 atm of pressure (1:1 CO2:H2) at room temperature in tetrahydrofuran with a spread of turnover frequencies (TOF) ranging from 0 to 74,000 h-1. The catalysis was followed by 1H and 31P NMR in real time under all conditions to yield information aboutmore » the rate determining step. Catalysts exhibiting the highest activities were found to have hydride transfer and hydrogen addition steps that were each downhill by approximately 6 to 7 kcal/mol, and the deprotonation step was thermoneutral. The research by M.S.J., A.M.A., E.S.W., and J.C.L. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research by E.B.H., M.L.H., and M.T.M. (X-ray crystallography, synthesis) was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank Dr. Samantha A. Burgess for assistance in collecting cyclic voltammetry data. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Cardenas, Jesus Alvaro
An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, C.D.
1987-07-01
Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and aremore » usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sozen, A.; Arcaklioglu, E.
The main goal of this study is to develop the energy sources estimation equations in order to estimate the future projections and make correct investments in Turkey using artificial neural network (ANN) approach. It is also expected that this study will be helpful in demonstrating energy situation of Turkey in amount of EU countries. Basic energy indicators such as population, gross generation, installed capacity, net energy consumption, import, export are used in input layer of ANN. Basic energy sources such as coal, lignite, fuel-oil, natural gas and hydro are in output layer. Data from 1975 to 2003 are used tomore » train. Three years (1981, 1994 and 2003) are only used as test data to confirm this method. Also, in this study, the best approach was investigated for each energy sources by using different learning algorithms (scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM)) and a logistic sigmoid transfer function in the ANN with developed software. The statistical coefficients of multiple determinations (R{sup 2}-value) for training data are equal to 0.99802, 0.99918, 0.997134, 0.998831 and 0.995681 for natural gas, lignite, coal, hydraulic, and fuel-oil, respectively. Similarly, these values for testing data are equal to 0.995623, 0.999456, 0.998545, 0.999236, and 0.99002. The best approach was found for lignite by SCG algorithm with seven neurons so mean absolute percentage error (MAPE) is equal to 1.646753 for lignite. According to the results, the future projections of energy indicators using ANN technique have been obviously predicted within acceptable errors. Apart from reducing the whole time required, the importance of the ANN approach is possible to find solutions that make energy applications more viable and thus more attractive to potential users.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... B authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to... was submitted contains one or more design characteristics that prevents testing of the basic model... materially inaccurate comparative data. 10 CFR 430.27(l). Petitioners must include in their petition any...
Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…
On-line computer system for use with low- energy nuclear physics experiments is reported
NASA Technical Reports Server (NTRS)
Gemmell, D. S.
1969-01-01
Computer program handles data from low-energy nuclear physics experiments which utilize the ND-160 pulse-height analyzer and the PHYLIS computing system. The program allows experimenters to choose from about 50 different basic data-handling functions and to prescribe the order in which these functions will be performed.
Energy and Architecture: The Solar and Conservation Potential. Worldwatch Paper 40.
ERIC Educational Resources Information Center
Flavin, Christopher
This monograph explores how architecture is influenced by and is responding to the global energy dilemma. Emphasis is placed on conservation techniques (using heavy insulation) and on passive solar construction (supplying most of a building's heating, cooling, and lighting requirements by sunlight). The basic problem is that architecture, like…
Summary of atmospheric wind design criteria for wind energy conversion system development
NASA Technical Reports Server (NTRS)
Frost, W.; Turner, R. E.
1979-01-01
Basic design values are presented of significant wind criteria, in graphical format, for use in the design and development of wind turbine generators for energy research. It is a condensed version of portions of the Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development.
Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
10 CFR 429.46 - Commercial clothes washers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the water factor in gallons per cubic feet per cycle (gal/cu ft/cycle) for units manufactured on or... randomly selected and tested to ensure that— (i) Any represented value of energy or water consumption or other measure of energy or water consumption of a basic model for which consumers would favor lower...
10 CFR 429.46 - Commercial clothes washers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the water factor in gallons per cubic feet per cycle (gal/cu ft/cycle) for units manufactured on or... randomly selected and tested to ensure that— (i) Any represented value of energy or water consumption or other measure of energy or water consumption of a basic model for which consumers would favor lower...
10 CFR 429.46 - Commercial clothes washers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the water factor in gallons per cubic feet per cycle (gal/cu ft/cycle) for units manufactured on or... randomly selected and tested to ensure that— (i) Any represented value of energy or water consumption or other measure of energy or water consumption of a basic model for which consumers would favor lower...
Transformers and the Electric Utility System
ERIC Educational Resources Information Center
Roman, Harry T.
2005-01-01
For electric energy to get from the generating station to a home, it must pass through a transformer, a device that can change voltage levels easily. This article describes how transformers work, covering the following topics: (1) the magnetism-electricity link; (2) transformer basics; (3) the energy seesaw; (4) the turns ratio rule; and (5)…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to produce... conditions is met: (1) The petitioner's basic model contains one or more design characteristics that prevent..., BSH asserts, design characteristics of these models prevent testing according to the currently...
Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy
ERIC Educational Resources Information Center
Huggins, Elisha
2013-01-01
In the popular press, diagrams showing the evolution of the universe begin with a great jump in size labeled "inflation." Can we explain the basic ideas behind inflation to our students who have taken our introductory physics course? Probably not. In our standard introductory physics courses, even those with special relativity, something…
Energy efficiency in light-frame wood construction
Gerald E. Sherwood; Gunard Hans
1979-01-01
This report presents information needed for design and construction of energy-efficient light-frame wood structures. The opening section discusses improving the thermal performance of a house by careful planning and design. A second section of the report provides technical information on the thermal properties of construction materials, and on the basic engineering...
Solar Village--Educational Initiative for Kids.
ERIC Educational Resources Information Center
Hugerat, Muhamad; Ilyian, Salman; Toren, Zehava; Anabosi, Fawzi
2003-01-01
Explains a model of a solar village in the context of the school which does not contribute to air pollution by using only solar energy. Suggests that pupils would be active participants in building systems and understanding the contact between the knowledge of the basic science of solar energy and the technology processes in daily life.…
Groucho: An Energy Conservation Computer Game.
ERIC Educational Resources Information Center
Canipe, Stephen L.
Groucho is a computer game designed to teach energy conservation concepts to upper elementary and junior high school students. The game is written in Applesoft Basic for the Apple II microcomputer. A complete listing of the program is provided. The game utilizes low resolution graphics to reward students for correct answers to 10 questions…
Creswell's Energy Efficient Construction Program: A Big Project for a Small School.
ERIC Educational Resources Information Center
Kelsh, Bruce
1982-01-01
In Creswell (Oregon) High School's award winning vocational education program, students study energy efficient construction along with basic building skills. Part of the program has been the active recruitment of female, minority, disadvantaged, and handicapped students into the vocational area. Students have assembled solar hot water collectors,…
Proton Transports in Pure Liquid Water Characterized by Melted Ice Lattice Model
NASA Astrophysics Data System (ADS)
Jie, Binbin; Sah, Chihtang
Basic water properties have not been understood for 200 years. Our Melted Ice Lattice model accounts for the 2 basic properties of pure water, the ion product (pH) and mobilities. It has HCP primitive unit cells, each with 4H2O, based on the 1933 Bernal-Fowler model, verified by 1935 Pauling residual entropy theory of 1928-1935 Giauque experimental low temperature specific heat measurements. Our 2 ion species are point-mass protons p + and p-, for mass and electricity transport. Three protonic thermal activation energies are obtained from pH and p + and p- mobilities vs T (0-100OC). Proton transport is analyzed in 3 proton-phonon collision steps: proton detrapping by protonic phonon absorption, proton scattering by oxygenic (water) phonons, and proton trapping with protonic phonon emission. Distinction between Potential and Kinetic Energy Bands of protons (Fermions) and phonons (Bosons) is noted. Experimental protonic activation energies are the phonon energies given by the spring-mass vibration frequencies of lattice, wn = (kn/mn)1/2 . n is the proton-mass unit of the synchronized vibrating particles in the primitive unit cells.
On radiating baroclinic instability of zonally varying flow
NASA Technical Reports Server (NTRS)
Finley, Catherine A.; Nathan, Terrence R.
1993-01-01
A quasi-geostrophic, two-layer, beta-plane model is used to study the baroclinic instability characteristics of a zonally inhomogeneous flow. It is assumed that the disturbance varied slowly in the cross-stream direction, and the stability problem was formulated as a 1D initial value problem. Emphasis is placed on determining how the vertically averaged wind, local maximum in vertical wind shear, and length of the locally supercritical region combine to yield local instabilities. Analysis of the local disturbance energetics reveals that, for slowly varying basic states, the baroclinic energy conversion predominates within the locally unstable region. Using calculations of the basic state tendencies, it is shown that the net effect of the local instabilities is to redistribute energy from the baroclinic to the barotropic component of the basic state flow.
Atomistic potentials based energy flux integral criterion for dynamic adiabatic shear banding
NASA Astrophysics Data System (ADS)
Xu, Yun; Chen, Jun
2015-02-01
The energy flux integral criterion based on atomistic potentials within the framework of hyperelasticity-plasticity is proposed for dynamic adiabatic shear banding (ASB). System Helmholtz energy decomposition reveals that the dynamic influence on the integral path dependence is originated from the volumetric strain energy and partial deviatoric strain energy, and the plastic influence only from the rest part of deviatoric strain energy. The concept of critical shear banding energy is suggested for describing the initiation of ASB, which consists of the dynamic recrystallization (DRX) threshold energy and the thermal softening energy. The criterion directly relates energy flux to the basic physical processes that induce shear instability such as dislocation nucleations and multiplications, without introducing ad-hoc parameters in empirical constitutive models. It reduces to the classical path independent J-integral for quasi-static loading and elastic solids. The atomistic-to-continuum multiscale coupling method is used to simulate the initiation of ASB. Atomic configurations indicate that DRX induced microstructural softening may be essential to the dynamic shear localization and hence the initiation of ASB.
Indicators to determine winning renewable energy technologies with an application to photovoltaics.
Grossmann, Wolf D; Grossmann, Iris; Steininger, Karl
2010-07-01
Several forms of renewable energy compete for supremacy or for an appropriate role in global energy supply. A form of renewable energy can only play an important role in global energy supply if it fulfills several basic requirements. Its capacity must allow supplying a considerable fraction of present and future energy demand, all materials for its production must be readily available, land demand must not be prohibitive, and prices must reach grid parity in the nearer future. Moreover, a renewable energy technology can only be acceptable if it is politically safe. We supply a collection of indicators which allow assessing competing forms of renewable energy and elucidate why surprise is still a major factor in this field, calling for adaptive management. Photovoltaics (PV) are used as an example of a renewable energy source that looks highly promising, possibly supplemented by solar thermal electricity production (ST). We also show why energy use will contribute to land use problems and discuss ways in which the right choice of renewables may be indispensible in solving these problems.
Saint-Pierre, Sylvain
2011-07-01
The climate change issue includes meeting the growing demand for electricity while reducing the impacts from energy sources. Applying carbon capture and storage technology to fossil fuel energy and increasing renewable energy pose greater challenges than increasing nuclear energy. International Energy Agency's (IEA) electricity demand of 30 000 TWh by 2030 can be met with 10 000 TWh each from renewable, nuclear and fossil fuel energy. However, the ill-imposed very strict control of tiny public exposure to ionising radiation from nuclear energy continues to pose a serious hindrance. Effort needs to be re-balanced to produce an even-handed control of public exposure with emphasis on the most significant sources (i.e. natural background radiation and medical use) and vice versa. The on-going revision of the International Atomic Energy Agency Basic Safety Standards (BSS) provides an opportunity to achieve this internationally so that national regulations can be subsequently remediated. There can be no urgency in a BSS revision that fails to encompass such perspective.
Dark energy cosmology with tachyon field in teleparallel gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motavalli, H., E-mail: Motavalli@Tabrizu.ac.ir; Akbarieh, A. Rezaei; Nasiry, M.
2016-07-15
We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.
Introduction: Man and his total environment
NASA Technical Reports Server (NTRS)
1977-01-01
Environmental changes and the utilization of finite resources are analyzed. Beyond the satisfaction of basic physical needs, the advancement of civilization toward an ever-improving quality of like is likewise dependent upon mans' interaction with his entire environment. This larger system is controlled externally by electromagnetic and particle energy from the sun and internally by the dynamic interchange of energy between the solid earth, oceans, the atmosphere, and the magnetosphere. This exchange of energy that determines the structure of the earth's environemental system is evaluated.
Effects of low-energy laser insolation upon the development of postradiation syndrome
NASA Astrophysics Data System (ADS)
Pavlova, Rimma N.; Gomberg, Vladimir G.; Boiko, Vladimir A.; Pupkova, Ludmila S.; Reznikov, Leonid L.; Dadali, V. A.
1996-04-01
Basic pathogenic research as well as the studies of clinical therapeutic aspects dealing with the long-term gamma radiation effects are of utmost significance nowadays. The main goal of the present study was to establish the capability of low-energy laser insolation to oppose the free radical oxidative chain reactions inherent to the effects of radiation. Adequate doses of low- energy laser insolation were shown to produce positive effects upon the metabolism similar to those of pharmacologic radioprotectors.
NASA Astrophysics Data System (ADS)
Huzvar, Jozef; Kapjor, Andrej
2011-06-01
This article deals with combined production of heat and electricity for small premises, such as households, where energy consumption is around few kilowatts. This proposal of micro co-generation unit uses as a heat source an automatic burner for combustion of wood pellets. Construction of an equipment for the heat transport can be designed using different basic ways of heat transfer. Electricity is produced by the two-stroke steam engine and the generator.
1987-08-01
HVAC duct hanger system over an extensive frequency range. The finite element, component mode synthesis, and statistical energy analysis methods are...800-5,000 Hz) analysis was conducted with Statistical Energy Analysis (SEA) coupled with a closed-form harmonic beam analysis program. These...resonances may be obtained by using a finer frequency increment. Statistical Energy Analysis The basic assumption used in SEA analysis is that within each band
Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China
NASA Astrophysics Data System (ADS)
Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin
2017-11-01
Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.
Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying
2016-01-01
Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822
Environmental Management Science Program Workshop. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1998-07-01
The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less
[Energy requirements of workers in the coke chemical industry].
Vankhanen, V D; Nelepa, A E
1978-01-01
Energy spent by workers engaged in the basic departments of a coke-chemical plant during working hours and performing operations after the Douglas-Holdeine method was measured and total energy expenditures during separate periods of the day and as a whole determined. Depending upon their jobs the energy spent by the workers during working hours varies within a range of 825 to 1860 Kcal. The energy expenditure during the time outside work, including sleep, amounts to from 1482 up to 1756 Kcal. As concerns the calorific requirements of their alimentation the workers of coke-chemical industry are subdivided into 5 groups of labour-intensity within an interval of from 2500 to 3600 kcal (for men) and from 2200 to 3100 kcal (for women).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.
Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center fundedmore » by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Rosenholm, Jarl B
2017-09-01
Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto
2008-07-01
A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 microm high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 microm-thick polyimide sheets that were separated by 175 microm-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.
NASA Astrophysics Data System (ADS)
Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B.; Pereira, A. L.; Nagamatsu, H. T.
2006-05-01
A new 0.6-m. diameter Hypersonic Shock Tunnel is been designed, fabricated and will be installed at the Laboratory of Aerothermodynamics and Hypersonics IEAv-CTA, Brazil. The brand new hypersonic facility, designated as T3, is primarily intended to be used as an important tool in the investigation of supersonic combustion management and of electromagnetic energy addition for flow control. The design of the runnel enables relatively long test times, 2-10 milliseconds, suitable for basic supersonic combustion and energy addition by laser experiments. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures of 200 atm. and 5,500 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization and the new facility is expected to be commissioned by the end of 2006.
de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan
2016-01-01
In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.
U.S. Federal Investments in Energy R&D: 1961-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
2008-10-10
This paper documents nearly a half century of U.S. federal government support for energy research and development (R&D). Data on energy R&D expenditures disaggregated by major program area are presented here for the first time for the period 1961-2008. This paper also documents U.S. federal government spending on key large scale energy R&D programs that were initiated in response to the oil crisis of the 1970s. Since 1961, the U.S. government has invested nearly $172 billion (in inflation adjusted 2005 US dollars) for the development of advanced energy technologies and for the necessary underlying basic science. Over this period, nearlymore » 24% of the total federal investment in energy R&D occurred during the short seven-year span of 1974-1980. From 1977-1981, energy R&D investments briefly rose above 10% of all federal R&D; however, since the mid-1990s energy R&D has accounted for only about 1% of all federal R&D investments.« less
Teaching energy using an integrated science approach
NASA Astrophysics Data System (ADS)
Poggi, Valeria; Miceli, Cristina; Testa, Italo
2017-01-01
Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.
Smart Buildings and Demand Response
NASA Astrophysics Data System (ADS)
Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish
2011-11-01
Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.
Energy access and sustainable development
NASA Astrophysics Data System (ADS)
Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry
2015-03-01
With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.
The Effect of Home Related Science Activities on Students' Performance in Basic Science
ERIC Educational Resources Information Center
Obomanu, B. J.; Akporehwe, J. N.
2012-01-01
Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…
The pressure cold wind system on the impact of industrial boiler economy and security
NASA Astrophysics Data System (ADS)
Li, Henan; Qian, Hongli; Jiang, Lei; Yu, Dekai; Li, Guannan; Yuan, Hong
2017-05-01
Industrial boiler is one of the most energy-consuming equipment in china, the annual consumption of energy accounts for about one-third of the national energy consumption.Industrial boiler in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment, the average industrial boiler operation efficiency is only 65%. If the efficiency increased by 15% ∼ 20%, which meet the international advanced level, each year 70 million tons of coal saving and reduce environmental pollution[1]. As energy conservation and emissions reduction becomes the basic national policy of our country, improving the efficiency of industrial boiler energy is facing opportunities and challenges, optimizing the operation mode of the existing units, it is necessary to increase the flexibility of the boiler control.
Building Efficiency Evaluation and Uncertainty Analysis with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-12
Building Energy Asset Score Tool, developed by the U.S. Department of Energy (DOE), is a program to encourage energy efficiency improvement by helping building owners and managers assess a building's energy-related systems independent of operations and maintenance. Asset Score Tool uses a simplified EnergyPlus model to provide an assessment of building systems, through minimum user inputs of basic building characteristics. Asset Score Preview is a newly developed option that allows users to assess their building's systems and the potential value of a more in-depth analysis via an even more simplified approach. This methodology provides a preliminary approach to estimating amore » building's energy efficiency and potential for improvement. This paper provides an overview of the methodology used for the development of Asset Score Preview and the scoring methodology.« less
Applications of the Trojan Horse method in nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it
2015-02-24
The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique tomore » determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.« less
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
Community-based assessment and planning of energy futures
NASA Astrophysics Data System (ADS)
Carnes, S. A.
1981-04-01
The decentralized solar energy technology assessment program is discussed. Four communities were involved in an assessment of the compatibility of diverse conservation and renewable energy supply technologies and community values and goals and in community planning for the implementation of compatible energy demand and supply alternatives. The community approach has several basic components: (1) recruiting and organizing for the assessment planning process; (2) collection and analysis of data related to community energy use and indigenous renewable energy resources; (3) creation and maintenance of a community education and information program; (4) development of policies favorable to the development of preferred community futures; and (5) development of implementation or action strategies. The role of public participation, group decision making techniques, the role of technical information in citizen and group decision making, and linkage between assessment planning and the relevant policy process are emphasized.
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Pulse propagation, dispersion, and energy in magnetic materials.
Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Bertolotti, Mario
2005-12-01
We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single interface, and find that in addition to the now-established negative refraction process an energy exchange occurs between the electric and magnetic fields as the pulse traverses the boundary.
Electric load management and energy conservation
NASA Technical Reports Server (NTRS)
Kheir, N. A.
1976-01-01
Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.
Dilation and breakage dissipation of granular soils subjected to monotonic loading
NASA Astrophysics Data System (ADS)
Sun, Yifei; Xiao, Yang; Ji, Hua
2016-12-01
Dilation and breakage energy dissipation of four different granular soils are investigated by using an energy balance equation. Due to particle breakage, the dilation curve does not necessarily pass through the origin of coordinates. Breakage energy dissipation is found to increase significantly at the initial loading stage and then gradually become stabilised. The incremental dissipation ratio between breakage energy and plastic work exhibits almost independence of the confining pressure. Accordingly, a plastic flow rule considering the effect of particle breakage is suggested. The critical state friction angle is found to be a combination of the basic friction between particles and the friction contributed by particle breakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, Christopher J.
Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.
The Local Electronic Structure of Dicarba-closo-dodecaboranes C2B10H12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fister, Timothy T.; Vila, Fernando D.; Seidler, Gerald T.
2008-01-16
We report nonresonant inelastic x-ray scattering (NRIXS) measurement of core-shell excitations from both B 1s and C 1s initial states in all three isomers of the dicarba-closo-dodecaboranes C2B10H12. First, this data yields an experimental determination of the angular-momentum-projected final local density of states (l-DOS). We find low-energy resonances with distinctive local s- or p-type character, providing a more complete experimental characterization of bond hybridization than is available from dipole-transition limited techniques, such as x-ray absorption spectroscopies. This analysis is supported by independent density functional theory and real-space full multiple scattering calculation of the l-DOS which yield a clear distinction betweenmore » tangential and radial contributions. Second, we investigate the isomer-sensitivity of the NRIXS signal, and compare and contrast these results with prior electron energy loss spectroscopy measurements. This work establishes NRIXS as a valuable tool for borane chemistry, not only for the unique spectroscopic capabilities of the technique, but also through its compatibility with future studies in solution or in high pressure environments. In addition, this work also establishes the real-space full multiple scattering approach as a useful alternative to traditional approaches for the excited states calculations for aromatic polyhedral boranes and related systems. This research was supported by DOE, Basic Energy Science, Office of Science, Contract Nos. DE-FGE03-97ER45628 and W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant DE-FG03-97ER5623, NIH NCRR BTP Grant RR-01209, the Leonard X. Bosack and Bette M. Kruger Foundation, the Hydrogen Fuel Cell Initiative of DOE Office of Basic Energy Sciences, and the Summer Research Institute Program at the Pacific Northwest National Lab. Battelle operates the Pacific Northwest National Lab for DOE. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science, Office of Science, Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract W-31-109-Eng-38. We thank Mark Lee and Fred Hawthorne for providing some of the samples used in this study. We thank John Rehr, Aleksi Soininen, Adam Hitchcock, and Ed Stern for stimulating discussions.« less
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less
Relation Decomposing between Urbanization and Consumption of Water-Energy Sources
NASA Astrophysics Data System (ADS)
Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.
2017-12-01
Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.
A comparative analysis of environmental impacts of non-fossil energy production methods
NASA Astrophysics Data System (ADS)
Kiss, Adam
2014-12-01
The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. However, these all, like the fossil energy sources, have great impacts on the environment. Nevertheless, the comparison of the environmental effects of these alternative energy sources is not easy. The effects are of considerable different natures and their spatial and the time distributions vary on large scales. The present work overviews the principles and the methodological prerequisites of performing a comparative analysis of the environmental effects for the non-fossil energy production methods. After establishing the basic principles for comparison, we shall go through all the non-fossil energy sources and analyze the most important environmental impacts of each energy production method. In conclusion, the comparison of the environmental effects will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.; Diaz de la Rubia, T.; Gibala, R.
2006-10-01
The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less
Key Challenges and New Trends in Battery Research (2011 EFRC Forum)
Tarascon, Jean Marie
2018-02-13
Jean-Marie Tarascon, Professor at the University de Picardie Jules Verne, France, was the fourth speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Tarascon recounted European basic research activates in electrical energy storage. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
Energy crisis: several ways to solve it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzmorris, J.E. Jr.
There is no single way out of the energy crisis in a quick way, the author says. In discussing his views, Lt. Gov. Fitzmorris says the first step is to admit there is an energy crisis. Short- as well as long-term goals must be established, and crash programs (when necessary) should be used to develop sources of energy. Also, in the short run, more-effective energy imports and energy conservation should help. Even assuming substantial conservation measures, the nation will still require over one-third more energy in 1990 than today. Mr. Fitzmorris then reviews measures being practiced in his home statemore » of Louisiana that can bring some valuable time, but they cannot solve the basic problem; increased production of all types of energy is necessary for that. Energy companies and researchers in Louisiana are studying technology to gain energy from lignite, geopressured systems, hydrogen gas, ocean thermal difference, solar energy, biomass conversion, use of peat, and hydroelectric power. He says the two most steep and difficult paths out of the current energy quandry are to develop: (1) a national balance between the demands of energy development and environmental and (2) meaningful governmental deregulation at all levels, in deed as well as word. (MCW)« less
Books on Atomic Energy for Adults and Children, Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This booklet in the "Understanding the Atom" series includes annotated bibliographies for children (grade level indicated) and adults. Over 100 basic books on atomic energy and closely related subjects are alphabetized by title and an author index. A list of publisher addresses are included. A brief introduction to library usage is given. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... Secretary of Energy to prescribe test procedures that are reasonably designed to produce results which... conditions is met: (1) The petitioner's basic model contains one or more design characteristics that prevent... to provide materially inaccurate comparative data. (10 CFR 430.27(a)(1)) Petitioners must include in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to produce... waiver was submitted contains one or more design characteristics that prevents testing of the basic model... materially inaccurate comparative data. 10 CFR 430.27(l). Petitioners must include in their petition any...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... authorizes the Secretary of Energy to prescribe test procedures that are reasonably designed to produce... that the basic model for which the petition for waiver was submitted contains one or more design... consumption characteristics as to provide materially inaccurate comparative data. 10 CFR 430.27(l...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... the Secretary of Energy to prescribe test procedures that are reasonably designed to produce results... or more design characteristics that prevents testing of the basic model according to the prescribed... pretest interval in paragraph (a) as written, except for non-ducted units use the exhaust fan or the...
Use of aerial thermography in Canadian energy conservation programs
NASA Technical Reports Server (NTRS)
Cihlar, J.; Brown, R. J.; Lawrence, G.; Barry, J. N.; James, R. B.
1977-01-01
Recent developments in the use of aerial thermography in energy conservation programs within Canada were summarized. Following a brief review of studies conducted during the last three years, methodologies of data acquisition, processing, analysis and interpretation was discussed. Examples of results from an industrial oriented project were presented and recommendations for future basic work were outlined.
Living with Radiation. The Problems of the Nuclear Age for the Layman.
ERIC Educational Resources Information Center
Brannigan, Francis L.
The text takes a practical approach to the understanding of industrial radiation hazards. It is intended for the layman who requires a basic understanding of the relationship of radiation problems to his own field. Discussion includes such topics as: uses which benefit mankind; radiation energy versus fission energy; effects of excessive radiation…
Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
On optimizing the treatment of exchange perturbations
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Chipman, D. M.
1972-01-01
A method using the zeroth plus first order wave functions, obtained by optimizing the basic equation used in exchange perturbation treatments, is utilized in an attempt to determine the exact energy and wave function in the exchange process. Attempts to determine the first order perturbation solution by optimizing the sum of the first and second order energies were unsuccessful.
Environment, power, and society. [stressing energy language and energy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odum, H.T.
Studies of the energetics of ecological systems suggest general means for applying basic laws of energy and matter to the complex systems of nature and man. In this book, energy language is used to consider the pressing problem of survival in our time--the partnership of man in nature. An effort is made to show that energy analysis can help answer many of the questions of economics, law, and religion. Models for the analysis of a system are made by recognizing major divisions whose causal relationships are indicated by the pathways of interchange of energy and work. Then simulation allows themore » model's performance to be tested against the performance of the real system. Ideal energy flows are illustrated with ecological systems and then applied to all kinds of situations from very small biochemical processes to the large overall systems of man and the biosphere. Energy diagraming is included to consider the great problems of power, pollution, population, food, and war. This account also attempts to introduce ecology through the energy language.« less
The nature of the sunspot phenomenon. I - Solutions of the heat transport equation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.
NASA Technical Reports Server (NTRS)
Hoover, D. Q.
1976-01-01
Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.
Oxytocin and potential benefits for obesity treatment.
Olszewski, Pawel K; Klockars, Anica; Levine, Allen S
2017-10-01
Laboratory animal experiments have consistently shown that oxytocin causes early termination of food intake, thereby promoting a decrease in body weight in a long term. Recent studies have also assessed some of oxytocin's effects on appetite and energy balance in humans. The present study examines the findings of the key basic research and of the few clinical studies published thus far in the context of potential benefits and challenges stemming from the use of oxytocin in obese patients. Basic research indicates the involvement of oxytocin in satiety, processing, in reducing a drive to eat for pleasure and because of psychosocial factors. Although the results of clinical studies are very scarce, they suggest that oxytocin administered intranasally in humans decreases energy-induced and reward-induced eating, supports cognitive control of food choices, and improves glucose homeostasis, and its effectiveness may be BMI dependent. Despite the wealth of basic research showing broad anorexigenic effects of oxytocin, clinical studies on oxytocin's therapeutic potential in obesity, are still in their infancy. Future implementation of oxytocin-based pharmacological strategies in controlling energy balance will likely depend on our ability to integrate diverse behavioral and metabolic effects of oxytocin in obesity treatment regimens.
Basic and applied research program. Semiannual report, July-December 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, B.L.
1979-12-01
The status of research projects in the Basic and Applied Research Program at SERI is presented for the semiannual period ending December 31, 1978. The five tasks in this program are grouped into Materials Research and Development, Materials Processing and Development, Photoconversion Research, Exploratory Research, and Energy Resource and Assessment and have been carried out by personnel in the Materials, Bio/Chemical Conversion, and Energy Resource and Assessment Branches. Subtask elements in the task areas include coatings and films, polymers, metallurgy and corrosion, optical materials, surfaces and interfaces in materials research and development; photochemistry, photoelectrochemistry, and photobiology in photoconversion; thin glassmore » mirror development, silver degradation of mirrors, hail resistance of thin glass, thin glass manufacturing, cellular glass development, and sorption by desiccants in materials processing and development; and thermoelectric energy conversion, desiccant cooling, photothermal degradation, and amorphous materials in exploratory research. For each task or subtask element, the overview, scope, goals, approach, apparatus and equipment, and supporting subcontracts are presented, as applicable, in addition to the status of the projects in each task or subtask. Listing of publications and reports authored by personnel associated with the Basic and Applied Research Program and prepared or published during 1978 are also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia
In this work, resonant ejection coupled with surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer is used to examine fragmentation kinetics of two singly protonated hexapeptides, RYGGFL and KYGGFL, containing the basic arginine residue and less basic lysine residue at the N-terminus. The kinetics of individual reaction channels at different collision energies are probed by applying a short ejection pulse (1 ms) in resonance with the cyclotron frequency of a selected fragment ion and varying the delay time between ion-surface collision and resonant ejection while keeping total reaction delay time constant. Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of themore » experimental data provides accurate threshold energies and activation entropies of individual reaction channels. Substitution of arginine with less basic lysine has a pronounced effect on the observed fragmentation kinetics of several pathways, including the b2 ion formation, but has little or no effect on formation of the b5+H2O fragment ion. The combination of resonant ejection SID, time- and collision energy-resolved SID, and RRKM modeling of both types of experimental data provides a detailed mechanistic understanding of the primary dissociation pathways of complex gaseous ions.« less
A study on spectral energy for the end of the twentieth century the basis of the NCEP reanalysis-II
NASA Astrophysics Data System (ADS)
Aranha, A. F.; Veiga, J. A.; Yoshida, M. C.
2013-05-01
The energy cycle proposed by Lorenz (1955) is composed of the behavior of the average energy from the atmosphere and characteristics of atmospheric energy deviations from this average, respectively called basic state and perturbed state. However, it is possible to discretize the energy contained in the atmosphere disturbed state, decomposing the fields of the various disturbances or harmonics wave type, so as to measure and analyze the energy of these disorders according to their number or wavelength, this methodology described second Saltzman (1957). Therefore, in view of the spectral analysis as a methodological basis, this work aims to study the energy contained by the atmosphere in disturbed state. Considering the terms of power generation potential available for nth waves due to diabatic heating, represented by (G(n)), potential energy of nth wave (P(n)) and kinetic energy of nth wave (K(n)) and the conversion of energy between the energy nth kinetic and potential energy of waves nth waves given by (C(n)). The variables used in the calculation of the terms above are, temperature (T) orthogonal components of the wind (u, v, w) and geopotential height (G) from a data set from the National Center for Environmental Prediction (NCEP) considering daily shared values on a regular grid with a spatial resolution of 2.5° × 2.5°, distributed in 12 pressure levels (1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 hPa ) for the 1970 to 1999 period. The results show that for kinetic energy of disturbance to nth wave, the amount of energy is somewhat dammed during for the first 10 wave numbers in this range are the planetary waves and waves. Observing this way, we can conclude that these waves are responsible for much of the kinetic energy in disturbed state. A characteristic and a difference in the distribution of energy between kinetic energy and potential energy disturbed total available to disturbance, is the derivative of the energy wavenumber presented by P(n) as a derivative smoother, showing that the cascade potential energy no great leaps in energy between wavenumbers 10 onwards. The term conversion in potential energy of the disturbed state P(n) into kinetic energy of disorders K(n) reorensented by C(n) reveals important features in the energy spectrum. According to the results, the seasonal climatology of C(n), we note that the potential energy of the disturbed state feeds both the planetary waves and intermediate waves as synoptic scale. However, the production of kinetic energy of the waves from the energy potential of the perturbed state is greater for wavelengths larger or smaller number of waves. Note also that this term varies widely throughout the seasons. Importantly, negative values of C(n) are likely to occur, which would represent the conversion of kinetic energy into potential energy of the waves of the basic state. The values of the term climatological power generation potential available to nth waves due to diabatic heating, represented by G(n). The results show that the wavelength ranges 1 to 15 are primarily given for converting potential energy into kinetic energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-01-30
Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.
Current Events in Basic Business Education
ERIC Educational Resources Information Center
Van Hook, Barry L.
1974-01-01
The author suggests the use of current events to stimulate student interest in basic business courses. Suggested topics described are monetary devaluation, interest rate adjustments, Illinois no-fault automobile insurance, labor-management disputes, Dow-Jones average, Picasso's death, energy crisis, sale of surplus wheat, local consumer assistance…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenstern, R.; Vroman, W.
1981-05-01
The objective of this study was to explore the relationship between aggregate employment and output, with special reference to the 1979-1980 experience. An indirect relationship was posited between energy price shocks and the occupational mix. Specifically, it was hypothesized that the energy price shocks of 1978-1979 (and possibly 1973-1974) may have created new investment opportunities for simple, short term energy conservation type investments which may, in turn, have increased the demand for blue collar labor. A framework for viewing the problem is described and the basic hypothesis tested by estimating a time series model of occupational/industrial employment patterns. Included inmore » the model is a set of variables designed to measure the energy price shocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE's Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE's Office of Energy Efficiency and Renewable Energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderman, D.
Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less
The KLEM High-Energy Cosmic Ray Collector for the Nucleon Satellite Mission
NASA Technical Reports Server (NTRS)
Bashindzhagyan, G.; Adams, J. H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.;
2001-01-01
The basic objective of the KLEM (Kinematic Lightweight Energy Meter) Project is to directly measure the elemental energy spectra of very high-energy (10(exp 11) - 10(exp 16) eV) cosmic rays by determining the angular distribution of secondaries produced in a target layer. A small-scale version of a KLEM device has been designed for inclusion in the NUCLEON Russian satellite mission. Despite its 3 relatively small size of 36 x 36 x 30 cubic cm, this instrument has an aperture of about 0.12 square m sr and can thus make an important contribution to data concerning the elemental energy spectra of cosmic rays up to 10(exp 15) eV. Details of the experiment and the astrophysical significance of the mission will be presented.
Compliant leg behaviour explains basic dynamics of walking and running
Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard
2006-01-01
The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312
Decentralized energy systems for clean electricity access
NASA Astrophysics Data System (ADS)
Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.
2015-04-01
Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.
Summaries of physical research in the geosciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-10-01
The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research inmore » geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less
Technique for measurement of energy loss of proton in target medium
NASA Astrophysics Data System (ADS)
Khadke, U. V.
2018-05-01
Energy loss (EL) of charged particles in target medium needs special attention, when measurements are required to be done repeatedly over periods of couple of days. It is imperative to ensure that the measurements are not affected by the long term drifts of the accelerator beam energy and the associated electronic modules. For one such situation in measurement of EL of proton beam in thick target, we optimised and standardized the technique of measuring most probable energy loss of 24.774 MeV proton in aluminium target of thickness 330 mg/cm2. The paper described the method that we developed to ensure that our EL measurements were free from effects of drifts due to any associated electronic modules. The details of the energy spectrometer, basic principle and technique for energy loss measurements in target medium are described in this paper.
Effects of long-term climate change on global building energy expenditures
Clarke, Leon; Eom, Jiyong; Marten, Elke Hodson; ...
2018-01-06
Our paper explores potential future implications of climate change on building energy expenditures around the globe. Increasing expenditures result from increased electricity use for cooling, and are offset to varying degrees, depending on the region, by decreased energy consumption for heating. WE conducted an analysis using a model of the global buildings sector within the GCAM integrated assessment model. The integrated assessment framework is valuable because it represents socioeconomic and energy system changes that will be important for understanding building energy expenditures in the future. Results indicate that changes in net expenditures are not uniform across the globe. Net expendituresmore » decrease in some regions, such as Canada and Russia, where heating demands currently dominate, and increase the most in areas with less demand for space heating and greater demand for space cooling. We explain these results in terms of the basic drivers that link building energy expenditures to regional climate.« less
How far could energy transport within a single crystal
NASA Astrophysics Data System (ADS)
Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick
Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.
Effects of long-term climate change on global building energy expenditures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Leon; Eom, Jiyong; Marten, Elke Hodson
Our paper explores potential future implications of climate change on building energy expenditures around the globe. Increasing expenditures result from increased electricity use for cooling, and are offset to varying degrees, depending on the region, by decreased energy consumption for heating. WE conducted an analysis using a model of the global buildings sector within the GCAM integrated assessment model. The integrated assessment framework is valuable because it represents socioeconomic and energy system changes that will be important for understanding building energy expenditures in the future. Results indicate that changes in net expenditures are not uniform across the globe. Net expendituresmore » decrease in some regions, such as Canada and Russia, where heating demands currently dominate, and increase the most in areas with less demand for space heating and greater demand for space cooling. We explain these results in terms of the basic drivers that link building energy expenditures to regional climate.« less
Dual-Energy CT: New Horizon in Medical Imaging
Goo, Jin Mo
2017-01-01
Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151
Basic Wind Tech Course - Lesson Plans and Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swapp, Andy
2011-07-01
The funds from this project were used to purchase tools and instrumentation to help replicate actual on-the-job wind energy scenarios which provided the students with the practical or applied components of wind energy jobs. This project enhanced the educational experiences provided for the students in terms of engineering and science components of wind energy by using electronics, control systems, and electro-mechanical instrumentation to help students learn standardized wind-specific craftsman skills. In addition the tools and instrumentation helped the students learn the safety necessary to work in the wind industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Jeff
"Carbon in Underland" was submitted by the Center for Nanoscale Controls on Geologic CO2 (NCGC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its "entertaining animation and engaging explanations of carbon sequestration". NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from sevenmore » institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO2 is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO2. Research topics are: bio-inspired, CO2 (store), greenhouse gas, and interfacial characterization.« less
Allaway, Heather C M; Southmayd, Emily A; De Souza, Mary Jane
2016-02-01
An energy deficiency is the result of inadequate energy intake relative to high energy expenditure. Often observed with the development of an energy deficiency is a high drive for thinness, dietary restraint, and weight and shape concerns in association with eating behaviors. At a basic physiologic level, a chronic energy deficiency promotes compensatory mechanisms to conserve fuel for vital physiologic function. Alterations have been documented in resting energy expenditure (REE) and metabolic hormones. Observed metabolic alterations include nutritionally acquired growth hormone resistance and reduced insulin-like growth factor-1 (IGF-1) concentrations; hypercortisolemia; increased ghrelin, peptide YY, and adiponectin; and decreased leptin, triiodothyronine, and kisspeptin. The cumulative effect of the energetic and metabolic alterations is a suppression of the hypothalamic-pituitary-ovarian axis. Gonadotropin releasing hormone secretion is decreased with consequent suppression of luteinizing hormone and follicle stimulating hormone release. Alterations in hypothalamic-pituitary secretion alters the production of estrogen and progesterone resulting in subclinical or clinical menstrual dysfunction.
Power converter for raindrop energy harvesting application: Half-wave rectifier
NASA Astrophysics Data System (ADS)
Izrin, Izhab Muhammad; Dahari, Zuraini
2017-10-01
Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.
Smart Building: Decision Making Architecture for Thermal Energy Management
Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo
2015-01-01
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978
Science and the Energy Security Challenge: The Example of Solid-State Lighting
Philips, Julia [Sandia
2017-12-09
Securing a viable, carbon neutral energy future for humankind will require an effort of gargantuan proportions. As outlined clearly in a series of workshops sponsored by the DOE Office of Basic Energy Sciences (http://www.sc.doe.gov/bes/reports/list.html), fundamental advances in scientific understanding are needed to broadly implement many of the technologies that are held out as promising options to meet future energy needs, ranging from solar energy, to nuclear energy, to approaches to clean combustion. Using solid state lighting based on inorganic materials as an example, I will discuss some recent results and new directions, emphasizing the multidisciplinary, team nature of the endeavor. I will also offer some thoughts about how to encourage translation of the science into attractive, widely available products â a significant challenge that cannot be ignored. This case study offers insight into approaches that are likely to be beneficial for addressing other aspects of the energy security challenge.
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Mayer, Joachim
In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).
Energy-confinement scaling for high-beta plasmas in the W7-AS stellarator.
Preuss, R; Dinklage, A; Weller, A
2007-12-14
High-beta energy-confinement data are subjected to comparisons of scaling invariant, first-principles physical models. The models differ in the inclusion of basic equations indicating the nature of transport. The result for high-beta data of the W7-AS stellarator is that global transport is described best with a collisional high-beta model, which is different from previous outcomes for low-beta data. Model predictive calculations indicate the validation of energy-confinement prediction with respect to plasma beta and collisionality nu*. The finding of different transport behaviors in distinct beta regimes is important for the development of fusion energy based on magnetic confinement and for the assessment of different confinement concepts.
Understanding the human dimensions of a sustainable energy transition.
Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen
2015-01-01
Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.
Understanding the human dimensions of a sustainable energy transition
Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen
2015-01-01
Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pewitt, E.G.
The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.
A Bibliography of Basic Books on Atomic Energy, A World of the Atom Series Booklet.
ERIC Educational Resources Information Center
Atomic Energy Commission, Washington, DC.
This booklet in the "World of the Atom" Series replaces the earlier Books on Atomic Energy for Adults and Children. It includes annotated bibliographies for children (grade level indicated) and adults. Over 60 books are classed as elementary and over 70 as advanced. These are alphabetized by title and also indexed by author. A list of…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... of 15 MBtu/h. At the time MEUS initially filed its petitions for waiver for the WR2 and WY Series and... the Secretary of Energy (the Secretary) to prescribe test procedures that are reasonably designed to... one of the following conditions is met: (1) The petitioner's basic model contains one or more design...
Television as a Means of Training Rural Young-Adult Apprentices in Solar Energy.
ERIC Educational Resources Information Center
Edington, Everett D.; Keaton, Laurie
Using television as a means of delivery for an educational program in rural areas and looking at the media preferences of young adults, this study was conducted in a non-metropolitan area of northwestern New Mexico to examine the effectiveness of television and videotape to provide basic principles of solar energy to 15 young apprentices in a…
Vacuum Energy and Inflation: 2. A Vacuum Energy Universe
ERIC Educational Resources Information Center
Huggins, Elisha
2013-01-01
In most of our undergraduate physics courses, we study what can happen in space, but space itself plays a passive role. In basic cosmology, the opposite is true. It is the behavior of space that plays the major role. In this, paper #2, we first discuss the nature of a simple expanding space, and then look at the consequence of applying…
2001-06-05
KENNEDY SPACE CENTER, Fla. -- The High Energy Solar Spectroscopic Imager (HESSI) spacecraft, which will be launched by a Pegasus XL rocket, arrives at the Skid Strip at Cape Canaveral Air Force Station. Part of NASA's Small Explorer Program, HESSI's primary mission is to explore the basic physics of particle acceleration and explosive energy release in solar flares. Launch is scheduled for no earlier than June 14
2002-02-01
KENNEDY SPACE CENTER, FLA. -- This closeup shows the Pegasus XL rocket with the High Energy Solar Spectroscopic Imager (HESSI) attached at its top, on the right. The Pegasus will launch HESSI to explore the basic physics of particle acceleration and energy release in solar flares. The launch is scheduled for Feb. 5, 2002, from beneath the Orbital Sciences Corp. L-1011 aircraft seen here
Environmental aspects of fossil fuels combustion in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekula, R.
Combustion of fossil fuels is the main source of energy in Poland. Coal will probably remain the basic fuel for energy generation for many years. The principal problems connected with fuel utilization in Poland are presented in this study. The major pollutants and ways to reduce air pollution are also described. Data are based on the report of the Polish Academy of Sciences.