Science.gov

Sample records for energy calibration system

  1. Energy Calibration of the JLab Bremsstrahlung Tagging System

    SciTech Connect

    Stepan Stepanyan; S. Boyarinov; H. Egiyan; D. Dale; L. Guo; M. Gabrielyan; L. Gan; Ashot Gasparian; Bernhard Mecking; A. Teymurazyan; I. Nakagawa; Oleksandr Glamazdin; Michael Wood

    2007-03-01

    In this report, we present the energy calibration of the Hall B bremsstrahlung tagging system at the Thomas Jefferson National Accelerator Facility. The calibration was performed using a magnetic pair spectrometer. The tagged photon energy spectrum was measured in coincidence with e{sup +}e{sup -} pairs as a function of the pair spectrometer magnetic field. Taking advantage of the internal linearity of the pair spectrometer, the energy of the tagging system was calibrated at the level of {+-} 0.1% E{sub {gamma}}. The absolute energy scale was determined using the e{sup +}e{sup -} rate measurements close to the end-point of the photon spectrum. The energy variations across the full tagging range were found to be <3 MeV.

  2. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    SciTech Connect

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that a complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.

  3. Calibration of the Accuscan II IN Vivo System for High Energy Lung Counting

    SciTech Connect

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for high energy lung counting. The source used for the calibration was a NIST traceable lung set manufactured at the University of Cincinnati UCLL43AMEU & UCSL43AMEU containing Am-241 and Eu-152 with energies from 26 keV to 1408 keV. The lung set was used in conjunction with a Realistic Torso phantom. The phantom was placed on the RMC II counting table (with pins removed) between the v-ridges on the backwall of the Accuscan II counter. The top of the detector housing was positioned perpendicular to the junction of the phantom clavicle with the sternum. This position places the approximate center line of the detector housing with the center of the lungs. The energy and efficiency calibrations were performed using a Realistic Torso phantom (Appendix I) and the University of Cincinnati lung set. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for high energy lung counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  4. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  5. The Clouds and the Earth's Radiant Energy System (CERES) Sensors and Preflight Calibration Plans

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Smith, G. Louis; Cooper, John E.; Kopia, Leonard P.; Lawrence, R. Wes; Thomas, Susan; Pandey, Dhirendra K.; Crommelynck, Dominique A. H.

    1996-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.3-5 microns) and earth-emitted longwave (5- > 100 microns) radiances at the top of the atmosphere as part of the Mission to Planet Earth program. The scanning thermistor bolometer sensors respond to radiances in the broadband shortwave (0.3-5 microns) and total-wave (0.3- > 100 microns) spectral regions, as well as to radiances in the narrowband water vapor window (8-12 microns) region. 'ne sensors are designed to operate for a minimum of 5 years aboard the NASA Tropical Rainfall Measuring Mission and Earth Observing System AM-1 spacecraft platforms that are scheduled for launches in 1997 and 1998, respectively. The flight sensors and the in-flight calibration systems will be calibrated in a vacuum ground facility using reference radiance sources, tied to the international temperature scale of 1990. The calibrations will be used to derive sensor gains, offsets, spectral responses, and point spread functions within and outside of the field of view. The shortwave, total-wave, and window ground calibration accuracy requirements (1 sigma) are +/-0.8, +/-0.6, and +/-0.3 W /sq m/sr, respectively, while the corresponding measurement precisions are +/-O.5% and +/-1.0% for the broadband longwave and shortwave radiances, respectively. The CERES sensors, in-flight calibration systems, and ground calibration instrumentation are described along with outlines of the preflight and in-flight calibration approaches.

  6. Wireless Inclinometer Calibration System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A special system was fabricated to properly calibrate the wireless inclinometer, a new device that will measure the Orbiter s hang angle. The wireless inclinometer has a unique design and method of attachment to the Orbiter that will improve the accuracy of the measurements, as well as the safety and ease of the operation. The system properly calibrates the four attached inclinometers, in both the horizontal and vertical axes, without needing to remove any of the component parts. The Wireless Inclinometer Calibration System combines (1) a calibration fixture that emulates the point of attachment to the Orbiter in both the horizontal and vertical axes and the measurement surfaces, (2) an application-specific software program that accepts calibration data such as dates, zero functions, or offsets and tables, and (3) a wireless interface module that enables the wireless inclinometer to communicate with a calibration PC.

  7. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  8. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  9. Calibration Systems Final Report

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  10. Improvements in Clouds and the Earth's Radiant Energy System (CERES) Products Based on Instrument Calibrations

    NASA Astrophysics Data System (ADS)

    Smith, N. M.; Priestley, K.; Loeb, N. G.; Thomas, S.; Shankar, M.; Walikainen, D.

    2014-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) mission is instrumental in providing highly accurate radiance measurements that are critical for monitoring the Earth's radiation budget. Two identical CERES instruments are deployed aboard NASA's Earth Observing System (EOS) satellites Terra and Aqua. Each CERES instrument consists of scanning thermistor bolometer sensors that measure broadband radiances in the shortwave (0.3 to 5 micron), total (0.3 to < 100 micron) and water vapor window (8 to 12 micron) regions. CERES instruments have the capability of scanning in either the cross-track or rotating azimuth plane (RAP) scan mode. Cross-track scanning, the primary mode of CERES operation, allows for the geographical mapping of the radiation fields while RAP scanning enables the acquisition of data over a more extensive combination of viewing configurations, needed for developing vastly improved angular distribution models used in radiance to flux conversion. To evaluate, achieve and maintain radiometric stability, a rigorous and comprehensive radiometric calibration and validation protocol is implemented. Calibrations and validation studies have indicated spectral changes in the reflected solar spectral regions of the shortwave and total sensors. Spectral darkening is detected in the shortwave channel optics, which is more prominent while the instrument operates in RAP mode. In the absence of a climatological explanation for this darkening, this likely occurs during part of the RAP scan cycle when the scan plane is aligned with the direction of motion, making the optics more susceptible to increased UV exposure and molecular contamination. Additionally, systematic daytime-nighttime longwave top-of-atmosphere (TOA) flux inconsistency was also detected during validation, which highlights the changes in the shortwave region of the total sensor. This paper briefly describes the strategy to correct for the sensor response changes and presents the improvements in

  11. Automatic volume calibration system

    SciTech Connect

    Gates, A.J.; Aaron, C.C.

    1985-05-06

    The Automatic Volume Calibration System presently consists of three independent volume-measurement subsystems and can possibly be expanded to five subsystems. When completed, the system will manually or automatically perform the sequence of valve-control and data-acquisition operations required to measure given volumes. An LSI-11 minicomputer controls the vacuum and pressure sources and controls solenoid control valves to open and close various volumes. The input data are obtained from numerous displacement, temperature, and pressure sensors read by the LSI-11. The LSI-11 calculates the unknown volume from the data acquired during the sequence of valve operations. The results, based on the Ideal Gas Law, also provide information for feedback and control. This paper describes the volume calibration system, its subsystems, and the integration of the various instrumentation used in the system's design and development. 11 refs., 13 figs., 4 tabs.

  12. Mercury Calibration System

    SciTech Connect

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  13. The Calibration Reference Data System

    NASA Astrophysics Data System (ADS)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  14. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  15. System for calibrating the energy-dependent response of an elliptical Bragg-crystal spectrometer.

    PubMed

    Marrs, R E; Brown, G V; Emig, J A; Heeter, R F

    2014-11-01

    A multipurpose spectrometer (MSPEC) with elliptical crystals is in routine use to obtain x-ray spectra from laser produced plasmas in the energy range 1.0-9.0 keV. Knowledge of the energy-dependent response of the spectrometer is required for an accurate comparison of the intensities of x-ray lines of different energy. The energy-dependent response of the MSPEC has now been derived from the spectrometer geometry and calibration information on the response of its components, including two different types of detectors. Measurements of the spectrometer response with a laboratory x-ray source are used to test the calculated response and provide information on crystal reflectivity and uniformity.

  16. First calibration of the Canadian high-energy neutron spectrometry system with HAWK TEPC and Liulin at PTB

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Boudreau, M.; Lewis, B. J.; Smith, M. B.; Zhang, M.; Ing, H.

    The Canadian high-energy neutron spectrometry system CHENSS was constructed for the Canadian Space Agency CSA to measure accurately the neutron spectrum in low-Earth orbit A large specially formulated viscoelastic scintillator uses proton recoil and good pulse-shape discrimination to measure from a few MeV to about 100 MeV With delays in the NASA flight schedule for the shuttle opportunities exist to calibrate the CHENSS at up to three reference calibration fields Measurements were taken at Physikalisch-Technische Bundesanstalt PTB in late 2005 and similar calibrations are planned at Institut de Physique Nucl e aire of the Universit e catholique de Louvain UCL and the iThemba Laboratory for Accelerator-Based Sciences In separate exposures two spectrometers a HAWK tissue equivalent proportional counter TEPC and a Liulin and an Eberline FH41B-10 gamma-ray and neutron-sensitive meter used for airborne cosmic radiation measurements were calibrated for comparison The CHENSS HAWK and Liulin were subjected to 2 5 5 0 14 8 and 19 0 MeV neutrons with fluence measurements taken by PTB staff In addition since the HAWK and Liulin are capable of measuring the total dose equivalent they were also calibrated with PTB s Cs-137 and Cf-252 sources The results of these calibrations and comparison with all of the equipment will be reported in the paper The knowledge gained from this first calibration effort will be beneficial for the CHENSS when flown in a GAS can on a future shuttle flight as well as for the HAWK Liulin and FH41B-10 used

  17. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  18. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  19. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  20. Inspection system calibration methods

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2004-12-28

    An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.

  1. Using Lunar Observations to Validate In-Flight Calibrations of Clouds and Earth Radiant Energy System Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.

  2. Diode calibration of a Langmuir probe system for measurement of electron energy distribution functions in a plasma

    SciTech Connect

    DeJoseph, C.A. Jr.; Demidov, V.I.

    2005-08-15

    It is shown that a simple circuit consisting of a semiconductor diode, a resistor, and a dc voltage source can model a narrow-energy group of electrons in a plasma for the purpose of calibration of a Langmuir probe. The calibration is appropriate when the probe is used for measurement of the electron energy distribution function (EEDF). This simple circuit allows real-time determination of sensitivity, energy resolution, and signal-to-noise ratio for probe measurements of the EEDF.

  3. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  4. Energy calibration of the fly's eye detector

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.

    1985-01-01

    The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.

  5. Tool calibration system for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  6. Calibration of a proton beam energy monitor

    SciTech Connect

    Moyers, M. F.; Coutrakon, G. B.; Ghebremedhin, A.; Shahnazi, K.; Koss, P.; Sanders, E.

    2007-06-15

    Delivery of therapeutic proton beams requires an absolute energy accuracy of {+-}0.64 to 0.27 MeV for patch fields and a relative energy accuracy of {+-}0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  7. Muon Energy Calibration of the MINOS Detectors

    SciTech Connect

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  8. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  9. DIANA NaI-Detector Energy Calibration

    NASA Astrophysics Data System (ADS)

    O'Connor, Kyle; Elofson, David; Lewis, Codie; O'Brien, Erin; Buggelli, Kelsey; Miller, Nevin; O'Rielly, Grant; Maxtagg Collaboration

    2014-09-01

    The DIANA detector is being used for measurements of near threshold pion photoproduction and high-energy nuclear Compton scattering being performed at the MAX-lab tagged photon facility in Lund, Sweden. Accurate energy calibrations are essential for determining the final results from both of these experiments. An energy calibration has been performed for DIANA, a single-crystal, large-volume, NaI detector. This calibration was made by placing the detector directly in the tagged photon beam with energies from 145 to 165 MeV and fitting the detector response to the known photon energies. The DIANA crystal is instrumented with 19 PMTs, pedestal corrections were applied and the PMTs were gain matched in order to combine the readout value from each PMT and determine the final detector response. This response was fitted to the tagged photon energies to provide the final energy calibration. The calibrations were performed with two triggers; one from the detector itself and one provided by the photon tagger. The quality of the final calibration fit and the energy resolution of the detector, σ ~ 2 . 4 MeV, will be shown.

  10. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%). PMID:27131714

  11. Electro-optical equivalent calibration technology for high-energy laser energy meters

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  12. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  13. Low energy stable plasma calibration facility.

    PubMed

    Frederick-Frost, K M; Lynch, K A

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1x10(3)/cm(3) to 6x10(5)/cm(3), electron temperatures from 0.1 to 1.7 eV, and plasma potentials from 0.5 to 8 V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600 W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4 cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  14. Automatic calibration system for pressure transducers

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Fifty-channel automatic pressure transducer calibration system increases quantity and accuracy for test evaluation calibration. The pressure transducers are installed in an environmental tests chamber and manifolded to connect them to a pressure balance which is uniform.

  15. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  16. Jet energy calibration at the LHC

    SciTech Connect

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiple p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.

  17. Absolute Energy Calibration with the Neutron-Activated Liquid-Source System at BaBar's CsI(Tl) Calorimeter

    SciTech Connect

    Bauer, J

    2004-01-05

    The electro-magnetic calorimeter at the BABAR detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with good resolution. The calorimeter is calibrated at the low energy end with 6.13 MeV photons obtained from a liquid source system. During the calibration, a fluorine-rich liquid is activated via a neutron generator and pumped past the front of the calorimeter's crystals. Decays that occur in front of the crystals emit photons of well-defined energy, which are detected in the crystals with the regular data acquisition system. The liquid source system adds only very little material in front of the calorimeter, needs nearly no maintenance, and allows operation at the switch of a key with minimal safety hazards. The report describes the system, presents calibration results obtained from its operation since 1999, shows the crystals' loss of light yield due to radiation damage, and shares experiences gained over the years.

  18. Multi-Axis Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  19. Calibration of multi-camera photogrammetric systems

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Mazaheri, M.; Rondeel, S.; Habib, A.

    2014-11-01

    Due to the low-cost and off-the-shelf availability of consumer grade cameras, multi-camera photogrammetric systems have become a popular means for 3D reconstruction. These systems can be used in a variety of applications such as infrastructure monitoring, cultural heritage documentation, biomedicine, mobile mapping, as-built architectural surveys, etc. In order to ensure that the required precision is met, a system calibration must be performed prior to the data collection campaign. This system calibration should be performed as efficiently as possible, because it may need to be completed many times. Multi-camera system calibration involves the estimation of the interior orientation parameters of each involved camera and the estimation of the relative orientation parameters among the cameras. This paper first reviews a method for multi-camera system calibration with built-in relative orientation constraints. A system stability analysis algorithm is then presented which can be used to assess different system calibration outcomes. The paper explores the required calibration configuration for a specific system in two situations: major calibration (when both the interior orientation parameters and relative orientation parameters are estimated), and minor calibration (when the interior orientation parameters are known a-priori and only the relative orientation parameters are estimated). In both situations, system calibration results are compared using the system stability analysis methodology.

  20. NPP Clouds and the Earth's Radiant Energy System (CERES) Predicted Sensor Performance Calibration and Preliminary Data Product Performance

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, George L.; Thomas, Susan; Maddock, Suzanne L.

    2009-01-01

    Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals. In response, NASA, NOAA and NPOESS agreed in early 2008 to fly the final existing CERES Flight Model (FM-5) on the NPP spacecraft for launch in 2010. Future opportunities for ERB CDR continuity consist of procuring an additional CERES Sensor with modest performance upgrades for flight on the NPOESS C1 spacecraft in 2013, followed by a new CERES follow-on sensor for flight in 2018 on the NPOESS C3 spacecraft. While science goals remain unchanged for the long-term ERB Climate Data Record, it is now understood that the task of achieving these goals is more difficult for two reasons. The first is an increased understanding of the dynamics of the Earth/atmosphere system which demonstrates that rigorous separation of natural variability from anthropogenic change on decadal time scales requires higher accuracy and stability than originally envisioned. Secondly, future implementation scenarios involve less redundancy in flight hardware (1 vs. 2 orbits and operational sensors) resulting in higher risk of loss of continuity and reduced number of independent observations to characterize performance of individual sensors. Although EOS CERES CDR's realize a factor of 2 to 4 improvement in accuracy and stability over previous ERBE CDR's, future sensors will require an additional factor of 2 improvement to answer rigorously the science questions moving forward. Modest investments, defined through the CERES Science Team s 30-year operational history of the EOS CERES sensors, in onboard calibration hardware and pre-flight calibration and test program will ensure meeting these goals while reducing costs in re-processing scientific datasets. The CERES FM-5 pre-flight radiometric

  1. Calibrations of the LHD Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yamada, I.; Funaba, H.; Yasuhara, R.; Hayashi, H.; Kenmochi, N.; Minami, T.; Yoshikawa, M.; Ohta, K.; Lee, J. H.; Lee, S. H.

    2016-11-01

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  2. Calibration of iota Pegasi system

    NASA Astrophysics Data System (ADS)

    Morel, P.; Morel, Ch.; Provost, J.; Berthomieu, G.

    2000-02-01

    Recent observations provide determinations of individual masses, chemical composition and metallicity of the components of the spectroscopic and interferometric binary iota Peg (Boden et al. \\cite{bkb99}). Using updated physics, to calibrate the system, we have computed using the stellar evolutionary code CESAM (Morel \\cite{m97}), evolutionary sequences of stellar models with the masses of iota Peg A 1.326 M_sun and iota Peg B 0.819 M_sun (Boden et al. loc. cit) and with different values of the mixing-length parameter alpha , the helium Y and the heavy element Z initial mass fraction with the constraint of the observed metallicity. Adopting effective temperatures and luminosities, as derived from observations with the bolometric corrections, and the empirical scale of temperatures of Alonso et al. (\\cite{aam95}, \\cite{aam96}), we find alpha_A =1.46, alpha_B =1.36, Y=0.278, Z=0.017. The evolution time, including pre-main sequence, is found within ~ 40 My<~ t_ev<~ 0.5 Gy. The calibrated models of iota Peg. A and B are non homogeneous zero age main sequence stars with the evolutionary time t_ev=56 My. Due to the large uncertainties of their determinations, the values derived for the mixing-length parameters are smaller than the solar one but however marginally compatible with it. Our results ought to be improved as soon as a more accurate value of the magnitude difference in the V filter will be available. Detailed spectroscopic analysis for both components looks practicable, so it is urgently needed.

  3. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  4. FCC-ee: Energy Calibration

    SciTech Connect

    Koratzinos, M.; Blondel, A.; Gianfelice-Wendt, E.; Zimmermann, F.

    2015-06-02

    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 ke V on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the center-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.

  5. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  6. FY2008 Calibration Systems Final Report

    SciTech Connect

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  7. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management. PMID:27250416

  8. AUTOMATIC CALIBRATING SYSTEM FOR PRESSURE TRANSDUCERS

    DOEpatents

    Amonette, E.L.; Rodgers, G.W.

    1958-01-01

    An automatic system for calibrating a number of pressure transducers is described. The disclosed embodiment of the invention uses a mercurial manometer to measure the air pressure applied to the transducer. A servo system follows the top of the mercury column as the pressure is changed and operates an analog- to-digital converter This converter furnishes electrical pulses, each representing an increment of pressure change, to a reversible counterThe transducer furnishes a signal at each calibration point, causing an electric typewriter and a card-punch machine to record the pressure at the instant as indicated by the counter. Another counter keeps track of the calibration points so that a number identifying each point is recorded with the corresponding pressure. A special relay control system controls the pressure trend and programs the sequential calibration of several transducers.

  9. Definition of energy-calibrated spectra for national reachback

    SciTech Connect

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  10. Colorimetric calibration of coupled infrared simulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  11. Computerized 50 liter volume calibration system

    SciTech Connect

    Proffitt, T.H.

    1990-01-01

    A system has been designed for the Savannah River Site that will be used to calibrate product shipping containers. For accountability purposes, it is necessary that these containers be calibrated to a very high precision. The Computerized 50 Liter Volume Calibration System (CVCS), which is based on the Ideal Gas Law (IGL), will use reference volumes with precision of no less {plus minus}0.03%, and helium to calibrate the containers to have a total error of no greater than {plus minus}0.10%. A statistical interpretation of the system has given a theoretical total calculated error of {plus minus}0.08%. Tests with the system will be performed once fabrication is complete to experimentally verify the calculated error. Since the total error was calculated using the worst case scenario, the actual error should be significantly less than the calculated value. The computer controlled, totally automated system is traceable to the National Institute of Standards and Technology. The design, calibration procedure, and statistical interpretation of the system will be discussed. 1 ref.

  12. White Dwarfs for Calibrating the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Allyn Smith, J.; Wester, William; Tucker, Douglas Lee; Fix, Mees B.; Tremblay, Pier-Emmanuel; Gulledge, Deborah J.; McDonald, Christopher P.; Allam, Sahar S.; James, David

    2016-01-01

    The Dark Energy Survey (DES) is surveying some 5000 square degrees in the southern hemisphere in the grizY filter system using the new Dark Energy Camera. In order to verify meeting photometric calibration requirements, we are obtaining imaging of several hundred white dwarfs (confirmed and candidates) to select nearly 100 or more hydrogen atmosphere (DA) white dwarfs for spectroscopy in the DES footprint. The spectra that are obtained will be extracted and used to derive synthetic spectra that can be compared with DES measurements from imaging in each of the DES grizY filters. This comparison should be able to verify and help calibrate the survey to a level better than 2% photometrically and to better than 0.5% in colors. We will discuss the observational and modeling effort required to develop a well-characterized DAs sample and present some preliminary results. This set would form the basis of a larger set of southern hemisphere survey calibration stars, and additionally serve as a legacy calibration set in the upcoming era of the LSST survey and the giant segmented mirror observatories. These stars will be used to establish and monitor the color zero points for the DES photometric system and can be used to search for systematic errors in the color zero points over the DES footprint. These stars will also be used as some of the primary standards for the DES photometric system which will allow nightly atmospheric monitoring during DES operations.

  13. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    NASA Technical Reports Server (NTRS)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  14. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  15. The KamLAND Full-Volume Calibration System

    SciTech Connect

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O'Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  16. Automated system for the calibration of magnetometers

    SciTech Connect

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel; Merayo, Jose M. G.

    2009-04-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used to evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.

  17. Polarimetric PALSAR System Model Assessment and Calibration

    NASA Astrophysics Data System (ADS)

    Touzi, R.; Shimada, M.

    2009-04-01

    Polarimetric PALSAR system parameters are assessed using data sets collected over various calibration sites. The data collected over the Amazonian forest permits validating the zero Faraday rotation hypotheses near the equator. The analysis of the Amazonian forest data and the response of the corner reflectors deployed during the PALSAR acquisitions lead to the conclusion that the antenna is highly isolated (better than -35 dB). Theses results are confirmed using data collected over the Sweden and Ottawa calibration sites. The 5-m height trihedrals deployed in the Sweden calibration site by the Chalmers University of technology permits accurate measurement of antenna parameters, and detection of 2-3 degree Faraday rotation during day acquisition, whereas no Faraday rotation was noted during night acquisition. Small Faraday rotation angles (2-3 degree) have been measured using acquisitions over the DLR Oberpfaffenhofen and the Ottawa calibration sites. The presence of small but still significant Faraday rotation (2-3 degree) induces a CR return at the crosspolarization HV and VH that should not be interpreted as the actual antenna cross-talk. PALSAR antenna is highly isolated (better than -35 dB), and diagonal antenna distortion matrices (with zero cross-talk terms) can be used for accurate calibration of PALSAR polarimetric data.

  18. Calibration of the Urbana lidar system

    NASA Technical Reports Server (NTRS)

    Cerny, T.; Sechrist, C. F., Jr.

    1980-01-01

    A method for calibrating data obtained by the Urban sodium lidar system is presented. First, an expression relating the number of photocounts originating from a specific altitude range to the soodium concentration is developed. This relation is then simplified by normalizing the sodium photocounts with photocounts originating from the Rayleigh region of the atmosphere. To evaluate the calibration expression, the laser linewidth must be known. Therefore, a method for measuring the laser linewidth using a Fabry-Perot interferometer is given. The laser linewidth was found to be 6 + or - 2.5 pm. Problems due to photomultiplier tube overloading are discussed. Finally, calibrated data is presented. The sodium column abundance exhibits something close to a sinusoidal variation throughout the year with the winter months showing an enhancement of a factor of 5 to 7 over the summer months.

  19. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  20. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  1. ERS-1 system simulation and calibration

    NASA Astrophysics Data System (ADS)

    Hans, P.; Braun, H. M.; Groebke, H.

    1984-08-01

    The ERS-1 Radar systems cannot totally be tested on ground, so comprehensive system simulators, able to take test results of system elements and simulate the entire system chains to derive the end-to-end measurement performances are proposed. After launch and stabilization of the spacecraft and the orbit, the inflight calibration is performed by comparison of the ERS-1 measurements with ground truth information and tuning of the target models, supported by simulations to identify whether an error is caused by the system or a model uncertainty.

  2. Prelaunch Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission and Earth Observing System Morning (EOS-AM1) Spacecraft Thermistor Bolometer Sensors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Bitting, Herbert C.; Crommelynck, Dominique A. H.; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Smith, G. Louis; Thomas, Susan; Thornhill, K. Lee; Wilson, Robert S.

    1998-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometer sensors measure earth radiances in the broadband shortwave solar (O.3 - 5.0 micron and total (0.3 to 100 microns) spectral bands as well as in the 8-12 microns water vapor window spectral band. On November 27, 1997, the launch of the Tropical Rainfall Measuring Mission (TRMM) spacecraft placed the first set of CERES sensors into orbit, and 30 days later, the sensors initiated operational measurements of the earth radiance fields. In 1998, the Earth Observing System morning (EOS-AM1) spacecraft will place the second and third sensor sets into orbit. The prelaunch CERES sensors' count conversion coefficients (gains and zero-radiance offsets) were determined in vacuum ground facilities. The gains were tied radiometrically to the International Temperature Scale of 1990 (ITS-90). The gain determinations included the spectral properties (reflectance, transmittance, emittance, etc.) of both the sources and sensors as well as the in-field-of-view (FOV) and out-of-FOV sensor responses. The resulting prelaunch coefficients for the TRMM and EOS-AM1 sensors are presented. Inflight calibration systems and on-orbit calibration approaches are described, which are being used to determine the temporal stabilities of the sensors' gains and offsets from prelaunch calibrations through on-orbit measurements. Analyses of the TRMM prelaunch and on-orbit calibration results indicate that the sensors have retained their ties to ITS-90 at accuracy levels better than /- 0.3% between the 1995 prelaunch and 1997 on-orbit calibrations.

  3. Integrated calibration of magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; GuoQuan, Ren; Zhining, Li

    2015-01-01

    Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

  4. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  5. FY07 Final Report for Calibration Systems

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn

  6. Rotary mode system initial instrument calibration

    SciTech Connect

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  7. Calibration of Sound and Vibration Sensors and Vibration Testing Systems

    NASA Astrophysics Data System (ADS)

    Nicklich, H.

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a "Calibration certificate of every part of the system" to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sen- sor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  8. Calibration and characterization of spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Polder, Gerrit; van der Heijden, Gerie W.

    2001-09-01

    Spectral image sensors provide images with a large umber of contiguous spectral channels per pixel. This paper describes the calibration of spectrograph based spectral imaging systems. The relation between pixel position and measured wavelength was determined using three different wavelength calibration sources. Results indicate that for spectral calibration a source with very small peaks,such as a HgAr source, is preferred to arrow band filters. A second order polynomial model gives a better fit than a linear model for the pixel to wavelength mapping. The signal to noise ratio (SNR)is determined per wavelength. In the blue part of the spectrum,the SNR was lower than in the green and red part.This is due to a decreased quantum efficiency of the CCD,a smaller transmission coefficient of the spectrograph,as well as poor performance of the illuminant. Increasing the amount of blue light,using additional Fluorescent tube with special coating increased the SNR considerably. Furthermore, the spatial and spectral resolution of the system are determined.These can be used to choose appropriate binning factors to decrease the image size without losing information.

  9. High Temperature Calibration Furnace System user's guide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The High Temperature Calibration Furnace System (HTCFS) was developed by Summitec Corporation. It is a high precision instrument providing a constant temperature which can be used to calibrate high temperature thermocouples. Incorporating the many recent technological advances from the fields of optical fiber thermometry, material science, computer systems interfacing, and process control, the engineers at Summitec Corporation have been able to create a system that can reach a steady operating temperature of 1700 C. The precision for the system requires the measurement of temperature to be within 1 C in two hours and within 2 C in 24 hours. As documented, the experimental result shows that this system has been able to stay within .5 C in 5 hours. No other systems commercially available have been able to achieve such high temperature precision. This manual provides an overview of the system design, instructions for instrument setup, and operation procedures. Also included are a vendor list and the source codes for the custom-designed software.

  10. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  11. Calibration of sound and vibration sensors and vibration testing systems

    NASA Astrophysics Data System (ADS)

    Nicklich, Holger

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a “Calibration certificate of every part of the system” to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sensor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  12. Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system

    SciTech Connect

    Tomic, Nada Quintero, Chrystian; Aldelaijan, Saad; Bekerat, Hamed; Liang, LiHeng; DeBlois, François; Devic, Slobodan; Whiting, Bruce R.; Seuntjens, Jan

    2014-06-15

    Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.

  13. Automatic Energy Calibration of Gamma-Ray Spectrometers

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore » simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  14. Automatic Energy Calibration of Gamma-Ray Spectrometers

    SciTech Connect

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background would simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.

  15. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  16. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Calibration of measurement systems. 325.25 Section... CARRIER NOISE EMISSION STANDARDS Instrumentation § 325.25 Calibration of measurement systems. (a)(1) The sound level measurement system must be calibrated and appropriately adjusted at one or more...

  17. Volumetric system calibrates meters for large flow rates

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Volumetric system calibrates meters used for large liquid flow rates. The system employs trip probes and equipment to time the flow of liquid from a tare vessel into a calibrated vessel. This calibration system is used in the petroleum and chemical industries.

  18. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE PAGES

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; Im, Piljae; O’Neill, Zheng; Garg, Vishal

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  19. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer system calibrations... Exhaust Test Procedures § 86.1318-84 Engine dynamometer system calibrations. (a) The engine flywheel... calibration equipment described in § 86.1308-84. (b) The engine flywheel torque feedback signals to the...

  20. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Engine dynamometer system calibrations... Exhaust Test Procedures § 86.1318-84 Engine dynamometer system calibrations. (a) The engine flywheel... calibration equipment described in § 86.1308-84. (b) The engine flywheel torque feedback signals to the...

  1. Energy calibration of Cherenkov Telescopes using GLAST data

    SciTech Connect

    Bastieri, D.; Busetto, G.; Piano, G.; Rando, R.; Saggion, A.; De Angelis, A.; Longo, F.

    2007-07-12

    We discuss the possibility of using the observations by GLAST of steady gamma sources, as the Crab Nebula and some selected AGNs, to calibrate the Imaging Air Cherenkov Telescopes (IACT) and improve their energy resolution, in particular. We show that at around 100 GeV, exploiting the features in the spectrum of the Crab Nebula, the absolute energy calibration uncertainty of Cherenkov telescopes can be reduced to < 10%.

  2. System for Automated Calibration of Vector Modulators

    NASA Technical Reports Server (NTRS)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create

  3. Mark 3 VLBI system: Tropospheric calibration subsystems

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1980-01-01

    Tropospheric delay calibrations are implemented in the Mark 3 system with two subsystems. Estimates of the dry component of tropospheric delay are provided by accurate barometric data from a subsystem of surface meteorological sensors (SMS). An estimate of the wet component of tropospheric delay is provided by a water vapor radiometer (WVR). Both subsystems interface directly to the ASCII Transceiver bus of the Mark 3 system and are operated by the control computer. Seven WVR's under construction are designed to operate in proximity to a radio telescope and can be commanded to point along the line-of-sight to a radio source. They should provide a delay estimate that is accurate to the + or - 2 cm level.

  4. Calibration Method of an Ultrasonic System for Temperature Measurement

    PubMed Central

    Zhou, Chao; Wang, Yueke; Qiao, Chunjie; Dai, Weihua

    2016-01-01

    System calibration is fundamental to the overall accuracy of the ultrasonic temperature measurement, and it is basically involved in accurately measuring the path length and the system latency of the ultrasonic system. This paper proposes a method of high accuracy system calibration. By estimating the time delay between the transmitted signal and the received signal at several different temperatures, the calibration equations are constructed, and the calibrated results are determined with the use of the least squares algorithm. The formulas are deduced for calculating the calibration uncertainties, and the possible influential factors are analyzed. The experimental results in distilled water show that the calibrated path length and system latency can achieve uncertainties of 0.058 mm and 0.038 μs, respectively, and the temperature accuracy is significantly improved by using the calibrated results. The temperature error remains within ±0.04°C consistently, and the percentage error is less than 0.15%. PMID:27788252

  5. Calibration of the Hydrological Simulation Program Fortran (HSPF) model using automatic calibration and geographical information systems

    NASA Astrophysics Data System (ADS)

    Al-Abed, N. A.; Whiteley, H. R.

    2002-11-01

    Calibrating a comprehensive, multi-parameter conceptual hydrological model, such as the Hydrological Simulation Program Fortran model, is a major challenge. This paper describes calibration procedures for water-quantity parameters of the HSPF version 10·11 using the automatic-calibration parameter estimator model coupled with a geographical information system (GIS) approach for spatially averaged properties. The study area was the Grand River watershed, located in southern Ontario, Canada, between 79° 30 and 80° 57W longitude and 42° 51 and 44° 31N latitude. The drainage area is 6965 km2. Calibration efforts were directed to those model parameters that produced large changes in model response during sensitivity tests run prior to undertaking calibration. A GIS was used extensively in this study. It was first used in the watershed segmentation process. During calibration, the GIS data were used to establish realistic starting values for the surface and subsurface zone parameters LZSN, UZSN, COVER, and INFILT and physically reasonable ratios of these parameters among watersheds were preserved during calibration with the ratios based on the known properties of the subwatersheds determined using GIS. This calibration procedure produced very satisfactory results; the percentage difference between the simulated and the measured yearly discharge ranged between 4 to 16%, which is classified as good to very good calibration. The average simulated daily discharge for the watershed outlet at Brantford for the years 1981-85 was 67 m3 s-1 and the average measured discharge at Brantford was 70 m3 s-1. The coupling of a GIS with automatice calibration produced a realistic and accurate calibration for the HSPF model with much less effort and subjectivity than would be required for unassisted calibration.

  6. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  7. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. PMID:26077101

  8. Calibration system and prototypes for electron detectors for the UCN A experiment

    NASA Astrophysics Data System (ADS)

    Ito, T.; Filippone, B.; Jones, C.; McKeown, R.; Yuan, J.; Young, A. R.; Hoedl, S.; Liu, C.-Y.; Smith, D.; Soyama, K.; Bowles, T.; Brun, T.; Fowler, M.; Hill, R.; Hime, A.; Hogan, G.; Lamoreaux, S.; Morris, C.; Saunders, A.; Seestrom, S.; Walstrom, P.; Alduschenkov, A.; Kharitonov, A.; Lassakov, M.; Rudnev, Y.; Serebrov, A.; Vasilev, A.; Geltenbort, P.; Kitagaki, T.; Asahi, K.; Hino, M.; Kawai, T.; Utsuro, M.; Garcia, A.; Makela, M.; Vogelaar, R. B.; Miyachi, T.

    1999-10-01

    The status of the development of the electron detectors for the UCN A experiemnt will be presented. Absolute energy calibration is of great importance for this experiment and most of the effort has so far been put into a development of a system that allows an off-line absolute energy calibration of 0.1% in the energy range of up to 800keV, using the JPL dynamitron. Some results with a prototype detector will be presented.

  9. Calibration method for a central catadioptric-perspective camera system.

    PubMed

    He, Bingwei; Chen, Zhipeng; Li, Youfu

    2012-11-01

    A central catadioptric-perspective camera system is widely used nowadays. A critical problem is that current calibration methods cannot determine the extrinsic parameters between the central catadioptric camera and a perspective camera effectively. We present a novel calibration method for a central catadioptric-perspective camera system, in which the central catadioptric camera has a hyperbolic mirror. Two cameras are used to capture images of one calibration pattern at different spatial positions. A virtual camera is constructed at the origin of the central catadioptric camera and faced toward the calibration pattern. The transformation between the virtual camera and the calibration pattern could be computed first and the extrinsic parameters between the central catadioptric camera and the calibration pattern could be obtained. Three-dimensional reconstruction results of the calibration pattern show a high accuracy and validate the feasibility of our method.

  10. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  11. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  12. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  13. The new camera calibration system at the US Geological Survey

    USGS Publications Warehouse

    Light, D.L.

    1992-01-01

    Modern computerized photogrammetric instruments are capable of utilizing both radial and decentering camera calibration parameters which can increase plotting accuracy over that of older analog instrumentation technology from previous decades. Also, recent design improvements in aerial cameras have minimized distortions and increased the resolving power of camera systems, which should improve the performance of the overall photogrammetric process. In concert with these improvements, the Geological Survey has adopted the rigorous mathematical model for camera calibration developed by Duane Brown. An explanation of the Geological Survey's calibration facility and the additional calibration parameters now being provided in the USGS calibration certificate are reviewed. -Author

  14. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  15. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  16. How to calibrate the jet energy scale?

    SciTech Connect

    Hatakeyama, K.; /Rockefeller U.

    2006-01-01

    Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.

  17. Mammography calibration qualities establishment in a Mo- Mo clinical system

    NASA Astrophysics Data System (ADS)

    Corrêa, E. L.; dos Santos, L. R.; Vivolo, V.; Potiens, M. P. A.

    2016-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained.

  18. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  19. Is your system calibrated? MRI gradient system calibration for pre-clinical, high-resolution imaging.

    PubMed

    O'Callaghan, James; Wells, Jack; Richardson, Simon; Holmes, Holly; Yu, Yichao; Walker-Samuel, Simon; Siow, Bernard; Lythgoe, Mark F

    2014-01-01

    High-field, pre-clinical MRI systems are widely used to characterise tissue structure and volume in small animals, using high resolution imaging. Both applications rely heavily on the consistent, accurate calibration of imaging gradients, yet such calibrations are typically only performed during maintenance sessions by equipment manufacturers, and potentially with acceptance limits that are inadequate for phenotyping. To overcome this difficulty, we present a protocol for gradient calibration quality assurance testing, based on a 3D-printed, open source, structural phantom that can be customised to the dimensions of individual scanners and RF coils. In trials on a 9.4 T system, the gradient scaling errors were reduced by an order of magnitude, and displacements of greater than 100 µm, caused by gradient non-linearity, were corrected using a post-processing technique. The step-by-step protocol can be integrated into routine pre-clinical MRI quality assurance to measure and correct for these errors. We suggest that this type of quality assurance is essential for robust pre-clinical MRI experiments that rely on accurate imaging gradients, including small animal phenotyping and diffusion MR.

  20. New approach for the radiometric calibration of spectral imaging systems.

    PubMed

    Kohler, David; Bissett, W; Steward, Robert; Davis, Curtiss

    2004-05-31

    The calibration of multispectral and hyperspectral imaging systems is typically done in the laboratory using an integrating sphere, which usually produces a signal that is red rich. Using such a source to calibrate environmental monitoring systems presents some difficulties. Not only is much of the calibration data outside the range and spectral quality of data values that are expected to be captured in the field, using these measurements alone may exaggerate the optical flaws found within the system. Left unaccounted for, these flaws will become embedded in to the calibration, and thus, they will be passed on to the field data when the calibration is applied. To address these issues, we used a series of well-characterized spectral filters within our calibration. It provided us with a set us stable spectral standards to test and account for inadequacies in the spectral and radiometric integrity of the optical imager.

  1. Method for in-situ calibration of electrophoretic analysis systems

    DOEpatents

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  2. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  3. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  4. Calibrating CHIME: a new radio interferometer to probe dark energy

    NASA Astrophysics Data System (ADS)

    Newburgh, Laura B.; Addison, Graeme E.; Amiri, Mandana; Bandura, Kevin; Bond, J. Richard; Connor, Liam; Cliche, Jean-François; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Fong, Heather; Gibbs, Kenneth; Gilbert, Adam; Griffin, Elizabeth; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Klages, Peter; Landecker, Tom; Masui, Kiyoshi; Parra, Juan Mena; Pen, Ue-Li; Peterson, Jeff; Recnik, Andre; Shaw, J. Richard; Sigurdson, Kris; Sitwell, Micheal; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don

    2014-07-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 { 800MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 { 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements.

  5. A stoichiometric calibration method for dual energy computed tomography.

    PubMed

    Bourque, Alexandra E; Carrier, Jean-François; Bouchard, Hugo

    2014-04-21

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a

  6. Calibration support for the Earth Observing System Project

    NASA Technical Reports Server (NTRS)

    Guenther, B. W.

    1988-01-01

    The Earth Observing System Project (EOS) program guidelines establishes significantly more stringent requirements on calibrations of instruments. This requirement is driven by the need for long-term continuity of acquired data sets and the use of measurements in interdisciplinary investigations. Personnel from the Standards and Calibration Office have been supporting the Program and Project in interpreting these goals into specific requirements. Contributions to EOS have included participation in the Panel of Experts which produced a list of consensus items necessary for accomplishing an accurate calibration and suggested EOS Project Calibration Policy, and drafting the announcement of opportunity and bidders information package positions on instrument calibration and data product validation. Technical staffing was provided to the NASA delegates to the Committee on Earth Orbiting Satellites (club of space-faring nations) for the standing working group on Calibration and Data Validation.

  7. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  8. Calibration of imaging plate for high energy electron spectrometer

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuo A.; Yabuuchi, Toshinori; Sato, Takashi; Kodama, Ryosuke; Kitagawa, Yoneyoshi; Takahashi, Teruyoshi; Ikeda, Toshiji; Honda, Yoshihide; Okuda, Shuuichi

    2005-01-01

    A high energy electron spectrometer has been designed and tested using imaging plate (IP). The measurable energy range extends from 1to100MeV or even higher. The IP response in this energy range is calibrated using electrons from L-band and S-band LINAC accelerator at energies 11.5, 30, and 100MeV. The calibration has been extended to 0.2MeV using an existing data and Monte Carlo simulation Electron Gamma Shower code. The calibration results cover the energy from 0.2to100MeV and show almost a constant sensitivity for electrons over 1MeV energy. The temperature fading of the IP shows a 40% reduction after 80min of the data taken at 22.5°C. Since the fading is not significant after this time we set the waiting time to be 80min. The oblique incidence effect has been studied to show that there is a 1/cosθ relation when the incidence angle is θ.

  9. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  10. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  11. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  12. A Phantom Tissue System for the Calibration of Perfusion Measurements

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2008-01-01

    A convenient method for testing and calibrating surface perfusion sensors has been developed. A phantom tissue model is used to simulate the nondirectional blood flow of tissue perfusion. A computational fluid dynamics (CFD) model was constructed in Fluent® to design the phantom tissue and validate the experimental results. The phantom perfusion system was used with a perfusion sensor based on clearance of thermal energy. A heat flux gage measures the heat flux response of tissue when a thermal event (convective cooling) is applied. The blood perfusion and contact resistance are estimated by a parameter estimation code. From the experimental and analytical results, it was concluded that the probe displayed good measurement repeatability and sensitivity. The experimental perfusion measurements in the tissue were in good agreement with those of the CFD models and demonstrated the value of the phantom tissue system. PMID:19045509

  13. Ground-Based Calibration Of A Microwave Landing System

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  14. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. PMID:25979737

  15. The HARP TPC laser calibration system

    NASA Astrophysics Data System (ADS)

    Vidal-Sitjes, Gabriel

    2004-02-01

    A novel apparatus for the calibration of the HARP Time Projection Chamber has been designed, developed and built. The apparatus consists of a large number of point-like photo-electron sources located at precise positions inside the detector volume. The photo-electron sources are optical quartz fibers on which one end is coated with an aluminum layer of ˜80 Å thickness and are held in place on the high-voltage membrane. The fibers are used to guide UV laser light pulses that generate photoelectrons on the fiber tips acting as photo-electron emitters. The photo-electrons drift inside the detector and produce the calibration signals. The technique allows to assess E× B distortions and to measure drift velocity, ion feedback and time stability in real time.

  16. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    SciTech Connect

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard; Parker, Lynne Edwards

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

  17. Toward an Automatic Calibration of Dual Fluoroscopy Imaging Systems

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek; Kuntze, Gregor; Sharma, Gulshan; Ronsky, Janet

    2016-06-01

    High-speed dual fluoroscopy (DF) imaging provides a novel, in-vivo solution to quantify the six-degree-of-freedom skeletal kinematics of humans and animals with sub-millimetre accuracy and high temporal resolution. A rigorous geometric calibration of DF system parameters is essential to ensure precise bony rotation and translation measurements. One way to achieve the system calibration is by performing a bundle adjustment with self-calibration. A first-time bundle adjustment-based system calibration was recently achieved. The system calibration through the bundle adjustment has been shown to be robust, precise, and straightforward. Nevertheless, due to the inherent absence of colour/semantic information in DF images, a significant amount of user input is needed to prepare the image observations for the bundle adjustment. This paper introduces a semi-automated methodology to minimise the amount of user input required to process calibration images and henceforth to facilitate the calibration task. The methodology is optimized for processing images acquired over a custom-made calibration frame with radio-opaque spherical targets. Canny edge detection is used to find distinct structural components of the calibration images. Edge-linking is applied to cluster the edge pixels into unique groups. Principal components analysis is utilized to automatically detect the calibration targets from the groups and to filter out possible outliers. Ellipse fitting is utilized to achieve the spatial measurements as well as to perform quality analysis over the detected targets. Single photo resection is used together with a template matching procedure to establish the image-to-object point correspondence and to simplify target identification. The proposed methodology provided 56,254 identified-targets from 411 images that were used to run a second-time bundle adjustment-based DF system calibration. Compared to a previous fully manual procedure, the proposed methodology has

  18. 1991 Yearly calibration of Pacific Northwest Laboratory's gross gamma-ray borehole geophysical logging system

    SciTech Connect

    Arthur, R.J.

    1991-08-01

    This report describes the 1991 yearly calibration of a gross gamma-ray geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by the Pacific Northwest Laboratory. The calibration was conducted to permit the continued use of this system for geologic and hydrologic studies associated with remedial investigations at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in DOE borehole model standards that reside on the Hanford Site. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low-equivalent uranium concentrations. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. A new field source (Ra-20S-82) was fabricated to replace the old source (Ra-20S-204), whose activity led to variable field calibration results previously caused by a nonfixed geometry. A cross-calibration study was performed to compare the operation of the new source relative to the old source. A digitally based collection/recording system was recently acquired, so that many of the procedures were performed with the old analog system and the new digital system to compare the performance of the digital system. 7 refs., 2 figs., 9 tabs.

  19. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  20. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  1. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  2. Calibration of a multispectral camera system using interference filters

    NASA Astrophysics Data System (ADS)

    Nishi, Shogo; Tominaga, Shoji

    2011-08-01

    The present paper proposes a calibration method of a multispectral camera system using interference filters. A spectral image processing is effective to acquire an inherent information of an object in a general way. However, filter registration error often occurs when the interference filter is used. Therefore, a calibration method is presented for correcting observed images. Moreover, we describe a method for digital archiving of oil paintings based the present imaging system.

  3. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  4. Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    NASA Technical Reports Server (NTRS)

    Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)

    2008-01-01

    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.

  5. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  6. Towards a Precise Energy Calibration of the CUORE Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Dally, Adam G.

    The mass of the neutrino may hold the key to many problems in cosmology and astrophysics. The observation of neutrino oscillations shows that neutrinos have mass, which was something that was not accounted for in the Standard Model of particle physics. This thesis covers topics relating to measuring the value of neutrino mass directly using bolometers. The first section will discuss the neutrino mass and different experiments for measuring the mass using bolometers. The mass of the neutrino can be measured directly from beta-decay or inferred from observation of neutrinoless double beta decay (0nubetabeta). In this work I present Monte Carlo and analytic simulation of the MARE experiment including, pile-up and energy resolution effects. The mass measurement limits of a micro-calorimeter experiments as it relates to the quantity of decays measured is provided. A similar simulation is preformed for the HolMES experiment. The motivation is to determine the sensitivity of such experiments and the detector requirements to reach the goal sensitivity. Another possible method for determining the neutrino mass is to use neutrinoless double beta decay. The second section will cover the Cryogenic Underground Observatory for Rare Events (CUORE) detector calibration system (DCS). CUORE is a neutrinoless double beta decay (0nubetabeta) experiment with an active mass of 206 kg of 130Te. The detector consists of 988 TeO2 bolometers operating at 10 mK. The signature of 0 nubetabeta decay is an excess of events at the Q-value of 2528 keV. Understanding the energy response is critical for event identification, but this presents many challenges. Calibration is necessary to associate a known energy from a gamma with a voltage pulse from the detector. The DCS must overcome many design challenges. The calibration source must be placed safely and reliable within the detector. The temperature of the detector region of the cryostat must not be changed during calibration. To achieve this

  7. Laboratory Calibration of a Field Imaging Spectrometer System

    PubMed Central

    Zhang, Lifu; Huang, Changping; Wu, Taixia; Zhang, Feizhou; Tong, Qingxi

    2011-01-01

    A new Field Imaging Spectrometer System (FISS) based on a cooling area CCD was developed. This paper describes the imaging principle, structural design, and main parameters of the FISS sensor. The FISS was spectrally calibrated with a double grating monochromator to determine the center wavelength and FWHM of each band. Calibration results showed that the spectral range of the FISS system is 437–902 nm, the number of channels is 344 and the spectral resolution of each channel is better than 5 nm. An integrating sphere was used to achieve absolute radiometric calibration of the FISS with less than 5% calibration error for each band. There are 215 channels with signal to noise ratios (SNRs) greater than 500 (62.5% of the bands). The results demonstrated that the FISS has achieved high performance that assures the feasibility of its practical use in various fields. PMID:22163746

  8. Laboratory calibration of a field imaging spectrometer system.

    PubMed

    Zhang, Lifu; Huang, Changping; Wu, Taixia; Zhang, Feizhou; Tong, Qingxi

    2011-01-01

    A new Field Imaging Spectrometer System (FISS) based on a cooling area CCD was developed. This paper describes the imaging principle, structural design, and main parameters of the FISS sensor. The FISS was spectrally calibrated with a double grating monochromator to determine the center wavelength and FWHM of each band. Calibration results showed that the spectral range of the FISS system is 437-902 nm, the number of channels is 344 and the spectral resolution of each channel is better than 5 nm. An integrating sphere was used to achieve absolute radiometric calibration of the FISS with less than 5% calibration error for each band. There are 215 channels with signal to noise ratios (SNRs) greater than 500 (62.5% of the bands). The results demonstrated that the FISS has achieved high performance that assures the feasibility of its practical use in various fields.

  9. Calibrated Ancillary System (CAS) user's guide, volume 6

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Calibrated Ancillary System (CAS) provides real-time calibrated parameters from the orbiter downlink (ancillary data) to the Goddard Space Flight Center (GSFC). This user's guide contains the introduction to the equipment, operation, general procedures, and specific procedures of CAS. Volume 6 describes ancillary products procedures, enhancement menu and processing task procedures for SDT/TDT (shuttle data tape/telemetry descriptor tape), database errors and network data driver (NDD) product menu procedures, and utility menu procedures.

  10. Comparative Analysis of Different LIDAR System Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Miller, M.; Habib, A.

    2016-06-01

    With light detection and ranging (LiDAR) now being a crucial tool for engineering products and on the fly spatial analysis, it is necessary for the user community to have standardized calibration methods. The three methods in this study were developed and proven by the Digital Photogrammetry Research Group (DPRG) for airborne LiDAR systems and are as follows; Simplified, Quasi-Rigorous, and Rigorous. In lieu of using expensive control surfaces for calibration, these methods compare overlapping LiDAR strips to estimate the systematic errors. These systematic errors are quantified by these methods and include the lever arm biases, boresight biases, range bias and scan angle scale bias. These three methods comprehensively represent all of the possible flight configurations and data availability and this paper will test the limits of the method with the most assumptions, the simplified calibration, by using data that violates the assumptions it's math model is based on and compares the results to the quasi-rigorous and rigorous techniques. The overarching goal is to provide a LiDAR system calibration that does not require raw measurements which can be carried out with minimal control and flight lines to reduce costs. This testing is unique because the terrain used for calibration does not contain gable roofs, all other LiDAR system calibration testing and development has been done with terrain containing features with high geometric integrity such as gable roofs.

  11. Landsat 8 on-orbit characterization and calibration system

    USGS Publications Warehouse

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  12. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  13. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-09

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given.

  14. Novel system for optical axis on-line calibration

    NASA Astrophysics Data System (ADS)

    Qiao, Wen; Yan, Huimin; Lu, Wei

    2007-12-01

    Calibration of optical axis is an essential process to ensure the quality of optical systems. Only when the light path center, CCD (Charge Coupled Device) center and rotary center of motor fit each other well, can the system run properly to fulfill the proposed function. However, in most cases, the process is conducted by experienced workers and it is hard to precisely evaluate the coherence of optical axis. So the development of an optical calibrator that can detect the optical axis and calibrate the center automatically is of high priority for precise optical instruments. In this research project, we aim to develop a novel system for optical axis online calibration. The system is based on photoelectric encoder for rotary signal sampling of motor. MCU (Micro Controlling Unit) is used as the main control module instead of PC to miniaturize and simplify the system. CPLD (Complex Programmable Logic Device) is employed to realize high speed data storage and processing. A motor driving circuit and a voltage interval location method are designed to control the motor to rotate precisely. The novel optical calibrator has already been taken into practical application in factories, and proved to be of high stability and resolution.

  15. A machine vision system for the calibration of digital thermometers

    NASA Astrophysics Data System (ADS)

    Vázquez-Fernández, Esteban; Dacal-Nieto, Angel; González-Jorge, Higinio; Martín, Fernando; Formella, Arno; Alvarez-Valado, Victor

    2009-06-01

    Automation is a key point in many industrial tasks such as calibration and metrology. In this context, machine vision has shown to be a useful tool for automation support, especially when there is no other option available. A system for the calibration of portable measurement devices has been developed. The system uses machine vision to obtain the numerical values shown by displays. A new approach based on human perception of digits, which works in parallel with other more classical classifiers, has been created. The results show the benefits of the system in terms of its usability and robustness, obtaining a success rate higher than 99% in display recognition. The system saves time and effort, and offers the possibility of scheduling calibration tasks without excessive attention by the laboratory technicians.

  16. 1992 Yearly calibration of Pacific Northwest Laboratory's gross gamma-ray borehole geophysical logging system

    SciTech Connect

    Arthur, R. J.

    1992-07-01

    This report describes the 1992 yearly calibration of a gross gamma-ray geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory. The calibration was conducted to permit the continued use of this system for geologic and hydrologic studies associated with remedial investigation at the Hanford Site. The calibration is limited to the probe identified as CG27A-97. Primary calibrations to equivalent-uranium units were conducted in DOE borehole model standards that reside on the Hanford Site. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. A previous correlation for relating observed count rate in before- and after-logging field calibrations to equivalent-uranium concentrations was confirmed for field source Ra-20S-82. A computer-based digital collection/recording system was used simultaneously on many of the procedures with the original analog system so that the performance of the two collection systems could be correlated and compared at some future date.

  17. Peristaltic pump-based low range pressure sensor calibration system

    SciTech Connect

    Vinayakumar, K. B.; Naveen Kumar, G.; Rajanna, K. E-mail: krajanna2011@gmail.com; Nayak, M. M.; Dinesh, N. S.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  18. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  19. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. PMID:26628178

  20. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  1. A harvester based calibration system for cotton yield monitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to develop a system for measuring seed cotton weight on a cotton harvester to facilitate on-farm research efforts and provide information for use in semi-real-time calibration of yield monitors. The system tested in 2014 was improved from the original design developed...

  2. U.S. Department of Energy Office of Legacy Management Calibration Facilities - 12103

    SciTech Connect

    Barr, Deborah; Traub, David; Widdop, Michael

    2012-07-01

    This paper describes radiometric calibration facilities located in Grand Junction, Colorado, and at three secondary calibration sites. These facilities are available to the public for the calibration of radiometric field instrumentation for in-situ measurements of radium (uranium), thorium, and potassium. Both borehole and hand-held instruments may be calibrated at the facilities. Aircraft or vehicle mounted systems for large area surveys may be calibrated at the Grand Junction Regional Airport facility. These calibration models are recognized internationally as stable, well-characterized radiation sources for calibration. Calibration models built in other countries are referenced to the DOE models, which are also widely used as a standard for calibration within the U.S. Calibration models are used to calibrate radiation detectors used in uranium exploration, remediation, and homeland security. (authors)

  3. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  4. 1990 yearly calibration of Pacific Northwest Laboratory's gross-gamma borehole geophysical logging system

    SciTech Connect

    Arthur, R.J.

    1990-08-01

    This report describes the 1990 yearly calibration of a gross-gamma geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory (PNL). The calibration was conducted to permit the continued use of this system for geological and hydrologic studies associated with remedial investigation at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in borehole model standards that were recently moved to the Hanford Site from the DOE field calibration facility in Spokane, Washington. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. The integrity of the system throughout the previous year from gamma-ray monitoring was demonstrated using the before- and after-logging field calibration readings with the field source in calibration Positions 1 and 2. Most of the Position 1 readings are within an 8% limit that is set by the governing PNL technical reference procedure as a critical value above which the instrument is considered suspect. Many of the Position 2 readings exceed the 8% limit; however, the fluctuation was traced to field-source geometry variability that affected Position 1 count rates by up to 6% and Position 2 count rates by as much as 16%. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. The temperature drift of the gamma-ray probe was documented and amounts to less than 0.1%/{degree}C within the temperature range 0{degree}C to 42{degree}C. The low-energy cutoff for the gross gamma-ray probe was determined to be between 46.5 and 59.5 keV. 10 refs., 4 figs., 13 tabs.

  5. Calibration of Frequency Data Collection Systems Using Shortwave Radio Signals

    NASA Astrophysics Data System (ADS)

    Estler, Ron

    2000-09-01

    The atomic-clock-derived audio tones broadcast on the National Institute of Standards and Technology (NIST) shortwave station WWV are used to calibrate computer frequency data collection systems via Fast Fourier Transforms (FFT). Once calibrated, the data collection system can be used to accurately determine the audio signals used in several instructional physical chemistry laboratory experiments. This method can be applied to virtually any hardware-software configuration that allows adjustment of the apparent time scale (digitizing rate) of the recorded audio file.

  6. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  7. Radiometric Calibration of the Earth Observing System's Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N. (Principal Investigator)

    1997-01-01

    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.

  8. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  9. Calibration technology in application of robot-laser scanning system

    NASA Astrophysics Data System (ADS)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  10. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  11. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    SciTech Connect

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.

  12. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  13. Calibration of the Accuscan II In Vivo System for I-125 Thyroid Counting

    SciTech Connect

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-125 thyroid counting. The source used for the calibration was a DOE manufactured Am-241/Eu-152 source contained in a 22 ml vial BEA Am-241/Eu-152 RMC II-1 with energies from 26 keV to 344 keV. The center of the detector housing was positioned 64 inches from the vault floor. This position places the approximate center line of the detector housing at the center line of the source in the phantom thyroid tube. The energy and efficiency calibration were performed using an RMC II phantom (Appendix J). Performance testing was conducted using source BEA Am-241/Eu-152 RMC II-1 and Validation testing was performed using an I-125 source in a 30 ml vial (I-125 BEA Thyroid 002) and an ANSI N44.3 phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-125 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  14. Microcomputerized electric field meter diagnostic and calibration system

    NASA Technical Reports Server (NTRS)

    Holley, L. D.; Mason, J. W. (Inventor)

    1978-01-01

    A computerized field meter calibration system which includes an apparatus for testing the calibration of field meters normally utilized for measuring electromagnetic field potentials is described. A reference voltage is applied to the field meter for causing signals to be produced on the output terminals thereof. A bank of relays is provided for selectively connecting output terminals of the field meter to a multiplexer by means of a digital voltmeter and an oscilloscope. A frequency-shift-keyed receiver is also connected to one of the terminals of the field meter for transmitting and converting a frequency shift keyed signal to a digital signal which is, subsequently, applied to the multiplexer.

  15. Numerical Analysis of a Radiant Heat Flux Calibration System

    NASA Technical Reports Server (NTRS)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  16. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Calibration of measurement systems. 325.25 Section 325.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH INTERSTATE...

  17. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Calibration of measurement systems. 325.25 Section 325.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH INTERSTATE...

  18. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Calibration of measurement systems. 325.25 Section 325.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH INTERSTATE...

  19. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Calibration of measurement systems. 325.25 Section 325.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH INTERSTATE...

  20. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and...

  1. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  2. The performance of the CHEOPS on-ground calibration system

    NASA Astrophysics Data System (ADS)

    Chazelas, B.; Wildi, F. P.; Sarajlic, M.; Sordet, M.; Deline, A.

    2016-07-01

    The CHEOPS space mission will measure photometric transits of exo-planets with a precision of 20 ppm in 6 hours of integration time on a 9th magnitude star. This corresponds to a signal-to-noise ratio of 5 for a transit of an Earth-sized planet orbiting a solar-sized star. Achieving the precision goal requires precise on-ground calibration of the payload to remove its signature from the raw data while in flight. A sophisticated calibration system will inject a stimulus beam in the payload and measure its response to the variation of electrical and environmental parameters. These variations will be compiled in a correction model. At the very end of the testing phase, the CHEOPS photometric performance will be assessed on an artificial star, applying the correction model This paper addresses some original details of the CHEOPS calibration bench and its performance as measured in the lab.

  3. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  4. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  5. Mass calibration of the energy axis in ToF-E elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Meersschaut, J.; Laricchiuta, G.; Sajavaara, T.; Vandervorst, W.

    2016-03-01

    We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.

  6. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  7. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  8. Calibration of the ORNL two-dimensional Thomson scattering system

    SciTech Connect

    Thomas, C.E. Jr.; Lazarus, E.A.; Kindsfather, R.R.; Murakami, M.; Stewart, K.A.

    1985-10-01

    A unified presentation of the calibrations needed for accurate calculation of electron temperature and density from Thomson scattering data for the Oak Ridge National Laboratory two-dimensional Thomson scattering system (SCATPAK II) is made. Techniques are described for measuring the range of wavelengths to which each channel is responsive. A statistical method for calibrating the gain of each channel in the system is given, and methods of checking for internal consistency and accuracy are presented. The relationship between the constants describing the relative light collection efficiency of each channel and plasma light-scattering theory is developed, methods for measuring the channel efficiencies and evaluating their accuracy are described, and the effect on these constants of bending fiber optics is discussed. The use of Rayleigh or Raman scattering for absolute efficiency (density) calibration, stray light measurement, and system efficiency evaluation is discussed; the relative merits of Rayleigh vs Raman scattering are presented; and the relationship among the Rayleigh/Raman calibrations, relative channel efficiency constants, and absolute efficiencies is developed.

  9. Novel calibration system with sparse wires for CMB polarization receivers

    SciTech Connect

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  10. ERS-1 radar altimeter system performance evaluation and calibration

    NASA Astrophysics Data System (ADS)

    Braun, H. M.; Groebke, H.; Hans, P.

    1984-08-01

    The ERS-1 (ESA) radar altimeter system simulation philosophy and simulator development are described. The simulator models system geometry, echo process, uplink/downlink, platform characteristics, instrument processing, ground processing, system errors, and special target characteristics (e.g., reflections from ice surfaces). It supports pre and post launch system-calibration; refinement of the engineering specifications during the ERS-1 development phase; monitoring and controlling of instrument design and development; prelaunch verification of system performance; investigation of inflight malfunctions and compensation of errors during nominal operations; development of echo models; and demonstration of system capabilities in operational cases.

  11. Method of calibrating a fluid-level measurement system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2010-01-01

    A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.

  12. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw

  13. Calibration of the Accuscan II In Vivo System for I-131 Thyroid Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-131 thyroid counting. The source used for the calibration was an Analytics mixed gamma source 82834-121 distributed in an epoxy matrix in a Wheaton Liquid Scintillation Vial with energies from 88.0 keV to 1836.1 keV. The center of the detectors was position 64-feet from the vault floor. This position places the approximate center line of the detectors at the center line of the source in the thyroid tube. The calibration was performed using an RMC II phantom (Appendix J). Validation testing was performed using a Ba-133 source and an ANSI N44.3 Phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibrations including verification counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-131 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  14. An accurate continuous calibration system for high voltage current transformer

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  15. Laser Guided Automated Calibrating System for Accurate Bracket Placement

    PubMed Central

    Anitha, A; Kumar, AJ; Mascarenhas, R; Husain, A

    2015-01-01

    Background: The basic premise of preadjusted bracket system is accurate bracket positioning. It is widely recognized that accurate bracket placement is of critical importance in the efficient application of biomechanics and in realizing the full potential of a preadjusted edgewise appliance. Aim: The purpose of this study was to design a calibrating system to accurately detect a point on a plane as well as to determine the accuracy of the Laser Guided Automated Calibrating (LGAC) System. Materials and Methods: To the lowest order of approximation a plane having two parallel lines is used to verify the accuracy of the system. On prescribing the distance of a point from the line, images of the plane are analyzed from controlled angles, calibrated and the point is identified with a laser marker. Results: The image was captured and analyzed using MATLAB ver. 7 software (The MathWorks Inc.). Each pixel in the image corresponded to a distance of 1cm/413 (10 mm/413) = 0.0242 mm (L/P). This implies any variations in distance above 0.024 mm can be measured and acted upon, and sets the highest possible accuracy for this system. Conclusion: A new automated system is introduced having an accuracy of 0.024 mm for accurate bracket placement. PMID:25745575

  16. Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, David; Wu, Aisheng; Wu, Xiangqian

    2016-05-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter- Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth-observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  17. Calibration procedure of measuring system for vehicle wheel load estimation

    NASA Astrophysics Data System (ADS)

    Kluziewicz, M.; Maniowski, M.

    2016-09-01

    The calibration procedure of wheel load measuring system is presented. Designed method allows estimation of selected wheel load components while the vehicle is in motion. Mentioned system is developed to determine friction forces between tire and road surface, basing on measured internal reaction forces in wheel suspension mechanism. Three strain gauge bridges and three-component piezoelectric load cell are responsible for internal force measurement in suspension components, two wire sensors are measuring displacements. External load is calculated via kinematic model of suspension mechanism implemented in Matlab environment. In the described calibration procedure, internal reactions are measured on a test stand while the system is loaded by a force of known direction and value.

  18. X-ray cone beam CT system calibration

    NASA Astrophysics Data System (ADS)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  19. Method and system for calibrating acquired spectra for use in spectral analysis

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-09-14

    A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.

  20. CMR Shuffler System: Passive Mode Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Gomez, Cipriano D.; Salazar, William R.; Mayo, Douglas R.; Vigil, Georgiana M.; Crooks, William J.; Stange, Sy

    2012-07-20

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. As debris is removed from the vessels, material will be placed in waste drums. Far-field gamma ray assay will be used to determine when a drum is nearing a {sup 239}Pu equivalent mass of less than 200 g. The drum will then be assayed using a waste drum shuffler operated in passive mode using a neutron coincidence counting method for accountability. This report focuses on the testing and calibration of the CMR waste drum shuffler in passive mode operation. Initial testing was performed to confirm previously accepted measurement parameters. The system was then calibrated using a set of weapons grade Pu (WGPu, {sup 239}Pu > 93%) oxide standards placed inside a 55 gallon drum. The calibration data ranges from Pu mass of 0.5 g to 188.9 g. The CMR waste drum shuffler has been tested and calibrated in passive mode in preparation for safeguards accountability measurements of waste drums containing material removed from CVs for the CVD project.

  1. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    NASA Astrophysics Data System (ADS)

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  2. Linear electronics for Si-detectors and its energy calibration for use in heavy ion experiments

    NASA Astrophysics Data System (ADS)

    Taccetti, N.; Poggi, G.; Carraresi, L.; Bini, M.; Casini, G.; Ciaranfi, R.; Giuntini, L.; Maurenzig, P. R.; Montecchi, M.; Olmi, A.; Pasquali, G.; Piantelli, S.; Stefanini, A. A.

    2003-01-01

    The design and implementation of linear electronics based on small-size, low-power charge preamplifiers and shaping amplifiers, used in connection with Si-detector telescopes employed in heavy ion experiments, are presented. Bench tests and "under beam" performances are discussed. In particular, the energy calibration and the linearity test of the overall system (Si-detector and linear and digital conversion electronics) has been performed with a procedure which avoids the pulse height defect problems connected with the detection of heavy ions. The procedure, basically, consists of using bursts of MeV protons, releasing up to GeV energies inside the detector, with low ionization density.

  3. Absolute calibration of a laser system for atmospheric probing.

    PubMed

    Hall, F F; Ageno, H Y

    1970-08-01

    In order to obtain quantitative data on the backscatter function from laser irradiance backscattered from the atmosphere, the ratio of power transmitted to power received must be accurately known. No absolute measurements of power, optical system transmittance, detector quantum efficiency, or electronic gain are necessarily required. The technique of measuring the power ratio by irradiating a smoked or painted target of known diffuse reflectance at a fixed range is used to calibrate a complete lidar system. The relative area of the output power pulse is monitored by a fast response photodiode, and the relative area of the returned pulse is also recorded after passing through a filter of known high optical density. It is essential to control the temperatures of the laser rod and receiver interference prefilter to ensure proper spectral matching. Field experience gained using this technique is described, and examples of calibration measurements and backscatter functions for smog and cirrus clouds are presented.

  4. Precision ozone calibration system based on vapor pressures of ozone

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1987-01-01

    A precision ozone calibration system for stratospheric research has been developed and evaluated. Vapor pressures above solid ozone are mixed with a carrier gas (N2) to produce stratospheric ozone mixing ratios at total pressures of 1 to cover 20 torr. The uncertainty in the ozone mixing ratios is approximately + or - 1.5 percent, the stability of ozone is + or - 0.3 percent. Experiments to be calibrated may sample the gas mixture over a wide range of flow rates; the maximum throughput of gas with corrections of less than 1 percent to ozone is about 200 torr 1/min. A mass spectrometer system continuously monitors the purity and stability of the N2-O3 gas mixture.

  5. Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.

    1977-01-01

    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.

  6. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems

    PubMed Central

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I.; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R2 = 98.78%). PMID:27367694

  7. Calibration of SQUID vector magnetometers in full tensor gradiometry systems

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Stolz, R.; Chwala, A.; Krech, W.; Meyer, H.-G.; Kukowski, N.

    2014-08-01

    Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.

  8. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%). PMID:27367694

  9. Calibration and characterization of a low level waste assay system

    SciTech Connect

    Giesler, G.C.; Henry, S.A.; Johnson, S.L.; Vehar, D.W.

    1993-12-31

    In today`s rapidly changing regulatory environment, increasingly detailed information is required about the composition of items intended for disposal. We have examined a system that can be used to measure the radioactivity in a container of waste destined for disposal. In order to better understand the capabilities and limitations of the system, we performed a number of measurements to calibrate and characterize this system. The results of this characterization including detectability limits for {sup 235}U and {sub 239}Pu are presented.

  10. The laser calibration system of the HARP TOF

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Bondani, M.; Bonesini, M.; Ferri, F.; Gibin, D.; Govoni, P.; Guglielmi, A.; Menegolli, A.; Paganoni, M.; Paleari, F.; Parravicini, A.; Sottocornola-Spinelli, A.; Tonazzo, A.

    2003-09-01

    The calibration and monitoring system constructed for the HARP experiment scintillator-based time of flight system is described. It is based on a Nd-Yag laser with passive Q-switch and active/passive mode-locking, with a custom made laser light injection system based on a bundle of IR monomode optical fibers. A novel ultrafast InGaAs MSM photodiode, with 30 ps risetime, has been used for the laser pulse timing . The first results from the 2001-2002 data taking are presented, showing that drifts in timing down to about 70 ps can be traced.

  11. Calibration System for SLC 476MHz to 2856MHz Multipliers

    SciTech Connect

    Akre, Ron; /SLAC

    2011-08-26

    The two mile long Main Drive Line (MDL) distributes 476MHz at each of the 31 sectors along its length. Each of the 31 sectors has a six times multiplier which drives the 2856MHz phase reference system for that sector. This system is used to set and maintain phase of the accelerator structures over time. During previous runs significant down time resulted from sector phasing which was required after multiplier replacement. A system was designed to calibrate the phase of the 476MHz input to the phase of the 2856MHz output of the multiplier units. This enabled multipliers to be replaced without rephasing sectors.

  12. Improved spatial calibration for the CXRS system on EAST

    NASA Astrophysics Data System (ADS)

    Yin, X. H.; Li, Y. Y.; Fu, J.; Jiang, D.; Feng, S. Y.; Gu, Y. Q.; Cheng, Y.; Lyu, B.; Shi, Y. J.; Ye, M. Y.; Wan, B. N.

    2016-11-01

    A Charge eXchange Recombination Spectroscopy (CXRS) diagnostic system has been developed to measure profiles of ion temperature and rotation since 2014 on EAST. Several techniques have been developed to improve the spatial calibration of the CXRS diagnostic. The sightline location was obtained by measuring the coordinates of three points on each sightline using an articulated flexible coordinate measuring arm when the vessel was accessible. After vacuum pumping, the effect of pressure change in the vacuum vessel was evaluated by observing the movement of the light spot from back-illuminated sightlines on the first wall using the newly developed articulated inspection arm. In addition, the rotation of the periscope after vacuum pumping was derived by using the Doppler shift of neutral beam emission spectra without magnetic field. Combining these techniques, improved spatial calibration was implemented to provide a complete and accurate description of the EAST CXRS system. Due to the effects of the change of air pressure, a ˜0.4° periscope rotation, yielding a ˜20 mm movement of the major radius of observation positions to the lower field side, was derived. Results of Zeeman splitting of neutral beam emission spectra with magnetic field also showed good agreement with the calibration results.

  13. Laboratory and field portable system for calibrating airborne multispectral scanners

    SciTech Connect

    Kuhlow, W.W.

    1981-01-01

    Manufacturers of airborne multispectral scanners suggest procedures for calibration and alignment that are usually awkward and even questionable. For example, the procedures may require: separating the scanner from calibration and alignment sources by 100 feet or more, employing folding mirrors, tampering with the detectors after the procedures are finished, etc. Under the best of conditions such procedures require about three hours yielding questionable confidence in the results; under many conditions, however, procedures commonly take six to eight hours, yielding no satisfactory results. EG and G, Inc. has designed and built a calibration and alignment system for airborne scanners which solves those problems, permitting the procedures to be carried out in about two to three hours. This equipment can be quickly disassembled, transported with the scanner in all but the smallest single engine aircraft, and reassembled in a few hours. The subsystems of this equipment are commonly available from manufacturers of optical and electronic equipment. The other components are easily purchased, or fabricated. The scanner discussed is the Model DS-1260 digital line scanner manufactured by Daedalus Enterprises, Inc. It is a dual-sensor system which is operated in one of two combination of sensors: one spectrometer head (which provides simultaneous coverage in ten visible channels) and one thermal infrared detector, or simply two thermal infrared detectors.

  14. New Method for Calibration for Hyperspectral Pushbroom Imaging Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Olive, Dan; ONeal, Duane; Schere, Chris; Nixon, Thomas; May, Chengye; Ryan, Jim; Stanley, Tom; Witcher, Kern

    1999-01-01

    A new, easy-to-implement approach for achieving highly accurate spectral and radiometric calibration of array-based, hyperspectral pushbroom imagers is presented in this paper. The equivalence of the plane of the exit port of an integrating sphere to a Lambertian surface is utilized to provide a field-filling radiance source for the imager. Several different continuous wave lasers of various wavelengths and a quartz-tungsten-halogen lamp internally illuminate the sphere. The imager is positioned to "stare" into the port, and the resultant data cube is analyzed to determine wavelength calibrations, spectral widths of channels, radiometric characteristics, and signal-to-noise ratio, as well as an estimate of signal-to-noise performance in the field. The "smile" (geometric distortion of spectra) of the system can be quickly ascertained using this method. As the price and availability of solid state laser sources improve, this technique could gain wide acceptance.

  15. Black-box calibration for complex-system simulation.

    PubMed

    Forrester, Alexander I J

    2010-08-13

    Predicting or measuring the output of complex systems is an important and challenging part of many areas of science. If multiple observations are required for parameter studies and optimization, accurate, computationally intensive predictions or expensive experiments are intractable. This paper looks at the use of Gaussian-process-based correlations to correct simple computer models with sparse data from physical experiments or more complex computer models. In essence, physics-based computer codes and experiments are replaced by fast problem-specific statistics-based codes. Two aerodynamic design examples are presented. First, a cheap two-dimensional potential-flow solver is calibrated to represent the flow over the wing of an unmanned air vehicle. The rear wing of a racing car is then optimized using rear-wing simulations calibrated to include the effects of the flow over the whole car.

  16. Calibration system for measuring the radon flux density.

    PubMed

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  17. A new in situ electrical calibration system for high temperature Calvet calorimeters.

    PubMed

    Razouk, Refat; Hay, Bruno; Himbert, Marc

    2013-09-01

    A new in situ high temperature electrical calibration system was developed at Laboratoire National de Metrologie et d'Essais, Laboratoire Commun de Metrologie and integrated into a heat flux Calvet calorimeter in order to perform accurate and reliable measurements of enthalpy of fusion that are directly traceable to the International System of Units (SI). This system has been designed to enable the calibration of the calorimeter by electrical substitution (Joule effect) as well as the measurement of enthalpy of fusion in perfectly identical experimental conditions. The metrological features (repeatability, linearity, etc.) of the calorimeter have been evaluated with this system by investigating the influence of some parameters (level of energy, dissipation time, and temperature) on the determination of the sensitivity factor of its thermopiles. Two different procedures, for the calibration and the enthalpy measurements with this new electrical calibration system, have been implemented and tested by measuring the enthalpy of fusion of high purity 6N tin. The results obtained are in very good agreement with those measured by other National Metrology Institutes on the same material. PMID:24089851

  18. A new in situ electrical calibration system for high temperature Calvet calorimeters.

    PubMed

    Razouk, Refat; Hay, Bruno; Himbert, Marc

    2013-09-01

    A new in situ high temperature electrical calibration system was developed at Laboratoire National de Metrologie et d'Essais, Laboratoire Commun de Metrologie and integrated into a heat flux Calvet calorimeter in order to perform accurate and reliable measurements of enthalpy of fusion that are directly traceable to the International System of Units (SI). This system has been designed to enable the calibration of the calorimeter by electrical substitution (Joule effect) as well as the measurement of enthalpy of fusion in perfectly identical experimental conditions. The metrological features (repeatability, linearity, etc.) of the calorimeter have been evaluated with this system by investigating the influence of some parameters (level of energy, dissipation time, and temperature) on the determination of the sensitivity factor of its thermopiles. Two different procedures, for the calibration and the enthalpy measurements with this new electrical calibration system, have been implemented and tested by measuring the enthalpy of fusion of high purity 6N tin. The results obtained are in very good agreement with those measured by other National Metrology Institutes on the same material.

  19. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  20. High-energy x-ray backlighter spectrum measurements using calibrated image plates

    NASA Astrophysics Data System (ADS)

    Maddox, B. R.; Park, H. S.; Remington, B. A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M. J.; Ma, Q.

    2011-02-01

    The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji™ MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver Kα x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

  1. High-energy x-ray backlighter spectrum measurements using calibrated image plates

    SciTech Connect

    Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q.

    2012-10-10

    The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

  2. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  3. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry.

    PubMed

    Howell, R M; Burgett, E A; Wiegel, B; Hertel, N E

    2010-12-01

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (Burgett, 2008 and Howell et al., 2009).However, when the initial test of the system was carried-out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9 % and 16.7 % and the arithmetic mean for all spheres was (10.9 ± 1.8) %. These sphere specific correction factors will be applied for all future measurements carried-out with the BSE.

  4. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Air brake system calibration, maintenance, and... Inspections and Tests § 229.29 Air brake system calibration, maintenance, and testing. (a) A locomotive's air brake system shall receive the calibration, maintenance, and testing as prescribed in this section....

  5. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Air brake system calibration, maintenance, and... Inspections and Tests § 229.29 Air brake system calibration, maintenance, and testing. (a) A locomotive's air brake system shall receive the calibration, maintenance, and testing as prescribed in this section....

  6. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Air brake system calibration, maintenance, and... Inspections and Tests § 229.29 Air brake system calibration, maintenance, and testing. (a) A locomotive's air brake system shall receive the calibration, maintenance, and testing as prescribed in this section....

  7. Photometric Calibrations of Standard Star Fields for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Wyatt, Samuel; Tucker, D. L.; Smith, A.

    2014-01-01

    The Dark Energy Survey (DES) is a 5000 square deg grizY imaging survey to be conducted using the new 3 square deg (2. 2-diameter) wide-field mosaic camera (DECam) on the CTIO Blanco 4-m telescope. The primary scientific goal of the DES is to constrain dark energy cosmological parameters via four complementary methods: galaxy cluster counting, weak lensing, galaxy angular correlations, and Type Ia supernovae, supported by precision photometric redshifts. Here, we describe code developed to calibrate additional standard star fields in the DES natural grizY system, and we describe our initial results using the data obtained during the DES Science Verification Phase. Some of these standard stars will be used to supplement those currently being used for nightly calibrations. Others are to be used as local tertiary standards scattered throughout the DES footprint in order to anchor the DES global relative calibrations against large-scale spatial gradients, as well as to tie the whole DES data set to an initial absolute flux scale.

  8. A geometric calibration method for cone beam CT systems

    SciTech Connect

    Yang, Kai; Kwan, Alexander L. C.; Miller, DeWitt F.; Boone, John M.

    2006-06-15

    Cone beam CT systems are being deployed in large numbers for small animal imaging, dental imaging, and other specialty applications. A new high-precision method for cone beam CT system calibration is presented in this paper. It uses multiple projection images acquired from rotating point-like objects (metal ball bearings) and the angle information generated from the rotating gantry system is also used. It is assumed that the whole system has a mechanically stable rotation center and that the detector does not have severe out-of-plane rotation (<2 deg.). Simple geometrical relationships between the orbital paths of individual BBs and five system parameters were derived. Computer simulations were employed to validate the accuracy of this method in the presence of noise. Equal or higher accuracy was achieved compared with previous methods. This method was implemented for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed tomographic images demonstrated that the proposed method is robust and easy to implement with high precision.

  9. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given. {copyright} {ital 1998 American Institute of Physics.}

  10. Laser Tracker Calibration - Testing the Angle Measurement System -

    SciTech Connect

    Gassner, Georg; Ruland, Robert; /SLAC

    2008-12-05

    Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. A test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.

  11. Metrology system for the calibration of multi-dof mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Sarajlic, Mirsad; Chevalley, Fabien

    2014-07-01

    This paper presents a novel absolute position metrology system developed in our institute based on a concept using industrial vision by which USB cameras observe targets provided with special dots patterns. The system was originally devised for precision 2D measurements, then extended to 6-degree-of-freedom setups. This particular metrology system has been developed for testing and calibrating the precision hexapods aligning the secondary mirrors of the ESO VLTI auxiliary telescopes but its principle can be used for measuring the accuracy of any multi-degree-of-freedom mechanisms. The accuracy/resolution of the metrology system is typically 2-5 μm along linear degrees of freedom, respectively 5 arcsec for tip-tilt. This method is particularly affordable in cost, robust, yet accurate enough for most precision measurements in astronomical optomechanics.

  12. PreCam: A Step Towards the Photometric Calibration of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.; PreCam Team; DES Collaboration

    2016-05-01

    The Dark Energy Survey (DES) will be taking the next step in probing the properties of Dark Energy and in understanding the physics of cosmic acceleration. A step towards the photometric calibration of DES is to have a quick, bright survey in the DES footprint (PreCam), using a pre-production set of the Dark Energy Camera (DECam) CCDs and a set of 100 mm×100 mm DES filters. The objective of the PreCam Survey is to create a network of calibrated DES grizY standard stars that will be used for DES nightly calibrations and to improve the DES global relative calibrations. Here, we describe the first year of PreCam observation, results, and photometric calibrations.

  13. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  14. The calibration unit and detector system tests for MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Bauer, S. M.; Biswas, I.; Fechner, T.; Hahn, T.; Olaya, J.-C.; Popow, E.; Roth, M. M.; Streicher, O.; Weilbacher, P.; Bacon, R.; Laurent, F.; Laux, U.; Lizon, J. L.; Loupias, M.; Reiss, R.; Rupprecht, G.

    2010-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the ESO Very Large Telescope. After completion of the Final Design Review in 2009, MUSE is now in its manufacture and assembly phase. To achieve a relative large field-of-view with fine spatial sampling, MUSE features 24 identical spectrograph-detector units. The acceptance tests of the detector sub-systems, the design and manufacture of the calibration unit and the development of the Data Reduction Software for MUSE are under the responsibility of the AIP. The optical design of the spectrograph implies strict tolerances on the alignment of the detector systems to minimize aberrations. As part of the acceptance testing, all 24 detector systems, developed by ESO, are mounted to a MUSE reference spectrograph, which is illuminated by a set of precision pinholes. Thus the best focus is determined and the image quality of the spectrograph-detector subsystem across wavelength and field angle is measured.

  15. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... torque and engine speed measurement transducers shall be calibrated at least once each month with the...) When calibrating the engine flywheel torque transducer, any lever arm used to convert a weight or...

  16. Calibration and Data Analysis for the KCIF Fast Magnetics System

    SciTech Connect

    Heeter, R. F.; Fasoli, A. F.; Ali-Arshad, A. S.; Moret, J, M.

    2000-03-01

    Alfven Eigenmodes (AEs) and other magnetohydrodynamic (MHD) phenomena have been studied at the Joint European Torus (JET) using a new 8-channel, 4 s, 1 MHz, 12-bit data acquisition system KC1F in conjunction with the JET fast Mirnov magnetic fluctuation pickup coils. The JET magnetic pickup coils were calibrated for the first time in the range 30-460 kHz using a new remote calibration technique which accounts for the presence of the first few LRC circuit resonances. A data-processing system has been developed within the MATLAB software environment to produce spectrograms of fluctuation amplitude and toroidal mode number versus frequency and time. The analysis software has been automated to allow routine overnight production of spectrogram web pages. Modes with amplitudes {delta}B/B {ge} 10{sup -8} and toroidal mode numbers |n| < 32 are now routinely detected. A pulse-characterization database has also been developed to select for the analysis of various useful subsets of the 4000+ JET discharges for which KC1F data is now available. Based on the work presented here and recent advances in data-acquisition technology, it should now be possible to obtain complete diagnostic data on the AEs.

  17. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  18. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Jain, Peyush

    2014-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  19. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    ERIC Educational Resources Information Center

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  20. Calibrating a novel multi-sensor physical activity measurement system

    PubMed Central

    John, D; Liu, S; Sasaki, J E; Howe, C A; Staudenmayer, J; Gao, R X; Freedson, P S

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper, describes a novel multi-sensor ‘Integrated PA Measurement System’ (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors vs. outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance feasibility of free-living use are proposed and refinement of the prediction techniques is discussed. PMID:21813941

  1. A Traceable Ground to On-Orbit Radiometric Calibration System for the Solar Reflective Wavelength Region

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Georgiev, Georgi

    2012-01-01

    This paper describes the combination of a Mie scattering spectral BSDF and BTDF albedo standard whose calibration is traceable to the NIST SIRCUS Facility or the NIST STARR II Facility. The Space-based Calibration Transfer Spectroradiometer (SCATS) sensor uses a simple, invariant optical configuration and dedicated narrow band spectral channel modules to provide very accurate, polarization-insensitive, stable measurements of earth albedo and lunar disk albedo. Optical degradation effects on calibration stability are eliminated through use of a common optical system for observations of the Sun, Earth, and Moon. The measurements from space would be traceable to SI units through preflight calibrations of radiance and irradiance at NIST's SIRCUS facility and the invariant optical system used in the sensor. Simultaneous measurements are made in multiple spectral channels covering the solar reflective wavelength range of 300 nm to 2.4 microns. The large dynamic range of signals is handled by use of single-element, highly-linear detectors, stable discrete electronic components, and a non imaging optical configuration. Up to 19 spectral modules can be mounted on a single-axis drive to give direct pointing at the Earth and at least once per orbit view of the Sun and Moon. By observing the Sun on every orbit, the most stringent stability requirements of the system are limited to short time periods. The invariant optical system for both radiance and irradiance measurements also give excellent transfer to-orbit SI traceability. Emerging instrumental requirements for remotely sensing tropospheric trace species have led to a rethinking by some of the paradigm for Systeme International d'Unites (SI) traceability of the spectral irradiance and radiance radiometric calibrations to spectral albedo (sr(exp -1)) which is not a SI unit. In the solar reflective wavelength region the spectral albedo calibrations are tied often to either the spectral albedo of a solar diffuser or the Moon

  2. Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group

    SciTech Connect

    Butler, Wayne M.; Bice, William S. Jr.; DeWerd, Larry A.; Hevezi, James M.; Huq, M. Saiful; Ibbott, Geoffrey S.; Palta, Jatinder R.; Rivard, Mark J.; Seuntjens, Jan P.; Thomadsen, Bruce R.

    2008-09-15

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations.

  3. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group.

    PubMed

    Butler, Wayne M; Bice, William S; DeWerd, Larry A; Hevezi, James M; Huq, M Saiful; Ibbott, Geoffrey S; Palta, Jatinder R; Rivard, Mark J; Seuntjens, Jan P; Thomadsen, Bruce R

    2008-09-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations. PMID:18841836

  4. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  5. High-Energy Calibration of a BGO Detector of the GLAST Burst Monitor

    SciTech Connect

    von Kienlin, Andreas; Fishman, Gerald J.; Briggs, Michael S.; Godfrey, Gary L.; Steinle, Helmut; /Garching, Max Planck Inst., MPE

    2011-11-30

    The understanding of the instrumental response of the GLAST Burst Monitor BGO detectors at energies above the energy range which is accessible by common laboratory radiation sources (< 4.43 MeV), is important, especially for the later cross-calibration with the LAT response in the overlap region between {approx}20 MeV to 30 MeV. In November 2006 the high-energy calibration of the GBM-BGO spare detector was performed at the small Van-de-Graaff accelerator at SLAC. High-energy gamma-rays from excited {sup 8}Be* (14.6 MeV and 17.5 MeV) and {sup 16}O* (6.1 MeV) were generated through (p, {gamma})-reactions by irradiating a LiF-target. For the calibration at lower energies radioactive sources were used. The results, including spectra, the energy/channel-relation and the dependence of energy resolution are presented.

  6. Towards improved local hybrid functionals by calibration of exchange-energy densities

    SciTech Connect

    Arbuznikov, Alexei V. E-mail: martin.kaupp@tu-berlin.de; Kaupp, Martin E-mail: martin.kaupp@tu-berlin.de

    2014-11-28

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.

  7. Towards improved local hybrid functionals by calibration of exchange-energy densities

    NASA Astrophysics Data System (ADS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-11-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.

  8. (Sn)DICE: A Calibration System Designed for Wide Field Imagers

    NASA Astrophysics Data System (ADS)

    Regnault, N.; Barrelet, E.; Guyonnet, A.; Juramy, C.; Rocci, P.-F.; Le Guillou, L.; Schahmanèche, K.; Villa, F.

    2016-05-01

    Dark Energy studies with type Ia supernovae set very tight constraints on the photometric calibration of the imagers used to detect the supernovae and follow up their flux variations. Among the key challenges is the measurement of the shape and normalization of the instrumental throughput. The DICE system was developed by members of the Supernova Legacy Survey (SNLS) , building upon the lessons learnt working with the MegaCam imager. It consists in a very stable light source, placed in the telescope enclosure, and generating compact, conical beams, yielding an almost flat illumination of the imager focal plane. The calibration light is generated by narrow spectrum LEDs selected to cover the entire wavelength range of the imager. It is monitored in real time using control photodiodes. A first DICE demonstrator, SnDICE has been installed at CFHT. A second generation instrument (SkyDICE) has been installed in the enclosure of the SkyMapper telescope. We present the main goals of the project. We discuss the main difficulties encoutered when trying to calibrate a wide field imager, such as MegaCam (or SkyMapper) using such a calibrated light source.

  9. Rotating pressure measurement system using an on board calibration standard

    NASA Technical Reports Server (NTRS)

    Senyitko, Richard G.; Blumenthal, Philip Z.; Freedman, Robert J.

    1991-01-01

    A computer-controlled multichannel pressure measurement system was developed to acquire detailed flow field measurements on board the Large Low Speed Centrifugal Compressor Research Facility at the NASA Lewis Research Center. A pneumatic slip ring seal assembly is used to transfer calibration pressures to a reference standard transducer on board the compressor rotor in order to measure very low differential pressures with the high accuracy required. A unique data acquisition system was designed and built to convert the analog signal from the reference transducer to the variable frequency required by the multichannel pressure measurement system and also to provide an output for temperature control of the reference transducer. The system also monitors changes in test cell barometric pressure and rotating seal leakage and provides an on screen warning to the operator if limits are exceeded. The methods used for the selection and testing of the the reference transducer are discussed, and the data acquisition system hardware and software design are described. The calculated and experimental data for the system measurement accuracy are also presented.

  10. 1992 Yearly calibration of Pacific Northwest Laboratory`s gross gamma-ray borehole geophysical logging system

    SciTech Connect

    Arthur, R J

    1992-07-01

    This report describes the 1992 yearly calibration of a gross gamma-ray geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory. The calibration was conducted to permit the continued use of this system for geologic and hydrologic studies associated with remedial investigation at the Hanford Site. The calibration is limited to the probe identified as CG27A-97. Primary calibrations to equivalent-uranium units were conducted in DOE borehole model standards that reside on the Hanford Site. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. A previous correlation for relating observed count rate in before- and after-logging field calibrations to equivalent-uranium concentrations was confirmed for field source Ra-20S-82. A computer-based digital collection/recording system was used simultaneously on many of the procedures with the original analog system so that the performance of the two collection systems could be correlated and compared at some future date.

  11. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  12. Further investigation into calibration techniques for a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Eskins, J.

    1986-01-01

    Calibrations performed on three different magnetic cores for wind tunnel models suspended in the Southampton University Magnetic Suspension and Balance System (SUMSBS) are detailed. The first core investigated was the Southampton University pilot Superconducting Solenoid model, first flown in July 1983. Static calibrations of lift force, drag force and pitching moment, together with lift force and pitching moment calibrations determined by the dynamic method are detailed in this report. Other types of core investigated in a similar manner were conventional permanent magnets, Alnico and samarium-cobalt. All static calibrations gave a linear dependence of force on electromagnet current as expected. Dynamic calibrations are faster to perform but are proving to be not as easily analyzed as static calibrations. There are still some effects to be explained but dynamic lift calibration results were obtained agreeing to within 2 percent of the static calibration value.

  13. Radiometric versus thermometric calibration of IR test systems: which is best?

    NASA Astrophysics Data System (ADS)

    Richardson, Philip I.

    1991-09-01

    Radiometric calibration of military IR test equipment is an approach being explored to avoid perceived shortcomings of traditional thermometric calibration. This issue has profound impact on the testing of military systems: the lack of internally consistent calibration architecture can cost military customers millions of dollars in increased maintenance and spares costs due to test result inconsistencies. An example is presented to show that the lack of a standard spectral response definition in this region, and the difficulty in making such a definition, make the radiometric calibration approach seem questionable for the foreseeable future. Calibration errors of more than 7% (not even a worst-case scenario) can result. The best approach to assuring test accuracy and calibration consistency is to employ thermometric calibration in conjunction with intelligent test system design: high, flat spectral transmittance of the test system and high emissivity targets and sources. These are achievable today with proper application of existing materials and coatings.

  14. 1993 yearly calibration of Pacific Northwest Laboratory`s gross gamma-ray borehole geophysical logging system

    SciTech Connect

    Arthur, R.J.

    1993-09-01

    This report describes the 1993 yearly calibration of a gross gamma-ray geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory. The calibration was conducted to permit the continued use of this system for geologic and hydrologic studies associated with remedial investigation at the Hanford Site. The calibration is limited to the probe identified as CG27A-97 and applies to a new probe detector crystal that replaced the former detector in January 1993, after a crack was discovered. Primary calibrations to equivalent-uranium units were conducted in DOE borehole model standards that reside on the Hanford Site. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which both contain sections with relatively low equivalent-uranium concentrations. Model SBH/SBL has now been countersunk at the site so that data were taken by suspending the probe downhole. Model SBA/SBB is still lying horizontally above ground at the site, so data were logged as in previous calibrations at the Hanford site by pushing the probe into the hole and drawing it out with the logging equipment. A previous correlation for relating observed count rate in before- and after-logging field calibrations to equivalent-uranium concentrations was confirmed for field source Ra-20S-82. A computer-based digital collection/recording system was used simultaneously on many of the procedures with the original analog system so that the performance of the two collection systems could be correlated and compared. The digital system was calibrated this year to confirm its linearity and to establish correlation with the analog data (i.e., chart-recorder output).

  15. Combined non-contact coordinate measurement system and calibration method

    NASA Astrophysics Data System (ADS)

    Fan, Yiyan; Zhao, Bin

    2015-07-01

    A combined non-contact measurement system comprising attitude angle sensor, angle encoder, laser rangefinder, and total station is adopted to measure the spatial coordinate of the hidden zones in large-scale space. The laser from the total station is aimed at the optical system of the attitude angle sensor to obtain the spatial coordinate and the spatial attitude angles. Then, the angle encoder driven by a stepping motor is rotated to drive the laser rangefinder to direct at the measured point. This approach is used to obtain the distance from the rangefinder to the measured point and the angle of the angle encoder. Finally, the spatial coordinates of the measured point can be calculated by using these measured parameters. For the measurement system, we propose a weighted least squares (WLS) calibration method, in which weights are determined for the angular distribution density. Experimental results show that the measurement system could expand the scale and achieve reliable precision during combined measurement and the measurement error of the weighted least squares method is less than that of the ordinary least square (OLS) method.

  16. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS

    SciTech Connect

    Hansen, Brad M. S.

    2010-11-01

    We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period of equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.

  17. Flux density calibration in diffuse optical tomographic systems

    NASA Astrophysics Data System (ADS)

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M.

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (U) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  18. Flux density calibration in diffuse optical tomographic systems.

    PubMed

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (Umeasured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  19. Calibrations of phase and ratio errors of current and voltage channels of energy meter

    NASA Astrophysics Data System (ADS)

    Mlejnek, P.; Kaspar, P.

    2013-06-01

    This paper deals with measurement of phase and ratio errors of current and voltage channels of a new produced energy meter. This fully digitally controlled energy meter combines the classical static energy meter with power quality analyzer. The calibration of phase and ratio errors in wide frequency range is then necessary. Paper shows the results of error measurement, introduces the mathematical approximations and describes the calibration constants. It allows error compensation and power calculation of particular harmonics. The electric power of the higher harmonics can be interesting information of distributed electric energy quality.

  20. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    PubMed

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).

  1. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Astrophysics Data System (ADS)

    Chander, G.; Jain, P.

    2014-12-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, and coasts environments, which supports the nation's economy and protects lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system is a NOAA system developed and deployed by JPSS Ground Project to support Calibration and Validation (Cal/Val), Algorithm Integration, Investigation, and Tuning, and Data Quality Monitoring. It is a mature, deployed system that supports SNPP mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is a robust, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards. "[Pending NASA Goddard Applied Engineering & Technology Directorate (AETD) Approval]"

  2. Spatial resolution study and power calibration of the high-k scattering system on NSTX

    SciTech Connect

    Lee, W.; Park, H. K.; Cho, M. H.; Namkung, W.; Smith, D. R.; Domier, C. W.; Luhmann, N. C. Jr

    2008-10-15

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  3. A real-time camera calibration system based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  4. The impact of calibration phantom errors on dual-energy digital mammography

    PubMed Central

    Mou, Xuanqin; Chen, Xi; Sun, Lijun; Yu, Hengyong; Ji, Zhen; Zhang, Lei

    2010-01-01

    Microcalcification is one of the earliest and main indicators of breast cancer. Because dual-energy digital mammography could suppress the contrast between the adipose and glandular tissues of the breast, it is considered a promising technique that will improve the detection of microcalcification. In dual-energy digital mammography, the imaged object is a human breast, while in calibration measurements only the phantoms of breast tissue equivalent materials are available. Consequently, the differences between phantoms and breast tissues will lead to calibration phantom errors. Based on the dual-energy imaging model, formulae of calibration phantom errors are derived in this paper. Then, this type of error is quantitatively analyzed using publicly available data and compared with other types of error. The results demonstrate that the calibration phantom error is large and dominant in dual-energy mammography, seriously decreasing calculation precision. Further investigations on the physical meaning of calibration phantom error reveal that the imaged objects with the same glandular ratio have identical calibration phantom error. Finally, an error correction method is proposed based on our findings. PMID:18936520

  5. A dual-respiration chamber system with automated calibration.

    PubMed

    Schoffelen, P F; Westerterp, K R; Saris, W H; Ten Hoor, F

    1997-12-01

    This study characterizes respiration chambers with fully automated calibration. The system consists of two 14-m3 pull-type chambers. Care was taken to provide a friendly environment for the subjects, with the possibility of social contact during the experiment. Gas analysis was automated to correct for analyzer drift and barometric pressure variations and to provide ease of use. Methods used for checking the system's performance are described. The gas-analysis repeatability was within 0.002%. Results of alcohol combustion (50-350 ml/min CO2) show an accuracy of 0.5 +/- 2.0 (SD) % for O2 consumption and -0.3 +/- 1.6% for CO2 production for 2- to 24-h experiments. It is concluded that response time is not the main factor with respect to the smallest practical measurement interval (duration); volume, mixing, gas-analysis accuracy, and levels of O2 consumption and CO2 production are at least equally important. The smallest practical interval was 15-25 min, as also found with most chamber systems described in the literature. We chose to standardize 0.5 h as the minimum measurement interval. PMID:9390982

  6. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  7. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  8. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... convert a weight or a force through a distance into a torque shall be used in a horizontal position (±5... torque calculated by taking the product of an NIST traceable weight or force and a sufficiently...

  9. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... convert a weight or a force through a distance into a torque shall be used in a horizontal position (±5... torque calculated by taking the product of an NIST traceable weight or force and a sufficiently...

  10. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... convert a weight or a force through a distance into a torque shall be used in a horizontal position (±5... torque calculated by taking the product of an NIST traceable weight or force and a sufficiently...

  11. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gravitational constant at the test site may be accounted for if desired. (B) Lever arm. A lever arm with a... technique involves the calibration of a master load cell (i.e., dynamometer case load cell). This... hydraulically actuated precalibrated master load cell. This calibration is then transferred to the...

  12. Wind tunnel and flight calibration of the Shuttle Orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.; Tymms, D. E.

    1978-01-01

    The Space Shuttle Orbiter air data system has been subjected to wind tunnel testing including three subsonic tests and one reference probe calibration test in order to obtain preflight calibration. Calibration curves for angle of attack, static pressure, and total pressure are given in the 0.35-0.55 Mach number range which represents flight conditions. The major difficulties encountered concerned the reference pressure of the facility, model-probe scale discrepancies, tunnel changes and blockage effects. Actual flight data calibrations from the approach and landing test program were used to modify the wind tunnel calibrations.

  13. Precise astronomical flux calibration and its impact on studying the nature of the dark energy

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher W.; Brown, Yorke J.

    2015-12-01

    Measurements of the luminosity of Type Ia supernovae versus redshift provided the original evidence for the accelerating expansion of the Universe and the existence of dark energy. Despite substantial improvements in survey methodology, systematic uncertainty in flux calibration dominates the error budget for this technique, exceeding both statistics and other systematic uncertainties. Consequently, any further collection of Type Ia supernova data will fail to refine the constraints on the nature of dark energy unless we also improve the state of the art in astronomical flux calibration to the order of 1%. We describe how these systematic errors arise from calibration of instrumental sensitivity, atmospheric transmission and Galactic extinction, and discuss ongoing efforts to meet the 1% precision challenge using white dwarf stars as celestial standards, exquisitely calibrated detectors as fundamental metrologic standards, and real-time atmospheric monitoring.

  14. The Chandra High-Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight

    NASA Astrophysics Data System (ADS)

    Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; McGuirk, Michael; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-10-01

    Details of the design, fabrication, and ground and flight calibration of the High Energy Transmission Grating (HETG) on the Chandra X-Ray Observatory are presented after 5 years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly 6 years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  15. Note: An improved calibration system with phase correction for electronic transformers with digital output

    SciTech Connect

    Cheng, Han-miao Li, Hong-bin

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  16. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2016-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.

  17. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Wang, Zhen; Jiang, Hongzhi; Xu, Yang; Dong, Chao

    2015-05-01

    Calibration for stereo vision system plays an important role in the field of machine vision applications. The existing accurate calibration methods are usually carried out by capturing a high-accuracy calibration target with the same size as the measurement view. In in-situ 3D measurement and in large field of view measurement, the extrinsic parameters of the system usually need to be calibrated in real-time. Furthermore, the large high-accuracy calibration target in the field is a big challenge for manufacturing. Therefore, an accurate and rapid calibration method in the in-situ measurement is needed. In this paper, a novel calibration method for stereo vision system is proposed based on phase-based matching method and the bundle adjustment algorithm. As the camera is usually mechanically locked once adjusted appropriately after calibrated in lab, the intrinsic parameters are usually stable. We emphasize on the extrinsic parameters calibration in the measurement field. Firstly, the matching method based on heterodyne multi-frequency phase-shifting technique is applied to find thousands of pairs of corresponding points between images of two cameras. The large amount of pairs of corresponding points can help improve the accuracy of the calibration. Then the method of bundle adjustment in photogrammetry is used to optimize the extrinsic parameters and the 3D coordinates of the measured objects. Finally, the quantity traceability is carried out to transform the optimized extrinsic parameters from the 3D metric coordinate system into Euclid coordinate system to obtain the ultimate optimal extrinsic parameters. Experiment results show that the procedure of calibration takes less than 3 s. And, based on the stereo vision system calibrated by the proposed method, the measurement RMS (Root Mean Square) error can reach 0.025 mm when measuring the calibrated gauge with nominal length of 999.576 mm.

  18. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control

    PubMed Central

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-01-01

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost. PMID:27258272

  19. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control.

    PubMed

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-01-01

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost. PMID:27258272

  20. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  1. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    PubMed

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-10-24

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  2. Development and Characterization of a Low-Pressure Calibration System for Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Everhart, Joel L.; Rhode, Matthew N.

    2004-01-01

    Minimization of uncertainty is essential for accurate ESP measurements at very low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources requires a well defined and controlled calibration method. A calibration system has been constructed and environmental control software developed to control experimentation to eliminate human induced error sources. The initial stability study of the calibration system shows a high degree of measurement accuracy and precision in temperature and pressure control. Control manometer drift and reference pressure instabilities induce uncertainty into the repeatability of voltage responses measured from the PSI System 8400 between calibrations. Methods of improving repeatability are possible through software programming and further experimentation.

  3. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    SciTech Connect

    Dong, X; Elder, E; Roper, J; Dhabaan, A

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared to EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.

  4. Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture

    NASA Astrophysics Data System (ADS)

    Jurčević, M.; Hegeduš, H.; Golub, M.

    2010-01-01

    Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.

  5. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect

    Morrison, Hali Menon, Geetha; Sloboda, Ron S.

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  6. Multi-Point Thomson Scattering System Calibration and Measurements on HBT-EP

    NASA Astrophysics Data System (ADS)

    Donald, G. V.; Levesque, J. P.; Stoafer, C. C.; Mauel, M. E.

    2015-11-01

    A Thomson scattering (TS) system has been successfully installed and calibrated for diagnostics of HBT-EP. The TS system provides three spatial point measurements and has significantly improved upon the previous single point system. Analysis of Rayleigh Scattering was performed for an absolute density calibration of the TS system. Energy fluctuations in the output pulse from the Nd:YAG laser are individually recorded and accounted for using an integrating sphere and photodetector. Te and ne profiles have been investigated for varying wall configuration changes, including insertion of ferritic wall elements. We report our results, for the three spatial points, and measurements of the Te and ne evolution through typical HBT-EP discharges. The three fiber bundle system will be upgraded within the next grant period to allow measurement of ten spatial points. The ten point system will enhance our equilibrium reconstruction capability, improve stability analysis of the HBT-EP discharges, and allow for further understanding of the plasma characteristics during resistive wall mode (RWM) activity and active control experiments. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  7. Test of Regional Calibrations for a NIRS Soil Mapping System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared spectroscopy (NIRS) is an effective technique for simultaneously measuring several soil properties including soil organic carbon, total nitrogen, moisture, and cation exchange capacity. However, developing robust calibration models for predicting soil properties from spectral measureme...

  8. TOPEX microwave radiometer system calibration - Refining the SMMR heritage

    NASA Astrophysics Data System (ADS)

    Ruf, Christopher S.; Janssen, Michael A.; Keihm, Stephen J.

    A modified version of the Scanning multichannel Microwave Radiometer (SMMR) will be used for wet tropospheric path-delay corrections to the TOPEX/POSEIDON radar altimeter measurements. A number of the sources of calibration problems encountered by SMMR onboard the Seasat and Nimbus-7 platforms have been identified, and appropriate corrections have been attempted. Calibration hardware corrections include a more representative modeling of the microwave losses and reflections, and a reduction in the thermal gradients expected across this hardware through the use of radomes and sun shades and the choice of pertinent orbit parameters. Antenna calibration corrections include a postlaunch fine tuning of the antenna pattern correction algorithm to accommodate small errors in the prelaunch antenna pattern measurements. This is accomplished by overpasses of ground-based, upward-looking water vapor radiometers. An absolute calibration accuracy of 1.0 K or less is anticipated.

  9. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1986-01-01

    A list of personnel who have contributed to the program is provided. Sixteen publications and presentations are also listed. A preprint summarizing five in-flight absolute radiometric calibrations of the solar reflective bands of the LANDSAT-5 Thematic Mapper is presented. The 23 band calibrations made on the five dates show a 2.5% RMS variation from the mean as a percentage of the mean. A preprint is also presented that discusses the reflectance-based results of the above preprint. It proceeds to analyze and present results of a second, independent calibration method based on radiance measurements from a helicopter. Radiative transfer through the atmosphere, model atmospheres, the calibration methodology used at White Sands and the results of a sensitivity analysis of the reflectance-based approach is also discussed.

  10. Extrapolation chamber mounted on perspex for calibration of high energy photon and electron beams from a clinical linear accelerator

    PubMed Central

    Ravichandran, R.; Binukumar, J. P.; Sivakumar, S. S.; Krishnamurthy, K.; Davis, C. A.

    2009-01-01

    The objective of the present study is to establish radiation standards for absorbed doses, for clinical high energy linear accelerator beams. In the nonavailability of a cobalt-60 beam for arriving at Nd, water values for thimble chambers, we investigated the efficacy of perspex mounted extrapolation chamber (EC) used earlier for low energy x-rays and beta dosimetry. Extrapolation chamber with facility for achieving variable electrode separations 10.5mm to 0.5mm using micrometer screw was used for calibrations. Photon beams 6 MV and 15 MV and electron beams 6 MeV and 15 MeV from Varian Clinac linacs were calibrated. Absorbed Dose estimates to Perspex were converted into dose to solid water for comparison with FC 65 ionisation chamber measurements in water. Measurements made during the period December 2006 to June 2008 are considered for evaluation. Uncorrected ionization readings of EC for all the radiation beams over the entire period were within 2% showing the consistency of measurements. Absorbed doses estimated by EC were in good agreement with in-water calibrations within 2% for photons and electron beams. The present results suggest that extrapolation chambers can be considered as an independent measuring system for absorbed dose in addition to Farmer type ion chambers. In the absence of standard beam quality (Co-60 radiations as reference Quality for Nd,water) the possibility of keeping EC as Primary Standards for absorbed dose calibrations in high energy radiation beams from linacs should be explored. As there are neither Standard Laboratories nor SSDL available in our country, we look forward to keep EC as Local Standard for hospital chamber calibrations. We are also participating in the IAEA mailed TLD intercomparison programme for quality audit of existing status of radiation dosimetry in high energy linac beams. The performance of EC has to be confirmed with cobalt-60 beams by a separate study, as linacs are susceptible for minor variations in dose

  11. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    SciTech Connect

    Hansen, Brad M. S.

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute to the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.

  12. Uncertainty Analysis of the Single-Vector Force Balance Calibration System

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Liu, Tianshu

    2002-01-01

    This paper presents an uncertainty analysis of the Single-Vector Force Balance Calibration System (SVS). This study is focused on the uncertainty involved in setting the independent variables during the calibration experiment. By knowing the uncertainty in the calibration system, the fundamental limits of the calibration accuracy of a particular balance can be determined. A brief description of the SVS mechanical system is provided. A mathematical model is developed to describe the mechanical system elements. A sensitivity analysis of these parameters is carried out through numerical simulations to assess the sensitivity of the total uncertainty to the elemental error sources. These sensitivity coefficients provide valuable information regarding the relative significance of the elemental sources of error. An example calculation of the total uncertainty for a specific balance is provided. Results from this uncertainty analysis are specific to the Single-Vector System, but the approach is broad in nature and therefore applicable to other measurement and calibration systems.

  13. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The results of analyses of Thematic Mapper (TM) images acquired on July 8 and October 28, 1984, and of a check of the calibration of the 1.22-m integrating sphere at Santa Barbara Research Center (SBRC) are described. The results obtained from the in-flight calibration attempts disagree with the pre-flight calibrations for bands 2 and 4. Considerable effort was expended in an attempt to explain the disagreement. The difficult point to explain is that the difference between the radiances predicted by the radiative transfer code (the code radiances) and the radiances predicted by the preflight calibration (the pre-flight radiances) fluctuate with spectral band. Because the spectral quantities measured at White Sands show little change with spectral band, these fluctuations are not anticipated. Analyses of other targets at White Sands such as clouds, cloud shadows, and water surfaces tend to support the pre-flight and internal calibrator calibrations. The source of the disagreement has not been identified. It could be due to: (1) a computational error in the data reduction; (2) an incorrect assumption in the input to the radiative transfer code; or (3) incorrect operation of the field equipment.

  14. Indicator and Calibration Material for Microcalcifications in Dual-Energy Mammography

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Mou, Xuanqin; Zhang, Lei

    Dual-energy mammography can suppress the contrast between adipose and glandular tissues and improve the detectability of microcalcifications (MCs). In the published papers, MCs were calibrated by aluminum and identified by their thickness. However, the variety of compositions of MCs causes the variety of attenuation differences between MCs and MC calibration material which bring about huge calculation errors. In our study, we selected calcium carbonate and calcium phosphate as the most suitable MC calibration materials and the correction coefficient was reasonably determined. Area density was used as MC indicator instead of thickness. Therefore, the calculation errors from MC calibration materials can be reduced a lot and the determination of MCs will become possible.

  15. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  16. Calibration and Laboratory Test of the Department of Energy Cloud Particle Imager

    SciTech Connect

    McFarquhar, GM; Um, J

    2012-02-17

    Calibration parameters from the Connolly et al. (2007) algorithm cannot be applied to the Department of Energy's (DOE) CPI because the DOE CPI is version 2.0. Thus, Dr. Junshik Um and Prof. Greg McFarquhar brought the DOE CPI to the University of Manchester, UK, where facilities for calibrating it were available. In addition, two other versions of CPIs (1.0 and 1.5) were available on-site at the University of Manchester so that an intercomparison of three different versions of the CPI was possible. The three CPIs (versions 1.0, 1.5, and 2.0) were calibrated by moving glass calibration beads and ice analogues of known size parallel to the object plane. The distance between the object plane and a particle, the particle's focus, its apparent maximum dimension, and a background image were measured in order to derive calibration parameters for each CPI version. The calibration parameters are used in two empirical equations that are applied to in situ CPI data to determine particle size and depth of field, and hence particle size distributions (PSDs). After the tests with the glass calibration beads to derive the calibration parameters, the three CPIs were installed at the base of the Manchester Ice Cloud Chamber and connected to air pumps that drew cloud through the sample volume. Warm liquid clouds at a temperature of 1-2 C and ice clouds at a temperature of -5 C were generated, and the resulting PSDs for each of the CPIs were determined by applying the results of each calibration.

  17. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  18. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  19. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    SciTech Connect

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  20. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  1. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  2. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    SciTech Connect

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  3. Calibration improvements to electronically scanned pressure systems and preliminary statistical assessment

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    1996-01-01

    Orifice-to-orifice inconsistencies in data acquired with an electronically-scanned pressure system at the beginning of a wind tunnel experiment forced modifications to the standard, instrument calibration procedures. These modifications included a large increase in the number of calibration points which would allow a critical examination of the calibration curve-fit process, and a subsequent post-test reduction of the pressure data. Evaluation of these data has resulted in an improved functional representation of the pressure-voltage signature for electronically-scanned pressures sensors, which can reduce the errors due to calibration curve fit to under 0.10 percent of reading compared to the manufacturer specified 0.10 percent of full scale. Application of the improved calibration function allows a more rational selection of the calibration set-point pressures. These pressures should be adjusted to achieve a voltage output which matches the physical shape of the pressure-voltage signature of the sensor. This process is conducted in lieu of the more traditional approach where a calibration pressure is specified and the resulting sensor voltage is recorded. The fifteen calibrations acquired over the two-week duration of the wind tunnel test were further used to perform a preliminary, statistical assessment of the variation in the calibration process. The results allowed the estimation of the bias uncertainty for a single instrument calibration; and, they form the precursor for more extensive and more controlled studies in the laboratory.

  4. Absolute energy calibration of FD by an electron linear accelerator for Telescope Array

    SciTech Connect

    Shibata, T.; Fukushima, M.; Ikeda, D.; Enomoto, A.; Fukuda, S.; Furukawa, K.; Ikeda, M.; Iwase, H.; Kakihara, K.; Kamitani, T.; Kondo, Y.; Ohsawa, S.; Sagawa, H.; Sanami, T.; Satoh, M.; Shidara, T.; Sugimura, T.; Yoshida, M.; Matthews, J. N.; Ogio, S.

    2011-09-22

    The primary energy of the ultra-high energy cosmic rays(UHECR) are measured with the number of fluorescence photons which are detected with fluorescence detectors(FD) in the Telescope Array experiment(TA). Howevery since there is large uncertinty as 19% in the measurement of the energy scale, the most important theme is improvement of the energy calibration. The electron light source(ELS) is a small electron linear accelerator for new energy calibration. The ELS is located 100 m far from the FD station, and injects electron beam which is accelerated to 40 MeV energy into the sky. We can calibrate the FD energy scale by detection the air shower directly which is generated by the electron beam. The ELS was developed in KEK Japan, and moved to the TA site in March 2009. We started the beam operation in September 2010, in consequence we detected the air shower which was generated by electron beam in the air. The output kinetic energy of the electron beam was 41.1 MeV, we adjusted the output charge from 40 to 140 pC/pulse. We expect that we can improve the uncertinty of the energy scale to about 10% with the ELS, futhermore ELS will be a very useful apparatus for R and D of future UHECR observation.

  5. Results of the first complete static calibration of the RSRA rotor-load-measurement system

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1984-01-01

    The compound Rotor System Research Aircraft (RSRA) is designed to make high-accuracy, simultaneous measurements of all rotor forces and moments in flight. Physical calibration of the rotor force- and moment-measurement system when installed in the aircraft is required to account for known errors and to ensure that measurement-system accuracy is traceable to the National Bureau of Standards. The first static calibration and associated analysis have been completed with good results. Hysteresis was a potential cause of static calibration errors, but was found to be negligible in flight compared to full-scale loads, and analytical methods have been devised to eliminate hysteresis effects on calibration data. Flight tests confirmed that the calibrated rotor-load-measurement system performs as expected in flight and that it can dependably make direct measurements of fuselage vertical drag in hover.

  6. The preliminary checkout, evaluation and calibration of a 3-component force measurement system for calibrating propulsion simulators for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Scott, W. A.

    1984-01-01

    The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.

  7. Development report: Automatic System Test and Calibration (ASTAC) equipment

    NASA Technical Reports Server (NTRS)

    Thoren, R. J.

    1981-01-01

    A microcomputer based automatic test system was developed for the daily performance monitoring of wind energy system time domain (WEST) analyzer. The test system consists of a microprocessor based controller and hybrid interface unit which are used for inputing prescribed test signals into all WEST subsystems and for monitoring WEST responses to these signals. Performance is compared to theoretically correct performance levels calculated off line on a large general purpose digital computer. Results are displayed on a cathode ray tube or are available from a line printer. Excessive drift and/or lack of repeatability of the high speed analog sections within WEST is easily detected and the malfunctioning hardware identified using this system.

  8. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2016-08-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  9. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  10. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  11. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  12. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  13. Geometric calibration of a micro-CT system and performance for insect imaging.

    PubMed

    Hu, Zhanli; Gui, Jianbao; Zou, Jing; Rong, Junyan; Zhang, Qiyang; Zheng, Hairong; Xia, Dan

    2011-07-01

    Micro-CT with a high spatial resolution in combination with computer-based-reconstruction techniques is considered a powerful tool for morphological study of insects. The quality of CT images crucially depends on the precise knowledge of the scan geometry of the micro-CT system. In this paper, we have proposed a method to calculate the deviation of rotating axis for compensating deficiency of existing methods. A practical application of this geometric calibration method of the micro-CT system for insect imaging is presented. We have performed the computer-simulation study and experimental study with our prototype micro-CT system. The results demonstrate that the proposed technique is accurate and robust. In addition, we have evaluated the imaging characteristics of the detector in terms of modulation-transfer function (MTF). Finally, insect imaging performance and image reconstruction from data acquired with different energies are presented.

  14. 40 CFR Table 7 to Subpart Hhhhhhh... - Calibration and Accuracy Requirements for Continuous Parameter Monitoring Systems

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Continuous Parameter Monitoring Systems 7 Table 7 to Subpart HHHHHHH of Part 63 Protection of... Parameter Monitoring Systems If you monitor this parameter . . . Then your accuracy requirements are . . . And your inspection/calibration frequencyrequirements are . . . 1. Temperature...

  15. Analysis of calibration materials to improve dual-energy CT scanning for petrophysical applications

    SciTech Connect

    Ayyalasomavaiula, K.; McIntyre, D.; Jain, J.; Singh, J.; Yueh, F.

    2011-01-01

    Dual energy CT-scanning is a rapidly emerging imaging technique employed in non-destructive evaluation of various materials. Although CT (Computerized Tomography) has been used for characterizing rocks and visualizing and quantifying multiphase flow through rocks for over 25 years, most of the scanning is done at a voltage setting above 100 kV for taking advantage of the Compton scattering (CS) effect, which responds to density changes. Below 100 kV the photoelectric effect (PE) is dominant which responds to the effective atomic numbers (Zeff), which is directly related to the photo electric factor. Using the combination of the two effects helps in better characterization of reservoir rocks. The most common technique for dual energy CT-scanning relies on homogeneous calibration standards to produce the most accurate decoupled data. However, the use of calibration standards with impurities increases the probability of error in the reconstructed data and results in poor rock characterization. This work combines ICP-OES (inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectroscopy) analytical techniques to quantify the type and level of impurities in a set of commercially purchased calibration standards used in dual-energy scanning. The Zeff data on the calibration standards with and without impurity data were calculated using the weighted linear combination of the various elements present and used in calculating Zeff using the dual energy technique. Results show 2 to 5% difference in predicted Zeff values which may affect the corresponding log calibrations. The effect that these techniques have on improving material identification data is discussed and analyzed. The workflow developed in this paper will translate to a more accurate material identification estimates for unknown samples and improve calibration of well logging tools.

  16. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  17. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  18. Leveraging microwave polarization information for calibration of a land data assimilation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  19. An Incremental Target-Adapted Strategy for Active Geometric Calibration of Projector-Camera Systems

    PubMed Central

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2013-01-01

    The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved. PMID:23435056

  20. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering practice. (4) When calibrating the engine flywheel torque transducer, any lever arm used to... horizontal lever arm distance, corrected for the hanging torque of the lever arm. (i) The lever-arm dead... gravitational constant at the test site may be accounted for if desired. (B) Lever arm. A lever arm with...

  1. Accounting for Calibration Uncertainty in Detectors for High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Xu, Jin

    Systematic instrumental uncertainties in astronomical analyses have been generally ignored in data analysis due to the lack of robust principled methods, though the importance of incorporating instrumental calibration uncertainty is widely recognized by both users and instrument builders. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. Lee et al. (2011) introduced a so-called pragmatic Bayesian method to address this problem. The method is "pragmatic" in that it introduces an ad hoc technique that simplifies computation by assuming that the current data is not useful in narrowing the uncertainty for the calibration product, i.e., that the prior and posterior distributions for the calibration products are the same. In the thesis, we focus on incorporating calibration uncertainty into a principled Bayesian X-ray spectral analysis, specifically we account for uncertainty in the so-called effective area curve and the photon redistribution matrix. X-ray spectral analysis models the distribution of the energies of X-ray photons emitted from an astronomical source. The effective area curve of an X-ray detector describes its sensitive as a function of the energy of incoming photons, and the photon redistribution matrix describes the probability distribution of the recorded (discrete) energy of a photon as a function of the true (discretized) energy. Starting with the effective area curve, we follow Lee et al. (2011) and use a principle component analysis (PCA) to efficiently represent the uncertainty. Here, however, we leverage this representation to enable a principled, fully Bayesian method to account for calibration uncertainty in high-energy spectral analysis. For the photon redistribution matrix, we first model each conditional distribution as a normal distribution and then apply PCA to the parameters describing the normal models. This results in an

  2. On-board In-flight Energy Scale Cross-calibration Effects of Solar X-ray Instruments

    NASA Astrophysics Data System (ADS)

    Väänänen, Mikko

    2009-11-01

    We have surveyed previous spaceborne calibrations, and present results of new cross-calibrations of the X-ray solar instruments: SMART-1 XSM, GOES, RHESSI and Messenger XRS. We use XSM as the baseline instrument, and establish its ground, in-flight and cross-calibration status. Based on these calibrations, we show the relative importance of having an on-board in-flight calibration source for the energy scale with the technical twin instruments XRS and XSM. An observed energy scale drift of 168 eV (0.9%) influenced final fluxes by 25-35% in the 2-5 keV band. An ideal generic in-flight calibration source is discussed in view of the XSM-XRS simulation and the in-flight calibration of the microwave CMB instruments in particular.

  3. Dynamic calibration of pressure transducers with an improved shock tube system

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2013-04-01

    The need for reliable dynamic calibration of pressure transducers is becoming increasingly more important, especially with growing demands for improved performance, increased reliability and efficient energy generation from the aerospace, defense and energy sectors - all while being mindful of low lifecycle cost, minimizing maintenance downtime and reducing any negative impact to the environment. State of the art piezoelectric (PE) and piezoresistive (PR) silicon MEMS pressure transducers specifically designed for harsh environments are answering the call to provide the necessary measurements for applications such as high temperature gas turbine engine health monitoring (both in-flight and land/marine based aero-derivative), high pressure blast studies/ordnance explosion optimization, low profile wind tunnel testing/flight testing, etc. However, these pressure transducers are only as valuable as the dynamic calibration they possess so that more understanding of the physical measurement can be ascertained by the end-user. The shock tube is an established laboratory tool capable of imparting near instantaneous pressure stimulus for the purpose of providing quantifiable dynamic calibration of pressure transducers. From a performance perspective, a vast amount of empirical data has been collected over fifteen years and used to model more accurately the one-dimensional gas dynamics occurring within a shock tube so that the time interval of the reflected shock - the most critical parameter in determining the transfer function for the pressure transducer under test - can be optimized for the largest frequency bandwidth over varying shock amplitudes. Accordingly, an introduction of an improved shock tube system offering both increased performance and ease of user operation is presented.

  4. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  5. Energy calibration of superconducting transition edge sensors for x-ray detection using pulse analysis

    SciTech Connect

    Hollerith, C.; Simmnacher, B.; Weiland, R.; Feilitzsch, F. v.; Isaila, C.; Jochum, J.; Potzel, W.; Hoehne, J.; Phelan, K.; Wernicke, D.; May, T.

    2006-05-15

    Transition edge sensors (TESs) have been developed to be used as high-resolution x-ray detectors. They show excellent energy resolution and can be used in many applications. TESs are a special kind of calorimeters that can determine small temperature changes after x-ray absorption. Such a temperature change causes a strong resistance change (superconducting to normal-conducting phase transition) that can be measured. The energy calibration of a TES based spectrometer is problematic due to the nonlinear behavior of the detector response. In this article, a method is introduced to calibrate the energy scale of TES spectra. This is accomplished by calculating the energy dependence of the response of the detector operated in electrothermal feedback mode. Using this method a calibration accuracy of a few eV for an x-ray energy of 6 keV can be achieved. Examples of energy dispersive x-ray spectroscopy (EDS) measurements demonstrate the high quality of this method for everyday use of TES EDS detectors in material analysis. However, because the method relies only on a few very general assumptions, it should also be useful for other kinds of TES detectors.

  6. Calibration of a Hall effect displacement measurement system for complex motion analysis using a neural network.

    PubMed

    Northey, G W; Oliver, M L; Rittenhouse, D M

    2006-01-01

    Biomechanics studies often require the analysis of position and orientation. Although a variety of transducer and camera systems can be utilized, a common inexpensive alternative is the Hall effect sensor. Hall effect sensors have been used extensively for one-dimensional position analysis but their non-linear behavior and cross-talk effects make them difficult to calibrate for effective and accurate two- and three-dimensional position and orientation analysis. The aim of this study was to develop and calibrate a displacement measurement system for a hydraulic-actuation joystick used for repetitive motion analysis of heavy equipment operators. The system utilizes an array of four Hall effect sensors that are all active during any joystick movement. This built-in redundancy allows the calibration to utilize fully connected feed forward neural networks in conjunction with a Microscribe 3D digitizer. A fully connected feed forward neural network with one hidden layer containing five neurons was developed. Results indicate that the ability of the neural network to accurately predict the x, y and z coordinates of the joystick handle was good with r(2) values of 0.98 and higher. The calibration technique was found to be equally as accurate when used on data collected 5 days after the initial calibration, indicating the system is robust and stable enough to not require calibration every time the joystick is used. This calibration system allowed an infinite number of joystick orientations and positions to be found within the range of joystick motion.

  7. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing.

    PubMed

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz-100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz-30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  8. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    PubMed Central

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  9. [Study on in-orbit Vis/SWIR relative calibration monitoring system with high stability].

    PubMed

    Liu, Yi; Yin, Da-Yi

    2014-04-01

    The present paper studied the in-orbit relative calibration monitoring system with high stability for onboard remote sensing calibration. The realizing principle and the critical technologies are described in detail. The calibration detector assembly with high stability was developed based on both visual (Vis) and shortwave infrared (SWIR) trap structure. Vis and SWIR photodetectors with high sensitivity were chosen to realize the photoelectric conversion. On the one hand, the detectors worked in the zero-bias photovoltaic mode with better linearity and lower dark current. On the other hand, the critical parameters of the analog operational amplifier circuit and data acquisition circuit were designed so that the trap-structure detector assembly could work properly. Thus the relative calibration monitoring system with high stability for measurement of spaceborne calibration radiance source was realized. The experiments were carried out using the laboratory integrating spheres and the standard lamps provided by the national measurement institution. The results showed that the relative standard deviation of the digital numbers that the system acquired reached to 0.030%-0.046% (Vis) and 0.040%-0.059% (SWIR). It was proved that the accuracy and the stability of the monitoring system could meet the in-orbit calibration system requirement and it could serve as a good solution for in-orbit relative calibration of remote sensor in the future.

  10. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1984-01-01

    The reduction of the data measured on July 8, 1984 at White Sands, New Mexico is summarized. The radiance incident at the entrance pupil of the LANDSAT 5 sensors have been computed for bands 1 to 4. When these are compared to the digital counts of the TM image, the ground based calibration for this sensor will be given. The image was received from Goddard SFC and is presently being analyzed.

  11. Calibrating Multi-machine Power System Parameters with the Extended Kalman Filter

    SciTech Connect

    Kalsi, Karanjit; Sun, Yannan; Huang, Zhenyu; Du, Pengwei; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2012-07-24

    Large-scale renewable resources and novel smart-grid technologies continue to increase the complexity of power systems. As power systems continue to become more complex, accurate modeling for planning and operation becomes a necessity. Inaccurate system models would result in an unreliable assessment of system security conditions and could cause large-scale blackouts. This motivates the need for model parameter calibration, since some or all of the model parameters could be unknown or inaccurate. In this paper, the extended Kalman filter is used to calibrate the parameters of a multi-machine power system. The calibration performance is tested under varying fault locations, parameter errors and measurement noise giving an insight into how many generators and which generators could be difficult to calibrate.

  12. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    SciTech Connect

    Conte, V.; Moro, D.; Colautti, P.; Grosswendt, B.

    2013-07-18

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/{mu}m value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a {sup 137}Cs gamma source and a cylindrical TEPC equipped with a precision internal {sup 244}Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to {sup 137}Cesium sources, with an overall uncertainty of about 5%.

  13. High-energy-resolution X-ray monochromator calibration using the detailed-balance principle

    PubMed Central

    Zhao, J. Y.; Sturhahn, W.

    2012-01-01

    A new method is presented to calibrate an X-ray energy scale with sub-meV relative accuracy by using the detailed-balance principle of the phonon creation and annihilation. This method is conveniently used to define or verify the energy scale of high-energy-resolution monochromators that are used in inelastic X-ray scattering and nuclear resonant inelastic X-ray scattering instruments at synchrotron radiation facilities. This method does not rely on sample properties and its precision only depends on the statistical data quality. Well calibrated instruments are essential for reliable comparison of data sets obtained at different synchrotron radiation beamlines, of data with theoretical predictions, and of data from other techniques such as neutron or light scattering. The principle of the detailed-balance method is described in this paper and demonstrated experimentally. PMID:22713897

  14. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  15. An improved method of energy calibration for position-sensitive silicon detectors

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Huang, Tian-Heng; Liu, Zhong; Ding, Bing; Yang, Hua-Bin; Zhang, Zhi-Yuan; Wang, Jian-Guo; Ma, Long; Yu, Lin; Wang, Yong-Sheng; Gan, Zai-Guo; Xiao-Hong, Zhou

    2016-04-01

    Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the parabola with energy must be considered. In this paper we extend the traditional method in order to correct the fitting function, simplify the procedure of calibration and improve the experimental data quality. Instead of a parabolic function as used in the traditional method, a new function describing the relation of position and energy is introduced. The energy resolution of the 8.088 MeV α decay of 213Rn is determined to be about 87 keV (FWHM), which is better than the result of the traditional method, 104 keV (FWHM). The improved method can be applied to the energy calibration of resistive charge division-based position-sensitive silicon detectors with various performances. Supported by ‘100 Person Project’ of the Chinese Academy of Sciences and the National Natural Science Foundation of China (11405224 and 11435014)

  16. Field calibration studies for ionisation chambers in mixed high-energy radiation fields.

    PubMed

    Theis, C; Forkel-Wirth, D; Fuerstner, M; Mayer, S; Otto, Th; Roesler, S; Vincke, H

    2007-01-01

    The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.

  17. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    PubMed Central

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  18. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    PubMed

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  19. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters

  20. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents.

    PubMed

    Fan, Wei; Chen, Chen-Tung Arthur; Chen, Ying

    2013-04-01

    One of the fundamental purposes of quantitative acoustic surveys of seafloor hydrothermal vents is to measure their 2-D temperature distributions. Knowing the system latencies and the acoustic center-to-center distances between the underwater transducers in an acoustic tomography system is fundamental to the overall accuracy of the temperature reconstruction. However, commercial transducer sources typically do not supply the needed data. Here we present a novel calibration algorithm to automatically determine the system latencies and the acoustic center-to-center distances. The possible system latency error and the resulting temperature error are derived and analyzed. We have also developed the experimental setup for calibration. To validate the effectiveness of the proposed calibration method, an experimental study was performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located at Longling County, Yunnan Province, China. Using the calibrated data, the reconstructed temperature distributions closely resemble the actual distributions measured with thermocouples, thus confirming the effectiveness of our algorithm.

  1. Dual-laser calibration of Thomson scattering systems in ITER and RFX-mod

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2014-04-01

    We first review the principles of the dual-laser calibration technique for measuring the relative sensitivities of the spectral channels in a Thomson scattering (TS) diagnostic system by detecting with the same spectrometer the spectra scattered by the same plasma volume from two laser pulses of different wavelengths. A new data analysis method is then introduced, based on the minimization of a single χ2 function, that provides a simpler and more convenient way to determine the measurement errors on the calibration coefficients. The new analysis method is used here to investigate the expected performances of this calibration technique in the core LIDAR TS system of ITER currently under design and in the conventional multipoint TS system of RFX-mod. By calculating the expected calibration errors for typical plasma scenarios we discuss the different possible choices of the calibration laser, the characteristics of the calibrating plasma and other system parameters with an impact on the application of the technique. For ITER core LIDAR TS, designed with Nd : YAG at 1064 nm as main laser, a ruby laser shows slightly better performances as a calibration laser compared with a second harmonic Nd : YAG and a calibration accuracy ˜1% can be achieved in a relatively small number of pairs of laser pulses. In RFX-mod the combination of a Nd : YAG and a Nd : YLF laser systems is the only viable choice, and we find that, in spite of the small difference between the two wavelengths (λ = 1064 nm and λ = 1053 nm, respectively), dual-laser calibration is still possible to the required accuracy with an affordable number of pairs of laser shots.

  2. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    SciTech Connect

    HICKMAN, DAVE

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided by MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.

  3. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided bymore » MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.« less

  4. Charge exchange spectroscopy system calibration for ion temperature measurement in KSTARa)

    NASA Astrophysics Data System (ADS)

    Ko, Won-Ha; Lee, Hyungho; Seo, Dongcheol; Kwon, Myeun

    2010-10-01

    The charge exchange spectroscopy (CES) system including collection assemblies, lens design, and cassettes for the KSTAR experiment was installed to obtain profiles of the ion temperature and the toroidal rotation velocity from charge exchange emission between plasma ions and beam neutrals near the plasma axis by using a modulated neutral beam and a background system. We can measure the charge exchange spectra of an impurity line such as the 529 nm line of carbon VI to get ion temperature and rotation profiles in KSTAR. The CES and background systems will have absolute intensity and spectral calibrations using a calibrated source and various spectral lamps. The calibration was done inside the tokamak after all CES systems are installed and the optical systems are slid into the cassettes. This requires that the diagnostic systems are installed near the vacuum vessel inside the cryostat maintaining the superconducting state of the superconducting coils. Repeated spectral calibrations of the spectrometer and charge coupled device for CES will be made in the diagnostic room during the experimental campaign. We show a detailed description of the KSTAR CES system, how to calibrate, and the results of calibration.

  5. Characterization of neutron reference fields at US Department of Energy calibration fields.

    PubMed

    Olsher, R H; McLean, T D; Mallett, M W; Seagraves, D T; Gadd, M S; Markham, Robin L; Murphy, R O; Devine, R T

    2007-01-01

    The Health Physics Measurements Group at the Los Alamos National Laboratory (LANL) has initiated a study of neutron reference fields at selected US Department of Energy (DOE) calibration facilities. To date, field characterisation has been completed at five facilities. These fields are traceable to the National Institute for Standards and Technology (NIST) through either a primary calibration of the source emission rate or through the use of a secondary standard. However, neutron spectral variation is caused by factors such as room return, scatter from positioning tables and fixtures, source anisotropy and spectral degradation due to source rabbits and guide tubes. Perturbations from the ideal isotropic point source field may impact the accuracy of instrument calibrations. In particular, the thermal neutron component of the spectrum, while contributing only a small fraction of the conventionally true dose, can contribute a significant fraction of a dosemeter's response with the result that the calibration becomes facility-specific. A protocol has been developed to characterise neutron fields that relies primarily on spectral measurements with the Bubble Technology Industries (BTI) rotating neutron spectrometer (ROSPEC) and the LANL Bonner sphere spectrometer. The ROSPEC measurements were supplemented at several sites by the BTI Simple Scintillation Spectrometer probe, which is designed to extend the ROSPEC upper energy range from 5 to 15 MeV. In addition, measurements were performed with several rem meters and neutron dosemeters. Detailed simulations were performed using the LANL MCNPX Monte Carlo code to calculate the magnitude of source anisotropy and scatter factors.

  6. [Development and Performance Evaluation of a Supermicron Particle Generation System for Aerosol Instrument Calibration].

    PubMed

    Chen, Xiao-tong; Jiang, Jing-kun; Deng, Jian-guo; Duan, Lei; Hao, Ji-ming

    2016-03-15

    Accurate calibration of aerosol measurement instruments is critical for ensuring the data quality when sampling ambient particulate matter (PM) or those from emission sources. A system for calibrating these instruments was set up, which included an ultrasonic device to generate polydisperse supermicron particles, a chamber, and an aerodynamic particle spectrometer to measure particle size distribution. We verified its performance in stably generated testing aerosol with good spatial uniformity, controlled size distributions and concentrations. The testing aerosol generated had a lognormal distribution. A PM₁₀ and PM₂.₅ two-stage virtual impactor was calibrated using this online method. Collection efficiencies of PM₁₀ and PM₂.₅ stages calibrated by an off-line method using monodisperse particles were also used for comparison. The results from two different methods were consistent with each other. Though the off-line method has been widely used to calibrate PM samplers, it suffers from long experimental duration (2-3 days for calibrating one sampler). In contrast, the online method allows for a rapid calibration (less than half a day for calibrating one sampler). PMID:27337867

  7. a New Automatic System Calibration of Multi-Cameras and LIDAR Sensors

    NASA Astrophysics Data System (ADS)

    Hassanein, M.; Moussa, A.; El-Sheimy, N.

    2016-06-01

    In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated calibration without

  8. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2016-07-12

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  9. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  10. Improving calibration of 3-D video oculography systems.

    PubMed

    Schreiber, Kai; Haslwanter, Thomas

    2004-04-01

    Eye movement recordings with video-based techniques have become very popular, as long as they are restricted to the horizontal and vertical movements of the eye. Reliable measurement of the torsional component of eye movements, which is especially important in the diagnosis and investigation of pathologies, has remained a coveted goal. One of the main reasons is unresolved technical difficulties in the analysis of video-based images of the eye. Based on simulations, we present solutions to two of the primary problems: a robust and reliable calibration of horizontal and vertical eye movement recordings, and the extraction of suitable iris patterns for the determination of the torsional eye position component.

  11. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. M.; Slater, P. N. (Principal Investigator)

    1985-01-01

    The effects of the atmosphere on propagating radiation must be known in order to calibrate an in orbit sensor using ground based measurements. A set of model atmosphere parameters, applicable to the White Sands (New Mexico) area is defined with particular attention given to those parameters which are required as input to the Herman Code. The radial size distribution, refractive index, vertical distribution, and visibility of aerosols are discussed as well as the molecular absorbers in the visible and near IR wavelength which produce strong absorption lines. Solar irradiance is also considered.

  12. Radiometric calibration method for large aperture infrared system with broad dynamic range.

    PubMed

    Sun, Zhiyuan; Chang, Songtao; Zhu, Wei

    2015-05-20

    Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400  mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield.

  13. ALTEA calibration

    NASA Astrophysics Data System (ADS)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  14. Calibrated breast density methods for full field digital mammography: A system for serial quality control and inter-system generalization

    PubMed Central

    Lu, B.; Smallwood, A. M.; Sellers, T. A.; Drukteinis, J. S.; Heine, J. J.

    2015-01-01

    Purpose: The authors are developing a system for calibrated breast density measurements using full field digital mammography (FFDM). Breast tissue equivalent (BTE) phantom images are used to establish baseline (BL) calibration curves at time zero. For a given FFDM unit, the full BL dataset is comprised of approximately 160 phantom images, acquired prior to calibrating prospective patient mammograms. BL curves are monitored serially to ensure they produce accurate calibration and require updating when calibration accuracy degrades beyond an acceptable tolerance, rather than acquiring full BL datasets repeatedly. BL updating is a special case of generalizing calibration datasets across FFDM units, referred to as cross-calibration. Serial monitoring, BL updating, and cross-calibration techniques were developed and evaluated. Methods: BL curves were established for three Hologic Selenia FFDM units at time zero. In addition, one set of serial phantom images, comprised of equal proportions of adipose and fibroglandular BTE materials (50/50 compositions) of a fixed height, was acquired biweekly and monitored with the cumulative sum (Cusum) technique. These 50/50 composition images were used to update the BL curves when the calibration accuracy degraded beyond a preset tolerance of ±4 standardized units. A second set of serial images, comprised of a wide-range of BTE compositions, was acquired biweekly to evaluate serial monitoring, BL updating, and cross-calibration techniques. Results: Calibration accuracy can degrade serially and is a function of acquisition technique and phantom height. The authors demonstrated that all heights could be monitored simultaneously while acquiring images of a 50/50 phantom with a fixed height for each acquisition technique biweekly, translating into approximately 16 image acquisitions biweekly per FFDM unit. The same serial images are sufficient for serial monitoring, BL updating, and cross-calibration. Serial calibration accuracy was

  15. Leveraging microwave polarization information for the calibration of a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas R. H.; Crow, Wade T.; De Jeu, Richard A. M.

    2014-12-01

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to land surface model output with low-frequency (<10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorly posed because various parameter combinations may yield indistinguishable (least squares error) results. This is theoretically important for a land data assimilation system since alternative parameter combinations have different impacts on the sensitivity of TB to soil moisture and misattribution of systematic error may therefore disrupt data assimilation system performance. Via synthetic experiments we demonstrate that using TB polarization difference to parameterize vegetation opacity can improve the stability of calibrated soil moisture/TB sensitivities relative to the more typical approach of utilizing ancillary information to estimate vegetation opacity. The proposed approach fully follows from the radiative transfer model, implemented according to commonly adopted assumptions, and reduces by one the number of calibration parameters.

  16. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    NASA Astrophysics Data System (ADS)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  17. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    DOE PAGES

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; et al

    2016-09-07

    Here, soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n2eZeff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tubemore » under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.« less

  18. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment

    SciTech Connect

    Rong, Yi; Welsh, James S.

    2010-10-15

    Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with {+-}5% variation for 16 sources. The dose-rate output and stability (within {+-}5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be

  19. Design and utilization of a portable seismic/acoustic calibration system

    SciTech Connect

    Stump, B.W.; Pearson, D.C.

    1996-10-01

    Empirical results from the current GSETT-3 illustrate the need for source specific information for the purpose of calibrating the monitoring system. With the specified location design goal of 1,000 km{sup 2}, preliminary analysis indicates the importance of regional calibration of travel times. This calibration information can be obtained in a passive manner utilizing locations derived from local seismic array arrival times and assumes the resulting locations are accurate. Alternatively, an active approach to the problem can be undertaken, attempting to make near-source observations of seismic sources of opportunity to provide specific information on the time, location and characteristics of the source. Moderate to large mining explosions are one source type that may be amenable to such calibration. This paper describes an active ground truthing procedure for regional calibration. A prototype data acquisition system that includes the primary ground motion component for source time and location determination, and secondary, optional acoustic and video components for improved source phenomenology is discussed. The system costs approximately $25,000 and can be deployed and operated by one to two people thus providing a cost effective system for calibration and documentation of sources of interest. Practical implementation of the system is illustrated, emphasizing the minimal impact on an active mining operation.

  20. Flush Airdata Sensing (FADS) System Calibration Procedures and Results for Blunt Forebodies

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Whitmore, Stephen A.; Haering, Edward A., Jr.; Borrer, Jerry; Roback, V. Eric

    1999-01-01

    Blunt-forebody pressure data are used to study the behavior of the NASA Dryden Flight Research Center flush airdata sensing (FADS) pressure model and solution algorithm. The model relates surface pressure measurements to the airdata state. Spliced from the potential flow solution for uniform flow over a sphere and the modified Newtonian impact theory, the model was shown to apply to a wide range of blunt-forebody shapes and Mach numbers. Calibrations of a sphere, spherical cones, a Rankine half body, and the F-14, F/A-18, X-33, X-34, and X-38 configurations are shown. The three calibration parameters are well-behaved from Mach 0.25 to Mach 5.0, an angle-of-attack range extending to greater than 30 deg, and an angle-of-sideslip range extending to greater than 15 deg. Contrary to the sharp calibration changes found on traditional pitot-static systems at transonic speeds, the FADS calibrations are smooth, monotonic functions of Mach number and effective angles of attack and sideslip. Because the FADS calibration is sensitive to pressure port location, detailed measurements of the actual pressure port locations on the flight vehicle are required and the wind-tunnel calibration model should have pressure ports in similar locations. The procedure for calibrating a FADS system is outlined.

  1. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  2. IFIN-HH ionization chamber calibration and its validation; electrometric system improvement.

    PubMed

    Sahagia, M; Wätjen, A C; Luca, A; Ivan, C

    2010-01-01

    The paper presents the results obtained in the calibration of the CENTRONIC IG12/20A ionization chamber for 18 gamma ray emitters, and its improvement with a Keithley 6517A electrometer. The calibration figures were determined either directly in pA MBq(-1) units, or calculated from old units, by using the system capacity value. The calibration figures, determined with RML's standards, are compared with those deduced from the KCRV or the mean of the comparisons, and the values determined at PTB-Germany.

  3. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    SciTech Connect

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.; Watkins, M.; Boivin, R. L.

    2012-10-15

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  4. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  5. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic linksa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.; Watkins, M.; Boivin, R. L.

    2012-10-01

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  6. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links.

    PubMed

    Watkins, J G; Rajpal, R; Mandaliya, H; Watkins, M; Boivin, R L

    2012-10-01

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  7. SU-D-204-01: Dual-Energy Calibration for Breast Density Measurement Using Spectral Mammography

    SciTech Connect

    Ding, H; Cho, H; Kumar, N; Sennung, D; Molloi, S

    2015-06-15

    Purpose: To investigate the feasibility of minimizing the systematic errors in dual-energy breast density quantification induced by the use of tissue-equivalent plastic phantoms as the calibration basis materials. Methods: Dual-energy calibration using tissue-equivalent plastic phantoms was performed on a spectral mammography system based on scanning multi-slit Si strip photon-counting detectors. The plastic phantom calibration used plastic water and adipose-equivalent phantoms as the basis materials, which have different x-ray attenuation properties compared to water and lipid in actual breast tissue. Two methods were used to convert the dual-energy decomposition measurements in plastic phantom thicknesses into true water and lipid basis. The first method was based entirely on the theoretical x-ray attenuation coefficients of the investigated materials in the mammographic energy range. The conversion matrix was determined from least-squares fitting of the target material using the reported attenuation coefficients of water and lipid. The second method was developed based on experimental calibrations, which measured the low-and high-energy signals of pure water and lipid of known thicknesses. A non-linear rational function was used to correlate the decomposed thicknesses to the known values, so that the conversion coefficients can be determined. Both methods were validated using independent measurements of water and lipid mixture phantoms. The correlation of the dual-energy decomposition measurements and the known values were studied with linear regression analysis. Results: There was an excellent linear correlation between the converted water thicknesses and the known values. The slopes of the linear fits were determined to be 0.63 and 1.03 for the simulation and experimental results, respectively. The non-linear fitting in the experimental approach reduced the root-mean-square (RMS) errors from approximately 3.4 mm to 1.5 mm. Conclusion: The results suggested

  8. Quantification of breast density using dual-energy mammography with liquid phantom calibration.

    PubMed

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-07-21

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  9. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    NASA Astrophysics Data System (ADS)

    Lam, Alfonso R.; Ding, Huanjun; Molloi, Sabee

    2014-07-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (˜1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  10. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    PubMed

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-10-13

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  11. Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems

    PubMed Central

    Lüken, Markus; Misgeld, Berno J.E.; Rüschen, Daniel; Leonhardt, Steffen

    2015-01-01

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed “Integrated Posture and Activity Network by Medit Aachen” (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°. PMID:26473873

  12. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    PubMed

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-01-01

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°. PMID:26473873

  13. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    SciTech Connect

    Deng, Zhiqun; Weiland, Mark A.; Carlson, Thomas J.; Eppard, M. B.

    2010-03-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by Portland District, the U.S. Army Corps of Engineers for detecting and tracking small fish. It is used at hydroelectric projects and in the laboratory for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a measurement and calibration system for evaluating the JSATS component, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The system consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated system has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. It provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The measurement and calibration system has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  14. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Calibration management plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.

  15. A novel separation and calibration method for DVL and compass error in dead reckoning navigation systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yanshun; Guo, Yajing; Yang, Tao; Li, Chunyu; Wang, Zhanqing

    2016-06-01

    The scale factor error δ C of the Doppler velocity log (DVL) and the heading angle error δ \\psi of a compass are so integrated in dead reckoning (DR) navigation systems that it is difficult to separate them. This paper aims to solve this problem by putting forward an online separation and calibration method for δ C and δ \\psi based on an ‘arc and linear’ trajectory. This method introduces the high-accuracy location information of a long base line (LBL) acoustic positioning system. At first, the relationship between the displacements on the ‘arc’ trajectory in directions of east and north, output by the LBL and DR systems, serves to judge the carrier direction and calibrate δ C . And then by compensating δ C , the displacement on the ‘linear’ trajectory is used to calibrate δ \\psi . Finally, a semi-physical simulation experiment is conducted to test and verify this calibration method to see how effective and accurate it is. Experimental results show that after calibration the residual error ratios of δ C and δ \\psi are 8.24% and 3.70% respectively. Therefore, online calibration of δ C and δ \\psi is realized effectively. What’s more, when the DR system is working alone in 400 s, this method reduces position error by up to 93.39%, from 18.91 m to 1.25 m.

  16. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems.

    PubMed

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system's trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  17. Amplitude variation in calibrated audiometer systems in clinical simulations.

    PubMed

    Barlow, Christopher; Davison, Lee; Ashmore, Mark; Weinstein, Ray

    2014-01-01

    Manual pure tone audiometry is considered to be the gold standard for the assessment of hearing thresholds and has been in consistent use for a long period of time. An increased legislative requirement to monitor and screen workers, and an increasing amount of legislation relating to hearing loss is putting greater reliance on this as a tool. There are a number of questions regarding the degree of accuracy of pure tone audiometry when undertaken in field conditions, particularly relating to the difference in conditions between laboratory calibration and clinical or industrial screening use. This study analyzed the output sound pressure level of four different commercial audiometers, all using TDH39 headphones and each of which had recently undergone calibration at an appropriate laboratory. Levels were measured using a Bruël and Kjaer Head and Torso simulator, which accurately replicates the size and shape of a human head, including the ears. A clinical environment was simulated by a trained audiometrist replacing the headphones for each test. Tests were undertaken at three presentation levels, and at the frequencies of 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 6 kHz. The results showed a high level of test-retest variability, both between different audiometers and within the same audiometer. Maximum variation of sound pressure level at the ear for the same tone presentation was 21 decibels, with a particularly high level of variation at 6 kHz for all meters. An audiometer with attenuating cups exhibited significantly higher variation than ones using supral-aural headphones. Overall the variation exhibited suggests that there is a higher degree of potential error with screening pure tone audiometry than is commonly assumed and that results particularly at the 6 kHz frequency need to be assessed carefully alongside other methods such as speech audiometry.

  18. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  19. Flexible global calibration technique for an arbitrarily arranged fringe projection profilometry system

    NASA Astrophysics Data System (ADS)

    Yue, Huimin; Zhao, Biyu; Wu, Yuxiang; Li, Mingyang

    2016-06-01

    Calibration is a crucial step in fringe projection profilometry, which establishes the relationship between unwrapped phase and (FPP) three-dimensional (3-D) shape data (X,Y,h). For an arbitrarily arranged FPP system, a simple geometrical model and mathematical descriptions of the relationships among phase, height distribution, and transverse coordinate are presented. Based on this, a flexible global calibration method is presented to reconstruct 3-D shape by just using a checkerboard with known separation and alternating white and blue. The calibration board is placed at several random positions to determine the relationship between phase and height, and the relationship between pixel position and X, Y coordinates. To get high accuracy, distortion for each pixel is considered. The validity, flexibility, and practicality of this system and calibration technique are verified by experiments.

  20. Hybrid community energy systems.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Karvelas, D. E.; Energy Systems

    2000-01-01

    The availability of efficient, economical, and reliable energy supplies can help attract industry and commercial businesses to a municipality or a region. Efficient use of energy can also improve the air quality and reduce pollution. Therefore, municipalities should explore and encourage the development and implementation of efficient energy systems. Integrated hybrid energy systems can be designed to meet the total energy requirements of large and small communities. These systems can yield significant energy and cost savings when compared with independent systems serving individual units or when compared with the conventional practice of buying power from a utility and producing thermal energy on-site. To maximize energy and cost savings, the design engineer should look beyond the conventional when designing such systems.

  1. CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

    SciTech Connect

    Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Miyasaka, Hiromasa; Forster, Karl; Fuerst, Felix; Rana, Vikram; Walton, Dominic J.; Markwardt, Craig B.; An, Hongjun; Bachetti, Matteo; Kitaguchi, Takao; Bhalerao, Varun; Boggs, Steve; Craig, William W.; Christensen, Finn E.; Hailey, Charles J.; Perri, Matteo; Puccetti, Simonetta; Stern, Daniel; and others

    2015-09-15

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ∼10% for all instruments with respect to NuSTAR.

  2. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  3. Total Energy Systems.

    ERIC Educational Resources Information Center

    Hick, Basil L.

    A total energy system is a means for providing all of the varied energy requirements for a total plant from a single fuel source. This report evaluates some of the factors which are related to the development and use of total energy systems. The factors include--(1) initial and ultimate size of plant, (2) type and source of fuel, (3)…

  4. Photogrammetric calibration of the NASA-Wallops Island image intensifier system

    NASA Technical Reports Server (NTRS)

    Harp, B. F.

    1972-01-01

    An image intensifier was designed for use as one of the primary tracking systems for the barium cloud experiment at Wallops Island. Two computer programs, a definitive stellar camara calibration program and a geodetic stellar camara orientation program, were originally developed at Wallops on a GE 625 computer. A mathematical procedure for determining the image intensifier distortions is outlined, and the implementation of the model in the Wallops computer programs is described. The analytical calibration of metric cameras is also discussed.

  5. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  6. A robust method for online stereo camera self-calibration in unmanned vehicle system

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Chihara, Nobuhiro; Guo, Tao; Kimura, Nobutaka

    2014-06-01

    Self-calibration is a fundamental technology used to estimate the relative posture of the cameras for environment recognition in unmanned system. We focused on the issue of recognition accuracy decrease caused by the vibration of platform and conducted this research to achieve on-line self-calibration using feature point's registration and robust estimation of fundamental matrix. Three key factors in this respect are needed to be improved. Firstly, the feature mismatching exists resulting in the decrease of estimation accuracy of relative posture. The second, the conventional estimation method cannot satisfy both the estimation speed and calibration accuracy at the same tame. The third, some system intrinsic noises also lead greatly to the deviation of estimation results. In order to improve the calibration accuracy, estimation speed and system robustness for the practical implementation, we discuss and analyze the algorithms to make improvements on the stereo camera system to achieve on-line self-calibration. Based on the epipolar geometry and 3D images parallax, two geometry constraints are proposed to make the corresponding feature points search performed in a small search-range resulting in the improvement of matching accuracy and searching speed. Then, two conventional estimation algorithms are analyzed and evaluated for estimation accuracy and robustness. The third, Rigorous posture calculation method is proposed with consideration of the relative posture deviation of each separated parts in the stereo camera system. Validation experiments were performed with the stereo camera mounted on the Pen-Tilt Unit for accurate rotation control and the evaluation shows that our proposed method is fast and of high accuracy with high robustness for on-line self-calibration algorithm. Thus, as the main contribution, we proposed methods to solve the on-line self-calibration fast and accurately, envision the possibility for practical implementation on unmanned system as

  7. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    NASA Astrophysics Data System (ADS)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  8. An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie

    2016-06-01

    For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

  9. Calibration of a multichannel MEG system based on the signal space separation method.

    PubMed

    Chella, F; Zappasodi, F; Marzetti, L; Della Penna, S; Pizzella, V

    2012-08-01

    For an efficient use of multichannel MEG systems, an accurate sensor calibration is extremely important. This includes the knowledge of both channel sensitivities and channel arrangement, which can deviate from original system plans, e.g., because of thermal stresses. In this paper, we propose a new solution to the calibration of a multichannel MEG sensor array based on the signal space separation (SSS) method. It has been shown that an inaccurate knowledge of sensor calibration limits the performances of the SSS method, resulting in a mismatch between the measured neuromagnetic field and its SSS reconstruction. Given a set of known magnetic sources, we show that an objective function, which strongly depends on sensor geometry, can be derived from the principal angle between the measured vector signal and the SSS basis. Hence, the MEG sensor array calibration is carried out by minimizing the objective function through a standard large-scale optimization technique. Details on the magnetic sources and calibration process are presented here. Finally, an application to the calibration of the 153-channel whole-head MEG system installed at the University of Chieti is discussed.

  10. An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie

    2016-06-01

    For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10‑4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

  11. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    PubMed Central

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  12. A calibration technology for multi-camera system with various focal lengths

    NASA Astrophysics Data System (ADS)

    Yang, Ruihua; Zhang, Jin; Deng, Huaxia; Yu, Liandong

    2016-01-01

    Calibration is the basis of three-dimensional (3D) reconstruction for machine vision technology. Nowadays, the most widely used calibration method among computer vision is the technique for binocular stereo measurement. However, binocular stereo vision has limited view field which is difficult to measure large-scale mechanical components synchronously. Thus, enlarging the view field is urgent in need for the large scale measurement. With the application of multi-camera system, the calibration for cameras with different focal lengths is required. In this paper, a method aiming at calibration problems for multi-camera system of different focal lengths is proposed. An imaging model for multi-camera system with various focal lengths is analyzed. The Harris corner detector is applied to determine the relationship between signal camera and checkerboard. Finally, the external parameters of different cameras can be obtained by the link with the checkerboard. The calibration results indicate that the calculation method used in this work can calibrate multi-camera with various focal lengths.

  13. Study of the performance of stereoscopic panomorph systems calibrated with traditional pinhole model

    NASA Astrophysics Data System (ADS)

    Poulin-Girard, Anne-Sophie; Thibault, Simon; Laurendeau, Denis

    2016-06-01

    With their large field of view, anamorphosis, and areas of enhanced magnification, panomorph lenses are an interesting choice for navigation systems for mobile robotics in which knowledge of the surroundings is mandatory. However, panomorph lenses special characteristics can be challenging during the calibration process. This study focuses on the calibration of two panomorph stereoscopic systems with a model and technique developed for narrow-angle lenses, the "Camera Calibration Toolbox for MATLAB." In order to assess the performance of the systems, the mean reprojection error (MRE) related to the calibration and the reconstruction error of control points of an object of interest at various locations in the field of view are used. The calibrations were successful and exhibit MREs of less than one pixel in all cases. However, some poorly reconstructed control points illustrate that an acceptable MRE guarantees neither the quality of 3-D reconstruction nor its uniformity in the field of view. In addition, the nonuniformity in the 3-D reconstruction quality indicates that panomorph lenses require a more accurate estimation of the principal point (center of distortion) coordinates to improve the calibration and therefore the 3-D reconstruction.

  14. Calibration of a multichannel MEG system based on the signal space separation method.

    PubMed

    Chella, F; Zappasodi, F; Marzetti, L; Della Penna, S; Pizzella, V

    2012-08-01

    For an efficient use of multichannel MEG systems, an accurate sensor calibration is extremely important. This includes the knowledge of both channel sensitivities and channel arrangement, which can deviate from original system plans, e.g., because of thermal stresses. In this paper, we propose a new solution to the calibration of a multichannel MEG sensor array based on the signal space separation (SSS) method. It has been shown that an inaccurate knowledge of sensor calibration limits the performances of the SSS method, resulting in a mismatch between the measured neuromagnetic field and its SSS reconstruction. Given a set of known magnetic sources, we show that an objective function, which strongly depends on sensor geometry, can be derived from the principal angle between the measured vector signal and the SSS basis. Hence, the MEG sensor array calibration is carried out by minimizing the objective function through a standard large-scale optimization technique. Details on the magnetic sources and calibration process are presented here. Finally, an application to the calibration of the 153-channel whole-head MEG system installed at the University of Chieti is discussed. PMID:22797687

  15. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    densities were approximately 20% to 30% of that called by ASHRAE 62.1. Formaldehyde was the most important contaminant of concern in retail stores investigated. Both stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb). This study found that source removal and reducing the emission rate, as demonstrated in retail stores sampled in this study, is a viable strategy to meet the health guideline. Total volatile compound were present in retail stores at low concentrations well below health guidelines suggested by Molhave (1700microg /m 2) and Bridges (1000 microg /m2). Based on these results and through mass--balance modeling, different ventilation rate reduction scenarios were proposed, and for these scenarios the differences in energy consumption were estimated. Findings of all phases of this desertion have contributed to understanding (a) the trade-off between energy savings and ventilation rates that do not compromise indoor air quality, and (b) the trade-off between energy savings and resets of indoor air temperature that do not compromise thermal comfort. Two models for retail stores were built and calibrated and validated against actual utility bills. Energy simulation results indicated that by lowering the ventilation rates from measured and minimum references would reduce natural gas energy use by estimated values of 6% to 19%. Also, this study found that the electrical cooling energy consumption was not significantly sensitive to different ventilation rates. However, increasing indoor air temperature by 3°C in summer had a significant effect on the energy savings. In winter, both energy savings strategies, ventilation reduction and decrease in set points, had a significant effect on natural gas consumption. Specially, when the indoor air temperature 21°C was decreased to 19.4°C with the same amount of ventilation rate of Molhaves guideline for both cases. Interestingly, the temperature of 23.8°C (75°F), which is the

  16. The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Wang, Chi; Dong, Jianing; Wei, Yifeng; Wen, Sicheng; Zhang, Yunlong; Li, Zhiying; Feng, Changqing; Gao, Shanshan; Shen, ZhongTao; Zhang, Deliang; Zhang, Junbin; Wang, Qi; Ma, SiYuan; Yang, Di; Jiang, Di; Chen, Dengyi; Hu, Yiming; Huang, Guangshun; Wang, Xiaolian; Xu, Zizong; Liu, Shubin; An, Qi; Gong, Yizhong

    2016-11-01

    The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.

  17. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer

    SciTech Connect

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-15

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.

  18. Automatic pneumatic source-control system for positioning gamma and neutron calibration sources

    SciTech Connect

    Hunt, G.F.

    1980-10-17

    A microcomputer-based source-control system was developed to move gamma and neutron calibration sources into position for sample irradiation. In addition to monitoring interlocks and system status, the computer calculates for gamma sources the time required for a requested exposure at a specified distance. All system use data is stored, and monthly reports are generated.

  19. Performance evaluation of the solar backscatter ultraviolet radiometer, model 2 (SBUV/2) inflight calibration system

    NASA Technical Reports Server (NTRS)

    Weiss, H.; Cebula, Richard P.; Laamann, K.; Mcpeters, R. D.

    1994-01-01

    The Solar Backscatter Ultraviolet Radiometer, Model 2 (SBUV/2) instruments, as part of their regular operation, deploy ground aluminum reflective diffusers to deflect solar irradiance into the instrument's field-of-view. Previous SBUV instrument diffusers have shown a tendency to degrade in their reflective efficiencies. This degradation will add a trend to the ozone measurements if left uncorrected. An extensive in-flight calibration system was designed into the SBUV/2 instruments to effectively measure the degradation of the solar diffuser (Ball Aerospace Systems Division 1981). Soon after launch, the NOAA-9 SBUV/2 calibration system was unable to track the diffuser's reflectivity changes due, in part, to design flows (Frederick et al. 1986). Subsequently, the NOAA-11 SBUV/2 calibration system was redesigned and an analysis of the first 2 years of data (Weiss et al. 1991) indicated the NOAA-11 SBUV/2 onboard calibration system's performance to be exceeding preflight expectations. This paper will describe the analysis of the first three years NOAA-11 SBUV/2 calibration system data.

  20. Absolute energy calibration of the Telescope Array fluorescence detector with an electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Beitollahi, M.; Fukushima, M.; Ikeda, D.; Langely, K.; Matthews, J. N.; Sagawa, H.; Shin, B. K.; Thomas, S. B.; Thomson, G. B.

    2013-06-01

    The Electron Light Source(ELS) is a new light source for the absolute energy calibration of cosmic ray Fluorescence Detector(FD) telescopes. The ELS is a compact electron linear accelerator with a typical output of 109 electrons per pulse at 40 MeV. We fire the electron beam vertically into the air 100 m in front of the telescope. The electron beam excites the gases of the atmosphere in the same way as the charged particles of the cosmic ray induced extensive air shower. The gases give off the same light with the same wavelength dependence. The light passes through a small amount of atmosphere and is collected by the same mirror and camera with their wavelength dependence. In this way we can use the electron beam from ELS to make an end-to-end calibration of the telescope. In September 2010, we began operation of the ELS and the FD telescopes observed the fluorescence photons from the air shower which was generated by the electron beam. In this article, we will reort the status of analysis of the absolute energy calibration with data which was taken in September 2010, and beam monitor study in November 2011.

  1. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  2. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  3. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  4. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  5. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  6. Energy Recovery System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cogeneration system is one in which the energy ordinarily wasted in an industrial process is recovered and reused to create a second form of energy. Such an energy recovery system is in use at Crane Company's plant in Ferguson, KY, which manufactures ceramic bathroom fixtures. Crane's system captures hot stack gases from the company's four ceramic kilns and uses them to produce electrical power for plant operations.

  7. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  8. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  9. Development of a Machine-Vision System for Recording of Force Calibration Data

    NASA Astrophysics Data System (ADS)

    Heamawatanachai, Sumet; Chaemthet, Kittipong; Changpan, Tawat

    This paper presents the development of a new system for recording of force calibration data using machine vision technology. Real time camera and computer system were used to capture images of the reading from the instruments during calibration. Then, the measurement images were transformed and translated to numerical data using optical character recognition (OCR) technique. These numerical data along with raw images were automatically saved to memories as the calibration database files. With this new system, the human error of recording would be eliminated. The verification experiments were done by using this system for recording the measurement results from an amplifier (DMP 40) with load cell (HBM-Z30-10kN). The NIMT's 100-kN deadweight force standard machine (DWM-100kN) was used to generate test forces. The experiments setup were done in 3 categories; 1) dynamics condition (record during load changing), 2) statics condition (record during fix load), and 3) full calibration experiments in accordance with ISO 376:2011. The captured images from dynamics condition experiment gave >94% without overlapping of number. The results from statics condition experiment were >98% images without overlapping. All measurement images without overlapping were translated to number by the developed program with 100% accuracy. The full calibration experiments also gave 100% accurate results. Moreover, in case of incorrect translation of any result, it is also possible to trace back to the raw calibration image to check and correct it. Therefore, this machine-vision-based system and program should be appropriate for recording of force calibration data.

  10. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System.

    PubMed

    Gwon, Su Yeong; Jung, Dongwook; Pan, Weiyuan; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user's eye and screen coordinates. It is applied on the basis of the information of the user's pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. PMID:26742045

  11. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System

    PubMed Central

    Gwon, Su Yeong; Jung, Dongwook; Pan, Weiyuan; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user’s eye and screen coordinates. It is applied on the basis of the information of the user’s pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. PMID:26742045

  12. Improved system calibration for specular surface measurement by using reflections from a plane mirror.

    PubMed

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-09-01

    In this paper, we introduce a flexible and simple system calibration method for specular surface metrology based on the combination of reflection rays determined by the varied points on a screen and reflection images of a plane mirror without fiducials placed at three different locations. This calibration procedure involves three steps. The camera is first calibrated based on plane patterns. Then the reflection ray directions are measured via correspondence matching. The last calibration step is the pose estimation by the orthogonal iteration algorithm and reflections in a plane mirror. Basically, the concept of replacing the coordinates of the camera center with the reflection ray can alleviate the trouble of imaging aberration. Then global optimization can be operated with the orthogonal projection defined by the reflection ray, providing precise initial values for the process of bundle adjustment, compared to the classical calibration approach directly using the local optimization algorithm. Simulations and experiments both demonstrate the validity, efficiency, and robustness of the proposed improved method. In the simulations, the proposed method achieves the absolute errors of the camera parameters within 3 pixels and the relative errors of the screen pose are below 0.5% when the noise level is 0.6 pixel. Furthermore, the calibration method shows strong anti-noise ability, relying on the application of the reflection rays and the global optimization before the final bundle adjustment. In addition, the reconstruction accuracy in our experiment improves by 60.11% by the proposed method compared with the calibration procedure, which only utilizes the bundle adjustment optimization. In general, this novel calibration method can make the measurement achieve high accuracy and robustness at a low cost and with a simple setup, providing an efficient, economical, and flexible approach for a phase measuring deflectometry system in practical situations. PMID:27607278

  13. Aspects of the optical system relevant for the KM3NeT timing calibration

    NASA Astrophysics Data System (ADS)

    Kieft, Gerard

    2016-04-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.

  14. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  15. Head-free, remote eye-gaze detection system based on pupil-corneal reflection method with easy calibration using two stereo-calibrated video cameras.

    PubMed

    Ebisawa, Yoshinobu; Fukumoto, Kiyotaka

    2013-10-01

    We have developed a pupil-corneal reflection method-based gaze detection system, which allows large head movements and achieves easy gaze calibration. This system contains two optical systems consisting of components such as a camera and a near-infrared light source attached to the camera. The light source has two concentric LED rings with different wavelengths. The inner and outer rings generate bright and dark pupil images, respectively. The pupils are detected from a difference image created by subtracting the bright and dark pupil images. The light source also generates the corneal reflection. The 3-D coordinates of the pupils are determined by the stereo matching method using two optical systems. The vector from the corneal reflection center to the pupil center in the camera image is determined as r. The angle between the line of sight and the line passing through the pupil center and the camera (light source) is denoted as θ. The relationship θ =k |r| is assumed, where k is a constant. The theory implies that head movement of the user is allowed and facilitates the gaze calibration procedure. In the automatic calibration method, k is automatically determined while the user looks around on the PC screen without fixating on any specific calibration target. In the one-point calibration method, the user is asked to fixate on one calibration target at the PC screen in order to correct the difference between the optical and visual axes. In the two-point calibration method, in order to correct the nonlinear relationship between θ and |r|, the user is asked to fixate on two targets. The experimental results show that the three proposed calibration methods improve the precision of gaze detection step by step. In addition, the average gaze error in the visual angle is less than 1° for the seven head positions of the user. PMID:23751948

  16. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  17. Quantitative CT of lung nodules: Dependence of calibration on patient body size, anatomic region, and calibration nodule size for single- and dual-energy techniques

    SciTech Connect

    Goodsitt, Mitchell M.; Chan, Heang-Ping; Way, Ted W.; Schipper, Mathew J.; Larson, Sandra C.; Christodoulou, Emmanuel G.

    2009-07-15

    Calcium concentration may be a useful feature for distinguishing benign from malignant lung nodules in computer-aided diagnosis. The calcium concentration can be estimated from the measured CT number of the nodule and a CT number vs calcium concentration calibration line that is derived from CT scans of two or more calcium reference standards. To account for CT number nonuniformity in the reconstruction field, such calibration lines may be obtained at multiple locations within lung regions in an anthropomorphic phantom. The authors performed a study to investigate the effects of patient body size, anatomic region, and calibration nodule size on the derived calibration lines at ten lung region positions using both single energy (SE) and dual energy (DE) CT techniques. Simulated spherical lung nodules of two concentrations (50 and 100 mg/cc CaCO{sub 3}) were employed. Nodules of three different diameters (4.8, 9.5, and 16 mm) were scanned in a simulated thorax section representing the middle of the chest with large lung regions. The 4.8 and 9.5 mm nodules were also scanned in a section representing the upper chest with smaller lung regions. Fat rings were added to the peripheries of the phantoms to simulate larger patients. Scans were acquired on a GE-VCT scanner at 80, 120, and 140 kVp and were repeated three times for each condition. The average absolute CT number separations between the calibration lines were computed. In addition, under- or overestimates were determined when the calibration lines for one condition (e.g., small patient) were used to estimate the CaCO{sub 3} concentrations of nodules for a different condition (e.g., large patient). The authors demonstrated that, in general, DE is a more accurate method for estimating the calcium contents of lung nodules. The DE calibration lines within the lung field were less affected by patient body size, calibration nodule size, and nodule position than the SE calibration lines. Under- or overestimates in Ca

  18. Calibration method for a vision guiding-based laser-tracking measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Mingwei; Wei, Zhenzhong; Hu, Mengjie; Zhang, Guangjun

    2015-08-01

    Laser-tracking measurement systems (laser trackers) based on a vision-guiding device are widely used in industrial fields, and their calibration is important. As conventional methods typically have many disadvantages, such as difficult machining of the target and overdependence on the retroreflector, a novel calibration method is presented in this paper. The retroreflector, which is necessary in the normal calibration method, is unnecessary in our approach. As the laser beam is linear, points on the beam can be obtained with the help of a normal planar target. In this way, we can determine the function of a laser beam under the camera coordinate system, while its corresponding function under the laser-tracker coordinate system can be obtained from the encoder of the laser tracker. Clearly, when several groups of functions are confirmed, the rotation matrix can be solved from the direction vectors of the laser beams in different coordinate systems. As the intersection of the laser beams is the origin of the laser-tracker coordinate system, the translation matrix can also be determined. Our proposed method not only achieves the calibration of a single laser-tracking measurement system but also provides a reference for the calibration of a multistation system. Simulations to evaluate the effects of some critical factors were conducted. These simulations show the robustness and accuracy of our method. In real experiments, the root mean square error of the calibration result reached 1.46 mm within a range of 10 m, even though the vision-guiding device focuses on a point approximately 5 m away from the origin of its coordinate system, with a field of view of approximately 200 mm  ×  200 mm.

  19. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  20. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300-1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50-100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  1. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300–1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20–30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50–100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  2. Strain-gage balance calibration of a magnetic suspension and balance system

    NASA Astrophysics Data System (ADS)

    Roberts, Paul W.; Tcheng, Ping

    A load calibration of the NASA 13-in magnetic suspension and balance system (MSBS) is described. The calibration procedure was originally intended to establish the empirical relationship between the coil currents and the external loads (forces and moments) applied to a magnetically suspended calibrator. However, it was discovered that the performance of a strain-gage balance is not affected when subjected to the magnetic environment of the MSBS. The use of strain-gage balances greatly reduces the effort required to perform a current-vs.-load calibration as external loads can be directly inferred from the balance outputs while a calibrator is suspended in MSBS. It is conceivable that in the future such a calibration could become unnecessary, since an even more important application for the use of a strain-gage balance in MSBS environment is the acquisition of precision aerodynamic force and moment data by telemetering the balance outputs from a suspended model/core/balance during wind tunnel tests.

  3. Strain-gage balance calibration of a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.; Tcheng, Ping

    1987-01-01

    A load calibration of the NASA 13-in magnetic suspension and balance system (MSBS) is described. The calibration procedure was originally intended to establish the empirical relationship between the coil currents and the external loads (forces and moments) applied to a magnetically suspended calibrator. However, it was discovered that the performance of a strain-gage balance is not affected when subjected to the magnetic environment of the MSBS. The use of strain-gage balances greatly reduces the effort required to perform a current-vs.-load calibration as external loads can be directly inferred from the balance outputs while a calibrator is suspended in MSBS. It is conceivable that in the future such a calibration could become unnecessary, since an even more important application for the use of a strain-gage balance in MSBS environment is the acquisition of precision aerodynamic force and moment data by telemetering the balance outputs from a suspended model/core/balance during wind tunnel tests.

  4. IRFM temperature calibrations for the Vilnius, Geneva, RI(C) and DDO photometric systems

    NASA Astrophysics Data System (ADS)

    Meléndez, J.; Ramírez, I.

    2003-02-01

    We have used the infrared flux method (IRFM) temperatures of a large sample of late type dwarfs given by Alonso et al. (\\cite{alonso:irfm}) to calibrate empirically the relations Teff=f (colour, [Fe/H]) for the Vilnius, Geneva, RI(C) (Cousins) and DDO photometric systems. The resulting temperature scale and intrinsic colour-colour diagrams for these systems are also obtained. From this scale, the solar colours are derived and compared with those of the solar twin 18 Sco. Since our work is based on the same Teff and [Fe/H] values used by Alonso et al. (\\cite{alonso:escala}) to calibrate other colours, we now have an homogeneous calibration for a large set of photometric systems. Based on data from the GCPD.

  5. An automatic AC/DC thermal voltage converter and AC voltage calibration system

    NASA Astrophysics Data System (ADS)

    Lentner, K. J.; Flach, D. R.; Bell, B. A.

    1985-10-01

    An automatic ac/dc difference calibration system is described which uses direct measurement of thermoelement emfs. In addition to ac/dc difference testing, the system can be used to measure some important characteristics of thermoelements, as well as to calibrate ac voltage calibrators and precision voltmeters. The system operates over a frquency range from 20 Hz to 100 kHz, covering the voltage range from 0.5 V to 1 kv. For all voltages the total measurement uncertainties expected (including the uncertainty of the specific reference thermal converters used) were 50 parts per million (ppm) at frequencies from 20 Hz to 20 kHz, inclusive, and 100 ppm at higher frequencies up to 100 kHz.

  6. Automatic ac/dc thermal voltage converter and ac voltage calibration system

    NASA Astrophysics Data System (ADS)

    Lentner, K. J.; Flach, D. R.; Bell, B. A.

    1984-11-01

    An automatic ac/dc difference calibration system is described which uses direct measurement of thermoelement emfs. In addition to ac/dc difference testing, the system can be used to measure some important characteristics of thermoelements, as well as to calibrate ac voltage calibrators and precision voltmeters. The system operates over a frequency range from 20 Hz to 100 kHz, covering the voltage range from 0.5 V to 1 kv. For all voltages the total measurement uncertainties expected (including the uncertainty of the specific reference thermal converters used) were 50 parts per million (ppm) at frequencies from 20 Hz to 20 kHz, inclusive, and 100 ppm at higher frequencies up to 100 kHz.

  7. Development of a system based on open source technology for DC resistor calibration

    NASA Astrophysics Data System (ADS)

    Geronymo, G. M.; Silva, M. C.

    2016-07-01

    This work present the development of a new system, based on open source technology, for the automation of DC resistor calibration. The new system is web-based, stores the measurement registers on a structured database and has new features that can increase the productivity of the laboratory. Some proposes of future development are presented, also.

  8. A new optical system for the determination of deformations and strains: calibration characteristics and experimental results.

    PubMed

    Derwin, K A; Soslowsky, L J; Green, W D; Elder, S H

    1994-10-01

    Many types of optical strain measurement systems have been used for the determination of deformations and strains in soft biological tissues. The purpose of this investigation is to report a new optical strain measurement system developed in our laboratory which offers distinct advantages over systems developed in the past. Our optical strain system has demonstrated excellent performance in calibration and experimental tests. Calibration tests illustrate the system's accuracy to 0.05% strain at 3.52% strain and 0.18% strain at 11.74% strain. Further, this system can measure strains to within 2% measurement error for strains in a 0-11.74% range when 100 microns increments of motion are used for calibration. The resolution of our system appears to be at least as good as the linear micrometer (2 microns) used as a calibrating standard. Errors in strain measurement due to whole specimen rotation or translation are quantified. Rotations about an in-plane axis perpendicular to the direction of strain and translations in/out of the plane of focus result in the largest sources of error. Finally, in an in vitro biomechanical study of the rabbit Achilles tendon, experimental failure strains are 4.3 +/- 0.9% using this system. PMID:7962015

  9. Pyrgeometer Calibration for DOE-Atmospheric System Research Program Using NREL Method (Presentation)

    SciTech Connect

    Reda, I.; Stoffel, T.

    2010-03-15

    Presented at the DOE-Atmospheric System Research Program, Science Team Meeting, 15-19 March 2010, Bethesda, Maryland. The presentation: Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method - was presented by Ibrahim Reda and Tom Stoffel on March 15, 2010 at the 2010 ASR Science Team Meeting. March 15-19, 2010, Bethesda, Maryland.

  10. Development of a New Low-Cost Indoor Mapping System - System Design, System Calibration and First Results

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.

    2016-06-01

    For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.

  11. Self-calibration of a cone-beam micro-CT system

    SciTech Connect

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  12. High Energy Astronomy Observatory (HEAO)-2 in the X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  13. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    SciTech Connect

    Fuchs, S.; Roedel, C.; Bierbach, J.; Paz, A. E.; Foerster, E.; Paulus, G. G.; Krebs, M.; Haedrich, S.; Limpert, J.; Kuschel, S.; Wuensche, M.; Hilbert, V.; Zastrau, U.

    2013-02-15

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 {mu}W and {mu}J per harmonic using the respective generation mechanisms.

  14. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to

  15. CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...

  16. Precision alignment and calibration of optical systems using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Coyle, Laura Elizabeth

    As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the

  17. Proton calibration of low energy neutron detectors containing (6)LiF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  18. Two-stage flow-dividing system for the calibration of vacuum gauges

    SciTech Connect

    Yoshida, Hajime; Arai, Kenta; Akimichi, Hitoshi; Hirata, Masahiro

    2008-01-15

    A two-stage flow-dividing system was developed for calibrating an ionization gauge (IG) and residual gas analyzer (RGA). This system generates a stable high and ultrahigh vacuum from 8x10{sup -3} to 2x10{sup -7} Pa by adjusting the pressure in the first chamber using N{sub 2}, Ar, He, and H{sub 2}. The calibration pressure in the third chamber is calculated from the pressure in the second chamber using their linear relation in molecular flow. The uncertainty of the generated pressure was comparable to or several times larger than that of the continuous-expansion system. However, this system has a simple configuration and is easy to operate compared with the continuous-expansion system because it has no moving parts. Results of the calibration of IG and RGA showed that the two-stage flow-dividing system is useful for a routine calibration of practical vacuum gauges in high and ultrahigh vacuum.

  19. Calibrating system errors of large scale three-dimensional profile measurement instruments by subaperture stitching method.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Feng, Yunpeng; Su, Jingshi; Wu, Hengyu; Tam, Hon-Yuen

    2015-07-01

    This study presents a subaperture stitching method to calibrate system errors of several ∼2  m large scale 3D profile measurement instruments (PMIs). The calibration process was carried out by measuring a Φ460  mm standard flat sample multiple times at different sites of the PMI with a length gauge; then the subaperture data were stitched together using a sequential or simultaneous stitching algorithm that minimizes the inconsistency (i.e., difference) of the discrete data in the overlapped areas. The system error can be used to compensate the measurement results of not only large flats, but also spheres and aspheres. The feasibility of the calibration was validated by measuring a Φ1070  mm aspheric mirror, which can raise the measurement accuracy of PMIs and provide more reliable 3D surface profiles for guiding grinding, lapping, and even initial polishing processes. PMID:26193139

  20. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  1. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2009-10-09

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  2. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    PubMed

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards.

  3. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature. PMID:15461393

  4. Smart energy management system

    NASA Astrophysics Data System (ADS)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  5. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  6. Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2002-06-01

    The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

  7. Geometrical calibration television measuring systems with solid state photodetectors

    NASA Astrophysics Data System (ADS)

    Matiouchenko, V. G.; Strakhov, V. V.; Zhirkov, A. O.

    2000-11-01

    The various optical measuring methods for deriving information about the size and form of objects are now used in difference branches- mechanical engineering, medicine, art, criminalistics. Measuring by means of the digital television systems is one of these methods. The development of this direction is promoted by occurrence on the market of various types and costs small-sized television cameras and frame grabbers. There are many television measuring systems using the expensive cameras, but accuracy performances of low cost cameras are also interested for the system developers. For this reason inexpensive mountingless camera SK1004CP (format 1/3', cost up to 40$) and frame grabber Aver2000 were used in experiments.

  8. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  9. Calibration and display of distributed aperture sensor systems

    NASA Astrophysics Data System (ADS)

    Dale, Jason; Dwyer, David

    2007-04-01

    Distributed aperture sensor (DAS) systems can enhance the situational awareness of operators in both manned and unmanned platforms. In such a system, images from multiple sensors must be registered and fused into a seamless panoramic mosaic in real time, whilst being displayed with very low latency to an operator. This paper describes an algorithm for solving the multiple-image alignment problem and an architecture that leverages the power of consumer graphics processing units (GPU) to provide a live panoramic mosaic display. We also describe other developments aimed at integrating high resolution imagery from an independently steerable fused TV/IR sensor into the mosaic, panorama stabilisation and automatic target detection.

  10. Guidelines for model calibration and application to flow simulation in the Death Valley regional groundwater system

    USGS Publications Warehouse

    Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2000-01-01

    Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.

  11. Precision calibration method for binocular vision measurement systems based on arbitrary translations and 3D-connection information

    NASA Astrophysics Data System (ADS)

    Yang, Jinghao; Jia, Zhenyuan; Liu, Wei; Fan, Chaonan; Xu, Pengtao; Wang, Fuji; Liu, Yang

    2016-10-01

    Binocular vision systems play an important role in computer vision, and high-precision system calibration is a necessary and indispensable process. In this paper, an improved calibration method for binocular stereo vision measurement systems based on arbitrary translations and 3D-connection information is proposed. First, a new method for calibrating the intrinsic parameters of binocular vision system based on two translations with an arbitrary angle difference is presented, which reduces the effect of the deviation of the motion actuator on calibration accuracy. This method is simpler and more accurate than existing active-vision calibration methods and can provide a better initial value for the determination of extrinsic parameters. Second, a 3D-connection calibration and optimization method is developed that links the information of the calibration target in different positions, further improving the accuracy of the system calibration. Calibration experiments show that the calibration error can be reduced to 0.09%, outperforming traditional methods for the experiments of this study.

  12. Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.

    1998-01-01

    This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.

  13. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    NASA Astrophysics Data System (ADS)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  14. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0

  15. Self-Calibrating, Variable-Flow Pumping System

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  16. Regression Calibration in Nutritional Epidemiology: Example of Fat Density and Total Energy in Relationship to Postmenopausal Breast Cancer

    PubMed Central

    Prentice, Ross L.; Pettinger, Mary; Tinker, Lesley F.; Huang, Ying; Thomson, Cynthia A.; Johnson, Karen C.; Beasley, Jeannette; Anderson, Garnet; Shikany, James M.; Chlebowski, Rowan T.; Neuhouser, Marian L.

    2013-01-01

    Regression calibration using biomarkers provides an attractive approach to strengthening nutritional epidemiology. We consider this approach to assessing the relationship of fat and total energy consumption with postmenopausal breast cancer. In analyses that included fat density data, biomarker-calibrated total energy was positively associated with postmenopausal breast cancer incidence in cohorts of the US Women's Health Initiative from 1994–2010. The estimated hazard ratio for a 20% increment in calibrated food frequency questionnaire (FFQ) energy was 1.22 (95% confidence interval (CI): 1.15, 1.30). This association was not evident without biomarker calibration, and it ceased to be apparent following control for body mass index (weight (kg)/height (m)2), suggesting that the association is mediated by body fat deposition over time. The hazard ratio for a corresponding 40% increment in FFQ fat density was 1.05 (95% CI: 1.00, 1.09). A stronger fat density association, with a hazard ratio of 1.19 (95% CI: 1.00, 1.41), emerged from analyses that used 4-day food records for dietary assessment. FFQ-based analyses were also carried out by using a second dietary assessment in place of the biomarker for calibration. This type of calibration did not correct for systematic bias in energy assessment, but may be able to accommodate the “noise” component of dietary measurement error. Implications for epidemiologic applications more generally are described. PMID:24064741

  17. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  18. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems.

    PubMed

    Johnston, Mark D; Oliver, Bryan V; Droemer, Darryl W; Frogget, Brent; Crain, Marlon D; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm(2)/steradian/nm). Error analysis shows this method to be accurate to within +∕- 20%, which represents a high level of accuracy for this type of measurement. PMID:22938275

  19. An investigation into force-moment calibration techniques applicable to a magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eskins, Jonathan

    1988-01-01

    The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.

  20. Sine wave artifact as a means of calibrating structured light systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.

    1999-11-01

    Structured light systems made to provide dense data over full image fields present a unique challenge to the task of calibration. Localized artifacts made for CMM or hard gages are often a poor fit for testing actual 3D performance. This paper considers the use of a sine wave artifact to provide a mapping of a calibration matched to full-field capabilities. The sine wave offers the advantages of a continuous function across the full field, with a well defined and easy to analyze shape. Changes in scale in all dimensions, as well as localized variations can be mapped in clear detail using this method.

  1. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    NASA Astrophysics Data System (ADS)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  2. Vacuum gage calibration system for 10 to the minus 8th power to 10 torr

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1969-01-01

    Calibration system consists of a gas source, a source pressure gage, source volume, transfer volume and test chamber, plus appropriate piping, valves and vacuum source. It has been modified to cover as broad a range as possible while still providing accuracy and convenience.

  3. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  4. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  5. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  6. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Zhong, Fangchuan; Hu, Liqun; Yang, Jianhua; Yang, Zhendong; Gan, Kaifu; Zhang, Bin; East Team

    2016-09-01

    A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai's two-stage technique was utilized to calibrate the high-speed camera imaging system for ELM study. By applying tiles of the passive stabilizers in the tokamak device as the calibration pattern, transformation parameters for transforming from a 3-D world coordinate system to a 2-D image coordinate system were obtained, including the rotation matrix, the translation vector, the focal length and the lens distortion. The calibration errors were estimated and the results indicate the reliability of the method used for the camera imaging system. Through the calibration, some information about ELM filaments, such as positions and velocities were obtained from images of H-mode CCD videos. supported by National Natural Science Foundation of China (No. 11275047), the National Magnetic Confinement Fusion Science Program of China (No. 2013GB102000)

  7. Heat flux calibration of a near earth spacecraft temperature alarm system in rarefied flow

    NASA Technical Reports Server (NTRS)

    Caruso, P. S., Jr.

    1974-01-01

    Description of the aerodynamic molecular beam testing performed on the near earth spacecraft temperature alarm system that is designed to provide in-flight temperature information useful for safeguarding scientific equipment during perigee maneuvers. The temperature/heat flux calibration results obtained are summarized.

  8. [MLC positioning checks and calibration with a portal imaging system].

    PubMed

    Schiefer, Hans; Seelentag, Wolf W; Roth, Jakob; Krusche, Bernd

    2008-01-01

    For checking the leaf positions of a MLC (Multi Leaf Collimator) images are acquired with an EPID (Electronic Portal Imaging Device) and then evaluated with a programme (MLC check) developed in-house. During image acquisition a Perspex tray with two metal markers of known position (in the radiation field) is inserted in the satellite tray holder. After determination of the marker positions within the image coordinate system, the image can be transformed to the radiation field coordinate system. This allows the exact determination of the leaf tip positions relative to the radiation field. This evaluation can be applied to images of arbitrary field shapes, provided they were acquired in the same geometry (EPID position, gantry and collimator angles). The entire measurement procedure is based on images in bmp (Windows Bitmap) format, with a 1024 x 1024 matrix and a pixel depth of 24 bit (8 bit per color channel). A suitable marker plate can be manufactured without sophisticated workload; thus the method may be easily and cost effectively adapted at other locations.

  9. Energy Information Systems.

    ERIC Educational Resources Information Center

    Hales, Celia E.

    This paper examines the need for accurate, reliable data on energy, flowing upward to the national government from various energy-intensive information systems. Part I explores the need for a national policy coordinating this flow within both the United States and, for comparative purposes, Great Britain. Part II presents in outline form the…

  10. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  11. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  12. Emerging Techniques for Vicarious Calibration of Visible Through Short Wave Infrared Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Harrington, Gary; Holekamp, Kara; Pagnutti, Mary; Russell, Jeffrey; Frisbie, Troy; Stanley, Thomas

    2007-01-01

    Autonomous Visible to SWIR ground-based vicarious Cal/Val will be an essential Cal/Val component with such a large number of systems. Radiometrically calibrated spectroradiometers can improve confidence in current ground truth data through validation of radiometric modeling and validation or replacement of traditional sun photometer measurement. They also should enable significant reduction in deployed equipment such as equipment used in traditional sun photometer approaches. Simple, field-portable, white-light LED calibration source shows promise for visible range (420-750 nm). Prototype demonstrated <0.5% drift over 10-40 C temperature range. Additional complexity (more LEDs) will be necessary for extending spectral range into the NIR and SWIR. LED long lifetimes should produce at least several hundreds of hours or more of stability, minimizing the need for expensive calibrations and supporting long-duration field campaigns.

  13. Supercomputer Assisted Generation of Machine Learning Agents for the Calibration of Building Energy Models

    SciTech Connect

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard

    2013-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrot pur- poses. EnergyPlus is the agship Department of Energy software that performs BEM for dierent types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manu- ally by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building en- ergy modeling unfeasible for smaller projects. In this paper, we describe the \\Autotune" research which employs machine learning algorithms to generate agents for the dierent kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of En- ergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-eective cali- bration of building models.

  14. Cosmological model-independent Gamma-ray bursts calibration and its cosmological constraint to dark energy

    SciTech Connect

    Xu, Lixin

    2012-04-01

    As so far, the redshift of Gamma-ray bursts (GRBs) can extend to z ∼ 8 which makes it as a complementary probe of dark energy to supernova Ia (SN Ia). However, the calibration of GRBs is still a big challenge when they are used to constrain cosmological models. Though, the absolute magnitude of GRBs is still unknown, the slopes of GRBs correlations can be used as a useful constraint to dark energy in a completely cosmological model independent way. In this paper, we follow Wang's model-independent distance measurement method and calculate their values by using 109 GRBs events via the so-called Amati relation. Then, we use the obtained model-independent distances to constrain ΛCDM model as an example.

  15. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  16. Static calibration of the RSRA active-isolator rotor balance system

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1987-01-01

    The Rotor Systems Research Aircraft (RSRA) active-isolator system is designed to reduce rotor vibrations transmitted to the airframe and to simultaneously measure all six forces and moments generated by the rotor. These loads are measured by using a combination of load cells, strain gages, and hydropneumatic active isolators with built-in pressure gages. The first static calibration of the complete active-isolator rotor balance system was performed in l983 to verify its load-measurement capabilities. Analysis of the data included the use of multiple linear regressions to determine calibration matrices for different data sets and a hysteresis-removal algorithm to estimate in-flight measurement errors. Results showed that the active-isolator system can fulfill most performance predictions. The results also suggested several possible improvements to the system.

  17. Geometric calibration of a coordinate measuring machine using a laser tracking system

    NASA Astrophysics Data System (ADS)

    Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo

    2005-12-01

    This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.

  18. Optimal two-point static calibration of measurement systems with quadratic response

    SciTech Connect

    Pallas-Areny, Ramon; Jordana, Josep; Casas, Oscar

    2004-12-01

    Measurement devices and instruments must be calibrated after manufacture to correct for component and assembly tolerances, and periodically to correct for drift and aging effects. The number of reference inputs needed for calibration depends on the actual transfer characteristic and the desired accuracy. Often, a linear characteristic is assumed for simplicity, either for the overall input range (global linearization) or for successive input subranges (piecewise linearization). Thus, only two reference inputs are needed for each straight line. This two-point static calibration can be easily implemented in any system having some basic computation capability and allows for the correction of zero and gain errors, and of their drifts if the system is periodically calibrated. Often, the reference inputs for that calibration are the end values of the measurement range (or subrange). However, this is not always the optimal selection because the calibration error is minimal for those reference inputs only, which are not necessarily the most relevant inputs for the system being considered. This article proposes three optimization criteria for the selection of calibration points: limiting the maximal error (LME), minimizing the integral square error (ISE), and minimizing the integral absolute error (IAE). Each of these criteria needs reference inputs whose values are symmetrical with respect to the midrange input (x{sub c}), have the form x{sub c}{+-}{delta}x/(2{radical}n) when the measurand has a uniform probability distribution function, {delta}x being the measurement span, and do not depend on the nonlinearity of the actual response, provided this is quadratic. The factor n depends on the particular criterion selected: n=2 for LME, n=3 for ISE, and n=4 for IAE. These three criteria give parallel calibration lines and can also be applied to other nonlinear responses by dividing the measurement span into convenient intervals. The application of those criteria to the

  19. Optimal two-point static calibration of measurement systems with quadratic response

    NASA Astrophysics Data System (ADS)

    Pallàs-Areny, Ramon; Jordana, Josep; Casas, Óscar

    2004-12-01

    Measurement devices and instruments must be calibrated after manufacture to correct for component and assembly tolerances, and periodically to correct for drift and aging effects. The number of reference inputs needed for calibration depends on the actual transfer characteristic and the desired accuracy. Often, a linear characteristic is assumed for simplicity, either for the overall input range (global linearization) or for successive input subranges (piecewise linearization). Thus, only two reference inputs are needed for each straight line. This two-point static calibration can be easily implemented in any system having some basic computation capability and allows for the correction of zero and gain errors, and of their drifts if the system is periodically calibrated. Often, the reference inputs for that calibration are the end values of the measurement range (or subrange). However, this is not always the optimal selection because the calibration error is minimal for those reference inputs only, which are not necessarily the most relevant inputs for the system being considered. This article proposes three optimization criteria for the selection of calibration points: limiting the maximal error (LME), minimizing the integral square error (ISE), and minimizing the integral absolute error (IAE). Each of these criteria needs reference inputs whose values are symmetrical with respect to the midrange input (xc), have the form xc±Δx/(2√n) when the measurand has a uniform probability distribution function, Δx being the measurement span, and do not depend on the nonlinearity of the actual response, provided this is quadratic. The factor n depends on the particular criterion selected: n=2 for LME, n=3 for ISE, and n=4 for IAE. These three criteria give parallel calibration lines and can also be applied to other nonlinear responses by dividing the measurement span into convenient intervals. The application of those criteria to the linearization of a type

  20. Sensitivity analysis of a geometric calibration method using projection matrices for digital tomosynthesis systems

    SciTech Connect

    Li Xinhua; Zhang Da; Liu, Bob

    2011-01-15

    Purpose: To study the sensitivity of a geometric calibration method using projection matrices for digital tomosynthesis systems. Methods: A generic geometric calibration method for tomographic imaging systems has been presented in our previous work. The method involves a scan of a calibration phantom with multiple markers. Their locations in projection images are detected and are associated with their 3D coordinates to compute 3x4 projection matrices, which can be used in subsequent image reconstruction. The accuracy of geometric calibration may be affected by errors in the input data of marker positions. The effects of errors may depend on the number of markers and the volume surrounded by them in 3D space. This work analyzed the sensitivity of the calibration method to the above factors. A 6 cm CIRS breast research phantom and a prototype breast tomosynthesis system were used for our tests. A high contrast ring and two small speck groups were reconstructed in various testing cases for comparison. To achieve quantitative assessment, a 15x15 point detection mask was adopted for detecting signals and for computing changes between testing cases and the regular geometric calibration. Results: When 3D coordinates and 2D projections of markers were accurate, all tested numbers of markers, 6-44, provided similar high quality reconstructions of the ring and the two speck groups. Errors in marker positions resulted in image degradations and signal changes, which increased with fewer markers and smaller volume surrounded by markers in the 3D object space. Signal changes of small specks were more significant than those of the ring. Errors in marker projections produced drastic image degradations. Coplanar marker placement caused a failure in projection matrix computation. Conclusions: For practical geometric calibration phantom design, ample markers are desired. They need to have a large volumetric coverage in the 3D space and be far from being coplanar. Precise

  1. Calibration grooming and alignment for LDUA High Resolution Stereoscopic Video Camera System (HRSVS)

    SciTech Connect

    Pardini, A.F.

    1998-01-27

    The High Resolution Stereoscopic Video Camera System (HRSVS) was designed by the Savannah River Technology Center (SRTC) to provide routine and troubleshooting views of tank interiors during characterization and remediation phases of underground storage tank (UST) processing. The HRSVS is a dual color camera system designed to provide stereo viewing of the interior of the tanks including the tank wall in a Class 1, Division 1, flammable atmosphere. The HRSVS was designed with a modular philosophy for easy maintenance and configuration modifications. During operation of the system with the LDUA, the control of the camera system will be performed by the LDUA supervisory data acquisition system (SDAS). Video and control status 1458 will be displayed on monitors within the LDUA control center. All control functions are accessible from the front panel of the control box located within the Operations Control Trailer (OCT). The LDUA will provide all positioning functions within the waste tank for the end effector. Various electronic measurement instruments will be used to perform CG and A activities. The instruments may include a digital volt meter, oscilloscope, signal generator, and other electronic repair equipment. None of these instruments will need to be calibrated beyond what comes from the manufacturer. During CG and A a temperature indicating device will be used to measure the temperature of the outside of the HRSVS from initial startup until the temperature has stabilized. This device will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing. This sensor will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing.

  2. Calibration of a multi-beam Laser System by using a TLS-generated Reference

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Meidow, J.

    2013-10-01

    Rotating multi-beam LIDARs mounted on moving platforms have become very successful for many applications such as autonomous navigation, obstacle avoidance or mobile mapping. To obtain accurate point coordinates, a precise calibration of such a LIDAR system is required. For the determination of the corresponding parameters we propose a calibration scheme which exploits the information of 3D reference point clouds captured by a terrestrial laser scanning (TLS) device. It is assumed that the accuracy of this point clouds is considerably higher than that from the multi-beam LIDAR and that the data represent faces of man-made objects at different distances. After extracting planes in the reference data sets, the point-plane-incidences of the measured points and the reference planes are used to formulate the implicit constraints. We inspect the Velodyne HDL-64E S2 system as the best-known representative for this kind of sensor system. The usability and feasibility of the calibration procedure is demonstrated with real data sets representing building faces (walls, roof planes and ground). Beside the improvement of the point accuracy by considering the calibration results, we test the significance of the parameters related to the sensor model and consider the uncertainty of measurements w.r.t. the measured distances. The Velodyne returns two kinds of measurements - distances and encoder angles. To account for this, we perform a variance component estimation to obtain realistic standard deviations for the observations.

  3. The Importance of Camera Calibration and Distortion Correction to Obtain Measurements with Video Surveillance Systems

    NASA Astrophysics Data System (ADS)

    Cattaneo, C.; Mainetti, G.; Sala, R.

    2015-11-01

    Video surveillance systems are commonly used as important sources of quantitative information but from the acquired images it is possible to obtain a large amount of metric information. Yet, different methodological issues must be considered in order to perform accurate measurements using images. The most important one is the camera calibration, which is the estimation of the parameters defining the camera model. One of the most used camera calibration method is the Zhang's method, that allows the estimation of the linear parameters of the camera model. This method is very diffused as it requires a simple setup and it allows to calibrate cameras using a simple and fast procedure, but it does not consider lenses distortions, that must be taken into account with short focal lenses, commonly used in video surveillance systems. In order to perform accurate measurements, the linear camera model and the Zhang's method are improved in order to take nonlinear parameters into account and compensate the distortion contribute. In this paper we first describe the pinhole camera model that considers cameras as central projection systems. After a brief introduction to the camera calibration process and in particular the Zhang's method, we give a description of the different types of lens distortions and the techniques used for the distortion compensation. At the end some numerical example are shown in order to demonstrate the importance of the distortion compensation to obtain accurate measurements.

  4. Calibration of 3D laser measurement system based on projective transformation

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Du, Yue-yang; Du, Zheng-chun; Yao, Zhen-qiang

    2010-08-01

    This paper presents a planar projective transformation based method for fully automated exterior and interior calibration of a three-dimensional laser scanning system. The calibration is crucial for applications that attempt to produce accurately registered or fused three-dimensional sensor data. A key contribution of the method lies in the derivation of transformation relations that describe the same point in three defined coordinate systems with respect to the rotating characteristic of two scanning planes and its calibration target object whose geometric feature can be reliably recognized from a single observation. The transformation relationship can be converted to the closed-form solution to the constraint equations of the system parameters in the form of intrinsic and extrinsic matrices. By deriving the relationship between a single two-dimensional range scan and the point location presentation in the absolute frame, the interior and exterior calibration can be accomplished simultaneously and the algorithm of the 6 DOF pose improves the identification precision. Finally, this paper reports the performance and stability of this method on real data sets, and demonstrates the accuracy within +/-0.1 degree of the orientation precision and 8mm of position precision in a realistic configuration.

  5. Living Systems Energy Module

    SciTech Connect

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  6. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry.

    PubMed

    Treuth, M S; Adolph, A L; Butte, N F

    1998-07-01

    The purpose of this study was to predict energy expenditure (EE) from heart rate (HR) and activity calibrated against 24-h respiration calorimetry in 20 children. HR, oxygen consumption (VO2), carbon dioxide production (VCO2), and EE were measured during rest, sleep, exercise, and over 24 h by room respiration calorimetry on two separate occasions. Activity was monitored by a leg vibration sensor. The calibration day (day 1) consisted of specified behaviors categorized as inactive (lying, sitting, standing) or active (two bicycle sessions). On the validation day (day 2), the child selected activities. Separate regression equations for VO2, VCO2, and EE for method 1 (combining awake and asleep using HR, HR2, and HR3), method 2 (separating awake and asleep), and method 3 (separating awake into active and inactive, and combining activity and HR) were developed using the calibration data. For day 1, the errors were similar for 24-h VO2, VCO2, and EE among methods and also among HR, HR2, and HR3. The methods were validated using measured data from day 2. There were no significant differences in HR, VO2, VCO2, respiratory quotient, and EE values during rest, sleep, or over the 24 h between days 1 and 2. Applying the linear HR equations to day 2 data, the errors were the lowest with the combined HR/activity method (-2.6 +/- 5.2%, -4.1 +/- 5.9%, -2.9 +/- 5.1% for VO2, VCO2, and EE, respectively). To demonstrate the utility of the HR/activity method, HR and activity were monitored for 24 h at home (day 3). Free-living EE was predicted as 7,410 +/- 1,326 kJ/day. In conclusion, the combination of HR and activity is an acceptable method for determining EE not only for groups of children, but for individuals.

  7. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    NASA Astrophysics Data System (ADS)

    Singh, A.; Karsten, A.

    2011-06-01

    The accuracy of the calibration model for the single and double integrating sphere systems are compared for a white light system. A calibration model is created from a matrix of samples with known absorption and reduced scattering coefficients. In this instance the samples are made using different concentrations of intralipid and black ink. The total and diffuse transmittance and reflectance is measured on both setups and the accuracy of each model compared by evaluating the prediction errors of the calibration model for the different systems. Current results indicate that the single integrating sphere setup is more accurate than the double system method. This is based on the low prediction errors of the model for the single sphere system for a He-Ne laser as well as a white light source. The model still needs to be refined for more absorption factors. Tests on the prediction accuracies were then determined by extracting the optical properties of solid resin based phantoms for each system. When these properties of the phantoms were used as input to the modeling software excellent agreement between measured and simulated data was found for the single sphere systems.

  8. Design and instrumentation of a measurement and calibration system for an acoustic telemetry system.

    PubMed

    Deng, Zhiqun; Weiland, Mark; Carlson, Thomas; Eppard, M Brad

    2010-01-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more "fish-friendly" hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS) for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  9. A new automatic system for angular measurement and calibration in radiometric instruments.

    PubMed

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  10. A Simple Approach for Calibrating Imaging Systems with a Solid-State Sensor

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Cha, Soyoung S.; Ramachandran, Narayanan

    2000-01-01

    Solid-state array imaging has become an indispensable tool for various modem scientific instrumentation and industrial applications. Often in experiments, use of an imaging system with linear response is very desirable. The linearity of commercial products, however, has yet to be accurately determined in order to assess their nonlinearity effects. Linearity is affected both by sensors and electronics. It is also very desirables to employ low-cost products if we can provide the performance comparable of expensive ones through calibration. Here, we present a very simple approach for approximately checking linearity of imaging systems and also a simple calibration method for precisely measuring intensity ratio or relative intensity variation. These methods can be readily implemented with existing equipment. The calibration method works well with an intermediate-grade analog sensor interfaced by a frame grabber. In our initial attempt for calibration, the nonlinearity of the camera can be reduced from about five percent to much less than one percent in standard deviation.

  11. Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses.

    PubMed

    Islas-Cital, Alan; Atkins, Philip R; Foo, Kae Y; Picó, Ruben

    2011-10-01

    The phase angle component of the complex frequency response of a sonar system operating near transducer resonance is usually distorted. Interpretation and classification of the received sonar signal benefits from the preservation of waveform fidelity over the full bandwidth. A calibration process that measures the phase response in addition to the amplitude response is thus required. This paper describes an extension to the standard-target calibration method to include phase angle, without affecting the experimental apparatus, by using dual-frequency transmission pulses and frequency-domain data processing. This approach reduces the impact of unknown range and sound speed parameters upon phase calibration accuracy, as target phase is determined from the relationship of the two frequency components instead of relying on a local phase reference. Tungsten carbide spheres of various sizes were used to simultaneously calibrate the amplitude and phase response of an active sonar system in a laboratory tank. Experimental measurements of target phase spectra are in good agreement with values predicted from a theoretical model based upon full-wave analysis, over an operating frequency of 50-125 kHz.

  12. An automatic calibration procedure for remote eye-gaze tracking systems.

    PubMed

    Model, Dmitri; Guestrin, Elias D; Eizenman, Moshe

    2009-01-01

    Remote gaze estimation systems use calibration procedures to estimate subject-specific parameters that are needed for the calculation of the point-of-gaze. In these procedures, subjects are required to fixate on a specific point or points at specific time instances. Advanced remote gaze estimation systems can estimate the optical axis of the eye without any personal calibration procedure, but use a single calibration point to estimate the angle between the optical axis and the visual axis (line-of-sight). This paper presents a novel automatic calibration procedure that does not require active user participation. To estimate the angles between the optical and visual axes of each eye, this procedure minimizes the distance between the intersections of the visual axes of the left and right eyes with the surface of a display while subjects look naturally at the display (e.g., watching a video clip). Simulation results demonstrate that the performance of the algorithm improves as the range of viewing angles increases. For a subject sitting 75 cm in front of an 80 cm x 60 cm display (40" TV) the standard deviation of the error in the estimation of the angles between the optical and visual axes is 0.5 degrees.

  13. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

  14. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    SciTech Connect

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practical methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.

  15. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    DOE PAGES

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practicalmore » methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.« less

  16. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  17. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  18. Design of an expert system to automatically calibrate impedance control for powered knee prostheses.

    PubMed

    Wang, Ding; Liu, Ming; Zhang, Fan; Huang, He

    2013-06-01

    Many currently available powered knee prostheses (PKP) use finite state impedance control to operate a prosthetic knee joint. The desired impedance values were usually manually calibrated with trial-and-error in order to enable near-normal walking pattern. However, such a manual approach is inaccurate, time consuming, and impractical. This paper aimed to design an expert system that can tune the control impedance for powered knee prostheses automatically and quickly. The expert system was designed based on fuzzy logic inference (FLI) to match the desired knee motion and gait timing while walking. The developed system was validated on an able-bodied subject wearing a powered prosthesis. Preliminary experimental results demonstrated that the developed expert system can converge the user's knee profile and gait timing to the desired values within 2 minutes. Additionally, after the auto-tuning procedure, the user produced more symmetrical gait. These preliminary results indicate the promise of the designed expert system for quick and accuracy impedance calibration, which can significantly improve the practical value of powered lower limb prosthesis. Continuous engineering efforts are still needed to determine the calibration objectives and validate the expert system.

  19. Geometrical Calibration of the Photo-Spectral System and Digital Maps Retrieval

    NASA Astrophysics Data System (ADS)

    Bruchkouskaya, S.; Skachkova, A.; Katkovski, L.; Martinov, A.

    2013-12-01

    Imaging systems for remote sensing of the Earth are required to demonstrate high metric accuracy of the picture which can be provided through preliminary geometrical calibration of optical systems. Being defined as a result of the geometrical calibration, parameters of internal and external orientation of the cameras are needed while solving such problems of image processing, as orthotransformation, geometrical correction, geographical coordinate fixing, scale adjustment and image registration from various channels and cameras, creation of image mosaics of filmed territories, and determination of geometrical characteristics of objects in the images. The geometrical calibration also helps to eliminate image deformations arising due to manufacturing defects and errors in installation of camera elements and photo receiving matrices as well as those resulted from lens distortions. A Photo-Spectral System (PhSS), which is intended for registering reflected radiation spectra of underlying surfaces in a wavelength range from 350 nm to 1050 nm and recording images of high spatial resolution, has been developed at the A.N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. The PhSS has undergone flight tests over the territory of Belarus onboard the Antonov AN-2 aircraft with the aim to obtain visible range images of the underlying surface. Then we performed the geometrical calibration of the PhSS and carried out the correction of images obtained during the flight tests. Furthermore, we have plotted digital maps of the terrain using the stereo pairs of images acquired from the PhSS and evaluated the accuracy of the created maps. Having obtained the calibration parameters, we apply them for correction of the images from another identical PhSS device, which is located at the Russian Orbital Segment of the International Space Station (ROS ISS), aiming to retrieve digital maps of the terrain with higher accuracy.

  20. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states. PMID:26724017

  1. Self-calibration of cluster dark energy studies: Observable-mass distribution

    SciTech Connect

    Lima, Marcos; Hu, Wayne

    2005-08-15

    The exponential sensitivity of cluster number counts to the properties of the dark energy implies a comparable sensitivity to not only the mean but also the actual distribution of an observable-mass proxy given the true cluster mass. For example a 25% scatter in mass can provide a {approx}50% change in the number counts at z{approx}2 for the upcoming SPT survey. Uncertainty in the scatter of this amount would degrade dark energy constraints to uninteresting levels. Given the shape of the actual mass function, the properties of the distribution may be internally monitored by the shape of the observable mass function. As a proof of principle, for a simple mass-independent Gaussian distribution the scatter may be self-calibrated to allow a measurement of the dark energy equation of state of {sigma}(w){approx}0.1. External constraints on the mass variance of the distribution that are more accurate than {delta}{sigma}{sub lnM}{sup 2}<0.01 at z{approx}1 can further improve constraints by up to a factor of 2. More generally, cluster counts and their sample variance measured as a function of the observable provide internal consistency checks on the assumed form of the observable-mass distribution that will protect against misinterpretation of the dark energy constraints.

  2. Development and performance analysis of a standard orifice flow calibration system

    SciTech Connect

    Akram, H. M.; Maqsood, M.; Rashid, H.

    2009-07-15

    An orifice flow system has been developed indigenously which is a primary standard for the calibration of high vacuum gauges in the range of 10{sup -3}-10{sup -6} mbar. It consists of a constant-volume flow meter, designed to generate a known flow rate of a particular gas to the vacuum chamber. This chamber is partitioned into two parts by a plate with an orifice of calculable conductance. The pressures, generated by this standard system, are compared with those of secondary standard, namely, spinning rotor gauge. Different uncertainties and correction factors are calculated. The maximum percentage deviation is from 1.16% to 0.97%. The combined uncertainties over the entire calibration range of the standard system are in the range of 4.0x10{sup -6} mbar.

  3. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  4. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. The work on the various tasks as of 31 March 1983 is reported.

  5. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    1984-04-01

    The Johns Hopkins University Applied Physics Laboratory is engaged in developing ocean thermal energy conversion (OTEC) systems that are to provide synthetic fuels or an energy intensive product such as ammonia or aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC plants. The laboratory also has a technical advisory role with respect to DOE/DOET's management of the preliminary design activity of an industry team headed by Ocean Thermal Corporation that is designing an OTEC pilot plant that could be built in shallow water off the shore of Oahu, Hawaii. In addition, the Laboratory is now taking part in a program to evaluate and test the pneumatic wave energy conversion system, an ocean energy device consisting of a turbine that is air driven as a result of wave action in a chamber.

  6. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  7. Improving the accuracy and reliability of remote system-calibration-free eye-gaze tracking.

    PubMed

    Hennessey, Craig A; Lawrence, Peter D

    2009-07-01

    Remote eye-gaze tracking provides a means for nonintrusive tracking of the point-of-gaze (POG) of a user. For application as a user interface for the disabled, a remote system that is noncontact, reliable, and permits head motion is very desirable. The system-calibration-free pupil-corneal reflection (P-CR) vector technique for POG estimation is a popular method due to its simplicity, however, accuracy has been shown to be degraded with head displacement. Model-based POG-estimation methods were developed, which improve system accuracy during head displacement, however, these methods require complex system calibration in addition to user calibration. In this paper, the use of multiple corneal reflections and point-pattern matching allows for a scaling correction of the P-CR vector for head displacements as well as an improvement in system robustness to corneal reflection distortion, leading to improved POG-estimation accuracy. To demonstrate the improvement in performance, the enhanced multiple corneal reflection P-CR method is compared to the monocular and binocular accuracy of the traditional single corneal reflection P-CR method, and a model-based method of POG estimation for various head displacements. PMID:19272975

  8. Double-layer parallelization for hydrological model calibration on HPC systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ang; Li, Tiejian; Si, Yuan; Liu, Ronghua; Shi, Haiyun; Li, Xiang; Li, Jiaye; Wu, Xia

    2016-04-01

    Large-scale problems that demand high precision have remarkably increased the computational time of numerical simulation models. Therefore, the parallelization of models has been widely implemented in recent years. However, computing time remains a major challenge when a large model is calibrated using optimization techniques. To overcome this difficulty, we proposed a double-layer parallel system for hydrological model calibration using high-performance computing (HPC) systems. The lower-layer parallelism is achieved using a hydrological model, the Digital Yellow River Integrated Model, which was parallelized by decomposing river basins. The upper-layer parallelism is achieved by simultaneous hydrological simulations with different parameter combinations in the same generation of the genetic algorithm and is implemented using the job scheduling functions of an HPC system. The proposed system was applied to the upstream of the Qingjian River basin, a sub-basin of the middle Yellow River, to calibrate the model effectively by making full use of the computing resources in the HPC system and to investigate the model's behavior under various parameter combinations. This approach is applicable to most of the existing hydrology models for many applications.

  9. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    USGS Publications Warehouse

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  10. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors.

    PubMed

    Mancić, A; Fuchs, J; Antici, P; Gaillard, S A; Audebert, P

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal. PMID:18681694

  11. Econometrically calibrated computable general equilibrium models: Applications to the analysis of energy and climate politics

    NASA Astrophysics Data System (ADS)

    Schu, Kathryn L.

    Economy-energy-environment models are the mainstay of economic assessments of policies to reduce carbon dioxide (CO2) emissions, yet their empirical basis is often criticized as being weak. This thesis addresses these limitations by constructing econometrically calibrated models in two policy areas. The first is a 35-sector computable general equilibrium (CGE) model of the U.S. economy which analyzes the uncertain impacts of CO2 emission abatement. Econometric modeling of sectors' nested constant elasticity of substitution (CES) cost functions based on a 45-year price-quantity dataset yields estimates of capital-labor-energy-material input substitution elasticities and biases of technical change that are incorporated into the CGE model. I use the estimated standard errors and variance-covariance matrices to construct the joint distribution of the parameters of the economy's supply side, which I sample to perform Monte Carlo baseline and counterfactual runs of the model. The resulting probabilistic abatement cost estimates highlight the importance of the uncertainty in baseline emissions growth. The second model is an equilibrium simulation of the market for new vehicles which I use to assess the response of vehicle prices, sales and mileage to CO2 taxes and increased corporate average fuel economy (CAFE) standards. I specify an econometric model of a representative consumer's vehicle preferences using a nested CES expenditure function which incorporates mileage and other characteristics in addition to prices, and develop a novel calibration algorithm to link this structure to vehicle model supplies by manufacturers engaged in Bertrand competition. CO2 taxes' effects on gasoline prices reduce vehicle sales and manufacturers' profits if vehicles' mileage is fixed, but these losses shrink once mileage can be adjusted. Accelerated CAFE standards induce manufacturers to pay fines for noncompliance rather than incur the higher costs of radical mileage improvements

  12. Prototype of a primary calibration system for measurement of radon activity concentration.

    PubMed

    Mostafa, M Y A; Vasyanovich, M; Zhukovsky, M

    2016-01-01

    To calibrate measurement devices for monitoring the activity concentration of (222)Rn in air, a prototype of a calibration facility is tested using a solid (226)Ra source and a high-purity germanium (HPGe) detector. An emanation box was mounted on the detector for online gamma measurements. Inside this box, a 32.8 kBq ±3% (226)Ra standard source was placed. An AlphaGUARD control radon monitor was connected to the emanation box with a pumping air system in an open flow mode as a reference monitor. The emanation coefficient of the source was controlled online by comparing the gamma activity of (214)Bi (Eγ=609.3 keV), progeny of (226)Ra, to that of the calibration source. A standard (137)Cs source, installed within the emanation box, was used as a reference for gamma spectroscopy using the HPGe detector, with a total systematic error of 4% and a random error less than 2%. The ratio between gamma measurements and AlphaGUARD was 0.94±0.4; which is within the 9% uncertainties of AlphaGUARD calibration. PMID:26490512

  13. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  14. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    NASA Astrophysics Data System (ADS)

    D'Emilia, Giulio; Di Gasbarro, David; Gaspari, Antonella; Natale, Emanuela

    2016-06-01

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  15. Recent Developments and Status of the Langley Single Vector Balance Calibration System (SVS)

    NASA Technical Reports Server (NTRS)

    Jones, Shirley M.; Rhew, Ray D.

    2004-01-01

    The Langley Research Center (LaRC) Single Vector Balance Calibration System (SVS) was first introduced in 2000 by Peter Parker. The SVS combines the Design of Experiments (DOE) methodology with a novel load application system. Since that time three systems have been designed and developed with different load range capabilities (ranging from 2 pounds to 3,000 pounds). Approximately fifteen balances have been calibrated and their data compared to conventional techniques. This paper will present results of these comparisons, based on the mathematical models and accuracies, and discuss differences that were observed. In addition, changes in the implementation of the initial load schedules developed using DOE will be highlighted. One of the principles behind DOE is randomization. The initial loading schedules used to date have been randomized in the traditional DOE sense but not for repeat calibrations or experiments. Implementation of this randomization within blocks and its impact on data quality will be reviewed. Areas of potential future development will be presented which include changes in the centers to include loads with the force position system in the pure error estimates.

  16. Calibration of a system to collect visible-light polarization data for classification of geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis

    2014-09-01

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to calibrate a system to exploit the optical signature of unresolved geosynchronous satellite images by collecting polarization data in the visible wavelengths for the purpose of revealing discriminating features. These features may lead to positive identification or classification of each satellite. The system was calibrated with an algorithm and process that takes raw observation data from a two-channel polarimeter and converts it to Stokes parameters S0 and S1. This instrumentation is a new asset for the United States Air Force Academy (USAFA) Department of Physics and consists of one 20-inch Ritchey-Chretien telescope and a dual focal plane system fed with a polarizing beam splitter. This study calibrated the system and collected preliminary polarization data on five geosynchronous satellites to validate performance. Preliminary data revealed that each of the five satellites had a different polarization signature that could potentially lead to identification in future studies.

  17. Development of a low energy ion source for ROSINA ion mode calibration

    SciTech Connect

    Rubin, Martin; Altwegg, Kathrin; Jaeckel, Annette; Balsiger, Hans

    2006-10-15

    The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1 km/s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20 eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.

  18. Calibration and validation by professional observers of the Mission-Quality criterion for imaging systems design.

    PubMed

    Kattnig, Alain P; Primot, Jérôme

    2008-03-31

    Imaging systems comparisons remains today a sensitive subject because of the difficulty to merge radiometric and spatial dimensions into a single, easy to use, parameter. By leaning explicitly on professional image users and their requirements we show how to build such a criterion, called Mission-Quality. A specific observation campaign is described and its results are used to calibrate and carry first proof of the criterion adequacy.

  19. Drive system alignment calibration of a microgravity drop tower of novel design

    NASA Astrophysics Data System (ADS)

    Trunins, J.; Osborne, B. P.; Augousti, A.

    2013-06-01

    We report here the calibration of the drive system of a new scientific facility for production of microgravity, operating on a novel design of electromagnetically driven platform. The construction achieves the design specification of alignment of the guide rails to better than 0.254mm across the entire guide rail height of 8m, despite a small lean to the right (within tolerance) and it was noted that this alignment is improved by the presence of the trolley that carries the platform.

  20. Calibrating image plate sensitivity in the 700 to 5000 eV spectral energy range

    NASA Astrophysics Data System (ADS)

    Haugh, Michael J.; Lee, Joshua; Romano, Edward; Schneider, Marilyn

    2013-09-01

    This paper describes a method to calibrate image plate sensitivity for use in the low energy spectral range. Image plates, also known as photostimulable luminescence (PSL) detectors, have often proved to be a valuable tool as a detector for plasma physics studies. Their advantages of large dynamic range, high stopping power, and resistance to neutron damage sometimes outweigh the problems of limited resolution and the remote processing required. The neutron damage resistance is required when the X-ray source is producing a high neutron flux. The Static X-ray Imager (SXI) is a key diagnostic on the National Ignition Facility (NIF) target chamber at LLNL for use in determining the symmetry of the laser beams. The SXI is essential to proper interpretation of the data from the Dante diagnostic to determine the X-ray radiation temperature. It is comprised of two diagnostics located at the top and the bottom of the target chamber. The usual detector is a large array CCD camera. For shots giving high yields of neutrons, the camera would not only be blinded by the neutrons, it would be damaged. To get around this problem, an image plate (IP) is used as the detector. The NIF application covers the energy range from 700 to 5000 eV. The type of image plates typically used for plasma physics are the Fuji BAS-MS, BAS-SR, and BAS-TR models. All models consist of an X-ray sensitive material made of BaF(Br,I):Eu2+ embedded in a plastic binder. X-rays incident on the phosphor ionize the Eu 2+ producing Eu3+ and free electrons that are trapped in lattice defects (F-centers) produced by the absence of halogen ions in the BaF2 crystal. An image plate readout scanner irradiates the IP with a red laser causing reduction of the Eu3+ and emission of a blue photon. The photon is collected using a photomultiplier and digitized to make an electronic image. Image plates are cleared of all F-centers by putting them under a bright light for about 10 minutes. They are then ready for producing a