THE ROLE OF THE CONSEQUENCE MANAGEMENT HOME TEAM IN THE FUKUSHIMA DAIICHI RESPONSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pemberton, Wendy; Mena, RaJah; Beal, William
The Consequence Management Home Team is a U.S. Department of Energy/National Nuclear Security Administration asset. It assists a variety of response organizations with modeling; radiological operations planning; field monitoring techniques; and the analysis, interpretation, and distribution of radiological data. These reach-back capabilities are activated quickly to support public safety and minimize the social and economic impact of a nuclear or radiological incident. In the Fukushima Daiichi response, the Consequence Management Home Team grew to include a more broad range of support than was historically planned. From the early days of the response to the continuing involvement in supporting late phasemore » efforts, each stage of the Consequence Management Home Team support had distinct characteristics in terms of management of incoming data streams as well as creation of products. Regardless of stage, the Consequence Management Home Team played a critical role in the Fukushima Daiichi response effort.« less
NASA Astrophysics Data System (ADS)
Adamkiewicz, Andrzej; Bartoszewski, Marek; Kendra, Martin
2016-09-01
The article justifies the application of gas fuels for supplying auxiliary ship boilers. It presents legal regulations on maritime environmental protection areas and their requirements which are in power. It shows the chronology of introduced limitations on sulphur and nitrogen dioxide emissions and thresholds of carbon dioxide emission reduction expressed by EEDI (Energy Efficiency Design Indicator) and EEOI (Energy Efficiency Operational Indicator). Ways to decrease the values of EEDI and EEOI in the ship energy effectiveness management have been shown. Consequences of replacing marine fuels with LNG for running auxiliary ship boilers have been considered thoroughly, taking into account ecological, constructional, operational, procedural and logistic limitations as well as economic consequences. The summary shows the influence of particular consequences of using LNG for running boilers on the methods of maintenance of auxiliary boilers.
Robertson, Sherry; Mountjoy, Margo
2018-05-03
The syndrome Relative Energy Deficiency in Sport (RED-S) is a clinical entity characterized by low energy availability (LEA), which can negatively affect the health and performance of both male and female athletes. The underlying mechanism of RED-S is an inadequacy of dietary energy to support optimal health and performance. This syndrome refers to impaired physiological function including metabolic rate, menstrual function, bone health, immunity, protein synthesis, and cardiovascular health, with psychological consequences which can either precede (through restrictive dietary habits) or result from RED-S. The term RED-S extends beyond the condition termed the "Female Athlete Triad". Formerly known as synchronized swimming, artistic swimming is an Olympic sport requiring a high level of fitness as well as technical skill and artistry. The risk of RED-S is high in artistic swimming as it is an aesthetic, judged sport with an emphasis on a lean physique. RED-S is of significant concern in the sport of artistic swimming because of the potential negative effects on physical and mental health as well as consequences on athletic performance. This paper reviews health and performance consequences associated with LEA resulting in RED-S in artistic swimming. Medical and nutritional considerations specific to artistic swimming are reviewed and methods to help detect and manage RED-S are discussed. Prevention and management of RED-S in this athlete population should be a priority for coaches and the sport medicine professionals working with artistic swimming athletes should utilize the RED-S CAT, a Clinical Assessment Tool for screening and managing RED-S.
Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation
Katzner, Todd E.; Nelson, David M.; Braham, Melissa A.; Doyle, Jacqueline M.; Fernandez, Nadia B.; Duerr, Adam E.; Bloom, Peter H.; Fitzpatrick, Matthew C.; Miller, Tricia A.; Culver, Renee C. E.; Braswell, Loan; DeWoody, J. Andrew
2017-01-01
Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.
Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation.
Katzner, Todd E; Nelson, David M; Braham, Melissa A; Doyle, Jacqueline M; Fernandez, Nadia B; Duerr, Adam E; Bloom, Peter H; Fitzpatrick, Matthew C; Miller, Tricia A; Culver, Renee C E; Braswell, Loan; DeWoody, J Andrew
2017-04-01
Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ 2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ 2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences. © 2016 Society for Conservation Biology.
Insights on the energy-water nexus through modeling of the integrated water cycle
NASA Astrophysics Data System (ADS)
Leung, L. R.; Li, H. Y.; Zhang, X.; Wan, W.; Voisin, N.; Leng, G.
2016-12-01
For sustainable energy planning, understanding the impacts of climate change, land use change, and water management is essential as they all exert notable controls on streamflow and stream temperature that influence energy production. An integrated water model representing river processes, irrigation water use and water management has been developed and coupled to a land surface model to investigate the energy-water nexus. Simulations driven by two climate change projections with the RCP 4.5 and RCP 8.5 emissions scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature. The simulations revealed important impacts of climate change and water management on both floods and droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the climate mitigation (RCP 4.5) and business as usual (RCP 8.5) scenarios that influence streamflow and stream temperature, with important consequences to energy production. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME) to enable investigation of the energy-water nexus in the fully coupled Earth system.
Evaluating the use of waste-to-energy bottom ash as road construction materials.
DOT National Transportation Integrated Search
2014-02-01
Current management practice, existing regulations, and environmental consequences of municipal solid : waste incineration (MSWI) ash utilization were comprehensively reviewed worldwide and nationwide : in the U.S. Efforts were made to physically and ...
Sleep-obesity relation: underlying mechanisms and consequences for treatment.
St-Onge, M-P
2017-02-01
Short sleep duration has been associated with obesity in numerous epidemiological studies. However, such association studies cannot establish evidence of causality. Clinical intervention studies, on the other hand, can provide information on a causal effect of sleep duration on markers of weight gain: energy intake and energy expenditure. Herein is an overview of the science related to the impact of sleep restriction, in the context of clinical intervention studies, on energy intake, energy expenditure and body weight. Additionally, studies that evaluate the impact of sleep restriction on weight loss and the impact of sleep extension on appetite are discussed. Information to date suggests that weight management is hindered when attempted in the context of sleep restriction, and the public should be made aware of the negative consequences of sleep restriction for weight regulation. © 2017 World Obesity Federation.
NASA Astrophysics Data System (ADS)
Austen, M. C.; Crowe, T. P.; Elliott, M.; Paterson, D. M.; Peck, M. A.; Piraino, S.
2018-02-01
Human use of the European marine environment is increasing and diversifying. This is creating new mechanisms for human induced-changes in marine life which need to be understood and quantified as well as the impact of these changes on ecosystems, their structures (e.g. biodiversity) and functioning (e.g. productivity), and the social and economic consequences that arise. The current and emerging pressures are multiple and interacting, arising, for example, from transport, platforms for renewable and non-renewable energy, exploitation of living and non-living resources, agricultural and industrial discharges, together with wider environmental changes (including climate change). Anticipating the future consequences of these pressures and vectors of change for marine life and of adaptation and mitigation measures (such as the introduction of new technologies and structures, new ballast water practices, ocean and offshore wind energy devices and new fishing strategies) is a prerequisite to the development and implementation of strategies, policies and regulations to manage the marine environment, such as the IMO Convention on ballast water management and the EU Maritime Policy and Marine Strategy Framework Directive.
Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers
Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.
2013-01-01
Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, B.K.; Rothkopf, M.H.
Energy emergency preparedness is the special responsibility of the Deputy Assistant Secretary of Energy Emergencies within the Office of the Assistant Secretary for International Affairs and Energy Emergencies; though other Department of Energy (DOE) offices manage some aspects and DOE also coordinates emergency management with other federal departments. There are two basic objectives for energy emergency preparedness. The first of these, the economic stabilization objective, seeks to ease the impact of an energy supply disruption by facilitating a quick recovery and minimizing the disruption's economic consequences. The second is the mobilization support objective to ensure that there is adequate energymore » and fuel to support defense, defense industrial and critical civilian needs for energy and fuel. While all energy systems are vulnerable they vary in the degree of seriousness and the probability of a disruption. Oil is the most vulnerable, and will become increasingly so in the 1990's, as domestic and reliable foreign sources diminish and the United States relies more on imports from volatile Persian Gulf countries. Electric power is the next most vulnerable system, being open particularly to multi-site terrorist attack. This overview examines two highly connected organizations: the Office of Energy Emergencies (OEE) itself and the actual response organization, centering on the Energy Emergency Management System (EEMS). 38 refs., 10 figs.« less
Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective
NASA Astrophysics Data System (ADS)
Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.
2017-12-01
Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.
Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study
The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...
Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes
C. Rhett Jackson; Catherine M. Pringle
2010-01-01
A broad perspective on hydrologic connectivity is necessary when managing stream ecosystems and establishing conservation priorities. Hydrologic connectivity refers to the water-mediated transport of matter, energy, or organisms within or between elements of the hydrologic cycle. The potential negative consequences of enhancing hydrologic connectivity warrant careful...
The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future
NASA Astrophysics Data System (ADS)
Hussey, Karen; Petit, Carine
2010-05-01
Water and energy are both indispensable inputs to modern economies but currently both resources are under threat owing to the impacts of an ever-increasing population and associated demand, unsustainable practices in agriculture and manufacturing, and the implications of a changing climate. However, it is where water and energy rely on each other that pose the most complex challenges for policy-makers. Water is needed for mining coal, drilling oil, refining gasoline, and generating and distributing electricity; and, conversely, vast amounts of energy are needed to pump, transport, treat and distribute water, particularly in the production of potable water through the use of desalination plants and waste water treatment plants. Despite the links, and the urgency in both sectors for security of supply, in existing policy frameworks energy and water policies are developed largely in isolation from one another. Worse still, some policies designed to encourage alternative energy supplies give little thought to the resultant consequences on water resources, and, similarly, policies designed to secure water supplies pay little attention to the resultant consequences on energy use. The development of new technologies presents both opportunities and challenges for managing the energy-water nexus but a better understanding of the links between energy and water is essential in any attempt to formulate policies for more resilient and adaptable societies. The energy-water nexus must be adequately integrated into policy and decision-making or governments run the risk of contradicting their efforts, and therefore failing in their objectives, in both sectors. A series of COST Exploratory Workshops, drawing on on-going research in the energy-water nexus from a number of international teams, identified the implications of the energy-water nexus on the development of (i) energy policies (ii) water resource management policies and (iii) climate adaptation and mitigation policies. A preliminary list of recommendations on how best to account for and integrate these impacts into policy and decision-making processes at various institutional levels was prepared and future research needs in the energy-water nexus were suggested as main outcomes. This presentation draws on the contributions to the COST water-energy-links exploratory workshops and the development of 12 case studies undertaken by researchers from Europe, the United States, Australia and China, which will be published in a Special Feature of Ecology and Society, mid-2010.
The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time
NASA Astrophysics Data System (ADS)
Bond, Peter D.
2018-03-01
The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.
The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time
NASA Astrophysics Data System (ADS)
Bond, Peter D.
2018-06-01
The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.
Experiences of an Engineer working in Reactor Safety and Emergency Response
NASA Astrophysics Data System (ADS)
Osborn, Douglas
2015-04-01
The U.S. Department of Energy's Federal Radiological Monitoring and Assessment Center Consequence Management Home Team (FRMAC/CMHT) Assessment Scientist's roles, responsibilities incorporate the FRMAC with other federal, state, and local agencies during a nuclear/radiological emergency. Before the Consequence Management Response Team arrives on-site, the FRMAC/CMHT provides technical and logistical support to the FRMAC and to state, local, and tribal authorities following a nuclear/radiological event. The FRMAC/CMHT support includes analyzing event data, evaluating hazards that relate to protection of the public, and providing event information and data products to protective action decision makers. The Assessment Scientist is the primary scientist responsible for performing calculations and analyses and communicating results to the field during any activation of the FRMAC/CMHT assets. As such, the FRMAC/CMHT Assessment Scientist has a number of different roles and responsibilities to fill depending upon the type of response that is required. Additionally, the Sandia National Laboratories (SNL) Consequence Assessment Team (CAT) Consequence Assessor roles, responsibilities involve hazardous materials operational emergency at SNL New Mexico facilities (SNL/NM) which include loss of control over radioactive, chemical, or explosive hazardous materials. When a hazardous materials operational emergency occurs, key decisions must be made in order to regain control over the hazards, protect personnel from the effects of the hazards, and mitigate impacts on operations, facilities, property, and the environment. Many of these decisions depend in whole or in part on the evaluation of potential consequences from a loss of control over the hazards. As such, the CAT has a number of different roles and responsibilities to fill depending upon the type of response that is required. Primary consequence-based decisions supported by the CAT during a hazardous materials operational emergency at SNL/NM include: (1) Onsite Protective Actions (2) Offsite Protective Action Recommendations (3) Event categorization (4) Event classification Other consequence-based decisions supported by the CAT include: (1) Response planning and operations (2) Event termination (3) Reentry planning and operations (4) Recovery planning and operations Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.
A Regional Water Resource Planning Model to Explore the Water-Energy Nexus in the American Southwest
NASA Astrophysics Data System (ADS)
Flores-Lopez, F.; Yates, D.; Purkey, D.; Huber-lee, A. T.
2011-12-01
The power sector withdraws substantial cooling water for electric generation in the United States and is thus heavily dependent on available water resources. Changes in water supplies and water quality may impact the reliability of power generation. This research intends to guide energy policy and decision making, leading to reduced greenhouse gas emission and avoiding unintended consequences related to water management in the context of future decisions around type and location of energy generation. It is recognized that different energy management strategies will have different water management implications that extend from the local, to the regional, and ultimately to the national scale. Further, the importance of these impacts will be defined by the characteristics of individual water systems within which energy management strategies are implemented. The Water Evaluation and Planning (WEAP) system was employed to represent the water resource systems of the American Southwest, where various energy management strategies could be represented within a broad water management context, but with regional specificity. A point of convergence for the American Southwest is Southern California, which relies on water transfers from both the Sacramento/San Joaquin system and the Colorado River systems. The reality is that the water systems of the Los Angeles/San Diego system are connected to those of the San Francisco Bay Area, the Central Valley of California, Central Arizona, Metropolitan Las Vegas, the Salt Lake Valley, the Rio Grande Valley, the Front Range of the Rockies, and in fact, to the borders of Kansas, Nebraska, Texas, and Mexico through Interstate and International Compacts. The Southwest WEAP application was developed to represent the water management implications of different energy and water management strategies and development pathways under current and future conditions. The energy assumptions are derived from the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) analysis that is being conducted independently, and for the entire United States. In addition to different energy development strategies, other development pathways can and will be explored, such as changes in municipal water demand use and patterns, and/or changes in irrigation demand.
Energy from waste in Europe: an analysis and comparison of the EU 27.
Sommer, Manuel; Ragossnig, Arne
2011-10-01
This article focuses on analysing the development of waste-generated energy in the countries of the European Union (EU 27). Besides elaborating the relevant legal and political framework in the waste and energy sector as well as climate protection, the results from correlation analyses based on the databases of the energy statistics from Eurostat are discussed. The share of energy from waste is correlated with macro-economic, waste- and energy-sector-related data, which have been defined as potentially relevant for energy recovery from waste in the countries of the European Union. The results show that a single factor influencing the extent of waste-generated energy could not be isolated as it is being influenced not only by the state of economic development and the state of development of waste management systems in the respective countries but also by energy-sector-related factors and the individual priority settings in those countries. Nevertheless the main driving force for an increase in the utilization of waste for energy generation can be seen in the legal and political framework of the European Union leading to the consequence that market conditions influence the realization of waste management infrastructure for waste-generated energy.
Managing the urban water-energy nexus
NASA Astrophysics Data System (ADS)
Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.
2016-04-01
Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.
Wang, Yue-Wen
2009-01-01
The food security issue was addressed by the development of "modern agriculture" in the last century. But food safety issues and environment degradation were the consequences suffered as a result. Climate change has been recognized as the result of release of stored energy in fossil fuel into the atmosphere. Homogeneous crop varieties, machinery, pesticides and fertilizers are the foundation of uniform commodities in modern agriculture. Fossil fuels are used to manufacture fertilizers and pesticides as well as the energy source for agricultural machinery, thus characterizes modern agriculture. Bio-fuel production and the possibility of the agriculture system as a form of energy input are discussed.
NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area
NASA Astrophysics Data System (ADS)
Entin, J. K.
2004-05-01
Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.
Risk management for surgical energy-driven devices used in the operating room.
Borie, F; Mathonnet, M; Deleuze, A; Millat, B; Gravié, J-F; Johanet, H; Lesage, J-P; Gugenheim, J
2017-12-27
Complications related to energy sources in the operating room are not well-recognized or published, despite occasionally dramatic consequences for the patient and the responsible surgeon. The goal of this study was to evaluate the risks and consequences related to use of energy sources in the operating room. Between 2009 and 2015, 876 adverse events related to health care (AERHC) linked to energy sources in the operating room were declared in the French experience feedback data base "REX". We performed a descriptive analysis of these AERHC and analyzed the root causes of these events and of the indications for non-elective repeat operations, for each energy source. Five different energy sources were used, producing 876 declared AERHC: monopolar electrocoagulation: 614 (70%) AERHC, advanced bipolar coagulation (thermofusion): 137 (16%) AERHC, ultrasonic devices: 69 (8%) AERHC, traditional bipolar electrocoagulation: 32 AERHC, and cold light: 24 AERHC. The adverse events reported were skin burns (27.5% of AERHC), insulation defects (16% of AERHC), visceral burns or perforation (30% of AERHC), fires (11% of AERHC), bleeding (7.5% of AERHC) and misuse or miscellaneous causes (8% of AERHC). For the five energy sources, the root causes were essentially misuse, imperfect training and/or cost-related reasons regarding equipment purchase or maintenance. One hundred and forty-six non-elective procedures (17% of AERHC) were performed for complications related to the use of energy sources in the operating room. This study illustrates the risks related to the use of energy sources on the OR and their consequences. Most cases were related to persistent misunderstanding of appropriate usage within the medical and paramedical teams, but complications are also related to administrative decisions concerning the purchase and maintenance of these devices. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
How can land-use modelling tools inform bioenergy policies?
Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.
2011-01-01
Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID:22482028
NASA Astrophysics Data System (ADS)
Shah, Tushaar
2014-10-01
Gujarat state in Western India exemplifies all challenges of an agrarian economy founded on groundwater overexploitation sustained over decades by perverse energy subsidies. Major consequences are: secular decline in groundwater levels, deterioration of groundwater quality, rising energy cost of pumping, soaring carbon footprint of agriculture and growing financial burden of energy subsidies. In 2009, Government of Gujarat asked the present author, an economist, to chair a Taskforce of senior hydro-geologists and civil engineers to develop and recommend a Managed Aquifer Recharge (MAR) strategy for the state. This paper summarizes the recommended strategy and its underlying logic. It also describes the imperfect fusion of socio-economic and hydro-geologic perspectives that occurred in course of the working of the Taskforce and highlights the need for trans-disciplinary perspectives on groundwater governance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.
1998-10-01
The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality duringmore » the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.
The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticalitymore » during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).« less
Impacts of groundwater management on energy resources and greenhouse gas emissions in California.
Hendrickson, Thomas P; Bruguera, Maya
2018-09-15
California faces significant energy and water infrastructure planning challenges in response to a changing climate. Immediately following the most severe recorded drought, the state experienced one of its wettest water years in recorded history. Despite the recent severe wet weather, much of the state's critical groundwater systems have not recovered from the drought. The recent Sustainable Groundwater Management Act (SGMA) aims to eliminate future depletion risks, but may force California basins to seek alternative water sources by limiting groundwater withdrawals during droughts. These alternative water resources, such as recycled water or desalination, can have significantly higher energy demands in treatment and supply than local groundwater or surface water resources. This research developed potential scenarios of water supply sources for five overdrafted groundwater basins, and modeled the impacts of these scenarios on energy demands and greenhouse gas (GHG) emissions for water supply systems. Our results reveal that energy demands and GHG emissions in different water supply scenarios can vary substantially between basins, but could increase statewide energy consumption as much as 2% and GHG emissions by 0.5. These results highlight the need to integrate these energy and GHG impacts into water resource management. Better understanding these considerations enables water supply planners to avoid potential unintended consequences (i.e., increased energy demands and GHG emissions) of enhancing drought resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fruergaard, Thilde; Astrup, Tomas; Ekvall, Thomas
2009-11-01
The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels being used and different efficiencies for electricity production in the individual countries (0.007-1.13 kg CO(2)-eq. kWh(-1)). Marginal data on electricity provision show even larger variations (0.004-3 kg CO(2)-eq. kWh( -1)). Somewhat less variation in GHG emissions is being found for heat production (0.01-0.69 kg CO(2)-eq. kWh( -1)). The paper further addresses allocation principles and the importance of applying either average or marginal energy data, and it discusses the consequences of introducing reduction targets on CO( 2) emissions. All discussed aspects were found to significantly affect the outcome of GHG accounts suggesting transparent reporting to be critical. Recommendations for use of average/marginal energy data are provided.
Applications of fuzzy ranking methods to risk-management decisions
NASA Astrophysics Data System (ADS)
Mitchell, Harold A.; Carter, James C., III
1993-12-01
The Department of Energy is making significant improvements to its nuclear facilities as a result of more stringent regulation, internal audits, and recommendations from external review groups. A large backlog of upgrades has resulted. Currently, a prioritization method is being utilized which relies on a matrix of potential consequence and probability of occurrence. The attributes of the potential consequences considered include likelihood, exposure, public health and safety, environmental impact, site personnel safety, public relations, legal liability, and business loss. This paper describes an improved method which utilizes fuzzy multiple attribute decision methods to rank proposed improvement projects.
Radioactive Waste Management in Non-Nuclear Countries - 13070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubelka, Dragan; Trifunovic, Dejan
2013-07-01
This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services,more » comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)« less
‘Small Changes’ to Diet and Physical Activity Behaviors for Weight Management
Hills, Andrew P.; Byrne, Nuala M.; Lindstrom, Rachel; Hill, James O.
2013-01-01
Obesity is associated with numerous short- and long-term health consequences. Low levels of physical activity and poor dietary habits are consistent with an increased risk of obesity in an obesogenic environment. Relatively little research has investigated associations between eating and activity behaviors by using a systems biology approach and by considering the dynamics of the energy balance concept. A significant body of research indicates that a small positive energy balance over time is sufficient to cause weight gain in many individuals. In contrast, small changes in nutrition and physical activity behaviors can prevent weight gain. In the context of weight management, it may be more feasible for most people to make small compared to large short-term changes in diet and activity. This paper presents a case for the use of small and incremental changes in diet and physical activity for improved weight management in the context of a toxic obesogenic environment. PMID:23711772
Sexual size dimorphism in three North Sea gadoids.
Keyl, F; Kempf, A J; Sell, A F
2015-01-01
Existing biological data on whiting Merlangius merlangus, cod Gadus morhua and haddock Melanogrammus aeglefinus from a long-term international survey were analysed to address sexual size dimorphism (SSD) and its effect on their ecology and management. Results show that SSD, with larger females of the same age as males, is a result of higher growth rates in females. A direct consequence of SSD is the pronounced length-dependent female ratio that was found in all three gadoids in the North Sea. Female ratios of the three species changed from equality to female dominance at specific dominance transition lengths of c. 30, 35 and 60 cm for M. merlangus, G. morhua and M. aeglefinus, respectively. An analysis by area for M. merlangus also revealed length dependence of female ratios. SSD and length-dependent female ratios under most circumstances are inseparable. Higher overall energy demand as well as a higher energy uptake rate must result from the observed SSD and dimorphism in growth rates. Potential processes related to feeding, locomotion and physiology are proposed that could balance the increased energy investment of females. Potential consequences of SSD and length dependency of female ratios are the reduction of the reproductive potential of a stock due to size-selective fishing and biased assessment of the true size of the female spawning stock that could distort decisions in fisheries management. © 2014 The Fisheries Society of the British Isles.
Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area
NASA Astrophysics Data System (ADS)
Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan
2018-01-01
The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.
2007-05-10
objective is achieved through consequence management and fixed-site decontamination operations. The effectiveness of CBRN consequence management...decontamination operations. The effectiveness of CBRN consequence management and fixed-site decontamination executed in the Joint Security Area can be...when faced with Chemical, Biological, Radiological, or Nuclear (CBRN) contaminated ports of debarkation. The effectiveness of CBRN consequence
NASA Astrophysics Data System (ADS)
Creed, I. F.; Webster, K. L.; Kreutzweiser, D. P.; Beall, F.
2014-12-01
Canada's boreal forest supports many aquatic ecosystem services (AES) due to the intimate linkage between aquatic systems and their surrounding terrestrial watersheds in forested landscapes. There is an increasing risk to AES because natural development activities (forest management, mining, energy) have resulted in disruptions that deteriorate aquatic ecosystems at local (10s of km2) to regional (100s of km2) scales. These activities are intensifying and expanding, placing at risk the healthy aquatic ecosystems that provide AES and may threaten the continued development of the energy, forest, and mining sectors. Remarkably, we know little about the consequences of these activities on AES. The idea that AES should be explicitly integrated into modern natural resource management regulations is gaining broad acceptance. A major need is the ability to measure cumulative effects and determine thresholds (the points where aquatic ecosystems and their services cannot recover to a desired state within a reasonable time frame) in these cumulative effects. However, there is no single conceptual approach to assessing cumulative effects that is widely accepted by both scientists and managers. We present an integrated science-policy framework that enables the integration of AES into forest management risk assessment and prevention/mitigation strategies. We use this framework to explore the risk of further deterioration of AES by (1) setting risk criteria; (2) using emerging technologies to map process-based indicators representing causes and consequences of risk events to the deterioration of AES; (3) assessing existing prevention and mitigation policies in place to avoid risk events; and (4) identifying priorities for policy change needed to reduce risk event. Ultimately, the success of this framework requires that higher value be placed on AES, and in turn to improve the science and management of the boreal forest.
Gibson, Luke; Wilman, Elspeth N; Laurance, William F
2017-12-01
Renewable energy is an important piece of the puzzle in meeting growing energy demands and mitigating climate change, but the potentially adverse effects of such technologies are often overlooked. Given that climate and ecology are inextricably linked, assessing the effects of energy technologies requires one to consider their full suite of global environmental concerns. We review here the ecological impacts of three major types of renewable energy - hydro, solar, and wind energy - and highlight some strategies for mitigating their negative effects. All three types can have significant environmental consequences in certain contexts. Wind power has the fewest and most easily mitigated impacts; solar energy is comparably benign if designed and managed carefully. Hydropower clearly has the greatest risks, particularly in certain ecological and geographical settings. More research is needed to assess the environmental impacts of these 'green' energy technologies, given that all are rapidly expanding globally. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.
Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas
2013-11-01
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management. Copyright © 2013 Elsevier Ltd. All rights reserved.
49 CFR 195.452 - Pipeline integrity management in high consequence areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Pipeline integrity management in high consequence... Management § 195.452 Pipeline integrity management in high consequence areas. (a) Which pipelines are covered... by this section must: (1) Develop a written integrity management program that addresses the risks on...
49 CFR 195.452 - Pipeline integrity management in high consequence areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Pipeline integrity management in high consequence... Management § 195.452 Pipeline integrity management in high consequence areas. (a) Which pipelines are covered... by this section must: (1) Develop a written integrity management program that addresses the risks on...
49 CFR 195.452 - Pipeline integrity management in high consequence areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Pipeline integrity management in high consequence... Management § 195.452 Pipeline integrity management in high consequence areas. (a) Which pipelines are covered... by this section must: (1) Develop a written integrity management program that addresses the risks on...
Initiatives and Challenges in Consequence Management after a WMD Attack
2004-08-01
Challenges in Consequence Management people to seek shelter or other protection when possible, to avoid exposure to weapons of mass destruction effects . The...Potential Effects .........................................9 V. Methods for Managing the Consequences of WMD Use.................14 VI. Toward a...mass destruction (WMD). Consequence management1 is a process to mitigate the effects of the use of weapons of mass destruction, including
Homeland Biological Warfare Consequence Management: Capabilities and Needs Assessment
2001-04-01
AU/ACSC/105/2001-04 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY HOMELAND BIOLOGICAL WARFARE CONSEQUENCE MANAGEMENT: CAPABILITIES AND NEEDS...Dates Covered (from... to) - Title and Subtitle Homeland biological Warfare Consequence Management: Capabilities and Needs Assessment Contract...FEMA, DoJ, DoD, HHS, etc.) make a comprehensive, organized solution to the problem difficult. Focusing on the consequence management functions
Energy saving in WWTP: Daily benchmarking under uncertainty and data availability limitations.
Torregrossa, D; Schutz, G; Cornelissen, A; Hernández-Sancho, F; Hansen, J
2016-07-01
Efficient management of Waste Water Treatment Plants (WWTPs) can produce significant environmental and economic benefits. Energy benchmarking can be used to compare WWTPs, identify targets and use these to improve their performance. Different authors have performed benchmark analysis on monthly or yearly basis but their approaches suffer from a time lag between an event, its detection, interpretation and potential actions. The availability of on-line measurement data on many WWTPs should theoretically enable the decrease of the management response time by daily benchmarking. Unfortunately this approach is often impossible because of limited data availability. This paper proposes a methodology to perform a daily benchmark analysis under database limitations. The methodology has been applied to the Energy Online System (EOS) developed in the framework of the project "INNERS" (INNovative Energy Recovery Strategies in the urban water cycle). EOS calculates a set of Key Performance Indicators (KPIs) for the evaluation of energy and process performances. In EOS, the energy KPIs take in consideration the pollutant load in order to enable the comparison between different plants. For example, EOS does not analyse the energy consumption but the energy consumption on pollutant load. This approach enables the comparison of performances for plants with different loads or for a single plant under different load conditions. The energy consumption is measured by on-line sensors, while the pollutant load is measured in the laboratory approximately every 14 days. Consequently, the unavailability of the water quality parameters is the limiting factor in calculating energy KPIs. In this paper, in order to overcome this limitation, the authors have developed a methodology to estimate the required parameters and manage the uncertainty in the estimation. By coupling the parameter estimation with an interval based benchmark approach, the authors propose an effective, fast and reproducible way to manage infrequent inlet measurements. Its use enables benchmarking on a daily basis and prepares the ground for further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael
2018-06-01
Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.
Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management
NASA Astrophysics Data System (ADS)
Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.
2008-09-01
A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.
After Fukushima: managing the consequences of a radiological release.
Fitzgerald, Joe; Wollner, Samuel B; Adalja, Amesh A; Morhard, Ryan; Cicero, Anita; Inglesby, Thomas V
2012-06-01
Even amidst the devastation following the earthquake and tsunami in Japan that killed more than 20,000 people, it was the accident at the Fukushima Daiichi nuclear power plant that led the country's prime minister, Naoto Kan, to fear for "the very existence of the Japanese nation." While accidents that result in mass radiological releases have been rare throughout the operating histories of existing nuclear power plants, the growing number of plants worldwide increases the likelihood that such releases will occur again in the future. Nuclear power is an important source of energy in the U.S. and will be for the foreseeable future. Accidents far smaller in scale than the one in Fukushima could have major societal consequences. Given the extensive, ongoing Nuclear Regulatory Commission (NRC) and industry assessment of nuclear power plant safety and preparedness issues, the Center for Biosecurity of UPMC focused on offsite policies and plans intended to reduce radiation exposure to the public in the aftermath of an accident. This report provides an assessment of Japan's efforts at nuclear consequence management; identifies concerns with current U.S. policies and practices for "outside the fence" management of such an event in the U.S.; and makes recommendations for steps that can be taken to strengthen U.S. government, industry, and community response to large-scale accidents at nuclear power plants.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Seeing the Elephant -- Consequence Management Policy for the Department of Defense
2001-05-01
required for effective Consequence Management. The three response tiers allows the DoD to provide a predesignated level of support to the appropriate Federal...recommendation is the creation of a tiered response capability that balances time and tasks required for effective Consequence Management. The three...the response required for toxic chemical events. The third tier is reserved for the actions required for the Consequence Management for a biological
Design of New Power Management Circuit for Light Energy Harvesting System
Jafer, Issa; Stack, Paul; MacNamee, Kevin
2016-01-01
Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300
Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System
NASA Astrophysics Data System (ADS)
Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.
2010-09-01
The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced by every plant in Canary Islands are estimated using a series of theoretical and statistical energy models.
Consequence Management - Ready or Not?
2003-04-07
Defense will have sufficient capability and be ready to respond to a Weapons of Mass Destruction/ Effects attack. An effective consequence management...Defense adopts the National Military Strategy and its consequence management approach, it must identify Weapons of Mass Destruction/ Effects threats...that the Department of Defense: develop Weapons of Mass Destruction/ Effects performance standards for response assets; implement a consequence
Energy conversion of animal manures: Feasibility analysis for thirteen western states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittier, J.; Haase, S.; Milward, R.
1993-12-31
The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less
Local, Regional and National Responses for Medical Management of a Radiological/Nuclear Incident
Dainiak, Nicholas; Skudlarska, Beata; Albanese, Joseph
2013-01-01
Radiological and nuclear devices may be used by terrorists or may be the source of accidental exposure. A tiered approach has been recommended for response to a terrorist event wherein local, regional, state and federal assets become involved sequentially, as the magnitude in severity of the incident increases. State-wide hospital plans have been developed and published for Connecticut, New York and California. These plans address delineation of responsibilities of various categories of health professionals, protection of healthcare providers, identification and classification of individuals who might have been exposed to and/or contaminated by radiation and, in the case of Connecticut response plan, early management of victims. Regional response programs such as the New England Regional Health Compact (consisting of 6 member states) have been developed to manage consequences of radiation injury. The Department of Homeland Security is ultimately responsible for managing both health consequences and the crisis. Multiple US national response assets may be called upon for use in radiological incidents. These include agencies and programs that have been developed by the Department of Energy, the Environmental Protection Agency and the Department of Defense. Coordination of national, regional and state assets with local response efforts is necessary to provide a timely and efficient response. PMID:23447742
Local, regional and national responses for medical management of a radiological/nuclear incident.
Dainiak, Nicholas; Skudlarska, Beata; Albanese, Joseph
2013-01-01
Radiological and nuclear devices may be used by terrorists or may be the source of accidental exposure. A tiered approach has been recommended for response to a terrorist event wherein local, regional, state and federal assets become involved sequentially, as the magnitude in severity of the incident increases. State-wide hospital plans have been developed and published for Connecticut, New York and California. These plans address delineation of responsibilities of various categories of health professionals, protection of healthcare providers, identification and classification of individuals who might have been exposed to and/or contaminated by radiation and, in the case of Connecticut response plan, early management of victims. Regional response programs such as the New England Regional Health Compact (consisting of 6 member states) have been developed to manage consequences of radiation injury. The Department of Homeland Security is ultimately responsible for managing both health consequences and the crisis. Multiple US national response assets may be called upon for use in radiological incidents. These include agencies and programs that have been developed by the Department of Energy, the Environmental Protection Agency and the Department of Defense. Coordination of national, regional and state assets with local response efforts is necessary to provide a timely and efficient response.
Widmar, Nicole Olynk; Lord, Emily; Litster, Annette
2015-01-01
Streamlining purchasing in nonhuman animal shelters can provide multiple financial benefits. Streamlining shelter inputs and thus reducing shelter costs can include trading paid labor and management for fewer, more involved volunteers or purchasing large quantities of medical supplies from fewer vendors to take advantage of bulk-purchasing discounts. Beyond direct savings, time and energy spent on purchasing and inventory control can be reduced through careful management. Although cost-cutting measures may seem attractive, shelter managers are cautioned to consider the potential unintended consequences of short-term cost reduction measures that could limit revenues or increase costs in the future. This analysis illustrates an example of the impact of cost reductions in specific expense categories and the impact on shelter net revenue, as well as the share of expenses across categories. An in-depth discussion of labor and purchasing cost-reducing strategies in the real world of animal shelter management is provided.
Biochar from Biosolids Pyrolysis: A Review.
Paz-Ferreiro, Jorge; Nieto, Aurora; Méndez, Ana; Askeland, Matthew Peter James; Gascó, Gabriel
2018-05-10
Ever increasing volumes of biosolids (treated sewage sludge) are being produced by municipal wastewater facilities. This is a consequence of the continued expansion of urban areas, which in turn require the commissioning of new treatment plants or upgrades to existing facilities. Biosolids contain nutrients and energy which can be used in agriculture or waste-to-energy processes. Biosolids have been disposed of in landfills, but there is an increasing pressure from regulators to phase out landfilling. This article performs a critical review on options for the management of biosolids with a focus on pyrolysis and the application of the solid fraction of pyrolysis (biochar) into soil.
Biochar from Biosolids Pyrolysis: A Review
Nieto, Aurora; Méndez, Ana; Askeland, Matthew Peter James; Gascó, Gabriel
2018-01-01
Ever increasing volumes of biosolids (treated sewage sludge) are being produced by municipal wastewater facilities. This is a consequence of the continued expansion of urban areas, which in turn require the commissioning of new treatment plants or upgrades to existing facilities. Biosolids contain nutrients and energy which can be used in agriculture or waste-to-energy processes. Biosolids have been disposed of in landfills, but there is an increasing pressure from regulators to phase out landfilling. This article performs a critical review on options for the management of biosolids with a focus on pyrolysis and the application of the solid fraction of pyrolysis (biochar) into soil. PMID:29748488
Intelligent Control of Micro Grid: A Big Data-Based Control Center
NASA Astrophysics Data System (ADS)
Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng
2018-01-01
In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.
Integrated Model-Based Decisions for Water, Energy and Food Nexus
NASA Astrophysics Data System (ADS)
Zhang, X.; Vesselinov, V. V.
2015-12-01
Energy, water and food are critical resources for sustaining social development and human lives; human beings cannot survive without any one of them. Energy crises, water shortages and food security are crucial worldwide problems. The nexus of energy, water and food has received more and more attention in the past decade. Energy, water and food are closely interrelated; water is required in energy development such as electricity generation; energy is indispensable for collecting, treating, and transporting water; both energy and water are crucial inputs for food production. Changes of either of them can lead to substantial impacts on other two resources, and vice versa. Effective decisions should be based on thorough research efforts for better understanding of their complex nexus. Rapid increase of population has significantly intensified the pressures on energy, water and food. Addressing and quantifying their interactive relationships are important for making robust and cost-effective strategies for managing the three resources simultaneously. In addition, greenhouse gases (GHGs) are emitted in energy, water, food production, consequently making contributions to growing climate change. Reflecting environmental impacts of GHGs is also desired (especially, on the quality and quantity of fresh water resources). Thus, a socio-economic model is developed in this study to quantitatively address the complex connections among energy, water and food production. A synthetic problem is proposed to demonstrate the model's applicability and feasibility. Preliminary results related to integrated decisions on energy supply management, water use planning, electricity generation planning, energy facility capacity expansion, food production, and associated GHG emission control are generated for providing cost-effective supports for decision makers.
Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de
2017-11-05
Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.
Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence
2017-01-01
Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087
Establishing a Conceptual Foundation for Addressing Challenges Facing Food-Energy-Water Management
NASA Astrophysics Data System (ADS)
Goldsby, M.; Padowski, J.; Katz, S.; Brady, M.; Hampton, S. E.
2017-12-01
Ensuring the security of food, energy and water in the face of a changing environment is a top societal priority. In order to make sound policy decisions aimed at meeting those needs, policy-makers need decision-relevant information. As such, considerable effort and resources have recently been devoted to investigating the Food-Energy-Water (FEW) Nexus in order to better provide that information. However, despite the increased research activity into FEW systems and FEW problems, little attention has been devoted to the fundamental conceptual issues underlying contemporary FEW systems. Consequently, this inattention has led to conceptual confusion about what is and what is not a FEW system. This project aims to fill that lacuna in order to better facilitate the FEW research agenda. Toward that end, we identify three features that distinguish FEW problems from other resource management problems: (1) the production and management of the resources in each sector of a FEW system is specialized to its own sector; (2) interdependencies exist between sectors such that overproduction in one sector, for example, may have impacts on other sectors; and (3) there are real limits to FEW resource availability as well as limits on the ability to transact across sector boundaries. We contend that once armed with this distinction, one can model the stocks and flows of FEW capital in a conceptually rigorous way that may lead to operational innovations of FEW management.
NASA Astrophysics Data System (ADS)
Khalil, Yehia Fahim
Currently, U.S. investor-owned utilities (IOUs) are facing major reforms in their business environment similar to the airlines, telecommunications, banking, and insurance industries. As a result, IOUs are gearing up for fierce price competition in the power generation sector, and are vying for electricity customers outside their franchised service territories. Energy experts predict that some IOUs may suffer fatal financial setbacks (especially those with nuclear plants), while others may thrive under competition. Both federal and state energy regulators anticipate that it may take from five to ten years to complete the transition of America's electric utility industry from a regulated monopoly to a market-driven business. During this transition, utility executives are pursuing aggressive business strategies to confront the upcoming price wars. The most compelling strategies focus on cutting operation and maintenance (O&M) costs of power production, downsizing the work force, and signing bilateral energy agreements with large price-sensitive customers to retain their business. This research assesses the impact of the three pivotal strategies on financial performance of utilities during transition to open market competition. A system-dynamics-based management flight simulator has been developed to predict the dynamic performance of a hypothetical IOU organization preparing for market competition. The simulation results show that while the three business strategies lead to short-lived gains, they also produce unanticipated long-term consequences that adversely impact the organization's operating revenues. Generally, the designed flight simulator serves as a learning laboratory which allows management to test new strategies before implementation.
Halford, Jason C G; Harrold, Joanne A
2012-05-01
The current review considers satiety-based approaches to weight management in the context of health claims. Health benefits, defined as beneficial physiological effects, are what the European Food Safety Authority bases their recommendations on for claim approval. The literature demonstrates that foods that target within-meal satiation and post-meal satiety provide a plausible approach to weight management. However, few ingredient types tested produce the sustainable and enduring effects on appetite accompanied by the necessary reductions in energy intake required to claim satiety/reduction in hunger as a health benefit. Proteins, fibre types, novel oils and carbohydrates resistant to digestion all have the potential to produce beneficial short-term changes in appetite (proof-of-concept). The challenge remains to demonstrate their enduring effects on appetite and energy intake, as well as the health and consumer benefits such effects provide in terms of optimising successful weight management. Currently, the benefits of satiety-enhancing ingredients to both consumers and their health are under researched. It is possible that such ingredients help consumers gain control over their eating behaviour and may also help reduce the negative psychological impact of dieting and the physiological consequences of energy restriction that ultimately undermine weight management. In conclusion, industry needs to demonstrate that a satiety-based approach to weight management, based on single-manipulated food items, is sufficient to help consumers resist the situational and personal factors that drive overconsumption. Nonetheless, we possess the methodological tools, which when employed in appropriate designs, are sufficient to support health claims.
Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cascarosa, Esther; Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Astrup, Thomas
Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were establishedmore » for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.« less
Thermal management in inertial fusion energy slab amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, S.B.; Albrecht, G.F.
As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, coolingmore » flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.« less
NASA Astrophysics Data System (ADS)
Ajayi-Banji, Ademola; Omotosho, Olayinka; Amori, Anthony; Alao, Damilola; Igbode, Imoisime; Abimbola, Olufemi
2016-05-01
Holistic view of household energy consumption based on greenhouse gas emissions in the North Central cities of Nigeria was examined in this study. Scenarios considered were based on income level of energy users (low and high) and energy metering system (i.e. pre-paid and post-paid energy billing systems). Strong direct nexus was observed between energy use and emissions pattern. Energy utilization by post-paid category had higher weekly average value of 35.09 and 41.70 kWh as against 23.18 and 33.38 kWh for low and high income pre-paid consumers respectively. Energy use and greenhouse gas emissions from both classification followed similar trend. Data obtained and analysed in the study show that global warming and acidification potentials could be reduced by 33.94 and 19.95 % for low and high income category consumers when pre-paid meters are in place. Conclusively, energy system users with pre-paid metering system displayed reasonable level of management decisions that reduce energy wastage and consequently environmental negative impacts.
Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.
Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina
2018-09-15
Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.
EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks
Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman
2014-01-01
Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639
Fathering and the Pediatric Cancer Experience.
1979-12-01
avoidance of the family as the consequence. Management of the child in the family involved in chronic illness is no easy task. A team of professionals...in fathers began with my own family and the special fatherK I had. 4t ACKNOWLEDGMENTS I wish to express my appreciation to all the following people for...friends of the Graduate Program for continued support. To my four study fathers and their families for their time, energy, and frankness. To my family for
Role of future scenarios in understanding deep uncertainty in long-term air quality management.
Gamas, Julia; Dodder, Rebecca; Loughlin, Dan; Gage, Cynthia
2015-11-01
The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of "deep uncertainty" presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be "technological development" and "change in societal paradigms." These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions. Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management options across wide-ranging conditions.
Multiple system modelling of waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se
2011-12-15
Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less
NASA Astrophysics Data System (ADS)
Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.
2012-12-01
Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the income tax consequences when my agency pays for my property management services? 302-15.13 Section 302-15.13 Public....13 What are the income tax consequences when my agency pays for my property management services? When...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the income tax consequences when my agency pays for property management services? 302-3.421 Section 302-3.421 Public Contracts... § 302-3.421 What are the income tax consequences when my agency pays for property management services...
The Analysis of Renewable Energy Researches in Turkey
NASA Astrophysics Data System (ADS)
Tan, S. O.; Toku, T.; Türker, İ.
2016-11-01
The rapid consumption of limited conventional energy resources mobilizes many countries in the world against global energy crisis. As well as the energy crisis, the environmental pollution caused by existing energy sources also encourages the researchers to study in new energy technologies and also renewable energy resources. From this point of view, it is important for each country to identify its wind, solar, geothermal, biomass, hydro and other renewable energy potentials. Considering this urgent energy requirement, the researches and especially the academic studies have been increased on renewable energy resources to meet the energy demand by means of indigenous resources in each country. Consequently, the main purpose of this study is to analyze the academic studies in Turkey to find out the increment rate of researches, their publication years and the more focusing branch on renewable energy by illustrating the statistical distribution of these data. Automated Data Retrieval Methods have been employed to achieve data from Web of Science database and statistical analyses have been made by SQL server management studio program. The academic studies in all variety of renewable energy areas have a tendency to increase which indicates the importance ratio of renewable energy in Turkey.
CO2 Mitigation Measures of Power Sector and Its Integrated Optimization in China
Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia
2012-01-01
Power sector is responsible for about 40% of the total CO2 emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO2 emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO2 mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO2 mitigation of power sector in China by reducing the CO2 emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020. PMID:23213305
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Consequences of a refusal to complete a CI evaluation including a polygraph examination. 709.14 Section 709.14 Energy DEPARTMENT OF ENERGY COUNTERINTELLIGENCE EVALUATION PROGRAM CI Evaluation Protocols and Protection of National Security § 709.14 Consequences of a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 3 2012-01-01 2012-01-01 false What are the consequences of failing to continue to meet applicable capital and management requirements? 225.83 Section 225.83 Banks and Banking... the consequences of failing to continue to meet applicable capital and management requirements? (a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 3 2010-01-01 2010-01-01 false What are the consequences of failing to continue to meet applicable capital and management requirements? 225.83 Section 225.83 Banks and Banking... the consequences of failing to continue to meet applicable capital and management requirements? (a...
Energy Drinks and Alcohol: Links to Alcohol Behaviors and Consequences Across 56 Days
Patrick, Megan E.; Maggs, Jennifer L.
2013-01-01
Purpose To examine short-term consequences associated with consuming alcohol and energy drinks compared with consuming alcohol without energy drinks. Methods A longitudinal measurement-burst design (14-day bursts of daily surveys in four consecutive college semesters) captured both within-person variation across occasions and between-person differences across individuals. The analytic sample of late adolescent alcohol users included 4,203 days with alcohol use across up to four semesters per person from 508 college students. Results Adding energy drink use to a given day with alcohol use was associated with an increase in number of alcoholic drinks, a trend toward more hours spent drinking, elevated estimated blood alcohol content (eBAC), a greater likelihood of subjective intoxication, and more negative consequences of drinking that day. After controlling for eBAC, energy drink use no longer predicted subjective intoxication but was still associated with a greater number of negative consequences. Conclusions The consumption of energy drinks may lead to increases in alcohol consumption and, after controlling for eBAC, negative consequences. Use of energy drinks plus alcohol represents an emerging threat to public health. PMID:24309196
Proceedings of a Coastal and Marine Spatial Planning Workshop for the Western United States
Thorsteinson, Lyman; Hirsch, Derrick; Helweg, David; Dhanju, Amardeep; Barmenski, Joan; Ferrero, Richard
2011-01-01
Recent scientific and ocean policy assessments demonstrate that a fundamental change in our current management system is required to achieve the long-term health of our ocean, coasts, and Great Lakes in order to sustain the services and benefits they provide to society. The present (2011) species- and sector-centric way we manage these ecosystems cannot account properly for cumulative effects, sustaining multiple ecosystem services, and holistically and explicitly evaluating the tradeoffs associated with proposed alternative and multiple human uses. A transition to an ecosystem-based approach to management and conservation of coastal and marine resources is needed. Competing uses and activities such as commerce, recreation, cultural practices, energy development, conservation, and national security are increasing pressure for new and expanded resource usage in coastal marine ecosystems. Current management efforts use a sector-by-sector approach that mostly focuses on a limited range of tools and outcomes [for example, oil and gas leases, fishery management plans, and Marine Protected Areas (MPAs)]. A comprehensive, ecosystem-based, and proactive approach to planning and managing these uses and activities is needed. Further, scientific understanding and information are essential to achieve an integrated decision-making process that includes knowledge of ecosystem services, existing and possible future conditions, and potential consequences of natural and anthropogenic events. Because no single government agency has executive authority for coastal or ocean resources, conflicting objectives around competing uses abound. In recent years, regional- and state-level initiatives in Coastal and Marine Spatial Planning (CMSP) have emerged to coordinate management activities. In some respects, the components and steps of the overall CMSP process are similar to how existing ocean resources are regulated and managed. For example, the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) uses spatial planning exercises in State Renewable Energy Task Force meetings to identify competing and conflicting ocean uses, and to delineate areas suitable for renewable energy development. Similarly terrestrial areas such as in national parks and national wildlife refuges managed by the Department of the Interior (DOI) prepare management plans for preservation and restoration of species and habitats of concern, some of which are protected by law. The analogy to CMSP is clear - multiple users and multiple expectations, resulting in the requirement to establish spatial plans for management of different resources and different ecosystem services. A two-day workshop on December 1-2, 2010, was convened for DOI representatives and several key non-DOI participants with roles in CMSP as a step toward clarifying national perspectives and consequences of the National Ocean Policy for the West (appendix 1). Discussions helped to develop an understanding of CMSP from the federal perspective and to identify regional priorities. An overarching theme was to promote a better understanding of current and future science needs. The workshop format included briefings by key Federal agencies on their understanding of the national focus followed by discussion of regional issues, including the needs for scientific information and coordination. The workshop also explored potential science contributions by Federal agencies and others; utilizing current capabilities, data, and information systems; and provided a foundation for possible future regional workshops focusing in turn on the West Coast Region (California, Oregon, and Washington), Pacific Islands (sometimes referred to as Oceania) and Alaska. Participants were asked to share information in the following areas, recognizing that the purpose would be to learn more about the national perspective (see appendixes 2-4): Explore how the Western U.S. (Alaska, Pacific Islands, and West Coast Region) migh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-08-01
A comprehensive assessment of the biofuel potential of Peru is presented. Topics discussed cover current biofuel utilization practices; evaluation of Peruvian biomass productivity; identification of Peruvian agricultural and forestry resources; assessment of resource development and management concerns; identification of market considerations; description of biofuel technological options; and regional identification of biofuel technology applications. The discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches now being practiced in Peru. Biomass productivity is evaluated in the context of the terrain, soil, and climatic conditions found in Peru. A quantitative description of the energy potential that couldmore » be realized from agricultural and forestry resources of Peru follows. A regional picture is given for the production of agricultural residues and forest resources that could potentially supply energy. The assessment of resource development and management concerns focuses on harvesting, reforestation, training, and the environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Ten biofuel technology options for Peru were identified: small- to medium-scale gasification, a wood waste inventory, stationary and mobile charcoal production systems, wood distillation, forest resource development and management, electrical cogeneration, anaerobic digestion technology, development of ethanol production capabilities, and agricultural strategies for fuel production.Based upon these biofuel options, nine applications were identified for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less
Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan
2015-02-01
The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15%. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86%. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.
NASA Astrophysics Data System (ADS)
Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan
2015-02-01
The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.
NASA Astrophysics Data System (ADS)
Beauchamp, Axel; Lespez, Laurent; Le Gaillard, Ludovic; Bernard, Vincent; Delahaye, Daniel
2014-05-01
The European Water Framework Directive (WFD), issued in 2000 has the objective of improving the quality of water and aquatic environments. In France, the application of this law requires the dismantling and razing of structures built across waterways (mill valve, mill dam…) which no longer have any use today. The first archaeological results in Normandy show evidence of river management since the Iron Age (800 BC.). They also show that during the last 4000 years, floodplains have been affected by a significant vertical aggradation resulting from soil erosion in the catchment related to the development of agro- pastoral activities. However, these results say nothing about consequences of the proliferation of mill dams for hydrosedimentary flow for low energy rivers and their role in the development of sedimentary stocks in valley beds. The aim of this work is to measure the impact of the implementation of major hydraulic structures (mill inlet, mill dam, millrace, mill valve, drainage ditches...) on the rivers functioning in the past millennia to (1) propose a long term modeling Human/Ecosystem interaction for Lower-Normandy river systems and (2) to anticipate the geomorphological consequences related to dam-removal policy. This research is based on study sites located in the valley bed, most of them have been investigated by archaeologists and have revealed old hydraulic structures. Today, five sites have been identified in varied archaeological and hydromorphological contexts. Trenching was carried out upstream and downstream of hydraulic structures to uncover the Holocene sedimentary infilling of the valley floor. First results from the antique and medieval sites Montaigu-la-Brisette (Manche, FRANCE ) and Colomby (Manche, FRANCE ) show the influence of river management on the evolution of sedimentation in valley bed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 3 2014-01-01 2014-01-01 false What are the consequences of failing to continue to meet applicable capital and management requirements? 225.83 Section 225.83 Banks and Banking....83 What are the consequences of failing to continue to meet applicable capital and management...
Counter-Chemical, Biological, Radiological, and Nuclear Operations
2007-01-26
environment. (Page 10) Consequence management activities serve to reduce the effects of a CBRN attack or event, and assist in the restoration of...can be used quite effectively as attack agents. Toxic Industrial Chemicals (TICs), Toxic Industrial Materials (TIMs), and other potentially...CBRN pillars. Consequence Management Consequence management (CM) activities serve to reduce the effects of a CBRN attack or event, and assist in
Guida, Hilka Flavia Saldanha; Brito, Jussara; Alvarez, Denise
2013-11-01
This article presents the labor management changes and the implications for occupational health and safety that occurred after two thermoelectric plants were acquired by a government-owned, joint stock with private investors, energy corporation. The changes led part of these workers to question their own professional abilities, as previously experienced workers were suddenly considered unqualified due to the new organizational model and restructuring implemented in their units. It was seen how lack of professional recognition in the workplace led to negative health and safety consequences for workers, as there were numerous cases of psychic anguish, emotional disorders, musculoskeletal problems, gastrointestinal disorders, etc. It was also seen that it is now possible to introduce a series of measures that can contribute to improve working conditions and, consequently, the lives of the workers. The benchmark used was Ergology, as well as aspects of the Psychodynamics of Work and the Ergonomics of the Activity. The methodology included a bibliographical survey of the theme, document analysis, semi-structured interviews, systematic activities observations and the validation of results with the research subjects.
Sustainability of utility-scale solar energy: Critical environmental concepts
NASA Astrophysics Data System (ADS)
Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.
2017-12-01
Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.
Sustainability of utility-scale solar energy – critical ecological concepts
Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.
2017-01-01
Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.
NASA Astrophysics Data System (ADS)
Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl
2017-04-01
The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision-making that combines water uses, consumptions and environmental impacts.
Zydziunaite, V; Suominen, T
2014-09-21
Abstract Background: Understanding the reasons and consequences of leadership styles in ethical dilemmas is fundamental to exploring nurse managers' abilities to influence outcomes for patients and nursing personnel. Purpose: To explain the associations between different leadership styles, reasons for their application and its consequences when nurse managers make decisions in ethical dilemmas. Methods: The data were collected between 15 October 2011 and 30 April 2012 by statistically validated questionnaire. The respondents (n=278) were nurse managers. The data were analyzed using SPSS 20.0, calculating Spearman's correlations, the Stepwise Regression and ANOVA. Results: The reasons for applying different leadership styles in ethical dilemmas include personal characteristics, years in work position, institutional factors, and the professional authority of nurse managers. The applied leadership styles in ethical dilemmas are associated with the consequences regarding the satisfaction of patients', relatives' and nurse managers' needs. Conclusions: Nurse managers exhibited leadership styles oriented to maintenance, focusing more on the "doing the job" than on managing the decision-making in ethical dilemmas.
Leadership styles of nurse managers in ethical dilemmas: Reasons and consequences.
Zydziunaite, Vilma; Suominen, Tarja
2014-01-01
Abstract Background: Understanding the reasons and consequences of leadership styles in ethical dilemmas is fundamental to exploring nurse managers' abilities to influence outcomes for patients and nursing personnel. To explain the associations between different leadership styles, reasons for their application and its consequences when nurse managers make decisions in ethical dilemmas. The data were collected between 15 October 2011 and 30 April 2012 by statistically validated questionnaire. The respondents (N = 278) were nurse managers. The data were analysed using SPSS 20.0, calculating Spearman's correlations, the Stepwise Regression and ANOVA. The reasons for applying different leadership styles in ethical dilemmas include personal characteristics, years in work position, institutional factors, and the professional authority of nurse managers. The applied leadership styles in ethical dilemmas are associated with the consequences regarding the satisfaction of patients,' relatives' and nurse managers' needs. Nurse managers exhibited leadership styles oriented to maintenance, focussing more on the 'doing the job' than on managing the decision-making in ethical dilemmas.
Energy drinks and alcohol: links to alcohol behaviors and consequences across 56 days.
Patrick, Megan E; Maggs, Jennifer L
2014-04-01
To examine short-term consequences associated with consuming alcohol and energy drinks compared with consuming alcohol without energy drinks. A longitudinal measurement-burst design (14-day bursts of daily surveys in four consecutive college semesters) captured both within-person variation across occasions and between-person differences across individuals. The analytic sample of late adolescent alcohol users included 4,203 days with alcohol use across up to four semesters per person from 508 college students. Adding energy drink use to a given day with alcohol use was associated with an increase in number of alcoholic drinks, a trend toward more hours spent drinking, elevated estimated blood alcohol content (eBAC), a greater likelihood of subjective intoxication, and more negative consequences of drinking that day. After controlling for eBAC, energy drink use no longer predicted subjective intoxication but was still associated with a greater number of negative consequences. The consumption of energy drinks may lead to increases in alcohol consumption and, after controlling for eBAC, negative consequences. Use of energy drinks plus alcohol represents an emerging threat to public health. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J.
2017-01-01
Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine–energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC– and T3–energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these endocrine markers are applied broadly to wildlife conservation and management.
Advanced consequence management program: challenges and recent real-world implementations
NASA Astrophysics Data System (ADS)
Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.
2002-08-01
The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, E.F.
1997-03-01
This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related tomore » the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.« less
NASA Astrophysics Data System (ADS)
Darling, R. G.
2016-12-01
The FAA's policies for agricultural Unmanned Aerial Systems (UAS) is essential towards preservation and optimization of water use in the parched Western United States. Had FAA applied emergency rules putting farmers on equal-footing with hobbyists for sUAS use at the beginning of the 2012 drought, the Western US could have been able to save approximately 3 Million/AF of water through improved irrigation management. For perspective, Los Angeles city's annual current consumption is 587,000 acre-feet. This study uses various assumptions about developed water use in agriculture and urban areas to determine water use, energy consumption, monetary loss through delay in FAA regulations. If the saved water was added to the ground the energy savings could have been approximately 1.27 Terra-Watt hours, enough energy to power the entire University of California system for 5 years. It remains unclear if new FAA regulations are sufficiently permissive to allow for widespread adoption of sUAS based precision agriculture. Substantial opportunities exist for utilizing UAS traffic management software in rural areas of less crowed airspace: incorporating geofencing and a notification system to operators and air traffic control as an alternative to a difficult examination process.
Towards operating direct methanol fuel cells with highly concentrated fuel
NASA Astrophysics Data System (ADS)
Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.
A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.
Energy and environment: A political ecology of woodfuels in Senegal
NASA Astrophysics Data System (ADS)
Pires, E. Mark
This study examines relationships between energy use and the exploitation of woodland natural resources in the West African nation of Senegal. As in many other countries in the developing world, the majority of the population in Senegal depend on woodfuels, i.e., firewood and charcoal, to satisfy most of their household energy needs. Consequences of this situation include added pressure on the country's limited natural resource base, and increased socioeconomic hardship, particularly for women, as woodfuel resources become increasingly scarce. Woodfuel energy problems in developing countries are typically described in terms of an imbalance between supply and demand that is driven by rapid population growth. However, recent research suggests that a number of other factors should be explored in order to achieve a more thorough understanding of the relationship between woodfuel energy and forest resource management. This study attempts to determine what some of these factors are, and to explain how they inform the energy-environment situation in the case of Senegal. In addition, I examine the scope for addressing Senegal's woodfuel problem through greater local community participation in managing energy and natural resources, a current thrust in many international initiatives designed to help the country cope with this persistent problem. A relatively new conceptual framework for the analysis of human-environment relationships---viz. political ecology---is employed in this study. I attempt to show how political ecology can contribute to the resolution of Senegal's energy-environment dilemma by considering a more inclusive suite of social, economic, political, and environmental variables than has been explored by previous approaches. Findings from the research demonstrate the ability of the political ecology approach to capture many heretofore unexplored factors related to the energy-environment nexus in Senegal. A detailed matrix is generated that illustrates the complexity of issues surrounding the exploitation and management of woodfuel resources. In the context of one local rural community in central Senegal, an effort is made to show how these issues are interrelated and how they affect the possible outcomes of promoting community participation in natural resource management. Results of this study indicate that numerous obstacles stand in the way of implementing effective community-based initiatives designed to alleviate the country's pressing energy-environment situation.
Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, R.J.
2005-03-31
The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changingmore » popular and elite perceptions of the issue, institutional change, and policy change.« less
Consonni, Stefano; Viganò, Federico
2011-01-01
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). Copyright © 2011 Elsevier Ltd. All rights reserved.
Hénault-Ethier, Louise; Martin, Jean-Philippe; Housset, Johann
2017-08-01
A dynamic systems model of organic waste management for the province of Quebec, Canada, was built. Six distinct modules taking into account social, economical and environmental issues and perspectives were included. Five scenarios were designed and tested to identify the potential consequences of different governmental and demographic combinations of decisions over time. Among these scenarios, one examines Quebec's organic waste management policy (2011-2015), while the other scenarios represent business as usual or emphasize ecology, economy or social benefits in the decision-making process. Model outputs suggest that the current governmental policy should yield favorable environmental benefits, energy production and waste valorization. The projections stemming from the current policy action plan approach the benefits gained by another scenario emphasizing the environmental aspects in the decision-making process. As expected, without the current policy and action plan in place, or business as usual, little improvements are expected in waste management compared to current trends, and strictly emphasizing economic imperatives does not favor sustainable organic waste management. Copyright © 2017. Published by Elsevier Ltd.
Combating Terrorism: Issues in Managing Counterterrorist Programs
2000-04-06
major effort to develop a national strategy, to date the strategy does not include a clear desired outcome to be achieved. Resources to combat...Federal exercises, in contrast to earlier years, are now practicing crisis and consequence management simultaneously and including state and local...categories—crisis management and consequence management. Crisis management includes efforts to stop a terrorist attack, arrest terrorists, and gather
2003-09-01
infrastructure, and providing consequence management and mitigation of man-made and natural disasters. The United States Army, Pacifi c (USARPAC), the Offi...Terrorism, Disaster Response and Consequence Management , and Medical Aspects of Environmental Security. The conference brought together military and...consequence management in maintaining governmental legitimacy, and examine salient military roles in preventing, responding to, and mitigating natural
Measuring soil sustainability via soil resilience.
Ludwig, Marie; Wilmes, Paul; Schrader, Stefan
2018-06-01
Soils are the nexus of water, energy and food, which illustrates the need for a holistic approach in sustainable soil management. The present study therefore aimed at identifying a bioindicator for the evaluation of soil management sustainability in a cross-disciplinary approach between soil science and multi-omics research. For this purpose we first discuss the remaining problems and challenges of evaluating sustainability and consequently suggest one measurable bioindicator for soil management sustainability. In this concept, we define soil sustainability as the maintenance of soil functional integrity. The potential to recover functional and structural integrity after a disturbance is generally defined as resilience. This potential is a product of the past and the present soil management, and at the same time prospect of possible soil responses to future disturbances. Additionally, it is correlated with the multiple soil functions and hence reflecting the multifunctionality of the soil system. Consequently, resilience can serve as a bioindicator for soil sustainability. The measurable part of soil resilience is the response diversity, calculated from the systematic contrasting of multi-omic markers for genetic potential and functional activity, and referred to as potential Maximum Ecological Performance (MEPpot) in this study. Calculating MEPpot will allow to determine the thresholds of resistance and resilience and potential tipping points for a regime shift towards irreversible or permanent unfavorable soil states for each individual soil considered. The calculation of such ecosystem thresholds is to our opinion the current global cross-disciplinary challenge. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Energy efficient wireless sensor networks by using a fuzzy-based solution
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore; Nicolosi, Giuseppina
2016-12-01
Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.
Carr, N.B.; Babel, N.; Diffendorfer, J.; Ignizio, D.; Hawkins, S.; Latysh, N.; Leib, K.; Linard, J.; Matherne, A.
2012-01-01
Throughout the western United States, increased demand for energy is driving the rapid development of oil, gas (including shale gas and coal-bed methane), and uranium, as well as renewable energy resources such as geothermal, solar, and wind. Much of the development in the West is occurring on public lands, including those under Federal and State jurisdictions. In Colorado and New Mexico, these public lands make up about 40 percent of the land area. Both states benefit from the revenue generated by energy production, but resource managers and other decisionmakers must balance the benefits of energy development with the potential consequences for ecosystems, recreation, and other resources. Although a substantial amount of geospatial data on existing energy development and energy potential is available, much of this information is not readily accessible to natural resource decisionmakers, policymakers, or the public. Furthermore, the data often exist in varied formats, requiring considerable processing before these datasets can be used to evaluate tradeoffs among resources, compare development alternatives, or quantify cumulative impacts. To allow for a comprehensive evaluation among different energy types, an interdisciplinary team of U.S. Geological Survey (USGS) scientists has developed an online Interactive Energy Atlas for Colorado and New Mexico. The Energy and Environment in the Rocky Mountain Area (EERMA) interdisciplinary team includes investigators from several USGS science centers1. The purpose of the EERMA Interactive Energy Atlas is to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The Atlas is designed to meet the needs of various users, including GIS analysts, resource managers, policymakers, and the public, who seek information about energy in the western United States. Currently, the Atlas has two primary capabilities, a GIS data viewer and an interactive map gallery.
Household energy management strategies in Bulgaria's transitioning energy sector
NASA Astrophysics Data System (ADS)
Carper, Mark Daniel Lynn
Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and socioeconomic development. Thus far, the state has taken a very limited role in improving residential energy efficiency despite the increased energy expenditure burdens that most households face. Yet lacking are affordable technologies, educational campaigns, and individual financing mechanisms or incentives. As shown, where there is an informed, active, and financially capable population, improved household efficiency is more likely to be the winning strategy for both the goals of the individual as well as of the state.
10 CFR 15.45 - Consideration of tax consequences to the Government.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Consideration of tax consequences to the Government. 15.45 Section 15.45 Energy NUCLEAR REGULATORY COMMISSION DEBT COLLECTION PROCEDURES Compromise of a Claim § 15.45 Consideration of tax consequences to the Government. (a) The NRC may accept a percentage of a...
Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes
Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini; ...
2017-05-31
Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less
Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini
Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less
Dulloo, A G; Jacquet, J; Miles-Chan, J L; Schutz, Y
2017-03-01
While putative feedback signals arising from adipose tissue are commonly assumed to provide the molecular links between the body's long-term energy requirements and energy intake, the available evidence suggests that the lean body or fat-free mass (FFM) also plays a role in the drive to eat. A distinction must, however, be made between a 'passive' role of FFM in driving energy intake, which is likely to be mediated by 'energy-sensing' mechanisms that translate FFM-induced energy requirements to energy intake, and a more 'active' role of FFM in the drive to eat through feedback signaling between FFM deficit and energy intake. Consequently, a loss of FFM that results from dieting or sedentarity should be viewed as a risk factor for weight regain and increased fatness not only because of the impact of the FFM deficit in lowering the maintenance energy requirement but also because of the body's attempt to restore FFM by overeating-a phenomenon referred to as 'collateral fattening'. A better understanding of these passive and active roles of FFM in the control of energy intake will necessitate the elucidation of peripheral signals and energy-sensing mechanisms that drive hunger and appetite, with implications for both obesity prevention and its management.
ERIC Educational Resources Information Center
Moesby-Jensen, Cecilie K.
2008-01-01
This paper describes the consequences of a cognitive management development program for middle managers in a public organization. The objective was to teach transformational leadership and teamwork but it occasioned a very limited improved articulation of transformational leadership and teamwork and only a modest change in the managers' actions in…
NASA Astrophysics Data System (ADS)
Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.
2014-12-01
Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our assessment.
CHAPIN, F. STUART
2003-01-01
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725
Re-scheduling as a tool for the power management on board a spacecraft
NASA Technical Reports Server (NTRS)
Albasheer, Omar; Momoh, James A.
1995-01-01
The scheduling of events on board a spacecraft is based on forecast energy levels. The real time values of energy may not coincide with the forecast values; consequently, a dynamic revising to the allocation of power is needed. The re-scheduling is also needed for other reasons on board a spacecraft like the addition of new event which must be scheduled, or a failure of an event due to many different contingencies. This need of rescheduling is very important to the survivability of the spacecraft. In this presentation, a re-scheduling tool will be presented as a part of an overall scheme for the power management on board a spacecraft from the allocation of energy point of view. The overall scheme is based on the optimal use of energy available on board a spacecraft using expert systems combined with linear optimization techniques. The system will be able to schedule maximum number of events utilizing most energy available. The outcome is more events scheduled to share the operation cost of that spacecraft. The system will also be able to re-schedule in case of a contingency with minimal time and minimal disturbance of the original schedule. The end product is a fully integrated planning system capable of producing the right decisions in short time with less human error. The overall system will be presented with the re-scheduling algorithm discussed in detail, then the tests and results will be presented for validations.
Ershow, Abby G
2009-07-01
Recent epidemic increases in the U.S. prevalence of obesity and diabetes are a consequence of widespread environmental changes affecting energy balance and its regulation. These environmental changes range from exposure to endocrine disrupting pollutants to shortened sleep duration to physical inactivity to excess caloric intake. Overall, we need a better understanding of the factors affecting individual susceptibility and resistance to adverse exposures and behaviors and of determinants of individual response to treatment. Obesity and diabetes prevention will require responding to two primary behavioral risk factors: excess energy intake and insufficient energy expenditure. Adverse food environments (external, nonphysiological influences on eating behaviors) contribute to excess caloric intake but can be countered through behavioral and economic approaches. Adverse built environments, which can be modified to foster more physical activity, are promising venues for community-level intervention. Techniques to help people to modulate energy intake and increase energy expenditure must address their personal situations: health literacy, psychological factors, and social relationships. Behaviorally oriented translational research can help in developing useful interventions and environmental modifications that are tailored to individual needs. Copyright 2009 Diabetes Technology Society.
Earth Observations in Support of Offshore Wind Energy Management in the Euro-Atlantic Region
NASA Astrophysics Data System (ADS)
Liberato, M. L. R.
2017-12-01
Climate change is one of the most important challenges in the 21st century and the energy sector is a major contributor to GHG emissions. Therefore greater attention has been given to the evaluation of offshore wind energy potentials along coastal areas, as it is expected offshore wind energy to be more efficient and cost-effective in the near future. Europe is developing offshore sites for over two decades and has been growing at gigawatt levels in annual capacity. Portugal is among these countries, with the development of a 25MW WindFloat Atlantic wind farm project. The international scientific community has developed robust ability on the research of the climate system components and their interactions. Climate scientists have gained expertise in the observation and analysis of the climate system as well as on the improvement of model and predictive capabilities. Developments on climate science allow advancing our understanding and prediction of the variability and change of Earth's climate on all space and time scales, while improving skilful climate assessments and tools for dealing with future challenges of a warming planet. However the availability of greater datasets amplifies the complexity on manipulation, representation and consequent analysis and interpretation of such datasets. Today the challenge is to translate scientific understanding of the climate system into climate information for society and decision makers. Here we discuss the development of an integration tool for multidisciplinary research, which allows access, management, tailored pre-processing and visualization of datasets, crucial to foster research as a service to society. One application is the assessment and monitoring of renewable energy variability, such as wind or solar energy, at several time and space scales. We demonstrate the ability of the e-science platform for planning, monitoring and management of renewable energy, particularly offshore wind energy in the Euro-Atlantic region. Further we explore the automatization of processes using different domains and datasets, which facilitate further research in evaluating and understanding renewable energy variability. AcknowledgementsThis work is supported by Foundation for Science and Technology (FCT), Portugal, project UID/GEO/50019/2013 - Instituto Dom Luiz.
Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.
Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis
2013-09-15
This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assessment of Peruvian biofuel resources and alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, J.P.; Smith, W.; Mariani, E.
1979-08-01
Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regionalmore » production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less
Global and Regional Evaluation of Energy for Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaling; Hejazi, Mohamad; Kyle, Page
Despite significant effort to quantify the inter-dependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process, for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 ± 5 EJ of primary energy consumption in 2010, accounting for 1.2–3% of total global primary energy consumption, of which 58% pertains to surface water, 30% to groundwater, and 12% to non-fresh water, assuming medianmore » energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%) and wastewater treatment (18%). While the USA was the largest E4W consumer from the 1970’s until the 2000’s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models.« less
The Efficacy of All-Positive Management as a Function of the Prior Use of Negative Consequences.
ERIC Educational Resources Information Center
Pfiffner, Linda J.; O'Leary, Susan G.
1987-01-01
The study found that in the absence of a history of negative consequences, an all-positive management system for eight first- through third-grade children with academic and/or classroom behavioral problems was not sufficient to maintain on-task rates of academic accuracy. The addition of negative consequences immediately improved on-task behavior…
Taming B.C. Hydro: Site C and the implementation of the B.C. Utilities Commission Act
NASA Astrophysics Data System (ADS)
Smith, L. Graham
1988-07-01
Public policy making in resources management is greatly influenced by the institutional arrangements that arise out of the legal powers, administrative structures, and financial provisions of the decision system. In British Columbia, the institutional arrangements for energy planning in the province have been greatly altered by the passage of the Utilities Commission Act in 1980. This act redefines the policy implementation process for energy in British Columbia and provides for the regulation of the province's power utility, B.C. Hydro. This is the first time that the hitherto autonomous utility has been subject to regulation and the Utilities Commission Act represents a major reform in the institutional arrangements for energy planning in the province. The article evaluates the effectiveness of the 1980 B.C. Utilities Commission Act and assesses the impact of the legislation upon the institutional arrangements for energy planning in the province. Data for the article were derived from written sources and a series of personal interviews with key participants involved with energy planning in B.C. It is shown that the act represented a major departure in the management of energy resources in B.C. Moreover the implementation of the act's provisions, particularly in regard to B.C. Hydro, had a dramatic impact on the development of new energy projects in the province. It is suggested that while the political and economic climate during the period also favored restraint, the major influence on “taming” the utility was passage of the Utilities Commission Act. The article concludes by exploring the implications of policy changes that have occurred as a consequence of the act's impact on B.C. Hydro.
The past, present, and future of U.S. utility demand-side management programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, J.
Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in responsemore » to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.« less
Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas
2014-01-30
The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Role of future scenarios in understanding deep uncertainty in ...
The environment and its interactions with human systems, whether economic, social or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of deep uncertainty presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be “technological development” and “change in societal paradigms.” These drivers were used as a basis to develop four distinct scenario storylines. The energy and emission implications of each storyline were then modeled using the MARKAL energy system model. NOX and SO2 emissions were found to decrease for all scenarios, largely a response to existing air quality regulations. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition
One-dimension-based spatially ordered architectures for solar energy conversion.
Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun
2015-08-07
The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.
Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use
Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.
2017-01-01
Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health. PMID:29230199
Polyethylene recycling: Waste policy scenario analysis for the EU-27.
Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter
2015-08-01
This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McComb, Jacalyn Robert
2002-01-01
Provides a simplified overview of the glands and hormones involved in menses and highlights the consequences of energy deficiency related to abnormal menstrual cycling. Discusses the promotion of energy deficiency on the Web. Concludes that the prevention framework must incorporate the home, school, and larger community in partnership to promote…
General RMP Guidance - Chapter 7: Prevention Program (Program 3)
Many Program 3 processes are already addressed by the OSHA Process Safety Management Program, which covers on-site consequences. So for compliance with the risk management program, process hazard analysis teams must consider potential offsite consequences.
NASA Astrophysics Data System (ADS)
Bowen, E. E.; Martin, P. A.; Schuble, T. J.
2009-12-01
Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices. Ultimately, quantification of impacts from changes in regional land use can inform regional planning for climate change mitigation strategies.
Tackling malnutrition among older people in the community.
Denny, Anna
2007-03-01
Undernutrition - of both macronutrients and micronutrients - is still a surprisingly common problem among older people in the UK. There is a variety of nutritional supplements that community nurses need to be aware of in managing their patients' nutritional requirements. Different supplements are taken for different disease states. This article looks at the various nutrient and energy requirements that relate directly to clients on the district nurse's caseload. Some of the negative consequences of malnutrition of the older adult are discussed, as are the NICE guidelines for nutrition. Factors affecting dietary intake in older people are considered.
Consequence Maps: A Novel Behavior Management Tool for Educators
ERIC Educational Resources Information Center
Tobin, Catherine E.; Simpson, Richard
2012-01-01
Behavior management remains one of the most significant challenges faced by classroom personnel. One relatively novel and promising management approach involves the use of "Consequence Maps". In this article we discuss the use of this method, including its application and evaluation. A case study of a six-year-old boy in a self-contained special…
The urban harvest approach as framework and planning tool for improved water and resource cycles.
Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M
2015-01-01
Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).
Norbäck, Dan; Lampa, Erik; Engvall, Karin
2014-01-01
Risk factors for asthma, allergy and eczema were studied in a stratified random sample of adults in Stockholm. In 2005, 472 multifamily buildings (10,506 dwellings) were invited (one subject/dwelling) and 7,554 participated (73%). Associations were analyzed by multiple logistic regression, adjusting for gender, age, smoking, country of birth, income and years in the dwelling. In total, 11% had doctor's diagnosed asthma, 22% doctor's diagnosed allergy, 23% pollen allergy and 23% eczema. Doctor's diagnosed asthma was more common in dwellings with humid air (OR = 1.74) and mould odour (OR = 1.79). Doctor's diagnosed allergy was more common in buildings with supply exhaust air ventilation as compared to exhaust air only (OR = 1.45) and was associated with redecoration (OR = 1.48) and mould odour (OR = 2.35). Pollen allergy was less common in buildings using more energy for heating (OR = 0.75) and was associated with humid air (OR = 1.76) and mould odour (OR = 2.36). Eczema was more common in larger buildings (OR 1.07) and less common in buildings using more energy for heating (OR = 0.85) and was associated with water damage (OR = 1.47), humid air (OR = 1.73) and mould odour (OR = 2.01). Doctor's diagnosed allergy was less common in buildings with management accessibility both in the neighbourhood and in larger administrative divisions, as compared to management in the neighbourhood only (OR = 0.49; 95% CI 0.29-0.82). Pollen allergy was less common if the building maintenance was outsourced (OR = 0.67; 95% CI 0.51-0.88). Eczema was more common when management accessibility was only at the division level (OR = 1.49; 95% CI 1.06-2.11). In conclusions, asthma, allergy or eczema were more common in buildings using less energy for heating, in larger buildings and in dwellings with redecorations, mould odour, dampness and humid air. There is a need to reduce indoor chemical emissions and to control dampness. Energy saving may have consequences for allergy and eczema. More epidemiological studies are needed on building management organization.
Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik
2015-07-01
Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system boundary, additional savings of up to 700 kg CO2 eq. and 16 GJ eq. of primary energy per tonne of imported waste were established. Conditions, such as energy recovery efficiency, and thresholds beyond which import-related savings potentially turn into GWP burdens were also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novel pervasive scenarios for home management: the Butlers architecture.
Denti, Enrico
2014-01-01
Many efforts today aim to energy saving, promoting the user's awareness and virtuous behavior in a sustainability perspective. Our houses, appliances, energy meters and devices are becoming smarter and connected, domotics is increasing possibilities in house automation and control, and ambient intelligence and assisted living are bringing attention onto people's needs from different viewpoints. Our assumption is that considering these aspects together allows for novel intriguing possibilities. To this end, in this paper we combine home energy management with domotics, coordination technologies, intelligent agents, ambient intelligence, ubiquitous technologies and gamification to devise novel scenarios, where energy monitoring and management is just the basic brick of a much wider and comprehensive home management system. The aim is to control home appliances well beyond energy consumption, combining home comfort, appliance scheduling, safety constraints, etc. with dynamically-changeable users' preferences, goals and priorities. At the same time, usability and attractiveness are seen as key success factors: so, the intriguing technologies available in most houses and smart devices are exploited to make the system configuration and use simpler, entertaining and attractive for users. These aspects are also integrated with ubiquitous and pervasive technologies, geo-localization, social networks and communities to provide enhanced functionalities and support smarter application scenarios, hereby further strengthening technology acceptation and diffusion. Accordingly, we first analyse the system requirements and define a reference multi-layer architectural model - the Butlers architecture - that specifies seven layers of functionalities, correlating the requirements, the corresponding technologies and the consequent value-added for users in each layer. Then, we outline a set of notable scenarios of increasing functionalities and complexity, discuss the structure of the corresponding system patterns in terms of the proposed architecture, and make this concrete by presenting some comprehensive interaction examples as comic strip stories. Next, we discuss the implementation requirements and how they can be met with the available technologies, discuss a possible architecture, refine it in the concrete case of the TuCSoN coordination technology, present a subsystem prototype and discuss its properties in the Butlers perspective.
Animal models to study the impact of nutrition on the immune system of the transition cow.
Dänicke, Sven; Meyer, Ulrich; Kersten, Susanne; Frahm, Jana
2018-02-01
The immune system is particularly challenged in transition cows as marked physiological changes occur in this period which are driven by late gestation, partus and onset of lactation. As a consequence, the metabolic and nutritional state of the cow also changes significantly with possible implications for the plasticity and flexibility of the immune system. In order to understand how the balance between metabolism, nutritional status and the immune system is maintained under challenging conditions, such as an infection, various animal models can be used which specifically manipulate the nutritional status through various feeding and management strategies. Such models aim at exploring the immunological response to a challenge under largely varying nutritional and metabolic states. As energy balance (EB) is strongly associated both with the metabolic state and with the immunoreactivity of the cows the manipulation of the EB by either influencing energy intake or energy excretion with milk, or by both, offers model opportunities for studying EB effects on the immune system. For example, assigning cows with a higher body condition score (BCS) at least 6 weeks prior to calving to an energy-dense diet exceeding the energy requirement in combination with a decelerated increase in the concentrate feed proportion post partum was shown to be effective in inducing a ketotic metabolic state under ad libitum feeding conditions. Compared to an adequately managed control group this model allows studying immune responses in the transit period and in dependence on dietary interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
WIRE: Weather Intelligence for Renewable Energies
NASA Astrophysics Data System (ADS)
Heimo, A.; Cattin, R.; Calpini, B.
2010-09-01
Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of power plants and electricity grids and second from the meteorological measurement community to deliver suitable, short term high quality forecasts to fulfill these requests with emphasis on highly variable weather conditions and spatially distributed energy productions often located in complex terrain. This topic has been submitted for a new COST Action under the title "Short-Term High Resolution Wind and Solar Energy Production Forecasts".
NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. UNKEFER; M. EBINGER; ET AL
Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies.more » A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation ({approximately}560 GigaTons), the principal focus of terrestrial sequestration efforts is to increase soil carbon. But soil carbon ultimately derives from vegetation and therefore must be managed indirectly through aboveground management of vegetation and nutrients. Hence, the response of whole ecosystems must be considered in terrestrial carbon sequestration strategies.« less
Global energy consumption for direct water use
NASA Astrophysics Data System (ADS)
Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.
2015-12-01
Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.
Energy Conversion in Natural and Artificial Photosynthesis
McConnell, Iain; Li, Gonghu; Brudvig, Gary W.
2010-01-01
Summary Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil fuel dependence has severe consequences including energy security issues and greenhouse gas emissions. The consequences of fossil fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices including photoelectrochemical cells for solar energy conversion. PMID:20534342
NASA Astrophysics Data System (ADS)
Agavanakis, Kyriakos; Papageorgas, Panagiotis G.; Vokas, Georgios A.; Ampatis, Dionysios; Salame, Chafic
2018-05-01
Energy trading market is a consequence of the grid evolution, which has been highly regulated and accessible to a small group of stakeholders so far. Being a fundamental part of national economies, the business models and the operating regulatory structures have been the subject of intense research and experimentation. At the same time, the increasing integration of distributed energy resources to the microgrid level changes the dependence of the grid infrastructure from fossil and nuclear to renewable energy sources, smart storage and smart management. In this paper, it is argued that this shift which marks the transformation towards the next industrial era, puts in the market foreground a big number of smaller producers and ultimately all the end users, in the form of actively engaged prosumers. Furthermore, it is shown that the computational resources and technology to support an open, widely accessible and fair peer-to-peer trading market, are already available. And that such an implementation is feasible and immediately achievable using just commercial products and a side-by-side approach in the place of unrealistic big-bang type grid upgrades.
Emergency Response Health Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mena, RaJah; Pemberton, Wendy; Beal, William
2012-05-01
Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review,more » and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.« less
Simulation of the consequences of different fire regimes to support wildland fire use decisions
Carol Miller
2007-01-01
The strategy known as wildland fire use, in which lightning-ignited fires are allowed to burn, is rapidly gaining momentum in the fire management community. Managers need to know the consequences of an increase in area burned that might result from an increase in wildland fire use. One concern of land managers as they consider implementing wildland fire use is whether...
5 CFR 250.103 - Consequences of improper agency actions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Consequences of improper agency actions. 250.103 Section 250.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT IN AGENCIES Authority for Personnel Actions in Agencies § 250.103...
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... analysis (OCA) information means sections 2 through 5 of a risk management plan (consisting of an... consequence analysis (OCA) data elements means the results of the off-site consequence analysis conducted by a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... analysis (OCA) information means sections 2 through 5 of a risk management plan (consisting of an... consequence analysis (OCA) data elements means the results of the off-site consequence analysis conducted by a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... analysis (OCA) information means sections 2 through 5 of a risk management plan (consisting of an... consequence analysis (OCA) data elements means the results of the off-site consequence analysis conducted by a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... analysis (OCA) information means sections 2 through 5 of a risk management plan (consisting of an... consequence analysis (OCA) data elements means the results of the off-site consequence analysis conducted by a...
2008-06-01
operations . The JSC, however, has analyzed the new legislation and their JCOA Journal, June 2008 13 recommendations for managing how these cases are...CBRNE) consequence management operations . 4 While the Department of Homeland Security’s (DHS) Federal Emergency Management Agency (FEMA) 5 is...affect the Department of Defense’s consequence management operations in support of a primary federal agency. Although the U.S. Constitution’s Supremacy
Vázquez-Rowe, Ian; Marvuglia, Antonino; Rege, Sameer; Benetto, Enrico
2014-02-15
Luxembourg aims at complying with the EU objective of attaining a 14% use of bioenergy in the national grid by 2020. The increase of biomethane production from energy crops could be a valuable option in achieving this objective. However, the overall environmental benefit of such option is yet to be proven. Consequential Life Cycle Assessment (CLCA) has shown to be a useful tool to evaluate the environmental suitability of future energy scenarios and policies. The objective of this study was, therefore, to evaluate the environmental consequences of modifying the Luxembourgish agricultural system to increase maize production for biomethane generation. A total of 10 different scenarios were modelled using a partial equilibrium (PE) model to identify changes in land cultivation based on farmers' revenue maximisation, which were then compared to the baseline scenario, i.e. the state of the agricultural sector in 2009. The results were divided into three different consequential decision contexts, presenting differing patterns in terms of land use changes (LUCs) but with minor shifts in environmental impacts. Nevertheless, energy from maize production would imply substantially higher environmental impacts when compared with the current use of natural gas, mainly due to increases in climate change and agricultural land occupation impacts. The results are discussed based on the consequences they may generate on the bioenergy policy, the management of arable land, the changes in import-export flows in Luxembourg and LUCs in the domestic agricultural system. In addition, the specific PE+LCA method presented intends to be of use for other regional studies in which a high level of site-specific data is available. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
Consequence Management: A Disconnect Between National Security Policy and Force Structure?
2001-03-15
effects or the consequences of a detonated and/or released weapon(s) has only recently been given much attention. Despite several warnings of the...with the exposure ? Second, the time required to establish and field a regional JTF would prevent the force from having a strong positive effect on the... outcome of the situation. One of the critical missions of a successful consequence management force is its ability to provide a strong deterrent
NASA Astrophysics Data System (ADS)
Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio
1993-08-01
As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.
Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H
2010-07-01
Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Energy conversion in natural and artificial photosynthesis.
McConnell, Iain; Li, Gonghu; Brudvig, Gary W
2010-05-28
Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.
Energy and material flows of megacities
Kennedy, Christopher A.; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J.; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran
2015-01-01
Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world’s 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001–2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth. PMID:25918371
Energy and material flows of megacities.
Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran
2015-05-12
Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth.
Metabolic and immunological changes in transition dairy cows: A review
Wankhade, Pratik Ramesh; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K. P.; Sejian, V.; Rajendran, D.; Varghese, Minu Rachel
2017-01-01
Smooth transition from pregnancy to lactation is important for high productive and reproductive performance during later postpartum period in dairy animals. On the other hand, the poor transition often leads to huge economic loss to dairy farmers due to compromised production and reproduction. Therefore, understanding the causes and consequence of metabolic changes during the transition period is very important for postpartum health management. In this review, metabolic changes with reference to negative energy balance in transition cow and its effect on health and reproduction during the later postpartum period in dairy animals are discussed besides the role of metabolic inflammation in postpartum performance in dairy animals. PMID:29263601
Behavior Management: Examining the Functions of Behavior
ERIC Educational Resources Information Center
Alstot, Andrew E.; Alstot, Crystal D.
2015-01-01
Appropriate student behavior is essential for the success of a physical education lesson. Despite using effective proactive management strategies, teachers may need to also use reactive techniques to reduce problem behaviors by applying suitable consequences. For these consequences to be effective, they must be aligned with the function, or cause,…
ERIC Educational Resources Information Center
Mindrila, Diana; Moore, Lori; Davis, Pamela
2015-01-01
The current study investigated the relationship between behavior management, traditional bullying, cyber-victimization, and several psychosocial consequences of cyber-victimization. Findings from previous research were used to specify a complex path model, which allowed the simultaneous estimation of multiple direct and indirect effects. Data were…
Resilience Metrics for the Electric Power System: A Performance-Based Approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Castillo, Andrea R; Silva-Monroy, Cesar Augusto
Grid resilience is a concept related to a power system's ability to continue operating and delivering power even in the event that low probability, high-consequence disruptions such as hurricanes, earthquakes, and cyber-attacks occur. Grid resilience objectives focus on managing and, ideally, minimizing potential consequences that occur as a result of these disruptions. Currently, no formal grid resilience definitions, metrics, or analysis methods have been universally accepted. This document describes an effort to develop and describe grid resilience metrics and analysis methods. The metrics and methods described herein extend upon the Resilience Analysis Process (RAP) developed by Watson et al. formore » the 2015 Quadrennial Energy Review. The extension allows for both outputs from system models and for historical data to serve as the basis for creating grid resilience metrics and informing grid resilience planning and response decision-making. This document describes the grid resilience metrics and analysis methods. Demonstration of the metrics and methods is shown through a set of illustrative use cases.« less
The Systematic Use of Positive and Negative Consequences in Managing Classroom Encopresis
ERIC Educational Resources Information Center
George, Thomas W.; And Others
1977-01-01
This study reports a successful classroom intervention program which was designed to curb encopresis. It used positive consequences in combination with negative consequences, rather than negative consequences alone. Also it utilized a reversal strategy to evalulate the efficacy of the treatment variables. (Author)
Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atul Jain, University of Illinois, Urbana-Champaign, IL
2009-10-14
The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full projectmore » period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.
This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood ofmore » these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.« less
Radiation biology of HZE particles
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.
1990-01-01
The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets which may be related to charge, velocity, or rate of energy loss. There are many consequences of this feature to biological endpoints when compared to effects of ionizing photons. Dose vs response and dose rate kinetics are modified, DNA and cellular repair systems are altered in their abilities to cope with damage and, the qualitative features of damage are unique for different ions. These features must be incorporated into any risk assessment system for radiation health management. HZE induced mutation, cell inactivation and altered organogenesis will be discussed emphasizing studies with the nematode Caenorhabditis elegans and cultured cells. Observations from radiobiology experiments in space will also be reviewed along with plans for future space-based studies.
Waste biorefineries: Enabling circular economies in developing countries.
Nizami, A S; Rehan, M; Waqas, M; Naqvi, M; Ouda, O K M; Shahzad, K; Miandad, R; Khan, M Z; Syamsiro, M; Ismail, I M I; Pant, Deepak
2017-10-01
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental assessment: The Eden project
NASA Astrophysics Data System (ADS)
Roza, Christodoulaki
Non domestic buildings account for about one-sixth of the U.K.'s entire C02 emissions and one-third of the building related ones 2 . Their proportion of energy consumption, particularly electricity, has also been growing 2 . New buildings are not necessarily better, with energy use often proving to be much higher than their designers anticipated 2 . Annual C02 emissions of two- and sometimes three- times design expectations are far from unusual, leaving a massive credibility gap 2 . These and other global environmental and human health related concerns have motivated an increasing number of designers, developers and building users to pursue more environmentally sustainable designs and construction strategies 5 . However, these buildings can be difficult to evaluate, since they are large in scale, complex in materials and function and temporally dynamic due to limited service life of building components and changing user requirements 5 . All of these factors make environmental assessment of the buildings challenging. Previous Post Occupancy Review of Buildings and their Engineering (PROBE) building investigations have uncovered serious shortcomings in facilities management, or at least mismatches between a building's management needs and the ability of the occupiers to provide the right level of management 1 . Consequently, large differences between energy performance expectations and outcomes can occur virtually unnoticed, while designers continue to repeat flawed descriptions 2 . This investigation attempts to evaluate the building's operation and to help achieving demonstrable improvements in terms of energy efficiency and occupant satisfaction. The scope of this study is to evaluate the actual environmental performance of a building notable for its advanced design. The Education Resource Centre at the Eden Project was selected to compare design expectations with post occupancy performance. This report contains a small-scale survey of user satisfaction with the chosen building, an analysis of the building's energy use and information about the physical and managerial circumstances operating 24 . The author has attempted to zoom in on specific issues, such as energy performance and lighting consumption. Both successes and failures have been reported, providing owners, designers and end users with valuable, real-world information.
Projected future climate change and Baltic Sea ecosystem management.
Andersson, Agneta; Meier, H E Markus; Ripszam, Matyas; Rowe, Owen; Wikner, Johan; Haglund, Peter; Eilola, Kari; Legrand, Catherine; Figueroa, Daniela; Paczkowska, Joanna; Lindehoff, Elin; Tysklind, Mats; Elmgren, Ragnar
2015-06-01
Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.
Loafmann, B
2001-01-01
An analysis of how consequences impact your company from inside or outside will enable you to prevent the situations that can build up until they explode into violence. Specific skill enhancement on the use of feedback and consequences will broaden the base of involvement and foster early intervention opportunities before things get out of control. Understanding how consequences influence behavior also can improve self-management efforts. When these strategies are coupled with security hardware and appropriate policies, we can once again help our managers and employees work without fear of violence.
Consequence Management Symposium
2001-09-01
AND SUBTITLE Consequence Management Symposium 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...log i cal agents and their effects was deemed essen tial for “first respond ers,” includ ing emer gency medi cal and hospi tal prac ti tio ners
Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott
Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: • Environmental Risk Evaluationmore » System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermen’s Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. • Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: • Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and • North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.« less
Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).
Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H
2009-06-01
With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.
Pomey, Marie-Pascale; Clavel, Nathalie; Amar, Claudia; Sabogale-Olarte, Juan Carlos; Sanmartin, Claudia; De Coster, Carolyn; Noseworthy, Tom
2017-09-07
In Canada, long waiting times for core specialized services have consistently been identified as a key barrier to access. Governments and organizations have responded with strategies for better access management, notably for total joint replacement (TJR) of the hip and knee. While wait time management strategies (WTMS) are promising, the factors which influence their sustainable implementation at the organizational level are understudied. Consequently, this study examined organizational and systemic factors that made it possible to sustain waiting times for TJR within federally established limits and for at least 18 months or more. The research design is a multiple case study of WTMS implementation. Five cases were selected across five Canadian provinces. Three success levels were pre-defined: 1) the WTMS maintained compliance with requirements for more than 18 months; 2) the WTMS met requirements for 18 months but could not sustain the level thereafter; 3) the WTMS never met requirements. For each case, we collected documents and interviewed key informants. We analyzed systemic and organizational factors, with particular attention to governance and leadership, culture, resources, methods, and tools. We found that successful organizations had specific characteristics: 1) management of the whole care continuum, 2) strong clinical leadership; 3) dedicated committees to coordinate and sustain strategy; 4) a culture based on trust and innovation. All strategies led to relatively similar unintended consequences. The main negative consequence was an initial increase in waiting times for TJR and the main positive consequence was operational enhancement of other areas of specialization based on the TJR model. This study highlights important differences in factors which help to achieve and sustain waiting times. To be sustainable, a WTMS needs to generate greater synergies between contextual-level strategy (provincial or regional) and organizational objectives and constraints. Managers at the organizational level should be vigilant with regard to unintended consequences that a WTMS in one area can have for other areas of care. A more systemic approach to sustainability can help avoid or mitigate undesirable unintended consequences.
NASA Astrophysics Data System (ADS)
Houser, P. R.
2014-12-01
NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information content of water cycle predictions in a way that allows for model improvement. The final challenge is to establish clear pathways to inform water managers, practitioners and decision makers about newly developed tools, observations and research results.
Waste management to improve food safety and security for health advancement.
Lin, Angela Yu-Chen; Huang, Susana Tzy-Ying; Wahlqvist, Mark L
2009-01-01
Economic growth inevitably influences the food chain. Growing demand with changes in lifestyle and health consciousness encourage use of packaged and pre-prepared foods. The needs of environmental protection from waste generated are largely overlooked, and a lack of knowledge about the impact on the environment and its health effects constitute food security/safety problems. Food production and waste generation directly affect resource (i.e., energy and water) consumption and often contaminate the environment. More pressure on food production has inculcated the use of pesticides, herbicides, antibiotics and chemical fertilizers which add to current global pollution. At least half of food grown is discarded before and after it reaches consumers. It is estimated that one third to half of landfill waste comes from the food sector. This landfill releases green house gases (GHG) as well as leachate which worsen soil and water quality and safety. Pharmaceutical and chemical contaminations from residential, industrial and agricultural sources make their way into nearby water and soil and can eventually affect our food systems. Phthalates, PFOA, BPA, commonly used in plastics and personal care products, are found in unacceptable concentrations in Taiwanese waters. They, too, contribute to food contamination and long-term health risk. Existing waste management strategies warrant more stringent norms for waste reduction at source. Awareness through education could reduce food waste and its consequences. This review encompasses impacts of food production systems on the environment, pollution which results from food waste, costs and economic advantages in food waste management, and health consequences of waste.
10 CFR 1015.306 - Consideration of tax consequences to the Government.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Consideration of tax consequences to the Government. 1015... UNITED STATES Standards for the Compromise of Claims § 1015.306 Consideration of tax consequences to the Government. In negotiating a compromise, DOE will consider the tax consequences to the Government. In...
A risk-based approach to sanitary sewer pipe asset management.
Baah, Kelly; Dubey, Brajesh; Harvey, Richard; McBean, Edward
2015-02-01
Wastewater collection systems are an important component of proper management of wastewater to prevent environmental and human health implications from mismanagement of anthropogenic waste. Due to aging and inadequate asset management practices, the wastewater collection assets of many cities around the globe are in a state of rapid decline and in need of urgent attention. Risk management is a tool which can help prioritize resources to better manage and rehabilitate wastewater collection systems. In this study, a risk matrix and a weighted sum multi-criteria decision-matrix are used to assess the consequence and risk of sewer pipe failure for a mid-sized city, using ArcGIS. The methodology shows that six percent of the uninspected sewer pipe assets of the case study have a high consequence of failure while four percent of the assets have a high risk of failure and hence provide priorities for inspection. A map incorporating risk of sewer pipe failure and consequence is developed to facilitate future planning, rehabilitation and maintenance programs. The consequence of failure assessment also includes a novel failure impact factor which captures the effect of structurally defective stormwater pipes on the failure assessment. The methodology recommended in this study can serve as a basis for future planning and decision making and has the potential to be universally applied by municipal sewer pipe asset managers globally to effectively manage the sanitary sewer pipe infrastructure within their jurisdiction. Copyright © 2014 Elsevier B.V. All rights reserved.
Advanced human-machine interface for collaborative building control
Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan
2015-08-11
A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.
Self-Learning Power Control in Wireless Sensor Networks.
Chincoli, Michele; Liotta, Antonio
2018-01-27
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay.
Self-Learning Power Control in Wireless Sensor Networks
Liotta, Antonio
2018-01-01
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay. PMID:29382072
Managing Records for the Long Term - 12363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, John V.; Gueretta, Jeanie
The U.S. Department of Energy (DOE) is responsible for managing vast amounts of information documenting historical and current operations. This information is critical to the operations of the DOE Office of Legacy Management. Managing legacy records and information is challenging in terms of accessibility and changing technology. The Office of Legacy Management is meeting these challenges by making records and information management an organizational priority. The Office of Legacy Management mission is to manage DOE post-closure responsibilities at former Cold War weapons sites to ensure the future protection of human health and the environment. These responsibilities include environmental stewardship andmore » long-term preservation and management of operational and environmental cleanup records associated with each site. A primary organizational goal for the Office of Legacy Management is to 'Preserve, Protect, and Share Records and Information'. Managing records for long-term preservation is an important responsibility. Adequate and dedicated resources and management support are required to perform this responsibility successfully. Records tell the story of an organization and may be required to defend an organization in court, provide historical information, identify lessons learned, or provide valuable information for researchers. Loss of records or the inability to retrieve records because of poor records management processes can have serious consequences and even lead to an organisation's downfall. Organizations must invest time and resources to establish a good records management program because of its significance to the organization as a whole. The Office of Legacy Management will continue to research and apply innovative ways of doing business to ensure that the organization stays at the forefront of effective records and information management. DOE is committed to preserving records that document our nation's Cold War legacy, and the Office of Legacy Management will keep records management as a high priority. (authors)« less
41 CFR 105-55.024 - Consideration of tax consequences to the Government.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consequences to the Government. 105-55.024 Section 105-55.024 Public Contracts and Property Management Federal... consequences to the Government. In negotiating a compromise, the General Services Administration (GSA) may consider the tax consequences to the Government. In particular, GSA may consider requiring a waiver of tax...
Mulliniks, J T; Rius, A G; Edwards, M A; Edwards, S R; Hobbs, J D; Nave, R L G
2015-06-01
Despite overall increased production in the last century, it is critical that grazing production systems focus on improving beef and dairy efficiency to meet current and future global food demands. For livestock producers, production efficiency is essential to maintain long-term profitability and sustainability. This continued viability of production systems using pasture- and range-based grazing systems requires more rapid adoption of innovative management practices and selection tools that increase profitability by optimizing grazing management and increasing reproductive performance. Understanding the genetic variation in cow herds will provide the ability to select cows that require less energy for maintenance, which can potentially reduce total energy utilization or energy required for production, consequently improving production efficiency and profitability. In the United States, pasture- and range-based grazing systems vary tremendously across various unique environments that differ in climate, topography, and forage production. This variation in environmental conditions contributes to the challenges of developing or targeting specific genetic components and grazing systems that lead to increased production efficiency. However, across these various environments and grazing management systems, grazable forage remains the least expensive nutrient source to maintain productivity of the cow herd. Beef and dairy cattle can capitalize on their ability to utilize these feed resources that are not usable for other production industries. Therefore, lower-cost alternatives to feeding harvested and stored feedstuffs have the opportunity to provide to livestock producers a sustainable and efficient forage production system. However, increasing production efficiency within a given production environment would vary according to genetic potential (i.e., growth and milk potential), how that genetic potential fits the respective production environment, and how the grazing management fits within those genetic parameters. Therefore, matching cow type or genetic potential to the production environment is and will be more important as cost of production increases.
Radioprotective agents in medicine.
Duraković, A
1993-12-01
The diminished probability of strategic nuclear confrontation alleviates some of the global concerns about large numbers of radiation casualties in the event of a nuclear war. As a result of the protection of the environment, the management of smaller numbers of radiation casualties assumes a more predictable and more specific role confined to accidents in nuclear energy projects, industry, technology and science. Recent experience of the consequences of accidents in nuclear power plants, in the field of radiotherapy and in the disposal of radioactive waste and spent fuel, present the medical and scientific communities with formidable problems if such events are to lead to minimal adverse effects on the biosphere. Whereas it is not possible to predict a nuclear or radiation accident, radioprotection is hardly an issue of health science alone, but rather an issue of the strictest quality assurance in all aspects of the utilization of nuclear energy and ionizing radiation. Thus, the medical community concerned with radioprotection will have to confine its emphasis on the management of radiation-induced alterations of the human organism from acute radiation syndromes to the stochastic concepts of chronic alterations of radiosensitive organic systems. Current multidisciplinary research in the field of radioprotection involves all aspects of basic and clinical research ranging from the subatomic mechanisms of free radical formation, macromolecular and intracellular radiation-induced alterations, biochemical and physiological homeostatic mechanisms and organ level manifestations to the clinical management of radiation casualties in a controlled hospital environment. Radioprotective agents, although widely studied in the past four decades and including several thousand agents, have not reached the level of providing the field of medicine with an agent that conforms to all criteria of an optimal radioprotectant, including effectiveness, toxicity, availability, specificity and tolerance. This article discusses the current state of radioprotection in medical therapy, and emphasizes a need for continued research in the area of medical management of radiation casualties from the viewpoint of a realistic probability of nuclear incidents or accidents in the nuclear energy-dependent world at the end of the millennium.
Energy Problems and Environmental Concern
ERIC Educational Resources Information Center
Train, Russell E.
1973-01-01
Discusses problems encountered in energy extraction and consumption, involving nuclear power plant construction, environmental consequences of energy systems, and energy conservation ethics. Indicates that the increasing concern over environmental quality is not the true cause of present energy problems. (CC)
41 CFR 302-14.7 - Are there tax consequences when I receive a home marketing incentive payment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Are there tax consequences when I receive a home marketing incentive payment? 302-14.7 Section 302-14.7 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES...
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
Reversible Experiments: Putting Geological Disposal to the Test.
Bergen, Jan Peter
2016-06-01
Conceiving of nuclear energy as a social experiment gives rise to the question of what to do when the experiment is no longer responsible or desirable. To be able to appropriately respond to such a situation, the nuclear energy technology in question should be reversible, i.e. it must be possible to stop its further development and implementation in society, and it must be possible to undo its undesirable consequences. This paper explores these two conditions by applying them to geological disposal of high-level radioactive waste (GD). Despite the fact that considerations of reversibility and retrievability have received increased attention in GD, the analysis in this paper concludes that GD cannot be considered reversible. Firstly, it would be difficult to stop its further development and implementation, since its historical development has led to a point where GD is significantly locked-in. Secondly, the strategy it employs for undoing undesirable consequences is less-than-ideal: it relies on containment of severely radiotoxic waste rather than attempting to eliminate this waste or its radioactivity. And while it may currently be technologically impossible to turn high-level waste into benign substances, GD's containment strategy makes it difficult to eliminate this waste's radioactivity when the possibility would arise. In all, GD should be critically reconsidered if the inclusion of reversibility considerations in radioactive waste management has indeed become as important as is sometimes claimed.
Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.
2015-04-01
Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.
Norbäck, Dan; Lampa, Erik; Engvall, Karin
2014-01-01
Risk factors for asthma, allergy and eczema were studied in a stratified random sample of adults in Stockholm. In 2005, 472 multifamily buildings (10,506 dwellings) were invited (one subject/dwelling) and 7,554 participated (73%). Associations were analyzed by multiple logistic regression, adjusting for gender, age, smoking, country of birth, income and years in the dwelling. In total, 11% had doctor's diagnosed asthma, 22% doctor's diagnosed allergy, 23% pollen allergy and 23% eczema. Doctor's diagnosed asthma was more common in dwellings with humid air (OR = 1.74) and mould odour (OR = 1.79). Doctor's diagnosed allergy was more common in buildings with supply exhaust air ventilation as compared to exhaust air only (OR = 1.45) and was associated with redecoration (OR = 1.48) and mould odour (OR = 2.35). Pollen allergy was less common in buildings using more energy for heating (OR = 0.75) and was associated with humid air (OR = 1.76) and mould odour (OR = 2.36). Eczema was more common in larger buildings (OR 1.07) and less common in buildings using more energy for heating (OR = 0.85) and was associated with water damage (OR = 1.47), humid air (OR = 1.73) and mould odour (OR = 2.01). Doctor's diagnosed allergy was less common in buildings with management accessibility both in the neighbourhood and in larger administrative divisions, as compared to management in the neighbourhood only (OR = 0.49; 95% CI 0.29–0.82). Pollen allergy was less common if the building maintenance was outsourced (OR = 0.67; 95% CI 0.51–0.88). Eczema was more common when management accessibility was only at the division level (OR = 1.49; 95% CI 1.06–2.11). In conclusions, asthma, allergy or eczema were more common in buildings using less energy for heating, in larger buildings and in dwellings with redecorations, mould odour, dampness and humid air. There is a need to reduce indoor chemical emissions and to control dampness. Energy saving may have consequences for allergy and eczema. More epidemiological studies are needed on building management organization. PMID:25479551
40 CFR 68.165 - Offsite consequence analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Offsite consequence analysis. 68.165 Section 68.165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.165 Offsite consequence...
40 CFR 68.165 - Offsite consequence analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Offsite consequence analysis. 68.165 Section 68.165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.165 Offsite consequence...
Barthe, B; Messing, K; Abbas, L
2011-01-01
Workers' attempts to accommodate family needs may be considered illegitimate in the paid work sphere. Their attempts at work-family balancing (WFB) in that sphere can remain invisible, even when those attempts require considerable energy. Since identification of WFB strategies can potentially lead to suggestions to improve management practices, we report an attempt to find them in the work sphere. 14 care aides in a Québec residence for seniors and 2~schedule managers were recruited. Qualitative ergonomic analysis was employed. 24 hours observation; interviews of nursing and human resources staff; qualitative ergonomic analysis by two researchers; feedback collected from meetings with management and union. Strategies for schedule choice were compared between care aides with heavier vs. lighter family responsibilities. For workers with heavier family responsibilities, choice of work schedules was almost entirely conditioned by family considerations, leaving little leeway to manage workers' own health protection. Family constraints affected activity at work, and strategies for handling family constraints could potentially be affected by changes in work organization. Managers should encourage full discussion of work-family balancing strategies if they wish to adapt their working conditions to the workers, and ergonomists should include this balancing as a facet of work activity, despite possible negative consequences.
Solar Energy - An Option for Future Energy Production
ERIC Educational Resources Information Center
Glaser, Peter E.
1972-01-01
Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)
Johnson, Sean J; Alford, Chris; Stewart, Karina; Verster, Joris C
2016-12-01
Previous research reported positive associations between alcohol mixed with energy drink (AMED) consumption and overall alcohol consumption. However, results were largely based on between-subjects comparisons comparing AMED consumers with alcohol-only (AO) consumers, and therefore cannot sufficiently control for differences in personal characteristics between these groups. In order to determine whether AMED consumers drink more alcohol on occasions they consume AMED compared to those when they drink AO additional within-subjects comparisons are required. Therefore, this UK student survey assessed both alcohol consumption and alcohol-related negative consequences when consumed alone and when mixed with energy drinks, using a within-subject design. A total of 1873 students completed the survey, including 732 who consumed AMED. It was found that AMED consumers drank significantly less alcohol when they consumed AMED compared to when they drank AO (p < 0.001). In line with reduced alcohol consumption significantly fewer negative alcohol-related consequences were reported on AMED occasions compared to AO occasions (p < 0.001). These findings suggest that mixing alcohol with energy drinks does not increase total alcohol consumption or alcohol-related negative consequences.
The effectiveness of energy management system on energy efficiency in the building
NASA Astrophysics Data System (ADS)
Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.
2017-10-01
Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buddemeier, Brooke R.; Wood-Zika, Annmarie R.; Haynes, Daniel
The overall objective of this project is to research, evaluate, and test first responder preventive radiological/nuclear detection (PRND) equipment to provide state and local agencies with scientific guidance on how to effectively use this equipment for response after a radiological/nuclear release or detonation. While the equipment being tested in this effort has been specifically designed by technology manufacturers and purchased by responders for preventive detection and source interdiction operations, the fleet of PRND equipment can help fill critical needs for radiological instrumentation should a consequence management (CM) response take place, as it is currently the most widely available and fieldedmore » radiological instrumentation by state and local agencies. This effort will provide scientific guidance on the most effective way to utilize this class of equipment for consequence management missions. Gaining a better understanding of how PRND equipment can operate and perform for these missions will allow for recommendations on the tactical approach responders can use for consequence management operations. PRND equipment has been placed into service by federal, state, and local agencies throughout the nation. If the equipment capability and limitations are taken into account, this large inventory can be leveraged to support the emergency response in the aftermath of a radiological or nuclear event. With several hundred makes and models of PRND equipment, often with significantly different detection capabilities that do not align with their nominal PRND equipment type, development of a streamlined categorization scheme with respect to consequence management missions was the first step to identifying safe and effective uses of PRND equipment for radiological/nuclear incident response.« less
NASA Astrophysics Data System (ADS)
Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.
2017-09-01
Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.
ERIC Educational Resources Information Center
Hadjisymeou, Georgia
2010-01-01
The survey attempted to look into the causes, symptoms and consequences that occupational stress has on teachers in Secondary Education in Cyprus and find ways to manage it. Thirty eight schools with 553 teachers participated in the survey. The sample chosen is a result of a simple random sampling and it is representative of the country's…
2014-01-01
Background Over the last decade healthcare management and managers have increasingly been in focus in public debate. The purpose of the present study was to gain a deeper understanding of how prolonged, unfavorable media focus can influence both the individual as a person and his or her managerial practice in the healthcare organization. Methods In-depth interviews (n = 49) with 24 managers and their superiors, or subordinate human resources/information professionals, and partners were analyzed using a grounded theory approach. Results The conceptual model explains how perceived uncertainties related to the managerial role influence personification and its negative consequences. The role ambiguities comprised challenges regarding the separation of individual identity from the professional function, the interaction with intra-organizational support and political play, and the understanding and acceptance of roles in society. A higher degree of uncertainty in role ambiguity increased both personification and the personal reaction to intense media pressure. Three types of reactions were related to the feeling of being infringed: avoidance and narrow-mindedness; being hard on self, on subordinates, and/or family members; and resignation and dejection. The results are discussed so as to elucidate the importance of support from others within the organization when under media scrutiny. Conclusions The degree of personification seems to determine the personal consequences as well as the consequences for their managerial practice. Organizational support for managers appearing in the media would probably be beneficial for both the manager and the organization. PMID:24397306
A Method for Dynamic Risk Assessment and Management of Rockbursts in Drill and Blast Tunnels
NASA Astrophysics Data System (ADS)
Liu, Guo-Feng; Feng, Xia-Ting; Feng, Guang-Liang; Chen, Bing-Rui; Chen, Dong-Fang; Duan, Shu-Qian
2016-08-01
Focusing on the problems caused by rockburst hazards in deep tunnels, such as casualties, damage to construction equipment and facilities, construction schedule delays, and project cost increase, this research attempts to present a methodology for dynamic risk assessment and management of rockbursts in D&B tunnels. The basic idea of dynamic risk assessment and management of rockbursts is determined, and methods associated with each step in the rockburst risk assessment and management process are given, respectively. Among them, the main parts include a microseismic method for early warning the occurrence probability of rockburst risk, an estimation method that aims to assess potential consequences of rockburst risk, an evaluation method that utilizes a new quantitative index considering both occurrence probability and consequences for determining the level of rockburst risk, and the dynamic updating. Specifically, this research briefly describes the referenced microseismic method of warning rockburst, but focuses on the analysis of consequences and associated risk assessment and management of rockburst. Using the proposed method of risk assessment and management of rockburst, the occurrence probability, potential consequences, and the level of rockburst risk can be obtained in real-time during tunnel excavation, which contributes to the dynamic optimisation of risk mitigation measures and their application. The applicability of the proposed method has been verified by those cases from the Jinping II deep headrace and water drainage tunnels at depths of 1900-2525 m (with a length of 11.6 km in total for D&B tunnels).
NASA Astrophysics Data System (ADS)
Mongkolsawat, Darunee
The performance of energy management is usually considered through the energy reduction result however this does not sufficient for managing facility's energy in the long term. In combination to that, this study decides to investigate the relationship between the effectiveness of energy information management and the energy management performance. The interested sector is higher education institutions in Thailand due to their complex organisation both in management and property aspects. By not focusing on quantitative energy reduction as centre, the study seeks to establish a framework or tool in helping to understand such relationship qualitatively through organisation resource and process based view. Additionally, energy management structure is also accounted as initial factor. In relation to such framework, the performance of energy management is considered on its primary results concerning the issues of the data available, analysis results, and energy action. After the investigation, it is found that between the concerned factors and primary performance there are various specific relationships. For example, some tend to have direct connections as relations between the energy management structure and implemented actions, and between the investment in organisation resources and data available. While some have flexible relations as between data collection and results of analysed data. Furthermore, the load of energy management has been found influencing on organisation's motivation to invest in energy management. At the end of the paper, further application to the study is also proposed.
Energy drinks and alcohol-related risk among young adults.
Caviness, Celeste M; Anderson, Bradley J; Stein, Michael D
2017-01-01
Energy drink consumption, with or without concurrent alcohol use, is common among young adults. This study sought to clarify risk for negative alcohol outcomes related to the timing of energy drink use. The authors interviewed a community sample of 481 young adults, aged 18-25, who drank alcohol in the last month. Past-30-day energy drink use was operationalized as no-use, use without concurrent alcohol, and concurrent use of energy drinks with alcohol ("within a couple of hours"). Negative alcohol outcomes included past-30-day binge drinking, past-30-day alcohol use disorder, and drinking-related consequences. Just over half (50.5%) reported no use of energy drinks,18.3% reported using energy drinks without concurrent alcohol use, and 31.2% reported concurrent use of energy drinks and alcohol. Relative to those who reported concurrent use of energy drinks with alcohol, and controlling for background characteristics and frequency of alcohol consumption, those who didn't use energy drinks and those who used without concurrent alcohol use had significantly lower binge drinking, negative consequences, and rates of alcohol use disorder (P < .05 for all outcomes). There were no significant differences between the no-use and energy drink without concurrent alcohol groups on any alcohol-related measure (P > .10 for all outcomes). Concurrent energy drink and alcohol use is associated with increased risk for negative alcohol consequences in young adults. Clinicians providing care to young adults could consider asking patients about concurrent energy drink and alcohol use as a way to begin a conversation about risky alcohol consumption while addressing 2 substances commonly used by this population.
Styles, David; Adams, Paul; Thelin, Gunnar; Vaneeckhaute, Céline; Chadwick, David; Withers, Paul J A
2018-06-12
Handling of digestate produced by anaerobic digestion impacts the environment through emission of greenhouse gases, reactive nitrogen, and phosphorus. Previous life cycle assessments (LCA) evaluating the extraction of nutrients from digestate using struvite precipitation and ammonia stripping did not relate synthetic fertilizer substitution (SFS) to nutrient use efficiency consequences. We applied an expanded LCA to compare the conventional management of 1 m 3 of liquid digestate (LD) from food waste against the production and use of digestate biofertilizer (DBF) extracted from LD, accounting for SFS efficacy. Avoidance of CH 4 , N 2 O, and NH 3 emissions from LD handling and enhanced SFS via more targeted use of nutrients in the versatile DBF product could generate environmental savings of up to 0.129 kg Sb eq, 4.16 kg SO 2 eq, 1.22 kg PO 4 eq, 33 kg CO 2 eq, and 20.6 MJ eq per m 3 LD, for abiotic resource depletion, acidification, eutrophication, global warming, and cumulative energy demand burdens, respectively. However, under worst-case assumptions, DBF extraction could increase global warming and cumulative energy demand by 7.5 kg CO 2 e and 251 MJ eq per m 3 LD owing to processing inputs. Normalizing these results against per capita environmental loadings, we conclude that DBF extraction is environmentally beneficial.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-02-25
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano; LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza; Vigano, Federico, E-mail: federico.vigano@polimi.it
Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papersmore » reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).« less
Preparing for the Unthinkable: DOD Support to Foreign Consequence Management
2010-05-03
Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air University, 2001), 23. 17 Department of Defense Consequence Management...States Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air...Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster .” Research paper, Maxwell Air Force Base, AL: Air University
Wiens, J. David; Schumaker, Nathan H.; Inman, Richard D.; Esque, Todd C.; Longshore, Kathleen M.; Nussear, Kenneth E
2017-01-01
Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land use and anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, U.S.A. We developed a spatially explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire prey resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative effects. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative effects of proposed management options to Golden Eagles and their habitats.
Mountjoy, Margo; Sundgot-Borgen, Jorunn; Burke, Louise; Carter, Susan; Constantini, Naama; Lebrun, Constance; Meyer, Nanna; Sherman, Roberta; Steffen, Kathrin; Budgett, Richard; Ljungqvist, Arne
2014-04-01
Protecting the health of the athlete is a goal of the International Olympic Committee (IOC). The IOC convened an expert panel to update the 2005 IOC Consensus Statement on the Female Athlete Triad. This Consensus Statement replaces the previous and provides guidelines to guide risk assessment, treatment and return-to-play decisions. The IOC expert working group introduces a broader, more comprehensive term for the condition previously known as 'Female Athlete Triad'. The term 'Relative Energy Deficiency in Sport' (RED-S), points to the complexity involved and the fact that male athletes are also affected. The syndrome of RED-S refers to impaired physiological function including, but not limited to, metabolic rate, menstrual function, bone health, immunity, protein synthesis, cardiovascular health caused by relative energy deficiency. The cause of this syndrome is energy deficiency relative to the balance between dietary energy intake and energy expenditure required for health and activities of daily living, growth and sporting activities. Psychological consequences can either precede RED-S or be the result of RED-S. The clinical phenomenon is not a 'triad' of the three entities of energy availability, menstrual function and bone health, but rather a syndrome that affects many aspects of physiological function, health and athletic performance. This Consensus Statement also recommends practical clinical models for the management of affected athletes. The 'Sport Risk Assessment and Return to Play Model' categorises the syndrome into three groups and translates these classifications into clinical recommendations.
Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power
NASA Astrophysics Data System (ADS)
Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab
2014-01-01
Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.
Home and Building Energy Management Systems | Grid Modernization | NREL
Home and Building Energy Management Systems Home and Building Energy Management Systems NREL building assets and energy management systems can provide value to the grid. Photo of a pair of NREL researchers who received a record of invention for a home energy management system in a smart home laboratory
Reducing the ecological consequences of night-time light pollution: options and developments
Gaston, Kevin J; Davies, Thomas W; Bennie, Jonathan; Hopkins, John
2012-01-01
1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects. 2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the ‘trespass’ of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting. 3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards ‘whiter’ light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths. 4. Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts. PMID:23335816
Reducing the ecological consequences of night-time light pollution: options and developments.
Gaston, Kevin J; Davies, Thomas W; Bennie, Jonathan; Hopkins, John
2012-12-01
1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects.2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the 'trespass' of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting.3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards 'whiter' light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths.4.Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.
Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P
2013-11-30
Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Environmental evaluation of municipal waste prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk
Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less
5 CFR 250.103 - Consequences of improper agency actions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Consequences of improper agency actions. 250.103 Section 250.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE... Consequences of improper agency actions. If OPM finds that an agency has taken an action contrary to a law...
Theories of lean management: an empirical evaluation.
Handel, Michael J
2014-03-01
Debates within organization theory traditionally argued the relative merits of bureaucracy but today there is broad agreement across different perspectives that bureaucratic organization is inefficient and outmoded. Despite their differences, post-bureaucratic and neo-liberal theories argue that organizations with relatively flat hierarchies and low management overhead are better adapted to current market requirements. Post-bureaucratic theory also argues that employees, as well as firms, benefit from leaner management structures. This paper investigates trends in managerial leanness, proposed explanations for such trends, and the consequences of leanness for firms and employees. Although there is a trend toward flatter management hierarchies, there is only weak support for current claims regarding both the causes and consequences of lean management. Copyright © 2013 Elsevier Inc. All rights reserved.
Sustainability through Dynamic Energy Management - Continuum Magazine |
NREL Sustainability through Dynamic Energy Management Sustainability through Dynamic Energy Management Integrating behavior change with advanced building systems is the new model in energy efficiency , it's necessary to integrate dynamic energy management with occupant behavior change. As plans were
Stelzenmüller, V; Lee, J; Garnacho, E; Rogers, S I
2010-10-01
For the UK continental shelf we developed a Bayesian Belief Network-GIS framework to visualise relationships between cumulative human pressures, sensitive marine landscapes and landscape vulnerability, to assess the consequences of potential marine planning objectives, and to map uncertainty-related changes in management measures. Results revealed that the spatial assessment of footprints and intensities of human activities had more influence on landscape vulnerabilities than the type of landscape sensitivity measure used. We addressed questions regarding consequences of potential planning targets, and necessary management measures with spatially-explicit assessment of their consequences. We conclude that the BN-GIS framework is a practical tool allowing for the visualisation of relationships, the spatial assessment of uncertainty related to spatial management scenarios, the engagement of different stakeholder views, and enables a quick update of new spatial data and relationships. Ultimately, such BN-GIS based tools can support the decision-making process used in adaptive marine management. Copyright © 2010 Elsevier Ltd. All rights reserved.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-01-01
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346
40 CFR 68.165 - Offsite consequence analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.165 Offsite consequence... released in pounds; (7) Release rate; (8) Release duration; (9) Wind speed and atmospheric stability class...
40 CFR 68.165 - Offsite consequence analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.165 Offsite consequence... released in pounds; (7) Release rate; (8) Release duration; (9) Wind speed and atmospheric stability class...
40 CFR 68.165 - Offsite consequence analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.165 Offsite consequence... released in pounds; (7) Release rate; (8) Release duration; (9) Wind speed and atmospheric stability class...
Beliefs About Dysmenorrhea and Their Relationship to Self-Management.
Chen, Chen X; Kwekkeboom, Kristine L; Ward, Sandra E
2016-08-01
Dysmenorrhea is highly prevalent and is the leading cause of work and school absences among women of reproductive age. However, self-management of dysmenorrhea is not well understood in the US, and little evidence is available on factors that influence dysmenorrhea self-management. Guided by the Common Sense Model, we examined women's representations of dysmenorrhea (beliefs about causes, symptoms, consequences, timeline, controllability, coherence, and emotional responses), described their dysmenorrhea self-management behaviors, and investigated the relationship between representations and self-management behaviors. We conducted a cross-sectional, web-based survey of 762 adult women who had dysmenorrhea symptoms in the last six months. Participants had varied beliefs about the causes of their dysmenorrhea symptoms, which were perceived as a normal part of life. Dysmenorrhea symptoms were reported as moderately severe, with consequences that moderately affected daily life. Women believed they understood their symptoms moderately well and perceived them as moderately controllable but them to continue through menopause. Most women did not seek professional care but rather used a variety of pharmacologic and complementary health approaches. Care-seeking and use of self-management strategies were associated with common sense beliefs about dysmenorrhea cause, consequences, timeline, and controllability. The findings may inform development and testing of self-management interventions that address dysmenorrhea representations and facilitate evidence-based management. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Energy Conservation. Educational Facilities Digest 9.
ERIC Educational Resources Information Center
Council of Educational Facility Planners, Columbus, OH.
Because today's schools consume large amounts of energy and, consequently, pay high energy bills, the term "energy cirsis" is no exaggeration to describe the situation facing educators and school administrators. Schools everywhere are under pressure to use less electricity, natural gas, heating oil, and gasoline. While energy conservation…
Croxatto Vega, Giovanna Catalina; ten Hoeve, Marieke; Birkved, Morten; Sommer, Sven G; Bruun, Sander
2014-11-01
Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Easy to Deploy Street Light Control System Based on Wireless Communication and LED Technology
Elejoste, Pilar; Angulo, Ignacio; Perallos, Asier; Chertudi, Aitor; Zuazola, Ignacio Julio García; Moreno, Asier; Azpilicueta, Leire; Astrain, José Javier; Falcone, Francisco; Villadangos, Jesús
2013-01-01
This paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding's environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities. PMID:23681092
An easy to deploy street light control system based on wireless communication and LED technology.
Elejoste, Pilar; Angulo, Ignacio; Perallos, Asier; Chertudi, Aitor; Zuazola, Ignacio Julio García; Moreno, Asier; Azpilicueta, Leire; Astrain, José Javier; Falcone, Francisco; Villadangos, Jesús
2013-05-16
This paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding's environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities.
Bubb, Heiner
2006-07-01
In this article, it is shown that human work can be understood as a process of creating order, and that order can be seen as a form of information. Since information can be considered as negative entropy, work is associated with energy consumption. Therefore, it is important to investigate the nature of human necessities in more detail in order to meet the desire for comfort through the efficient application of energy. Temporary increases of information cause accelerated increases in entropy. This explains the appearance of living organisms, and the historic development of increasingly complex technology. Through technical progress, repetitive human work is being replaced by automation, so that primarily creative work remains. Now the question arises of how much creative work a human can manage. In addition, one goal of automation should be the reduction of human errors, but in doing so, an optimal balance should be found between supporting the operator both during normal procedures and during unforeseen circumstances.
Renewable Sources of Energy and Development.
ERIC Educational Resources Information Center
Diatta, Christian Sina
1979-01-01
Reviewed are the status of conventional sources of energy, prospects for the development of alternative sources of energy, and the consequences of that development on countries that are in the process of industrialization. (BT)
Safety assessment guidance in the International Atomic Energy Agency RADWASS Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vovk, I.F.; Seitz, R.R.
1995-12-31
The IAEA RADWASS programme is aimed at establishing a coherent and comprehensive set of principles and standards for the safe management of waste and formulating the guidelines necessary for their application. A large portion of this programme has been devoted to safety assessments for various waste management activities. Five Safety Guides are planned to be developed to provide general guidance to enable operators and regulators to develop necessary framework for safety assessment process in accordance with international recommendations. They cover predisposal, near surface disposal, geological disposal, uranium/thorium mining and milling waste, and decommissioning and environmental restoration. The Guide on safetymore » assessment for near surface disposal is at the most advanced stage of preparation. This draft Safety Guide contains guidance on description of the disposal system, development of a conceptual model, identification and description of relevant scenarios and pathways, consequence analysis, presentation of results and confidence building. The set of RADWASS publications is currently undergoing in-depth review to ensure a harmonized approach throughout the Safety Series.« less
Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang
2017-01-01
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182
Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang
2017-02-01
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.
Setting up an energy management team
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashburn, W.H.
1995-12-31
Many people that are assigned the responsibility of reducing energy costs within an organization are technically inclined, and may have little organizational or management skills. A number of companies have achieved great savings with just a technical energy manager acting in a prima donna role. However, so much more can be achieved if energy management is integrated throughout the whole organization, with input from all levels. The energy management team is the key to an organized approach, and establishing one is the place to start. The Industrial Energy Center at Virginia Tech is sponsored by both electric and natural gasmore » utilities who ask for assistance in conducting energy surveys of industrial firms. One requirement of the companies the author surveys is that they agree to establish an energy management team. During the first few hours with the company he helps organize and train the team. The objective is to have a high implementation rate of the energy conservation opportunities found during the survey. By leaving in place an in-house energy management team, the prospects for this are better. The author has found that most large corporations have some type of energy management program, but not much has transcended to company level. This paper is directed toward establishing an energy management team at company level.« less
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. We show that the climatic impacts on land ecosystems drives significant feedbacks inmore » energy, agriculture, land-use, and carbon cycle projections for the 21st century. We also find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Furthermore, the feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated here are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.« less
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
NASA Astrophysics Data System (ADS)
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George
2017-07-01
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical data sets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy-economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system--demonstrated here--are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy-economic models to ESMs used to date.
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; ...
2017-06-12
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. We show that the climatic impacts on land ecosystems drives significant feedbacks inmore » energy, agriculture, land-use, and carbon cycle projections for the 21st century. We also find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Furthermore, the feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated here are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.« less
Prey state shapes the effects of temporal variation in predation risk
Matassa, Catherine M.; Trussell, Geoffrey C.
2014-01-01
The ecological impacts of predation risk are influenced by how prey allocate foraging effort across periods of safety and danger. Foraging decisions depend on current danger, but also on the larger temporal, spatial or energetic context in which prey manage their risks of predation and starvation. Using a rocky intertidal food chain, we examined the responses of starved and fed prey (Nucella lapillus dogwhelks) to different temporal patterns of risk from predatory crabs (Carcinus maenas). Prey foraging activity declined during periods of danger, but as dangerous periods became longer, prey state altered the magnitude of risk effects on prey foraging and growth, with likely consequences for community structure (trait-mediated indirect effects on basal resources, Mytilus edulis mussels), prey fitness and trophic energy transfer. Because risk is inherently variable over time and space, our results suggest that non-consumptive predator effects may be most pronounced in productive systems where prey can build energy reserves during periods of safety and then burn these reserves as ‘trophic heat’ during extended periods of danger. Understanding the interaction between behavioural (energy gain) and physiological (energy use) responses to risk may illuminate the context dependency of trait-mediated trophic cascades and help explain variation in food chain length. PMID:25339716
Conceptual Model of Weight Management in Overweight and Obese African-American Females.
Sutton, Suzanne M; Magwood, Gayenell S; Nemeth, Lynne S; Jenkins, Carolyn M
2017-04-01
Weight management of overweight and obese (OWO) African-American females (AAFs) is a poorly defined concept, leading to ineffective treatment of overweight and obesity, prevention of health sequelae, and risk reduction. A conceptual model of the phenomenon of weight management in OWO AAFs was developed through dimensional analysis of the literature. Constructs were identified and sorted into the dimensions of perspective, context, conditions, process, and consequences and integrated into an explanatory matrix. Through dimensional analysis, weight management in OWO AAFs was characterized as a multidimensional concept, defined from the perspective of weight loss in community-dwelling AAFs. Behaviors associated with weight management are strongly influenced by intrinsic factors and extrinsic conditions, which influence engagement in the processes and consequences of weight management. The resulting conceptual model of weight management in OWO AAFs provides a framework for research interventions applicable in a variety of settings. © 2016 Wiley Periodicals, Inc.
The Fermi-Pasta-Ulam System as a Model for Glasses
NASA Astrophysics Data System (ADS)
Carati, A.; Maiocchi, A.; Galgani, L.; Amati, G.
2015-12-01
We show that the standard Fermi-Pasta-Ulam system, with a suitable choice for the interparticle potential, constitutes a model for glasses, and indeed an extremely simple and manageable one. Indeed, it allows one to describe the landscape of the minima of the potential energy and to deal concretely with any one of them, determining the spectrum of frequencies and the normal modes. A relevant role is played by the harmonic energy {E} relative to a given minimum, i.e., the expansion of the Hamiltonian about the minimum up to second order. Indeed we find that there exists an energy threshold in {E} such that below it the harmonic energy {E} appears to be an approximate integral of motion for the whole observation time. Consequently, the system remains trapped near the minimum, in what may be called a vitreous or glassy state. Instead, for larger values of {E} the system rather quickly relaxes to a final equilibrium state. Moreover we find that the vitreous states present peculiar statistical behaviors, still involving the harmonic energy {E}. Indeed, the vitreous states are described by a Gibbs distribution with an effective Hamiltonian close to {E} and with a suitable effective inverse temperature. The final equilibrium state presents instead statistical properties which are in very good agreement with the Gibbs distribution relative to the full Hamiltonian of the system.
McParland, S; Berry, D P
2016-05-01
Knowledge of animal-level and herd-level energy intake, energy balance, and feed efficiency affect day-to-day herd management strategies; information on these traits at an individual animal level is also useful in animal breeding programs. A paucity of data (especially at the individual cow level), of feed intake in particular, hinders the inclusion of such attributes in herd management decision-support tools and breeding programs. Dairy producers have access to an individual cow milk sample at least once daily during lactation, and consequently any low-cost phenotyping strategy should consider exploiting measureable properties in this biological sample, reflecting the physiological status and performance of the cow. Infrared spectroscopy is the study of the interaction of an electromagnetic wave with matter and it is used globally to predict milk quality parameters on routinely acquired individual cow milk samples and bulk tank samples. Thus, exploiting infrared spectroscopy in next-generation phenotyping will ensure potentially rapid application globally with a negligible additional implementation cost as the infrastructure already exists. Fourier-transform infrared spectroscopy (FTIRS) analysis is already used to predict milk fat and protein concentrations, the ratio of which has been proposed as an indicator of energy balance. Milk FTIRS is also able to predict the concentration of various fatty acids in milk, the composition of which is known to change when body tissue is mobilized; that is, when the cow is in negative energy balance. Energy balance is mathematically very similar to residual energy intake (REI), a suggested measure of feed efficiency. Therefore, the prediction of energy intake, energy balance, and feed efficiency (i.e., REI) from milk FTIRS seems logical. In fact, the accuracy of predicting (i.e., correlation between predicted and actual values; root mean square error in parentheses) energy intake, energy balance, and REI from milk FTIRS in dairy cows was 0.88 (20.0MJ), 0.78 (18.6MJ), and 0.63 (22.0MJ), respectively, based on cross-validation. These studies, however, are limited to results from one research group based on data from 2 contrasting production systems in the United Kingdom and Ireland and would need to be replicated, especially in a range of production systems because the prediction equations are not accurate when the variability used in validation is not represented in the calibration data set. Heritable genetic variation exists for all predicted traits. Phenotypic differences in energy intake also exists among animals stratified based on genetic merit for energy intake predicted from milk FTIRS, substantiating the usefulness of such FTIR-predicted phenotypes not only for day-to-day herd management, but also as part of a breeding strategy to improve cow performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zell, E.; Engel-Cox, J.
2005-01-01
Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.
Energy Efficient Building Management | Climate Neutral Research Campuses |
NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may
NASA Astrophysics Data System (ADS)
Rosenzweig, B.; Vorosmarty, C. J.; Stewart, R. J.; Miara, A.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Wollheim, W. M.; Melillo, J. M.; Fekete, B. M.; Dilekli, N.; Duchin, F.; Gross, B.; Bhatt, V.
2014-12-01
'Megaregions' have been identified as an important new scale of geography for policy decision-making in the United States. These regions extend beyond local boundaries (ie. cities, states) to incorporate areas with linked economies, infrastructure and land-use patterns and shared climate and environmental systems, such as watersheds. The corridor of densely connected metropolitan areas and surrounding hinterlands along the U.S. east coast from Maine to Virginia is the archetype of this type of unit: The Northeast Megaregion. The Northeast faces a unique set of policy challenges including: projections of a wetter, more extreme climate, aging and underfunded infrastructure and economically distressed rural areas. Megaregion-scale policy efforts such as the Regional Greenhouse Gas Initiative (RGGI) and support for a regional food system have been recognized as strategic tools for climate change mitigation and adaptation, but decision-makers have limited information on the potential consequences of these strategies on the complex natural-human system of the Northeast, under various scenarios of global climate change. We have developed a Northeast Regional Earth System Model (NE-RESM) as a framework to provide this type of information. We integrate terrestrial ecosystem, hydrologic, energy system and economic models to investigate scenarios of paired regional socioeconomic pathways and global climate projections. Our initial results suggest that megaregion-scale strategic decisions in the Northeast may have important consequences for both local water management and global climate change mitigation.
Program director`s overview report for the Office of Health & Environmental Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, D.
1994-02-01
LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work formore » non-OHER organizations DOE; critical issues; and resource orientation.« less
[Drug shortage: determinants, consequences and management].
Reis, Adriano Max Moreira; Perini, Edson
2008-04-01
The present study analyzes drug shortage as a problem reaching beyond the logistic aspect of the health field and discusses its consequences with respect to quality, safety and cost of health care delivery. The pharmaceutical supply chain and the factors that determine the distribution and availability of drugs are discussed. The contribution of the Pharmacy and Therapeutics Committee in preventing and managing drug shortage in health institutions is stressed and measures for drug shortage management are suggested. Finally it is emphasized that drugs should be considered health products rather than consumer goods and as such be given a different treatment by the supply chain.
77 FR 32994 - Bureau of Ocean Energy Management
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of extension of comment period... managed by BOEM: oil and gas exploration and development; renewable energy; and marine minerals. BOEM is...
Howell, Doris D
2018-03-01
As individuals are living longer with cancer as a chronic disease, they face new health challenges that require the application of self-management behaviors and skills that may not be in their usual repertoire of self-regulatory health behaviors. Increasing attention is focused on supported self-management (SSM) programs to enable survivors in managing the long-term biopsychosocial consequences and health challenges of survivorship. This review explores current directions and evidence for SSM programs that enable survivors to manage these consequences and optimize health. Cancer survivors face complex health challenges that affect daily functioning and well being. Multiple systematic reviews show that SSM programs have positive effects on health outcomes in typical chronic diseases. However, the efficacy of these approaches in cancer survivors are in their infancy; and the 'one-size' fits all approach for chronic disease self-management may not be adequate for cancer as a complex chronic illness. This review suggests that SSM has promising potential for improving health and well being of cancer survivors, but there is a need for standardizing SSM for future research. Although there is increasing enthusiasm for SSM programs tailored to cancer survivors, there is a need for further research of their efficacy on long-term health outcomes.
A Satellite View of Global Water and Energy Cycling
NASA Astrophysics Data System (ADS)
Houser, P. R.
2012-12-01
The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air/sea fluxes, ocean circulation, atmospheric states, radiative balances, land surface states, sub-surface hydrology, snow and ice. This presentation will feature an overview of recent progress towards this challenge, and lay out the plan for coordination with complementary international efforts.
Papazi, Aikaterini; Korelidou, Anna; Andronis, Efthimios; Parasyri, Athina; Stamatis, Nikolaos; Kotzabasis, Kiriakos
2018-03-01
Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H 2 -production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H 2 -production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to different metabolic products and paves the way for a future microalgal "smart" biotechnology.
Hong, Taehoon; Koo, Choongwan; Kim, Hyunjoong
2012-12-15
The number of deteriorated multi-family housing complexes in South Korea continues to rise, and consequently their electricity consumption is also increasing. This needs to be addressed as part of the nation's efforts to reduce energy consumption. The objective of this research was to develop a decision support model for determining the need to improve multi-family housing complexes. In this research, 1664 cases located in Seoul were selected for model development. The research team collected the characteristics and electricity energy consumption data of these projects in 2009-2010. The following were carried out in this research: (i) using the Decision Tree, multi-family housing complexes were clustered based on their electricity energy consumption; (ii) using Case-Based Reasoning, similar cases were retrieved from the same cluster; and (iii) using a combination of Multiple Regression Analysis, Artificial Neural Network, and Genetic Algorithm, the prediction performance of the developed model was improved. The results of this research can be used as follows: (i) as basic research data for continuously managing several energy consumption data of multi-family housing complexes; (ii) as advanced research data for predicting energy consumption based on the project characteristics; (iii) as practical research data for selecting the most optimal multi-family housing complex with the most potential in terms of energy savings; and (iv) as consistent and objective criteria for incentives and penalties. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, J.P.; Blaise, P.; Lyoussi, A.
2015-07-01
The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physicsmore » calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)« less
75 FR 39678 - Meeting of Energy Services Companies and the Federal Energy Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... DEPARTMENT OF ENERGY Meeting of Energy Services Companies and the Federal Energy Management... Management Program (FEMP) within the Office of Energy Efficiency and Renewable Energy on the use of high-end... conducted in an informal, conference style. Each participant will be allowed to make a prepared general...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Management. 470.12 Section 470.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM § 470.12 Management. (a) The... Management and Budget Circular A-106 entitled “Standard Federal Regulations” are met. Regional Program...
Islam, K M Nazmul
2017-02-15
Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling for waste management associated with environmental-impact abatement under uncertainty.
Li, P; Li, Y P; Huang, G H; Zhang, J L
2015-04-01
Municipal solid waste (MSW) treatment can generate significant amounts of pollutants, and thus pose a risk on human health. Besides, in MSW management, various uncertainties exist in the related costs, impact factors, and objectives, which can affect the optimization processes and the decision schemes generated. In this study, a life cycle assessment-based interval-parameter programming (LCA-IPP) method is developed for MSW management associated with environmental-impact abatement under uncertainty. The LCA-IPP can effectively examine the environmental consequences based on a number of environmental impact categories (i.e., greenhouse gas equivalent, acid gas emissions, and respiratory inorganics), through analyzing each life cycle stage and/or major contributing process related to various MSW management activities. It can also tackle uncertainties existed in the related costs, impact factors, and objectives and expressed as interval numbers. Then, the LCA-IPP method is applied to MSW management for the City of Beijing, the capital of China, where energy consumptions and six environmental parameters [i.e., CO2, CO, CH4, NOX, SO2, inhalable particle (PM10)] are used as systematic tool to quantify environmental releases in entire life cycle stage of waste collection, transportation, treatment, and disposal of. Results associated with system cost, environmental impact, and the related policy implication are generated and analyzed. Results can help identify desired alternatives for managing MSW flows, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty.
Toward Knowledge Systems for Sustainability Science
NASA Astrophysics Data System (ADS)
Zaks, D. P.; Jahn, M.
2011-12-01
Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated space; and 3) a domain that includes decision support tools and systems tailored toward frame particular trade-offs, which may focus on inputs or outputs and may range in scale from local to global. An information infrastructure for sustainability science is best built be built and maintained as a modular, open source, open standard, open access, open content platform. We have defined the scope of this challenge, managing choices within agroecosystems, recognizing that any decision on a landscape involves multidimensional tradeoffs. An effort to address this challenge will need a cohesive, coherent and targeted approach toward an integrated knowledge management infrastructure for sustainability science applied to land management is essential to move more rapidly toward sustainable, productive, and resilient landscapes.
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
ERIC Educational Resources Information Center
Jax, Daniel W.
1992-01-01
Presents a lesson plan about greenhouse effect and global warming. Includes diagrams and graphs from which students are asked to make inferences. Provides background information about how energy enters and leaves the earth system, the energy budget, consequences of obstructing the energy balance, and the greenhouse effect. (three references) (MCO)
Sustainable-energy managment practices in an energy economy
NASA Astrophysics Data System (ADS)
Darkwa, K.
2001-10-01
The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.
A Threshold Concept in Managing: What Students in Introductory Management Courses Must Know
ERIC Educational Resources Information Center
Donovan, Paul
2017-01-01
In the field of management, a practice--theory gap has developed and consequently, management education has been criticized for being irrelevant to the needs of stakeholders. This article argues that introduction to management courses in higher education perpetuate this gap by not teaching what managers do. These courses fail to communicate well…
Energy Committee (SGEC) will advise the State Energy Manager and the State Fleet Manager about energy the 30% reduction target compared to the 2010 metric ton baseline by 2030. The State Energy Manager , State Fleet Manager, and SGEC have developed performance metrics, and agencies and departments will
Selected Energy Management Options for Small Business and Local Government.
ERIC Educational Resources Information Center
Wert, Jonathan M.; Worthington, Barry K.
This document is a checklist of 257 energy management options for small business and local government. The energy management options are categorized under: (1) Energy management strategies; (2) Buildings; (3) Lighting; (4) Water; (5) Waste operations; (6) Equipment; (7) Transportation; and (8) Food preparation. To select options for…
Global Energy: Supply, Demand, Consequences, Opportunities
Majumdar, Arun
2017-12-09
July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.
Management of Energy Consumption on Cluster Based Routing Protocol for MANET
NASA Astrophysics Data System (ADS)
Hosseini-Seno, Seyed-Amin; Wan, Tat-Chee; Budiarto, Rahmat; Yamada, Masashi
The usage of light-weight mobile devices is increasing rapidly, leading to demand for more telecommunication services. Consequently, mobile ad hoc networks and their applications have become feasible with the proliferation of light-weight mobile devices. Many protocols have been developed to handle service discovery and routing in ad hoc networks. However, the majority of them did not consider one critical aspect of this type of network, which is the limited of available energy in each node. Cluster Based Routing Protocol (CBRP) is a robust/scalable routing protocol for Mobile Ad hoc Networks (MANETs) and superior to existing protocols such as Ad hoc On-demand Distance Vector (AODV) in terms of throughput and overhead. Therefore, based on this strength, methods to increase the efficiency of energy usage are incorporated into CBRP in this work. In order to increase the stability (in term of life-time) of the network and to decrease the energy consumption of inter-cluster gateway nodes, an Enhanced Gateway Cluster Based Routing Protocol (EGCBRP) is proposed. Three methods have been introduced by EGCBRP as enhancements to the CBRP: improving the election of cluster Heads (CHs) in CBRP which is based on the maximum available energy level, implementing load balancing for inter-cluster traffic using multiple gateways, and implementing sleep state for gateway nodes to further save the energy. Furthermore, we propose an Energy Efficient Cluster Based Routing Protocol (EECBRP) which extends the EGCBRP sleep state concept into all idle member nodes, excluding the active nodes in all clusters. The experiment results show that the EGCBRP decreases the overall energy consumption of the gateway nodes up to 10% and the EECBRP reduces the energy consumption of the member nodes up to 60%, both of which in turn contribute to stabilizing the network.
Berry, Diane C; Boggess, Kim; Johnson, Quinetta B
2016-05-01
The obesity epidemic has fueled an epidemic of prediabetes and type 2 diabetes mellitus in women of childbearing age. This paper examines the state of the science on preconception and pregnancy management of women with type 2 diabetes to optimize outcomes for the women and their infants. In addition, the consequence of fetal programming as a result of suboptimal maternal glycemic control is discussed. The paper focuses on type 2 diabetes, not type 1 diabetes or gestational diabetes. Management of women with type 2 diabetes includes preconception counseling, preconception weight management and weight loss, proper weight gain during pregnancy, self-monitoring of blood glucose levels, medication, medical nutrition therapy, and exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, J.
1995-09-01
Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise frommore » the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.« less
[Principles of management of All-Russia Disaster Medicine Services].
Sakhno, I I
2000-11-01
Experience of liquidation of earthquake consequences in Armenia (1988) has shown that it is extremely necessary to create the system of management in regions of natural disaster, large accident or catastrophe before arrival of main forces in order to provide reconnaissance, to receive the arriving units. It will help to make well-grounded decisions, to set tasks in time, to organize and conduct emergency-and-rescue works. The article contains general material concerning the structure of All-Russia service of disaster medicine (ARSDM), organization of management at all levels and interaction between the components of ARSDM and other subsystems of Russian Service of Extreme Situations. It is recommended how to organize management of ARSDM during liquidation of medical-and-sanitary consequences of large-scale extreme situations.
Chief Executive Officers: Academic Leaders or Business Managers?
ERIC Educational Resources Information Center
Doring, Allan
This paper explores the role and preparation of academics for senior management and executive positions in colleges and universities, particularly in Australia. A background section cites trends in higher education management and recent critiques of that management and the consequent scrutiny of leadership effectiveness. There follows an…
Mobil`s Energy Management Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeneborn, F.C.
1997-06-01
Mobil`s Facilities Management Network sponsored a cross-divisional team to reduce energy costs. This team developed an Energy Management Plan to reduce energy costs by $25 million annually throughout all Mobil divisions over the next five years (total of $125 million committed savings). The core of this plan is the belief that energy costs are controllable and should be managed with the expertise that Mobil manages other parts of the business. Areas of focus are economic procurement, efficient consumption, and expertise sharing.
A Primer on Risks, Issues and Opportunities
2016-08-01
likelihood or consequence. A risk has three main parts: a future root cause, a likelihood and a consequence. The future root cause is determined...through root cause analysis, which is the most important part of any risk management effort. SPECIAL SECTION: RISK MANAGEMENT Defense AT&L: July-August...2016 10 Root cause analysis gets to the heart of the risk. Why does the risk exist? What is its nature? How will the risk occur? What should be
2004-09-02
Consequences 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...OSLGCP now administers the grants programs. 30According to the guidance, threat assessment determines the relative likelihood of a known potential...information on critical infrastructure assets. The Office of State and Local Government Coordination and Preparedness (OSLGCP) administers two grant
2005-02-04
Consequences 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...OSLGCP). The OSLGCP now administers the grants programs. 37 According to the guidance, threat assessment determines the relative likelihood of a...Preparedness (OSLGCP) administers two grant programs that give states the opportunity to identify critical infrastructure assets: the State Homeland Security
Under-nutrition in older people: a serious and growing global problem!
Visvanathan, R
2003-01-01
Everyone agrees that adequate nutrient intake is important to all living things. Without food or water, life on earth would cease to exist. In the field of medical health, some gains have been made in meeting maternal and child nutritional needs. There is great community awareness regarding the importance of meeting the nutritional needs of the developing foetus and child. Malnutrition secondary to decreased intake in older people and weight loss is also a serious problem with unfortunately, very little notice from the community at large. As one ages, several physiological processes may contribute towards the development of protein energy malnutrition. Under-nutrition in older people is sadly far too common, even in developed countries. It is very likely that the same concerted effort used to address child malnutrition is required to combat under-nutrition in our elders. Protein energy malnutrition in older people comes at a significant cost to the individual, families, communities and the healthcare system. Failure to address this syndrome is not only unethical and unhealthy, but also costly. Vigilance and community awareness is important in ensuring that this important syndrome is detected and managed appropriately. This review mainly attempts to describe the pathophysiology, prevalence and consequences of under-nutrition and aims to highlight the importance of this clinical syndrome and the recent growth in our understanding of the processes behind its development. Some management strategies are also briefly described.
Phantom stars and topology change
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.
2008-11-15
In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence ofmore » a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.« less
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.
Skewes, Monica C.; DeCou, Christopher R.; Gonzalez, Vivian M.
2013-01-01
Background Recent research has identified the use of caffeinated energy drinks as a common, potentially risky behavior among college students that is linked to alcohol misuse and consequences. Research also suggests that energy drink consumption is related to other risky behaviors such as tobacco use, marijuana use and risky sexual activity. Objective This research sought to examine the associations between frequency of energy drink consumption and problematic alcohol use, alcohol-related consequences, symptoms of alcohol dependence and drinking motives in an ethnically diverse sample of college students in Alaska. We also sought to examine whether ethnic group moderated these associations in the present sample of White, Alaska Native/American Indian and other ethnic minority college students. Design A paper-and-pencil self-report questionnaire was completed by a sample of 298 college students. Analysis of covariance (ANCOVA) was used to examine the effects of energy drink use, ethnic group and energy drink by ethnic group interactions on alcohol outcomes after controlling for variance attributed to gender, age and frequency of binge drinking. Results Greater energy drink consumption was significantly associated with greater hazardous drinking, alcohol consequences, alcohol dependence symptoms, drinking for enhancement motives and drinking to cope. There were no main effects of ethnic group, and there were no significant energy drink by ethnic group interactions. Conclusion These findings replicate those of other studies examining the associations between energy drink use and alcohol problems, but contrary to previous research we did not find ethnic minority status to be protective. It is possible that energy drink consumption may serve as a marker for other health risk behaviors among students of various ethnic groups. PMID:23986901
Skewes, Monica C; Decou, Christopher R; Gonzalez, Vivian M
2013-01-01
Recent research has identified the use of caffeinated energy drinks as a common, potentially risky behavior among college students that is linked to alcohol misuse and consequences. Research also suggests that energy drink consumption is related to other risky behaviors such as tobacco use, marijuana use and risky sexual activity. This research sought to examine the associations between frequency of energy drink consumption and problematic alcohol use, alcohol-related consequences, symptoms of alcohol dependence and drinking motives in an ethnically diverse sample of college students in Alaska. We also sought to examine whether ethnic group moderated these associations in the present sample of White, Alaska Native/American Indian and other ethnic minority college students. A paper-and-pencil self-report questionnaire was completed by a sample of 298 college students. Analysis of covariance (ANCOVA) was used to examine the effects of energy drink use, ethnic group and energy drink by ethnic group interactions on alcohol outcomes after controlling for variance attributed to gender, age and frequency of binge drinking. Greater energy drink consumption was significantly associated with greater hazardous drinking, alcohol consequences, alcohol dependence symptoms, drinking for enhancement motives and drinking to cope. There were no main effects of ethnic group, and there were no significant energy drink by ethnic group interactions. These findings replicate those of other studies examining the associations between energy drink use and alcohol problems, but contrary to previous research we did not find ethnic minority status to be protective. It is possible that energy drink consumption may serve as a marker for other health risk behaviors among students of various ethnic groups.
1998 federal energy and water management award winners
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-28
Energy is a luxury that no one can afford to waste, and many Federal Government agencies are becoming increasingly aware of the importance of using energy wisely. Thoughtful use of energy resources is important, not only to meet agency goals, but because energy efficiency helps improve air quality. Sound facility management offers huge savings that affect the agency`s bottom line, the environment, and workplace quality. In these fiscally-modest times, pursuing sound energy management programs can present additional challenges for energy and facility managers. The correct path to take is not always the easiest. Hard work, innovation, and vision are characteristicmore » of those who pursue energy efficiency. That is why the Department of energy, Federal Energy Management Program (FEMP) is proud to salute the winners of the 1998 Federal Energy and Water Management Award. The 1998 winners represent the kind of 21st century thinking that will help achieve widespread Federal energy efficiency. In one year, the winners, through a combination of public and private partnerships, saved more than $222 million and 10.5 trillion Btu by actively identifying and implementing energy efficiency, water conservation, and renewable energy projects. Through their dedication, hard work, ingenuity, and success, the award winners have also inspired others to increase their own efforts to save energy and water and to more aggressively pursue the use of renewable energy sources. The Federal Energy and Water Management Awards recognize the winners` contributions and ability to inspire others to take action.« less
Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Robert; Ruple, John; Tanana, Heather
2011-01-01
Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and themore » challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.« less
2016-10-28
assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy
Johnson, Sean J; Alford, Chris; Stewart, Karina; Verster, Joris C
2018-01-01
Previous research has suggested that consuming alcohol mixed with energy drinks (AMED) increases overall alcohol consumption. However, there is limited research examining whether energy drinks are unique in their effects when mixed with alcohol, when compared with alcohol mixed with other caffeinated mixers (AOCM). Therefore, the aim of this survey was to investigate alcohol consumption on AMED occasions, to that on other occasions when the same individuals consumed AOCM or alcohol only (AO). A UK-wide online student survey collected data on the frequency of alcohol consumption and quantity consumed, as well as the number of negative alcohol-related consequences reported on AO, AMED and AOCM occasions (N=250). Within-subjects analysis revealed that there were no significant differences in the number of alcoholic drinks consumed on a standard and a heavy drinking session between AMED and AOCM drinking occasions. However, the number of standard mixers typically consumed was significantly lower on AMED occasions compared with AOCM occasions. In addition, when consuming AMED, students reported significantly fewer days consuming 5 or more alcohol drinks, fewer days mixing drinks, and fewer days being drunk, compared with when consuming AOCM. There were no significant differences in the number of reported negative alcohol-related consequences on AMED occasions to AOCM occasions. Of importance, alcohol consumption and negative alcohol-related consequences were significantly less on both AMED and AOCM occasions compared with AO occasions. The findings that heavy alcohol consumption occurs significantly less often on AMED occasions compared with AOCM occasions is in opposition to some earlier claims implying that greatest alcohol consumption occurs with AMED. The overall greatest alcohol consumption and associated negative consequences were clearly associated with AO occasions. Negative consequences for AMED and AOCM drinking occasions were similar, suggesting that energy drink was comparable with AOCM in this regard.
40 CFR 1400.8 - Access to off-site consequence analysis information by Federal government officials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK MANAGEMENT PROGRAMS UNDER THE CLEAN AIR ACT SECTION 112(r)(7); DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... International Consortium of Energy Managers; Notice of Preliminary Permit Application Accepted for Filing and... Consortium of Energy Managers filed an application, pursuant to section 4(f) of the Federal Power Act (FPA...: Rexford Wait, International Consortium of Energy Managers, 2416 Cades Way, Vista, CA 92083; (760) 599-0086...
Unintended consequences and trade-offs of fish passage
McLaughlin, Robert L.; Smyth, Eric R.; Castro-Santos, Theodore; Jones, Michael L.; Koops, Marten A.; Pratt, Thomas C.; Vélez-Espino, Luis-Antonio
2012-01-01
We synthesized evidence for unintended consequences and trade-offs associated with the passage of fishes. Provisioning of fish passageways at dams and dam removals are being carried out increasingly as resource managers seek ways to reduce fragmentation of migratory fish populations and restore biodiversity and nature-like ecosystem services in tributaries altered by dams. The benefits of provisioning upstream passage are highlighted widely. Possible unwanted consequences and trade-offs of upstream passage are coming to light, but remain poorly examined and underappreciated. Unintended consequences arise when passage of native and desirable introduced fishes is delayed, undone (fallback), results in patterns of movement and habitat use that reduce Darwinian fitness (e.g. ecological traps), or is highly selective taxonomically and numerically. Trade-offs arise when passage decisions intended to benefit native species interfere with management decisions intended to control the unwanted spread of non-native fishes and aquatic invertebrates, or genes, diseases and contaminants carried by hatchery and wild fishes. These consequences and trade-offs will vary in importance from system to system and can result in large economic and environmental costs. For some river systems, decisions about how to manage fish passage involve substantial risks and could benefit from use of a formal, structured process that allows transparent, objective and, where possible, quantitative evaluation of these risks. Such a process can also facilitate the design of an adaptive framework that provides valuable insights into future decisions.
Performance Profiles of Major Energy Producers
2011-01-01
The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.
Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)
Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering and Dept. of Mechanical Engineering
2018-05-04
Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.
Specification of Energy Assessment Methodologies to Satisfy ISO 50001 Energy Management Standard
NASA Astrophysics Data System (ADS)
Kanneganti, Harish
Energy management has become more crucial for industrial sector as a way to lower their cost of production and in reducing their carbon footprint. Environmental regulations also force the industrial sector to increase the efficiency of their energy usage. Hence industrial sector started relying on energy management consultancies for improvements in energy efficiency. With the development of ISO 50001 standard, the entire energy management took a new dimension involving top level management and getting their commitment on energy efficiency. One of the key requirements of ISO 50001 is to demonstrate continual improvement in their (industry) energy efficiency. The major aim of this work is to develop an energy assessment methodology and reporting format to tailor the needs of ISO 50001. The developed methodology integrates the energy reduction aspect of an energy assessment with the requirements of sections 4.4.3 (Energy Review) to 4.4.6 (Objectives, Targets and Action Plans) in ISO 50001 and thus helping the facilities in easy implementation of ISO 50001.
USDA-ARS?s Scientific Manuscript database
Rangeland management strategies that allow for spatial and temporal interactions between fire and herbivores can achieve multiple management goals related to livestock production and wildlife conservation in mesic grasslands and savannas. Less is known about integrated management of herbivores and f...
FY 2013 INL SITE SUSTAINABILITY PLAN WITH THE FY 2012 ANNUAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest L. Fossum; Steve A. Birrer
2012-12-01
It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy,more » Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).« less
10 CFR 719.10 - What information must be included in the legal management plan?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false What information must be included in the legal management plan? 719.10 Section 719.10 Energy DEPARTMENT OF ENERGY CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS Legal Management Plan § 719.10 What information must be included in the legal management plan? The legal management...
Code of Federal Regulations, 2010 CFR
2010-07-01
... policy must Federal agencies follow in the management of facilities? 102-74.155 Section 102-74.155 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of facilities...
10 CFR 719.10 - What information must be included in the legal management plan?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false What information must be included in the legal management plan? 719.10 Section 719.10 Energy DEPARTMENT OF ENERGY CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS Legal Management Plan § 719.10 What information must be included in the legal management plan? The legal management...
10 CFR 719.10 - What information must be included in the legal management plan?
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false What information must be included in the legal management plan? 719.10 Section 719.10 Energy DEPARTMENT OF ENERGY CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS Legal Management Plan § 719.10 What information must be included in the legal management plan? The legal management...
77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... agencies to use this methodology to determine fleet inventory targets and to prepare fleet management plans.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program (EE... DOE receives will be made available on the Federal Energy Management Program's Federal Fleet...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Conservation and Solar Energy of DOE. (b) The program shall be implemented regionally, based on the 10 standard... 10 Energy 3 2011-01-01 2011-01-01 false Management. 470.12 Section 470.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM § 470.12 Management. (a) The...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Conservation and Solar Energy of DOE. (b) The program shall be implemented regionally, based on the 10 standard... 10 Energy 3 2014-01-01 2014-01-01 false Management. 470.12 Section 470.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM § 470.12 Management. (a) The...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Conservation and Solar Energy of DOE. (b) The program shall be implemented regionally, based on the 10 standard... 10 Energy 3 2013-01-01 2013-01-01 false Management. 470.12 Section 470.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM § 470.12 Management. (a) The...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Conservation and Solar Energy of DOE. (b) The program shall be implemented regionally, based on the 10 standard... 10 Energy 3 2012-01-01 2012-01-01 false Management. 470.12 Section 470.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION APPROPRIATE TECHNOLOGY SMALL GRANTS PROGRAM § 470.12 Management. (a) The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Hanna, Luke A.; Van Cleve, Frances B.
Deployment and operation of ocean energy devices does not represent the first foray into industrialization of the oceans; shipping, nearshore development, waste disposal, subsea mining, oil and gas extraction, and large-scale commercial fishing all coexist in various states of equilibrium with the marine environment. In most cases these industries were developed without a clear understanding of the likely outcomes of large-scale development. In virtually every country where the harvest of ocean energy is emerging, regulators and stakeholders require that the industry examine potential effects of devices, minimize the footprint of effects, and provide management measures that either avoid the impactsmore » or mitigate to further reduce the residual impacts. The ERES analysis is based on scenarios that are consistent with sequences of events that lead to adverse impacts, distinguishing between episodic, intermittent, and chronic risks. In the context of ocean energy development, an episodic scenario might involve the exceedingly rare but potentially devastating event of an oil spill from vessels caused by the presence of the device, while vulnerable receptors are present; understanding the risk of such a scenario involves determining the probability of the occurrence by examining factors such as the petroleum content of ocean energy devices, the vessel traffic volume and the proximity of shipping lanes to the ocean energy devices, the reliability of the control measures to avoid an episodic event, and the likely presence of seabirds, marine mammals, or fish that may be affected by oil. In contrast, chronic risk scenarios involve events or circumstances that are continuous, so that risk characterization involves assessing only the severity of the consequences. An example of a chronic risk scenario might be the toxicity to marine organisms due to low-level chemical releases from anti-biofouling paints and coatings that may be used on devices, and the effect that the level of toxicity may have on marine flora and fauna. Between these two extremes are intermittent events, such as encounters between fish and rotating tidal turbine blades that will occur only when fish are present and the tidal device is turning. A key feature of understanding risk is describing the uncertainty associated with the occurrence of an episodic, intermittent, or chronic event, as well as the uncertainty of the resulting consequences.« less
NASA Technical Reports Server (NTRS)
1976-01-01
Consequences that might occur if certain technological developments take place in intercity transportation are described. These consequences are broad ranging, and include economic, environmental, social, institutional, energy-related, and transportation service implications. The possible consequences are traced through direct (primary) impacts to indirect (secondary, tertiary, etc.) impacts. Chains of consequences are traced, reaching as far beyond the original transportation cause as is necessary to identify all impacts felt to be influenced significantly by the technological development considered.
Self-Management Patient Education and Weight Loss
ERIC Educational Resources Information Center
Stombaugh, Angela M.
2010-01-01
Self-management of a disease is defined as "having or being able to obtain, the skills and resources necessary to best accommodate to the chronic disease and its consequences" (Holman & Lorig, 1992, p. 309). Self-management has been used in the management of several chronic conditions and this model may be useful in the management of weight loss.…
Increasing the visibility of watershed management as a land management profession
Daniel G. Neary; Peter F. Ffolliott; Kenneth N. Brooks
2000-01-01
Population increases will continue to severely pressure water resources in the 21st century. Consequently, the importance of watershed management will increase. The potential demand in the next century for information on, and individuals skilled in, watershed management raises several important issues: the need for watershed management to have a central voice to gain...
C.E. Peterson; P.D. Anderson
2009-01-01
Over the last 20 years, changing public values and increased ecological understanding have led to a paradigm shift in forestry from timber management to sustainable ecosystem management on U.S. federal lands. Forest managers are now seeking alternative management approaches that simultaneously meet socio-cultural, ecological and economic goals. Consequently, many field...
Evaluation of fleet management techniques for timber highway bridges
Brent M. Phares; Travis K. Hosteng; Justin Dahlberg; Michael A. Ritter
2011-01-01
The general condition of the nation's bridges presents a complex management issue when considering cost, safety, and time. Consequently, the management of those bridges can become an overwhelming task. The need for a management system that is specific to rural systems may help to improve the management of this significant number of bridges. Although individual...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE... Constitution Avenue, NW., Room 5501, Washington, DC 20224, for information on the income tax consequences of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE... Constitution Avenue, NW., Room 5501, Washington, DC 20224, for information on the income tax consequences of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE... Constitution Avenue, NW., Room 5501, Washington, DC 20224, for information on the income tax consequences of...
Moral Polemics of Far-Reaching Economic Consequences of Antibiotics Overuse.
Vochozka, Marek; Maroušková, Anna; Šuleř, Petr
2017-08-01
The unethical overuse of antibiotics to seek to achieve a shortening of the treatment period raises the cost of health services and poses a threat to humanity due to the gradual development of antibiotic resistance. Other consequences of our modern passion for antibiotics have appeared. Small concentrations of antibiotic residues in sewage waters slow down the metabolism of anaerobic microorganism thereby reducing the overall performance of the anaerobic fermentation used to detoxify and digest sewage and other collected organic wastes. Reduced biogas yields represents a serious threat to the energy self-sufficiency of some waste-water treatment plants, so it might change them from energy producers into energy consumers. Morally justifiable production of renewable energy from bio-waste is also threatened by antibiotic residues that remain in the bio-waste.
Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Averyt, K.; Yates, D. N.; Meldrum, J.
2014-12-01
Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.
How Tenneco manages energy productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glorioso, J.
1982-08-01
Tenneco's energy-management investments are intended to improve energy productivity, and are reported in terms of avoided costs in a way that highlights the energy value of conservation projects. This accounting approach helps management see that the return on conservation projects has increased faster than the rate of inflation. Tenneco's pursuit of higher productivity extends to labor, capital, and materials as well as energy resources. Data collection is the first step, followed by a ranking of possible projects. Continuous monitoring and energy use figures from each plant track the trend of energy value over time. Specific projects at Tenneco's energy-intensive operationsmore » of refining, shipbuilding, and food processing illustrate the company's energy management program. (DCK)« less
Hiron, Matthew; Jonsell, Mats; Kubart, Ariana; Thor, Göran; Schroeder, Martin; Dahlberg, Anders; Johansson, Victor; Ranius, Thomas
2017-08-01
Stumps and slash resulting from forest clearcutting is used as a source of low-net-carbon energy, but there are concerns about the consequences of biofuel extraction on biodiversity. Logging residues constitute potentially important habitats, since a large part of forest biodiversity is dependent on dead wood. Here we used snapshot field data from a managed forest landscape (25 000 ha) to predict landscape scale population changes of dead wood dependent organisms after extraction of stumps and slash after clearcutting. We did this by estimating habitat availability for all observed dead wood-dependent beetles, macrofungi, and lichens (380 species) in the whole landscape. We found that 53% of species occurred in slash or stumps. For most species, population declines after moderate extraction (≤30%) were small (<10% decline) because they mainly occur on other dead wood types. However, some species were only recorded in slash and stumps. Red listed species were affected by slash and stump extraction (12 species), but less often than other species. Beetles and fungi were more affected by stump extraction, while lichens were more affected by slash extraction. For beetles and lichens, extraction of a combination of spruce, pine and birch resulted in larger negative effects than if only extracting spruce, while for fungi tree species had little effect. We conclude that extensive extraction decreases the amount of habitat to such extent that it may have negative consequences on species persistence at the landscape level. The negative consequences can be limited by extracting only slash, or only logging residues from spruce stands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
.... ER00-167-000; Docket No. ER03- 752-000] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice of Revocation of Market- Based Rate Tariff July 23, 2010. On... FERC ] 61,334 (2003). In the June 25 Order, the Commission directed Strategic Energy Management Corp...
Risk analysis of urban gas pipeline network based on improved bow-tie model
NASA Astrophysics Data System (ADS)
Hao, M. J.; You, Q. J.; Yue, Z.
2017-11-01
Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.
Evaluating Bone Loss in ISS Astronauts.
Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J
2015-12-01
The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.
Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization
NASA Astrophysics Data System (ADS)
Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.
2016-06-01
Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.
Striley, Catherine W; Khan, Shivani R
2014-07-01
In the field of caffeine research, interest in and concern for energy drink consumption have grown. Most caffeine-related research studies published in 2013 focused on energy drink consumption. This article reviews this literature. Prevalence of energy drink consumption varies by measure and age group. Lack of a standardized definition of use inhibits comparison across studies. Studies reviewed show that energy drink consumption is generally low, but the minority who drink the most may be consuming at unsafe levels. Energy drinks are popular among adolescents and young adults. They boost energy and alertness in some conditions, but may have adverse hemodynamic effects. Harmful consequences, including involvement in risky driving, riding with an intoxicated driver and being taken advantage of sexually, were reported significantly more often by adolescents and young adults who combined energy drinks with alcohol compared with those who did not. This review of recent literature focused on prevalence, motivation, and consequences of energy drink use. Clear findings emerged only on the dangers of mixing alcohol and energy drinks. The lack of a standardized measure made the comparison across studies difficult. Future research should extend and clarify these findings using standardized measures of use.
The quantification of instream flow rights to water
Milhous, Robert T.
1990-01-01
Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, their effects on the natural and human landscape, and public perceptions towards these issues. The Western Energy Citation Clearinghouse (WECC v.1.0), part of a suite of data and information management tools developed and managed by the Wyoming Landscape Conservation Initiative (WLCI), provides resource managers with a searchable online database of citations that covers a broad spectrum of energy and landscape related topics relevant to resource managers, such as energy sources, natural and human landscape effects, and new research, methods and models. Based on the 2011 USGS Open-file Report "Abbreviated bibliography on energy development" (Montag, et al. 2011), WECC is an extensive collection of energy-related citations, as well as categorized lists of additional online resources related to oil and gas development, best practices, energy companies and Federal agencies. WECC incorporates the powerful web services of Sciencebase 2.0, the enterprise data and information platform for USGS scientists and partners, to provide secure, role-based data management features. For example, public/unauthenticated WECC users have full search and read access to the entire energy citation collection, while authenticated WLCI data stewards can manage WECC's citation collection using Sciencebase data management forms.
NASA Astrophysics Data System (ADS)
Vlachokostas, A.; Volkmann, C.; Madamopoulos, N.
2013-06-01
High-rise and commercial buildings in urban centers present a great challenge in terms of their energy consumption. Due to maximization of rentable square footage, the preferred urban façade system over the past 50 years has been the "curtain wall", only a few inches thick and comprised of modular steel or aluminum framing and predominant glass infills. The perceived Achilles heel of these modern glass façade systems is their thermal inefficiency: They are inadequate thermal barriers and exhibit excessive solar gain. The excessive solar gain has a negative impact on lighting and cooling loads of the entire building. This negative impact will be further exacerbated with rising energy costs. However, rather than view the glass façade's uncontrolled solar gain merely as a weakness contributing to higher energy consumption, the condition could indeed be considered as related to an energy solution. These glass façades can be retrofitted to operate as a provider of daylight and energy for the rest of the building, taking advantage of the overexposure to the sun. With today's technology, the sun's abundant renewable energy can be the driving force for the energy transition of these building envelopes. Illumination, thermal energy, and electricity production can be directly supplied from the sun, and when correctly and efficiently managed, they can lead to a significantly less energy-intensive building stock. We propose a multi-purpose, prismatic, louver-based façade to perform both daylight and thermal energy harvesting with a goal of offering a better daylight environment for the occupants, and reduce the energy consumption and carbon footprint of the building. While decentralized air-conditioning units are commonly accepted as façade "plug-ins", such decentralization could be utilized with more benefits by passively managing the interior space conditions, without using any extra power. Just as living organisms respond and adapt to the environmental changes in their surroundings, the proposed multi-purpose prismatic louver façade can be responsive and resilient to daytime sky conditions, environmental temperatures and occupant needs by exploiting options presented by the three sides of the prismatic louvers. The façade is highly configurable since every side of the prismatic louver façade can perform a different operation. The prism itself operates as a redirector of sunlight from the glass façade to the ceiling and consequently diffuses the sunlight throughout the room, providing higher and more uniform illumination levels. In addition, each side of the prismatic louver can be implemented in multiple ways (e.g., visibly transparent photovoltaic cells, luminescent solar concentrators). The ability to rotate the prismatic louvers along their axes allows the user to expose a set of different surfaces to the sun's radiation in accordance with different climatic conditions and occupant needs. Thus, the prismatic louvers help achieve a selective control and management of the incoming light that allows us to manipulate the incoming energy for the benefit of the building and its occupants.
National Wind Technology Center sitewide, Golden, CO: Environmental assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support othermore » NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.« less
"Zweckoptimismus" and the Paris process will not save the world from climate catastrophe.
Clémençon, Raymond
2018-03-01
Politicians, government officials, business representatives, and nongovernmental climate activists all in various ways emphasize what they see as progress being made in the aftermath of the Paris Agreement, even if they continue to warn of the dire consequences of business as usual. Indeed, there is no lack of encouraging private and public sector initiatives on climate change. Some macro trends seem to be moving in the right direction, as well. But, closer scrutiny shows that these positive trends are still far from adding up to the necessary fundamental shift in the global energy economy. Furthermore, the public may greatly overestimate the advancement of renewable solar and wind energy technology, which contributes to a false sense of progress and lessens political urgency. Without determined and reinvigorated political leadership from the European Union (EU), there is little hope that necessary emission reduction goals to stay below 2 °C above preindustrial levels can be met. The EU has driven international climate policy from the beginning of climate negotiations, and there is unfortunately no other source of leadership in sight. It will require difficult political decisions to be taken sooner rather than later to force a much quicker domestic energy transition and to raise financing to help developing countries with their own energy transition and adaptation to a rapidly warming world. Integr Environ Assess Manag 2018;14:198-201. © 2018 SETAC. © 2018 SETAC.
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
NASA Astrophysics Data System (ADS)
Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.
2017-12-01
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.
Challenge of biofuel: filling the tank without emptying the stomach?
NASA Astrophysics Data System (ADS)
Rajagopal, D.; Sexton, S. E.; Roland-Holst, D.; Zilberman, D.
2007-10-01
Biofuels have become a leading alternative to fossil fuel because they can be produced domestically by many countries, require only minimal changes to retail distribution and end-use technologies, are a partial response to global climate change, and because they have the potential to spur rural development. Production of biofuel has increased most rapidly for corn ethanol, in part because of government subsidies; yet, corn ethanol offers at most a modest contribution to society's climate change goals and only a marginally positive net energy balance. Current biofuels pose long-run consequences for the provision of food and environmental amenities. In the short run, however, when gasoline supply and demand are inelastic, they serve as a buffer supply of energy, helping to reduce prices. Employing a conceptual model and with back-of-the-envelope estimates of wealth transfers resulting from biofuel production, we find that ethanol subsidies pay for themselves. Adoption of second-generation technologies may make biofuels more beneficial to society. The large-scale production of new types of crops dedicated to energy is likely to induce structural change in agriculture and change the sources, levels, and variability of farm incomes. The socio-economic impact of biofuel production will largely depend on how well the process of technology adoption by farmers and processors is understood and managed. The confluence of agricultural policy with environmental and energy policies is expected.
RMP Guidance for Chemical Distributors - Chapter 7: Prevention Program (Program 3)
The OSHA Process Safety Management program has legal authority for on-site consequences, EPA's Prevention Program for offsite consequences, so your process hazard analysis (PHA) team may have to assess new hazards to the public and offsite environment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... chemical accidents and submit the results of their analyses to the U.S. Environmental Protection Agency as... the portions of risk management plans containing the results of those analyses and certain related...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... chemical accidents and submit the results of their analyses to the U.S. Environmental Protection Agency as... the portions of risk management plans containing the results of those analyses and certain related...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... chemical accidents and submit the results of their analyses to the U.S. Environmental Protection Agency as... the portions of risk management plans containing the results of those analyses and certain related...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION... chemical accidents and submit the results of their analyses to the U.S. Environmental Protection Agency as... the portions of risk management plans containing the results of those analyses and certain related...
NASA Astrophysics Data System (ADS)
Bonhivers, Jean-Christophe
The increase in production of goods over the last decades has led to the need for improving the management of natural resources management and the efficiency of processes. As a consequence, heat integration methods for industry have been developed. These have been successful for the design of new plants: the integration principles are largely employed, and energy intensity has dramatically decreased in many processes. Although progress has also been achieved in integration methods for retrofit, these methods still need further conceptual development. Furthermore, methodological difficulties increase when trying to retrofit heat exchange networks that are closely interrelated to water networks, such as the case of pulp and paper mills. The pulp and paper industry seeks to increase its profitability by reducing production costs and optimizing supply chains. Recent process developments in forestry biorefining give this industry the opportunity for diversification into bio-products, increasing potential profit margins, and at the same time modernizing its energy systems. Identification of energy strategies for a mill in a changing environment, including the possibility of adding a biorefinery process on the industrial site, requires better integration methods for retrofit situations. The objective of this thesis is to develop an energy integration method for the retrofit of industrial systems and the transformation of pulp and paper mills, ant to demonstrate the method in case studies. Energy is conserved and degraded in a process. Heat can be converted into electricity, stored as chemical energy, or rejected to the environment. A systematic analysis of successive degradations of energy between the hot utilities until the environment, through process operations and existing heat exchangers, is essential in order to reduce the heat consumption. In this thesis, the "Bridge Method" for energy integration by heat exchanger network retrofit has been developed. This method is the first that considers the analysis of these degradations. The fundamental mechanism to reduce the heat consumption in an existing network has been made explicit; it is the basis of the developed method. The Bridge Method includes the definition of "a bridge", which is a set of modifications leading to heat reduction in a heat exchanger network. It is proven that, for a given set of streams, only bridges can lead to heat savings. The Bridge Method also includes (1) a global procedure for heat exchanger network retrofit, (2) a procedure to enumerate systematically the bridges, (3) "a network table" to easily evaluate them, and (4) an "energy transfer diagram" showing the effect of the two first principles of thermodynamics of energy conservation and degradation in industrial processes in order to identify energy savings opportunities. The Bridge Method can be used for the analysis of networks including several types of heat transfer, and site-wide analysis. The Bridge Method has been applied in case studies for retrofitting networks composed of indirect-contact heat exchangers, including the network of a kraft pulp mill, and also networks of direct-contact heat exchangers, including the hot water production system of a pulp mill. The method has finally been applied for the evaluation of a biorefinery process, alone or hosted in a kraft pulp mill. Results show that the use of the method significantly reduces the search space and leads to identification of the relevant solutions. The necessity of a bridge to reduce the inputs and outputs of a process is a consequence of the two first thermodynamics principles of energy conservation and increase in entropy. The concept of bridge alone can also be used as a tool for process analysis, and in numerical optimization-based approaches for energy integration.
Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia
NASA Astrophysics Data System (ADS)
Roy, Anish Kumar
To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In addition, it links theory with practice by offering a strategy that can effectively address critical issues arising from the energy-development-policy nexus of the sustainable energy development debate.
Management of thinned Emory oak coppice for multiple resource benefits
D. Catlow Shipek; Peter F. Ffolliott
2005-01-01
Managers are increasingly moving toward an ecosystem-based, multiple-use approach in managing Emory oak woodlands in the Southwestern United States. Often of particular interest is managing the coppice that evolves from earlier fuelwood harvesting activities. Emory oak (Quercus emoryi) is a prolific sprouting species and, as a consequence, post-...
41 CFR 302-12.9 - What are the income tax consequences if I use a relocation services company?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the income tax consequences if I use a relocation services company? 302-12.9 Section 302-12.9 Public Contracts and Property... the income tax consequences if I use a relocation services company? You may incur income taxes on...
ERIC Educational Resources Information Center
American School and University, 1982
1982-01-01
Computerized energy management at Drew University (New Jersey) is accomplished by direct digital control in which microprocessor controllers control, monitor, and carry out energy management functions at the equipment level. (Author/MLF)
Adaptive social impact management for conservation and environmental management.
Kaplan-Hallam, Maery; Bennett, Nathan J
2018-04-01
Concerns about the social consequences of conservation have spurred increased attention the monitoring and evaluation of the social impacts of conservation projects. This has resulted in a growing body of research that demonstrates how conservation can produce both positive and negative social, economic, cultural, health, and governance consequences for local communities. Yet, the results of social monitoring efforts are seldom applied to adaptively manage conservation projects. Greater attention is needed to incorporating the results of social impact assessments in long-term conservation management to minimize negative social consequences and maximize social benefits. We bring together insights from social impact assessment, adaptive management, social learning, knowledge coproduction, cross-scale governance, and environmental planning to propose a definition and framework for adaptive social impact management (ASIM). We define ASIM as the cyclical process of monitoring and adaptively managing social impacts over the life-span of an initiative through the 4 stages of profiling, learning, planning, and implementing. We outline 14 steps associated with the 4 stages of the ASIM cycle and provide guidance and potential methods for social-indicator development, predictive assessments of social impacts, monitoring and evaluation, communication of results, and identification and prioritization of management responses. Successful ASIM will be aided by engaging with best practices - including local engagement and collaboration in the process, transparent communication of results to stakeholders, collective deliberation on and choice of interventions, documentation of shared learning at the site level, and the scaling up of insights to inform higher-level conservation policies-to increase accountability, trust, and perceived legitimacy among stakeholders. The ASIM process is broadly applicable to conservation, environmental management, and development initiatives at various scales and in different contexts. © 2017 Society for Conservation Biology.
General consequences of the violated Feynman scaling
NASA Technical Reports Server (NTRS)
Kamberov, G.; Popova, L.
1985-01-01
The problem of scaling of the hadronic production cross sections represents an outstanding question in high energy physics especially for interpretation of cosmic ray data. A comprehensive analysis of the accelerator data leads to the conclusion of the existence of breaked Feynman scaling. It was proposed that the Lorentz invariant inclusive cross sections for secondaries of a given type approaches constant in respect to a breaked scaling variable x sub s. Thus, the differential cross sections measured in accelerator energy can be extrapolated to higher cosmic ray energies. This assumption leads to some important consequences. The distribution of secondary multiplicity that follows from the violated Feynman scaling using a similar method of Koba et al is discussed.
Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry
NASA Astrophysics Data System (ADS)
Taghvaeian, S.
2014-12-01
Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.
Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques
NASA Astrophysics Data System (ADS)
Elhag, Mohamed; Bahrawi, Jarbou A.
2017-03-01
Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.
Priority directions of the improvement of energy management at the enterprise
NASA Astrophysics Data System (ADS)
Dyakova, Galina; Izmaylova, Svetlana; Mottaeva, Angela; Karanina, Elena
2017-10-01
The relevance of article is caused by the fact that at the industrial enterprises pay little attention to the matters of energy saving or to the management of energy efficiency. The authors of the article defined that the potential of the increase in energy efficiency as well as the improvement of quality of strategic management at the enterprise, is connected with investment into the human capital. For the improvement of system of energy management, the key indicators of energy efficiency at the individual level are defined, the algorithm of the development of key indicators by means of which the energy efficiency of the human capital will be measured is developed, actions for support to the developed transitional strategy of power management are offered, positive results of formation of the human capital directed to increase in energy efficiency are designated.
Ackerman, Kathryn E; Holtzman, Bryan; Cooper, Katherine M; Flynn, Erin F; Bruinvels, Georgie; Tenforde, Adam S; Popp, Kristin L; Simpkin, Andrew J; Parziale, Allyson L
2018-06-02
Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC. The purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes. One thousand female athletes (15-30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05). Athletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance. These findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Charles E. Peterson; Paul D. Anderson
2009-01-01
Over the last 20 years, changing public values and increased ecological understanding have led to a paradigm shift in forestry from timber management to sustainable ecosystem management on U.S. federal lands. Forest managers are now seeking alternative management approaches that simultaneously meet socio-cultural, ecological and economic goals. Consequently, many field...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2010 CFR
2010-10-01
... crash energy management system to dissipate kinetic energy during a collision. The crash energy management system shall provide a controlled deformation and collapse of designated sections within the... resulting from dynamic forces transmitted to occupied volumes. (b) The design of each unit shall consist of...
10 CFR 800.002 - Program management.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Program management. 800.002 Section 800.002 Energy DEPARTMENT OF ENERGY LOANS FOR BID OR PROPOSAL PREPARATION BY MINORITY BUSINESS ENTERPRISES SEEKING DOE CONTRACTS AND ASSISTANCE General § 800.002 Program management. Program management responsibility for...
10 CFR 800.002 - Program management.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Program management. 800.002 Section 800.002 Energy DEPARTMENT OF ENERGY LOANS FOR BID OR PROPOSAL PREPARATION BY MINORITY BUSINESS ENTERPRISES SEEKING DOE CONTRACTS AND ASSISTANCE General § 800.002 Program management. Program management responsibility for...
10 CFR 800.002 - Program management.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Program management. 800.002 Section 800.002 Energy DEPARTMENT OF ENERGY LOANS FOR BID OR PROPOSAL PREPARATION BY MINORITY BUSINESS ENTERPRISES SEEKING DOE CONTRACTS AND ASSISTANCE General § 800.002 Program management. Program management responsibility for...
10 CFR 800.002 - Program management.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Program management. 800.002 Section 800.002 Energy DEPARTMENT OF ENERGY LOANS FOR BID OR PROPOSAL PREPARATION BY MINORITY BUSINESS ENTERPRISES SEEKING DOE CONTRACTS AND ASSISTANCE General § 800.002 Program management. Program management responsibility for...
10 CFR 800.002 - Program management.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Program management. 800.002 Section 800.002 Energy DEPARTMENT OF ENERGY LOANS FOR BID OR PROPOSAL PREPARATION BY MINORITY BUSINESS ENTERPRISES SEEKING DOE CONTRACTS AND ASSISTANCE General § 800.002 Program management. Program management responsibility for...
A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System
NASA Astrophysics Data System (ADS)
Altin, Necmi; Eyimaya, Süleyman Emre
2018-03-01
From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.
Total energy management for nursing homes and other long-term care institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less
Critical Essay: Building new management theories on sound data? The case of neuroscience
Lindebaum, Dirk
2015-01-01
In this critical essay, I contend that accelerating demands for novel theories in management studies imply that new methodologies and data are sometimes accepted prematurely as supply of these novel theories. This point is illustrated with reference to how neuroscience can inform management research. I propose two demand forces that foster the increased focus on neuroscience in management studies, these being (i) the direction of public research funding, and (ii) publication bias as a boost for journal impact factor. Looking at the supply side, I note that (i) the statistical power of studies using functional magnetic resonance imaging (or fMRI, the ‘gold’ standard) is unacceptably low, (ii) the use of imprecise ‘motherhood’ statements, and (iii) the dismissal of ethical concerns in the formulation of management theories and practice informed by neuroscience. I then briefly outline the bad consequences of this for management theory and practice, emphasize why it is important to prevent these consequences, and offer some methodological suggestions for future research. PMID:27041766
Di Maria, Francesco; Sordi, Alessio; Micale, Caterina
2013-11-01
The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeitler, T.; Kirchner, T. B.; Hammond, G. E.; Park, H.
2014-12-01
The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. In a broad modernization effort, the DOE has overseen the transfer of these codes to modern hardware and software platforms. Additionally, there is a current effort to establish new performance assessment capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Improvements to the current computational environment will result in greater detail in the final models due to the parallelization afforded by the modern code. Parallelization will allow for relatively faster calculations, as well as a move from a two-dimensional calculation grid to a three-dimensional grid. The result of the modernization effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim
2017-10-01
Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.
3 CFR - Federal Leadership on Energy Management
Code of Federal Regulations, 2014 CFR
2014-01-01
... 3 The President 1 2014-01-01 2014-01-01 false Federal Leadership on Energy Management Presidential Documents Other Presidential Documents Memorandum of December 5, 2013 Federal Leadership on Energy Management Memorandum for the Heads of Executive Departments and Agencies In order to create a clean energy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James
Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less
Linking Indicators: Key Research Questions to Guide Decisions on What to Measure, Map and Model
Public policy increasingly demands insight into the social consequences of environmental policy and drivers of human behaviors that affect the environment. Social consequences can provide potent justifications for environmental protection and management, and human preferences and...
Energy Management in Municipal Buildings.
ERIC Educational Resources Information Center
Massachusetts State Dept. of Community Affairs, Boston. Energy Conservation Project.
This manual is written for the manager or supervisor responsible for instituting an energy management program for municipal buildings. An introduction discusses the management issues facing municipal government in dealing with the need to reduce energy consumption. The guide reviews methods for central coordination of activity to ensure that…
Energy: Production, Consumption, and Consequences.
ERIC Educational Resources Information Center
Helm, John L., Ed.
Energy policy in the United States and much of the analysis behind those policies is largely incomplete according to many. Systems for energy production, distribution, and use have traditionally been analyzed by supply sector, yet such analyses cannot capture the complex interplay of technology, economics, public policy, and environmental concerns…
NASA Astrophysics Data System (ADS)
Nkosi, S. B.; Pretorius, J. H. C.
2017-07-01
The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.
Sexual Difficulties after Pelvic Radiotherapy: Improving Clinical Management.
White, I D
2015-11-01
Modern multimodality cancer treatment has led to more than 2 million people living with and beyond cancer in the UK, an impressive survival statistic on which clinicians and services continue to build. However, what is less readily acknowledged by health professionals and patients alike are the 500,000 people whose daily lives are adversely affected by the longer term consequences of cancer treatment. Macmillan Cancer Support estimate as many as 350,000 people in the UK experience sexual consequences of cancer and its treatment, an aspect of survivorship and rehabilitation that receives relatively scant attention in service provision, policy development and research terms. This overview addresses the sexual impact of radical pelvic radiotherapy for the more common (prostate, ano-rectal, cervical and endometrial) adult malignancies. Through discussion of the clinical assessment and management of desire, arousal, orgasmic and sexual pain difficulties that arise after pelvic radiotherapy, this overview offers an integrated biopsychosocial model of practice that incorporates the physical, psychological and relationship elements of these treatment sequelae. It is important that clinicians raise the profile of the sexual consequences of cancer treatment as a legitimate aspect of survivorship and service provision. Only in this way can the identification and management of treatment-induced sexual difficulties, frequently experienced by patients and their partners, be better understood and managed. Increased focus on the sexual consequences of treatment and cancer survivorship more broadly may, in time, lead to greater clinical recognition, service development and, most importantly, increased research devoted to the effective management of what remains a neglected aspect of cancer care. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Remote monitoring of LED lighting system performance
NASA Astrophysics Data System (ADS)
Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah
2016-09-01
The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.
Blankfield, Adele
2013-01-01
The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management. PMID:23922501
Causes, mechanisms and management of paediatric osteoporosis.
Mäkitie, Outi
2013-08-01
Osteoporosis, a skeletal disorder characterized by compromised bone strength and an increased risk of fractures, is an important paediatric disorder that involves almost all paediatric subspecialties. Osteogenesis imperfecta is the most common form of childhood-onset primary osteoporosis, but several other forms are also known. Secondary osteoporosis is caused by an underlying chronic illness or its treatment. The most common causes of secondary osteoporosis include chronic systemic inflammation, glucocorticoid use and neuromuscular disabilities. The skeletal sequelae can present in childhood as low-energy peripheral and vertebral fractures, or become evident in adulthood as low bone mass and an increased propensity to develop osteoporosis. Management should aim at prevention, as interventions to treat symptomatic osteoporosis in the paediatric age group are scarce. Bisphosphonates are the principal pharmacological agents that can be used in this setting, but data on their efficacy and safety in paediatric populations remain inadequate, especially in patients with secondary osteoporosis. Consequently, it is important to understand the potential skeletal effects of paediatric illnesses and their therapies in order to institute effective and timely prevention of skeletal complications.
The Economics of Energy: A Teaching Kit (Grades 7-12).
ERIC Educational Resources Information Center
Horwich, George; And Others
In this six part handbook, secondary school teachers and students are provided with information and concepts needed to analyze the energy situation from an economic perspective. Part 1 begins with an economic analysis of the U.S. energy situation. It includes charts, graphs, and readings on energy use before 1970, consequences of oil supply…
Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man.
Wallace, Douglas C
2010-05-11
Complex structures are generated and maintained through energy flux. Structures embody information, and biological information is stored in nucleic acids. The progressive increase in biological complexity over geologic time is thus the consequence of the information-generating power of energy flow plus the information-accumulating capacity of DNA, winnowed by natural selection. Consequently, the most important component of the biological environment is energy flow: the availability of calories and their use for growth, survival, and reproduction. Animals can exploit and adapt to available energy resources at three levels. They can evolve different anatomical forms through nuclear DNA (nDNA) mutations permitting exploitation of alternative energy reservoirs, resulting in new species. They can evolve modified bioenergetic physiologies within a species, primarily through the high mutation rate of mitochondrial DNA (mtDNA)-encoded bioenergetic genes, permitting adjustment to regional energetic environments. They can alter the epigenomic regulation of the thousands of dispersed bioenergetic genes via mitochondrially generated high-energy intermediates permitting individual accommodation to short-term environmental energetic fluctuations. Because medicine pertains to a single species, Homo sapiens, functional human variation often involves sequence changes in bioenergetic genes, most commonly mtDNA mutations, plus changes in the expression of bioenergetic genes mediated by the epigenome. Consequently, common nDNA polymorphisms in anatomical genes may represent only a fraction of the genetic variation associated with the common "complex" diseases, and the ascent of man has been the product of 3.5 billion years of information generation by energy flow, accumulated and preserved in DNA and edited by natural selection.
NASA Astrophysics Data System (ADS)
Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.
2012-12-01
Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast-growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.
Energy neutral and low power wireless communications
NASA Astrophysics Data System (ADS)
Orhan, Oner
Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a convex optimization problem, and the properties of these optimal policies are identified. In the second part of this thesis, low power transceiver design is considered for millimeter wave communication systems. In particular, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance.
Energy efficiency in U.K. shopping centres
NASA Astrophysics Data System (ADS)
Mangiarotti, Michela
Energy efficiency in shopping centres means providing comfortable internal environment and services to the occupants with minimum energy use in a cost-effective and environmentally sensitive manner. This research considers the interaction of three factors affecting the energy efficiency of shopping centres: i) performance of the building fabric and services ii) management of the building in terms of operation, control, maintenance and replacement of the building fabric and services, and company's energy policy iii) occupants' expectation for comfort and awareness of energy efficiency. The aim of the investigation is to determine the role of the above factors in the energy consumption and carbon emissions of shopping centres and the scope for reducing this energy usage by changing one or all the three factors. The study also attempts to prioritize the changes in the above factors that are more cost-effective at reducing that energy consumption and identify the benefits and main economic and legal drivers for energy efficiency in shopping centres. To achieve these targets, three case studies have been analysed. Using energy data from bills, the performance of the selected case studies has been assessed to establish trends and current energy consumption and carbon emissions of shopping centres and their related causes. A regression analysis has attempted to break down the energy consumption of the landlords' area by end-use to identify the main sources of energy usage and consequently introduce cost-effective measures for saving energy. A monitoring and occupants' survey in both landlords' and tenants' areas have been carried out at the same time to compare the objective data of the environmental conditions with the subjective impressions of shoppers and shopkeepers. In particular, the monitoring aimed at assessing the internal environment to identify possible causes of discomfort and opportunities for introducing energy saving measures. The survey looked at determining the occupants' expectation for comfort and awareness of energy efficiency in shopping centres. The results show the complexity of prioritizing the three factors affecting energy efficiency in shopping centres, highlighting the relationships between those factors, and the role of different actors, involved in the life of shopping centres, in the energy and environmental performance of these buildings.
Muls, Ann Cecile
2014-03-01
The percentage of people living with a diagnosis of cancer is rising globally. Between 20% and 25% of people treated for cancer experience a consequence of cancer which has an adverse impact on the quality of their life. Gastrointestinal (GI) symptoms are the most common of all consequences of cancer treatment and have the greatest impact on daily activity. PATHOPHYSIOLOGY OF LONG-TERM BOWEL DAMAGE AFTER PELVIC RADIOTHERAPY: Long-term damage to the bowel after radiotherapy is mediated by ischaemic changes and fibrosis. Each fraction of radiotherapy causes a series of repetitive injuries to the intestinal tissue resulting in an altered healing process, which affects the integrity of the repair and changes the architecture of the bowel wall. THE NATURE OF GI SYMPTOMS THAT DEVELOP: Patient-reported outcome measures show that diarrhoea, urgency, increased bowel frequency, tenesmus and flatulence are the five most prevalent GI symptoms with a moderate or severe impact on patients' daily lives after treatment with pelvic radiotherapy. Many patients also experience fatigue, urinary problems and have sexual concerns. SYSTEMATIC ASSESSMENT AND MANAGEMENT: The complex nature of those symptoms warrants systematic assessment and management. The use of a tested algorithm can assist in achieving this. The most common contributing factors to ongoing bowel problems after pelvic radiotherapy are small intestinal bacterial overgrowth, bile acid malabsorption, pancreatic insufficiency, rectal bleeding and its impact on bone health. Symptom burden, socio-psychosocial impact, memory and cognitive function, fatigue, urinary problems and sexual concerns need to be taken into account when thinking about consequences of cancer treatment. As our understanding of consequences of cancer treatments continues to emerge and encompass a wide variety of specialties, a holistic, multifaceted and multidisciplinary approach is required to manage those consequences long-term.
Integrating Energy and Environmental Management in Wood Furniture Industry
Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir
2014-01-01
As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734
Integrating energy and environmental management in wood furniture industry.
Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir
2014-01-01
As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.
A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warwick, William M.
2002-06-03
This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.
ERIC Educational Resources Information Center
Coldren, Sharon L.; Mitchell, Cecilia
Current patterns of energy management within higher education institutions and energy-related information and services that are needed by senior administrators and others to develop and improve energy management and planning on campus were studied. The findings and recommendations will be used to help develop a new research and action program for…
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
10 CFR 473.22 - Initial review by manager.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Initial review by manager. 473.22 Section 473.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION AUTOMOTIVE PROPULSION RESEARCH AND DEVELOPMENT Review and Certification of Grants, Cooperative Agreements, Contracts, and Projects § 473.22 Initial review by manager. (a...
Practical Materials for Teaching. Resource File: Edition I. Energy Management.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This directory lists energy education programs directed at increasing the energy conservation awareness of scientists, engineers, managers, and technicians working in fields where they are responsible for managing energy consumption. The resource is prepared to help with the process of identifying, selecting, and obtaining materials for promoting…
Qiao, Yuanhua; West, Harry H; Mannan, M Sam; Johnson, David W; Cornwell, John B
2006-03-17
Liquefied natural gas (LNG) release, spread, evaporation, and dispersion processes are illustrated using the Federal Energy Regulatory Commission models in this paper. The spillage consequences are dependent upon the tank conditions, release scenarios, and the environmental conditions. The effects of the contributing variables, including the tank configuration, breach hole size, ullage pressure, wind speed and stability class, and surface roughness, on the consequence of LNG spillage onto water are evaluated using the models. The sensitivities of the consequences to those variables are discussed.
Research on Factors Influencing Individual's Behavior of Energy Management
NASA Astrophysics Data System (ADS)
Fan, Yanfeng
With the rapid rise of distributed generation, Internet of Things, and mobile Internet, both U.S. and European smart home manufacturers have developed energy management solutions for individual usage. These applications help people manage their energy consumption more efficiently. Domestic manufacturers have also launched similar products. This paper focuses on the factors influencing Energy Management Behaviour (EMB) at the individual level. By reviewing academic literature, conducting surveys in Beijing, Shanghai and Guangzhou, the author builds an integrated behavioural energy management model of the Chinese energy consumers. This paper takes the vague term of EMB and redefines it as a function of two separate behavioural concepts: Energy Management Intention (EMI), and the traditional Energy Saving Intention (ESI). Secondly, the author conducts statistical analyses on these two behavioural concepts. EMI is the main driver behind an individual's EMB. EMI is affected by Behavioural Attitudes, Subjective Norms, and Perceived Behavioural Control (PBC). Among these three key factors, PBC exerts the strongest influence. This implies that the promotion of the energy management concept is mainly driven by good application user experience (UX). The traditional ESI also demonstrates positive influence on EMB, but its impact is weaker than the impacts arising under EMI's three factors. In other words, the government and manufacturers may not be able to change an individual's energy management behaviour if they rely solely on their traditional promotion strategies. In addition, the study finds that the government may achieve better promotional results by launching subsidies to the manufacturers of these kinds of applications and smart appliances.
Beston, Julie A.; Diffendorfer, Jay E.; Loss, Scott R.; Johnson, Douglas H.
2016-01-01
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity. PMID:26963254
Beston, Julie A.; Diffendorfer, James E.; Loss, Scott; Johnson, Douglas H.
2016-01-01
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.
Beston, Julie A; Diffendorfer, Jay E; Loss, Scott R; Johnson, Douglas H
2016-01-01
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species' distributions relative to turbine locations, number of suitable habitat types, and species' conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson's hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.
Governing University Strategy: Perceptions and Practice of Governance and Management Roles
ERIC Educational Resources Information Center
Rytmeister, Catherine
2009-01-01
Intertwined trends of massification, internationalisation and marketisation constitute and drive change in higher education at all levels. Consequences at the institutional level include: increased competition, adoption of corporate management forms, accrual of power to executive management, and greater emphasis on strategy. As Government policy…
Rationalizing Management Information System Costs.
ERIC Educational Resources Information Center
Parden, Robert J.
This paper examines the proposition that management information systems (MIS) for colleges and universities are not achieving their original objectives of supporting better management decisions by providing more and better information in a more timely manner. As a consequence, the MIS activity should be reduced in scope, and standardized to…
Hensing, Gunnel K E; Sverker, Annette M; Leijon, Göran S
2007-06-01
Neuropathic pain is a disabling chronic condition with limited therapeutic options. Few studies have addressed patient's experience and strategies. The aim of this study was to explore dilemmas experienced in order to improve care and rehabilitation. An interview study with 39 patients suffering from neuropathic pain of different origin was performed. We used the critical incident technique to collect data. Questions on occasions when patients had been hindered by or reminded of their neuropathic pain were included, and the self-perceived consequences and management of such occasions. The interviews were transcribed verbatim and analysed qualitatively. A broad range of experiences categorised into dilemmas, disturbances, consequences and managements from most parts of everyday life was identified. The dilemmas were 'housework', 'sitting', 'physical activity', 'personal hygiene', 'sleeping difficulties', 'hypersensitivity to external stimuli', 'social relationships', 'transportation' and 'leisure time'. Disturbances were 'failures', 'inabilities' and 'restrictions'. Consequences were 'increased pain', 'psychological reactions' and 'physical symptoms'. The majority of the patients used activity-oriented strategies to manage their pain such as alternative ways of performing the task, a cognitive approach or simply ignoring the pain. This is one of the first studies presenting detailed data on everyday dilemmas, disturbances and consequences of patients with chronic neuropathic pain. Such information is important in clinical settings to improve care and rehabilitation.
Quantifying uncertainties in wind energy assessment
NASA Astrophysics Data System (ADS)
Patlakas, Platon; Galanis, George; Kallos, George
2015-04-01
The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.
2011-01-01
Background The major metabolic complications of obesity and type 2 diabetes may be prevented and managed with dietary modification. The use of sweeteners that provide little or no calories may help to achieve this objective. Methods We did a systematic review and network meta-analysis of the comparative effectiveness of sweetener additives using Bayesian techniques. MEDLINE, EMBASE, CENTRAL and CAB Global were searched to January 2011. Randomized trials comparing sweeteners in obese, diabetic, and healthy populations were selected. Outcomes of interest included weight change, energy intake, lipids, glycated hemoglobin, markers of insulin resistance and glycemic response. Evidence-based items potentially indicating risk of bias were assessed. Results Of 3,666 citations, we identified 53 eligible randomized controlled trials with 1,126 participants. In diabetic participants, fructose reduced 2-hour blood glucose concentrations by 4.81 mmol/L (95% CI 3.29, 6.34) compared to glucose. Two-hour blood glucose concentration data comparing hypocaloric sweeteners to sucrose or high fructose corn syrup were inconclusive. Based on two ≤10-week trials, we found that non-caloric sweeteners reduced energy intake compared to the sucrose groups by approximately 250-500 kcal/day (95% CI 153, 806). One trial found that participants in the non-caloric sweetener group had a decrease in body mass index compared to an increase in body mass index in the sucrose group (-0.40 vs 0.50 kg/m2, and -1.00 vs 1.60 kg/m2, respectively). No randomized controlled trials showed that high fructose corn syrup or fructose increased levels of cholesterol relative to other sweeteners. Conclusions Considering the public health importance of obesity and its consequences; the clearly relevant role of diet in the pathogenesis and maintenance of obesity; and the billions of dollars spent on non-caloric sweeteners, little high-quality clinical research has been done. Studies are needed to determine the role of hypocaloric sweeteners in a wider population health strategy to prevent, reduce and manage obesity and its consequences. PMID:22093544
NASA Astrophysics Data System (ADS)
Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.
2012-12-01
For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.
Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaolei; Rink, Nancy
2011-04-30
To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{submore » 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,« less
Asteroid airburst altitude vs. strength
NASA Astrophysics Data System (ADS)
Robertson, Darrel; Wheeler, Lorien; Mathias, Donovan
2016-10-01
Small NEO asteroids (<Ø140m) may not be a threat on a national or global level but can still cause a significant amount of local damage as demonstrated by the Chelyabinsk event where there was over $33 million worth of damage (1 billion roubles) and 1500 were injured, mostly due to broken glass. The ground damage from a small asteroid depends strongly on the altitude at which they "burst" where most of the energy is deposited in the atmosphere. The ability to accurately predict ground damage is useful in determining appropriate evacuation or shelter plans and emergency management.Strong asteroids, such as a monolithic boulder, fail and create peak energy deposition close to the altitude at which ram dynamic pressure exceeds the material cohesive strength. Weaker asteroids, such as a rubble pile, structurally fail at higher altitude, but it requires the increased aerodynamic pressure at lower altitude to disrupt and disperse the rubble. Consequently the resulting airbursts have a peak energy deposition at similar altitudes.In this study hydrocode simulations of the entry and break-up of small asteroids were performed to examine the effect of strength, size, composition, entry angle, and speed on the resulting airburst. This presentation will show movies of the simulations, the results of peak burst height, and the comparison to semi-analytical models.
Climate Leadership webinar on Integrating Energy and Climate Risk Management
Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.
76 FR 63913 - Commercial Building Workforce Job/Task Analyses
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
..., Commercial Building Energy Modeler, Commissioning/Retro-Commissioning Authority, Energy/Sustainability..., Commercial Building Energy Modeler, Commissioning/Retro-Commissioning Authority, Energy/Sustainability...-commissioning authority, energy/sustainability manager, facility manager, and/or operating engineer/building...
NASA Astrophysics Data System (ADS)
Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal
2018-05-01
This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.
NASA Astrophysics Data System (ADS)
Bombaci, Sara Petrita
Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland reduction strategies that promote landscape heterogeneity by leaving standing trees to provide structure for birds may have fewer impacts than those that clear large contiguous patches of woodland. This approach has the potential to increase the conservation value of habitat mitigation treatments for pinyon-juniper obligates as well as shrubland and grassland species.
10 CFR 607.515 - Are there any exceptions to those actions?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Are there any exceptions to those actions? 607.515 Section 607.515 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Violations of this Part and Consequences § 607.515 Are there...
Sustainable Schools: Making Energy Efficiency a Lifestyle Priority
ERIC Educational Resources Information Center
Purnell, Ken; Sinclair, Mark; Gralton, Anna
2004-01-01
Promoting efficient energy use in schools that consequently reduces greenhouse gas emissions is the purpose of a residential Energy Efficiency in Schools (EEIS) program reported on in this paper. Research on this program aligns with one of the "key "overarching" sustainability issues", set out in the "Learning for…
SCHULZ, Anika Susanne; BLOOM, Jessica; KINNUNEN, Ulla
2017-01-01
Adequate energy management during the working day is essential for employees to remain healthy and vital. Research has investigated which energy management strategies are frequently used and which are most beneficial, but the results are inconclusive and research is still scarce. We aim to extend the current knowledge by considering individual differences in terms of working compulsively (as key feature of workaholism) with regard to energy management. Data were collected with an online survey in 1,253 employees from 12 different organizations. Employees’ levels of compulsiveness were expected to relate to 1) employees’ choice of which energy management strategies to use, and 2) the benefits (improved health and alleviated emotional exhaustion) of the chosen strategy. The results partly supported the hypotheses in that compulsiveness was associated with more frequent use of work-related energy management strategies. However, compulsiveness was not related to less frequent use of micro-breaks. Energy management (particularly work-related and physical micro-break strategies) improved health and alleviated emotional exhaustion regardless of compulsiveness levels, whereas private micro-break strategies were only beneficial for employees high in compulsiveness. PMID:28123137
Hayes, Felicity; Mills, Gina; Jones, Laurence; Abbott, John; Ashmore, Mike; Barnes, Jeremy; Neil Cape, J; Coyle, Mhairi; Peacock, Simon; Rintoul, Naomi; Toet, Sylvia; Wedlich, Kerstin; Wyness, Kirsten
2016-02-01
In this study we have demonstrated that rising background ozone has the potential to reduce grassland forage quality and explored the implications for livestock production. We analysed pasture samples from seven ozone exposure experiments comprising mesotrophic, calcareous, haymeadow and sanddune unimproved grasslands conducted in open-top chambers, solardomes and a field release system. Across all grassland types, there were significant increases in acid detergent fibre, crude fibre and lignin content with increasing ozone concentration, resulting in decreased pasture quality in terms of the metabolisable energy content of the vegetation. We derived a dose-response function for metabolisable energy of the grassland with ozone concentration, applicable to a range of grassland types, and used this to predict effects on pasture quality of UK vegetation at 1 km resolution using modelled ozone data for 2007 and for predicted higher average ozone concentrations in 2020. This showed a potential total reduction in lamb production in the UK of approximately 4% in 2020 compared to 2007. The largest impacts were in geographical areas of modest ozone increases between the two years, but where large numbers of lambs were present. For an individual farmer working to a very small cost margin this could represent a large reduction in profit, both in regions where the impacts per lamb and those where the impacts per km(2) of grazing land are largest. In the short term farmers could adapt their lamb management in response to changed forage quality by additional supplementary feed of high metabolisable energy content. Nationally this increase in annual additional feed in 2020 compared to 2007 would be 2,166 tonnes (an increase of 0.7%). Of added concern are the longer-term consequences of continual deterioration of pasture quality and the implications for changes in farming practices to compensate for potential reductions in livestock production capacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Law, G Urquhart; Walsh, Jennifer; Queralt, Victoria; Nouwen, Arie
2013-04-01
To examine the association of adolescent and parent diabetes distress with perceived consequences, dietary self-efficacy, and discrepancies in diabetes family responsibility, in type 1 diabetes (T1D). 203 adolescents with T1D, aged 12-18, and their parents completed self-report questionnaires cross-sectionally. Higher HbA1c, greater perceived negative consequences of diabetes, and reduced self-efficacy predicted adolescent diabetes distress. Higher HbA1c predicted parental diabetes distress, as did diabetes family responsibility disagreements when both family members claimed responsibility, and parents' perception of reduced adolescent self-efficacy. Dietary self-efficacy and perceived negative consequences of diabetes are important factors to consider in assessing and managing adolescent diabetes distress. Perceptions of family responsibility for self-care tasks and parental confidence in adolescents' self-management have implications for parental diabetes distress. Clinical implications support long-held recommendations of taking a family-perspective of T1D care. Copyright © 2012 Elsevier Inc. All rights reserved.
Five potential consequences of climate change for invasive species.
Hellmann, Jessica J; Byers, James E; Bierwagen, Britta G; Dukes, Jeffrey S
2008-06-01
Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.
A comparison of municipal solid waste management in Berlin and Singapore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Dongqing, E-mail: dqzhang@ntu.edu.s; Keat, Tan Soon; Gersberg, Richard M.
2010-05-15
A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declinedmore » significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.« less
A comparison of municipal solid waste management in Berlin and Singapore.
Zhang, Dongqing; Keat, Tan Soon; Gersberg, Richard M
2010-05-01
A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
Is rangeland agriculture sustainable?
Heitschmidt, R K; Vermeire, L T; Grings, E E
2004-01-01
The objective of this paper is to examine the sustainability of rangeland agriculture (i.e., managed grazing) on a world-wide basis, with a focus on North America. Sustainability is addressed on three fronts: 1) ecological, 2) economic, and 3) social acceptance. Based on previous and on-going research, we suggest that employment of science-based rangeland grazing management strategies and tactics can ensure ecological sustainability. The formidable challenge in employing such technology centers around the need to balance efficiency of solar energy capture and subsequent harvest efficiencies across an array of highly spatially and temporally variable vegetation growing conditions using animals that graze selectively. Failure to meet this fundamental challenge often accelerates rangeland desertification processes, and in some instances, enhances rate and extent of the invasion of noxious weeds. We also suggest that the fundamental reason that ecologically sound grazing management technologies are often not employed in the management of grazed ecological systems is because social values drive management decisions more so than ecological science issues. This is true in both well-developed societies with substantial economic resources and in less-developed societies with few economic resources. However, the social issues driving management are often entirely different, ranging from multiple-use issues in developed countries to human day-to-day survival issues in poorly developed countries. We conclude that the long-term sustainability of rangeland agriculture in 1) developed societies depends on the ability of rangeland agriculturalists to continually respond in a dynamic, positive, proactive manner to ever-changing social values and 2) less-developed societies on their ability to address the ecological and social consequences arising from unsustainable human populations before the adoption of science-based sustainable rangeland management technologies.
CAD/CAM and scientific data management at Dassault
NASA Technical Reports Server (NTRS)
Bohn, P.
1984-01-01
The history of CAD/CAM and scientific data management at Dassault are presented. Emphasis is put on the targets of the now commercially available software CATIA. The links with scientific computations such as aerodynamics and structural analysis are presented. Comments are made on the principles followed within the company. The consequences of the approximative nature of scientific data are examined. Consequence of the new history function is mainly its protection against copy or alteration. Future plans at Dassault for scientific data appear to be in opposite directions compared to some general tendencies.
Uncertainty Analysis of Consequence Management (CM) Data Products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Brian D.; Eckert-Gallup, Aubrey Celia; Cochran, Lainy Dromgoole
The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.
A fuzzy model for assessing risk of occupational safety in the processing industry.
Tadic, Danijela; Djapan, Marko; Misita, Mirjana; Stefanovic, Miladin; Milanovic, Dragan D
2012-01-01
Managing occupational safety in any kind of industry, especially in processing, is very important and complex. This paper develops a new method for occupational risk assessment in the presence of uncertainties. Uncertain values of hazardous factors and consequence frequencies are described with linguistic expressions defined by a safety management team. They are modeled with fuzzy sets. Consequence severities depend on current hazardous factors, and their values are calculated with the proposed procedure. The proposed model is tested with real-life data from fruit processing firms in Central Serbia.
Tradeoffs for Renewable Energy Projects: Environmental, Planning, and Mission Considerations
2010-04-01
lands .” Land is leased for energy projects subject to payment of royalties on commercial sales , into a Navy fund re- served for energy projects. This...their water resources, and other uses on these lands and airspaces? How do we make informed deci- sions about the tradeoffs between renewable energy...to meet their energy needs by generating renewable energy on (and off) installation lands . At the same time, unintended consequences of these new
Raybould, Grace; Babatunde, Opeyemi; Evans, Amy L; Jordan, Joanne L; Paskins, Zoe
2018-05-08
This systematic review identified patients have unmet information needs about the nature of osteoporosis, medication, self-management and follow-up. Clinician knowledge and attitudes appear to be of key importance in determining whether these needs are met. Unmet information needs appear to have psychosocial consequences and result in poor treatment adherence. Patient education is an integral component of the management of osteoporosis, yet patients are dissatisfied with the information they receive and see this as an area of research priority. This study aimed to describe and summarise the specific expressed information needs of patients in previously published qualitative research. Using terms relating to osteoporosis, fragility fracture and information needs, seven databases were searched. Articles were screened using predefined inclusion and exclusion criteria. Full-text articles selected for inclusion underwent data extraction and quality appraisal. Findings were drawn together using narrative synthesis. The search identified 11,024 articles. Sixteen empirical studies were included in the review. Thematic analysis revealed three overarching themes relating to specific information needs, factors influencing whether information needs are met and the impact of unmet information needs. Specific information needs identified included the following: the nature of osteoporosis/fracture risk; medication; self-management and understanding the role of dual energy x-ray absorptiometry and follow-up. Perceived physician knowledge and attitudes, and the attitudes, beliefs and behaviours of patients were important factors in influencing whether information needs were met, in addition to contextual factors and the format of educational resources. Failure to elicit and address information needs appears to be associated with poor treatment adherence, deterioration of the doctor-patient relationship and important psychosocial consequences. This is the first study to describe the information needs of patients with osteoporosis and fracture, the impact of this information gap and possible solutions. Further research is needed to co-design and evaluate educational interventions with patients.
ERIC Educational Resources Information Center
BRI Systems, Inc., Phoenix, AZ.
This handbook offers a practical approach for pupil transportation energy management by suggesting ideas to save fuel in the purchasing, planning, routing, scheduling, driving, and maintenance areas of the pupil transportation operation. The handbook is divided into seven parts. Part 1 and 2 provide insight into energy management in pupil…
2008 Federal Energy Management Program (FEMP) Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremper, C.
2009-07-01
This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.
Topology Optimization for Energy Management in Underwater Sensor Networks
2015-02-01
1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
Energy management: total program considers all building's systems.
Blan, G J; Browne, K H
1978-09-16
Managing energy consumption, containing fuel usage, and preparing for alternate fuel sources are immediate areas for concern and action for all health care providers. The authors describe how they are meeting the challenge of increased energy costs and reduced availability while maintaining high-quality care by applying the concept of total energy management.
Beyond wilderness: Broadening the applicability of limits of acceptable change
Mark W. Brunson
1977-01-01
The Limits of Acceptable Change (LAC) process helps managers preserve wilderness attributes along with recreation opportunities. Ecosystem management likewise requires managers to balance societal and ecosystem needs. Both are more likely to succeed through collaborative planning. Consequently, LAC can offer a conceptual framework for achieving sustainable solutions...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... Management Plan/Environmental Impact Statement, Ross Lake National Recreation Area, North Cascades National... Impact Statement for the new General Management Plan (GMP) for Ross Lake National Recreation Area, part... Wilderness Act of 1988. The full range of foreseeable environmental consequences from implementing the...
Congruent Knowledge Management Behaviors as Discriminate Sources of Competitive Advantage
ERIC Educational Resources Information Center
Magnier-Watanabe, Remy; Senoo, Dai
2009-01-01
Purpose: While knowledge management has been shown to be a strategic source of competitive advantage, processes designed to enhance the productivity of knowledge do not, however, equally contribute to the organization's capabilities. Consequently, this research aims to focus on the relationship between each mode of the knowledge management process…
Broad-scale consequences of land management: Columbia basin example.
Richard W. Haynes; Thomas M. Quigley
2001-01-01
Integrating management actions to consistently achieve broad ecological and socioeconomic goals is a challenge largely unmet. The presumed or real conflict between these goals establishes a forum for debate. Broad measures are needed to describe tradeoffs, trends in conditions under varying management scenarios, and a transparent science underpinning. The Interior...
Nonlinear Optical Interactions in Semiconductors.
1985-12-10
Physique du Solide et Energie Solaire We had on-going interaction with Dr. Christian Verie on the growth of high quality narrow-gap semiconductor crystals...The band gap energy of the semiconductor decreases with increasing temperature. Consequently, the absorption of light in the energy region of the...gas and, more importantly, will modulate the electron energy at the difference frequency, wI - 02" Under ordinary circumstances such an energy (or
49 CFR 192.905 - How does an operator identify a high consequence area?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.905 How does an operator identify a high consequence area? (a...
40 CFR 1400.5 - Internet access to certain off-site consequence analysis data elements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK MANAGEMENT PROGRAMS... elements in the risk management plan database available on the Internet: (a) The concentration of the...
77 FR 13585 - Electricity Subsector Cybersecurity Risk Management Process Guideline
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... DEPARTMENT OF ENERGY Electricity Subsector Cybersecurity Risk Management Process Guideline AGENCY: Office of Electricity Delivery and Energy Reliability, Department of Energy. ACTION: Notice of public... Electricity Subsector Cybersecurity Risk Management Process guideline. The guideline describes a risk...
77 FR 30517 - Electricity Subsector Cybersecurity Risk Management Process
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF ENERGY Electricity Subsector Cybersecurity Risk Management Process AGENCY: Office of Electricity Delivery and Energy Reliability, Department of Energy. ACTION: Notice of publication. SUMMARY... Electricity Subsector Cybersecurity Risk Management Process guideline. The guideline describes a risk...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Scope. 436.1 Section 436.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS § 436.1 Scope. This part sets forth the rules for Federal energy management and planning programs to reduce Federal energy consumption and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Scope. 436.1 Section 436.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS § 436.1 Scope. This part sets forth the rules for Federal energy management and planning programs to reduce Federal energy consumption and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Scope. 436.1 Section 436.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS § 436.1 Scope. This part sets forth the rules for Federal energy management and planning programs to reduce Federal energy consumption and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Scope. 436.1 Section 436.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS § 436.1 Scope. This part sets forth the rules for Federal energy management and planning programs to reduce Federal energy consumption and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Scope. 436.1 Section 436.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS § 436.1 Scope. This part sets forth the rules for Federal energy management and planning programs to reduce Federal energy consumption and...
[How staff perceives head nurses' leadership: a qualitative study].
Morsiani, Giuliana; Bagnasco, Annamaria; Catania, Gianluca; Aleo, Giuseppe; Zanini, Milko; Sasso, Loredana
2017-01-01
The leadership style of the head nurses plays a crucial role in ensuring a work environment that fosters high quality nursing care. Their role involves a range of activities that constantly change, and is therefore difficult to describe. In fact, we do not have a fixed set of characteristics to define the 'ideal candidate'. To understand how staff defines the key leadership characteristics of the ideal head nurse in charge of a hospital ward. Between April-July 2015, 27 nurses were selected from the departments of general medicine in five hospitals. Three focus groups were conducted to identify the key leadership characteristics of an ideal head nurse. The ideal leadership characteristics are expressed through actions of staff empowerment, management skills, and use of coping strategies. All these categories require that a leader should be strongly determined, resourceful, enthusiastic, and willing to be a leader. When balancing 'what you give and receive', the main difficulty of being a leader is to be sufficiently determined to avoid exhaustion, which leads to emotional disengagement and consequently the loss of the leadership role. The level of determination of a head nurse, just like any source of energy, may sway. Therefore, it is important to recognize the signs of exhaustion and identify the strategy to rekindle determination. Sharing one's vision with others and job rotation could be used as strategies to recharge a leader's levels of energy, and meet the expectations linked to the leader's role. KEY WORDS: nurse manager, leadership style, determination, job rotation, vision.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What are the consequences of an employee not using the E-Gov Travel Service or the TMS? 301-73.105 Section 301-73.105 Public... What are the consequences of an employee not using the E-Gov Travel Service or the TMS? If an employee...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What are the consequences of an employee not using the E-Gov Travel Service or the TMS? 301-73.105 Section 301-73.105 Public... What are the consequences of an employee not using the E-Gov Travel Service or the TMS? If an employee...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false What are the consequences of an employee not using the E-Gov Travel Service or the TMS? 301-73.105 Section 301-73.105 Public... What are the consequences of an employee not using the E-Gov Travel Service or the TMS? If an employee...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the consequences of an employee not using the E-Gov Travel Service or the TMS? 301-73.105 Section 301-73.105 Public... What are the consequences of an employee not using the E-Gov Travel Service or the TMS? If an employee...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What are the consequences of an employee not using the E-Gov Travel Service or the TMS? 301-73.105 Section 301-73.105 Public... What are the consequences of an employee not using the E-Gov Travel Service or the TMS? If an employee...
Promoting energy conservation: An analysis of behavioral research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzev, R.D.; Johnson, T.R.
1987-01-01
This book reviews and analyzes the past ten years of research on changing the energy-related behavior of individuals. It reviews the results of about 200 studies and presents them in a form usable by program designers, researchers, and auditors in the field. The book discusses the effectiveness of ways to change people's behavior to save more energy, e.g., to get them to recycle, carpool, or turn down the thermostat. The book analyzes three ways to motivate people to change their behavior: antecedent communications, consequences, and social influences. Antecedent communications are sent to people before they make energy conservation decisions, andmore » include information, prompts, and persuasion. Techniques that change the consequences of acting in a certain way include feedback, incentives, and disincentives. Social influence techniques include group contingencies (rewards predicated on the behavior of a group of people, rather than one individual), demonstrations of ways to conserve energy, and solicitations of individual commitments to conserve. Katzev and Johnson derive lessons from the research on each type of technique.« less
O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.
2004-07-31
This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.
An Advanced IoT-based System for Intelligent Energy Management in Buildings.
Marinakis, Vangelis; Doukas, Haris
2018-02-16
The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.
An Advanced IoT-based System for Intelligent Energy Management in Buildings
Doukas, Haris
2018-01-01
The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957
10 CFR 436.2 - General objectives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS § 436.2 General objectives. The objectives of Federal energy management and planning programs are: (a) To apply energy... use of energy in all agency operations through general operations plans. [55 FR 48220, Nov. 20, 1990...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Viraj; Makhmalbaf, Atefe; Parker, Graham B.
The research reported is part of a collaborative with Honeywell, Inc. to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewable energy and storage technology, and change homeowner behavior to manage and consume less energy. The objective of the collaborative is to create a Context-Aware Smart Home Energy Manager (CASHEM) that dynamically schedules major home appliances according to conditions and homeowner convenience of service (CoS) preferences, monitors and analyzes energy consumption of appliances, recommends further energy saving actions, and engages/motivates the homeowner to adopt those recommendations.
Revised theory of tachyons in general relativity
NASA Astrophysics Data System (ADS)
Schwartz, Charles
2017-08-01
A minus sign is inserted, for good reason, into the formula for the energy-momentum tensor for tachyons. This leads to remarkable theoretical consequences and a plausible explanation for the phenomenon called dark energy in the cosmos.
Projecting Forest Policy and Management Effects across Ownerships in Coastal Oregon
Thomas A. Spies; K. Norman Johnson
2007-01-01
Two of the most fundamental questions in forest ecosystem management are: (1) What are the consequences of different forest management practices? and (2) How do they vary with spatial and temporal scale? The forest management controversies of the 1990s in the Pacific Northwest revolved around these questions and led to major new forest polices in the region for federal...
10 CFR 719.12 - What information must be included in the Legal Management Plan?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false What information must be included in the Legal Management Plan? 719.12 Section 719.12 Energy DEPARTMENT OF ENERGY CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS Legal Management Plan, Staffing and Resource Plan and Annual Legal Budget § 719.12 What information must be...
Energy management and cooperation in microgrids
NASA Astrophysics Data System (ADS)
Rahbar, Katayoun
Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management, which are of low complexity and work given arbitrary realizations of renewable energy generation/load demand. On the other hand, for self-interested microgrids, the partially cooperative energy management is formulated and a distributed algorithm is proposed to optimize the energy cooperation such that energy costs of individual microgrids reduce simultaneously over the case without energy cooperation while limited information is shared among the microgrids and the central controller.
Managed care. Shifts health care from an altruistic model to a business framework.
Kersbergen, A L
2000-01-01
The term managed care, as used throughout the scientific and lay literature, has become a generic label without a clear, universally accepted definition. The many definitions and descriptions of managed care are usually directly related to the model under discussion. Nevertheless, as nurse educators attempt to align curricula with the evolving health care environment, it is imperative that students gain an understanding of the concept of managed care and the skills needed to practice in the managed care environment. Schools of nursing must prepare students to deal with the consequences of managed care, namely, the changing base of power, conflicts, and ethical dilemmas across settings. The drive to control health care costs in the 1990s brought about unprecedented change for nurses. Regardless of the strategies implemented in the name of managing care, the evolving health care environment has changed where and how nurses practice. To aid faculty in the revision of the nursing curriculum, an attempt was made to arrive at an empirically based definition of managed care that will provide a conceptual foundation for future research and theoretical discussions. Other goals were to identify consequences of managed care across disciplines and models implemented in the name of managing care, and to identify skills needed by nurses today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina
Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system.more » One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.« less
de Bock, Martin; Lobley, Kristine; Anderson, Donald; Davis, Elizabeth; Donaghue, Kim; Pappas, Marcelle; Siafarikas, Aris; Cho, Yoon Hi; Jones, Timothy; Smart, Carmel
2018-02-01
Low carbohydrate diets for the management of type 1 diabetes have been popularised by social media. The promotion of a low carbohydrate diet in lay media is in contrast to published pediatric diabetes guidelines that endorse a balanced diet from a variety of foods for optimal growth and development in children with type 1 diabetes. This can be a source of conflict in clinical practice. We describe a series of 6 cases where adoption of a low carbohydrate diet in children impacted growth and cardiovascular risk factors with potential long-term sequelae. These cases support current clinical guidelines for children with diabetes that promote a diet where total energy intake is derived from balanced macronutrient sources. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shivering in acutely ill vulnerable populations.
Holtzclaw, Barbara J
2004-01-01
The hazards of thermoregulatory shivering in the critically ill are often overlooked by caregivers. Shivering may accompany heat loss from bathing, dressing, transport, and many therapeutic activities. Febrile shivering is common during chills of fever, blood product transfusions, administration of antigenic drugs, and chemotherapy. Many patients are at risk for shivering and its negative consequences that increase oxygen expenditure and cardiorespiratory effort. Learning how underlying thermoregulatory mechanisms are involved in shivering clarifies how temperature gradients and environmental stimuli induce the shivering response. Knowledge of the anatomical progression of shivering equips the nurse to recognize or prevent this energy-consuming response. This article discusses measures to prevent shivering as well as evidence-based interventions to manage shivering during fever, aggressive cooling, and postoperative recovery. Detailed information is presented on assessment and documentation of the extent and severity of shivering.
ERIC Educational Resources Information Center
Brewe, Eric
2011-01-01
Utilizing an energy-as-substance conceptual metaphor as a central feature of the introductory physics curriculum affords students a wealth of conceptual resources for reasoning about energy conservation, storage, and transfer. This paper first establishes the utility and function of a conceptual metaphor in developing student understanding of…
Consequences of the cultivation of energy crops for the global nitrogen cycle.
Bouwman, A F; Van Grinsven, J J M; Eickhout, B
2010-01-01
In this paper, we assess the global consequences of implementing first- and second-generation bioenergy in the coming five decades, focusing on the nitrogen cycle. We use a climate mitigation scenario from the Organization for Economic Cooperation and Development's (OECD) Environmental Outlook, in which a carbon tax is introduced to stimulate production of biofuels from energy crops. In this scenario, the area of energy crops will increase from 8 Mha in the year 2000 to 270 Mha (14% of total cropland) and producing 5.6 Pg dry matter per year (12% of energy use) in 2050. This production requires an additional annual 19 Tg of N fertilizer in 2050 (15% of total), and this causes a global emission of 0.7 Tg of N2O-N (8% of agricultural emissions), 0.2 Tg NO-N (6%), and 2.2 Tg of NH3-N (5%). In addition, we project that 2.6 Tg of NO3(-)-N will leach from fields under energy crops. The emissions of N2O may be an important term in the greenhouse gas balance of biofuels produced from energy crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Document outlines the Federal Energy Management Program's standard procedures and guidelines for measurement and verification (M&V) for federal energy managers, procurement officials, and energy service providers.
Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei
2018-09-15
Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.
Water loss control using pressure management: life-cycle energy and air emission effects.
Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard
2013-10-01
Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.
Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.
Ziska, Lewis H; McConnell, Laura L
2016-01-13
Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.
Alcohol Use Disorders in Pregnancy
DeVido, Jeffrey; Bogunovic, Olivera; Weiss, Roger D.
2015-01-01
Alcohol use disorders (AUD) during pregnancy are less prevalent than in non-pregnant women, but they can create a host of clinical challenges when encountered. Unfortunately, there is little research information available to guide clinical decision-making in this population. Drinking alcohol during pregnancy can have negative consequences on both fetus and mother, but there is controversy regarding the volume of alcohol consumption that correlates with these consequences. There is little evidence to support the use of pharmacologic interventions for AUD during pregnancy. Similarly, there are few data to guide management of alcohol detoxification in pregnant women, and the use of benzodiazepines (the mainstay of most alcohol detoxification protocols) in pregnant women is controversial. Despite a lack of robust data to guide management of AUDs in pregnancy, clinicians must nonetheless make management decisions when confronted with these challenging situations. Therefore, this paper reviews the epidemiology of AUDs in pregnancy, and the pharmacologic management of both AUDs and alcohol withdrawal in pregnant women, to better inform clinicians about what is known about managing these co-occurring conditions. PMID:25747924
The Social Consequences of Disability: An Experiential Approach.
ERIC Educational Resources Information Center
Brooks, Nancy A.
1980-01-01
Reports on the application of experiential learning to a college level sociology course on the social consequences of disability. The course involves traditional methods such as reading/lecture/examination and more innovative approaches such as experiential learning and directing students to manage their own learning processes. (Author/DB)
Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits and consequences. The San Pedro River in Arizona and Sonora, Mexico is an area that has undergone rapid changes in ...
40 CFR 1400.3 - Public access to paper copies of off-site consequence analysis information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Public access to paper copies of off-site consequence analysis information. 1400.3 Section 1400.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK MANAGEMENT...
ERIC Educational Resources Information Center
Dudik, C. E. Jane
2017-01-01
Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…
NASA Technical Reports Server (NTRS)
Valek, Susan E.
2008-01-01
Energy efficiency isn't just a good idea; it's a necessity, both for cost reasons and to meet federal regulatory requirements. First, rising energy unit costs continue to erode NASA's mission budget. NASA spent roughly $156M on facility energy in FY 2007. Although that represents less than one per cent of NASA's overall annual budget, the upward trend in energy costs concerns the agency. While NASA reduced consumption 13%, energy unit costs have risen 63%. Energy cost increases counteract the effects of energy conservation, which results in NASA buying less yet spending more. The second factor is federal energy legislation. The National Energy Conservation Policy Act, as amended by the Energy Policy Act of 2005, Executive Order (EO) 13423 (January, 2007), and the Energy Independence and Security Act (December, 2007), mandates energy/water conservation goals for all federal agencies, including NASA. There are also reporting requirements associated with this legislation. The Energy/Water Management Task was created to support NASA Headquarters Environmental Management Division (HO EMD) in meeting these requirements. With assistance from TEERM, HQ EMD compiled and submitted the NASA Annual Report to the Department of Energy FY 2007. The report contains information on how NASA is meeting federally mandated energy and water management goals. TEERM monitored input for timeliness, errors, and conformity to the new energy/water reporting guidelines and helped compile the information into the final report. TEERM also assists NASA Energy/Water Management with proposal and award calls, updates to the energy/water management database, and facilitating communication within the energy/water management community. TEERM is also supporting NASA and the Interagency Working Group (IWG) on Hydrogen and Fuel Cells. Established shortly after the President announced the Hydrogen Fuel Initiative in 2003, this IWG serves as the mechanism for collaboration among the Federal agencies involved in hydrogen-related research, development, and demonstration. TEERM developed a matrix showing all Hydrogen and Fuel Cell activities from the various NASA centers to be included in the Group's extensive hydrogen research taxonomy of past, present, and future hydrogen activities of the Federal government.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.
Chinese hotel general managers' perspectives on energy-saving practices
NASA Astrophysics Data System (ADS)
Zhu, Yidan
As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.
Antecedents, consequences and interventions for workplace bullying.
Kemp, Vivien
2014-09-01
The issue of workplace bullying has become an area of research interest in the last 3 decades. Much of the extant literature is published in the business management journals. This is problematic as the targets of workplace bullying may need psychiatric treatment; as a discipline, therefore psychiatrists may benefit from a deeper understanding of the nature of workplace bullying and its sequelae. There is still no agreed upon definition, although most definitions include similar criteria. Managers and human resources personnel frequently have difficulty identifying and effectively managing workplace bullying. The consequences for the targets of bullying can be severe; they may need psychiatric treatment and it can have a lifelong impact. There is a paucity of research into effective prevention and intervention programs. Preventive measures that focus on the whole workplace culture or on targets alone have mixed results. Workplace policies and procedures may lessen the prevalence and incidence of bullying, but often competing interests of senior management, human resources personnel, supervisors and workers may mitigate any antibullying interventions. Although psychiatrists are likely to treat the targets of bullying, bullying has yet to attract much attention as a research topic in psychiatry. Although the consequences of bullying can be severe for both targets and workplaces, prevention strategies are hampered by competing interests.
Turkish Influence in the South Caucasus and Levant: The Consequences for NATO and the EU
2013-09-01
and Contemporary Context: “Frozen Conflicts” And Caspian Energy ..........................................................................22 2...by the waning fortunes of the western allies in their variety and complexity. Washington is shifting strategic resources and political energy to the...East energy .2 In both NATO and EU strategic documents energy is defined as an important element in European security. NATO’s Strategic Concept 2010
Cosmic ray propagation in the local superbubble
NASA Technical Reports Server (NTRS)
Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.
1984-01-01
It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.
Mangione, Antonio M; Dearing, M Denise; Karasov, William H
2004-07-01
Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.
NREL Leads Energy Systems Integration - Continuum Magazine | NREL
performance data to manage and optimize campus energy use. Integrated Solutions for a Complex Energy World 03 Integrated Solutions for a Complex Energy World Energy systems integration optimizes the design and efficient data centers in the world. Sustainability through Dynamic Energy Management Sustainability through
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, R.E.
In large facilities, successful energy management cannot be measured by a few projects, no matter how significant the energy savings. Large facilities today are comprised of extensive energy consuming systems. For every energy project developed, two more projects remain to be discovered. The successful energy manager is one who has completed ten projects, or twenty, or thirty, and is still finding more projects to do. Nothing is assumed to be as efficient as possible, and no part of any system is ignored. The successful energy manager is willing to take risks, not of being fired, but to use imagination, studymore » engineering theory, exercise common sense, develop concept designs, calculate savings, sell projects to management, control designers, study equipment performance, pre-select contractors, manage the contractor efforts, solve inherent problems along the way, and then optimize the project after acceptance when the designers and contractors all walk off. Once the successful energy manager establishes his credibility, his problem becomes finding enough time to get the projects rolling as he dreams them up. He sees what others do not. As they say in the North, only the lead dog sees new scenery.« less
Energy Consumption Management of Virtual Cloud Computing Platform
NASA Astrophysics Data System (ADS)
Li, Lin
2017-11-01
For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.
ERIC Educational Resources Information Center
Michigan State Dept. of Commerce, Lansing.
Presented are proceedings and supplementary reports of the Midwest School Transportation Fleet Management Seminar, which was held in Lansing, Michigan, November 28-29, 1979. Among the school bus energy management topics discussed are energy feasibility studies, the use of programmed information systems, energy conservation strategies, and…
NASA Technical Reports Server (NTRS)
Little, Terry
2002-01-01
Managers need to develop credibility, and need to base it upon new managerial accomplishments rather than previous ones. New and exciting jobs in management are challenging, but can lead to personal growth. Personnel who are afraid of potential negative consequences resulting from administrative changes are a hindrance to projects. An approval-seeking management style almost always fails.
D.R. Thysell; A.B. Carey
2001-01-01
Managing second-growth forests to conserve biodiversity has been proposed by both foresters and conservation biologists. Management, however, can have unintended consequences, including reduction in native species diversity and increased invasion by exotic species. Our goal was to determine if inducing heterogeneity in managed forest canopies could promote a diversity...
Ecological consequences of the MPB epidemic for habitats and populations of wildlife [Chapter 5
Beth Hahn; Vicki Saab; Barbara Bentz; Rachel Loehman; Bob Keane
2014-01-01
Wildlife biologists must balance a diverse array of ecological and social considerations in managing species and habitats. The challenges of managing species and habitats in dynamic landscapes are influenced by diverse factors, including natural disturbances, vegetation development, and anthropogenic-mediated changes, such as climate change, management activities, and...
Simulating the Effects of Alternative Forest Management Strategies on Landscape Structure
Eric J. Gustafson; Thomas Crow
1996-01-01
Quantitative, spatial tools are needed to assess the long-term spatial consequences of alternative management strategies for land use planning and resource management. We constructed a timber harvest allocation model (HARVEST) that provides a visual and quantitative means to predict the spatial pattern of forest openings produced by alternative harvest strategies....
Career Self-Management: Its Nature, Causes and Consequences
ERIC Educational Resources Information Center
King, Zella
2004-01-01
In a recent special issue [Journal of Vocational Behavior 59 (2001) 284], scholars noted that the field of vocational psychology needs a better understanding of career self-management. This article proposes a conceptual framework of career self-management, based on Crites' [Vocational Psychology, McGraw-Hill, New York, 1969] model of vocational…
The Manager of Academic Outreach: A Role of Consequence to University Survival and Growth
ERIC Educational Resources Information Center
Miller, Lawrence R.
1977-01-01
University managers of academic outreach need outstanding skills in communication, persuasion, and negotiation to win and maintain active faculty/administrator support for outreach activities. Failure to generate such support will make it impossible for outreach managers to deliver on the promise of the outreach concept. (Editor/LBH)
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are violations of... Contracts and Property Management Federal Property Management Regulations System (Continued) GENERAL... DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Violations of this Part and Consequences § 105-74.500 How...
ERIC Educational Resources Information Center
Cooper, Justin T.; Gage, Nicholas A.; Alter, Peter J.; LaPolla, Stefanie; MacSuga-Gage, Ashley S.; Scott, Terrance M.
2018-01-01
A survey study of 248 educators in four states was conducted to identify respondents' formal training, use, and perceived effectiveness of 37 evidence-based classroom management practices within four general categories: (a) antecedent-based, (b) instructionally based, (c) consequence-based, and (d) self-management. Results indicated that, on…
Organizational learning contributes to guidance for managing wildland fires for multiple objectives
Tom Zimmerman; Tim Sexton
2010-01-01
Since the inception of organized fire suppression in the early 1900s, wildland fire management has dramatically evolved in operational complexity; ecological significance; social, economic, and political magnitude; areas and timing of application; and recognition of potentially serious consequences. Throughout the past 100 years, fire management has matured from a...
Space Matters: Experiences of Managing Static Formal Learning Spaces
ERIC Educational Resources Information Center
Montgomery, Tim
2008-01-01
Managing the space in which learning takes place is subject to ongoing debate. Spatial management and movement can impact upon the construction of meaning within education and upon the dynamic of learning. It is suggested that there are now different learning goals and expectations and consequently a need for different learning environments. We…
The Importance of Training in Operationalising HR Policy
ERIC Educational Resources Information Center
Bond, Sue; McCracken, Martin
2005-01-01
Purpose: To understand how line managers make decisions about employee requests for time off at short notice and to consider the consequences for management training. Design/methodology/approach: Based on evidence from case studies carried out in four financial sector companies in Scotland, this paper illustrates a model of line manager decision…
Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, J.; Hallett, K.; DeWolfe, J.
2012-01-01
Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less
41 CFR 102-74.160 - What actions must Federal agencies take to promote energy conservation?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.160 What... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What actions must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What information are...