Sample records for energy constrained resource

  1. Dynamic Resource Management for Parallel Tasks in an Oversubscribed Energy-Constrained Heterogeneous Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Koenig, Gregory A; Machovec, Dylan

    2016-01-01

    Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e.,more » Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.« less

  2. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  3. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    PubMed

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  4. Resource Management in Constrained Dynamic Situations

    NASA Astrophysics Data System (ADS)

    Seok, Jinwoo

    Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments

  5. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng

    2015-01-01

    Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264

  6. Building cancer nursing skills in a resource-constrained government hospital.

    PubMed

    Strother, R M; Fitch, Margaret; Kamau, Peter; Beattie, Kathy; Boudreau, Angela; Busakhalla, N; Loehrer, P J

    2012-09-01

    Cancer is a rising cause of morbidity and mortality in resource-constrained settings. Few places in the developing world have cancer care experts and infrastructure for caring for cancer patients; therefore, it is imperative to develop this infrastructure and expertise. A critical component of cancer care, rarely addressed in the published literature, is cancer nursing. This report describes an effort to develop cancer nursing subspecialty knowledge and skills in support of a growing resource-constrained comprehensive cancer care program in Western Kenya. This report highlights the context of cancer care delivery in a resource-constrained setting, and describes one targeted intervention to further develop the skill set and knowledge of cancer care providers, as part of collaboration between developed world academic institutions and a medical school and governmental hospital in Western Kenya. Based on observations of current practice, practice setting, and resource limitations, a pragmatic curriculum for cancer care nursing was developed and implemented.

  7. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  8. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollum, David; Bauer, Nico; Calvin, Katherine V.

    Fossil resource endowments and the future development of fossil fuel prices are important factors that will critically influence the nature and direction of the global energy system. In this paper we analyze a multi-model ensemble of long-term energy and emissions scenarios that were developed within the framework of the EMF27 integrated assessment model inter-comparison exercise. The diverse nature of these models highlights large uncertainties in the likely development of fossil resource (coal, oil, and natural gas) consumption, trade, and prices over the course of the twenty-first century and under different climate policy frameworks. We explore and explain some of themore » differences across scenarios and models and compare the scenario results with fossil resource estimates from the literature. A robust finding across the suite of IAMs is that the cumulative fossil fuel consumption foreseen by the models is well within the bounds of estimated recoverable reserves and resources. Hence, fossil resource constraints are, in and of themselves, unlikely to limit future GHG emissions. Our analysis also shows that climate mitigation policies could lead to a major reallocation of financial flows between regions, in terms of expenditures on fossil fuels and carbon, and can help to alleviate near-term energy security concerns via the reductions in oil imports and increases in energy system diversity they will help to motivate.« less

  9. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  10. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.

    PubMed

    He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-04-17

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  11. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices

    PubMed Central

    Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-01-01

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices. PMID:29673171

  12. Giant fibrosarcoma prostuberans of abodominal wall: management problems in resources-constrained country.

    PubMed

    Chukwuanukwu, T O G; Anyanwu, S N C

    2009-09-01

    Abdominal wall sarcomas represent less than 1% of adult malignancies. Dermatofibrosarcoma protuberans can grow to very large sizes and the recommended resection 2-3 cm from the macroscopic tumour margin can produce very large full thickness defects of the abdominal wall. Reconstruction of such defects can be quite challenging in resource constrained areas where patients present late with giant lesions. To highlight the presentation and management challenges faced by the surgical oncologist and reconstructive surgeon in a resource constrained country when faced with giant Dermatofibrosarcoma protuberans of the abdominal wall. Prospective study of patients with abdominal wall soft tissue sarcoma presenting to the authors. Cases of giant dermatofibrosarcoma protuberns who underwent surgery were analysed. Seven cases managed over an eight year period (January 2000 to December 2007). Age ranged from 27-70 yrs with slight female preponderance 1.5:1 F:M. Three presented with recurrent fungating masses. Only one could be reconstructed with prolene mesh. One recurrence was noted during the period under study. Poverty, ignorance and lack of necessary working tools are major challenges faced by the surgical oncologist and reconstructive surgeon in resource constrained areas and pose a major obstacle to the control of cancer in these areas.

  13. Resource Constrained Planning of Multiple Projects with Separable Activities

    NASA Astrophysics Data System (ADS)

    Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya

    In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.

  14. Remote gaming on resource-constrained devices

    NASA Astrophysics Data System (ADS)

    Reza, Waazim; Kalva, Hari; Kaufman, Richard

    2010-08-01

    Games have become important applications on mobile devices. A mobile gaming approach known as remote gaming is being developed to support games on low cost mobile devices. In the remote gaming approach, the responsibility of rendering a game and advancing the game play is put on remote servers instead of the resource constrained mobile devices. The games rendered on the servers are encoded as video and streamed to mobile devices. Mobile devices gather user input and stream the commands back to the servers to advance game play. With this solution, mobile devices with video playback and network connectivity can become game consoles. In this paper we present the design and development of such a system and evaluate the performance and design considerations to maximize the end user gaming experience.

  15. Implementing interprofessional education and practice: Lessons from a resource-constrained university.

    PubMed

    Frantz, J M; Rhoda, A J

    2017-03-01

    Interprofessional education is seen as a vehicle to facilitate collaborative practice and, therefore, address the complex health needs of populations. A number of concerns have, however, been raised with the implementation of interprofessional education. The three core concerns raised in the literature and addressed in the article include the lack of an explicit framework, challenges operationalising interprofessional education and practice, and the lack of critical mass in terms of human resources to drive activities related to interprofessional education and practice. This article aims to present lessons learnt when attempting to overcome the main challenges and implementing interprofessional education activities in a resource-constrained higher education setting in South Africa. Boyer's model of scholarship, which incorporates research, teaching integration, and application, was used to address the challenge of a lack of a framework in which to conceptualise the activities of interprofressional education. In addition, a scaffolding approach to teaching activities within a curriculum was used to operationalise interprofessional education and practice. Faculty development initiatives were additionally used to develop a critical mass that focused on driving interprofessional education. Lessons learnt highlighted that if a conceptual model is agreed upon by all, it allows for a more focused approach, and both human and financial resources may be channelled towards a common goal which may assist resource-constrained institutions in successfully implementing interprofessional activities.

  16. Context- and Template-Based Compression for Efficient Management of Data Models in Resource-Constrained Systems.

    PubMed

    Macho, Jorge Berzosa; Montón, Luis Gardeazabal; Rodriguez, Roberto Cortiñas

    2017-08-01

    The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices.

  17. Context- and Template-Based Compression for Efficient Management of Data Models in Resource-Constrained Systems

    PubMed Central

    Montón, Luis Gardeazabal

    2017-01-01

    The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices. PMID:28763013

  18. Infertility in resource-constrained settings: moving towards amelioration.

    PubMed

    Hammarberg, Karin; Kirkman, Maggie

    2013-02-01

    It is often presumed that infertility is not a problem in resource-poor areas where fertility rates are high. This is challenged by consistent evidence that the consequences of childlessness are very severe in low-income countries, particularly for women. In these settings, childless women are frequently stigmatized, isolated, ostracized, disinherited and neglected by the family and local community. This may result in physical and psychological abuse, polygamy and even suicide. Attitudes among people in high-income countries towards provision of infertility care in low-income countries have mostly been either dismissive or indifferent as it is argued that scarce healthcare resources should be directed towards reducing fertility and restricting population growth. However, recognition of the plight of infertile couples in low-income settings is growing. One of the United Nation's Millennium Development Goals was for universal access to reproductive health care by 2015, and WHO has recommended that infertility be considered a global health problem and stated the need for adaptation of assisted reproductive technology in low-resource countries. This paper challenges the construct that infertility is not a serious problem in resource-constrained settings and argues that there is a need for infertility care, including affordable assisted reproduction treatment, in these settings. It is often presumed that infertility is not a problem in densely populated, resource-poor areas where fertility rates are high. This presumption is challenged by consistent evidence that the consequences of childlessness are very severe in low-income countries, particularly for women. In these settings, childless women are frequently stigmatized, isolated, ostracized, disinherited and neglected by the family and local community. This may result in physical and psychological abuse, polygamy and even suicide. Because many families in low-income countries depend on children for economic survival

  19. Support for Resource Constrained Microcontroller Programming by a Broad Developer Community

    ERIC Educational Resources Information Center

    Amar, Amichi

    2010-01-01

    Resource constrained microcontrollers with as little as several hundred bytes of RAM and a few dozen megahertz of processing power are the most prevalent computing devices on earth. Microcontrollers and the many application components that interface to them, such as sensors, actuators, transceivers and displays are now cheap and readily available.…

  20. Energy and other resource conservation within urbanizing areas

    NASA Astrophysics Data System (ADS)

    Rowe, Peter G.

    1982-05-01

    The reported research seeks to answer several questions regarding energy conservation within urbanizing areas. As a practical matter, to what extent can dependence upon exhaustible resources be reduced? Can these reductions be achieved without severely impairing social well-being and environmental quality? And, what seem to be the prevailing institutional constraints limiting energy conservation within urbanizing areas? The study area was the proposed “downtown” of The Woodlands, a new town north of Houston, Texas. Two plans were developed for this area. In one, no particular attempt was made to conserve energy (conventional plan), while in the other, energy conservation was a primary consideration (conservation plan). For both plans, estimates were made of energy consumption within buildings, in the transportation sector, and in the actual production of building materials themselves (embodied energy). In addition, economic and environmental analyses were performed, including investigation of other resource issues such as water supply, solid waste disposal, stormwater management, and atmospheric emissions. Alternative on-site power systems were also investigated. Within the bounds of economic feasibility and development practicality, it was found that application of energy-conserving methods could yield annual energy savings of as much as 23%, and reduce dependence on prime fuels by 30%. Adverse economic effects on consumers were found to be minimal and environmental quality could be sustained. The major institutional constraints appeared to be those associated with traditional property ownership and with the use of common property resources. The resistance to change of everyday practices in land development and building industries also seemed to constrain potential applications.

  1. World energy resources

    NASA Astrophysics Data System (ADS)

    Clerici, A.; Alimonti, G.

    2015-08-01

    As energy is the main "fuel" for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC) has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER) 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  2. Study participants incentives, compensation and reimbursement in resource-constrained settings.

    PubMed

    Mduluza, Takafira; Midzi, Nicholas; Duruza, Donold; Ndebele, Paul

    2013-01-01

    Controversies still exists within the research fraternity on the form and level of incentives, compensation and reimbursement to study participants in resource-constrained settings. While most research activities contribute significantly to advancement of mankind, little has been considered in rewarding directly the research participants from resource-constrained areas. A study was conducted in Zimbabwe to investigate views and expectations of various stakeholders on study participation incentives, compensation and reimbursement issues. Data was collected using various methods including a survey of about 1,008 parents/guardians of school children participating in various immunological cohort studies and parasitology surveys. Community advisory boards (CABs) at 9 of the sites were also consulted. Further, information was gathered during discussions held at a basic research ethics training workshop. The workshop had 45 participants that including 40 seasoned Zimbabwean researchers and 5 international research collaborators. About 90% (907) of the study participants and guardians expected compensation of reasonable value, in view of the researchers' value and comparison to other sites regardless of economic status of the community. During discussion with researchers at a basic ethics training workshop, about 80% (32) believed that decisions on level of compensation should be determined by the local research ethics committees. While, the few international research collaborators were of the opinion that compensation should be in accordance with local guidelines, and incentives should be in line with funding. Both the CAB members and study participants expressed that there should be a clear distinction between study incentive and compensation accorded to individual and community expectations on benefits from studies. However, CABs expressed that their suggestions on incentives and compensation are often moderated by the regulatory authorities who cite fear of unknown

  3. Identifying productive resources in secondary school students' discourse about energy

    NASA Astrophysics Data System (ADS)

    Harrer, Benedikt

    A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school students' ideas about energy for progenitors of disciplinary knowledge and practice. Previously, researchers argued that students' ideas about energy were constrained by stable and coherent conceptual structures that conflicted with an assumed unified scientific conception and therefore needed to be replaced. These researchers did not attend to the productive elements in students' ideas about energy. To analyze the disciplinary substance in students' ideas, a theoretical perspective was developed that extends Hammer and colleagues' resources framework. This elaboration allows for the identification of disciplinary productive resources---i.e., appropriately activated declarative and procedural pieces of knowledge---in individual students' utterances as well as in the interactions of multiple learners engaged in group learning activities. Using this framework, original interview transcripts from one of the most influential studies of students' ideas about energy (Watts, 1983. Some alternative views of energy. Physics Education, 18/5, 213-217) were analyzed. Disciplinary productive resources regarding the ontology of energy, indicators for energy, and mechanistic reasoning about energy were found to be activated by interviewed students. These valuable aspects were not recognized by the original author. An interpretive analysis of video recorded student-centered discourse in rural Maine middle schools was carried out to find cases of resource activation in classroom discussions. Several cases of disciplinary productive resources regarding the nature of energy and its forms as well as the construction of a mechanistic energy story

  4. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  5. A chance-constrained programming model to allocate wildfire initial attack resources for a fire season

    Treesearch

    Yu Wei; Michael Bevers; Erin Belval; Benjamin Bird

    2015-01-01

    This research developed a chance-constrained two-stage stochastic programming model to support wildfire initial attack resource acquisition and location on a planning unit for a fire season. Fire growth constraints account for the interaction between fire perimeter growth and construction to prevent overestimation of resource requirements. We used this model to examine...

  6. Western Energy Corridor -- Energy Resource Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure,more » including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.« less

  7. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  8. Characteristics and critical success factors for implementing problem-based learning in a human resource-constrained country.

    PubMed

    Giva, Karen R N; Duma, Sinegugu E

    2015-08-31

    Problem-based learning (PBL) was introduced in Malawi in 2002 in order to improve the nursing education system and respond to the acute nursing human resources shortage. However, its implementation has been very slow throughout the country. The objectives of the study were to explore and describe the goals that were identified by the college to facilitate the implementation of PBL, the resources of the organisation that facilitated the implementation of PBL, the factors related to sources of students that facilitated the implementation of PBL, and the influence of the external system of the organisation on facilitating the implementation of PBL, and to identify critical success factors that could guide the implementation of PBL in nursing education in Malawi. This is an ethnographic, exploratory and descriptive qualitative case study. Purposive sampling was employed to select the nursing college, participants and documents for review.Three data collection methods, including semi-structured interviews, participant observation and document reviews, were used to collect data. The four steps of thematic analysis were used to analyse data from all three sources. Four themes and related subthemes emerged from the triangulated data sources. The first three themes and their subthemes are related to the characteristics related to successful implementation of PBL in a human resource-constrained nursing college, whilst the last theme is related to critical success factors that contribute to successful implementation of PBL in a human resource-constrained country like Malawi. This article shows that implementation of PBL is possible in a human resource-constrained country if there is political commitment and support.

  9. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bebic, Jovan; Hinkle, Gene; Matic, Slobodan

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO 2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage andmore » adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.« less

  10. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  11. Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation

    PubMed Central

    Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal

    2017-01-01

    This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods. PMID:28425946

  12. Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation.

    PubMed

    Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal

    2017-04-20

    This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods.

  13. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Intelligent Sampling of Hazardous Particle Populations in Resource-Constrained Environments

    NASA Astrophysics Data System (ADS)

    McCollough, J. P.; Quinn, J. M.; Starks, M. J.; Johnston, W. R.

    2017-10-01

    Sampling of anomaly-causing space environment drivers is necessary for both real-time operations and satellite design efforts, and optimizing measurement sampling helps minimize resource demands. Relating these measurements to spacecraft anomalies requires the ability to resolve spatial and temporal variability in the energetic charged particle hazard of interest. Here we describe a method for sampling particle fluxes informed by magnetospheric phenomenology so that, along a given trajectory, the variations from both temporal dynamics and spatial structure are adequately captured while minimizing oversampling. We describe the coordinates, sampling method, and specific regions and parameters employed. We compare resulting sampling cadences with data from spacecraft spanning the regions of interest during a geomagnetically active period, showing that the algorithm retains the gross features necessary to characterize environmental impacts on space systems in diverse orbital regimes while greatly reducing the amount of sampling required. This enables sufficient environmental specification within a resource-constrained context, such as limited telemetry bandwidth, processing requirements, and timeliness.

  15. Breaking down the barriers of using strong authentication and encryption in resource constrained embedded systems

    NASA Astrophysics Data System (ADS)

    Knobler, Ron; Scheffel, Peter; Jackson, Scott; Gaj, Kris; Kaps, Jens Peter

    2013-05-01

    Various embedded systems, such as unattended ground sensors (UGS), are deployed in dangerous areas, where they are subject to compromise. Since numerous systems contain a network of devices that communicate with each other (often times with commercial off the shelf [COTS] radios), an adversary is able to intercept messages between system devices, which jeopardizes sensitive information transmitted by the system (e.g. location of system devices). Secret key algorithms such as AES are a very common means to encrypt all system messages to a sufficient security level, for which lightweight implementations exist for even very resource constrained devices. However, all system devices must use the appropriate key to encrypt and decrypt messages from each other. While traditional public key algorithms (PKAs), such as RSA and Elliptic Curve Cryptography (ECC), provide a sufficiently secure means to provide authentication and a means to exchange keys, these traditional PKAs are not suitable for very resource constrained embedded systems or systems which contain low reliability communication links (e.g. mesh networks), especially as the size of the network increases. Therefore, most UGS and other embedded systems resort to pre-placed keys (PPKs) or other naïve schemes which greatly reduce the security and effectiveness of the overall cryptographic approach. McQ has teamed with the Cryptographic Engineering Research Group (CERG) at George Mason University (GMU) to develop an approach using revolutionary cryptographic techniques that provides both authentication and encryption, but on resource constrained embedded devices, without the burden of large amounts of key distribution or storage.

  16. Health Effects of Energy Resources

    USGS Publications Warehouse

    Orem, William; Tatu, Calin; Pavlovic, Nikola; Bunnell, Joseph; Kolker, Allan; Engle, Mark; Stout, Ben

    2010-01-01

    Energy resources (coal, oil, and natural gas) are among the cornerstones of modern industrial society. The exploitation of these resources, however, is not without costs. Energy materials may contain harmful chemical substances that, if mobilized into air, water, or soil, can adversely impact human health and environmental quality. In order to address the issue of human exposure to toxic substances derived from energy resources, the U.S. Geological Survey (USGS) Energy Resources Program developed a project entitled 'Impacts of Energy Resources on Human Health and Environmental Quality.' The project is intended to provide policymakers and the public with the scientific information needed to weigh the human health and environmental consequences of meeting our energy needs. This fact sheet discusses several areas where the USGS Energy Resources Program is making scientific advances in this endeavor.

  17. A strategy to implement and support pre-hospital emergency medical systems in developing, resource-constrained areas of South Africa.

    PubMed

    Sun, Jared H; Shing, Rachel; Twomey, Michele; Wallis, Lee A

    2014-01-01

    Resource-constrained countries are in extreme need of pre-hospital emergency care systems. However, current popular strategies to provide pre-hospital emergency care are inappropriate for and beyond the means of a resource-constrained country, and so new ones are needed-ones that can both function in an under-developed area's particular context and be done with the area's limited resources. In this study, we used a two-location pilot and consensus approach to develop a strategy to implement and support pre-hospital emergency care in one such developing, resource-constrained area: the Western Cape province of South Africa. Local community members are trained to be emergency first aid responders who can provide immediate, on-scene care until a Transporter can take the patient to the hospital. Management of the system is done through local Community Based Organizations, which can adapt the model to their communities as needed to ensure local appropriateness and feasibility. Within a community, the system is implemented in a graduated manner based on available resources, and is designed to not rely on the whole system being implemented first to provide partial function. The University of Cape Town's Division of Emergency Medicine and the Western Cape's provincial METRO EMS intend to follow this model, along with sharing it with other South African provinces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-31

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary,more » as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute

  19. Energy Efficiency Resources to Support State Energy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  20. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    PubMed

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  1. Traversable geometric dark energy wormholes constrained by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-he

    2016-09-01

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω <-1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω _X<-1 (or z<0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology.

  2. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  3. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    PubMed Central

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082

  4. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  5. The oncology pharmacy in cancer care delivery in a resource-constrained setting in western Kenya.

    PubMed

    Strother, R Matthew; Rao, Kamakshi V; Gregory, Kelly M; Jakait, Beatrice; Busakhala, Naftali; Schellhase, Ellen; Pastakia, Sonak; Krzyzanowska, Monika; Loehrer, Patrick J

    2012-12-01

    The movement to deliver cancer care in resource-limited settings is gaining momentum, with particular emphasis on the creation of cost-effective, rational algorithms utilizing affordable chemotherapeutics to treat curable disease. The delivery of cancer care in resource-replete settings is a concerted effort by a team of multidisciplinary care providers. The oncology pharmacy, which is now considered integral to cancer care in resourced medical practice, developed over the last several decades in an effort to limit healthcare provider exposure to workplace hazards and to limit risk to patients. In developing cancer care services in resource-constrained settings, creation of oncology pharmacies can help to both mitigate the risks to practitioners and patients, and also limit the costs of cancer care and the environmental impact of chemotherapeutics. This article describes the experience and lessons learned in establishing a chemotherapy pharmacy in western Kenya.

  6. Unconventional energy resources: 2007-2008 review

    USGS Publications Warehouse

    Warwick, Peter D.; ,

    2009-01-01

    This paper summarizes five 2007–2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  7. Identity formation and motivation of new faculty developers: A replication study in a resource constrained university.

    PubMed

    O'Sullivan, Patricia S; Mkony, Charles; Beard, Jessica; Irby, David M

    2016-09-01

    Previous studies on the identity development and motivation of faculty developers have occurred with seasoned developers in a research-rich environment. We sought to determine if the findings of those studies could be replicated with novice faculty developers in a resource-constrained environment. We interviewed 15 novice faculty developers from Muhimbili University of Health and Allied Sciences (MUHAS) who, at the time, had led faculty development activities for no more than two years. We conducted a qualitative analysis sensitized by the previous findings. Results were very similar to the previous work. The developers described compartmentalized, hierarchical, and merged identities. The impact was on their teaching as well as on others at MUHAS and on the institution itself. The motivations related to mastery, purpose, duty, satisfaction, and relatedness. This replication led us to conclude that identity development as a faculty developer occurs even in novice developers who do faculty development as only part of their work and despite constrained resources and a different culture. These developers find the work richly rewarding and their motivations benefit the institution. This body of research highlights how faculty development provides benefits to the institution as well as engaging career opportunities.

  8. Chance-constrained economic dispatch with renewable energy and storage

    DOE PAGES

    Cheng, Jianqiang; Chen, Richard Li-Yang; Najm, Habib N.; ...

    2018-04-19

    Increased penetration of renewables, along with uncertainties associated with them, have transformed how power systems are operated. High levels of uncertainty means that it is not longer possible to guarantee operational feasibility with certainty, instead constraints are required to be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, it is required that wind energy contributes at least a prespecified ratio of the total demand and that the scheduled wind energy is dispatchable with high probability. We develop an approximated partial sample averagemore » approximation (PSAA) framework to enable efficient solution of large-scale chanceconstrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed tolerance, and about 100 times faster than sample average approximation. Improved efficiency of our PSAA approach enables solution of WECC-240 system in minutes.« less

  9. Chance-constrained economic dispatch with renewable energy and storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jianqiang; Chen, Richard Li-Yang; Najm, Habib N.

    Increased penetration of renewables, along with uncertainties associated with them, have transformed how power systems are operated. High levels of uncertainty means that it is not longer possible to guarantee operational feasibility with certainty, instead constraints are required to be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, it is required that wind energy contributes at least a prespecified ratio of the total demand and that the scheduled wind energy is dispatchable with high probability. We develop an approximated partial sample averagemore » approximation (PSAA) framework to enable efficient solution of large-scale chanceconstrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed tolerance, and about 100 times faster than sample average approximation. Improved efficiency of our PSAA approach enables solution of WECC-240 system in minutes.« less

  10. Energy Resources | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP content Energy Resources Additional information Energy Resources Posters and Presentations Gas Hydrates Sponsors' Proposals Energy Resources Staff Projects The Alaska Division of Geological & Geophysical

  11. The U.S. Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2006-01-01

    The United States uses tremendous amounts of geologic energy resources. In 2004 alone, the United States consumed more than 7.4 billion barrels of oil, 21.9 trillion cubic feet of natural gas, and 1.1 billion short tons of coal. Forecasts indicate the Nation's need for energy resources will continue to grow, raising several questions: How much domestic and foreign petroleum resources are available to meet the growing energy demands of the Nation and world? Does the United States have coal deposits of sufficient quantity and quality to meet demand over the next century? What other geologic energy resources can be added to the U.S. energy mix? How do the occurrence and use of energy resources affect environmental quality and human health? Unbiased information from robust scientific studies is needed for sound energy policy and resource management decisions addressing these issues. The U.S. Geological Survey Energy Resources Program provides impartial, scientifically robust information to advance the understanding of geologically based energy resources including: petroleum (oil, natural gas, natural gas liquids), coal, gas hydrates, geothermal resources, oil shale, oil sands, uranium, and heavy oil and natural bitumen. This information can be used to contribute to plans for a secure energy future and to facilitate evaluation and responsible use of resources.

  12. Constraining the dark energy equation of state using Bayes theorem and the Kullback-Leibler divergence

    NASA Astrophysics Data System (ADS)

    Hee, S.; Vázquez, J. A.; Handley, W. J.; Hobson, M. P.; Lasenby, A. N.

    2017-04-01

    Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era cosmic microwave background, baryonic acoustic oscillations (BAO), Type Ia supernova (SNIa) and Lyman α (Lyα) data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance Λ cold dark matter (ΛCDM) model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other, a supernegative equation of state (also known as 'phantom dark energy') is identified within the 1.5σ confidence intervals of the posterior distribution. To identify the power of different data sets in constraining the dark energy equation of state, we use a novel formulation of the Kullback-Leibler divergence. This formalism quantifies the information the data add when moving from priors to posteriors for each possible data set combination. The SNIa and BAO data sets are shown to provide much more constraining power in comparison to the Lyα data sets. Further, SNIa and BAO constrain most strongly around redshift range 0.1-0.5, whilst the Lyα data constrain weakly over a broader range. We do not attribute the supernegative favouring to any particular data set, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.

  13. Solution techniques for transient stability-constrained optimal power flow – Part II

    DOE PAGES

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...

    2017-06-28

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  14. Solution techniques for transient stability-constrained optimal power flow – Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  15. The U.S.Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  16. Philippines Wind Energy Resource Atlas Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  17. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    PubMed Central

    Abello, Manuel Blanco

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature. PMID:24883398

  18. Offshore Wind Energy Resource Assessment for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa Moreira, Paula; Scott, George N.; Musial, Walter D.

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined.more » Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.« less

  19. Macronutrient supplementation for malnourished HIV-infected adults: a review of the evidence in resource-adequate and resource-constrained settings.

    PubMed

    Koethe, John R; Chi, Benjamin H; Megazzini, Karen M; Heimburger, Douglas C; Stringer, Jeffrey S A

    2009-09-01

    Access to antiretroviral therapy (ART) for human immunodeficiency virus (HIV) infection has expanded rapidly throughout sub-Saharan Africa, but malnutrition and food insecurity have emerged as major barriers to the success of ART programs. Protein-calorie malnutrition (a common form of malnutrition in the region) hastens HIV disease progression, and food insecurity is a barrier to medication adherence. Analyses of patient outcomes have identified a low body mass index after the start of ART as an independent predictor of early mortality, but the causes of a low body mass index are multifactorial (eg, normal anthropometric variation, chronic inadequate food intake, and/or wasting associated with HIV infection and other infectious diseases). Although there is much information on population-level humanitarian food assistance, few data exist to measure the effectiveness of macronutrient supplementation or to identify individuals most likely to benefit. In this report, we review the current evidence supporting macronutrient supplementation for HIV-infected adults, we report on clinical trials in resource-adequate and resource-constrained settings, and we highlight priority areas for future research.

  20. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks.

    PubMed

    Kim, Ki-Wook; Han, Youn-Hee; Min, Sung-Gi

    2017-09-21

    Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism.

  1. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks

    PubMed Central

    Han, Youn-Hee; Min, Sung-Gi

    2017-01-01

    Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism. PMID:28934152

  2. Evaluating Tidal Energy Resource Assessment Guidelines

    NASA Astrophysics Data System (ADS)

    Haas, K. A.

    2016-02-01

    All tidal energy projects require resource assessments for determining the feasibility of a particular site, performing the project layout design and providing the projected annual energy production (AEP). The methods for the different resource assessments depend on both the assessment scope as well as the project scale. To assist with the development of the hydrokinetic industry as a whole, much work over the past decade has been completed to develop international technical standards that can be used by the full range of stakeholders in the hydrokinetic industry. In particular, a new International Electrotechnical Commission (IEC) Technical Specification (TS) has recently been published outlining a standardized methodology for performing tidal energy resource assessments. This presentation will cover the various methods for performing the different types of tidal resource assessments (national reconnaissance, regional feasibility and layout design). Illustrations through case studies will be presented for each type of resource assessment. In particular, the ability of a grid refinement technique which satisfies the TS grid resolution requirements for the assessment of tidal current energy while maintaining low computational expenses will be evaluated. Example applications will be described for mapping the tidal resources near two facilities (Portsmouth Naval Shipyard in Maine and Key West Naval Station in Florida) for possible future deployments of Marine Hydro-Kinetic (MHK) technologies. These assessments will include and demonstrate the importance of the effect of energy extraction as required by the TS.

  3. The epidemiology of substance use among street children in resource-constrained settings: a systematic review and meta-analysis

    PubMed Central

    Embleton, Lonnie; Mwangi, Ann; Vreeman, Rachel; Ayuku, David; Braitstein, Paula

    2013-01-01

    Aims To compile and analyze critically the literature published on street children and substance use in resource-constrained settings. Methods We searched the literature systematically and used meta-analytical procedures to synthesize literature that met the review’s inclusion criteria. Pooled-prevalence estimates and 95% confidence intervals (CI) were calculated using the random-effects model for life-time substance use by geographical region as well as by type of substance used. Results Fifty studies from 22 countries were included into the review. Meta-analysis of combined life-time substance use from 27 studies yielded an overall drug use pooled-prevalence estimate of 60% (95% CI = 51–69%). Studies from 14 countries contributed to an overall pooled prevalence for street children’s reported inhalant use of 47% (95% CI = 36–58%). This review reveals significant gaps in the literature, including a dearth of data on physical and mental health outcomes, HIV and mortality in association with street children’s substance use. Conclusions Street children from resource-constrained settings reported high life-time substance use. Inhalants are the predominant substances used, followed by tobacco, alcohol and marijuana. PMID:23844822

  4. Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence

    DOE PAGES

    Hee, S.; Vázquez, J. A.; Handley, W. J.; ...

    2016-12-01

    Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance ΛCDM model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ confidence intervals of the posterior distribution. In order to identify themore » power of different datasets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. Moreover, this formalism quantifies the information the data add when moving from priors to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to provide much more constraining power in comparison to the Lyman-α datasets. Furthermore, SNIa and BAO constrain most strongly around redshift range 0.1 - 0.5, whilst the Lyman-α data constrains weakly over a broader range. We do not attribute the supernegative favouring to any particular dataset, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.« less

  5. Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hee, S.; Vázquez, J. A.; Handley, W. J.

    Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance ΛCDM model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ confidence intervals of the posterior distribution. In order to identify themore » power of different datasets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. Moreover, this formalism quantifies the information the data add when moving from priors to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to provide much more constraining power in comparison to the Lyman-α datasets. Furthermore, SNIa and BAO constrain most strongly around redshift range 0.1 - 0.5, whilst the Lyman-α data constrains weakly over a broader range. We do not attribute the supernegative favouring to any particular dataset, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.« less

  6. University Student Conceptual Resources for Understanding Energy

    ERIC Educational Resources Information Center

    Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.

    2016-01-01

    We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy…

  7. 'One health' and development priorities in resource-constrained countries: policy lessons from avian and pandemic influenza preparedness in Zambia.

    PubMed

    Mwacalimba, Kennedy Kapala; Green, Judith

    2015-03-01

    'One World, One Health' has become a key rallying theme for the integration of public health and animal health priorities, particularly in the governance of pandemic-scale zoonotic infectious disease threats. However, the policy challenges of integrating public health and animal health priorities in the context of trade and development issues remain relatively unexamined, and few studies to date have explored the implications of global disease governance for resource-constrained countries outside the main centres of zoonotic outbreaks. This article draws on a policy study of national level avian and pandemic influenza preparedness between 2005 and 2009 across the sectors of trade, health and agriculture in Zambia. We highlight the challenges of integrating disease control interventions amidst trade and developmental realities in resource-poor environments. One Health prioritizes disease risk mitigation, sidelining those trade and development narratives which speak to broader public health concerns. We show how locally important trade and development imperatives were marginalized in Zambia, limiting the effectiveness of pandemic preparedness. Our findings are likely to be generalizable to other resource-constrained countries, and suggest that effective disease governance requires alignment with trade and development sectors, as well as integration of veterinary and public health sectors. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.

  8. Energy resources - cornucopia or empty barrel?

    USGS Publications Warehouse

    McCabe, P.J.

    1998-01-01

    Over the last 25 yr, considerable debate has continued about the future supply of fossil fuel. On one side are those who believe we are rapidly depleting resources and that the resulting shortages will have a profound impact on society. On the other side are those who see no impending crisis because long-term trends are for cheaper prices despite rising production. The concepts of resources and reserves have historically created considerable misunderstanding in the minds of many nongeologists. Hubbert-type predictions of energy production assume that there is a finite supply of energy that is measurable; however, estimates of resources and reserves are inventories of the amounts of a fossil fuel perceived to be available over some future period of time. As those resources/reserves are depleted over time, additional amounts of fossil fuels are inventoried. Throughout most of this century, for example, crude oil reserves in the United States have represented a 10-14-yr supply. For the last 50 yr, resource crude oil estimates have represented about a 60-70-yr supply for the United States. Division of reserve or resource estimates by current or projected annual consumption therefore is circular in reasoning and can lead to highly erroneous conclusions. Production histories of fossil fuels are driven more by demand than by the geologic abundance of the resource. Examination of some energy resources with well-documented histories leads to two conceptual models that relate production to price. The closed-market model assumes that there is only one source of energy available. Although the price initially may fall because of economies of scale long term, prices rise as the energy source is depleted and it becomes progressively more expensive to extract. By contrast, the open-market model assumes that there is a variety of available energy sources and that competition among them leads to long-term stable or falling prices. At the moment, the United States and the world

  9. Energy and resource consumption

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.

  10. The Ha Noi Expert Statement: recognition of maternal mental health in resource-constrained settings is essential for achieving the Millennium Development Goals.

    PubMed

    Fisher, Jane Rw; de Mello, Meena Cabral; Izutsu, Takashi; Tran, Tuan

    2011-01-07

    Mental health problems in women during pregnancy and after childbirth and their adverse consequences for child health and development have received sustained detailed attention in high-income countries. In contrast, evidence has only been generated more recently in resource-constrained settings.In June 2007 the United Nations Population Fund, the World Health Organization, the Key Centre for Women's Health in Society, a WHO Collaborating Centre for Women's Health and the Research and Training Centre for Community Development in Vietnam convened the first international expert meeting on maternal mental health and child health and development in resource-constrained settings. It aimed to appraise the evidence about the nature, prevalence and risks for common perinatal mental disorders in women; the consequences of these for child health and development and ameliorative strategies in these contexts.The substantial disparity in rates of perinatal mental disorders between women living in high- and low-income settings, suggests social rather than biological determinants. Risks in resource-constrained contexts include: poverty; crowded living situations; limited reproductive autonomy; unintended pregnancy; lack of empathy from the intimate partner; rigid gender stereotypes about responsibility for household work and infant care; family violence; poor physical health and discrimination. Development is adversely affected if infants lack day-to-day interactions with a caregiver who can interpret their cues, and respond effectively. Women with compromised mental health are less able to provide sensitive, responsive infant care. In resource-constrained settings infants whose mothers are depressed are less likely to thrive and to receive optimal care than those whose mothers are well.The meeting outcome is the Hanoi Expert Statement (Additional file 1). It argues that the Millennium Development Goals to improve maternal health, reduce child mortality, promote gender equality

  11. Auctions for coastal energy resources

    NASA Astrophysics Data System (ADS)

    Griffin, Robert M.

    It is becoming increasingly common to allocate public resources to the private sector for the purpose of developing these resources. One of the earliest uses of auctions in the U.S. for allocating rights to public resources was in the offshore oil and gas industry. The U.S. Federal government, through the Department of Interior (DOI), has used auctions to allocate development rights to offshore oil and gas resources to the private sector since the 1950's. Since then many things have changed. Oil and gas markets have gone through boom and bust cycles, giant technological advances in extraction and assessment have taken place, and alternative energy based in the coastal zone is now in demand in markets as well. There has been an enormous amount of research into the drivers of bidder behavior in auctions and optimal auction design in the last 60 years as well. Throughout all of this, the DOI has continued to use basically the same exact auction design to allocate oil and gas leases. The U.S. offshore oil and gas resources sold by the Department of Interior have accounted for more than $65 billion in revenue since the program started. These offshore resources are an important source of government revenue and national wealth. Additionally, the expansion of the energy sector offshore has enormous potential for electricity generation in the U.S., estimated by the National Renewable Energy Laboratory as approaching 54 gigawatts by 2030 (U.S. Department of Energy, 2008). Taken together, the DOI controls access to a large part of the future of energy in the U.S. The research herein assesses the auction formats used to allocate both fossil fuels and renewable resources on the Outer Continental Shelf (OCS). The first manuscript looks at the current method used by the DOI to allocate oil and gas leases on the OCS, and is primarily interested in how bidders behave in this environment. Using latent class estimation techniques to separate distinct bidding behavior in a laboratory

  12. Constraining viscous dark energy models with the latest cosmological data

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Yan, Yang-Jie; Meng, Xin-He

    2017-10-01

    Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.

  13. Terminology Guideline for Classifying Offshore Wind Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Musial, Walt

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conformingmore » to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.« less

  14. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    NASA Astrophysics Data System (ADS)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  15. Renewable Energy Project Development Resource Directory

    EPA Pesticide Factsheets

    The Renewable Energy Project Development Resource Directory provides a curated list of solar project development resources for higher education and local government, including case studies, guidance, fact sheets, presentations, templates, and more.

  16. Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems

    NASA Astrophysics Data System (ADS)

    Bartell, Richard J.; Perram, Glen P.; Fiorino, Steven T.; Long, Scott N.; Houle, Marken J.; Rice, Christopher A.; Manning, Zachary P.; Bunch, Dustin W.; Krizo, Matthew J.; Gravley, Liesebet E.

    2005-06-01

    The Air Force Institute of Technology's Center for Directed Energy has developed a software model, the High Energy Laser End-to-End Operational Simulation (HELEEOS), under the sponsorship of the High Energy Laser Joint Technology Office (JTO), to facilitate worldwide comparisons across a broad range of expected engagement scenarios of expected performance of a diverse range of weight-constrained high energy laser system types. HELEEOS has been designed to meet JTO's goals of supporting a broad range of analyses applicable to the operational requirements of all the military services, constraining weapon effectiveness through accurate engineering performance assessments allowing its use as an investment strategy tool, and the establishment of trust among military leaders. HELEEOS is anchored to respected wave optics codes and all significant degradation effects, including thermal blooming and optical turbulence, are represented in the model. The model features operationally oriented performance metrics, e.g. dwell time required to achieve a prescribed probability of kill and effective range. Key features of HELEEOS include estimation of the level of uncertainty in the calculated Pk and generation of interactive nomographs to allow the user to further explore a desired parameter space. Worldwide analyses are enabled at five wavelengths via recently available databases capturing climatological, seasonal, diurnal, and geographical spatial-temporal variability in atmospheric parameters including molecular and aerosol absorption and scattering profiles and optical turbulence strength. Examples are provided of the impact of uncertainty in weight-power relationships, coupled with operating condition variability, on results of performance comparisons between chemical and solid state lasers.

  17. Energy for lunar resource exploitation

    NASA Astrophysics Data System (ADS)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  18. Energy for lunar resource exploitation

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1992-01-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  19. Dual job holding by public sector health professionals in highly resource-constrained settings: problem or solution?

    PubMed Central

    Jan, Stephen; Bian, Ying; Jumpa, Manuel; Meng, Qingyue; Nyazema, Norman; Prakongsai, Phusit; Mills, Anne

    2005-01-01

    This paper examines the policy options for the regulation of dual job holding by medical professionals in highly resource-constrained settings. Such activity is generally driven by a lack of resources in the public sector and low pay, and has been associated with the unauthorized use of public resources and corruption. It is also typically poorly regulated; regulations are either lacking, or when they exist, are vague or poorly implemented because of low regulatory capacity. This paper draws on the limited evidence available on this topic to assess a number of regulatory options in relation to the objectives of quality of care and access to services, as well as some of the policy constraints that can undermine implementation in resource-poor settings. The approach taken in highlighting these broader social objectives seeks to avoid the value judgements regarding dual working and some of its associated forms of behaviour that have tended to characterize previous analyses. Dual practice is viewed as a possible system solution to issues such as limited public sector resources (and incomes), low regulatory capacity and the interplay between market forces and human resources. This paper therefore offers some support for policies that allow for the official recognition of such activity and embrace a degree of professional self-regulation. In providing clearer policy guidance, future research in this area needs to adopt a more evaluative approach than that which has been used to date. PMID:16283054

  20. An Energy Resource List.

    ERIC Educational Resources Information Center

    VocEd, 1979

    1979-01-01

    Selected energy resource information, from both federal and private sources, is listed under funding, general information and assistance, recycling, solar, transportation, utilities, and wind power. Books, pamphlets, films, journals, newsletters, and other materials are included. (MF)

  1. Wind Energy Resource Atlas of the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; George, R.

    2001-10-01

    The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

  2. Resource impact factor (RIF) approach to optimal use of energy resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.R.

    1976-10-01

    A concept called the Resource Impact Factor (RIF) is presented as a means to quantify the social value of energy resources for buildings. The flow of various raw resources from the point of extraction to the building project boundary is shown, and a flow chart indicating the decision making process is given. (PMA)

  3. 77 FR 43592 - System Energy Resources, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-52-001] System Energy Resources, Inc.; Notice of Filing Take notice that on July 18, 2012, System Energy Resources, Inc. (System Energy Resources), submitted a supplement to its petition filed on March 28, 2012 (March 28 petition...

  4. Quantitative variability of renewable energy resources in Norway

    NASA Astrophysics Data System (ADS)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  5. Wind Energy Resource Atlas of the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; George, R.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  6. How CMB and large-scale structure constrain chameleon interacting dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength,more » can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.« less

  7. Investigating Urban Eighth-Grade Students' Knowledge of Energy Resources

    ERIC Educational Resources Information Center

    Bodzin, Alec

    2012-01-01

    This study investigated urban eighth-grade students' knowledge of energy resources and associated issues including energy acquisition, energy generation, storage and transport, and energy consumption and conservation. A 39 multiple-choice-item energy resources knowledge assessment was completed by 1043 eighth-grade students in urban schools in two…

  8. Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.

    PubMed

    Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin

    2017-09-13

    Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.

  9. FPGA design for constrained energy minimization

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Chang, Chein-I.; Cao, Mang

    2004-02-01

    The Constrained Energy Minimization (CEM) has been widely used for hyperspectral detection and classification. The feasibility of implementing the CEM as a real-time processing algorithm in systolic arrays has been also demonstrated. The main challenge of realizing the CEM in hardware architecture in the computation of the inverse of the data correlation matrix performed in the CEM, which requires a complete set of data samples. In order to cope with this problem, the data correlation matrix must be calculated in a causal manner which only needs data samples up to the sample at the time it is processed. This paper presents a Field Programmable Gate Arrays (FPGA) design of such a causal CEM. The main feature of the proposed FPGA design is to use the Coordinate Rotation DIgital Computer (CORDIC) algorithm that can convert a Givens rotation of a vector to a set of shift-add operations. As a result, the CORDIC algorithm can be easily implemented in hardware architecture, therefore in FPGA. Since the computation of the inverse of the data correlction involves a series of Givens rotations, the utility of the CORDIC algorithm allows the causal CEM to perform real-time processing in FPGA. In this paper, an FPGA implementation of the causal CEM will be studied and its detailed architecture will be also described.

  10. 'Constrained collaboration': Patient empowerment discourse as resource for countervailing power.

    PubMed

    Vinson, Alexandra H

    2016-11-01

    Countervailing powers constrain the authority and autonomy of the medical profession. One countervailing power is patient consumerism, a movement with roots in health social movements. Patient empowerment discourses that emerge from health social movements suggest that active patienthood is a normative good, and that patients should inform themselves, claim their expertise, and participate in their care. Yet, little is known about how patient empowerment is understood by physicians. Drawing on ethnographic fieldwork in an American medical school, this article examines how physicians teach medical students to carry out patient encounters while adhering to American cultural expectations of a collaborative physician-patient relationship. Overt medical paternalism is characterised by professors as 'here's the orders' paternalism, and shown to be counterproductive to 'closing the deal' - achieving patient agreement to a course of treatment. To explain how physicians accomplish their therapeutic goals without violating cultural mandates of patient empowerment I develop the concept of 'constrained collaboration'. This analysis of constrained collaboration contrasts with structural-level narratives of diminishing professional authority and contributes to a theory of the micro-level reproduction of medical authority as a set of interactional practices. © 2016 Foundation for the Sociology of Health & Illness.

  11. Classification of geothermal resources by potential

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2015-03-01

    When considering and reporting resources, the term "geothermal potential" is often used without clearly stating what kind of potential is meant. For renewable energy resources it is nowadays common to use different potentials: theoretical, technical, economic, sustainable, developable - decreasing successively in size. In such a sequence, the potentials are progressively realizable and more and more rewarding financially. The theoretical potential describes the physically present energy, the technical potential the fraction of this energy that can be used by currently available technology and the economic potential the time- and location-dependent fraction of the previous category; the sustainable potential constrains the fraction of the economic potential that can be utilized in the long term; the developable potential is the fraction of the economic resource which can be developed under realistic conditions. In converting theoretical to technical potential, the recovery factor (the ratio extractable heat/heat present at depth) is of key importance. An example (global geothermal resources) is given, with numerical values of the various potentials. The proposed classification could and should be used as a kind of general template for future geothermal energy resources reporting.

  12. The WHO/PEPFAR collaboration to prepare an operations manual for HIV prevention, care, and treatment at primary health centers in high-prevalence, resource-constrained settings: defining laboratory services.

    PubMed

    Spira, Thomas; Lindegren, Mary Lou; Ferris, Robert; Habiyambere, Vincent; Ellerbrock, Tedd

    2009-06-01

    The expansion of HIV/AIDS care and treatment in resource-constrained countries, especially in sub-Saharan Africa, has generally developed in a top-down manner. Further expansion will involve primary health centers where human and other resources are limited. This article describes the World Health Organization/President's Emergency Plan for AIDS Relief collaboration formed to help scale up HIV services in primary health centers in high-prevalence, resource-constrained settings. It reviews the contents of the Operations Manual developed, with emphasis on the Laboratory Services chapter, which discusses essential laboratory services, both at the center and the district hospital level, laboratory safety, laboratory testing, specimen transport, how to set up a laboratory, human resources, equipment maintenance, training materials, and references. The chapter provides specific information on essential tests and generic job aids for them. It also includes annexes containing a list of laboratory supplies for the health center and sample forms.

  13. Distributed Energy Resource (DER) Cybersecurity Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleem, Danish; Johnson, Jay

    This presentation covers the work that Sandia National Laboratories and National Renewable Energy Laboratory are doing for distributed energy resource cybersecurity standards, prepared for NREL's Annual Cybersecurity & Resilience Workshop on October 9-10, 2017.

  14. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order tomore » accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.« less

  15. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  16. Prediction-Correction Algorithms for Time-Varying Constrained Optimization

    DOE PAGES

    Simonetto, Andrea; Dall'Anese, Emiliano

    2017-07-26

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  17. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less

  18. Technical Resources for Energy Savings Plus Health

    EPA Pesticide Factsheets

    The Energy Savings Plus Health Guide equips school districts to integrate indoor air quality protections into school energy efficiency retrofits and other building upgrade projects. This page lists additional resources related to Energy Savings Plus Health

  19. Prediction of Wind Energy Resources (PoWER) Users Guide

    DTIC Science & Technology

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 09/2015–11/2015 4. TITLE AND SUBTITLE Prediction of Wind Energy Resources (PoWER) User’s

  20. Using the World Health Organization's 4S-Framework to Strengthen National Strategies, Policies and Services to Address Mental Health Problems in Adolescents in Resource-Constrained Settings

    PubMed Central

    2011-01-01

    Background Most adolescents live in resource-constrained countries and their mental health has been less well recognised than other aspects of their health. The World Health Organization's 4-S Framework provides a structure for national initiatives to improve adolescent health through: gathering and using strategic information; developing evidence-informed policies; scaling up provision and use of health services; and strengthening linkages with other government sectors. The aim of this paper is to discuss how the findings of a recent systematic review of mental health problems in adolescents in resource-constrained settings might be applied using the 4-S Framework. Method Analysis of the implications of the findings of a systematic search of the English-language literature for national strategies, policies, services and cross-sectoral linkages to improve the mental health of adolescents in resource-constrained settings. Results Data are available for only 33/112 [29%] resource-constrained countries, but in all where data are available, non-psychotic mental health problems in adolescents are identifiable, prevalent and associated with reduced quality of life, impaired participation and compromised development. In the absence of evidence about effective interventions in these settings expert opinion is that a broad public policy response which addresses direct strategies for prevention, early intervention and treatment; health service and health workforce requirements; social inclusion of marginalised groups of adolescents; and specific education is required. Specific endorsed strategies include public education, parent education, training for teachers and primary healthcare workers, psycho-educational curricula, identification through periodic screening of the most vulnerable and referral for care, and the availability of counsellors or other identified trained staff members in schools from whom adolescents can seek assistance for personal, peer and family

  1. Improved One-Way Hash Chain and Revocation Polynomial-Based Self-Healing Group Key Distribution Schemes in Resource-Constrained Wireless Networks

    PubMed Central

    Chen, Huifang; Xie, Lei

    2014-01-01

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204

  2. Cross-layer protocols optimized for real-time multimedia services in energy-constrained mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2003-07-01

    Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of

  3. Resource Assessment | Energy Analysis | NREL

    Science.gov Websites

    water bodies, urban areas, cropland, forests, very steep terrain, and protected areas. Once resource study concluded that in Afghanistan: Biogas generation from animal manure and waste-to-energy from urban

  4. Energy resources of the United States

    USGS Publications Warehouse

    Theobald, P.K.; Schweinfurth, Stanley P.; Duncan, Donald Cave

    1972-01-01

    Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. The estimates, compiled by specialists of the U.S. Geological Survey, are generally made on geologic projections of favorable rocks and on anticipated frequency of the energy resource in the favorable rocks. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total coal resource base in the United States is estimated to be about 3,200 billion tons, of which 200-390 billion tons can be considered in the category identified and recoverable. More than 70 percent of current production comes from the Appalachian basin where the resource base, better known than for the United States as a whole, is about 330 billion tons, of which 22 billion tons is identified and recoverable. Coals containing less than 1 percent sulfur are the premium coals. These are abundant in the western coal fields, but in the Appalachian basin the resource base for low-sulfur coal is estimated to be only a little more than 100 billion tons, of which 12 billion tons is identified and recoverable. Of the many estimates of petroleum liquids and natural-gas resources, those of the U.S. Geological Survey are the largest because, in general, our estimates include the largest proportion of favorable ground for exploration. We estimate the total resource base for petroleum liquids to be about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural

  5. 2016 Offshore Wind Energy Resource Assessment for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walt; Heimiller, Donna; Beiter, Philipp

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  6. World Energy Resources and New Technologies

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  7. Community Design for Optimal Energy and Resource Utilization.

    ERIC Educational Resources Information Center

    Bilenky, Stephen; And Others

    Presented is a study which investigated the energy and resource dynamics of a semi-autonomous domestic system for 30 people. The investigation is organized on three levels: (1) developing a preliminary design and design parameters; (2) development and quantification of the energy and resource dynamics; and (3) designing a model to extrapolate…

  8. Energy and other non-renewable resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Anticipated U.S. demands for non-renewable energy and mineral resources exceed domestic supplies essential for economic growth. For the long term changes necessary in the energy supply and demand gap, new technologies and substitute materials as well as legislation and socio-economic strategies are elaborated.

  9. Constraining the redshift distribution of ultrahigh-energy-cosmic-ray sources by isotropic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix

    2017-01-01

    By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.

  10. ENCORE: Energy Conservation Resources for Education.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Dept. of Industrial Education.

    This publication contains the energy education materials for middle schools from project ENCORE (Energy Conservation Resources for Education). These modules were originally field tested in Texas schools during the 1976-77 academic year. The revised materials in this publication are organized into four major units and thirteen chapters. The…

  11. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homer, Juliet S.; Bender, Sadie R.; Weimar, Mark R.

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Majormore » challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.« less

  12. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    PubMed Central

    Monowar, Muhammad Mostafa; Hassan, Mohammad Mehedi; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-01-01

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC, a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS demands and introduces a novel superframe structure based on the “transmit-whenever-appropriate” principle, which allows diverse periods for diverse traffic classes according to their respective QoS requirements. Furthermore, a novel emergency packet handling mechanism is proposed to ensure packet delivery with the least possible delay and the highest reliability. McMAC is also modeled analytically, and extensive simulations were performed to evaluate its performance. The results reveal that McMAC achieves the desired delay and reliability guarantee according to the requirements of a particular traffic class while achieving energy efficiency. PMID:23202224

  13. USGS research on energy resources, 1986; program and abstracts

    USGS Publications Warehouse

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal

  14. Interconnection of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, Emerson

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  15. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  16. Maxillofacial prostheses challenges in resource constrained regions.

    PubMed

    Tetteh, Sophia; Bibb, Richard J; Martin, Simon J

    2017-10-24

    This study reviewed the current state of maxillofacial rehabilitation in resource-limited nations. A rigorous literature review was undertaken using several technical and clinical databases using a variety of key words pertinent to maxillofacial prosthetic rehabilitation and resource-limited areas. In addition, interviews were conducted with researchers, clinicians and prosthetists that had direct experience of volunteering or working in resource-limited countries. Results from the review and interviews suggest rehabilitating patients in resource-limited countries remains challenging and efforts to improve the situation requires a multifactorial approach. In conclusion, public health awareness programmes to reduce the causation of injuries and bespoke maxillofacial prosthetics training programmes to suit these countries, as opposed to attempting to replicate Western training programmes. It is also possible that usage of locally sourced and cheaper materials and the use of low-cost technologies could greatly improve maxillofacial rehabilitation efforts in these localities. Implications for Rehabilitation More information and support needs to be provided to maxillofacial defect/injuries patients and to their families or guardians in a culturally sensitive manner by governments. The health needs, economic and psychological needs of the patients need to be taken into account during the rehabilitation process by clinicians and healthcare organizations. The possibility of developing training programs to suit these resource limited countries and not necessarily follow conventional fabrication methods must be looked into further by educational entities.

  17. Establishing and Delivering Quality Radiation Therapy in Resource-Constrained Settings: The Story of Botswana.

    PubMed

    Efstathiou, Jason A; Heunis, Magda; Karumekayi, Talkmore; Makufa, Remigio; Bvochora-Nsingo, Memory; Gierga, David P; Suneja, Gita; Grover, Surbhi; Kasese, Joseph; Mmalane, Mompati; Moffat, Howard; von Paleske, Alexander; Makhema, Joseph; Dryden-Peterson, Scott

    2016-01-01

    There is a global cancer crisis, and it is disproportionately affecting resource-constrained settings, especially in low- and middle-income countries (LMICs). Radiotherapy is a critical and cost-effective component of a comprehensive cancer control plan that offers the potential for cure, control, and palliation of disease in greater than 50% of patients with cancer. Globally, LMICs do not have adequate access to quality radiation therapy and this gap is particularly pronounced in sub-Saharan Africa. Although there are numerous challenges in implementing a radiation therapy program in a low-resource setting, providing more equitable global access to radiotherapy is a responsibility and investment worth prioritizing. We outline a systems approach and a series of key questions to direct strategy toward establishing quality radiation services in LMICs, and highlight the story of private-public investment in Botswana from the late 1990s to the present. After assessing the need and defining the value of radiation, we explore core investments required, barriers that need to be overcome, and assets that can be leveraged to establish a radiation program. Considerations addressed include infrastructure; machine choice; quality assurance and patient safety; acquisition, development, and retention of human capital; governmental engagement; public-private partnerships; international collaborations; and the need to critically evaluate the program to foster further growth and sustainability. © 2015 by American Society of Clinical Oncology.

  18. Job satisfaction in relation to energy resource consciousness and perceptions of energy utilization in selected Illinois manufacturing firms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, T.S.

    1986-01-01

    This study was developed through a synthesis and review of literature and research related to the current status of job satisfaction, energy resources, and perceptions of how energy is utilized in the manufacturing work environment. This synthesis and review revolved around several proven contributing factors of job satisfaction, such as age, education, and challenge from work itself. Quality of work life programs and their components are discussed in relation to their impact on job satisfaction. The nature of energy resource utilization is traced back through history with an emphasis on the limitations of current resources and options for the future.more » The review highlights the current debate over what should be the future path of energy resource development. The concept of satisfaction of human needs is reviewed and related to job satisfaction and energy resources. The purpose of this research study was to contribute to the understanding of how perceptions of energy resources relate to job satisfaction. Results of the study indicated that there were no significant differences between an individual's energy resource consciousness and perceptions of energy utilization in the work place, energy resource consciousness and job satisfaction, and job satisfaction and perceptions of energy utilization in the workplace.« less

  19. Teachers Environmental Resource Unit: Energy and Power.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  20. Far-from-equilibrium bidirectional transport system with constrained entrances competing for pool of limited resources

    NASA Astrophysics Data System (ADS)

    Verma, Atul Kumar; Sharma, Natasha; Gupta, Arvind Kumar

    2018-02-01

    Motivated by the wide occurrence of limited resources in many real-life systems, we investigate two-lane totally asymmetric simple exclusion process with constrained entrances under finite supply of particles. We analyze the system within the framework of mean-field theory and examine various complex phenomena, including phase separation, phase transition, and symmetry breaking. Based on the theoretical analysis, we analytically derive the phase boundaries for various symmetric as well as asymmetric phases. It has been observed that the symmetry-breaking phenomenon initiates even for very small number of particles in the system. The phases with broken symmetry originates as shock-low density phase under limited resources, which is in contrast to the scenario with infinite number of particles. As expected, the symmetry breaking continues to persist even for higher values of system particles. Seven stationary phases are observed, with three of them exhibiting symmetry-breaking phenomena. The critical values of a total number of system particles, beyond which various symmetrical and asymmetrical phases appear and disappear are identified. Theoretical outcomes are supported by extensive Monte Carlo simulations. Finally, the size-scaling effect and symmetry-breaking phenomenon on the simulation results have also been examined based on particle density histograms.

  1. Profit-based conventional resource scheduling with renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  2. Building sustainable organizational capacity to deliver HIV programs in resource-constrained settings: stakeholder perspectives.

    PubMed

    Sharma, Anjali; Chiliade, Philippe; Michael Reyes, E; Thomas, Kate K; Collens, Stephen R; Rafael Morales, José

    2013-12-13

    In 2008, the US government mandated that HIV/AIDS care and treatment programs funded by the US President's Emergency Plan for AIDS Relief (PEPFAR) should shift from US-based international partners (IPs) to registered locally owned organizations (local partners, or LPs). The US Health Resources and Services Administration (HRSA) developed the Clinical Assessment for Systems Strengthening (ClASS) framework for technical assistance in resource-constrained settings. The ClASS framework involves all stakeholders in the identification of LPs' strengths and needs for technical assistance. This article examines the role of ClASS in building capacity of LPs that can endure and adapt to changing financial and policy environments. All stakeholders (n=68) in Kenya, Zambia, and Nigeria who had participated in the ClASS from LPs and IPs, the US Centers for Disease Control and Prevention (CDC), and, in Nigeria, HIV/AIDS treatment facilities (TFs) were interviewed individually or in groups (n=42) using an open-ended interview guide. Thematic analysis revealed stakeholder perspectives on ClASS-initiated changes and their sustainability. Local organizations were motivated to make changes in internal operations with the ClASS approach, PEPFAR's competitive funding climate, organizational goals, and desired patient health outcomes. Local organizations drew on internal resources and, if needed, technical assistance from IPs. Reportedly, ClASS-initiated changes and remedial action plans made LPs more competitive for PEPFAR funding. LPs also attributed their successful funding applications to their preexisting systems and reputation. Bureaucracy, complex and competing tasks, and staff attrition impeded progress toward the desired changes. Although CDC continues to provide technical assistance through IPs, declining PEPFAR funds threaten the consolidation of gains, smooth program transition, and continuity of treatment services. The well-timed adaptation and implementation of Cl

  3. Building sustainable organizational capacity to deliver HIV programs in resource-constrained settings: stakeholder perspectives

    PubMed Central

    Sharma, Anjali; Chiliade, Philippe; Reyes, E. Michael; Thomas, Kate K.; Collens, Stephen R.; Morales, José Rafael

    2013-01-01

    Background In 2008, the US government mandated that HIV/AIDS care and treatment programs funded by the US President's Emergency Plan for AIDS Relief (PEPFAR) should shift from US-based international partners (IPs) to registered locally owned organizations (local partners, or LPs). The US Health Resources and Services Administration (HRSA) developed the Clinical Assessment for Systems Strengthening (ClASS) framework for technical assistance in resource-constrained settings. The ClASS framework involves all stakeholders in the identification of LPs’ strengths and needs for technical assistance. Objective This article examines the role of ClASS in building capacity of LPs that can endure and adapt to changing financial and policy environments. Design All stakeholders (n=68) in Kenya, Zambia, and Nigeria who had participated in the ClASS from LPs and IPs, the US Centers for Disease Control and Prevention (CDC), and, in Nigeria, HIV/AIDS treatment facilities (TFs) were interviewed individually or in groups (n=42) using an open-ended interview guide. Thematic analysis revealed stakeholder perspectives on ClASS-initiated changes and their sustainability. Results Local organizations were motivated to make changes in internal operations with the ClASS approach, PEPFAR's competitive funding climate, organizational goals, and desired patient health outcomes. Local organizations drew on internal resources and, if needed, technical assistance from IPs. Reportedly, ClASS-initiated changes and remedial action plans made LPs more competitive for PEPFAR funding. LPs also attributed their successful funding applications to their preexisting systems and reputation. Bureaucracy, complex and competing tasks, and staff attrition impeded progress toward the desired changes. Although CDC continues to provide technical assistance through IPs, declining PEPFAR funds threaten the consolidation of gains, smooth program transition, and continuity of treatment services. Conclusions The well

  4. Exploring constrained quantum control landscapes

    NASA Astrophysics Data System (ADS)

    Moore, Katharine W.; Rabitz, Herschel

    2012-10-01

    The broad success of optimally controlling quantum systems with external fields has been attributed to the favorable topology of the underlying control landscape, where the landscape is the physical observable as a function of the controls. The control landscape can be shown to contain no suboptimal trapping extrema upon satisfaction of reasonable physical assumptions, but this topological analysis does not hold when significant constraints are placed on the control resources. This work employs simulations to explore the topology and features of the control landscape for pure-state population transfer with a constrained class of control fields. The fields are parameterized in terms of a set of uniformly spaced spectral frequencies, with the associated phases acting as the controls. This restricted family of fields provides a simple illustration for assessing the impact of constraints upon seeking optimal control. Optimization results reveal that the minimum number of phase controls necessary to assure a high yield in the target state has a special dependence on the number of accessible energy levels in the quantum system, revealed from an analysis of the first- and second-order variation of the yield with respect to the controls. When an insufficient number of controls and/or a weak control fluence are employed, trapping extrema and saddle points are observed on the landscape. When the control resources are sufficiently flexible, solutions producing the globally maximal yield are found to form connected "level sets" of continuously variable control fields that preserve the yield. These optimal yield level sets are found to shrink to isolated points on the top of the landscape as the control field fluence is decreased, and further reduction of the fluence turns these points into suboptimal trapping extrema on the landscape. Although constrained control fields can come in many forms beyond the cases explored here, the behavior found in this paper is illustrative of

  5. 77 FR 41481 - Integration of Variable Energy Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ...The Federal Energy Regulatory Commission is amending the pro forma Open Access Transmission Tariff to remove unduly discriminatory practices and to ensure just and reasonable rates for Commission- jurisdictional services. Specifically, this Final Rule removes barriers to the integration of variable energy resources by requiring each public utility transmission provider to: offer intra-hourly transmission scheduling; and, incorporate provisions into the pro forma Large Generator Interconnection Agreement requiring interconnection customers whose generating facilities are variable energy resources to provide meteorological and forced outage data to the public utility transmission provider for the purpose of power production forecasting.

  6. 77 FR 21557 - System Energy Resources, Inc.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-52-000] System Energy Resources, Inc.; Notice of Petition for Declaratory Order Take notice that on March 28, 2012, System Energy Resources, Inc. (System Energy Resources), submitted a petition requesting the Federal Energy Regulatory...

  7. Mobile learning in resource-constrained environments: a case study of medical education.

    PubMed

    Pimmer, Christoph; Linxen, Sebastian; Gröhbiel, Urs; Jha, Anil Kumar; Burg, Günter

    2013-05-01

    The achievement of the millennium development goals may be facilitated by the use of information and communication technology in medical and health education. This study intended to explore the use and impact of educational technology in medical education in resource-constrained environments. A multiple case study was conducted in two Nepalese teaching hospitals. The data were analysed using activity theory as an analytical basis. There was little evidence for formal e-learning, but the findings indicate that students and residents adopted mobile technologies, such as mobile phones and small laptops, as cultural tools for surprisingly rich 'informal' learning in a very short time. These tools allowed learners to enhance (a) situated learning, by immediately connecting virtual information sources to their situated experiences; (b) cross-contextual learning by documenting situated experiences in the form of images and videos and re-using the material for later reflection and discussion and (c) engagement with educational content in social network communities. By placing the students and residents at the centre of the new learning activities, this development has begun to affect the overall educational system. Leveraging these tools is closely linked to the development of broad media literacy, including awareness of ethical and privacy issues.

  8. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    NASA Astrophysics Data System (ADS)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  9. Sustaining Lesson Study: Resources and Factors that Support and Constrain Mathematics Teachers' Ability to Continue After the Grant Ends

    NASA Astrophysics Data System (ADS)

    Druken, Bridget Kinsella

    Lesson study, a teacher-led vehicle for inquiring into teacher practice through creating, enacting, and reflecting on collaboratively designed research lessons, has been shown to improve mathematics teacher practice in the United States, such as improving knowledge about mathematics, changing teacher practice, and developing communities of teachers. Though it has been described as a sustainable form of professional development, little research exists on what might support teachers in continuing to engage in lesson study after a grant ends. This qualitative and multi-case study investigates the sustainability of lesson study as mathematics teachers engage in a district scale-up lesson study professional experience after participating in a three-year California Mathematics Science Partnership (CaMSP) grant to improve algebraic instruction. To do so, I first provide a description of material (e.g. curricular materials and time), human (attending district trainings and interacting with mathematics coaches), and social (qualities like trust, shared values, common goals, and expectations developed through relationships with others) resources present in the context of two school districts as reported by participants. I then describe practices of lesson study reported to have continued. I also report on teachers' conceptions of what it means to engage in lesson study. I conclude by describing how these results suggest factors that supported and constrained teachers' in continuing lesson study. To accomplish this work, I used qualitative methods of grounded theory informed by a modified sustainability framework on interview, survey, and case study data about teachers, principals, and Teachers on Special Assignment (TOSAs). Four cases were selected to show the varying levels of lesson study practices that continued past the conclusion of the grant. Analyses reveal varying levels of integration, linkage, and synergy among both formally and informally arranged groups of

  10. Potential for natural evaporation as a reliable renewable energy resource.

    PubMed

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  11. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    DOE PAGES

    Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea

    2014-01-01

    A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less

  12. Reinforcement Learning for Constrained Energy Trading Games With Incomplete Information.

    PubMed

    Wang, Huiwei; Huang, Tingwen; Liao, Xiaofeng; Abu-Rub, Haitham; Chen, Guo

    2017-10-01

    This paper considers the problem of designing adaptive learning algorithms to seek the Nash equilibrium (NE) of the constrained energy trading game among individually strategic players with incomplete information. In this game, each player uses the learning automaton scheme to generate the action probability distribution based on his/her private information for maximizing his own averaged utility. It is shown that if one of admissible mixed-strategies converges to the NE with probability one, then the averaged utility and trading quantity almost surely converge to their expected ones, respectively. For the given discontinuous pricing function, the utility function has already been proved to be upper semicontinuous and payoff secure which guarantee the existence of the mixed-strategy NE. By the strict diagonal concavity of the regularized Lagrange function, the uniqueness of NE is also guaranteed. Finally, an adaptive learning algorithm is provided to generate the strategy probability distribution for seeking the mixed-strategy NE.

  13. Energy Technology Allocation for Distributed Energy Resources: A Technology-Policy Framework

    NASA Astrophysics Data System (ADS)

    Mallikarjun, Sreekanth

    Distributed energy resources (DER) are emerging rapidly. New engineering technologies, materials, and designs improve the performance and extend the range of locations for DER. In contrast, constructing new or modernizing existing high voltage transmission lines for centralized generation are expensive and challenging. In addition, customer demand for reliability has increased and concerns about climate change have created a pull for swift renewable energy penetration. In this context, DER policy makers, developers, and users are interested in determining which energy technologies to use to accommodate different end-use energy demands. We present a two-stage multi-objective strategic technology-policy framework for determining the optimal energy technology allocation for DER. The framework simultaneously considers economic, technical, and environmental objectives. The first stage utilizes a Data Envelopment Analysis model for each end-use to evaluate the performance of each energy technology based on the three objectives. The second stage incorporates factor efficiencies determined in the first stage, capacity limitations, dispatchability, and renewable penetration for each technology, and demand for each end-use into a bottleneck multi-criteria decision model which provides the Pareto-optimal energy resource allocation. We conduct several case studies to understand the roles of various distributed energy technologies in different scenarios. We construct some policy implications based on the model results of set of case studies.

  14. Energy Education Resources: Kindergarten through 12th Grade.

    ERIC Educational Resources Information Center

    Energy Information Administration (DOE), Washington, DC.

    This resource guide provides students, educators, and other information users with a list of generally available free or low-cost energy-related educational materials. The 163 organizations listed are each related to the subject fields of coal, electricity, energy efficiency/energy conservation, the environment, geosciences/earth sciences, natural…

  15. Energy resources of the developing countries and some priority markets for the use of solar energy

    NASA Technical Reports Server (NTRS)

    Siddiqi, T. A.; Hein, G. F.

    1977-01-01

    Energy consumption for the developed and non-developed world is expressed as a function of GNP. An almost straight-line graph results when energy consumption statistics are treated in this manner. The richest countries consume the most energy, and the poorest countries the least. It therefore follows that greater energy production in the developing countries (leading to greater energy consumption) will contribute to their economic growth. Energy resources in the developing countries are compared, including: solid fossil fuels, crude oil, natural gas, oil shale, and uranium. Mention is also made of the potential of renewable energy resources, such as solar, wind, and hydroelectric power, in the underdeveloped world; and it is these resources which offer the greatest possibilities for economic improvement if the money is forthcoming, i.e., from the world bank, to fund the necessary technology.

  16. Multi-objective optimal dispatch of distributed energy resources

    NASA Astrophysics Data System (ADS)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  17. Nutritional supplementation: the additional costs of managing children infected with HIV in resource-constrained settings.

    PubMed

    Cobb, G; Bland, R M

    2013-01-01

    To explore the financial implications of applying the WHO guidelines for the nutritional management of HIV-infected children in a rural South African HIV programme. WHO guidelines describe Nutritional Care Plans (NCPs) for three categories of HIV-infected children: NCP-A: growing adequately; NCP-B: weight-for-age z-score (WAZ) ≤-2 but no evidence of severe acute malnutrition (SAM), confirmed weight loss/growth curve flattening, or condition with increased nutritional needs (e.g. tuberculosis); NCP-C: SAM. In resource-constrained settings, children requiring NCP-B or NCP-C usually need supplementation to achieve the additional energy recommendation. We estimated the proportion of children initiating antiretroviral treatment (ART) in the Hlabisa HIV Programme who would have been eligible for supplementation in 2010. The cost of supplying 26-weeks supplementation as a proportion of the cost of supplying ART to the same group was calculated. A total of 251 children aged 6 months to 14 years initiated ART. Eighty-eight required 6-month NCP-B, including 41 with a WAZ ≤-2 (no evidence of SAM) and 47 with a WAZ >-2 with co-existent morbidities including tuberculosis. Additionally, 25 children had SAM and required 10-weeks NCP-C followed by 16-weeks NCP-B. Thus, 113 of 251 (45%) children were eligible for nutritional supplementation at an estimated overall cost of $11 136, using 2010 exchange rates. These costs are an estimated additional 11.6% to that of supplying 26-week ART to the 251 children initiated. It is essential to address nutritional needs of HIV-infected children to optimise their health outcomes. Nutritional supplementation should be integral to, and budgeted for, in HIV programmes. © 2012 Blackwell Publishing Ltd.

  18. Summary of the mineral- and energy-resource endowment, BLM roswell resource area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Sutphin, D.M.; Ball, M.M.; Korzeb, S.L.; Kness, R.F.; Dutchover, J.T.

    1993-01-01

    In this summary of two comprehensive resource reports produced by the U.S. Bureau of Mines and the U.S. Geological Survey for the U.S. Bureau of Land Management, we discuss the mineral- and energyresource endowment of the 14-millon-acre Roswell Resource Area, New Mexico, managed by the Bureau of Land Management. The Bureau and Survey reports result from separate studies that are compilations of published and unpublished data and integrate new findings on the geology, geochemistry, geophysics, mineral, industrial, and energy commodities, and resources for the seven-county area. The reports have been used by the Bureau of Land Management in preparation of the Roswell Resource Area Resource Management Plan, and will have future use in nationwide mineral- and energy-resource inventories and assessments, as reference and training documents, and as public-information tools. In the Roswell Resource Area, many metals, industrial mineral commodities, and energy resources are being, or have been, produced or prospected. These include metals and high-technology materials, such as copper, gold, silver, thorium, uranium and/or vanadium, rare-earth element minerals, iron, manganese, tungsten, lead, zinc, and molybdenum; industrial mineral resources, including barite, limestone/dolomite, caliche, clay, fluorspar, gypsum, scoria, aggregate, and sand and gravel; and fuels and associated resources, such as oil, gas, tar sand and heavy oil, coal, and gases associated with hydrocarbons. Other commodities that have yet to be identified in economic concentrations include potash, halite, polyhalite, anhydrite, sulfur, feldspar, building stone and decorative rock, brines, various gases associated with oil and gas exploration, and carbon dioxide. ?? 1993 Oxford University Press.

  19. The Energy Education Bibliography. An Annotated Bibliography of Key Resources for Energy and Conservation Education.

    ERIC Educational Resources Information Center

    Scherner, Sharon; And Others

    The annotated bibliography lists approximately 180 energy and conservation education resources. The bibliography is intended to aid K-12 classroom teachers and curriculum developers identify key resources as they develop and implement energy education programs. Sample topics in the works listed deal with the story of natural gas, living with…

  20. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    NASA Astrophysics Data System (ADS)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  1. Potential for natural evaporation as a reliable renewable energy resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre

    About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here in this paper we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. Wemore » estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.« less

  2. Potential for natural evaporation as a reliable renewable energy resource

    DOE PAGES

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; ...

    2017-09-26

    About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here in this paper we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. Wemore » estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.« less

  3. Impact of future energy policy on water resources in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  4. Renewable Energy Resources in Lebanon

    NASA Astrophysics Data System (ADS)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  5. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    PubMed

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  6. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid

    PubMed Central

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-01-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654

  7. Wet Waste-to-Energy Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, Anelia R; Heimiller, Donna M; Seiple, Timothy

    Waste-to-energy (WTE) technologies present an opportunity to recycle organic waste material into renewable energy while offsetting disposal and environmental costs. A key challenge to ensuring economic and environmental viability of WTE is understanding the variability of individual WTE resource characteristics, including their location, amount, and quality. The main objective of this study is to estimate the wet WTE resource potential in the United States and illustrate its geographic distribution. The wet resources considered in this study are wastewater sludge, animal manure, food waste, and FOG (fats, oils, and greases). This study is the first to achieve results below national level,more » at the finest geographic resolution. Our analysis indicates that about 566 teragrams (Tg) of wet WTE resources are generated annually in the United States. This amount corresponds to about 1 exajoule (EJ), which is sufficient to displace about 18% of the 2015 U.S. on-highway diesel consumption on an energy basis. About half of this potential is generated by animal manure.« less

  8. Energy Crisis: Libya's and Nigeria's Role. Resource Packet.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    This resource packet contains practical suggestions and resource materials to help secondary teachers teach about Libya's and Nigeria's roles in the energy crisis. Students become acquainted with the governments and cultures of the two countries, examine their social problems, and learn how the Libyan and Nigerian governments are using money from…

  9. E-learning in medical education in resource constrained low- and middle-income countries.

    PubMed

    Frehywot, Seble; Vovides, Yianna; Talib, Zohray; Mikhail, Nadia; Ross, Heather; Wohltjen, Hannah; Bedada, Selam; Korhumel, Kristine; Koumare, Abdel Karim; Scott, James

    2013-02-04

    In the face of severe faculty shortages in resource-constrained countries, medical schools look to e-learning for improved access to medical education. This paper summarizes the literature on e-learning in low- and middle-income countries (LMIC), and presents the spectrum of tools and strategies used. Researchers reviewed literature using terms related to e-learning and pre-service education of health professionals in LMIC. Search terms were connected using the Boolean Operators "AND" and "OR" to capture all relevant article suggestions. Using standard decision criteria, reviewers narrowed the article suggestions to a final 124 relevant articles. Of the relevant articles found, most referred to e-learning in Brazil (14 articles), India (14), Egypt (10) and South Africa (10). While e-learning has been used by a variety of health workers in LMICs, the majority (58%) reported on physician training, while 24% focused on nursing, pharmacy and dentistry training. Although reasons for investing in e-learning varied, expanded access to education was at the core of e-learning implementation which included providing supplementary tools to support faculty in their teaching, expanding the pool of faculty by connecting to partner and/or community teaching sites, and sharing of digital resources for use by students. E-learning in medical education takes many forms. Blended learning approaches were the most common methodology presented (49 articles) of which computer-assisted learning (CAL) comprised the majority (45 articles). Other approaches included simulations and the use of multimedia software (20 articles), web-based learning (14 articles), and eTutor/eMentor programs (3 articles). Of the 69 articles that evaluated the effectiveness of e-learning tools, 35 studies compared outcomes between e-learning and other approaches, while 34 studies qualitatively analyzed student and faculty attitudes toward e-learning modalities. E-learning in medical education is a means to an end

  10. Prior image constrained image reconstruction in emerging computed tomography applications

    NASA Astrophysics Data System (ADS)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  11. Bibliography of The World Energy Resources Program

    USGS Publications Warehouse

    Masters, Charles D.

    1994-01-01

    The following publications were prepared in the course of World Energy Studies by program scientists. Most are open-file reports because we consider it our prime responsibility to get the program supporting data into the public record. Various of the authors have also seen fit to publish their work in refereed scientific journals and those publication outlets are also listed.The summation of the program work is reported in the proceedings volumes of the World Petroleum Congresses-see Global section of the bibliography. In those reports, petroleum resource data were aggregated by major petroleum resource countries. It is our intention to ultimately report resource data by petroleum basin in order to provide a closer tie of resource understanding and petroleum geology.

  12. Extracting electron transfer coupling elements from constrained density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Van Voorhis, Troy

    2006-10-01

    Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.

  13. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Treesearch

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  14. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  15. Marine Renewable Energy: Resource Characterization and Physical Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Copping, Andrea E.

    This complete reference to marine renewable energy covers aspects of resource characterization and physical effects of harvesting the ocean’s vast and powerful resources—from wave and tidal stream to ocean current energy. Experts in each of these areas contribute their insights to provide a cohesive overview of the marine renewable energy spectrum based on theoretical, numerical modeling, and field-measurement approaches.

  16. The Effect of Waves on the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.

    2016-02-01

    The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.

  17. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  18. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  19. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    USGS Publications Warehouse

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  20. Post-approval monitoring and oversight of U.S.-initiated human subjects research in resource-constrained countries.

    PubMed

    Brown, Brandon; Kinsler, Janni; Folayan, Morenike O; Allen, Karen; Cáceres, Carlos F

    2014-06-01

    The history of human subjects research and controversial procedures in relation to it has helped form the field of bioethics. Ethically questionable elements may be identified during research design, research implementation, management at the study site, or actions by a study's investigator or other staff. Post-approval monitoring (PAM) may prevent violations from occurring or enable their identification at an early stage. In U.S.-initiated human subjects research taking place in resource-constrained countries with limited development of research regulatory structures, arranging a site visit from a U.S. research ethics committee (REC) becomes difficult, thus creating a potential barrier to regulatory oversight by the parent REC. However, this barrier may be overcome through the use of digital technologies, since much of the world has at least remote access to the Internet. Empirical research is needed to pilot test the use of these technologies for research oversight to ensure the protection of human subjects taking part in research worldwide.

  1. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers

    USGS Publications Warehouse

    Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.

    2013-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.

  2. Global impacts of energy demand on the freshwater resources of nations.

    PubMed

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  3. Global impacts of energy demand on the freshwater resources of nations

    PubMed Central

    Holland, Robert Alan; Scott, Kate A.; Flörke, Martina; Brown, Gareth; Ewers, Robert M.; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-01-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy. PMID:26627262

  4. Extracting electron transfer coupling elements from constrained density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Qin; Van Voorhis, Troy

    2006-10-28

    Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (H{sub ab}) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculationsmore » on the Zn{sub 2}{sup +} and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives H{sub ab}{approx_equal}17 kcal/mol, which qualitatively disagrees with experimental results, the H{sub ab} calculated from constrained DFT is about 3 kcal/mol and the generated ground state has a barrier height of 1.70 kcal/mol, successfully predicting (Q-TTF-Q){sup -} to be a class II mixed-valence compound.« less

  5. Improving an Assessment of Tidal Stream Energy Resource for Anchorage, Alaska

    NASA Astrophysics Data System (ADS)

    Xu, T.; Haas, K. A.

    2016-12-01

    Increasing global energy demand is driving the pursuit of new and innovative energy sources leading to the need for assessing and utilizing alternative, productive and reliable energy resources. Tidal currents, characterized by periodicity and predictability, have long been explored and studied as a potential energy source, focusing on many different locations with significant tidal ranges. However, a proper resource assessment cannot be accomplished without accurate knowledge of the spatial-temporal distribution and availability of tidal currents. Known for possessing one of the top tidal energy sources along the U.S. coastline, Cook Inlet, Alaska is the area of interest for this project. A previous regional scaled resource assessment has been completed, however, the present study is to focus the assessment on the available power specifically near Anchorage while significantly improving the accuracy of the assessment following IEC guidelines. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is configured to simulate the tidal flows with grid refinement techniques for a minimum of 32 days, encompassing an entire lunar cycle. Simulation results are validated by extracting tidal constituents with harmonic analysis and comparing tidal components with National Oceanic and Atmospheric Administration (NOAA) observations and predictions. Model calibration includes adjustments to bottom friction coefficients and the usage of different tidal database. Differences between NOAA observations and COAWST simulations after applying grid refinement decrease, compared with results from a former study without grid refinement. Also, energy extraction is simulated at potential sites to study the impact on the tidal resources. This study demonstrates the enhancement of the resource assessment using grid refinement to evaluate tidal energy near Anchorage within Cook Inlet, Alaska, the productivity that energy extraction can achieve and the change in tidal

  6. Management of multiple myeloma in resource-constrained settings.

    PubMed

    Kumar, Lalit; Kumar Sahoo, Ranjit

    2016-12-01

    The prognosis of patients with multiple myeloma (MM) has improved significantly in the past two decades. This is attributed to use of novel agents for induction, high-dose chemotherapy and autologous stem cell transplantation (ASCT), maintenance therapy, and improved supportive care. Currently, evidence-based management guidelines/recommendations developed by International societies/groups are being followed partially in low-resource settings. Lack of quality diagnostics (eg, cytogenetics/fluorescence in situ hybridization (FISH), serum free light chains), novel therapeutics, and trained manpower, and limited financial resources are key challanges. An optimal utilization of available resources with continued educational activities of treating physicians focused on improving knowledge in the management of such patients may be a way forward to improve the outcome of myeloma patients in these countries. Our current approach to the management of this disease is presented here through a discussion of clinical vignettes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    energy distortions encountered in constrained ICMD simulations of peptide molecules.

  8. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    energy distortions encountered in constrained ICMD simulations of peptide molecules.

  9. Constraining the dark energy models with H (z ) data: An approach independent of H0

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Fotios K.; Basilakos, Spyros

    2018-03-01

    We study the performance of the latest H (z ) data in constraining the cosmological parameters of different cosmological models, including that of Chevalier-Polarski-Linder w0w1 parametrization. First, we introduce a statistical procedure in which the chi-square estimator is not affected by the value of the Hubble constant. As a result, we find that the H (z ) data do not rule out the possibility of either nonflat models or dynamical dark energy cosmological models. However, we verify that the time varying equation-of-state parameter w (z ) is not constrained by the current expansion data. Combining the H (z ) and the Type Ia supernova data, we find that the H (z )/SNIa overall statistical analysis provides a substantial improvement of the cosmological constraints with respect to those of the H (z ) analysis. Moreover, the w0-w1 parameter space provided by the H (z )/SNIa joint analysis is in very good agreement with that of Planck 2015, which confirms that the present analysis with the H (z ) and supernova type Ia (SNIa) probes correctly reveals the expansion of the Universe as found by the team of Planck. Finally, we generate sets of Monte Carlo realizations in order to quantify the ability of the H (z ) data to provide strong constraints on the dark energy model parameters. The Monte Carlo approach shows significant improvement of the constraints, when increasing the sample to 100 H (z ) measurements. Such a goal can be achieved in the future, especially in the light of the next generation of surveys.

  10. The UK wave energy resource

    NASA Astrophysics Data System (ADS)

    Winter, A. J. B.

    1980-10-01

    Previous estimates of wave energy around the United Kingdom have been made by extrapolating measurements from a few sites to the whole UK seaboard. Here directional wave spectra are used from a numerical wave model developed by the Meteorological Office to make estimates which are verified where possible by observation. It is concluded that around 30 GW of power is available for capture by wave energy converters: when estimates of converter spacing and efficiency are considered an average of about 7 GW of electrical power could be supplied. This resource estimate is smaller than previous ones, though consistent with them when factors such as the directional properties of waves and the likelihood that converters will be sited near coasts are included.

  11. Constraining Glacial Runoff Contributions to Water Resources in the Cordillera Real, Bolivia using Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Guido, Z.; McIntosh, J. C.; Papuga, S. A.

    2013-12-01

    Warming temperatures in recent decades have contributed to substantial reductions in glaciers in many mountain regions around the globe, including the South American Andes. Melting of these glaciers taps water resources accumulated in past climates, and the diminishing ice marks a decrease in a nonrenewable water source that begs the question: how will future water supplies be impacted by climate change. Water resource management and climate adaptation efforts can be informed by knowledge of the extent to which glaciers contribute to seasonal streamflows, but remote locations and scant monitoring often limit this quantification. In Bolivia, more than two million people draw water from watersheds fed, in part, by glaciers. The amount to which these glaciers contribute to the water supply, however, is not well constrained. We apply elemental and isotopic tracers in an end-member mixing model to quantify glacial runoff contributions to local water supplies. We present oxygen and deuterium isotopes and major anion concentrations (sulfate and chloride) of shallow groundwater, streams, reservoirs, small arroyos, and glacial runoff. Isotopic and anion mixing models suggest between 45-67% of the water measured in high altitude streams originated from within the glacial footprint during the 2011 wet season, while glacial runoff contributed about 42-53% of the water in reservoirs in the 2012 dry season. Data also show that shallow groundwater is connected to glacial-fed streams. Any future decrease in glacial runoff may contribute to a reduction in surface water supplies and lower groundwater levels downstream, perhaps below the depth of hand-dug wells common in rural communities.

  12. 76 FR 8723 - Minnesota Energy Resources Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-75-000] Minnesota Energy Resources Corporation; Notice of Application Take notice that on February 1, 2011, Minnesota.... MERC proposes to take service from NorthWestern Energy near the South Dakota/Minnesota border, and...

  13. Effective Teaching of Economics: A Constrained Optimization Problem?

    ERIC Educational Resources Information Center

    Hultberg, Patrik T.; Calonge, David Santandreu

    2017-01-01

    One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…

  14. Climate and Offshore Energy Resources.

    DTIC Science & Technology

    1980-12-30

    SECuRITY CL.ASSIPIcaTIoN OF, TIns PA@elm VaeVa CLMATE ANID OFFSHORE ENERGY RESOUACES A distinguished group of government officials, scientists, engineers...about the mech- anisms of climatic systems, and gaining a better understanding of the impact of climatic change on human resources.* He continued by...atmospheric constit- uents, but he particularly emphasized " changes " in C02. He suggested that the atmospheric conditions may be better now than they were half

  15. E-learning in medical education in resource constrained low- and middle-income countries

    PubMed Central

    2013-01-01

    Background In the face of severe faculty shortages in resource-constrained countries, medical schools look to e-learning for improved access to medical education. This paper summarizes the literature on e-learning in low- and middle-income countries (LMIC), and presents the spectrum of tools and strategies used. Methods Researchers reviewed literature using terms related to e-learning and pre-service education of health professionals in LMIC. Search terms were connected using the Boolean Operators “AND” and “OR” to capture all relevant article suggestions. Using standard decision criteria, reviewers narrowed the article suggestions to a final 124 relevant articles. Results Of the relevant articles found, most referred to e-learning in Brazil (14 articles), India (14), Egypt (10) and South Africa (10). While e-learning has been used by a variety of health workers in LMICs, the majority (58%) reported on physician training, while 24% focused on nursing, pharmacy and dentistry training. Although reasons for investing in e-learning varied, expanded access to education was at the core of e-learning implementation which included providing supplementary tools to support faculty in their teaching, expanding the pool of faculty by connecting to partner and/or community teaching sites, and sharing of digital resources for use by students. E-learning in medical education takes many forms. Blended learning approaches were the most common methodology presented (49 articles) of which computer-assisted learning (CAL) comprised the majority (45 articles). Other approaches included simulations and the use of multimedia software (20 articles), web-based learning (14 articles), and eTutor/eMentor programs (3 articles). Of the 69 articles that evaluated the effectiveness of e-learning tools, 35 studies compared outcomes between e-learning and other approaches, while 34 studies qualitatively analyzed student and faculty attitudes toward e-learning modalities. Conclusions E

  16. Marketable energy resources in Alabama: a partially annotated research bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-01

    This bibliography has been compiled to provide a guide to the published research, both basic and applied, on the commercial potential and possible energy contribution of selected domestic renewable and non-renewable energy resources in Alabama. Some of the renewable and non-renewable energy resources documented in published form and highlighted in this bibliography include coal, oil, small-scale hydroelectric power, natural gas, wind energy, waste wood, and uranium. Citations dealing mainly with solar energy can be obtained by contacting organizations involved in the development of solar energy. The information for this publication was derived from a number of sources; including the Geologicalmore » Survey of Alabama, Office of State Planning and Federal Program's Planning Reference Service, US Department of Energy's Technical Information Center at Oak Ridge, Tennessee, School of Mines and Energy Development of the University of Alabama, Mineral Resources Institute and State Mine Experiment Station of the University of Alabama. Each citation is complete insofar as the information was available to the compiler. Most abstracts contain some summary information on uses, technology, and economics. These summaries are not meant to be exhaustive. Users of the bibliography should deal directly with the Technical Information Center, US Department of Energy, PO Box 62, Oak Ridge, Tennessee 37830, or the supporting organization or project investigator as to the availability of copies of completed projects in report or book form. (PSB)« less

  17. New Mexico energy research resource registry. Researchers and facilities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

  18. 75 FR 45623 - Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-79-000] Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC; Notice of Complaint...) filed a complaint against PSEG Energy Resources & Trade, LLC, PSEG Fossil LLC and PSEG Power LLC (PSEG...

  19. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing

    PubMed Central

    Hu, Yu-Chen

    2018-01-01

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  20. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing.

    PubMed

    Lin, Yu-Hsiu; Hu, Yu-Chen

    2018-04-27

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power

  1. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Lisa; Wei, Max; Morrow, William

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses onmore » end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.« less

  2. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivero, Mariah

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "allmore » resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.« less

  3. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    NASA Astrophysics Data System (ADS)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  4. 25 CFR 162.520 - Who owns the energy resource information obtained under the WEEL?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Weels § 162.520 Who owns the energy resource information obtained under the WEEL? (a) The WEEL must specify the ownership of any energy... 25 Indians 1 2014-04-01 2014-04-01 false Who owns the energy resource information obtained under...

  5. 25 CFR 162.520 - Who owns the energy resource information obtained under the WEEL?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Weels § 162.520 Who owns the energy resource information obtained under the WEEL? (a) The WEEL must specify the ownership of any energy... 25 Indians 1 2013-04-01 2013-04-01 false Who owns the energy resource information obtained under...

  6. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    NASA Astrophysics Data System (ADS)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  7. National Renewable Energy Laboratory Information Resources Catalogue. A collection of energy efficiency and renewable energy information resources

    NASA Astrophysics Data System (ADS)

    1994-05-01

    NREL's first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL's outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be accessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL's series publications written for specific audiences and presenting a wide range of subjects. NREL's General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  8. 25 CFR 224.80 - Under what authority will a tribe perform activities for energy resource development?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... energy resource development? 224.80 Section 224.80 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Implementation of Tribal Energy Resource Agreements Applicable Authorities...

  9. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    NASA Astrophysics Data System (ADS)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  10. Multi-objective generation scheduling with hybrid energy resources

    NASA Astrophysics Data System (ADS)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  11. A Strategy for Developing Future Academic Leaders for South Africa in a Resource-Constrained Environment

    PubMed Central

    Lalloo, Umesh G.; Bobat, Raziya A.; Pillay, Sandy; Wassenaar, Douglas

    2014-01-01

    A key challenge in addressing the shortage of health care workers in resource-constrained environments is ensuring that there is optimal academic capacity for their training. South Africa’s University of KwaZulu-Natal has placed academic and research capacity building at the heart of its program with the Medical Education Partnership Initiative (MEPI) in a program called ENhancing Training, REsearch Capacity, and Expertise (ENTREE). The program is premised on the basis that research capacity development will lead to an increase in teachers who will be essential to improving the quality and quantity of health care workers needed to meet South Africa’s health challenges. This is being achieved through four components of the program: (1) infusion of the undergraduate program with research modules; (2) attraction of academically talented students in the middle of their undergraduate program into a parallel track that has research capacity as its major thrust; (3) attraction of qualified health care personnel into a supported PhD program; and (4) providing strong research ethics training and mentorship. A significant proportion of the program is being executed in rural training sites, to increase the probability that trainees will return to the sites as mentors. PMID:25072580

  12. 25 CFR 224.80 - Under what authority will a tribe perform activities for energy resource development?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... energy resource development? 224.80 Section 224.80 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT... development? A tribe will perform activities for energy resource development activities undertaken under a...

  13. Practical Materials for Teaching. Resource File: Edition I. Energy Management.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This directory lists energy education programs directed at increasing the energy conservation awareness of scientists, engineers, managers, and technicians working in fields where they are responsible for managing energy consumption. The resource is prepared to help with the process of identifying, selecting, and obtaining materials for promoting…

  14. Evaluation model of wind energy resources and utilization efficiency of wind farm

    NASA Astrophysics Data System (ADS)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  15. Stretched hydrogen molecule from a constrained-search density-functional perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven M; Levy, Mel

    2009-01-01

    Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less

  16. Task 2 Report - A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nathan; Grue, Nicholas W; Rosenlieb, Evan

    The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resourcesmore » for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy

  17. Constrained minimization of smooth functions using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  18. Teaching About Energy. Vol. 2. Units 1 and 2 of the Energy 80 Resource Book.

    ERIC Educational Resources Information Center

    Enterprise for Education, Santa Monica, CA.

    This document is the second of a three-volume teacher resource book for use with the Energy 80 energy education program. The program is designed to enhance students' understanding of energy, either through supplements to traditional courses, such as mathematics, science, social studies, or homemaking, or by developing a mini-course or…

  19. Teaching About Energy. Vol. 3. Units 3 through 8 of the Energy 80 Resource Book.

    ERIC Educational Resources Information Center

    Enterprise for Education, Santa Monica, CA.

    This document is the third of a three-volume teacher resource book for use with the Energy 80 energy education program. The program is designed to enhance students' understanding of energy, either through supplements to traditional courses, such as mathematics, science, social studies, or homemaking, or by developing a mini-course or…

  20. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    NASA Astrophysics Data System (ADS)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  1. Resource Letter AFHEP-1: Accelerators for the Future of High-Energy Physics

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2012-02-01

    This Resource Letter provides a guide to literature concerning the development of accelerators for the future of high-energy physics. Research articles, books, and Internet resources are cited for the following topics: motivation for future accelerators, present accelerators for high-energy physics, possible future machine, and laboratory and collaboration websites.

  2. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Dai, Zi-Gao

    2017-09-01

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

  3. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Di; Dai, Zi-Gao, E-mail: dzg@nju.edu.cn

    2017-09-10

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occursmore » in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.« less

  4. A TV-constrained decomposition method for spectral CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang

    2017-03-01

    Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.

  5. Toward a Regional Geography of Renewable Electrical Energy Resources.

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  6. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  7. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  8. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee.

    PubMed

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources.

  9. Towards Designing an Integrated Earth Observation System for the Provision of Solar Energy Resource and Assessment

    NASA Technical Reports Server (NTRS)

    Stackouse, Paul W., Jr.; Renne, D.; Beyer, H.-G.; Wald, L.; Meyers, R.; Perez, R.; Suri, M.

    2006-01-01

    The GEOSS strategic plan specifically targets the area of improved energy resource management due to the importance of these to the economic and social viability of every nation of the world. With the world s increasing demand for energy resources, the need for new alternative energy resources grows. This paper overviews a new initiative within the International Energy Agency that addresses needs to better manage and develop solar energy resources worldwide. The goal is to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information of the solar radiation resources at the Earth's surface in easily-accessible formats and understandable quality metrics. The scope of solar resource assessment information includes historic data sets and currently derived data products using satellite imagery and other means. Thus, this new task will address the needs of the solar energy sector while at the same time will serve as a model that satisfies GEOSS objectives and goals.

  10. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  11. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  12. Light-weight cyptography for resource constrained environments

    NASA Astrophysics Data System (ADS)

    Baier, Patrick; Szu, Harold

    2006-04-01

    We give a survey of "light-weight" encryption algorithms designed to maximise security within tight resource constraints (limited memory, power consumption, processor speed, chip area, etc.) The target applications of such algorithms are RFIDs, smart cards, mobile phones, etc., which may store, process and transmit sensitive data, but at the same time do not always support conventional strong algorithms. A survey of existing algorithms is given and new proposal is introduced.

  13. 75 FR 3461 - Minnesota Energy Resources Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... Resources Corporation; Notice of Filing January 13, 2010. Take notice that on December 29, 2009, Minnesota Energy Resources Corporation (MERC) filed to update the state approved rate for services under its... subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance...

  14. Resource management tools based on renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Boghrat, Pedram; Pradhan, Ranjit; Kostrzewski, Andrew

    2012-06-01

    Renewable energy is an important source of power for unattended sensors (ground, sea, air), tagging systems, and other remote platforms for Homeland Security and Homeland Defense. Also, Command, Control, Communication, and Intelligence (C3I) systems and technologies often require renewable energy sources for information assurance (IA), in general, and anti-tampering (AT), in particular. However, various geophysical and environmental conditions determine different types of energy harvesting: solar, thermal, vibration, acoustic, hydraulic, wind, and others. Among them, solar energy is usually preferable, but, both a solar habitat and the necessity for night operation can create a need for other types of renewable energy. In this paper, we introduce figures of merit (FoMs) for evaluating preferences of specific energy sources, as resource management tools, based on geophysical conditions. Also, Battery Systemic Modeling is discussed.

  15. Resources for Teaching about Energy in the Social Studies Classroom.

    ERIC Educational Resources Information Center

    Sherman, Robin; Stone, Kim

    1992-01-01

    Lists instructional resources for use by social studies teachers in teaching about energy. Includes curriculum materials, videotapes, organizations, government agencies, and industry trade associations that can provide information. Suggests items on energy conservation, global warming, ecology, nuclear power, fossil fuels, oil spills, and…

  16. A Guide for Vocational Energy Education: Resources, Key People, Classroom Materials. Oregon Vocational Energy Education Project.

    ERIC Educational Resources Information Center

    Oregon Vocational Association, Gervais.

    Intended as a resource tool for integrating energy and conservation education into the vocational skills areas, this resource guide consists of listings of instructional and technical materials pertaining to 14 vocational curriculum areas. These areas are agriculture, agriculture/agribusiness, architecture, automotive, business, construction,…

  17. A strategy for developing future academic leaders for South Africa in a resource-constrained environment.

    PubMed

    Lalloo, Umesh G; Bobat, Raziya A; Pillay, Sandy; Wassenaar, Douglas

    2014-08-01

    A key challenge in addressing the shortage of health care workers in resource-constrained environments is ensuring that there is optimal academic capacity for their training. South Africa's University of KwaZulu-Natal has placed academic and research capacity building at the heart of its program with the Medical Education Partnership Initiative in a program called ENhancing Training and REsearch capacity and Expertise (ENTREE). The program aims to increase the quantity, quality, and retention of health care graduates. It is premised on the basis that research capacity development will lead to an increase in teachers who will be essential to improving the quality and quantity of health care workers needed to meet South Africa's health challenges. This is being achieved through four components of the program: (1) infusion of the undergraduate program with research modules; (2) attraction of academically talented students in the middle of their undergraduate program into a parallel track that has research capacity as its major thrust; (3) attraction of qualified health care personnel into a supported PhD program; and (4) providing strong research ethics training and mentorship. A significant proportion of the program is being executed in rural training sites, to increase the probability that trainees will return to the sites as mentors.

  18. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers and the public

    USGS Publications Warehouse

    Carr, N.B.; Babel, N.; Diffendorfer, J.; Ignizio, D.; Hawkins, S.; Latysh, N.; Leib, K.; Linard, J.; Matherne, A.

    2012-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of oil, gas (including shale gas and coal-bed methane), and uranium, as well as renewable energy resources such as geothermal, solar, and wind. Much of the development in the West is occurring on public lands, including those under Federal and State jurisdictions. In Colorado and New Mexico, these public lands make up about 40 percent of the land area. Both states benefit from the revenue generated by energy production, but resource managers and other decisionmakers must balance the benefits of energy development with the potential consequences for ecosystems, recreation, and other resources. Although a substantial amount of geospatial data on existing energy development and energy potential is available, much of this information is not readily accessible to natural resource decisionmakers, policymakers, or the public. Furthermore, the data often exist in varied formats, requiring considerable processing before these datasets can be used to evaluate tradeoffs among resources, compare development alternatives, or quantify cumulative impacts. To allow for a comprehensive evaluation among different energy types, an interdisciplinary team of U.S. Geological Survey (USGS) scientists has developed an online Interactive Energy Atlas for Colorado and New Mexico. The Energy and Environment in the Rocky Mountain Area (EERMA) interdisciplinary team includes investigators from several USGS science centers1. The purpose of the EERMA Interactive Energy Atlas is to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The Atlas is designed to meet the needs of various users, including GIS analysts, resource managers, policymakers, and the public, who seek information about energy in the western United States. Currently, the Atlas has two primary capabilities, a GIS data viewer and an

  19. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  20. Marginalization of end-use technologies in energy innovation for climate protection

    NASA Astrophysics Data System (ADS)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  1. NOGA Online: a USGS resource for energy GIS data and services

    USGS Publications Warehouse

    Biewick, Laura; Gunther, Greg L.

    2003-01-01

    The PowerPoint presentation in this report was given at the BLM Resource Management Tools Conference in Phoenix, Arizona, April, 2003. Some diagrams that appeared in the original presentation have been updated in this report. It informs that the U.S. Geological Survey (USGS) Central Energy Resources Team (CERT) in Denver, Colorado, is providing National Oil and Gas Assessment (NOGA) results online at http://energy.cr.usgs.gov/oilgas/noga/. Available at this site are recently completed assessments of the potential for undiscovered oil and natural gas resources of five priority provinces (Montana Thrust Belt, Powder River Basin, San Juan Basin, Southwestern Wyoming, Uinta-Piceance) to meet the requirements of the Energy Policy and Conservation Act of 2000 (EPCA 2000). High demand for current assessment results and for the entirely digital, 1995 NOGA results for other provinces, prompted CERT to develop an internet map application using ArcIMS to deliver geologic data to the public. CERT continues to work on assessing oil and natural gas resources of priority basins in the United States; assessment results and GIS layers are made available at this site on an ongoing basis.

  2. Future petroleum energy resources of the world

    USGS Publications Warehouse

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  3. Optimal Control of Distributed Energy Resources using Model Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizingmore » costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.« less

  4. Thorium Energy Resources and its Potential of Georgian Republic, The Caucasus

    NASA Astrophysics Data System (ADS)

    Gogoladze, Salome; Okrostsvaridze, Avtandil

    2017-04-01

    Energy resources, currently consumed by modern civilization, are represented by hydrocarbons - 78-80 %, however these reserves are exhausting. In light of these challenges, search of new energy resources is vital importance problem for the modern civilization. Based on the analysis of existing energy reserves and potential, as the main energy resources for the future of our civilization, the renewable and nuclear energy should be considered. However, thorium has a number of advantages compared to Uranium (Kazimi, 2003; et al.): It is concentrated in the earth crust 4-5 times more than uranium; extraction and enrichment of thorium is much cheaper than uranium's; It is less radioactive; complete destruction of its waste products is possible; thorium yields much more energy than uranium. Because of unique properties and currently existed difficult energetic situation thorium is considered as the main green energy resource in the 3rd millennium of the human civilization (Martin, 2009). Georgia republic, which is situated in the central part of Caucasus, poor of hydrocarbons, but has a thorium resource important potential. In general the Caucasus represents a collisional orogen, that formed along the Eurasian North continental margin and extends over 1200 km from Caspian to Black Sea. Three major units are distinguished in its construction: the Greater and Lesser Caucasian mobile belts and the Transcaucasus microplate. Currently it represents the Tethyan segment connecting the Mediterranean and Iran-Himalayan orogenic belts, between the Gondvana-derived Arabian plate and East European platform. Now in Georgian Republic are marked thorium four ore occurrences (Okrostsvaridze, 2014): 1- in the Sothern slope of the Greater Caucasus, in the quartz -plagioclases veins (Th concentrations vary between 51g/t - 3882 g/t); 2- in the Transcaucasus Dzirula massif hydrothermally altered rocks of the Precambrian quartz-diorite gneisses (Th concentrations vary between 117 g/t -266 g

  5. A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel Wireless Sensor Networks

    PubMed Central

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen

    2013-01-01

    One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.

  6. Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2018-01-01

    There are indications that γ-ray dark objects such as supernovae (SNe) with choked jets, and the cores of active galactic nuclei may contribute to the diffuse flux of astrophysical neutrinos measured by the IceCube observatory. In particular, stripped-envelope SNe have received much attention since they are capable of producing relativistic jets and could explain the diversity in observations of collapsar explosions (e.g., gamma-ray bursts (GRBs), low-luminosity GRBs, and Type Ibc SNe). We use an unbinned maximum likelihood method to search for spatial and temporal coincidences between Type Ibc core-collapse SNe, which may harbor a choked jet, and muon neutrinos from a sample of IceCube up-going track-like events measured from May 2011–May 2012. In this stacking analysis, we find no significant deviation from a background-only hypothesis using one year of data, and are able to place upper limits on the total amount of isotropic equivalent energy that choked jet core-collapse SNe deposit in cosmic rays Script Ecr and the fraction of core-collapse SNe which have a jet pointed towards Earth fjet. This analysis can be extended with yet to be made public IceCube data, and the increased amount of optically detected core-collapse SNe discovered by wide field-of-view surveys such as the Palomar Transient Factory and All-Sky Automated Survey for Supernovae. The choked jet SNe/high-energy cosmic neutrino connection can be more tightly constrained in the near future.

  7. Thorium Deposits of the United States - Energy Resources for the Future?

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Gillerman, Virginia S.; Armbrustmacher, Theodore J.

    2009-01-01

    Many nations are exploring new ways to meet their growing energy supply needs, with a particular focus upon methods that produce lower carbon dioxide emissions compared to traditional oil, natural gas, and coal power plants. As a result, thorium-based nuclear power has experienced renewed attention as a potential energy source. Thus, it benefits the United States and other countries to identify and evaluate their indigenous thorium resources. This report describes the geology and resources of the principal thorium districts of the United States.

  8. Energy resources available to the United States, 1985 to 2000.

    PubMed

    Hayes, E T

    1979-01-19

    Energy and the gross national product have grown hand in hand at 3 to 3(1/2) percent a year for almost 40 years. Our energy growth is slowing down and will sentially level off in the 1990's. Our production of oil and gas passed a peak in the early 1970's, and there is no resource base to justify predictions of increased yields. Coal is the only fossil fuel capable of increased production. There are serious doubts that our uranium resources can support a large light-water reactor program. Finding rates for petroleum, natural gas, and uranium are less than half of what they were 20 years ago.

  9. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee

    PubMed Central

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. PMID:26943127

  10. Lower Velocity Sites Improve the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Robins, P. E.; Lewis, M. J.; Neill, S. P.; Hashemi, M. R.; Stephenson, G.

    2015-12-01

    It is essential that developers have detailed knowledge of the tidal-stream energy resource. ROMS hydrodynamic models (~1 km resolution) of key areas in northwest Europe, were used to examine the spatial and temporal distribution of the tidal-stream resource. Currently, sites with peak spring tide velocities (M2 and S2 constituents) in excess of 2.5 m/s and water depths between 25 and 50 m are preferred. When assuming this so-called "1st generation" criteria, a limited resource with limited scope for long-term sustainability of the industry was calculated for the Irish Sea; a key area for UK development. Selecting sites that also included 20% lower velocities (>2 m/s) and deeper water locations (>25m) resulted in a seven-fold increase in the available resource (for the Irish Sea). Although new engineering challenges will be encountered (e.g. more wave exposed locations) by developing these 2nd generation tidal-stream energy sites (>2m/s and >25m), some oceanographic challenges would be improved. For example, the flood-ebb tidal flow is not typically rectilinear at 1st generation UK sites (a mean error from rectilinear of ~20° in this assumption), which is reduced to near-rectilinear flow (˜3° error) when including 2nd generation sites. Analysis of our northwest European model revealed more phase diversity is offered by developing lower tidal energy sites, allowing firm and constant electricity generation. Moreover, at 1st generation sites, we calculate significant, and unaccounted, variability in annual practical power generation. For example, mean peak spring tidal velocities can under-estimate the annual practical resource by up to 25%, for regions experiencing similar mean peak spring tidal velocities, due to the ratio of M2 and S2, together with the influence of other tidal constituents, such as K1 and O1. Therefore, based on prevalence, firm power and engineering challengers, we find a strong case for developing lower flow technologies.

  11. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  12. Satellite Power System (SPS) resource requirements (critical materials, energy, and land)

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    The resource impacts of the proposed satellite power system (SPS) were reviewed. Three classes of resource impacts were considered separately: critical materials, energy and land use. The analysis focused on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.

  13. Satellite Power System (SPS) resource requirements (critical materials, energy and land)

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    The resource impacts of the proposed satellite power system are evaluated. Three classes of resource impacts are considered separately: critical materials, energy, and land use. The analysis focuses on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.

  14. Controlled elastic postbuckling of bilaterally constrained non-prismatic columns: application to enhanced quasi-static energy harvesters

    NASA Astrophysics Data System (ADS)

    Liu, Suihan; Burgueño, Rigoberto

    2016-12-01

    Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.

  15. A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizukami, Wataru, E-mail: wataru.mizukami@bristol.ac.uk; Tew, David P., E-mail: david.tew@bristol.ac.uk; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk

    2014-10-14

    We present a new approach to semi-global potential energy surface fitting that uses the least absolute shrinkage and selection operator (LASSO) constrained least squares procedure to exploit an extremely flexible form for the potential function, while at the same time controlling the risk of overfitting and avoiding the introduction of unphysical features such as divergences or high-frequency oscillations. Drawing from a massively redundant set of overlapping distributed multi-dimensional Gaussian functions of inter-atomic separations we build a compact full-dimensional surface for malonaldehyde, fit to explicitly correlated coupled cluster CCSD(T)(F12*) energies with a root mean square deviations accuracy of 0.3%–0.5% up tomore » 25 000 cm{sup −1} above equilibrium. Importance-sampled diffusion Monte Carlo calculations predict zero point energies for malonaldehyde and its deuterated isotopologue of 14 715.4(2) and 13 997.9(2) cm{sup −1} and hydrogen transfer tunnelling splittings of 21.0(4) and 3.2(4) cm{sup −1}, respectively, which are in excellent agreement with the experimental values of 21.583 and 2.915(4) cm{sup −1}.« less

  16. Projected wood energy impact on US forest wood resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skog, K.E.

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price ofmore » wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).« less

  17. Groundwater availability as constrained by hydrogeology and environmental flows

    USGS Publications Warehouse

    Watson, Katelyn A.; Mayer, Alex S.; Reeves, Howard W.

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

  18. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  19. The Energy Industry Profile of ISO/DIS 19115-1: Facilitating Discovery and Evaluation of, and Access to Distributed Information Resources

    NASA Astrophysics Data System (ADS)

    Hills, S. J.; Richard, S. M.; Doniger, A.; Danko, D. M.; Derenthal, L.; Energistics Metadata Work Group

    2011-12-01

    A diverse group of organizations representative of the international community involved in disciplines relevant to the upstream petroleum industry, - energy companies, - suppliers and publishers of information to the energy industry, - vendors of software applications used by the industry, - partner government and academic organizations, has engaged in the Energy Industry Metadata Standards Initiative. This Initiative envisions the use of standard metadata within the community to enable significant improvements in the efficiency with which users discover, evaluate, and access distributed information resources. The metadata standard needed to realize this vision is the initiative's primary deliverable. In addition to developing the metadata standard, the initiative is promoting its adoption to accelerate realization of the vision, and publishing metadata exemplars conformant with the standard. Implementation of the standard by community members, in the form of published metadata which document the information resources each organization manages, will allow use of tools requiring consistent metadata for efficient discovery and evaluation of, and access to, information resources. While metadata are expected to be widely accessible, access to associated information resources may be more constrained. The initiative is being conducting by Energistics' Metadata Work Group, in collaboration with the USGIN Project. Energistics is a global standards group in the oil and natural gas industry. The Work Group determined early in the initiative, based on input solicited from 40+ organizations and on an assessment of existing metadata standards, to develop the target metadata standard as a profile of a revised version of ISO 19115, formally the "Energy Industry Profile of ISO/DIS 19115-1 v1.0" (EIP). The Work Group is participating on the ISO/TC 211 project team responsible for the revision of ISO 19115, now ready for "Draft International Standard" (DIS) status. With ISO 19115 an

  20. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  1. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  2. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  3. A National Research Council Evaluation of the Department of Energy's Marine and Hydrokinetic Resource Assessments

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Holmes, K. J.; Cooke, D.

    2012-12-01

    Marine and hydrokinetic (MHK) resources are increasingly becoming part of energy regulatory, planning, and marketing activities in the U.S. and elsewhere. In particular, state-based renewable portfolio standards and federal production and investment tax credits have led to an increased interest in the possible deployment of MHK technologies. The Energy Policy Act of 2005 (Public Law 109-58) directed the Department of Energy (DOE) to estimate the size of the MHK resource base. In order to help DOE prioritize its overall portfolio of future research, increase the understanding of the potential for MHK resource development, and direct MHK device and/or project developers to locations of greatest promise, the DOE Wind and Water Power Program requested that the National Research Council (NRC) provide an evaluation of the detailed assessments being conducted by five individual resource assessment groups. These resource assessment groups were contracted to estimate the amount of extractable energy from wave, tidal, ocean current, ocean thermal energy conversion, and riverine resources. Performing these assessments requires that each resource assessment group estimate the average power density of the resource base, as well as the basic technology characteristics and spatial and temporal constituents that convert power into electricity for that resource. The NRC committee evaluated the methodologies, technologies, and assumptions associated with each of these resource assessments. The committee developed a conceptual framework for delineating the processes used to develop the assessment results requested by the DOE, with definitions of the theoretical, technical, and practical resource to clarify elements of the overall resource assessment process. This allowed the NRC committee to make a comparison of different methods, terminology, and processes among the five resource assessment groups. The committee concluded that the overall approach taken by the wave resource and

  4. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  5. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  6. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    NASA Astrophysics Data System (ADS)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  7. Distribution System Pricing with Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hledik, Ryan; Lazar, Jim; Schwartz, Lisa

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoidsmore » unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.« less

  8. The largest renewable, easily exploitable, and economically sustainable energy resource

    NASA Astrophysics Data System (ADS)

    Abbate, Giancarlo; Saraceno, Eugenio

    2018-02-01

    Sun, the ultimate energy resource of our planet, transfers energy to the Earth at an average power of 23,000 TW. Earth surface can be regarded as a huge panel transforming solar energy into a more convenient mechanical form, the wind. Since millennia wind is recognized as an exploitable form of energy and it is common knowledge that the higher you go, the stronger the winds flow. To go high is difficult; however Bill Gates cites high wind among possible energy miracles in the near future. Public awareness of this possible miracle is still missing, but today's technology is ready for it.

  9. Energy resources

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A statistical analysis of the availability of fossil fuels for energy and non-energy production is presented. The cumulative requirements for petroleum, natural gas, and coal are discussed. Alternate forms of energy are described and the advantages and limitations are analyzed. Emphasis is placed on solar energy availability and methods for conversion. The Federal energy research and development funding for energy sources is tabulated.

  10. 25 CFR 224.73 - How will the scope of energy resource development affect the Secretary's determination of the...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How will the scope of energy resource development affect... TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Approval of Tribal Energy Resource Agreements § 224.73 How will the scope of energy resource development affect the Secretary's determination of the...

  11. 25 CFR 224.73 - How will the scope of energy resource development affect the Secretary's determination of the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Approval of Tribal Energy Resource Agreements § 224.73 How will the scope of energy resource development affect the Secretary's determination of the... 25 Indians 1 2010-04-01 2010-04-01 false How will the scope of energy resource development affect...

  12. Wind and solar energy resources on the 'Roof of the World'

    NASA Astrophysics Data System (ADS)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  13. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  14. Arctic Energy Resources: Energy Research

    NASA Astrophysics Data System (ADS)

    Gryc, George

    1984-04-01

    Arctic Energy Resources is a volume of 26 papers recording the proceedings of the Comite' Arctique International Conference, held at the Veritas Centre, Oslo, Norway, September 22-24, 1982. This was the fourth of a series of meetings on the Arctic organized by the Comite', an organization established in the Principality of Monaco with the active support of H.S.H. Prince Rainer III. The fourth Conference was opened by H.R.H. Crown Prins Harald of Norway, a noble beginning for a noble objective.The North Polar Region has drawn world attention recently because of several large hydrocarbon and other mineral discoveries and because of major political and environmental actions in the North American Arctic. Since 1923 when Naval Petroleum Reserve number 4 (NPR-4) was established, northern Alaska has been considered a major petroleum province. It was first explored systematically with modern techniques from 1943 to 1953. In 1958, Alaska became a state, and both federal and state lands in northern Alaska were available for private exploration. Building on the knowledge base provided by the Pet-4 program and its spinoff research laboratory at Barrow, industry explored the area east of NPR-4 and discovered the largest hydrocarbon accumulation (9.6 bbl crude oil and 26 Tcf (trillion cubic feet) gas) in North America at Prudhoe Bay. Concerns for environmental impacts, including oil spills, led to the passing of the National Environmental Policy Act in 1969. In 1970, over 9 million acres were set aside, now known as the Arctic National Wildlife Range, and in 1971 the Alaska Native Claims Settlement Act was passed by the U.S. Congress. The Arab oil embargo of 1973 heightened the energy crisis and changed the economic basis for further exploration in the Arctic. The convergence of these events dramatically changed the balance of power and the pace of activity in the North American Arctic.

  15. Working Memory in Children: A Time-Constrained Functioning Similar to Adults

    ERIC Educational Resources Information Center

    Portrat, Sophie; Camos, Valerie; Barrouillet, Pierre

    2009-01-01

    Within the time-based resource-sharing (TBRS) model, we tested a new conception of the relationships between processing and storage in which the core mechanisms of working memory (WM) are time constrained. However, our previous studies were restricted to adults. The current study aimed at demonstrating that these mechanisms are present and…

  16. Cooperative Optimal Coordination for Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di; Ren, Wei

    In this paper, we consider the optimal coordination problem for distributed energy resources (DERs) including distributed generators and energy storage devices. We propose an algorithm based on the push-sum and gradient method to optimally coordinate storage devices and distributed generators in a distributed manner. In the proposed algorithm, each DER only maintains a set of variables and updates them through information exchange with a few neighbors over a time-varying directed communication network. We show that the proposed distributed algorithm solves the optimal DER coordination problem if the time-varying directed communication network is uniformly jointly strongly connected, which is a mildmore » condition on the connectivity of communication topologies. The proposed distributed algorithm is illustrated and validated by numerical simulations.« less

  17. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whissel, John C.; Piche, Matthew

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for ourmore » small, isolated community.« less

  18. Constrained dynamics approach for motion synchronization and consensus

    NASA Astrophysics Data System (ADS)

    Bhatia, Divya

    In this research we propose to develop constrained dynamical systems based stable attitude synchronization, consensus and tracking (SCT) control laws for the formation of rigid bodies. The generalized constrained dynamics Equations of Motion (EOM) are developed utilizing constraint potential energy functions that enforce communication constraints. Euler-Lagrange equations are employed to develop the non-linear constrained dynamics of multiple vehicle systems. The constraint potential energy is synthesized based on a graph theoretic formulation of the vehicle-vehicle communication. Constraint stabilization is achieved via Baumgarte's method. The performance of these constrained dynamics based formations is evaluated for bounded control authority. The above method has been applied to various cases and the results have been obtained using MATLAB simulations showing stability, synchronization, consensus and tracking of formations. The first case corresponds to an N-pendulum formation without external disturbances, in which the springs and the dampers connected between the pendulums act as the communication constraints. The damper helps in stabilizing the system by damping the motion whereas the spring acts as a communication link relaying relative position information between two connected pendulums. Lyapunov stabilization (energy based stabilization) technique is employed to depict the attitude stabilization and boundedness. Various scenarios involving different values of springs and dampers are simulated and studied. Motivated by the first case study, we study the formation of N 2-link robotic manipulators. The governing EOM for this system is derived using Euler-Lagrange equations. A generalized set of communication constraints are developed for this system using graph theory. The constraints are stabilized using Baumgarte's techniques. The attitude SCT is established for this system and the results are shown for the special case of three 2-link robotic manipulators

  19. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  20. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation

    PubMed Central

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre

    2015-01-01

    ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925

  1. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants.

    PubMed

    Mo, Weiwei; Zhang, Qiong

    2013-09-30

    Wastewater treatment consumes large amounts of energy and materials to comply with discharge standards. At the same time, wastewater contains resources, which can be recovered for secondary uses if treated properly. Hence, the goal of this paper is to review the available resource recovery methods onsite or offsite of municipal wastewater treatment plants. These methods are categorized into three major resource recovery approaches: onsite energy generation, nutrient recycling and water reuse. Under each approach, the review provides the advantages and disadvantages, recovery potentials and current application status of each method, as well as the synthesized results of the life cycle studies for each approach. From a comprehensive literature review, it was found that, in addition to technology improvements, there is also a need to evaluate the applications of the resource recovery methods in wastewater treatment plants from a life cycle perspective. Future research should investigate the integration of the resource recovery methods to explore the combined benefits and potential tradeoffs of these methods under different scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  3. 76 FR 36532 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind...), Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, and Horizon Wind Energy LLC (Complainants) filed a formal complaint against Bonneville Power Administration...

  4. FLASTAR: Florida Alliance for Saving Taxes and Energy Resources. Final Report.

    ERIC Educational Resources Information Center

    Sherwin, John R.; Parker, Danny S.

    A study of the Florida Public Building Loan Concept pilot program determined its effectiveness in helping to upgrade building energy systems. The pilot program, termed FLASTAR (Florida Alliance for Saving Taxes and Resources), involved the comprehensive metering of an elementary school to demonstrate energy savings potential after retrofitting…

  5. Continuous Glucose Monitoring in Resource-Constrained Settings for Hypoglycaemia Detection: Looking at the Problem from the Other Side of the Coin.

    PubMed

    Bila, Rubao; Varo, Rosauro; Madrid, Lola; Sitoe, Antonio; Bassat, Quique

    2018-04-25

    The appearance, over a decade ago, of continuous glucose monitoring (CGM) devices has triggered a patient-centred revolution in the control and management of diabetes mellitus and other metabolic conditions, improving the patient’s glycaemic control and quality of life. Such devices, the use of which remains typically restricted to high-income countries on account of their elevated costs, at present show very limited implantation in resource-constrained settings, where many other urgent health priorities beyond diabetes prevention and management still need to be resolved. In this commentary, we argue that such devices could have an additional utility in low-income settings, whereby they could be selectively used among severely ill children admitted to hospital for closer monitoring of paediatric hypoglycaemia, a life-threatening condition often complicating severe cases of malaria, malnutrition, and other common paediatric conditions.

  6. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    PubMed

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  7. Sensor Buoy System for Monitoring Renewable Marine Energy Resources

    PubMed Central

    García, Emilio; Morant, Francisco

    2018-01-01

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823

  8. Constraining Dark Matter Interactions with Pseudoscalar and Scalar Mediators Using Collider Searches for Multijets plus Missing Transverse Energy.

    PubMed

    Buchmueller, Oliver; Malik, Sarah A; McCabe, Christopher; Penning, Bjoern

    2015-10-30

    The monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multijet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator M_{A} is more than twice the dark matter mass m_{DM}. With the forthcoming run of the Large Hadron Collider at higher energies, the remaining regions of the parameter space where M_{A}>2m_{DM} will be fully explored. Furthermore, we highlight the importance of complementing the monojet final state with multijet final states to maximize the sensitivity of the search for the production of dark matter at colliders.

  9. 76 FR 26753 - Grant Program To Assess, Evaluate and Promote Development of Tribal Energy and Mineral Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ...: (720) 407-0609, e-mail: [email protected] . Conventional Energy Projects (Oil, Natural Gas, Coal..., development, feasibility and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro...

  10. A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv

    In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less

  11. Densification behavior of ceramic and crystallizable glass materials constrained on a rigid substrate

    NASA Astrophysics Data System (ADS)

    Calata, Jesus N.

    2005-11-01

    Constrained sintering is an important process for many applications. The sintering process almost always involves some form of constraint, both internal and external, such as rigid particles, reinforcing fibers and substrates to which the porous body adheres. The densification behavior of zinc oxide and cordierite-base crystallizable glass constrained on a rigid substrate was studied to add to the understanding of the behavior of various materials undergoing sintering when subjected to external substrate constraint. Porous ZnO films were isothermally sintered at temperatures between 900°C and 1050°C. The results showed that the densification of films constrained on substrates is severely reduced. This was evident in the sintered microstructures where the particles are joined together by narrower necks forming a more open structure, instead of the equiaxed grains with wide grain boundaries observed in the freestanding films. The calculated activation energies of densification were also different. For the density range of 60 to 64%, the constrained film had an activation energy of 391 +/- 34 kJ/mole compared to 242 +/- 21 kJ/mole for the freestanding film, indicating a change in the densification mechanism. In-plane stresses were observed during the sintering of the constrained films. Yielding of the films, in which the stresses dropped slight or remained unchanged, occurred at relative densities below 60% before the stresses climbed linearly with increasing density followed by a gradual relaxation. A substantial amount of the stresses remained after cooling. Free and constrained films of the cordierite-base crystallizable glass (glass-ceramic) were sintered between 900°C and 1000°C. The substrate constraint did not have a significant effect on the densification rate but the constrained films eventually underwent expansion. Calculations of the densification activation energy showed that, on average, it was close to 1077 kJ/mole, the activation energy of the glass

  12. Geology, energy- and mineral-resources assessment of the Socorro Area, New Mexico. Report No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krason, J.; Wodzicki, A.; Cruver, S.K.

    1987-03-01

    Geology, energy, and mineral (GEM) resource assessments were conducted in three wilderness study areas (WSAs) in Socorro County, in central New Mexico; Sierra Las Cansa, Veranito, and Stallion. The study assesses the potential for locatable, leasable, and salable energy and mineral resources within each WSA.

  13. 75 FR 22153 - Grant Program To Assess, Evaluate and Promote Development of Tribal Energy and Mineral Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... (Oil, Natural Gas, Coal): Bob Just, Tel: (720) 407-0611, e-mail: [email protected] ; Renewable Energy... and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro and geothermal...

  14. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    EPA Science Inventory

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  15. Impacts of groundwater management on energy resources and greenhouse gas emissions in California.

    PubMed

    Hendrickson, Thomas P; Bruguera, Maya

    2018-09-15

    California faces significant energy and water infrastructure planning challenges in response to a changing climate. Immediately following the most severe recorded drought, the state experienced one of its wettest water years in recorded history. Despite the recent severe wet weather, much of the state's critical groundwater systems have not recovered from the drought. The recent Sustainable Groundwater Management Act (SGMA) aims to eliminate future depletion risks, but may force California basins to seek alternative water sources by limiting groundwater withdrawals during droughts. These alternative water resources, such as recycled water or desalination, can have significantly higher energy demands in treatment and supply than local groundwater or surface water resources. This research developed potential scenarios of water supply sources for five overdrafted groundwater basins, and modeled the impacts of these scenarios on energy demands and greenhouse gas (GHG) emissions for water supply systems. Our results reveal that energy demands and GHG emissions in different water supply scenarios can vary substantially between basins, but could increase statewide energy consumption as much as 2% and GHG emissions by 0.5. These results highlight the need to integrate these energy and GHG impacts into water resource management. Better understanding these considerations enables water supply planners to avoid potential unintended consequences (i.e., increased energy demands and GHG emissions) of enhancing drought resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    NASA Astrophysics Data System (ADS)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  17. Proceedings of the National Conference on Energy Resource Management. Volume 2: Applications

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O. (Editor); Schiffman, Y. M. (Editor)

    1982-01-01

    Subject areas related to the integration of remotely sensed data with geographic information systems for application in energy resource management are covered. The current trends and advances in the application of these systems to a number of energy concerns are addressed.

  18. 75 FR 70740 - Schuylkill Energy Resources, Inc.; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Energy Resources, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Schuylkill Energy Resources, Inc.'s application for market-based rate authority, with an... subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance...

  19. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy Resource Agreements Tera Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... for development of another energy resource that is not included in the TERA, a tribe must apply for a...

  20. GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkali, M.; Min, L.

    The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.

  1. An analysis of wind and solar energy resources for the State of Kuwait

    NASA Astrophysics Data System (ADS)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  2. 78 FR 19005 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Indian Energy and Economic Development Office (IEED) authorized by OMB Control Number 1076-0167. This... Number: 1076-0167. Title: Tribal Energy Resource Agreements, 25 CFR 224. Brief Description of Collection...

  3. A machine learning approach for predicting the relationship between energy resources and economic development

    NASA Astrophysics Data System (ADS)

    Cogoljević, Dušan; Alizamir, Meysam; Piljan, Ivan; Piljan, Tatjana; Prljić, Katarina; Zimonjić, Stefan

    2018-04-01

    The linkage between energy resources and economic development is a topic of great interest. Research in this area is also motivated by contemporary concerns about global climate change, carbon emissions fluctuating crude oil prices, and the security of energy supply. The purpose of this research is to develop and apply the machine learning approach to predict gross domestic product (GDP) based on the mix of energy resources. Our results indicate that GDP predictive accuracy can be improved slightly by applying a machine learning approach.

  4. A wave model test bed study for wave energy resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less

  5. Implementation of HIV Palliative Care: Interprofessional Education to Improve Patient Outcomes in Resource-Constrained Settings, 2004-2012.

    PubMed

    Alexander, Carla S; Pappas, Gregory; Amoroso, Anthony; Lee, Mei Ching; Brown-Henley, Yvonne; Memiah, Peter; O'Neill, Joseph F; Dix, Olivia; Redfield, Robert R

    2015-09-01

    Palliative care (PC), introduced early in the management of chronic illness, improves patient outcomes. Early integration of a palliative approach for persons with HIV has been documented to be effective in identifying and managing patient-level concerns over the past decade in African settings. The experience of implementing PC in multiple African and other resource-constrained settings (RCSs) emphasizes the need for essential palliative competencies that can be integrated with chronic disease management for patients and their families facing life-limiting illness. This article is an historical description of how basic palliative competencies were observed to be acceptable for health workers providing outpatient HIV care and treatment during eight years of U.S. implementation of "care and support," a term coined to represent PC for persons living with HIV in RCS. The need for team building and interprofessional education is highlighted. The model is currently being tested in one U.S. city and may represent a mechanism for expanding the palliative approach into management of chronic disease. Such competencies may play a role in the development of the patient-centered medical home, a critical component of U.S. health care reform. Copyright © 2015 American Academy of Hospice and Palliative Medicine. All rights reserved.

  6. Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater Desalination to Address Growing Energy Needs in Water Constrained Regions

    NASA Astrophysics Data System (ADS)

    Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.

    2010-12-01

    As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model

  7. Experiment of constraining symmetry energy at supra-saturation density with π-/π+ at HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xiao, Zhi-Gang; Zhu, Sheng-Jiang

    2010-08-01

    The possibility of the experiment for constraining the symmetry energy Esym(ρ) at supra-densities via π-/π+ probe on the external target experiment of phase I (ETE(I)) with part coverage at forward angle at HIRFL-CSR is studied for the first time by using the isospin and momentum dependent hadronic transport model IBUU04. Based on the transport simulation with Au+Au collisions at 400 MeV/u, it is found that the differential π-/π+ ratios are more sensitive to Esym(ρ) at forward angles in laboratory reference, compared with the total yield ratio widely proposed. The insufficient coverage at lower transverse momentum maintains the sensitivity of the dependence of π-/π+ ratio on the Esym(ρ) at high density, indicating that the ETF (I) under construction in Lanzhou provides the possibility of performing the experiment for probing the asymmetric nuclear equation of state.

  8. Negative energy balance in a male songbird, the Abert's Towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-07-10

    Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.

  9. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-09-01

    Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.

  10. Children and youth's biopsychosocial wellbeing in the context of energy resource activities.

    PubMed

    Cox, Robin S; Irwin, Pamela; Scannell, Leila; Ungar, Michael; Bennett, Trevor Dixon

    2017-10-01

    Children and youth emerge as key populations that are impacted by energy resource activities, in part because of their developmental vulnerabilities, as well as the compounding effects of energy systems on their families, communities, and physical environments. While there is a larger literature focused on fossil fuel emissions and children, the impacts of many aspects of energy systems on children and youth remain under examined and scattered throughout the health, social science, and environmental science literatures. This systematic interdisciplinary review examines the biological, psychosocial, and economic impacts of energy systems identified through social science research - specifically focused on household and industrial extraction and emissions - on children and youth functioning. A critical interpretive search of interdisciplinary and international social sciences literature was conducted using an adaptive protocol focusing on the biopsychosocial and economic impacts of energy systems on children and youth. The initial results were complemented with a purposeful search to extend the breadth and depth of the final collection of articles. Although relatively few studies have specifically focused on children and youth in this context, the majority of this research uncovers a range of negative health impacts that are directly and indirectly related to the development and ongoing operations of natural resource production, particularly oil and gas, coal, and nuclear energy. Psychosocial and cultural effects, however, remain largely unexamined and provide a rich avenue for further research. This synthesis identifies an array of adverse biopsychosocial health outcomes on children and youth of energy resource extraction and emissions, and identifies gaps that will drive future research in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. MQ-MAC: A Multi-Constrained QoS-Aware Duty Cycle MAC for Heterogeneous Traffic in Wireless Sensor Networks

    PubMed Central

    Monowar, Muhammad Mostafa; Rahman, Md. Obaidur; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    Energy conservation is one of the striking research issues now-a-days for power constrained wireless sensor networks (WSNs) and hence, several duty-cycle based MAC protocols have been devised for WSNs in the last few years. However, assimilation of diverse applications with different QoS requirements (i.e., delay and reliability) within the same network also necessitates in devising a generic duty-cycle based MAC protocol that can achieve both the delay and reliability guarantee, termed as multi-constrained QoS, while preserving the energy efficiency. To address this, in this paper, we propose a Multi-constrained QoS-aware duty-cycle MAC for heterogeneous traffic in WSNs (MQ-MAC). MQ-MAC classifies the traffic based on their multi-constrained QoS demands. Through extensive simulation using ns-2 we evaluate the performance of MQ-MAC. MQ-MAC provides the desired delay and reliability guarantee according to the nature of the traffic classes as well as achieves energy efficiency. PMID:22163439

  12. Chance-Constrained System of Systems Based Operation of Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargarian, Amin; Fu, Yong; Wu, Hongyu

    In this paper, a chance-constrained system of systems (SoS) based decision-making approach is presented for stochastic scheduling of power systems encompassing active distribution grids. Based on the concept of SoS, the independent system operator (ISO) and distribution companies (DISCOs) are modeled as self-governing systems. These systems collaborate with each other to run the entire power system in a secure and economic manner. Each self-governing system accounts for its local reserve requirements and line flow constraints with respect to the uncertainties of load and renewable energy resources. A set of chance constraints are formulated to model the interactions between the ISOmore » and DISCOs. The proposed model is solved by using analytical target cascading (ATC) method, a distributed optimization algorithm in which only a limited amount of information is exchanged between collaborative ISO and DISCOs. In this paper, a 6-bus and a modified IEEE 118-bus power systems are studied to show the effectiveness of the proposed algorithm.« less

  13. Characterising the spatial variability of the tidal stream energy resource from floating turbines

    NASA Astrophysics Data System (ADS)

    Ward, Sophie; Neill, Simon; Robins, Peter

    2017-04-01

    The shelf seas, in particular the northwest European shelf seas surrounding the UK, contain significant tidal power potential. Tidal stream energy is both predictable and reliable providing that sites are well-selected based upon the hydrodynamic regime and the device specifics. In this high resolution three-dimensional tidal modelling study, we investigate how the tidal stream resource around the Welsh coast (UK) varies with water depth and location, with particular focus on the Pembrokeshire region. The potential extractable energy for a floating tidal stream energy converter is compared with that for a bottom-fixed device, highlighting the need to vary the resource characterisation criteria based on device specifics. We demonstrate how small variations in the tidal current speeds - with hub depth or due to tidal asymmetry - can lead to substantial variations in potential power output. Further, the results indicate that power generation from floating tidal energy converters will be more significantly influenced by tidal elevations in regions characterised by a lower tidal range (more progressive waves) than regions that experience a high tidal range (standing waves). As numerical modelling capacity improves and tidal stream energy converter technologies develop, ongoing improved quantification of the tidal resource is needed, as well as consideration of the possible feedbacks of the devices and energy extraction on the hydrodynamic regime and the surrounding area.

  14. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework.

    PubMed

    Giovannelli, Edoardo; Procacci, Piero; Cardini, Gianni; Pagliai, Marco; Volkov, Victor; Chelli, Riccardo

    2017-12-12

    The fast-switching decoupling method is a powerful nonequilibrium technique to compute absolute binding free energies of ligand-receptor complexes (Sandberg et al., J. Chem. Theory Comput. 2014, 11, 423-435). Inspired by the theory of noncovalent binding association of Gilson and co-workers (Biophys. J. 1997, 72, 1047-1069), we develop two approaches, termed binded-domain and single-point alchemical-path schemes (BiD-AP and SiP-AP), based on the possibility of performing alchemical trajectories during which the ligand is constrained to fixed positions relative to the receptor. The BiD-AP scheme exploits a recent generalization of nonequilibrium work theorems to estimate the free energy difference between the coupled and uncoupled states of the ligand-receptor complex. With respect to the fast-switching decoupling method without constraints, BiD-AP prevents the ligand from leaving the binding site, but still requires an estimate of the positional binding-site volume, which may not be a simple task. On the other side, the SiP-AP scheme allows avoidance of the calculation of the binding-site volume by introducing an additional equilibrium simulation of ligand and receptor in the bound state. In the companion article (DOI: 10.1021/acs.jctc.7b00595), we show that the extra computational effort required by SiP-AP leads to a significant improvement of accuracy in the free energy estimates.

  15. 78 FR 1854 - Minnesota Energy Resources Corporation; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR13-21-000] Minnesota..., Minnesota Energy Resources Corporation (MERC) filed a rate election pursuant to section 284.123(b)(1) of the... that conform to the recently revised rates approved by the Minnesota Public Utilities Commission, as...

  16. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  17. Effect of resource constraints on intersimilar coupled networks.

    PubMed

    Shai, S; Dobson, S

    2012-12-01

    Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.

  18. Effect of resource constraints on intersimilar coupled networks

    NASA Astrophysics Data System (ADS)

    Shai, S.; Dobson, S.

    2012-12-01

    Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.

  19. The divergence characteristics of constrained-sheath optics systems for use with 5-eV atomic oxygen sources

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Wilbur, Paul J.

    1989-01-01

    The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.

  20. Constraint-Based Local Search for Constrained Optimum Paths Problems

    NASA Astrophysics Data System (ADS)

    Pham, Quang Dung; Deville, Yves; van Hentenryck, Pascal

    Constrained Optimum Path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search (CBLS) framework for COP applications, bringing the compositionality, reuse, and extensibility at the core of CBLS and CP systems. The modeling contribution is the ability to express compositional models for various COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. The framework, implemented in COMET, is applied to Resource Constrained Shortest Path (RCSP) problems (with and without side constraints) and to the edge-disjoint paths problem (EDP). Computational results show the potential significance of the approach.

  1. Energy Conservation in Construction Trades. Special Packages: Instructional Resources for Vocational Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    Designed for secondary and postsecondary vocational teachers and administrators, this resource package on energy conservation in construction trades contains three sections of information. Section I provides an instructional module (developed by the Wisconsin Vocational Studies Center) on solar energy; the module is organized into seven units:…

  2. Hot dry rock geothermal energy: A renewable energy resource that is ready for development now

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Potter, R. M.; Myers, C. W.

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  3. An energy balance concept for habitability.

    PubMed

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  4. Constrained Local UniversE Simulations: a Local Group factory

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias

    2016-05-01

    Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.

  5. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  7. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  8. Petroleum and the Environment: Teaching about Petroleum and the Future of Energy Resources

    ERIC Educational Resources Information Center

    Hudson, Travis; Camphire, Geoffrey

    2005-01-01

    Students live in a world that is powered by petroleum and other energy resources to an unsurpassed degree. The United States today consumes more than 24% of all the energy used in the world--and about 60% of this energy is provided by petroleum (oil and natural gas). The availability of abundant, inexpensive energy is the main reason that the…

  9. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Science.gov Websites

    Energy's Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program. Its collection , and thermal springs. View NREL's Geothermal resource maps as well as maps for other renewable energy Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources

  10. A strategy for mineral and energy resource independence

    USGS Publications Warehouse

    Carter, W.D.

    1983-01-01

    Data acquired by Landsats 1, 2, and 3, are beginning to provide the information on which an improved mineral and energy resource exploration strategy can be based. Landsat 4 is expected to augment this capability with its higher resolution (30 m) and additional spectral bands in the Thematic Mapper (TM) designed specifically to discriminate clay minerals associated with mineral alteration. In addition, a new global magnetic anomaly map, derived from the recent Magsat mission, has recently been compiled by the National Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), and others. Preliminary, extremely small-scale renditions of this map indicate that global coverage is nearly complete and that the map will improve upon a previous one derived from Polar Orbiting Geophysical Observatory (POGO) data. Digital processing of the Landsat image data and Magsat geophysical data can be used to create three-dimensional stereoscopic models for which Landsat images provide surface reference to deep structural anomalies. Comparative studies of national Landsat lineament maps, Magsat stereoscopic models, and metallogenic information derived from the Computerized Resources Information Bank (CRIB) inventory of U.S. mineral resources, provide a way of identifying and selecting exploration areas that have mineral resource potential. Landsat images and computer-compatible tapes can provide new and better mosaics and also provide the capability for a closer look at promising sites. ?? 1983.

  11. Smart Operations in Distributed Energy Resources System

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  12. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    NASA Astrophysics Data System (ADS)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  13. Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction project.

    PubMed

    Xu, Jiuping; Feng, Cuiying

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

  14. Multimode Resource-Constrained Multiple Project Scheduling Problem under Fuzzy Random Environment and Its Application to a Large Scale Hydropower Construction Project

    PubMed Central

    Xu, Jiuping

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708

  15. Results at Mallik highlight progress in gas hydrate energy resource research and development

    USGS Publications Warehouse

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  16. Egypt/United States cooperative energy assessment. Volume II, Annex 1. Energy resources of Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    This report contains the findings and recommendations of the US Geological Survey geologists assigned to survey Egypts indigenous energy resources. Data on oil and gas, coal and oil shale, uranium and thorium, geothermal energy, water resources, and energy related minerals are presented. Thirty-nine oil and gas fields have been discovered in Egypt, proven reserves of oil were estimated to be 1,559,000,000 barrels in 1976. The Egyptian government hopes to attain a production rate of 1 million barrels a day in 1982. While the Gulf of Suez basin holds the most immediate prospects, the most promising frontier regions are the unexploredmore » broad expanses of the Western Desert, the Nile Basin and the Northern Sinai while oil shales have been found in Egypt, they are only 10 to 15 feet thick and their hydrocarbon content is low. Recovery would not be economic. Coal deposits contain reserves estimated at 95 to 112 million tons. Only 1 deposit is deemed workable under present conditions of technology and economy. No uranium and thorium are being produced however geological conditions appear favorable for finding uranium deposits using appropriate programs of prospecting, exploration and development. The potential for development of low-level sources of geothermal energy in Egypt is good; there is no evidence of a high-temperature source or a vapor-dominated system. The Nile is the primary source of water. In the western desert, the Nubian aquifer supplies water for irrigation. Energy related minerals are generally found in uneconomic concentrations or not at all. However, deposits of material used in cement making and some iron ore for steel making are available. Deposits of manganese may become available upon return of the Sinai to Egypt. 44 figures, 24 tables. (DMC)« less

  17. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  18. Evaluating Programs That Promote Climate and Energy Education-Meeting Teacher Needs for Online Resources

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.

    2011-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.

  19. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    NASA Astrophysics Data System (ADS)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  20. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  1. Simulating and validating coastal gradients in wind energy resources

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Floors, Rogier; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Badger, Merete; Peña, Alfredo; Hasager, Charlotte

    2016-04-01

    The experimental campaign of the RUNE (Reducing Uncertainty of Near-shore wind resource Estimates) project took place on the western coast of Denmark during the winter 2015-2016. The campaign used onshore scanning lidar technology combined with ocean and satellite information and produced a unique dataset to study the transition in boundary layer dynamics across the coastal zone. The RUNE project aims at reducing the uncertainty of near-shore wind resource estimates produced by mesoscale modeling. With this in mind, simulations using the Weather Research and Forecasting (WRF) model were performed to identify the sensitivity in the coastal gradients of wind energy resources to various model parameters and model inputs. Among these: model horizontal grid spacing and the planetary boundary layer and surface-layer scheme. We report on the differences amongst these simulations and preliminary results on the comparison of the model simulations with the RUNE observations of lidar and satellite measurements and near coastal tall mast.

  2. Modelling socio-environmental sensitivities: how public responses to low carbon energy technologies could shape the UK energy system.

    PubMed

    Moran Jay, Brighid; Howard, David; Hughes, Nick; Whitaker, Jeanette; Anandarajah, Gabrial

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).

  3. Modelling Socio-Environmental Sensitivities: How Public Responses to Low Carbon Energy Technologies Could Shape the UK Energy System

    PubMed Central

    Moran Jay, Brighid

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO). PMID:24587735

  4. NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal

    Atmospheric Science Data Center

    2018-03-01

    The Prediction Of Worldwide Energy Resource (POWER) Project facilitates access to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications.  A   new ...

  5. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE PAGES

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; ...

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO 2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculationsmore » are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  6. A mathematical method for verifying the validity of measured information about the flows of energy resources based on the state estimation theory

    NASA Astrophysics Data System (ADS)

    Pazderin, A. V.; Sof'in, V. V.; Samoylenko, V. O.

    2015-11-01

    Efforts aimed at improving energy efficiency in all branches of the fuel and energy complex shall be commenced with setting up a high-tech automated system for monitoring and accounting energy resources. Malfunctions and failures in the measurement and information parts of this system may distort commercial measurements of energy resources and lead to financial risks for power supplying organizations. In addition, measurement errors may be connected with intentional distortion of measurements for reducing payment for using energy resources on the consumer's side, which leads to commercial loss of energy resource. The article presents a universal mathematical method for verifying the validity of measurement information in networks for transporting energy resources, such as electricity and heat, petroleum, gas, etc., based on the state estimation theory. The energy resource transportation network is represented by a graph the nodes of which correspond to producers and consumers, and its branches stand for transportation mains (power lines, pipelines, and heat network elements). The main idea of state estimation is connected with obtaining the calculated analogs of energy resources for all available measurements. Unlike "raw" measurements, which contain inaccuracies, the calculated flows of energy resources, called estimates, will fully satisfy the suitability condition for all state equations describing the energy resource transportation network. The state equations written in terms of calculated estimates will be already free from residuals. The difference between a measurement and its calculated analog (estimate) is called in the estimation theory an estimation remainder. The obtained large values of estimation remainders are an indicator of high errors of particular energy resource measurements. By using the presented method it is possible to improve the validity of energy resource measurements, to estimate the transportation network observability, to eliminate

  7. Developing Clean Energy Projects on Tribal Lands: Data and Resources for Tribes (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-12-01

    This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential maps for various technologies, information about the activities of DOE-IE, and resources for Tribes.

  8. CPMC-Lab: A MATLAB package for Constrained Path Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei

    2014-12-01

    We describe CPMC-Lab, a MATLAB program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in MATLAB with a graphical interface, using the Hubbard model as an example. The package can perform calculations in finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling and all other algorithmic details of a total energy calculation are included and illustrated. This open-source tool allows users to experiment with various model and run parameters and visualize the results. It provides a direct and interactive environment to learn the method and study the code with minimal overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a template for developing a production code for AFQMC total energy calculations in real materials. Several illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge- and spin-gaps.

  9. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    PubMed

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Study on new energy development planning and absorptive capability of Xinjiang in China considering resource characteristics and demand prediction

    NASA Astrophysics Data System (ADS)

    Shao, Hai; Miao, Xujuan; Liu, Jinpeng; Wu, Meng; Zhao, Xuehua

    2018-02-01

    Xinjiang, as the area where wind energy and solar energy resources are extremely rich, with good resource development characteristics, can provide a support for regional power development and supply protection. This paper systematically analyzes the new energy resource and development characteristics of Xinjiang and carries out the demand prediction and excavation of load characteristics of Xinjiang power market. Combing the development plan of new energy of Xinjiang and considering the construction of transmission channel, it analyzes the absorptive capability of new energy. It provides certain reference for the comprehensive planning of new energy development in Xinjiang and the improvement of absorptive capacity of new energy.

  11. A bispecific antibody based assay shows potential for detecting tuberculosis in resource constrained laboratory settings.

    PubMed

    Sarkar, Susmita; Tang, Xinli L; Das, Dipankar; Spencer, John S; Lowary, Todd L; Suresh, Mavanur R

    2012-01-01

    The re-emergence of tuberculosis (TB) as a global public health threat highlights the necessity of rapid, simple and inexpensive point-of-care detection of the disease. Early diagnosis of TB is vital not only for preventing the spread of the disease but also for timely initiation of treatment. The later in turn will reduce the possible emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Lipoarabinomannan (LAM) is an important non-protein antigen of the bacterial cell wall, which is found to be present in different body fluids of infected patients including blood, urine and sputum. We have developed a bispecific monoclonal antibody with predetermined specificities towards the LAM antigen and a reporter molecule horseradish peroxidase (HRPO). The developed antibody was subsequently used to design a simple low cost immunoswab based assay to detect LAM antigen. The limit of detection for spiked synthetic LAM was found to be 5.0 ng/ml (bovine urine), 0.5 ng/ml (rabbit serum) and 0.005 ng/ml (saline) and that for bacterial LAM from M. tuberculosis H37Rv was found to be 0.5 ng/ml (rabbit serum). The assay was evaluated with 21 stored clinical serum samples (14 were positive and 7 were negative in terms of anti-LAM titer). In addition, all 14 positive samples were culture positive. The assay showed 100% specificity and 64% sensitivity (95% confidence interval). In addition to good specificity, the end point could be read visually within two hours of sample collection. The reported assay might be used as a rapid tool for detecting TB in resource constrained laboratory settings.

  12. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the twomore » instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.« less

  13. Analysis of asymmetries in air pollution with water resources, and energy consumption in Iran.

    PubMed

    Ashouri, Mohammad Javad; Rafei, Meysam

    2018-04-17

    Iran should pay special attention to its excessive consumption of energy and air pollution due to the limited availability of water resources. This study explores the effects of the consumption of energy and water resources on air pollution in Iran from 1971 to 2014. It utilizes the non-linear autoregressive distributed lag approach to establish a robust relationship between the variables which show that both long- and short-run coefficients are asymmetrical. The positive and negative aspects of the long-run coefficients of energy consumption and water resources were found to be 0.19, - 1.63, 0.18, and 2.36, respectively, while only the negative ones were significant for energy consumption. Based on the cumulative effects, it can be established that there are important and significant differences in the responses of air pollution to positive and negative changes in water productivity and energy consumption. In particular, CO 2 gas emissions are affected by negative changes in H 2 O productivity both in terms of the total and the GDP per unit of energy use in Iran. In regard to short-run results, considerable asymmetric effects occur on all the variables for CO 2 emissions. Based on the results obtained, some recommendations are presented, which policymakers can adopt in efforts to address the issues of pollution and consumption.

  14. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  15. Treating Locally Advanced Cervical Cancer With Concurrent Chemoradiation Without Brachytherapy in Low-resource Countries.

    PubMed

    Chuang, Linus; Kanis, Margaux J; Miller, Brigitte; Wright, Jason; Small, William; Creasman, William

    2016-02-01

    To summarize the literature on options of management of patients treated for locally advanced cervical cancers with a specific focus on resource-constrained settings where brachytherapy is not available. A Medline search was performed to summarize studies about treatment approaches including neoadjuvant chemotherapy, primary surgery for bulky cervical cancer, and chemoradiation followed by surgery. Summaries are by treatment approaches that are relevant to resource-constrained settings. There are a lack of studies performed on neoadjuvant chemotherapy in low-resource settings. Primary surgery followed by chemoradiation therapy for selected patients with bulky cervical cancer is a feasible option. The disadvantage is the potential increase in treatment complications. Chemoradiation without brachytherapy followed by surgery has been found to have equivalent outcomes and is associated with acceptable morbidity. In resource-constrained settings where brachytherapy is not available, performing radical hysterectomy after chemoradiation therapy without brachytherapy has been shown to produce equivalent outcomes. It seems reasonable to adopt a modified therapeutic protocol of chemoradiation followed by extrafascial hysterectomy as an alternative treatment option in low-resource countries where brachytherapy is not readily available.

  16. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  17. Wind energy: Resources, systems, and regional strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, M.J.; Meyer, N.I.

    1993-12-31

    Wind power is already cost competitive with conventional modes of electricity generation under certain conditions and could, if widely exploited, meet 20 percent or more of the world`s electricity needs within the next four to five decades. The greatest wind potential exists in North America, the former Soviet Union, Africa, and (to a lesser extent), South America, Australia, southern Asia, and parts of Europe. In all these areas, wind can make a significant contribution to the energy supply. In regions of the developing world and in island communities, wind can operate with storage and displace diesel fuel. In more developedmore » areas, wind-generated electricity can be channeled directly into the grid, providing an environmentally benign alternative to fossil fuels. Indeed, wind power can contribute as much as 25 to 45 percent of a grid`s energy supply before economic penalties become prohibitive; the presence of storage facilities or hydroelectric power would increase wind`s share still further. Despite a promising future, opportunities for wind power development are probably being missed because too little is known about either the resource or the technology. International efforts are badly needed to obtain better data and to disseminate technological information around the world. Even then, the extent to which wind is exploited will depend on public reaction and on the willingness of governments to embrace the technology. Action that governments might take to promote wind include providing strategic incentives to further its deployment, funding research on wind resources, taxing fossil fuels to reflect their social costs, and allowing independent wind generators adequate access to electricity systems. 74 refs., 15 figs., 10 tabs.« less

  18. Energy and Resources

    ERIC Educational Resources Information Center

    Sorensen, Bent

    1975-01-01

    Discusses the feasibility of utilizing continuous sources of of energy, particularly solar and wind energy. Outlines an energy plan for Denmark, which would supply all of Denmark's energy needs by the year 2050. (MLH)

  19. Determination of wave-function functionals: The constrained-search variational method

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-Yin; Sahni, Viraht; Massa, Lou

    2005-09-01

    In a recent paper [Phys. Rev. Lett. 93, 130401 (2004)], we proposed the idea of expanding the space of variations in variational calculations of the energy by considering the approximate wave function ψ to be a functional of functions χ , ψ=ψ[χ] , rather than a function. A constrained search is first performed over all functions χ such that the wave-function functional ψ[χ] satisfies a physical constraint or leads to the known value of an observable. A rigorous upper bound to the energy is then obtained via the variational principle. In this paper we generalize the constrained-search variational method, applicable to both ground and excited states, to the determination of arbitrary Hermitian single-particle operators as applied to two-electron atomic and ionic systems. We construct analytical three-parameter ground-state functionals for the H- ion and the He atom through the constraint of normalization. We present the results for the total energy E , the expectations of the single-particle operators W=∑irin , n=-2,-1,1,2 , W=∑iδ(ri) , and W=∑iδ(ri-r) , the structure of the nonlocal Coulomb hole charge ρc(rr') , and the expectations of the two particle operators u2,u,1/u,1/u2 , where u=∣ri-rj∣ . The results for all the expectation values are remarkably accurate when compared with the 1078-parameter wave function of Pekeris, and other wave functions that are not functionals. We conclude by describing our current work on how the constrained-search variational method in conjunction with quantal density-functional theory is being applied to the many-electron case.

  20. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  1. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  2. A physically constrained classical description of the homogeneous nucleation of ice in water.

    PubMed

    Koop, Thomas; Murray, Benjamin J

    2016-12-07

    Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales

  3. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Resource extensions and resource pool size. 905.32 Section 905.32 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative... of penalties pursuant to § 905.17, Western may make such resources available within the marketing...

  4. The value of compressed air energy storage with wind in transmission-constrained electric power systems

    DOE PAGES

    Denholm, Paul; Sioshansi, Ramteen

    2009-05-05

    In this paper, we examine the potential advantages of co-locating wind and energy storage to increase transmission utilization and decrease transmission costs. Co-location of wind and storage decreases transmission requirements, but also decreases the economic value of energy storage compared to locating energy storage at the load. This represents a tradeoff which we examine to estimate the transmission costs required to justify moving storage from load-sited to wind-sited in three different locations in the United States. We examined compressed air energy storage (CAES) in three “wind by wire” scenarios with a variety of transmission and CAES sizes relative to amore » given amount of wind. In the sites and years evaluated, the optimal amount of transmission ranges from 60% to 100% of the wind farm rating, with the optimal amount of CAES equal to 0–35% of the wind farm rating, depending heavily on wind resource, value of electricity in the local market, and the cost of natural gas.« less

  5. Tackling the climate targets set by the Paris Agreement (COP 21): Green leadership empowers public hospitals to overcome obstacles and challenges in a resource-constrained environment.

    PubMed

    Weimann, E; Patel, B

    2016-12-21

    The healthcare sector itself contributes to climate change, the creation of hazardous waste, use of toxic metals such as mercury, and water and air pollution. To mitigate the effect of healthcare provision on the deteriorating environment and avoid creating further challenges for already burdened health systems, Global Green Hospitals was formed as a global network. Groote Schuur Hospital (GSH), as the leading academic hospital in Africa, joined the network in 2014. Since then, several projects have been initiated to reduce the amount of general waste, energy consumption and food waste, and create an environmentally friendlier and more sustainable hospital in a resource-constrained public healthcare setting. We outline the various efforts made to reduce the carbon footprint of GSH and reduce waste and hazardous substances such as mercury and polystyrene, and elaborate how obstacles and resistance to change were overcome. The hospital was able to halve the amount of coal and water used, increase recycling by 50% over 6 months, replace polystyrene cups and packaging with Forest Stewardship Council recyclable paper-based products, reduce the effect of food wastage by making use of local farmers, and implement measures to reduce the amount of expired pharmaceutical drugs. To improve commitment from all involved roleplayers, political leadership, supportive government policies and financial funding is mandatory, or public hospitals will be unable to tackle the exponentially increasing costs related to climate change and its effects on healthcare.

  6. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherizationmore » services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.« less

  7. Socio-Cultural Factors and Energy Resource Development in Rural Areas in the West.

    ERIC Educational Resources Information Center

    Albrecht, Stan L.

    Drawing upon and synthesizing social and demographic data (1940-70) from 14 counties in the Rocky Mountain West which are currently facing extensive population growth as the result of large scale energy resource development, a preliminary model of potential sociocultural impact was developed. Including national energy needs and traditional…

  8. Low-lying excited states by constrained DFT

    NASA Astrophysics Data System (ADS)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  9. Low-lying excited states by constrained DFT.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2018-04-14

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, N c , in the virtual space of a reference set of occupied orbitals. By imposing this population to be N c = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H 3 ) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  10. Early cosmology constrained

    NASA Astrophysics Data System (ADS)

    Verde, Licia; Bellini, Emilio; Pigozzo, Cassio; Heavens, Alan F.; Jimenez, Raul

    2017-04-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter ΩMR < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < Neff < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is rs = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to rs = 150 ± 5 Mpc.

  11. Early cosmology constrained

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verde, Licia; Jimenez, Raul; Bellini, Emilio

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraintsmore » thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.« less

  12. Nonregenerative natural resources in a sustainable system of energy supply.

    PubMed

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Two-stage Approach for Water Demand Prediction under Constrained total water use and Water Environmental Capacity

    NASA Astrophysics Data System (ADS)

    He, Y.; Xiaohong, C.; Lin, K.; Wang, Z.

    2016-12-01

    Water demand (WD) is the basis for water allocation (WA) because it can fully reflect the pressure on water resources from population and socioeconomic development. To deal with the great uncertainties and the absence of consideration of water environmental capacity (WEC) in traditional water demand prediction methods, e.g. Statistical models, System Dynamics and quota method, this study develops a two-stage approach to predict WD under constrained total water use from the perspective of ecological restraint. Regional total water demand (RTWD) is constrained by WEC, available water resources amount and total water use quota. Based on RTWD, WD is allocated in two stages according to the game theory, including predicting sub regional total water demand (SRWD) by calculating the sub region weights based on the selected indicators of socioeconomic development and predicting industrial water demand (IWD) according to the game theory. Taking the Dongjiang river basin, South China as an example of WD prediction, according to its constrained total water use quota and WEC, RTWD in 2020 is 9.83 billion m3, and IWD for agriculture, industry, service, ecology (off-stream), and domesticity are 2.32 billion m3, 3.79 billion m3, 0.75 billion m3 , 0.18 billion m3and 1.79 billion m3 respectively. The results from this study provide useful insights for effective water allocation under climate change and the strict policy of water resources management.

  14. Geology and mineral and energy resources, Roswell Resource Area, New Mexico; an interactive computer presentation

    USGS Publications Warehouse

    Tidball, Ronald R.; Bartsch-Winkler, S. B.

    1995-01-01

    This Compact Disc-Read Only Memory (CD-ROM) contains a program illustrating the geology and mineral and energy resources of the Roswell Resource Area, an administrative unit of the U.S. Bureau of Land Management in east-central New Mexico. The program enables the user to access information on the geology, geochemistry, geophysics, mining history, metallic and industrial mineral commodities, hydrocarbons, and assessments of the area. The program was created with the display software, SuperCard, version 1.5, by Aldus. The program will run only on a Macintosh personal computer. This CD-ROM was produced in accordance with Macintosh HFS standards. The program was developed on a Macintosh II-series computer with system 7.0.1. The program is a compiled, executable form that is nonproprietary and does not require the presence of the SuperCard software.

  15. Package of online Teacher Resources for Generate, the EPA Energy Game

    EPA Science Inventory

    These materials will enable teachers to make and utilize their own copy of the energy board game, called Generate, that has been developed in ORD and used in local EPA-RTP STEM outreach. The teacher resource package includes: (1) Webinar presentation for National Science Teach...

  16. The user cost of energy resource and its reasonable tax rate-A case of oil

    NASA Astrophysics Data System (ADS)

    Lifan, Liu

    2017-12-01

    The development and use of natural resources bring about the externality of resources depletion, especially for non-renewable resources. This paper takes oil as an example to analyze the user cost of energy resource with EI Serafy User cost method, and discusses the rationality of the resource tax. Meanwhile, this paper determines oil resource tax rate in consideration of resource sustainable development. The results show that, the user cost of oil isn’t compensated fully, it is too low to make compensation to the environment and the profit of future generation, and the resource tax is a little low. At last of the paper, some conclusions and policy suggestions on resource tax reform are given.

  17. Ecologically Safe Geothermal Energy Resources in Western Siberia near high-rise construction zones

    NASA Astrophysics Data System (ADS)

    Shevchenko, Alexandr; Shiganova, Olga

    2018-03-01

    The development of geothermal energy in combination with other renewable energy sources (the sun, the wind) will help to solve the problem of heat supply and electrification in near high-rise construction zones of the country, especially in sparsely populated parts, where centralized energy and heat supply is economically unacceptable, and will improve the ecological situation. The aim of the research is to analyze the geothermal resources of the main aquifers in Western Siberia and to develop recommendations for further study and use of heat and power resources of this territory. The article gives retrospective of state research programs and potential use of hydrothermal resources of administrative units geographically entering the territory under consideration. It is noted that by now such programs have been curtailed for various reasons, although there are examples of their successful and effective use in various fields of industry and agriculture. According to the decision of the Supreme Ecological Council of the State Duma Committee of the Russian Federation adopted in 2014 on the beginning of the development of federal targeted programs for the use of heat power water as a source of electricity and heat supply, the Ministry of Natural Resources and Ecology of the Russian Federation made proposals for further research and use of hydrothermal waters in Western Siberia. Implementation of the programs proposed by the authors, alongside with other positive aspects, will solve the problems of heat supply in remote territories and improve the environmental situation in the region.

  18. Energy and Water Resources in a Changing Climate: Towards Adaptation Options in Colorado and the Western US

    NASA Astrophysics Data System (ADS)

    Averyt, K. B.; Pulwarty, R. S.; Udall, B.

    2008-12-01

    Greater energy demands are driving development of domestic energy resources and advancement of fossil- fuel independent energy technologies. However, water is necessary for most energy production. Greenhouse gas emissions are increasing global temperatures, impacting the quality and quantity of water resources. Warming temperatures are also altering the timing and nature of energy demand. As water is necessary for energy production, and energy is needed for the water supply, climate change will further exacerbate the interplay between these two sectors and create additional challenges in adaptive planning. The geology of Colorado is such that it has both carbon (oil shale, coal, coal-bed methane) and non-fossil-fuel (geothermal, winds) energy resources. There is an increasing need to develop these resources, but the impact on the region's water supply is often neglected, as is the energy required to support the water infrastructure. The Western US is prone to drought, and Colorado has experienced periodic drought throughout the observational record. Temperatures in Colorado have risen by about 1°C in the past 30 years, and are projected to increase an additional 2°C by 2050. Precipitation is highly variable and will continue to be in the future, but more severe and persistent droughts are anticipated. To investigate the impact of climate change on the energy-water nexus, in order to evaluate the information necessary to undertake more comprehensive regional impact and adaptation studies, the energy intensity of Colorado's water systems, and water usage by energy sector, are presented. The interdependence of water and energy necessitates that scientists work with decision-makers and consider both sectors when developing climate adaptation strategies. This work represents initial efforts towards a more comprehensive, collaborative analysis of climate change impacts on water and energy supply in support of adaptive management approaches in the Western US.

  19. Constrained evolution in numerical relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  20. Development and Validation of a Simple Risk Score for Undiagnosed Type 2 Diabetes in a Resource-Constrained Setting

    PubMed Central

    Gilman, Robert H.; Sanchez-Abanto, Jose R.; Study Group, CRONICAS Cohort

    2016-01-01

    Objective. To develop and validate a risk score for detecting cases of undiagnosed diabetes in a resource-constrained country. Methods. Two population-based studies in Peruvian population aged ≥35 years were used in the analysis: the ENINBSC survey (n = 2,472) and the CRONICAS Cohort Study (n = 2,945). Fasting plasma glucose ≥7.0 mmol/L was used to diagnose diabetes in both studies. Coefficients for risk score were derived from the ENINBSC data and then the performance was validated using both baseline and follow-up data of the CRONICAS Cohort Study. Results. The prevalence of undiagnosed diabetes was 2.0% in the ENINBSC survey and 2.9% in the CRONICAS Cohort Study. Predictors of undiagnosed diabetes were age, diabetes in first-degree relatives, and waist circumference. Score values ranged from 0 to 4, with an optimal cutoff ≥2 and had a moderate performance when applied in the CRONICAS baseline data (AUC = 0.68; 95% CI: 0.62–0.73; sensitivity 70%; specificity 59%). When predicting incident cases, the AUC was 0.66 (95% CI: 0.61–0.71), with a sensitivity of 69% and specificity of 59%. Conclusions. A simple nonblood based risk score based on age, diabetes in first-degree relatives, and waist circumference can be used as a simple screening tool for undiagnosed and incident cases of diabetes in Peru. PMID:27689096

  1. Design and implementation of a patient navigation system in rural Nepal: Improving patient experience in resource-constrained settings.

    PubMed

    Raut, Anant; Thapa, Poshan; Citrin, David; Schwarz, Ryan; Gauchan, Bikash; Bista, Deepak; Tamrakar, Bibhu; Halliday, Scott; Maru, Duncan; Schwarz, Dan

    2015-12-01

    Patient navigation programs have shown to be effective across multiple settings in guiding patients through the care delivery process. Limited experience and literature exist, however, for such programs in rural and resource-constrained environments. Patients living in such settings frequently have low health literacy and substantially lower social status than their providers. They typically have limited experiences interfacing with formalized healthcare systems, and, when they do, their experience can be unpleasant and confusing. At a district hospital in rural far-western Nepal, we designed and implemented a patient navigation system that aimed to improve patients' subjective care experience. First, we hired and trained a team of patient navigators who we recruited from the local area. Their responsibility is exclusively to demonstrate compassion and to guide patients through their care process. Second, we designed visual cues throughout our hospital complex to assist in navigating patients through the buildings. Third, we incorporated the patient navigators within the management and communications systems of the hospital care team, and established standard operating procedures. We describe here our experiences and challenges in designing and implementing a patient navigator program. Such patient-centered systems may be relevant at other facilities in Nepal and globally where patient health literacy is low, patients come from backgrounds of substantial marginalization and disempowerment, and patient experience with healthcare facilities is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Two decision-support tools for assessing the potential effects of energy development on hydrologic resources as part of the Energy and Environment in the Rocky Mountain Area interactive energy atlas

    USGS Publications Warehouse

    Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.

    2014-01-01

    The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a

  3. AMANDA Observations Constrain the Ultrahigh Energy Neutrino Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halzen, Francis; /Wisconsin U., Madison; Hooper, Dan

    2006-05-01

    A number of experimental techniques are currently being deployed in an effort to make the first detection of ultra-high energy cosmic neutrinos. To accomplish this goal, techniques using radio and acoustic detectors are being developed, which are optimally designed for studying neutrinos with energies in the PeV-EeV range and above. Data from the AMANDA experiment, in contrast, has been used to place limits on the cosmic neutrino flux at less extreme energies (up to {approx}10 PeV). In this letter, we show that by adopting a different analysis strategy, optimized for much higher energy neutrinos, the same AMANDA data can bemore » used to place a limit competitive with radio techniques at EeV energies. We also discuss the sensitivity of the IceCube experiment, in various stages of deployment, to ultra-high energy neutrinos.« less

  4. The impacts of climate changes in the renewable energy resources in the Caribbean region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson III, David J

    2010-02-01

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupledmore » with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.« less

  5. Energetic Materials Optimization via Constrained Search

    DTIC Science & Technology

    2015-06-01

    steps. 3. Optimization Methodology Our optimization problem is formulated as a constrained maximization: max x∈CCS P (x) s.t. : TED ( x )− 9.75 ≥ 0 SV (x)− 9...0 5− SA(x) ≥ 0, (1) where TED ( x ) is the total energy of detonation (TED) of compound x from the chosen chemical subspace (CCS) of chemical compound...max problem, max x∈CCS min λ∈R3+ P (x)− λTC(x), (2) where C(x) is the vector of constraint violations, i.e., η(9.75 − TED ( x )), η(9 − SV (x)), η(SA(x

  6. Analysis of requirements for accelerating the development of geothermal energy resources in California

    NASA Technical Reports Server (NTRS)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  7. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States

    PubMed Central

    Pryor, S. C.; Barthelmie, R. J.

    2011-01-01

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the “fuel” is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades. PMID:21536905

  8. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    PubMed

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  9. 77 FR 2286 - Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-000] Iberdrola Renewables, Inc., PacifiCorp, NextEra Energy Resources, LLC, Invenergy Wind North America LLC, Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Designation of Certain Commission Personnel as...

  10. FUTURE APPLICATIONS OF EXPERT SYSTEMS FOR THE EVALUATION OF ENERGY RESOURCES.

    USGS Publications Warehouse

    Miller, Betty M.

    1988-01-01

    The loss of professional experience and expertise in the domain of the earth sciences may prove to be one of the most serious outcomes of the boom-and-bust cyclic nature of the volatile energy and mining industries. Promising new applications of powerful computer systems, known as 'expert systems' or 'knowledge-based systems', are predicted for use in the earth science. These systems have the potential capability to capture and preserve the invaluable knowledge bases essential to the evaluation of US energy and mineral resources.

  11. FUTURE APPLICATIONS OF EXPERT SYSTEMS FOR THE EVALUATION OF ENERGY RESOURCES.

    USGS Publications Warehouse

    Miller, B.M.

    1987-01-01

    The loss of professional experience and expertise in the domain of the earth sciences may prove to be one of the most serious outcomes of the boom-and-bust cyclic nature of the volatile energy and mining industries. Promising new applications of powerful computer systems, known as 'expert systems' or 'knowledge-based systems', are predicted for use in the earth sciences. These systems have the potential capability to capture and preserve the invaluable knowledge bases essential to the evaluation of the Nation's energy and mineral resources.

  12. The Role of Resource Density on Energy Allocation in the Neotropical Termite Nasutitermes aff. coxipoensis (Termitidae: Nasutitermitinae).

    PubMed

    Cristaldo, P F; Almeida, C S; Cruz, N G; Ribeiro, E J M; Rocha, M L C; Santos, A A; Santana, A S; Araújo, A P A

    2018-06-01

    Organisms acquire energy from environment and must allocate it among different life traits (growth, maintenance and reproduction). Social insects must manage the energy allocation to various levels such as colony growth and caste functions. Here, we addressed the question of whether resource density affects the energy allocation to the number of individuals and caste functions as well as nest's growth rate in the Neotropical termite Nasutitermes aff. coxipoensis (Homgren) (Termitidae: Nasutitermitinae). In a manipulative field experiment, colonies of N. aff. coxipoensis, with known volume, were maintained in plots with three different resource's density (0.32, 0.64 and 1.92 baits/m 2 ) over 3 months. After this period, the number of individuals as well as the caste identity and nest volume were measured. Surprisingly, our results showed that colonies reared in the extremes of resource's density (0.32 and 1.92 baits/m 2 ) produced a higher number of individuals compared with colonies reared with intermediate resource density (0. 64 baits/m 2 ). The mean number of workers increased linearly with resource density; however, the average number of immature was higher in colonies reared with 0.32 baits/m 2 compared with colonies reared with 0.64 and 1.92 baits/m 2 . No significant differences of resource density were observed in the mean number of soldiers, worker/soldier ratio as well as in the nest's growth rate. In conclusion, the resource's density seems to play an important role in determining the investment of energy in the number of individuals and caste in N. aff. coxipoensis colonies.

  13. Constraining Aggregate-Scale Solar Energy Partitioning in Arctic Sea Ice Through Synthesis of Remote Sensing and Autonomous In-Situ Observations.

    NASA Astrophysics Data System (ADS)

    Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.

    2015-12-01

    One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.

  14. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming's diverse energy resources. WERIC was established in 2006 by the University of Wyoming's Ruckelshaus Institute of Environment and Naturalmore » Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis

  15. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  16. Space resources. Volume 2: Energy, power, and transport

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    This volume of the Space Resources report covers a number of technical and policy issues concerning the energy and power to carry out advanced space missions and the means of transportation to get to the sites of those missions. Discussed in the first half of this volume are the technologies which might be used to provide power and a variety of ways to convert power from one form to another, store it, move it wherever it is needed, and use it. In the second half of this volume, various kinds of transportation, including both interplanetary and surface systems, are discussed.

  17. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania.

    PubMed

    Krause, Ariane; Rotter, Vera Susanne

    2017-07-15

    In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited. To compare those cooking and sanitation technologies most commonly used in north-western Tanzania with locally developed alternatives, with respect to (i) resource consumption, (ii) potential to recover resources, and (iii) environmental emissions. This study examines technologies at the household level, and was carried out using material flow analysis (MFA). The specific bioenergy technologies analysed include: three-stone fires; charcoal burners; improved cooking stoves (ICS), such as rocket and microgasifier stoves; and biogas systems. The specific sanitation alternatives studied comprise: pit latrines; two approaches to EcoSan; and septic systems. The use of ICS reduces total resource consumption; using charcoal or biogas does not. The residues from microgasifiers were analysed as having a substantial recovery potential for carbon (C) and phosphorus (P). The fact that input substrates for biogas digesters are post-agricultural in nature means that biogas slurry is not considered an 'untapped resource' despite its ample nutrient content. Exchanging pit latrines for water-based sanitation systems places heavy pressure on already scarce water resources for local smallholders. In contrast, the implementation of waterless EcoSan facilities significantly promotes nutrient recovery and reduces environmental emissions, particularly through greenhouse gas emission and nutrient leaching. Recycled outputs from the triple energy-sanitation-agriculture nexus display complementary benefits: residues from cooking can be used to restore organic matter in soils, while sanitation residues contribute

  18. Strategies for Energy Efficient Resource Management of Hybrid Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dong; Supinski, Bronis de; Schulz, Martin

    2013-01-01

    Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoptionmore » of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.« less

  19. SLA-based optimisation of virtualised resource for multi-tier web applications in cloud data centres

    NASA Astrophysics Data System (ADS)

    Bi, Jing; Yuan, Haitao; Tie, Ming; Tan, Wei

    2015-10-01

    Dynamic virtualised resource allocation is the key to quality of service assurance for multi-tier web application services in cloud data centre. In this paper, we develop a self-management architecture of cloud data centres with virtualisation mechanism for multi-tier web application services. Based on this architecture, we establish a flexible hybrid queueing model to determine the amount of virtual machines for each tier of virtualised application service environments. Besides, we propose a non-linear constrained optimisation problem with restrictions defined in service level agreement. Furthermore, we develop a heuristic mixed optimisation algorithm to maximise the profit of cloud infrastructure providers, and to meet performance requirements from different clients as well. Finally, we compare the effectiveness of our dynamic allocation strategy with two other allocation strategies. The simulation results show that the proposed resource allocation method is efficient in improving the overall performance and reducing the resource energy cost.

  20. Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Wenping

    An Underwater Acoustic Wireless Sensor Network (UA-WSN) consists of many resource-constrained Underwater Sensor Nodes (USNs), which are deployed to perform collaborative monitoring tasks over a given region. One way to preserve network connectivity while guaranteing other network QoS is to deploy some Relay Nodes (RNs) in the networks, in which RNs' function is more powerful than USNs and their cost is more expensive. This paper addresses Constrained Low-interference Relay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which the RNs are placed at a subset of candidate locations to ensure connectivity between the USNs, under both the number of RNs deployed and the value of total incremental interference constraints. We first prove that it is NP-hard, then present a general approximation algorithm framework and get two polynomial time O(1)-approximation algorithms.

  1. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  2. Optimization of constrained density functional theory

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Teobaldi, Gilberto

    2016-07-01

    Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.

  3. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  4. Managing large energy and mineral resources (EMR) projects in challenging environments

    NASA Astrophysics Data System (ADS)

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their

  5. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  6. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE PAGES

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; ...

    2016-01-07

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  7. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Number 1076-0167. This information collection expires June 30, 2013. DATES: Interested persons are... to do so. III. Data OMB Control Number: 1076-0167. Title: Tribal Energy Resource Agreements, 25 CFR...

  8. Approaches to the Organization of the Energy Efficient Activity at the Regional Level in the Context of Limited Budget Resources during the Transformation of Energy Market Paradigm

    NASA Astrophysics Data System (ADS)

    Vakulenko, Ihor; Myroshnychenko, Iuliia

    2015-12-01

    The research is devoted to the problem of the assessment of the integrated projects investment efficiency, energy saving and energy efficiency measures for social and municipal buildings within the course aimed at the reduction of the natural gas consumption and its replacement by alternative fuel types, that is important for a number of European countries, and Ukraine in particular. The objectives of the research are as follows: comparative assessment of the quality of integrated and element-by-element approaches to energy saving encompassing investment, environmental, social and organizational aspects; the formulation of practical recommendations to improve the efficiency of development and implementation of integrated programs in the field of energy saving and energy efficiency. It is proposed to use the methodology of system analysis with the elements of deduction that is practical and that allows to set key factors that influence the processes of energy replacement and energy efficiency increase, as well as factors that constrain them.

  9. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy Resource Agreements Tera Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... 25 Indians 1 2010-04-01 2010-04-01 false How may a tribe assume management of development of...

  10. ENERGY FROM THE WEST: A PROGRESS REPORT OF A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT. EXECUTIVE SUMMARY

    EPA Science Inventory

    This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period fr...

  11. Constraining the Surface Energy Balance of Snow in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Lapo, Karl E.

    Physically-based snow models form the basis of our understanding of current and future water and energy cycles, especially in mountainous terrain. These models are poorly constrained and widely diverge from each other, demonstrating a poor understanding of the surface energy balance. This research aims to improve our understanding of the surface energy balance in regions of complex terrain by improving our confidence in existing observations and improving our knowledge of remotely sensed irradiances (Chapter 1), critically analyzing the representation of boundary layer physics within land models (Chapter 2), and utilizing relatively novel observations to in the diagnoses of model performance (Chapter 3). This research has improved the understanding of the literal and metaphorical boundary between the atmosphere and land surface. Solar irradiances are difficult to observe in regions of complex terrain, as observations are subject to harsh conditions not found in other environments. Quality control methods were developed to handle these unique conditions. These quality control methods facilitated an analysis of estimated solar irradiances over mountainous environments. Errors in the estimated solar irradiance are caused by misrepresenting the effect of clouds over regions of topography and regularly exceed the range of observational uncertainty (up to 80Wm -2) in all regions examined. Uncertainty in the solar irradiance estimates were especially pronounced when averaging over high-elevation basins, with monthly differences between estimates up to 80Wm-2. These findings can inform the selection of a method for estimating the solar irradiance and suggest several avenues of future research for improving existing methods. Further research probed the relationship between the land surface and atmosphere as it pertains to the stable boundary layers that commonly form over snow-covered surfaces. Stable conditions are difficult to represent, especially for low wind speed

  12. Constraining a Possible Variation of G with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Uddin, Syed A.

    2014-03-01

    Astrophysical cosmology constrains the variation of Newton's Constant in a manner complementary to laboratory experiments, such as the celebrated lunar laser ranging campaign. Supernova cosmology is an example of the former and has attained campaign status, following planning by a Dark Energy Task Force in 2005. In this paper, we employ the full SNIa data set to the end of 2013 to set a limit on G variation. In our approach, we adopt the standard candle delineation of the redshift distance relation. We set an upper limit on its rate of change |dot{G}/G| of 0.1 parts per billion per year over 9 Gyrs. By contrast, lunar laser ranging tests variation of G over the last few decades. Conversely, one may adopt the laboratory result as a prior and constrain the effect of variable G in dark energy equation of state experiments to δw < 0.02. We also examine the parameterisation G 1 + z. Its short expansion age conflicts with the measured values of the expansion rate and the density in a flat Universe. In conclusion, supernova cosmology complements other experiments in limiting G variation. An important caveat is that it rests on the assumption that the same mass of 56Ni is burned to create the standard candle regardless of redshift. These two quantities, f and G, where f is the Chandrasekhar mass fraction burned, are degenerate. Constraining f variation alone requires more understanding of the SNIa mechanism.

  13. U.S. Geological Survey Studies of Energy Resources in Sub-Saharan Africa

    USGS Publications Warehouse

    ,

    1997-01-01

    The U.S. Government and the American public need access to information on energy resources in sub-Saharan Africa.Sub-Saharan Africa (mostly Nigeria) produces 5 percent of the world's oil, while supplying the United States with 15 percent of our imports (Energy Information Administration). In the next 10 years, sub-Saharan oil and gas will become increasingly more important to the export market. New discoveries in offshore provinces of West Africa ensure a bright future for the region. Projections indicate that increased oil production in sub-Saharan Africa will far outpace the growth of intraregional consumption, providing greater quantities of oil for export (Forman, 1996). Also, West Africa, although a marginal supplier of liquefied natural gas (LNG) today, will become an important LNG source to the international market by the year 2000 (Oil & Gas Journal, 1996). The United States needs up-to-date information about petroleum resources and the energy balance within the region to predict the future role of sub-Saharan Africa as a major oil and gas exporter. The data required to generate the needed information are often disseminated in archives of oil companies and African geologic surveys, or in obscure publications. For these reasons, the U.S. Geological Survey is collecting data on sub-Saharan energy and constructing a regional energy bibliography. The team of geoscientists will assure that this information is available quickly and from a scientifically based, objective view point.

  14. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.

    2017-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  15. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.

    2016-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  16. Optimization-based channel constrained data aggregation routing algorithms in multi-radio wireless sensor networks.

    PubMed

    Yen, Hong-Hsu

    2009-01-01

    In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers

  17. Prioritizing CD4 Count Monitoring in Response to ART in Resource-Constrained Settings: A Retrospective Application of Prediction-Based Classification

    PubMed Central

    Liu, Yan; Li, Xiaohong; Johnson, Margaret; Smith, Collette; Kamarulzaman, Adeeba bte; Montaner, Julio; Mounzer, Karam; Saag, Michael; Cahn, Pedro; Cesar, Carina; Krolewiecki, Alejandro; Sanne, Ian; Montaner, Luis J.

    2012-01-01

    Background Global programs of anti-HIV treatment depend on sustained laboratory capacity to assess treatment initiation thresholds and treatment response over time. Currently, there is no valid alternative to CD4 count testing for monitoring immunologic responses to treatment, but laboratory cost and capacity limit access to CD4 testing in resource-constrained settings. Thus, methods to prioritize patients for CD4 count testing could improve treatment monitoring by optimizing resource allocation. Methods and Findings Using a prospective cohort of HIV-infected patients (n = 1,956) monitored upon antiretroviral therapy initiation in seven clinical sites with distinct geographical and socio-economic settings, we retrospectively apply a novel prediction-based classification (PBC) modeling method. The model uses repeatedly measured biomarkers (white blood cell count and lymphocyte percent) to predict CD4+ T cell outcome through first-stage modeling and subsequent classification based on clinically relevant thresholds (CD4+ T cell count of 200 or 350 cells/µl). The algorithm correctly classified 90% (cross-validation estimate = 91.5%, standard deviation [SD] = 4.5%) of CD4 count measurements <200 cells/µl in the first year of follow-up; if laboratory testing is applied only to patients predicted to be below the 200-cells/µl threshold, we estimate a potential savings of 54.3% (SD = 4.2%) in CD4 testing capacity. A capacity savings of 34% (SD = 3.9%) is predicted using a CD4 threshold of 350 cells/µl. Similar results were obtained over the 3 y of follow-up available (n = 619). Limitations include a need for future economic healthcare outcome analysis, a need for assessment of extensibility beyond the 3-y observation time, and the need to assign a false positive threshold. Conclusions Our results support the use of PBC modeling as a triage point at the laboratory, lessening the need for laboratory-based CD4+ T cell count testing; implementation

  18. 78 FR 72878 - Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-11-000] Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764 Electronic Compliance Filings Take notice of the following filing procedures with respect to compliance obligations in Integration of...

  19. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    PubMed

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  20. Non-energy resources, Connecticut and Rhode Island coastal waters

    USGS Publications Warehouse

    Neff, N.F.; Lewis, R.S.

    1989-01-01

    Cores collected from Long Island Sound, Connecticut, were used to establish control on the geologic framework of the area. Lithologic and stratigraphic analyses verified the presence of the following units: (1) Cretaceous coastal plain, (2) Pleistocene glacial till, (3) late Pleistocene glacial lake, (4) late Pleistocene glacial outwash, and (5) Holocene fluvial, estuarine and marine deposits. Cores collected in Block Island Sound, Rhode Island, were obtained from inferred, relict shoreline features and were analyzed for heavy mineral content. Concentrations ranged from 0.3 to 3.4%; no significant downcore changes were found. The results indicated that surficial sediments in areas of high-velocity tidal flow yield greater amounts of heavy minerals than do inferred placer deposits. During the second phase of the program of study, Connecticut and Rhode Island pooled resources to develop a study plan for the comprehensive quantification of all non-energy resources in the adjacent waters of the states. A literature and data survey was conducted to assess the occurrence, extent, and accessibility of these resources. Sand and gravel and heavy minerals were found in concentrations offering potential for resource exploitation. Constraints on exploitation include (1) water depth restrictions for the protection of shellfish beds and public beaches, (2) fishing activities, (3) military, commercial, and fishing vessel traffic, (4) seafloor cable routes and (5) dump sites. Deposits composed of Pleistocene glacial sediments and/or Holocene marine sediments in regions of little or no user conflict were identified as sites potentially suitable for resource exploitation. The study plan stated additional data needs (geophysical profiling and vibracore sampling) at these sites. Subsequent to these recommendations, high-resolution seismic profiles and sidescan sonographs were obtained from these sites. Seismic stratigraphic analyses confirm the presence of extensive deposits of

  1. Establishing a regulatory value chain model: An innovative approach to strengthening medicines regulatory systems in resource-constrained settings.

    PubMed

    Chahal, Harinder Singh; Kashfipour, Farrah; Susko, Matt; Feachem, Neelam Sekhri; Boyle, Colin

    2016-05-01

    Medicines Regulatory Authorities (MRAs) are an essential part of national health systems and are charged with protecting and promoting public health through regulation of medicines. However, MRAs in resource-constrained settings often struggle to provide effective oversight of market entry and use of health commodities. This paper proposes a regulatory value chain model (RVCM) that policymakers and regulators can use as a conceptual framework to guide investments aimed at strengthening regulatory systems. The RVCM incorporates nine core functions of MRAs into five modules: (i) clear guidelines and requirements; (ii) control of clinical trials; (iii) market authorization of medical products; (iv) pre-market quality control; and (v) post-market activities. Application of the RVCM allows national stakeholders to identify and prioritize investments according to where they can add the most value to the regulatory process. Depending on the economy, capacity, and needs of a country, some functions can be elevated to a regional or supranational level, while others can be maintained at the national level. In contrast to a "one size fits all" approach to regulation in which each country manages the full regulatory process at the national level, the RVCM encourages leveraging the expertise and capabilities of other MRAs where shared processes strengthen regulation. This value chain approach provides a framework for policymakers to maximize investment impact while striving to reach the goal of safe, affordable, and rapidly accessible medicines for all.

  2. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  3. WORK PLAN FOR COMPLETING A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT

    EPA Science Inventory

    This is a work plan for completing the final phase of a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North and South Dakota...

  4. Parallel Harmony Search Based Distributed Energy Resource Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin

    2015-01-01

    This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electricalmore » power distribution systems operation.« less

  5. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás

    2018-05-01

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.

  6. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays.

    PubMed

    Cornish, Neil J; O'Beirne, Logan; Taylor, Stephen R; Yunes, Nicolás

    2018-05-04

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, A_{VL}<4×10^{-16} and A_{SL}<4×10^{-17}, while the bounds on the energy density for a scale invariant cosmological background are Ω_{VL}h^{2}<4×10^{-11} and Ω_{SL}h^{2}<3×10^{-13}.

  7. Constraining continuous rainfall simulations for derived design flood estimation

    NASA Astrophysics Data System (ADS)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  8. Genetic algorithm parameters tuning for resource-constrained project scheduling problem

    NASA Astrophysics Data System (ADS)

    Tian, Xingke; Yuan, Shengrui

    2018-04-01

    Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.

  9. Constrained exceptional supersymmetric standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athron, P.; King, S. F.; Miller, D. J.

    2009-08-01

    We propose and study a constrained version of the exceptional supersymmetric standard model (E{sub 6}SSM), which we call the cE{sub 6}SSM, based on a universal high energy scalar mass m{sub 0}, trilinear scalar coupling A{sub 0} and gaugino mass M{sub 1/2}. We derive the renormalization group (RG) Equations for the cE{sub 6}SSM, including the extra U(1){sub N} gauge factor and the low-energy matter content involving three 27 representations of E{sub 6}. We perform a numerical RG analysis for the cE{sub 6}SSM, imposing the usual low-energy experimental constraints and successful electroweak symmetry breaking. Our analysis reveals that the sparticle spectrum ofmore » the cE{sub 6}SSM involves a light gluino, two light neutralinos, and a light chargino. Furthermore, although the squarks, sleptons, and Z{sup '} boson are typically heavy, the exotic quarks and squarks can also be relatively light. We finally specify a set of benchmark points, which correspond to particle spectra, production modes, and decay patterns peculiar to the cE{sub 6}SSM, altogether leading to spectacular new physics signals at the Large Hadron Collider.« less

  10. Resource and activity substitutes for recreational salmon fishing in New Zealand

    Treesearch

    Bo Shelby

    1985-01-01

    Substitutes become an issue when people are constrained from participating in desired activities. This study investigates and compares activity and resource substitutes for recreational salmon fishing in New Zealand. Results suggest that resource substitution and inventories need more attention, user perceptions of substitutes are important, substitutes can be...

  11. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    NASA Astrophysics Data System (ADS)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  12. Quantum mechanics of a constrained particle

    NASA Astrophysics Data System (ADS)

    da Costa, R. C. T.

    1981-04-01

    The motion of a particle rigidly bounded to a surface is discussed, considering the Schrödinger equation of a free particle constrained to move, by the action of an external potential, in an infinitely thin sheet of the ordinary three-dimensional space. Contrary to what seems to be the general belief expressed in the literature, this limiting process gives a perfectly well-defined result, provided that we take some simple precautions in the definition of the potentials and wave functions. It can then be shown that the wave function splits into two parts: the normal part, which contains the infinite energies required by the uncertainty principle, and a tangent part which contains "surface potentials" depending both on the Gaussian and mean curvatures. An immediate consequence of these results is the existence of different quantum mechanical properties for two isometric surfaces, as can be seen from the bound state which appears along the edge of a folded (but not stretched) plane. The fact that this surface potential is not a bending invariant (cannot be expressed as a function of the components of the metric tensor and their derivatives) is also interesting from the more general point of view of the quantum mechanics in curved spaces, since it can never be obtained from the classical Lagrangian of an a priori constrained particle without substantial modifications in the usual quantization procedures. Similar calculations are also presented for the case of a particle bounded to a curve. The properties of the constraining spatial potential, necessary to a meaningful limiting process, are discussed in some detail, and, as expected, the resulting Schrödinger equation contains a "linear potential" which is a function of the curvature.

  13. Development of a Dynamic Model to Evaluate the Effect of Natural Resource Policies on Recovery Following Nuclear Attack. Volume 1. Description and Simulations

    DTIC Science & Technology

    1981-09-01

    and constrain the output of major energy- consuming sectors. Government stockpiles are most effectively used in a " pump -priming" role. They have to...11 - stockpile for " pump priming" are fuels and basic metals such as iron, steel, copper, and aluminum. The esoteric metals are of secondary...are released, the more impact they have in aiding recovery. Particularly if resource imports are interrupted, post-attack " pump priming" is the best

  14. Advanced Distribution Network Modelling with Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  15. Damped response of shells by a constrained viscoelastic layer

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1986-01-01

    Vibration absorbers are introduced into an asymmetric configuration of thin cylinders and tori enclosing an acoustic medium. The absorbers consist of thin axial strips bonded to the cylinder with a thin viscoelastic layer. The constrained layer dissipates the energy of relative motions between strip and cylinder. The absorber is most effective on response modes with two or more circumferential waves. The use of transfer matrices is extended to the coupled cylinder-absorber system.

  16. Using High Resolution Simulations with WRF/SSiB Regional Climate Model Constrained by In Situ Observations to Assess the Impacts of Dust in Snow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Skiles, M.; Painter, T. H.; Xue, Y.

    2015-12-01

    The mountain snowpack is an essential resource for both the environment as well as society. Observational and energy balance modeling work have shown that dust on snow (DOS) in western U.S. (WUS) is a major contributor to snow processes, including snowmelt timing and runoff amount in regions like the Upper Colorado River Basin (UCRB). In order to accurately estimate the impact of DOS to the hydrologic cycle and water resources, now and under a changing climate, we need to be able to (1) adequately simulate the snowpack (accumulation), and (2) realistically represent DOS processes in models. Energy balance models do not capture the impact on a broader local or regional scale, nor the land-atmosphere feedbacks, while GCM studies cannot resolve orographic-related precipitation processes, and therefore snowpack accumulation, owing to coarse spatial resolution and smoother terrain. All this implies the impacts of dust on snow on the mountain snowpack and other hydrologic processes are likely not well captured in current modeling studies. Recent increase in computing power allows for RCMs to be used at higher spatial resolutions, while recent in situ observations of dust in snow properties can help constrain modeling simulations. Therefore, in the work presented here, we take advantage of these latest resources to address the some of the challenges outlined above. We employ the newly enhanced WRF/SSiB regional climate model at 4 km horizontal resolution. This scale has been shown by others to be adequate in capturing orographic processes over WUS. We also constrain the magnitude of dust deposition provided by a global chemistry and transport model, with in situ measurements taken at sites in the UCRB. Furthermore, we adjust the dust absorptive properties based on observed values at these sites, as opposed to generic global ones. This study aims to improve simulation of the impact of dust in snow on the hydrologic cycle and related water resources.

  17. 78 FR 15718 - Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-44-006] Iberdrola Renewables, Inc. PacifiCorp NextEra Energy Resources, LLC Invenergy Wind North America LLC Horizon Wind Energy LLC v. Bonneville Power Administration; Notice of Filing Take notice that on March 1, 2013...

  18. Use of capillary blood glucose for screening for gestational diabetes mellitus in resource-constrained settings.

    PubMed

    Bhavadharini, Balaji; Mahalakshmi, Manni Mohanraj; Maheswari, Kumar; Kalaiyarasi, Gunasekaran; Anjana, Ranjit Mohan; Deepa, Mohan; Ranjani, Harish; Priya, Miranda; Uma, Ram; Usha, Sriram; Pastakia, Sonak D; Malanda, Belma; Belton, Anne; Unnikrishnan, Ranjit; Kayal, Arivudainambi; Mohan, Viswanathan

    2016-02-01

    The aim of the study was to evaluate usefulness of capillary blood glucose (CBG) for diagnosis of gestational diabetes mellitus (GDM) in resource-constrained settings where venous plasma glucose (VPG) estimations may be impossible. Consecutive pregnant women (n = 1031) attending antenatal clinics in southern India underwent 75-g oral glucose tolerance test (OGTT). Fasting, 1- and 2-h VPG (AU2700 Beckman, Fullerton, CA) and CBG (One Touch Ultra-II, LifeScan) were simultaneously measured. Sensitivity and specificity were estimated for different CBG cut points using the International Association of Diabetes in Pregnancy Study Groups (IADPSG) criteria for the diagnosis of GDM as gold standard. Bland-Altman plots were drawn to look at the agreement between CBG and VPG. Correlation and regression equation analysis were also derived for CBG values. Pearson's correlation between VPG and CBG for fasting was r = 0.433 [intraclass correlation coefficient (ICC) = 0.596, p < 0.001], for 1H, it was r = 0.653 (ICC = 0.776, p < 0.001), and for 2H, r = 0.784 (ICC = 0.834, p < 0.001). Comparing a single CBG 2-h cut point of 140 mg/dl (7.8 mmol/l) with the IADPSG criteria, the sensitivity and specificity were 62.3 and 80.7 %, respectively. If CBG cut points of 120 mg/dl (6.6 mmol/l) or 110 mg/dl (6.1 mmol/l) were used, the sensitivity improves to 78.3 and 92.5 %, respectively. In settings where VPG estimations are not possible, CBG can be used as an initial screening test for GDM, using lower 2H CBG cut points to maximize the sensitivity. Those who screen positive can be referred to higher centers for definitive testing, using VPG.

  19. Active constrained layer damping treatments for shell structures: a deep-shell theory, some intuitive results, and an energy analysis

    NASA Astrophysics Data System (ADS)

    Shen, I. Y.

    1997-02-01

    This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.

  20. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gueymard, Christian

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar powermore » plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.« less

  1. Resource Planning Model | Energy Analysis | NREL

    Science.gov Websites

    balancing authority. An image of a overlapping circles labelled Resource, Technical, Economic, and Market competing electricity technologies. An image of a overlapping circles labelled Resource, Technical, Economic ; Federal Resource Planning. Volume 1: Sectoral, Technical, and Economic Trends, NREL Technical Report (2016

  2. Developing Water Resource Security in a Greenhouse Gas Constrained Context - A Case Study in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; Aghakouchak, A.; Samuelsen, S.

    2015-12-01

    The onset of drought conditions in regions such as California due to shortfalls in precipitation has brought refreshed attention to the vulnerability of our water supply paradigm to changes in climate patterns. In the face of a changing climate which can exacerbate drought conditions in already dry areas, building resiliency into our water supply infrastructure requires some decoupling of water supply availability from climate behavior through conservation, efficiency, and alternative water supply measures such as desalination and water reuse. The installation of these measures requires varying degrees of direct energy inputs and/or impacts the energy usage of the water supply infrastructure (conveyance, treatment, distribution, wastewater treatment). These impacts have implications for greenhouse gas emissions from direct fuel usage or impacts on the emissions from the electric grid. At the scale that these measures may need to be deployed to secure water supply availability, especially under climate change impacted hydrology, they can potentially pose obstacles for meeting greenhouse gas emissions reduction and renewable utilization goals. Therefore, the portfolio of these measures must be such that detrimental impacts on greenhouse gas emissions are minimized. This study combines climate data with a water reservoir network model and an electric grid dispatch model for the water-energy system of California to evaluate 1) the different pathways and scale of alternative water resource measures needed to secure water supply availability and 2) the impacts of following these pathways on the ability to meet greenhouse gas and renewable utilization goals. It was discovered that depending on the water supply measure portfolio implemented, impacts on greenhouse gas emissions and renewable utilization can either be beneficial or detrimental, and optimizing the portfolio is more important under climate change conditions due to the scale of measures required.

  3. A System of Systems (SoS) Approach to transforming to a low carbon resource-efficient energy system: Insights for the European Union (EU)

    NASA Astrophysics Data System (ADS)

    Madani, K.; Jess, T.; Mahlooji, M.; Ristic, B.

    2015-12-01

    The world's energy sector is experiencing a serious transition from reliance on fossil fuel energy sources to extensive reliance on renewable energies. Europe is leading the way in this transition to a low carbon economy in an attempt to keep climate change below 2oC. Member States have committed themselves to reducing greenhouse gas emissions by 20% and increasing the share of renewables in the EU's energy mix to 20% by 2020. The EU has now gone a step further with the objective of reducing greenhouse gas emissions by 80-95% by 2050. Nevertheless, the short-term focus of the European Commission is at "cost-efficient ways" to cut its greenhouse gas emissions which forgoes the unintended impacts of a large expansion of low-carbon energy technologies on major natural resources such as water and land. This study uses the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015) to evaluate the Relative Aggregate Footprint (RAF) of energy sources in different European Union (EU) member states. RAF reflects the overall resource-use efficiency of energy sources with respect to four criteria: carbon footprint, water footprint, land footprint, and economic cost. Weights are assigned to the four resource use efficiency criteria based on each member state's varying natural and economic resources to examine the changes in the desirability of energy sources based on regional resource availability conditions, and to help evaluating the overall resource use efficiency of the EU's energy portfolio. A longer-term strategy in Europe has been devised under the "Resource Efficient Europe" flagship imitative intended to put the EU on course to using resources in a sustainable way. This study will highlight the resource efficiency of the EU's energy sector in order to assist in a sustainable transition to a low carbon economy in Europe. ReferenceHadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All

  4. Resources | Energy Plan

    Science.gov Websites

    sequestration Strategy 7 Nuclear power Footer Text Department for Energy Development and Independence l 300 Sower Blvd. 3rd Floor l Frankfort, KY 40601 502-564-7192 (Telephone) l http://energy.ky.gov Site Map

  5. Conservation of energy resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauss, E.A.; Ullmann, J.E.

    1979-01-01

    The following papers are included: Social, Political, and Ethical Choices in Developing Energy Policies by John C. Sawhill; Choices in Developing Energy Choices by Amory B. Lovins; Energy Conservation: Some Technical and Economic Possibilities by Lloyd J. Thomas; Four Anxieties about a Vigorous National Conservation Program by R. H. Socolow; Energy Conservation: The Weight of the Past and the Problems of Persuasion by John E. Ullman; The Energy Value of Our Existing Stock of Buildings by Richard G. Stein; The Role of Energy Conservation in Industry by Eric R. Zausner; The Role of Energy Conservation in Industry: Discussion Paper bymore » Charles A. Berg; End-Use Technology: The Next Twenty-Five Years by George R. Murray and Michael Power; The Department of Energy's End-Use Conservation Program by Marc Ross; and The Politics of Energy Conservation by Daniel Yergin. (MHR)« less

  6. An ecological perspective of the energy basis of sustainable Bolivian natural resources: Forests and natural gas

    NASA Astrophysics Data System (ADS)

    Izursa, Jose-Luis

    Bolivia, traditionally known for being a country rich in natural resources, has suffered from a constant exploitation of its natural resources benefiting only small groups in and outside the country. The devastation of natural resources that occurred for many years was of concern to the latest government, rural communities and indigenous groups. As a result, Bolivia has a more sustainability-oriented forest law that has a strong orientation towards the utilization of natural resources at a national level and encompasses a fast-growing forestry industry than in previous years. In this dissertation, the wealth of Bolivia's national system was evaluated using solar emergy. Emergy (spelled with "m") is the sum of all energy of one form needed to develop a flow of energy of another form, over a period of time. The basic idea is that solar energy is our ultimate energy source and by expressing the value of products in solar emergy units, it becomes possible to compare different kinds of energy, allowing to express the value for the natural resources in Emergy Dollars. It was found out that Bolivia relies heavily in its natural resources and that its emergy exchange ratio with its international trading partners changed from 12.2 to 1 in 2001 to 6.2 to 1 in 2005. This means that Bolivia went from export 12.2 emdollars of goods for each 1 it received in 2001 to export 6.2 emdollars of products for each 1 it received in 2005. The study also showed that under forest certification practices less emergy is removed from forests (1.49E+19 sej/yr) compared to the amount of emergy removed (2.36E+19 sej/yr) under traditional uncertified practices, reflecting that forest ecology does better under certification. The "Ecologically-based Development for the Bolivian Industrial Forestry System" (DEBBIF) simulation model constructed during this study, compared four different scenarios: the Reference Scenario, the Increased Export Scenario, the Increased Domestic Use Scenario and the

  7. 75 FR 10245 - DPL Energy Resources, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... FERC Online service, please e-mail [email protected] . or call (866) 208-3676 (toll free). For... Resources, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request For Blanket... proceeding of DPL Energy Resources, Inc.'s application for market-based rate authority, with an accompanying...

  8. Space technology in the discovery and development of mineral and energy resources

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.

    1977-01-01

    Space technology, applied to the discovery and extraction of mineral and energy resources, is summarized. Orbital remote sensing for geological purposes has been widely applied through the use of LANDSAT satellites. These techniques also have been of value for protection against environmental hazards and for a better understanding of crustal structure.

  9. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    PubMed Central

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  10. Analysis of the balancing of the wind and solar energy resources in Andalusia (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Santos-Alamillos, F. J.; Pozo-Vazquez, D.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Hernandez-Alvaro, J.; Tova-Pescador, J.

    2010-09-01

    A higher penetration of the renewable energy in the electric system in the future will be conditioned to a reduction of the uncertainty of the yield. A way to obtain this goal is to analyze the balancing between the productions of different sources of renewable energy, trying to combine these productions. In this work we analyze, from a meteorological point of view, the balancing between wind and solar energy resources in Andalusia (southern Iberian Peninsula). To this end, wind speed and global radiation data corresponding to an one year integration of the Weather Research and Forecasting (WRF) Numerical Weather Prediction (NWP) model were analyzed. Two method of analysis were used: a point correlation analysis and a Canonical Correlation Analysis (CCA). Results from these analyses allow obtaining, eventually, areas of local and distributed balancing between the wind and solar energy resources. The analysis was carried out separately for the different seasons of the year. Results showed, overall, a considerable balancing effect between the wind and solar resources in the mountain areas of the interior of the region, along the coast of the central part of the region and, specially, in the coastal area near the Gibraltar strait. Nevertheless, considerable differences were found between the seasons of the year, which may lead to compensating effects. Autumn proved to be the season with the most significant results.

  11. Evolution of hemispheric specialisation of antagonistic systems of management of the body's energy resources.

    PubMed

    Braun, Claude M J

    2007-09-01

    Excellent and rich reviews of lateralised behaviour in animals have recently been published indexing renewed interest in biological theorising about hemispheric specialisation and yielding rich theory. The present review proposes a new account of the evolution of hemispheric specialisation, a primitive system of "management of the body's energy resources". This model is distinct from traditionally evoked cognitive science categories such as verbal/spatial, analytic/holistic, etc., or the current dominant neuroethological model proposing that the key is approach/avoidance behaviour. Specifically, I show that autonomic, immune, psychomotor, motivational, perceptual, and memory systems are similarly and coherently specialised in the brain hemispheres in rodents and man. This energy resource management model, extended to human neuropsychology, is termed here the "psychic tonus" model of hemispheric specialisation.

  12. Choosing health, constrained choices.

    PubMed

    Chee Khoon Chan

    2009-12-01

    In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.

  13. Information resources in the USA on new and renewable energy, a description and directory

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The production dissemination, and availability of US scientific and technical information about new and renewable energy resources, the policy framework within which the technologies are developed, and the roles of public and private sectors are reported. A directory of sources of additional information, printed material, computerized data bases, institutional services, personal contacts, about the use of new and renewable energy is included.

  14. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    NASA Astrophysics Data System (ADS)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  15. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  16. A Methodology to Evaluate Ecological Resources and Risk Using Two Case Studies at the Department of Energy's Hanford Site

    NASA Astrophysics Data System (ADS)

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer; Kosson, David

    2017-03-01

    An assessment of the potential risks to ecological resources from remediation activities or other perturbations should involve a quantitative evaluation of resources on the remediation site and in the surrounding environment. We developed a risk methodology to rapidly evaluate potential impact on ecological resources for the U.S. Department of Energy's Hanford Site in southcentral Washington State. We describe the application of the risk evaluation for two case studies to illustrate its applicability. The ecological assessment involves examining previous sources of information for the site, defining different resource levels from 0 to 5. We also developed a risk rating scale from non-discernable to very high. Field assessment is the critical step to determine resource levels or to determine if current conditions are the same as previously evaluated. We provide a rapid assessment method for current ecological conditions that can be compared to previous site-specific data, or that can be used to assess resource value on other sites where ecological information is not generally available. The method is applicable to other Department of Energy's sites, where its development may involve a range of state regulators, resource trustees, Tribes and other stakeholders. Achieving consistency across Department of Energy's sites for valuation of ecological resources on remediation sites will assure Congress and the public that funds and personnel are being deployed appropriately.

  17. A Methodology to Evaluate Ecological Resources and Risk Using Two Case Studies at the Department of Energy's Hanford Site.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer; Kosson, David

    2017-03-01

    An assessment of the potential risks to ecological resources from remediation activities or other perturbations should involve a quantitative evaluation of resources on the remediation site and in the surrounding environment. We developed a risk methodology to rapidly evaluate potential impact on ecological resources for the U.S. Department of Energy's Hanford Site in southcentral Washington State. We describe the application of the risk evaluation for two case studies to illustrate its applicability. The ecological assessment involves examining previous sources of information for the site, defining different resource levels from 0 to 5. We also developed a risk rating scale from non-discernable to very high. Field assessment is the critical step to determine resource levels or to determine if current conditions are the same as previously evaluated. We provide a rapid assessment method for current ecological conditions that can be compared to previous site-specific data, or that can be used to assess resource value on other sites where ecological information is not generally available. The method is applicable to other Department of Energy's sites, where its development may involve a range of state regulators, resource trustees, Tribes and other stakeholders. Achieving consistency across Department of Energy's sites for valuation of ecological resources on remediation sites will assure Congress and the public that funds and personnel are being deployed appropriately.

  18. NREL: Renewable Resource Data Center - Solar Resource Data

    Science.gov Websites

    Solar Resource Data The following solar resource data collections can be found in the Renewable Resource Data Center (RReDC). Cooperative Networks for Renewable Resource Measurements (CONFRRM) Solar Energy Resource Data Provides solar radiation and wind measurement data for select U.S. locations

  19. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  20. The relationship between energy information management and energy management performance in higher education sector in Thailand, considering from resource and process based views

    NASA Astrophysics Data System (ADS)

    Mongkolsawat, Darunee

    The performance of energy management is usually considered through the energy reduction result however this does not sufficient for managing facility's energy in the long term. In combination to that, this study decides to investigate the relationship between the effectiveness of energy information management and the energy management performance. The interested sector is higher education institutions in Thailand due to their complex organisation both in management and property aspects. By not focusing on quantitative energy reduction as centre, the study seeks to establish a framework or tool in helping to understand such relationship qualitatively through organisation resource and process based view. Additionally, energy management structure is also accounted as initial factor. In relation to such framework, the performance of energy management is considered on its primary results concerning the issues of the data available, analysis results, and energy action. After the investigation, it is found that between the concerned factors and primary performance there are various specific relationships. For example, some tend to have direct connections as relations between the energy management structure and implemented actions, and between the investment in organisation resources and data available. While some have flexible relations as between data collection and results of analysed data. Furthermore, the load of energy management has been found influencing on organisation's motivation to invest in energy management. At the end of the paper, further application to the study is also proposed.

  1. Assessment of the US Department of Energy's Sustainable Energy Resources for Consumers Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenahan, Tim; Bausch, Daniel; Carroll, David

    This report presents the results of an assessment of the Sustainable Energy Resources for Consumers (SERC) grant program that was administered by the US Department of Energy Weatherization and Intergovernmental Program Office. Grants totaling $90 million were awarded to 101 local weatherization agencies located in 27 states. More than 15,000 housing units were touched by the SERC program. Close to 29,000 SERC technologies were installed and/or services delivered. The report summarizes the results of site visits to 27 agencies in which the following 14 technologies were observed: solar photovoltaic panels, solar hot water heaters, solar thermal air panels for spacemore » heating, tankless water heaters, heat pump water heaters, geothermal heat pumps, super-evaporative cooling systems, combination boilers and indirect water heaters, small-scale residential wind systems, cool roofs, masonry spray foam insulation, attic radiant barriers, mini-split heat pumps, and in-home energy monitors. The evaluation found that the national weatherization network is capable of installing and delivering a wide range of new and innovative technologies, but the usability and adoptability of some technologies may prove impractical for the weatherization network and the demographic for which it serves.« less

  2. Hierarchical control framework for integrated coordination between distributed energy resources and demand response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Lian, Jianming; Sun, Yannan

    Demand response is representing a significant but largely untapped resource that can greatly enhance the flexibility and reliability of power systems. In this paper, a hierarchical control framework is proposed to facilitate the integrated coordination between distributed energy resources and demand response. The proposed framework consists of coordination and device layers. In the coordination layer, various resource aggregations are optimally coordinated in a distributed manner to achieve the system-level objectives. In the device layer, individual resources are controlled in real time to follow the optimal power generation or consumption dispatched from the coordination layer. For the purpose of practical applications,more » a method is presented to determine the utility functions of controllable loads by taking into account the real-time load dynamics and the preferences of individual customers. The effectiveness of the proposed framework is validated by detailed simulation studies.« less

  3. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems;more » water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.« less

  4. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Science.gov Websites

    sites Data related to geothermal technology and energy Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative

  5. Fission barriers from multidimensionally-constrained covariant density functional theories

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2017-11-01

    In recent years, we have developed the multidimensionally-constrained covariant density functional theories (MDC-CDFTs) in which both axial and spatial reflection symmetries are broken and all shape degrees of freedom described by βλμ with even μ, such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-CDFTs have been applied to the investigation of potential energy surfaces and fission barriers of actinide nuclei, third minima in potential energy surfaces of light actinides, shapes and potential energy surfaces of superheavy nuclei, octupole correlations between multiple chiral doublet bands in 78Br, octupole correlations in Ba isotopes, the Y32 correlations in N = 150 isotones and Zr isotopes, the spontaneous fission of Fm isotopes, and shapes of hypernuclei. In this contribution we present the formalism of MDC-CDFTs and the application of these theories to the study of fission barriers and potential energy surfaces of actinide nuclei.

  6. Constraining the location of rapid gamma-ray flares in the flat spectrum radio quasar 3C 273 [Constraining the location of rapid gamma-ray flares in the FSRQ 3C 273

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, B.; Lott, B.; Krichbaum, T. P.

    2013-09-02

    Here, we present a γ-ray photon flux and spectral variability study of the flat-spectrum radio quasar 3C 273 over a rapid flaring activity period between September 2009 to April 2010. Five major flares were observed in the source during this period. The most rapid flare observed in the source has a flux doubling time of 1.1 hr. The rapid γ-ray flares allow us to constrain the location and size of the γ-ray emission region in the source. The γγ-opacity constrains the Doppler factor δ γ ≥ 10 for the highest energy (15 GeV) photon observed by the Fermi-Large Area Telescopemore » (LAT). Causality arguments constrain the size of the emission region to 1.6 × 10 15 cm. The γ-ray spectra measured over this period show clear deviations from a simple power law with a break in the 1–2 GeV energy range. We discuss possible explanations for the origin of the γ-ray spectral breaks. Our study suggests that the γ-ray emission region in 3C 273 is located within the broad line region (< 1.6 pc). As a result, the spectral behavior and temporal characteristics of the individual flares indicate the presence of multiple shock scenarios at the base of the jet.« less

  7. Deer browse resources of the Atomic Energy Commission's Savannah River project area

    Treesearch

    William H. Moore

    1967-01-01

    A procedure developed in Georgia was used to inventory the browse resources of the Atomic Energy Commission's Savannah River Project Area near Aiken, South Carolina. Through this procedure, the forest land manager is supplied with relative carrying capacity data for deer . If silvical practices can be related to habitat quality and quantity, he can adjust...

  8. Constrained choices? Linking employees' and spouses' work time to health behaviors.

    PubMed

    Fan, Wen; Lam, Jack; Moen, Phyllis; Kelly, Erin; King, Rosalind; McHale, Susan

    2015-02-01

    There are extensive literatures on work conditions and health and on family contexts and health, but less research asking how a spouse or partners' work conditions may affect health behaviors. Drawing on the constrained choices framework, we theorized health behaviors as a product of one's own time and spouses' work time as well as gender expectations. We examined fast food consumption and exercise behaviors using survey data from 429 employees in an Information Technology (IT) division of a U.S. Fortune 500 firm and from their spouses. We found fast food consumption is affected by men's work hours-both male employees' own work hours and the hours worked by husbands of women respondents-in a nonlinear way. The groups most likely to eat fast food are men working 50 h/week and women whose husbands work 45-50 h/week. Second, exercise is better explained if work time is conceptualized at the couple, rather than individual, level. In particular, neo-traditional arrangements (where husbands work longer than their wives) constrain women's ability to engage in exercise but increase odds of men exercising. Women in couples where both partners are working long hours have the highest odds of exercise. In addition, women working long hours with high schedule control are more apt to exercise and men working long hours whose wives have high schedule flexibility are as well. Our findings suggest different health behaviors may have distinct antecedents but gendered work-family expectations shape time allocations in ways that promote men's and constrain women's health behaviors. They also suggest the need to expand the constrained choices framework to recognize that long hours may encourage exercise if both partners are looking to sustain long work hours and that work resources, specifically schedule control, of one partner may expand the choices of the other. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Constrained Choices? Linking Employees' and Spouses' Work Time to Health Behaviors

    PubMed Central

    Fan, Wen; Lam, Jack; Moen, Phyllis; Kelly, Erin; King, Rosalind; McHale, Susan

    2014-01-01

    There are extensive literatures on work conditions and health and on family contexts and health, but less research asking how a spouse or partners' work conditions may affect health behaviors. Drawing on the constrained choices framework, we theorized health behaviors as a product of one's own time and spouses' work time as well as gender expectations. We examined fast food consumption and exercise behaviors using survey data from 429 employees in an Information Technology (IT) division of a U.S. Fortune 500 firm and from their spouses. We found fast food consumption is affected by men's work hours—both male employees' own work hours and the hours worked by husbands of women respondents—in a nonlinear way. The groups most likely to eat fast food are men working 50 hours/week and women whose husbands work 45-50 hours/week. Second, exercise is better explained if work time is conceptualized at the couple, rather than individual, level. In particular, neo-traditional arrangements (where husbands work longer than their wives) constrain women's ability to engage in exercise but increase odds of men exercising. Women in couples where both partners are working long hours have the highest odds of exercise. In addition, women working long hours with high schedule control are more apt to exercise and men working long hours whose wives have high schedule flexibility are as well. Our findings suggest different health behaviors may have distinct antecedents but gendered work-family expectations shape time allocations in ways that promote men's and constrain women's health behaviors. They also suggest the need to expand the constrained choices framework to recognize that long hours may encourage exercise if both partners are looking to sustain long work hours and that work resources, specifically schedule control, of one partner may expand the choices of the other. PMID:25531550

  10. Industry sector analysis: The market for renewable energy resources (the Philippines). Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, E.; Miranda, A.L.

    1990-08-01

    The market survey covers the renewable energy resources market in the Philippines. Sub-sectors covered include biomass, solar energy, photovoltaic cells, windmills, and mini-hydro systems. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.

  11. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    production and agriculture. These kinds of stresses often initiate innovated technological developments, such as dry cooling to reduce water demands in the U.S. Southwest for utility-scalesolar development, however, the need for large areas of land remain, and often, large land tracts in this region are under Federal ownership and used as conservation or wildlife refuges. Conflicting stakeholder views, institutional commitments, and international concerns can constrain options for reducing vulnerability to climate change, and interactions among water, energy, and land resource sectors can intensify such constraints. While management decisions may focus primarily on one of these resource sectors, where the three sectors are tightly coupled, options for mitigating or adapting to climate change may be limited more than expected. For example, the Columbia River Treaty between Canada and the U.S. emphasizes hydroelectric power and flood control, but with warmer temperatures and drier summers projected for the Northwest, diminishing water supplies will result in increased pumping for resource production (i.e., deeper groundwater) and transmission. Finally, coordinated water management for agriculture, ecosystem services, and hydropower will be an important aspect of adaptation not necessarily accommodated by the Treaty.

  12. Feasibility Assessment of a Fine-Grained Access Control Model on Resource Constrained Sensors.

    PubMed

    Uriarte Itzazelaia, Mikel; Astorga, Jasone; Jacob, Eduardo; Huarte, Maider; Romaña, Pedro

    2018-02-13

    Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that provide services that can adapt to user behavior or be managed to achieve greater productivity. In such environments, smart things are inexpensive and, therefore, constrained devices. However, they are also critical components because of the importance of the information that they provide. Given this, strong security is a requirement, but not all security mechanisms in general and access control models in particular are feasible. In this paper, we present the feasibility assessment of an access control model that utilizes a hybrid architecture and a policy language that provides dynamic fine-grained policy enforcement in the sensors, which requires an efficient message exchange protocol called Hidra. This experimental performance assessment includes a prototype implementation, a performance evaluation model, the measurements and related discussions, which demonstrate the feasibility and adequacy of the analyzed access control model.

  13. Feasibility Assessment of a Fine-Grained Access Control Model on Resource Constrained Sensors

    PubMed Central

    Huarte, Maider; Romaña, Pedro

    2018-01-01

    Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that provide services that can adapt to user behavior or be managed to achieve greater productivity. In such environments, smart things are inexpensive and, therefore, constrained devices. However, they are also critical components because of the importance of the information that they provide. Given this, strong security is a requirement, but not all security mechanisms in general and access control models in particular are feasible. In this paper, we present the feasibility assessment of an access control model that utilizes a hybrid architecture and a policy language that provides dynamic fine-grained policy enforcement in the sensors, which requires an efficient message exchange protocol called Hidra. This experimental performance assessment includes a prototype implementation, a performance evaluation model, the measurements and related discussions, which demonstrate the feasibility and adequacy of the analyzed access control model. PMID:29438338

  14. 76 FR 78684 - Grant Program To Assess, Evaluate and Promote Development of Tribal Energy and Mineral Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ...) 407-0668 or email: [email protected] ; and Geothermal Energy: Bob Just, Tel: (720) 407... Development of Tribal Energy and Mineral Resources AGENCY: Bureau of Indian Affairs, Interior. ACTION: Solicitation of proposals. [[Page 78685

  15. Development of a decision aid for energy resource management for the Navajo Nation incorporating environmental cultural values

    NASA Astrophysics Data System (ADS)

    Necefer, Len Edward

    Decision-making surrounding pathways of future energy resource management are complexity and requires balancing tradeoffs of multiple environmental, social, economic, and technical outcomes. Technical decision aid can provide a framework for informed decision making, allowing individuals to better understand the tradeoff between resources, technology, energy services, and prices. While technical decision aid have made significant advances in evaluating these quantitative aspects of energy planning and performance, they have not been designed to incorporate human factors, such as preferences and behavior that are informed by cultural values. Incorporating cultural values into decision tools can provide not only an improved decision framework for the Navajo Nation, but also generate new insights on how these perspective can improve decision making on energy resources. Ensuring these aids are a cultural fit for each context has the potential to increase trust and promote understanding of the tradeoffs involved in energy resource management. In this dissertation I present the development of a technical tool that explicitly addresses cultural and spiritual values and experimentally assesses their influence on the preferences and decision making of Navajo citizens. Chapter 2 describes the results of a public elicitation effort to gather information about stakeholder views and concerns related to energy development in the Navajo Nation in order to develop a larger sample survey and a decision-support tool that links techno-economic energy models with sociocultural attributes. Chapter 3 details the methods of developing the energy decision aid and its underlying assumptions for alternative energy projects and their impacts. This tool also provides an alternative to economic valuation of cultural impacts based upon an ordinal index tied to environmental impacts. Chapter 4 details the the influence of various cultural, environmental, and economic outcome information provided

  16. 76 FR 21886 - Xcel Energy; Notice of Application of Recreational Resources Management Plan Update for the St...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2056-049] Xcel Energy; Notice of Application of Recreational Resources Management Plan Update for the St. Anthony Falls Project and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the...

  17. Fundamentalist physics: why Dark Energy is bad for astronomy

    NASA Astrophysics Data System (ADS)

    White, Simon D. M.

    2007-06-01

    Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.

  18. Protection policy for Hawaii's native wildlife during geothermal energy development

    NASA Astrophysics Data System (ADS)

    Hannah, Lee

    1986-09-01

    Hawaii possesses abundant geothermal resources and rare native wildlife. Geothermal energy development has not posed a threat to native wildlife in the past, but development potential has recently reached a level at which concern for native wildlife is warranted. Potential geothermal resource areas in Hawaii intersect important native forest and endangered species habitat. The ability of existing laws to constrain development in these areas is in question. State and federal endangered species and environmental reporting laws have little ability to constrain geothermal development on private land. Hawaii's Land Use Law had been viewed by conservationists as protecting natural areas important to native wildlife, but recent decisions of the state Land Board sharply challenge this view. While this dispute was being resolved in the courts, the state legislature passed the Geothermal Subzone Act of 1983. Wildlife value was assessed in the geothermal subzone designation process mandated by this act, but the subzones designated primarily reflected inappropriate developer influence. All areas in which there was developer interest received subzone designation, and no area in which there was no developer interest was subzoned. This overriding emphasis on developer interest violated the intent of the sub-zone act, and trivialized the importance of other assessment criteria, among them native wildlife values.

  19. ENERGY FROM THE WEST: A PROGRESS REPORT OF A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT. VOLUME I. SUMMARY REPORT

    EPA Science Inventory

    This report discusses development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 20...

  20. A Global Look at Future Trends in the Renewable Energy Resource

    NASA Astrophysics Data System (ADS)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  1. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization, DMS Integration of Distributed Energy Resources and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravindra; Reilly, James T.; Wang, Jianhui

    Deregulation of the electric utility industry, environmental concerns associated with traditional fossil fuel-based power plants, volatility of electric energy costs, Federal and State regulatory support of “green” energy, and rapid technological developments all support the growth of Distributed Energy Resources (DERs) in electric utility systems and ensure an important role for DERs in the smart grid and other aspects of modern utilities. DERs include distributed generation (DG) systems, such as renewables; controllable loads (also known as demand response); and energy storage systems. This report describes the role of aggregators of DERs in providing optimal services to distribution networks, through DERmore » monitoring and control systems—collectively referred to as a Distributed Energy Resource Management System (DERMS)—and microgrids in various configurations.« less

  2. Tuber size variation and organ preformation constrain growth responses of a spring geophyte.

    PubMed

    Werger, Marinus J A; Huber, Heidrun

    2006-03-01

    Functional responses to environmental variation do not only depend on the genetic potential of a species to express different trait values, but can also be limited by characteristics, such as the timing of organ (pre-) formation, aboveground longevity or the presence of a storage organ. In this experiment we tested to what degree variation in tuber size and organ preformation constrain the responsiveness to environmental quality and whether responsiveness is modified by the availability of stored resources by exposing the spring geophyte Bunium bulbocastanum to different light and nutrient regimes. Growth and biomass partitioning were affected by initial tuber size and resource availability. On average, tuber weight amounted to 60%, but never less than 30% of the total plant biomass. Initial tuber size, considered an estimate of the total carbon pool available at the onset of treatments, affected plant growth and reproduction throughout the experiment but had little effect on the responsiveness of plants to the treatments. The responsiveness was partly constrained by organ preformation: in the second year variation of leaf number was considerably larger than in the first year of the treatments. The results indicate that a spring geophyte with organ preformation has only limited possibilities to respond to short-term fluctuations of the environment, as all leaves and the inflorescence are preformed in the previous growing season and resources stored in tubers are predominantly used for survival during dormancy and are not invested into plastic adjustments to environmental quality. Such spring geophytes have only limited possibilities to buffer environmental variation. This explains their restriction to habitats characterized by predictable changes of the environmental conditions.

  3. Impacts of Using Distributed Energy Resources to Reduce Peak Loads in Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark F.; Lunacek, Monte S.; Jones, Birk

    To help the United States develop a modern electricity grid that provides reliable power from multiple resources as well as resiliency under extreme conditions, the U.S. Department of Energy (DOE) is leading the Grid Modernization Initiative (GMI) to help shape the future of the nation's grid. Under the GMI, DOE funded the Vermont Regional Initiative project to provide the technical support and analysis to utilities that need to mitigate possible impacts of increasing renewable generation required by statewide goals. Advanced control of distributed energy resources (DER) can both support higher penetrations of renewable energy by balancing controllable loads to windmore » and photovoltaic (PV) solar generation and reduce peak demand by shedding noncritical loads. This work focuses on the latter. This document reports on an experiment that evaluated and quantified the potential benefits and impacts of reducing the peak load through demand response (DR) using centrally controllable electric water heaters (EWHs) and batteries on two Green Mountain Power (GMP) feeders. The experiment simulated various hypothetical scenarios that varied the number of controllable EWHs, the amount of distributed PV systems, and the number of distributed residential batteries. The control schemes were designed with several objectives. For the first objective, the primary simulations focused on reducing the load during the independent system operator (ISO) peak when capacity charges were the primary concern. The second objective was to mitigate DR rebound to avoid new peak loads and high ramp rates. The final objective was to minimize customers' discomfort, which is defined by the lack of hot water when it is needed. We performed the simulations using the National Renewable Energy Laboratory's (NREL's) Integrated Energy System Model (IESM) because it can simulate both electric power distribution feeder and appliance end use performance and it includes the ability to simulate multiple

  4. Study benefit value of utilization water resources for energy and sustainable environment

    NASA Astrophysics Data System (ADS)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  5. Human Resource Development Issues in the Implementation of the Western China Development Strategy

    ERIC Educational Resources Information Center

    Xiao, Mingzheng

    2007-01-01

    This paper systematically illustrates the value and role of human resource development in the implementation of the Western China development strategy. It analyzes in details some current human resource issues constraining the implementation of the Western China development strategy and those on the sustainable development process of economic…

  6. NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal

    Atmospheric Science Data Center

    2018-03-16

    NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal ... current POWER home page. The new POWER will include improved solar and meteorological data with all parameters available on a 0.5-degree ...

  7. The United Nations framework classification for fossil energy and mineral reserves and resources 2009

    USGS Publications Warehouse

    MacDonald, D.; Lynch-Bell, M.; Ross, J.; Heiberg, S.; Griffiths, C.; Klett, T.

    2011-01-01

    Effective resource management in a globalizing economy requires accurate assessments of fossil energy and minerals resources. The recoverable quantities must be described and categorized in a manner that is consistent with scientific and social/economic information describing the economy as well as with the information describing the projects to recover them. A number of different standards have evolved over time in response to various professional needs Under a mandate given by the United Nations Economic and Social Council, the United Nations Economic Commission for Europe (UNECE) has cooperated with Governments, regulatory agencies, industry, international organizations, and professional organizations (including Committee for Mineral Reserves International Reporting Standards (CRIRSCO), the Society of Petroleum Engineers (SPE), the American Association of Petroleum Geologists (AAPG), and the Society of Petroleum Evaluation Engineers (SPEE)), as well as with outstanding experts, to define a global classification for extractive activities (including oil, gas, heavy oil and bitumen extraction) that reflects the principal concerns of existing petroleum and mineral classifications. The United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources-2009 (UNFC-2009) aims to serve the following four principal needs: 1. The needs in international energy and mineral studies to formulate robust and long-sighted policies. 2. The needs of governments in managing their resources accordingly, allowing market prices to be transferred to the wellhead with as little loss as possible. 3. The industries' needs for information while deploying technology, management and finance to secure energy supplies and capture value efficiently within the established frameworks to serve its host countries, shareholders and stakeholders. 4. The financial community's need for information to allocate capital appropriately, providing reduced costs and improved long

  8. Constrained subsystem density functional theory.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2016-08-03

    Constrained Subsystem Density Functional Theory (CSDFT) allows to compute diabatic states for charge transfer reactions using the machinery of the constrained DFT method, and at the same time is able to embed such diabatic states in a molecular environment via a subsystem DFT scheme. The CSDFT acronym is chosen to reflect the fact that on top of the subsystem DFT approach, a constraining potential is applied to each subsystem. We show that CSDFT can successfully tackle systems as complex as single stranded DNA complete of its backbone, and generate diabatic states as exotic as a hole localized on a phosphate group as well as on the nucleobases. CSDFT will be useful to investigators needing to evaluate the environmental effect on charge transfer couplings for systems in condensed phase environments.

  9. Visual Resource Analysis for Solar Energy Zones in the San Luis Valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.; Zvolanek, Emily

    This report summarizes the results of a study conducted by Argonne National Laboratory’s (Argonne’s) Environmental Science Division for the U.S. Department of the Interior Bureau of Land Management (BLM). The study analyzed the regional effects of potential visual impacts of solar energy development on three BLM-designated solar energy zones (SEZs) in the San Luis Valley (SLV) in Colorado, and, based on the analysis, made recommendations for or against regional compensatory mitigation to compensate residents and other stakeholders for the potential visual impacts to the SEZs. The analysis was conducted as part of the solar regional mitigation strategy (SRMS) task conductedmore » by BLM Colorado with assistance from Argonne. Two separate analyses were performed. The first analysis, referred to as the VSA Analysis, analyzed the potential visual impacts of solar energy development in the SEZs on nearby visually sensitive areas (VSAs), and, based on the impact analyses, made recommendations for or against regional compensatory mitigation. VSAs are locations for which some type of visual sensitivity has been identified, either because the location is an area of high scenic value or because it is a location from which people view the surrounding landscape and attach some level of importance or sensitivity to what is seen from the location. The VSA analysis included both BLM-administered lands in Colorado and in the Taos FO in New Mexico. The second analysis, referred to as the SEZ Analysis, used BLM visual resource inventory (VRI) and other data on visual resources in the former Saguache and La Jara Field Offices (FOs), now contained within the San Luis Valley FO (SLFO), to determine whether the changes in scenic values that would result from the development of utility-scale solar energy facilities in the SEZs would affect the quality and quantity of valued scenic resources in the SLV region as a whole. If the regional effects were judged to be significant

  10. 75 FR 53963 - Notice of Baseline Filings: The Peoples Gas Light and Coke Company, Minnesota Energy Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-86-000, Docket No. PR10-87-000, Docket No. PR10-88- 000, Docket No. PR10-89-000, Docket No. PR10-90-000] Notice of Baseline Filings: The Peoples Gas Light and Coke Company, Minnesota Energy Resources Corporation, Louisville Gas...

  11. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    EPA Science Inventory

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  12. The Pendulum: From Constrained Fall to the Concept of Potential

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Fabio; Falomo, Lidia; Fregonese, Lucio; Giannetto, Enrico; Giudice, Franco; Mascheretti, Paolo

    2006-08-01

    Kuhn underlined the relevance of Galileo’s gestalt switch in the interpretation of a swinging body from constrained fall to time metre. But the new interpretation did not eliminate the older one. The constrained fall, both in the motion of pendulums and along inclined planes, led Galileo to the law of free fall. Experimenting with physical pendulums and assuming the impossibility of perpetual motion Huygens obtained a law of conservation of vis viva at specific positions, beautifully commented by Mach. Daniel Bernoulli generalised Huygens results introducing the concept of potential and the related independence of the ‘work’ done from the trajectories (paths) followed: vis viva conservation at specific positions is now linked with the potential. Feynman’s modern way of teaching the subject shows striking similarities with Bernoulli’s approach. A number of animations and simulations can help to visualise and teach some of the pendulum’s interpretations related to what we now see as instances of energy conservation.

  13. A Framework for Quantitative Assessment of Impacts Related to Energy and Mineral Resource Development

    DOE PAGES

    Haines, Seth S.; Diffendorfer, Jay E.; Balistrieri, Laurie; ...

    2013-05-15

    Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sagemore » grouse leks and pinon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. In conclusion, the framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.« less

  14. A framework for quantitative assessment of impacts related to energy and mineral resource development

    USGS Publications Warehouse

    Haines, Seth S.; Diffendorfer, James; Balistrieri, Laurie S.; Berger, Byron R.; Cook, Troy A.; Gautier, Donald L.; Gallegos, Tanya J.; Gerritsen, Margot; Graffy, Elisabeth; Hawkins, Sarah; Johnson, Kathleen; Macknick, Jordan; McMahon, Peter; Modde, Tim; Pierce, Brenda; Schuenemeyer, John H.; Semmens, Darius; Simon, Benjamin; Taylor, Jason; Walton-Day, Katherine

    2013-01-01

    Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sage grouse leks and piñon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. The framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.

  15. Constrained model predictive control, state estimation and coordination

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    In this dissertation, we study the interaction between the control performance and the quality of the state estimation in a constrained Model Predictive Control (MPC) framework for systems with stochastic disturbances. This consists of three parts: (i) the development of a constrained MPC formulation that adapts to the quality of the state estimation via constraints; (ii) the application of such a control law in a multi-vehicle formation coordinated control problem in which each vehicle operates subject to a no-collision constraint posed by others' imperfect prediction computed from finite bit-rate, communicated data; (iii) the design of the predictors and the communication resource assignment problem that satisfy the performance requirement from Part (ii). Model Predictive Control (MPC) is of interest because it is one of the few control design methods which preserves standard design variables and yet handles constraints. MPC is normally posed as a full-state feedback control and is implemented in a certainty-equivalence fashion with best estimates of the states being used in place of the exact state. However, if the state constraints were handled in the same certainty-equivalence fashion, the resulting control law could drive the real state to violate the constraints frequently. Part (i) focuses on exploring the inclusion of state estimates into the constraints. It does this by applying constrained MPC to a system with stochastic disturbances. The stochastic nature of the problem requires re-posing the constraints in a probabilistic form. In Part (ii), we consider applying constrained MPC as a local control law in a coordinated control problem of a group of distributed autonomous systems. Interactions between the systems are captured via constraints. First, we inspect the application of constrained MPC to a completely deterministic case. Formation stability theorems are derived for the subsystems and conditions on the local constraint set are derived in order to

  16. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    NASA Astrophysics Data System (ADS)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  17. Energy Efficient Materials Manufacturing from Secondary Resources

    NASA Astrophysics Data System (ADS)

    Apelian, Diran; Mishra, Brajendra

    Rare earths metals, including yttrium and scandium, are being increasingly used in clean energy technologies, colored phosphors, lasers and high intensity magnets. There are important defense applications such as fighter jet engines, missile guidance systems and space based satellite and communication systems, based on these metals. The commitment to clean energy technologies by various governments, as well as the projected growth in power and transportation sectors across the globe will certainly escalate the demand for rare earth metals and compounds. This demand implies that to ensure unhindered technological innovation, it is essential to possess secure supply chains for rare earth elements. The United States continues to be one of the largest consumers and importer of rare earths and the trend is expected to continue as the demand increases. In order to ensure secure rare earth supply and attenuate supply-demand imbalances post 2014, it is not only necessary to encourage and support exploration of newer reserves, build a rare earth stockpile, but it is also of utmost importance to look at opportunities to recycle and reuse Rare Earth Elements (REE) from secondary sources, such as post-consumer and manufacturing process wastes. This research describes the technological developments made to convert these valuable resources into functional manufactured materials for lighting industry, automotive and petroleum refining catalysts, and high density permanent magnets. In addition, production of rhenium from advanced aerospace alloys is also discussed from the perspective that it can be recovered for introduction in turbine alloys.

  18. Data-driven planning of distributed energy resources amidst socio-technical complexities

    NASA Astrophysics Data System (ADS)

    Jain, Rishee K.; Qin, Junjie; Rajagopal, Ram

    2017-08-01

    New distributed energy resources (DER) are rapidly replacing centralized power generation due to their environmental, economic and resiliency benefits. Previous analyses of DER systems have been limited in their ability to account for socio-technical complexities, such as intermittent supply, heterogeneous demand and balance-of-system cost dynamics. Here we develop ReMatch, an interdisciplinary modelling framework, spanning engineering, consumer behaviour and data science, and apply it to 10,000 consumers in California, USA. Our results show that deploying DER would yield nearly a 50% reduction in the levelized cost of electricity (LCOE) over the status quo even after accounting for socio-technical complexities. We abstract a detailed matching of consumers to DER infrastructure from our results and discuss how this matching can facilitate the development of smart and targeted renewable energy policies, programmes and incentives. Our findings point to the large-scale economic and technical feasibility of DER and underscore the pertinent role DER can play in achieving sustainable energy goals.

  19. Cement-in-cement acetabular revision with a constrained tripolar component.

    PubMed

    Leonidou, Andreas; Pagkalos, Joseph; Luscombe, Jonathan

    2012-02-17

    Dislocation of a total hip replacement (THR) is common following total hip arthroplasty (THA). When nonoperative management fails to maintain reduction, revision surgery is considered. The use of constrained acetabular liners has been extensively described. Complete removal of the old cement mantle during revision THA can be challenging and is associated with significant complications. Cement-in-cement revision is an established technique. However, the available clinical and experimental studies focus on femoral stem revision. The purpose of this study was to present a case of cement-in-cement acetabular revision with a constrained component for recurrent dislocations and to investigate the current best evidence for this technique. This article describes the case of a 74-year-old woman who underwent revision of a Charnley THR for recurrent low-energy dislocations. A tripolar constrained acetabular component was cemented over the primary cement mantle following removal of the original liner by reaming, roughening the surface, and thoroughly irrigating and drying the primary cement. Clinical and radiological results were good, with the Oxford Hip Score improving from 11 preoperatively to 24 at 6 months postoperatively. The good short-term results of this case and the current clinical and biomechanical data encourage the use of the cement-in-cement technique for acetabular revision. Careful irrigation, drying, and roughening of the primary surface are necessary. Copyright 2012, SLACK Incorporated.

  20. Resources

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  1. On the Allocation of Resources for Secondary Schools

    ERIC Educational Resources Information Center

    Haelermans, Carla; De Witte, Kristof; Blank, Jos L. T.

    2012-01-01

    This paper studies the optimal allocation of resources--in terms of school management, teachers, supporting employees and materials--in secondary schools. We use a flexible budget constrained output distance function model to estimate both technical and allocative efficiency scores for 448 Dutch secondary schools between 2002 and 2007. The results…

  2. NREL: Renewable Resource Data Center - Webmaster

    Science.gov Websites

    Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency

  3. Integrated Potential-field Studies in Support of Energy Resource Assessment in Frontier Areas of Alaska

    NASA Astrophysics Data System (ADS)

    Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.

    2008-05-01

    In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and

  4. International energy trade impacts on water resource crises: an embodied water flows perspective

    NASA Astrophysics Data System (ADS)

    Zhang, J. C.; Zhong, R.; Zhao, P.; Zhang, H. W.; Wang, Y.; Mao, G. Z.

    2016-07-01

    Water and energy are coupled in intimate ways (Siddiqi and Anadon 2011 Energy Policy 39 4529-40), which is amplified by international energy trade. The study shows that the total volume of energy related international embodied water flows averaged 6298 Mm3 yr-1 from 1992-2010, which represents 10% of the water used for energy production including oil, coal, gas and electricity production. This study calculates embodied water import and export status of 219 countries from 1992 to 2010 and embodied water flow changes of seven regions over time (1992/2000/2010). In addition, the embodied water net export risk-crisis index and net embodied water import benefit index are established. According to the index system, 33 countries export vast amounts of water who have a water shortage, which causes water risk and crisis related to energy trade. While 29 countries abate this risk due to their rich water resource, 45 countries import embodied water linked to energy imports. Based on the different status of countries studied, the countries were classified into six groups with different policy recommendations.

  5. Connecting the resource nexus to basic urban service provision – with a focus on water-energy interactions in New York City

    DOE PAGES

    Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia; ...

    2017-05-01

    Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less

  6. Connecting the resource nexus to basic urban service provision – with a focus on water-energy interactions in New York City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia

    Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less

  7. Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison

    NASA Astrophysics Data System (ADS)

    Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.

    1996-11-01

    Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.

  8. How alive is constrained SUSY really?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtle, Philip; Desch, Klaus; Dreiner, Herbert K.

    2016-05-31

    Constrained supersymmetric models like the CMSSM might look less attractive nowadays because of fine tuning arguments. They also might look less probable in terms of Bayesian statistics. The question how well the model under study describes the data, however, is answered by frequentist p-values. Thus, for the first time, we calculate a p-value for a supersymmetric model by performing dedicated global toy fits. We combine constraints from low-energy and astrophysical observables, Higgs boson mass and rate measurements as well as the non-observation of new physics in searches for supersymmetry at the LHC. Furthermore, using the framework Fittino, we perform globalmore » fits of the CMSSM to the toy data and find that this model is excluded at the 90% confidence level.« less

  9. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs

    NASA Astrophysics Data System (ADS)

    Philipsen, R. H. H. M.; Sánchez, C. I.; Maduskar, P.; Melendez, J.; Peters-Bax, L.; Peter, J. G.; Dawson, R.; Theron, G.; Dheda, K.; van Ginneken, B.

    2015-07-01

    Molecular tests hold great potential for tuberculosis (TB) diagnosis, but are costly, time consuming, and HIV-infected patients are often sputum scarce. Therefore, alternative approaches are needed. We evaluated automated digital chest radiography (ACR) as a rapid and cheap pre-screen test prior to Xpert MTB/RIF (Xpert). 388 suspected TB subjects underwent chest radiography, Xpert and sputum culture testing. Radiographs were analysed by computer software (CAD4TB) and specialist readers, and abnormality scores were allocated. A triage algorithm was simulated in which subjects with a score above a threshold underwent Xpert. We computed sensitivity, specificity, cost per screened subject (CSS), cost per notified TB case (CNTBC) and throughput for different diagnostic thresholds. 18.3% of subjects had culture positive TB. For Xpert alone, sensitivity was 78.9%, specificity 98.1%, CSS $13.09 and CNTBC $90.70. In a pre-screening setting where 40% of subjects would undergo Xpert, CSS decreased to $6.72 and CNTBC to $54.34, with eight TB cases missed and throughput increased from 45 to 113 patients/day. Specialists, on average, read 57% of radiographs as abnormal, reducing CSS ($8.95) and CNTBC ($64.84). ACR pre-screening could substantially reduce costs, and increase daily throughput with few TB cases missed. These data inform public health policy in resource-constrained settings.

  10. Joint Solar Power Industry and Department of Energy Solar Resource and Meteorological Assessment Project (SOLRMAP)

    NASA Astrophysics Data System (ADS)

    Wilcox, Steve; Myers, Daryl

    2009-08-01

    The U.S. Department of Energy's National Renewable Energy Laboratory has embarked on a collaborative effort with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of concentrating solar thermal power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result will be high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Potential effects of energy development on environmental resources of the Williston Basin in Montana, North Dakota, and South Dakota

    USGS Publications Warehouse

    Post van der Burg, Max; Vining, Kevin C.; Frankforter, Jill D.

    2017-09-28

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States, has been a leading domestic oil and gas producing area. To better understand the potential effects of energy development on environmental resources in the Williston Basin, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, and in support of the needs identified by the Bakken Federal Executive Group (consisting of representatives from 13 Federal agencies and Tribal groups), began work to synthesize existing information on science topics to support management decisions related to energy development. This report is divided into four chapters (A–D). Chapter A provides an executive summary of the report and principal findings from chapters B–D. Chapter B provides a brief compilation of information regarding the history of energy development, physiography, climate, land use, demographics, and related studies in the Williston Basin. Chapter C synthesizes current information about water resources, identifies potential effects from energy development, and summarizes water resources research and information needs in the Williston Basin. Chapter D summarizes information about ecosystems, species of conservation concern, and potential effects to those species from energy development in the Williston Basin.

  12. Finding a Place for Energy: Siting Coal Conversion Facilities. Resource Publications in Geography.

    ERIC Educational Resources Information Center

    Calzonetti, Frank J.; Eckert, Mark S.

    The process of identifying, licensing, and developing energy facility sites for the conversion of coal into more useful forms is the focus of this book, intended for geography students, professors, and researchers. The use of domestic coal resources will ameliorate U.S. dependency on imported fuel. However, because coal is a bulky, dirty fuel…

  13. Evaluation of resource impact factors versus social cost estimates in determining building energy performance standard levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieves, L.A.; Nesse, R.J.; Adams, R.C.

    1979-12-01

    In order to increase the welfare of society through the implementation of a building energy-performance standard, a method is required by which the least-cost means of obtaining the desired space conditioning of a building can be estimated. In other words, a life-cycle cost model must be developed to simulate the energy-related building-design decisions that would take place if resources were being allocated efficiently. The cost-minimizing model must incorporate technically efficient conservation strategies and fuel-conversion equipment, and the prices used must reflect the social value of the fuels and capital equipment used. This report explores the feasibility of developing a factormore » that could be used to adjust a design energy budget to account for the external costs associated with that energy consumption. One such factor, RIF (resource impact factor) has been proposed by ASHRAE. Though ASHRAE suggested the RIF x RUF (resource utilization factor) multiplier concept, RIF's were not explicitly defined. Weber (1978) suggested that RIF be defined as a ratio of social costs to effective market price. The basis for a RIF used in conjunction with a RUF is evaluated here and is found lacking. To fill the gap, a social-cost approach is developed that addresses the goals of both RIF's and RUF's. The rationale for using such an approach stems from the existence of differences between retail prices and the actual social costs of fuels.« less

  14. Shallow Geothermal Admissibility Maps: a Methodology to Achieve a Sustainable Development of Shallow Geothermal Energy with Regards to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Bréthaut, D.; Parriaux, A.; Tacher, L.

    2009-04-01

    Implantation and use of shallow geothermal systems may have environmental impacts. Traditionally, risks are divided into 2 categories: direct and indirect. Direct risks are linked with the leakage of the circulating fluid (usually water with anti-freeze) of ground source heat pumps into the underground which may be a source of contamination. Indirect risks are linked with the borehole itself and the operation of the systems which can modify the groundwater flow, change groundwater temperature and chemistry, create bypasses from the surfaces to the aquifers or between two aquifers. Groundwater source heat pumps (GWSHP) may provoke indirect risks, while ground source heat pumps (GSHP) may provoke both direct and indirect risks. To minimize those environmental risks, the implantation of shallow geothermal systems must be regulated. In 2007, more than 7000 GSHP have been installed in Switzerland, which represents 1.5 Mio drilled meters. In the canton of Vaud, each shallow geothermal project has to be approved by the Department of the Environment. Approximately 1500 demands have been treated during 2007, about 15 times more than in 1990. Mapping shallow geothermal systems implantation restrictions due to environmental constrains permits: 1) to optimize the management and planning of the systems, 2) to minimize their impact on groundwater resources and 3) to facilitate administrative procedures for treating implantation demands. Such maps are called admissibility maps. Here, a methodology to elaborate them is presented and tested. Interactions between shallow geothermal energy and groundwater resources have been investigated. Admissibility criteria are proposed and structured into a flow chart which provides a decision making tool for shallow geothermal systems implantation. This approach has been applied to three areas of West Switzerland ranging from 2 to 6 km2. For each area, a geological investigation has been realized and complementary territorial information (e

  15. Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion.

    PubMed

    Wu, Xiaolin; Zhang, Xiangjun; Wang, Xiaohan

    2009-03-01

    Recently, many researchers started to challenge a long-standing practice of digital photography: oversampling followed by compression and pursuing more intelligent sparse sampling techniques. In this paper, we propose a practical approach of uniform down sampling in image space and yet making the sampling adaptive by spatially varying, directional low-pass prefiltering. The resulting down-sampled prefiltered image remains a conventional square sample grid, and, thus, it can be compressed and transmitted without any change to current image coding standards and systems. The decoder first decompresses the low-resolution image and then upconverts it to the original resolution in a constrained least squares restoration process, using a 2-D piecewise autoregressive model and the knowledge of directional low-pass prefiltering. The proposed compression approach of collaborative adaptive down-sampling and upconversion (CADU) outperforms JPEG 2000 in PSNR measure at low to medium bit rates and achieves superior visual quality, as well. The superior low bit-rate performance of the CADU approach seems to suggest that oversampling not only wastes hardware resources and energy, and it could be counterproductive to image quality given a tight bit budget.

  16. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    NASA Astrophysics Data System (ADS)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  17. Learning About Energy Resources Through Student Created Video Documentaries in the University Science Classroom

    NASA Astrophysics Data System (ADS)

    Wade, P.; Courtney, A.

    2010-12-01

    Students enrolled in an undergraduate non-science majors’ Energy Perspectives course created 10-15 minute video documentaries on topics related to Energy Resources and the Environment. Video project topics included wave, biodiesel, clean coal, hydro, solar and “off-the-grid” energy technologies. No student had any prior experience with creating video projects. Students had Liberal Arts academic backgrounds that included Anthropology, Theater Arts, International Studies, English and Early Childhood Education. Students were required to: 1) select a topic, 2) conduct research, 3) write a narrative, 4) construct a project storyboard, 5) shoot or acquire video and photos (from legal sources), 6) record the narrative, and 7) construct the video documentary. This study describes the instructional approach of using student created video documentaries as projects in an undergraduate non-science majors’ science course. Two knowledge survey instruments were used for assessment purposes. Each instrument was administered Pre-, Mid- and Post course. One survey focused on the skills necessary to research and produce video documentaries. Results showed students acquired enhanced technology skills especially with regard to research techniques, writing skills and video editing. The second survey assessed students’ content knowledge acquired from each documentary. Results indicated students’ increased their content knowledge of energy resource topics. Students reported very favorable evaluations concerning their experience with creating “Ken Burns” video project documentaries.

  18. Halo effective field theory constrains the solar 7Be + p → 8B + γ rate

    DOE PAGES

    Zhang, Xilin; Nollett, Kenneth M.; Phillips, D. R.

    2015-11-06

    In this study, we report an improved low-energy extrapolation of the cross section for the process 7Be(p,γ) 8B, which determines the 8B neutrino flux from the Sun. Our extrapolant is derived from Halo Effective Field Theory (EFT) at next-to-leading order. We apply Bayesian methods to determine the EFT parameters and the low-energy S-factor, using measured cross sections and scattering lengths as inputs. Asymptotic normalization coefficients of 8B are tightly constrained by existing radiative capture data, and contributions to the cross section beyond external direct capture are detected in the data at E < 0.5 MeV. Most importantly, the S-factor atmore » zero energy is constrained to be S(0) = 21.3 ± 0.7 eV b, which is an uncertainty smaller by a factor of two than previously recommended. That recommendation was based on the full range for S(0) obtained among a discrete set of models judged to be reasonable. In contrast, Halo EFT subsumes all models into a controlled low-energy approximant, where they are characterized by nine parameters at next-to-leading order. These are fit to data, and marginalized over via Monte Carlo integration to produce the improved prediction for S(E).« less

  19. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  20. Analysis and optimization of indicators of energy and resource consumption of gas turbine and electric drives for transportation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Golik, V. V.; Zemenkova, M. Yu; Seroshtanov, I. V.; Begalko, Z. V.

    2018-05-01

    The paper presents the results of the analysis of statistical indicators of energy and resource consumption in oil and gas transportation by the example of one of the regions of Russia. The article analyzes engineering characteristics of compressor station drives. Official statistical bulletins on the fuel and energy resources of the region in the pipeline oil and gas transportation system were used as the initial data.