Science.gov

Sample records for energy constrained resource

  1. Dynamic Resource Management for Parallel Tasks in an Oversubscribed Energy-Constrained Heterogeneous Environment

    SciTech Connect

    Imam, Neena; Koenig, Gregory A; Machovec, Dylan; Khemka, Bhavesh; Pasricha, Sudeep; Maciejewski, Anthony A; Siegel, Howard; Wright, Michael; Hilton, Marcia; Rambharos, Rejendra

    2016-01-01

    Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e., Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.

  2. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds

    SciTech Connect

    McCollum, David; Bauer, Nico; Calvin, Katherine V.; Kitous, Alban; Riahi, Keywan

    2014-04-01

    Fossil resource endowments and the future development of fossil fuel prices are important factors that will critically influence the nature and direction of the global energy system. In this paper we analyze a multi-model ensemble of long-term energy and emissions scenarios that were developed within the framework of the EMF27 integrated assessment model inter-comparison exercise. The diverse nature of these models highlights large uncertainties in the likely development of fossil resource (coal, oil, and natural gas) consumption, trade, and prices over the course of the twenty-first century and under different climate policy frameworks. We explore and explain some of the differences across scenarios and models and compare the scenario results with fossil resource estimates from the literature. A robust finding across the suite of IAMs is that the cumulative fossil fuel consumption foreseen by the models is well within the bounds of estimated recoverable reserves and resources. Hence, fossil resource constraints are, in and of themselves, unlikely to limit future GHG emissions. Our analysis also shows that climate mitigation policies could lead to a major reallocation of financial flows between regions, in terms of expenditures on fossil fuels and carbon, and can help to alleviate near-term energy security concerns via the reductions in oil imports and increases in energy system diversity they will help to motivate.

  3. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    PubMed

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  4. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  5. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng

    2015-01-01

    Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264

  6. Constraining Dark Energy

    NASA Astrophysics Data System (ADS)

    Abrahamse, Augusta

    2010-12-01

    Future advances in cosmology will depend on the next generation of cosmological observations and how they shape our theoretical understanding of the universe. Current theoretical ideas, however, have an important role to play in guiding the design of such observational programs. The work presented in this thesis concerns the intersection of observation and theory, particularly as it relates to advancing our understanding of the accelerated expansion of the universe (or the dark energy). Chapters 2 - 4 make use of the simulated data sets developed by the Dark Energy Task Force (DETF) for a number of cosmological observations currently in the experimental pipeline. We use these forecast data in the analysis of four quintessence models of dark energy: the PNGB, Exponential, Albrecht-Skordis and Inverse Power Law (IPL) models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of these models. We examine the potential of the data for differentiating time-varying models from a pure cosmological constant. Additionally, we introduce an abstract parameter space to facilitate comparison between models and investigate the ability of future data to distinguish between these quintessence models. In Chapter 5 we present work towards understanding the effects of systematic errors associated with photometric redshift estimates. Due to the need to sample a vast number of deep and faint galaxies, photometric redshifts will be used in a wide range of future cosmological observations including gravitational weak lensing, baryon accoustic oscillations and type 1A supernovae observations. The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from such observations. We introduce a method for parameterizing uncertainties in modeling assumptions affecting photometric redshift calculations and for propagating these

  7. HCV management in resource-constrained countries.

    PubMed

    Lim, Seng Gee

    2017-02-21

    With the arrival of all-oral directly acting antiviral (DAA) therapy with high cure rates, the promise of hepatitis C virus (HCV) eradication is within closer reach. The availability of generic DAAs has improved access to countries with constrained resources. However, therapy is only one component of the HCV care continuum, which is the framework for HCV management from identifying patients to cure. The large number of undiagnosed HCV cases is the biggest concern, and strategies to address this are needed, as risk factor screening is suboptimal, detecting <20% of known cases. Improvements in HCV confirmation through either reflex HCV RNA screening or ideally a sensitive point of care test are needed. HCV notification (e.g., Australia) may improve diagnosis (proportion of HCV diagnosed is 75%) and may lead to benefits by increasing linkage to care, therapy and cure. Evaluations for cirrhosis using non-invasive markers are best done with a biological panel, but they are only moderately accurate. In resource-constrained settings, only generic HCV medications are available, and a combination of sofosbuvir, ribavirin, ledipasvir or daclatasvir provides sufficient efficacy for all genotypes, but this is likely to be replaced with pangenetypic regimens such as sofosbuvir/velpatasvir and glecaprevir/pibrentaasvir. In conclusion, HCV management in resource-constrained settings is challenging on multiple fronts because of the lack of infrastructure, facilities, trained manpower and equipment. However, it is still possible to make a significant impact towards HCV eradication through a concerted effort by individuals and national organisations with domain expertise in this area.

  8. Save Energy Now Resources

    SciTech Connect

    2008-03-01

    The U.S. Department of Energy (DOE) provides information resources to industrial energy users and partnering organizations to help the nation’s industrial sector save energy and improve productivity.

  9. QoS-constrained Energy Minimization in Multiuser Multicarrier Systems

    NASA Astrophysics Data System (ADS)

    Bai, Qing; Ivrlač, Michel T.; Nossek, Josef A.

    In this paper the QoS-constrained resource allocation problem in multicarrier systems is considered. Within the established cross-layer framework, parameters for subchannel assignment, adaptive modulation and coding, and ARQ/HARQ protocols are jointly optimized. Instead of the conventional transmit power minimization, the total energy consumption for the successful transmissions of all information bits is set as the optimization goal. The nonconvex primal problem is solved by using Lagrange dual decomposition and the ellipsoid method. Numerical results indicate that the recovered primal solution is well acceptable in performance, and efficient in terms of computational effort.

  10. An Energy Resource List.

    ERIC Educational Resources Information Center

    VocEd, 1979

    1979-01-01

    Selected energy resource information, from both federal and private sources, is listed under funding, general information and assistance, recycling, solar, transportation, utilities, and wind power. Books, pamphlets, films, journals, newsletters, and other materials are included. (MF)

  11. Resource-Driven Mission-Phasing Techniques for Constrained Agents in Stochastic Environments

    DTIC Science & Technology

    2010-07-01

    adopted a Lagrangian and dual LP approach to solve constrained MDPs with total cost criteria. Feinberg (2000) analyzed the complexity of constrained...agents mechanically implement mode-transition and resource- reconfiguration actions. 6. Conclusion The work in this paper designed, analyzed, and...lize resource reconfiguration opportunities. It provides a new computationally efficient resource-reconfiguration mechanism for resource-constrained

  12. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  13. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  14. Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices

    NASA Astrophysics Data System (ADS)

    Engels, Daniel; Fan, Xinxin; Gong, Guang; Hu, Honggang; Smith, Eric M.

    Due to the tight cost and constrained resources of high-volume consumer devices such as RFID tags, smart cards and wireless sensor nodes, it is desirable to employ lightweight and specialized cryptographic primitives for many security applications. Motivated by the design of the well-known Enigma machine, we present a novel ultra-lightweight cryptographic algorithm, referred to as Hummingbird, for resource-constrained devices in this paper. Hummingbird can provide the designed security with small block size and is resistant to the most common attacks such as linear and differential cryptanalysis. Furthermore, we also present efficient software implementation of Hummingbird on the 8-bit microcontroller ATmega128L from Atmel and the 16-bit microcontroller MSP430 from Texas Instruments, respectively. Our experimental results show that after a system initialization phase Hummingbird can achieve up to 147 and 4.7 times faster throughput for a size-optimized and a speed-optimized implementations, respectively, when compared to the state-of-the-art ultra-lightweight block cipher PRESENT[10] on the similar platforms.

  15. A Resource Constrained Distributed Constraint Optimization Method using Resource Constraint Free Pseudo-tree

    NASA Astrophysics Data System (ADS)

    Matsui, Toshihiro; Silaghi, Marius C.; Hirayama, Katsutoshi; Yokoo, Makoto; Matsuo, Hiroshi

    Cooperative problem solving with shared resources is important in practical multi-agent systems. Resource constraints are necessary to handle practical problems such as distributed task scheduling with limited resource availability. As a fundamental formalism for multi-agent cooperation, the Distributed Constraint Optimization Problem (DCOP) has been investigated. With DCOPs, the agent states and the relationships between agents are formalized into a constraint optimization problem. However, in the original DCOP framework, constraints for resources that are consumed by teams of agents are not well supported. A framework called Resource Constrained Distributed Constraint Optimization Problem (RCDCOP) has recently been proposed. In RCDCOPs, a limit on resource usage is represented as an n-ary constraint. Previous research addressing RCDCOPs employ a pseudo-tree based solver. The pseudo-tree is an important graph structure for constraint networks. A pseudo-tree implies a partial ordering of variables. However, n-ary constrained variables, which are placed on a single path of the pseudo-tree, decrease efficiency of the solver. We propose another method using (i) a pseudo-tree that is generated ignoring resource constraints and (ii) virtual variables representing the usage of resources. However the virtual variables increase search space. To improve pruning efficiency of search, (iii) we apply a set of upper/lower bounds that are inferred from resource constraints. The efficiency of the proposed method is evaluated by experiment.

  16. Infertility in resource-constrained settings: moving towards amelioration.

    PubMed

    Hammarberg, Karin; Kirkman, Maggie

    2013-02-01

    It is often presumed that infertility is not a problem in resource-poor areas where fertility rates are high. This is challenged by consistent evidence that the consequences of childlessness are very severe in low-income countries, particularly for women. In these settings, childless women are frequently stigmatized, isolated, ostracized, disinherited and neglected by the family and local community. This may result in physical and psychological abuse, polygamy and even suicide. Attitudes among people in high-income countries towards provision of infertility care in low-income countries have mostly been either dismissive or indifferent as it is argued that scarce healthcare resources should be directed towards reducing fertility and restricting population growth. However, recognition of the plight of infertile couples in low-income settings is growing. One of the United Nation's Millennium Development Goals was for universal access to reproductive health care by 2015, and WHO has recommended that infertility be considered a global health problem and stated the need for adaptation of assisted reproductive technology in low-resource countries. This paper challenges the construct that infertility is not a serious problem in resource-constrained settings and argues that there is a need for infertility care, including affordable assisted reproduction treatment, in these settings. It is often presumed that infertility is not a problem in densely populated, resource-poor areas where fertility rates are high. This presumption is challenged by consistent evidence that the consequences of childlessness are very severe in low-income countries, particularly for women. In these settings, childless women are frequently stigmatized, isolated, ostracized, disinherited and neglected by the family and local community. This may result in physical and psychological abuse, polygamy and even suicide. Because many families in low-income countries depend on children for economic survival

  17. Time-Constrained Maximum-Energy Turns.

    DTIC Science & Technology

    1980-12-01

    The object of this study is to find the trajectories which a high performance aircraft would employ to maximize the change in specific energy during...A suboptimal control approach, which uses both gradient and second-order techniques, is employed to find the maximum specific energy trajectories

  18. Health Effects of Energy Resources

    USGS Publications Warehouse

    Orem, William; Tatu, Calin; Pavlovic, Nikola; Bunnell, Joseph; Kolker, Allan; Engle, Mark; Stout, Ben

    2010-01-01

    Energy resources (coal, oil, and natural gas) are among the cornerstones of modern industrial society. The exploitation of these resources, however, is not without costs. Energy materials may contain harmful chemical substances that, if mobilized into air, water, or soil, can adversely impact human health and environmental quality. In order to address the issue of human exposure to toxic substances derived from energy resources, the U.S. Geological Survey (USGS) Energy Resources Program developed a project entitled 'Impacts of Energy Resources on Human Health and Environmental Quality.' The project is intended to provide policymakers and the public with the scientific information needed to weigh the human health and environmental consequences of meeting our energy needs. This fact sheet discusses several areas where the USGS Energy Resources Program is making scientific advances in this endeavor.

  19. Unconventional Energy Resources: 2015 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  20. Unconventional Energy Resources: 2013 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  1. Energy and Resources

    ERIC Educational Resources Information Center

    Sorensen, Bent

    1975-01-01

    Discusses the feasibility of utilizing continuous sources of of energy, particularly solar and wind energy. Outlines an energy plan for Denmark, which would supply all of Denmark's energy needs by the year 2050. (MLH)

  2. Western Energy Corridor -- Energy Resource Report

    SciTech Connect

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  3. Unconventional Energy Resources: 2011 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists

    2011-12-15

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

  4. Constraining dark energy through the stability of cosmic structures

    SciTech Connect

    Pavlidou, V.; Tetradis, N.; Tomaras, T.N. E-mail: ntetrad@phys.uoa.gr

    2014-05-01

    For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.

  5. Energy Information Resources.

    ERIC Educational Resources Information Center

    Gaddy, Carol T., Ed.; Wells, Kathy, Ed.

    This document was published with the small energy user in mind--the student writing a term paper, the homemaker seeking tips on cutting utility bills, the elderly, farmers, small business owners, factory managers, and Arkansans in all walks of life. Although the volume contains a significant selection of books, magazines, films, and organizations…

  6. Biomass energies: resources, links, constraints

    SciTech Connect

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  7. Constraining the Symmetry Energy Using Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Stiefel, Krystin; Kohley, Zachary; Morrissey, Dave; Thoennessen, Michael; MoNA Collaboration

    2016-09-01

    Calculations from the constrained molecular dynamics (CoMD) model have shown that the N/Z ratio of the residue fragments and neutron emissions from projectile fragmentation reactions is sensitive to the form of the symmetry energy, a term in the nuclear equation of state. In order to constrain the symmetry energy using the N/Z ratio observable, an experiment was performed using the MoNA-LISA and Sweeper magnet arrangement at the NSCL. Beams of 30S and 40S impinged on 9Be targets and the heavy residue fragments were measured in coincidence with fast neutrons. Comparison of the new experimental data with theoretical models should provide a constraint on the form of the symmetry energy. Some of the data from this experiment will be presented and discussed. This work is partially supported by the National Science Foundation under Grant No. PHY-1102511 and the Department of Energy National Nuclear Security Administration under Award No. DE-NA0000979.

  8. Building cancer nursing skills in a resource-constrained government hospital.

    PubMed

    Strother, R M; Fitch, Margaret; Kamau, Peter; Beattie, Kathy; Boudreau, Angela; Busakhalla, N; Loehrer, P J

    2012-09-01

    Cancer is a rising cause of morbidity and mortality in resource-constrained settings. Few places in the developing world have cancer care experts and infrastructure for caring for cancer patients; therefore, it is imperative to develop this infrastructure and expertise. A critical component of cancer care, rarely addressed in the published literature, is cancer nursing. This report describes an effort to develop cancer nursing subspecialty knowledge and skills in support of a growing resource-constrained comprehensive cancer care program in Western Kenya. This report highlights the context of cancer care delivery in a resource-constrained setting, and describes one targeted intervention to further develop the skill set and knowledge of cancer care providers, as part of collaboration between developed world academic institutions and a medical school and governmental hospital in Western Kenya. Based on observations of current practice, practice setting, and resource limitations, a pragmatic curriculum for cancer care nursing was developed and implemented.

  9. Light-weight cyptography for resource constrained environments

    NASA Astrophysics Data System (ADS)

    Baier, Patrick; Szu, Harold

    2006-04-01

    We give a survey of "light-weight" encryption algorithms designed to maximise security within tight resource constraints (limited memory, power consumption, processor speed, chip area, etc.) The target applications of such algorithms are RFIDs, smart cards, mobile phones, etc., which may store, process and transmit sensitive data, but at the same time do not always support conventional strong algorithms. A survey of existing algorithms is given and new proposal is introduced.

  10. Traversable geometric dark energy wormholes constrained by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-he

    2016-09-01

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω <-1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω _X<-1 (or z<0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology.

  11. Renewable energy: energy from geothermal resources

    SciTech Connect

    Not Available

    1984-11-01

    The geothermal resources of Florida are poor in most parts of the state, but offer potential in one or two areas. Groundwater heat pumps are efficient and presently abundant water resources exist in most Florida areas, but widespread use of these units could affect Florida's groundwater supplies if reinjection wells are not required. The effect of large numbers of wells on an aquifer in small geographic areas has not been adequately assessed. Data on groundwater heat pump energy use for Florida climatic conditions are needed as is information on the number of units currently operating.

  12. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    SciTech Connect

    2009-12-31

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric

  13. Energy transfer and constrained simulations in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier

    1993-01-01

    The defining characteristic of turbulent flows is their ability to dissipate energy, even in the limit of zero viscosity. The Euler equations, if constrained in such a way that the velocity derivatives remain bounded, conserve energy. But when they arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number goes to infinity, there is persuasive empirical evidence that the gradients become singular as just the right function of Re for the dissipation to remain non-zero and to approach a well defined limit. It is generally believed that this limiting value of the dissipation is a property of the Euler equations themselves, independent of the particular dissipative mechanism involved, and that it can be normalized with the large scale properties of the turbulent flow (e.g. the kinetic energy per unit volume u'(exp 2)/2, and the integral scale L) without reference to the Reynolds number or to other dissipative quantities. This is usually taken to imply that the low wave number end of the energy spectrum, far from the dissipative range, is also independent of the particular mechanism chosen to dispose of the energy transfer. In the following sections, we present some numerical experiments on the effect of substituting different dissipation models into the truncated Euler equations. We will see that the effect is mainly felt in the 'near dissipation' range of the energy spectrum, but that this range can be quite wide in some cases, contaminating a substantial range of wave numbers. In the process, we will develop a 'practical' approximation to the subgrid energy transfer in isotropic turbulence, and we will gain insight into the structure of the nonlinear interactions among turbulent scales of comparable size, and into the nature of energy backscatter. Some considerations on future research directions are offered at the end.

  14. Managing Pressures Ulcers in a Resource Constrained Situation: A Holistic Approach

    PubMed Central

    Dam, Abhijit; Datta, Nivedita; Mohanty, Usha Rani; Bandhopadhyay, Chandreyi

    2011-01-01

    Managing pressure ulcers remain a challenge and call for a multidisciplinary team approach to care. Even more daunting is the management of such patients in remote locations and in resource constrained situations. The management of pressure sores in a patient with progressive muscular atrophy has been discussed using resources that were locally available, accessible, and affordable. Community participation was encouraged. A holistic approach to care was adopted. PMID:22346055

  15. Total energy control system autopilot design with constrained parameter optimization

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Voth, Christopher

    1990-01-01

    A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.

  16. Constraining photon mass by energy-dependent gravitational light bending

    NASA Astrophysics Data System (ADS)

    Qian, Lei

    2012-03-01

    In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 × 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 × 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.

  17. Support for Resource Constrained Microcontroller Programming by a Broad Developer Community

    ERIC Educational Resources Information Center

    Amar, Amichi

    2010-01-01

    Resource constrained microcontrollers with as little as several hundred bytes of RAM and a few dozen megahertz of processing power are the most prevalent computing devices on earth. Microcontrollers and the many application components that interface to them, such as sensors, actuators, transceivers and displays are now cheap and readily available.…

  18. Energy for lunar resource exploitation

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1992-01-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  19. Energy for lunar resource exploitation

    NASA Astrophysics Data System (ADS)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  20. Constraining dark energy from the abundance of weak gravitational lenses

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Kamionkowski, Marc

    2003-05-01

    We examine the prospect of using the observed abundance of weak gravitational lenses to constrain the equation-of-state parameter w=p/ρ of dark energy. Dark energy modifies the distance-redshift relation, the amplitude of the matter power spectrum, and the rate of structure growth. As a result, it affects the efficiency with which dark-matter concentrations produce detectable weak-lensing signals. Here we solve the spherical-collapse model with dark energy, clarifying some ambiguities found in the literature. We also provide fitting formulae for the non-linear overdensity at virialization and the linear-theory overdensity at collapse. We then compute the variation in the predicted weak-lens abundance with w. We find that the predicted redshift distribution and number count of weak lenses are highly degenerate in w and the present matter density Ω0. If we fix Ω0 the number count of weak lenses for w=-2/3 is a factor of ~2 smaller than for the Λ cold dark matter (CDM) model w=-1. However, if we allow Ω0 to vary with w such that the amplitude of the matter power spectrum as measured by the Cosmic Background Explorer (COBE) matches that obtained from the X-ray cluster abundance, the decrease in the predicted lens abundance is less than 25 per cent for -1 <=w< -0.4. We show that a more promising method for constraining dark energy - one that is largely unaffected by the Ω0-w degeneracy as well as uncertainties in observational noise - is to compare the relative abundance of virialized X-ray lensing clusters with the abundance of non-virialized, X-ray underluminous, lensing haloes. For aperture sizes of ~15 arcmin, the predicted ratio of the non-virialized to virialized lenses is greater than 40 per cent and varies by ~20 per cent between w=-1 and -0.6. Overall, we find that, if all other weak-lensing parameters are fixed, a survey must cover at least ~40 deg2 in order for the weak-lens number count to differentiate a ΛCDM cosmology from a dark-energy model with w

  1. Auctions for coastal energy resources

    NASA Astrophysics Data System (ADS)

    Griffin, Robert M.

    It is becoming increasingly common to allocate public resources to the private sector for the purpose of developing these resources. One of the earliest uses of auctions in the U.S. for allocating rights to public resources was in the offshore oil and gas industry. The U.S. Federal government, through the Department of Interior (DOI), has used auctions to allocate development rights to offshore oil and gas resources to the private sector since the 1950's. Since then many things have changed. Oil and gas markets have gone through boom and bust cycles, giant technological advances in extraction and assessment have taken place, and alternative energy based in the coastal zone is now in demand in markets as well. There has been an enormous amount of research into the drivers of bidder behavior in auctions and optimal auction design in the last 60 years as well. Throughout all of this, the DOI has continued to use basically the same exact auction design to allocate oil and gas leases. The U.S. offshore oil and gas resources sold by the Department of Interior have accounted for more than $65 billion in revenue since the program started. These offshore resources are an important source of government revenue and national wealth. Additionally, the expansion of the energy sector offshore has enormous potential for electricity generation in the U.S., estimated by the National Renewable Energy Laboratory as approaching 54 gigawatts by 2030 (U.S. Department of Energy, 2008). Taken together, the DOI controls access to a large part of the future of energy in the U.S. The research herein assesses the auction formats used to allocate both fossil fuels and renewable resources on the Outer Continental Shelf (OCS). The first manuscript looks at the current method used by the DOI to allocate oil and gas leases on the OCS, and is primarily interested in how bidders behave in this environment. Using latent class estimation techniques to separate distinct bidding behavior in a laboratory

  2. Renewable Energy Resources in Lebanon

    NASA Astrophysics Data System (ADS)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  3. Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.

    This thesis addresses astrophysical probes to constrain dark matter (DM) and dark energy models. Primordial black holes (PBHs) remain one of the few DM candidates within the Standard Model of Particle Physics. This thesis presents a new probe of this PBH DM, using the microlensing of the source stars monitored by the already existing Kepler satellite. With its photometric precision and the large projected cross section of the nearby stars, it is found that previous constraints on PBH DM could theoretically be extended by two orders of magnitude. Correcting a well-known microlensing formula, a limb-darkening analysis is included, and a new approximation is calculated for future star selection. A preliminary prediction is calculated for the planned Wide-Field Infrared Survey Telescope. A preliminary study of the first two years of publicly available Kepler data is presented. The investigation yields many new sources of background error not predicted in the theoretical calculations, such as stellar flares and comets in the field of view. Since no PBH candidates are detected, an efficiency of detection is therefore calculated by running a Monte Carlo with fake limb-darkened finite-source microlensing events. It is found that with just the first 8 quarters of data, a full order of magnitude of the PBH mass range can be already constrained. Finally, one of the astrophysical probes of dark energy is also addressed - specifically, the baryon acoustic oscillations (BAO) measurement in the gas distribution, as detected in quasar absorption lines. This unique measurement of dark energy at intermediate redshifts is being measured by current telescope surveys. The last part of this thesis therefore focuses on understanding the systematic effects in such a detection. Since the bias between the underlying dark matter distribution and the measured gas flux distribution is based on gas physics, hydrodynamic simulations are used to understand the evolution of neutral hydrogen over

  4. Energy-constrained open-system magmatic processes 3. Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAFC)

    NASA Astrophysics Data System (ADS)

    Spera, Frank J.; Bohrson, Wendy A.

    2002-12-01

    Geochemical data for igneous rock suites provide conclusive evidence for the occurrence of open-system processes within thermally and compositionally evolving magma bodies. The most significant processes include magma Recharge (with possible enclave formation and magma mixing), Assimilation of anatectic melt derived from wallrock partial melting and formation of cumulates by Fractional Crystallization (RAFC). In this study, we extend the Energetically Constrained Assimilation and Fractional Crystallization (EC-AFC) model [, 2001; , 2001] to include the addition of compositionally and thermally distinct recharge melt during simultaneous assimilation and fractional crystallization. Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAFC) tracks the trace element and isotopic composition of melt, cumulates and enclaves during simultaneous recharge, assimilation and fractional crystallization. EC-RAFC is formulated as a set of 3 + t + i + s coupled nonlinear differential equations, where the number of trace elements and radiogenic and stable isotope ratios modeled are t, i, and s, respectively. Solution of the EC-RAFC equations provides values for the average wallrock temperature (Ta), mass of melt within the magma body (Mm), mass of cumulates (Mct) and enclaves (Men), mass of wallrock involved in the thermal interaction (Mao), mass of anatectic melt assimilated (M*a), concentration of t trace elements and i + s isotopic ratios in melt (Cm), cumulates (Cct), enclaves (Cen), and anatectic melt (Ca) as a function of magma temperature (Tm). Input parameters include the equilibration temperature (Teq), the initial temperature and composition of pristine melt (Tmo, Cmo, ɛmo), recharge melt (Tro, Cro, ɛro), and wallrock (Tao, Cao, ɛao), temperature-dependent trace element distribution coefficients (Dm, Dr, Da), heats of transition for wallrock (Δha), pristine melt (Δhm), and recharge melt (Δhr), and the isobaric specific heat capacity of

  5. Enhanced Security-Constrained OPF With Distributed Battery Energy Storage

    SciTech Connect

    Wen, YF; Guo, CX; Kirschen, DS; Dong, SF

    2015-01-01

    This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.

  6. The Role of the Global SOF Network in a Resource Constrained Environment

    DTIC Science & Technology

    2013-11-01

    Wong-Diaz 21st Century SOF: Toward an American Theory of Special Operations, April 2013, Harry R. Yarger Irregular Warfare: The Maoist Threat to...Role of the Global SOF Network in a Resource Constrained Environment. This symposium represented the second year in which JSOU and the Canadian...symposium in the series and the second co-sponsored by the Joint Special Operations University (JSOU) and the Canadian Special Operations Forces Command

  7. Optimal Index Policies for Anomaly Localization in Resource-Constrained Cyber Systems

    DTIC Science & Technology

    2013-10-01

    1 Optimal Index Policies for Anomaly Localization in Resource-Constrained Cyber Systems Kobi Cohen1, Qing Zhao1, Ananthram Swami2 Abstract— The...component is abnormal. We develop optimal simple index policies under both models. The proposed index policies apply to a more general case where a subset...more than one) of the components can be probed simultaneously and have strong performance as demonstrated by simulation examples. Index Terms—Anomaly

  8. Unconventional energy resources: 2007-2008 review

    USGS Publications Warehouse

    Warwick, P.D.

    2009-01-01

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future. ?? 2009 International Association for Mathematical Geology.

  9. Technical Resources for Energy Savings Plus Health

    EPA Pesticide Factsheets

    The Energy Savings Plus Health Guide equips school districts to integrate indoor air quality protections into school energy efficiency retrofits and other building upgrade projects. This page lists additional resources related to Energy Savings Plus Health

  10. Implementing interprofessional education and practice: Lessons from a resource-constrained university.

    PubMed

    Frantz, J M; Rhoda, A J

    2017-03-01

    Interprofessional education is seen as a vehicle to facilitate collaborative practice and, therefore, address the complex health needs of populations. A number of concerns have, however, been raised with the implementation of interprofessional education. The three core concerns raised in the literature and addressed in the article include the lack of an explicit framework, challenges operationalising interprofessional education and practice, and the lack of critical mass in terms of human resources to drive activities related to interprofessional education and practice. This article aims to present lessons learnt when attempting to overcome the main challenges and implementing interprofessional education activities in a resource-constrained higher education setting in South Africa. Boyer's model of scholarship, which incorporates research, teaching integration, and application, was used to address the challenge of a lack of a framework in which to conceptualise the activities of interprofressional education. In addition, a scaffolding approach to teaching activities within a curriculum was used to operationalise interprofessional education and practice. Faculty development initiatives were additionally used to develop a critical mass that focused on driving interprofessional education. Lessons learnt highlighted that if a conceptual model is agreed upon by all, it allows for a more focused approach, and both human and financial resources may be channelled towards a common goal which may assist resource-constrained institutions in successfully implementing interprofessional activities.

  11. Guide to Resource Planning with Energy Efficiency

    EPA Pesticide Factsheets

    This document is a “how-to” guide that describes the key issues, best practices, and main process steps for integrating energy efficiency into resource planning on an equal basis with other resources.

  12. Energy Criteria for Resource Optimization

    ERIC Educational Resources Information Center

    Griffith, J. W.

    1973-01-01

    Resource optimization in building design is based on the total system over its expected useful life. Alternative environmental systems can be evaluated in terms of resource costs and goal effectiveness. (Author/MF)

  13. University Student Conceptual Resources for Understanding Energy

    ERIC Educational Resources Information Center

    Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.

    2016-01-01

    We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy…

  14. Obstetric perineal injury: risk factors and prevalence in a resource-constrained setting.

    PubMed

    Naidoo, T D; Moodley, J

    2015-10-01

    The prevalence of obstetric perineal injuries and risk factors vary between affluent and resource-constrained settings. This prospective observational study reports on the factors associated with perineal lacerations in a cohort of Black African and Indian women delivering at two regional hospitals in South Africa. Binary logistic regression analysis was used to test for associations between independent variables and the dependent variable on multivariate analysis. All variables significant on bivariate analysis (P < 0.05) were included in the multivariate model. There were 202 (16.2%) perineal tears. Variables significant with having a perineal tear on bivariate and multivariate analysis included: Black African race (OR: 2.4; 95% CI: 1.2-4.6); duration of labour ≥6.3h (OR: 1.5; 95% CI: 1.1-2.1); and epidural analgesia (OR: 2.9; 95% CI: 1.9-4.7). Having an episiotomy was protective against perineal tears (OR: 0.06; 95% CI: 0.03-0.1). Obstetric perineal injury commonly occurs in our resourced-constrained setting and the risk factors are similar to those in well-resourced settings. Identification of those at risk may reduce obstetric perineal injury.

  15. Breaking down the barriers of using strong authentication and encryption in resource constrained embedded systems

    NASA Astrophysics Data System (ADS)

    Knobler, Ron; Scheffel, Peter; Jackson, Scott; Gaj, Kris; Kaps, Jens Peter

    2013-05-01

    Various embedded systems, such as unattended ground sensors (UGS), are deployed in dangerous areas, where they are subject to compromise. Since numerous systems contain a network of devices that communicate with each other (often times with commercial off the shelf [COTS] radios), an adversary is able to intercept messages between system devices, which jeopardizes sensitive information transmitted by the system (e.g. location of system devices). Secret key algorithms such as AES are a very common means to encrypt all system messages to a sufficient security level, for which lightweight implementations exist for even very resource constrained devices. However, all system devices must use the appropriate key to encrypt and decrypt messages from each other. While traditional public key algorithms (PKAs), such as RSA and Elliptic Curve Cryptography (ECC), provide a sufficiently secure means to provide authentication and a means to exchange keys, these traditional PKAs are not suitable for very resource constrained embedded systems or systems which contain low reliability communication links (e.g. mesh networks), especially as the size of the network increases. Therefore, most UGS and other embedded systems resort to pre-placed keys (PPKs) or other naïve schemes which greatly reduce the security and effectiveness of the overall cryptographic approach. McQ has teamed with the Cryptographic Engineering Research Group (CERG) at George Mason University (GMU) to develop an approach using revolutionary cryptographic techniques that provides both authentication and encryption, but on resource constrained embedded devices, without the burden of large amounts of key distribution or storage.

  16. Treatment of chronic hepatitis B virus infection in resource-constrained settings: expert panel consensus.

    PubMed

    Wiersma, Steven T; McMahon, Brian; Pawlotsky, Jean-Michel; Thio, Chloe L; Thursz, Mark; Lim, Seng Gee; Ocama, Ponsiano; Esmat, Gamal; Mendy, Maimuna; Maimuna, Mendy; Bell, David; Vitoria, Marco; Eramova, Irina; Lavanchy, Daniel; Dusheiko, Geoff

    2011-07-01

    Most of the estimated 350 million people with chronic hepatitis B virus (HBV) infection live in resource-constrained settings. Up to 25% of those persons will die prematurely of hepatocellular carcinoma (HCC) or cirrhosis. Universal hepatitis B immunization programmes that target infants will have an impact on HBV-related deaths several decades after their introduction. Antiviral agents active against HBV are available; treatment of HBV infection in those who need it has been shown to reduce the risk of HCC and death. It is estimated that 20-30% of persons with HBV infection could benefit from treatment. However, drugs active against HBV are not widely available or utilized in persons infected with HBV. Currently recommended antiviral agents used for treatment of human immunodeficiency virus (HIV) infection do not adequately suppress HBV, which is of great concern for the estimated 10% of the HIV-infected persons in Africa who are co-infected with HBV. Progressive liver disease has been shown to occur in co-infected persons whose HBV infection is not suppressed. In view of these concerns, an informal World Health Organization consultation of experts concluded that: chronic HBV is a major public health problem in emerging nations; all HIV-infected persons should be screened for HBV infection; HIV/HBV co-infected persons should be treated with therapies active against both viruses and that reduce the risk of resistance; standards for the management of chronic HBV infection should be adapted to resource-constrained settings. In addition, a research agendum was developed focusing on issues related to prevention and treatment of chronic HBV in resource-constrained settings.

  17. Community participation in research from resource-constrained countries: a scoping review.

    PubMed

    Brear, Michelle; Hammarberg, Karin; Fisher, Jane

    2017-03-18

    Participatory health research (PHR) involves equitable community participation in all aspects of the research process. It is a potentially beneficial approach to research in resource-constrained countries. Measuring participation in specific activities and aspects is necessary for understanding the community and research-related benefits of PHR. The aims of this scoping review were to: develop a measure of lay-community participation in aspects and activities of PHR in resource-constrained countries; and use the measure to assess the nature and extent of reported participation. Directed content analysis was used to identify aspects and activities reported in peer-reviewed articles identified through a systematic search, develop the Comprehensive Community Participation in Research Framework (CCPRF) and use it to measure participation. Total and aspect participation scores, which considered both the nature and extent of participation, were calculated for articles reporting extensive participation. Eighty-five articles detailing 66 studies were included. Nine aspects and 49 activities of research were included in the CCPRF. Community participation was reported in a median of 5/9 (range 1-9) aspects and 8/49 (range 1-35) activities. The review provided diverse examples, and enabled development of a more comprehensive measure, of participation. It highlighted limited lay-community participation is reported in research labelled participatory from resource-constrained countries. As participation in all aspects of PHR is rarely achieved, strategic planning of more limited participation is imperative. More detailed and systematic planning, assessment and reporting of participation, guided by a comprehensive measure like the CCPRF, is required to develop evidence regarding the benefits of participation in various research activities.

  18. Geothermal Energy - An Emerging Resource

    SciTech Connect

    Berg, John R.

    1987-01-20

    Address on the Department of Energy's overall energy policy, the role of alternative energy sources within the policy framework, and expectations for geothermal energy. Commendation of the industry's decision to pursue the longer-term field effort while demand for geothermal energy is low, and thus prepare for a substantial geothermal contribution to the nation's energy security.

  19. Assessment of rural energy resources; Methodological guidelines

    SciTech Connect

    Rijal, K.; Bansal, N.K.; Grover, P.D. )

    1990-01-01

    This article presents the methodological guidelines used to assess rural energy resources with an example of its application in three villages each from different physiographic zones of Nepal. Existing energy demand patterns of villages are compared with estimated resource availability, and rural energy planning issues are discussed. Economics and financial supply price of primary energy resources are compared, which provides insight into defective energy planning and policy formulation and implication in the context of rural areas of Nepal. Though aware of the formidable consequences, the rural populace continues to exhaust the forest as they are unable to find financially cheaper alternatives. Appropriate policy measures need to be devised by the government to promote the use of economically cost-effective renewable energy resources so as to change the present energy usage pattern to diminish the environmental impact caused by over exploitation of forest resources beyond their regenerative capacity.

  20. University student conceptual resources for understanding energy

    NASA Astrophysics Data System (ADS)

    Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.

    2016-06-01

    We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy quantitatively. This research responds to a need for large-scale, resources-oriented research on students' conceptual understanding and has the potential to support the development of an underexplored dimension of pedagogical content knowledge-knowledge of student resources for understanding energy. Our aim is to promote instructor take-up of the resources theory of knowledge, and we suggest a number of ways in which instructors might capitalize on the resources we report.

  1. Modeling renewable energy resources in integrated resource planning

    SciTech Connect

    Logan, D.; Neil, C.; Taylor, A.

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  2. Energy Education: A Catalog of Resources.

    ERIC Educational Resources Information Center

    State Univ. of New York, Albany. Atmospheric Science Research Center.

    This list of energy resource materials is broken down into five categories: (1) general resources; (2) electricity; (3) nuclear and fossil fuels; (4) conservation; and (5) future fuels. (An added feature for New York residents is a concluding list of resources available gratis from New York electric companies). Materials cited include audiovisual…

  3. Constraining top-Higgs couplings at high and low energy

    NASA Astrophysics Data System (ADS)

    Mereghetti, Emanuele

    2017-03-01

    The study of the couplings of the Higgs boson and of the top quark plays a preeminent role at the LHC, and could unveil the first signs of new physics. I will discuss the interplay of direct and indirect probes of certain classes of top and Higgs couplings. Including constraints from collider observables, precision electroweak tests, flavor physics, and electric dipole moments (EDMs), I will show that indirect probes are competitive, if not dominant, for both the CP-even and CP-odd top and Higgs couplings we considered. I will discuss the role of theoretical uncertainties, associated with hadronic and nuclear matrix elements, and indicate targets to further improve the constraining power of EDM experiments.

  4. Front Range Infrastructure Resources Project; energy resources activities

    USGS Publications Warehouse

    ,

    1998-01-01

    Oil, natural gas, and coal (energy resources) have been produced from rocks in the Front Range of Colorado and Wyoming for more than a century, and significant quantities of oil and gas continue to be developed in the study area of the U.S. Geological Survey (USGS) Front Range Infrastructure Resources Project (fig. 1). As an infrastructure resource, energy resources helped to fuel past development of (1) urban areas in the Front Range as well as (2) some of the manufacturing and mining upon which the urban centers were built and thrived. At present, much of the oil and gas extracted from rocks beneath the Front Range urban corridor is used locally; the people living in the urban area provide a need and viable marketplace for these commodities.

  5. Teachers Environmental Resource Unit: Energy and Power.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  6. Venezuelan energy resources and electric power system

    SciTech Connect

    Altimari, J.

    1994-06-01

    This article discusses the changing energy policy of Venezuela which is intended to make its electric power sector more competitive. The topics of the article include an overview of the power industry (both private and public utilities), energy sources, power system capacity, generation resources, power demand, load management, and energy conservation.

  7. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  8. Benefits and challenges of starting a new therapeutic apheresis service in a resource-constrained setting.

    PubMed

    Arogundade, Fatiu A; Sanusi, Abubakr A; Oguntola, Stephen O; Omotoso, Bolanle A; Abdel-Rahman, Emaad M; Akinsola, Adewale; Balogun, Rasheed A

    2014-08-01

    Therapeutic apheresis (TA) refers to a group of extracorporeal blood treatment modalities with clinical indications for which the clinicians' knowledge, availability and applicability vary widely worldwide. Therapeutic plasma exchange (TPE), the most common TA technique, is neither readily available nor affordable in many parts of Africa. This article focuses on the challenges of starting a TPE program in a resource-constrained economy and the result of a survey of Nigerian nephrology professionals on TPE. A critical appraisal of published manuscripts from Nigeria on TA was undertaken to assess uses, methods, and challenges encountered followed by a survey of the perceptions of Nigerian nephrology professionals on TPE. Survey results: 56.7% of respondents had very little or no knowledge of TPE; 40.5% moderate and only 2.7% admitting to having a good knowledge. Only 18.9% of respondents have ever participated or observed a TPE procedure with the remaining 81.1% not having any exposure to the procedure. A vast majority of the respondents 97.3% felt they needed better exposure and training in TPE and its applications. Among consultants, 56% had little knowledge, 88% had never participated or observed the TPE procedure, and 94% felt they needed better exposure and training. There is significant limitation in accessibility, availability, and use of TPE in Nigeria; knowledge of TPE and its applications is minimal among nephrology professionals. Efforts should be concentrated on improving the knowledge and availability of TPE in resource-constrained economy like Nigeria. Centers that would be able to manage cases requiring TA should be developed.

  9. Constraining the Runaway Dilaton and Quintessential Dark Energy

    NASA Astrophysics Data System (ADS)

    Neupane, Ishwaree P.; Trowland, Holly

    Dark energy is some of the weirdest and most mysterious stuff in the universe that tends to increase the rate of expansion of the universe. Two commonly known forms of dark energy are the cosmological constant, a constant energy density filling space homogeneously, and scalar fields such as quintessence or moduli whose energy density can vary with time. We explore one particular model for dynamic dark energy: quintessence driven by a scalar dilaton field. We propose an ansatz for the form of the dilaton field, |ϕ(a)|mP ≡ α1 ln t + α2tn = α ln a + βa2ζ, where a is the scale factor and α and ζ are parameters of the model. This phenomenological ansatz for ϕ can be motivated by generic solutions of a scalar dilaton field in many effective string theory and string-inspired gravity models in four dimensions. Most of the earlier discussions in the literature correspond to the choice that ζ = 0 so that ϕ(t) ∝ ln t or ϕ(t) ∝ ln a(t). Using a compilation of current data including type Ia supernovae, we impose observational constraints on the slope parameters like α and ζ and then discuss the relation of our results to analytical constraints on various cosmological parameters, including the dark energy equation of state. Some useful constraints are imposed on model parameters like α and ζ as well as on the dark energy/dark matter couplings using results from structure formation. The constraints of this model are shown to encompass the cosmological constant limit within 1σ error bars.

  10. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

  11. Progress on alternative energy resources

    NASA Astrophysics Data System (ADS)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  12. Establishing and Delivering Quality Radiation Therapy in Resource-Constrained Settings: The Story of Botswana.

    PubMed

    Efstathiou, Jason A; Heunis, Magda; Karumekayi, Talkmore; Makufa, Remigio; Bvochora-Nsingo, Memory; Gierga, David P; Suneja, Gita; Grover, Surbhi; Kasese, Joseph; Mmalane, Mompati; Moffat, Howard; von Paleske, Alexander; Makhema, Joseph; Dryden-Peterson, Scott

    2016-01-01

    There is a global cancer crisis, and it is disproportionately affecting resource-constrained settings, especially in low- and middle-income countries (LMICs). Radiotherapy is a critical and cost-effective component of a comprehensive cancer control plan that offers the potential for cure, control, and palliation of disease in greater than 50% of patients with cancer. Globally, LMICs do not have adequate access to quality radiation therapy and this gap is particularly pronounced in sub-Saharan Africa. Although there are numerous challenges in implementing a radiation therapy program in a low-resource setting, providing more equitable global access to radiotherapy is a responsibility and investment worth prioritizing. We outline a systems approach and a series of key questions to direct strategy toward establishing quality radiation services in LMICs, and highlight the story of private-public investment in Botswana from the late 1990s to the present. After assessing the need and defining the value of radiation, we explore core investments required, barriers that need to be overcome, and assets that can be leveraged to establish a radiation program. Considerations addressed include infrastructure; machine choice; quality assurance and patient safety; acquisition, development, and retention of human capital; governmental engagement; public-private partnerships; international collaborations; and the need to critically evaluate the program to foster further growth and sustainability.

  13. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    PubMed Central

    Abello, Manuel Blanco

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature. PMID:24883398

  14. Establishing and Delivering Quality Radiation Therapy in Resource-Constrained Settings: The Story of Botswana

    PubMed Central

    Heunis, Magda; Karumekayi, Talkmore; Makufa, Remigio; Bvochora-Nsingo, Memory; Gierga, David P.; Suneja, Gita; Grover, Surbhi; Kasese, Joseph; Mmalane, Mompati; Moffat, Howard; von Paleske, Alexander; Makhema, Joseph; Dryden-Peterson, Scott

    2016-01-01

    There is a global cancer crisis, and it is disproportionately affecting resource-constrained settings, especially in low- and middle-income countries (LMICs). Radiotherapy is a critical and cost-effective component of a comprehensive cancer control plan that offers the potential for cure, control, and palliation of disease in greater than 50% of patients with cancer. Globally, LMICs do not have adequate access to quality radiation therapy and this gap is particularly pronounced in sub-Saharan Africa. Although there are numerous challenges in implementing a radiation therapy program in a low-resource setting, providing more equitable global access to radiotherapy is a responsibility and investment worth prioritizing. We outline a systems approach and a series of key questions to direct strategy toward establishing quality radiation services in LMICs, and highlight the story of private-public investment in Botswana from the late 1990s to the present. After assessing the need and defining the value of radiation, we explore core investments required, barriers that need to be overcome, and assets that can be leveraged to establish a radiation program. Considerations addressed include infrastructure; machine choice; quality assurance and patient safety; acquisition, development, and retention of human capital; governmental engagement; public–private partnerships; international collaborations; and the need to critically evaluate the program to foster further growth and sustainability. PMID:26578607

  15. Multiobjective resource-constrained project scheduling with a time-varying number of tasks.

    PubMed

    Abello, Manuel Blanco; Michalewicz, Zbigniew

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature.

  16. Probability-Weighted LMP and RCP for Day-Ahead Energy Markets using Stochastic Security-Constrained Unit Commitment: Preprint

    SciTech Connect

    Ela, E.; O'Malley, M.

    2012-06-01

    Variable renewable generation resources are increasing their penetration on electric power grids. These resources have weather-driven fuel sources that vary on different time scales and are difficult to predict in advance. These characteristics create challenges for system operators managing the load balance on different timescales. Research is looking into new operational techniques and strategies that show great promise on facilitating greater integration of variable resources. Stochastic Security-Constrained Unit Commitment models are one strategy that has been discussed in literature and shows great benefit. However, it is rarely used outside the research community due to its computational limits and difficulties integrating with electricity markets. This paper discusses how it can be integrated into day-ahead energy markets and especially on what pricing schemes should be used to ensure an efficient and fair market.

  17. Enhanced distributed energy resource system

    DOEpatents

    Atcitty, Stanley; Clark, Nancy H.; Boyes, John D.; Ranade, Satishkumar J.

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  18. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  19. COnstrain Dark Energy with X-ray (CODEX) clusters

    NASA Astrophysics Data System (ADS)

    Finoguenov, Alexis; SDSS Team; Cfht Team; Carma Team

    2012-09-01

    We describe the construction and follow-up observations of the most massive clusters in the Universe, selected in the SDSS-III survey using RASS data down to an unprecedented flux limit of -13 dex. In application to the cosmology studies, we demonstrate that we will achieve a 3% constraint on the dark energy equation of state, and in a combination with BOSS BAO measurement reach a FoM of 160.

  20. Energy and other non-renewable resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Anticipated U.S. demands for non-renewable energy and mineral resources exceed domestic supplies essential for economic growth. For the long term changes necessary in the energy supply and demand gap, new technologies and substitute materials as well as legislation and socio-economic strategies are elaborated.

  1. Emergent eddy saturation from an energy constrained eddy parameterisation

    NASA Astrophysics Data System (ADS)

    Mak, J.; Marshall, D. P.; Maddison, J. R.; Bachman, S. D.

    2017-04-01

    The large-scale features of the global ocean circulation and the sensitivity of these features with respect to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such feature, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circumpolar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing the Gent-McWilliams parameterisation with a constant Gent-McWilliams eddy transfer coefficient seem unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally symmetric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised eddy energy budget, the Gent-McWilliams eddy transfer coefficient of the form described in Marshall et al. (2012) [A framework for parameterizing eddy potential vorticity fluxes, J. Phys. Oceanogr., vol. 42, 539-557], which includes a linear eddy energy dependence, produces eddy saturation as an emergent property.

  2. Constraining Dark Energy in Table-Top Quantum Experiments

    NASA Astrophysics Data System (ADS)

    Mueller, Holger

    If dark energy is a light scalar field, it might interact with normal matter. The interactions, however, are suppressed in the leading models, which are thus compatible with current cosmological observations as well as solar-system and laboratory studies. Such suppression typically relies on the scalar's interaction with macroscopic amounts of ordinary matter but can be bypassed by studying the interaction with individual particles. Using an atom interferometer, we have placed tight constraints on so-called chameleon models, ruling out interaction parameters smaller than 2 . 3 ×10-5 , while M ~ 1 or larger would lead to conflict with macroscopic experiments. In order to close this gap, we have already increased the sensitivity hundredfold and are expecting a new constraint soon. Purpose-built experiments in the lab or on the international space station will completely close the gap and rule out chameleons and other theories such as symmetrons or f (R) gravity.

  3. Building sustainable organizational capacity to deliver HIV programs in resource-constrained settings: stakeholder perspectives.

    PubMed

    Sharma, Anjali; Chiliade, Philippe; Reyes, E Michael; Thomas, Kate K; Collens, Stephen R; Morales, José Rafael

    2013-01-01

    Background In 2008, the US government mandated that HIV/AIDS care and treatment programs funded by the US President's Emergency Plan for AIDS Relief (PEPFAR) should shift from US-based international partners (IPs) to registered locally owned organizations (local partners, or LPs). The US Health Resources and Services Administration (HRSA) developed the Clinical Assessment for Systems Strengthening (ClASS) framework for technical assistance in resource-constrained settings. The ClASS framework involves all stakeholders in the identification of LPs' strengths and needs for technical assistance. Objective This article examines the role of ClASS in building capacity of LPs that can endure and adapt to changing financial and policy environments. Design All stakeholders (n=68) in Kenya, Zambia, and Nigeria who had participated in the ClASS from LPs and IPs, the US Centers for Disease Control and Prevention (CDC), and, in Nigeria, HIV/AIDS treatment facilities (TFs) were interviewed individually or in groups (n=42) using an open-ended interview guide. Thematic analysis revealed stakeholder perspectives on ClASS-initiated changes and their sustainability. Results Local organizations were motivated to make changes in internal operations with the ClASS approach, PEPFAR's competitive funding climate, organizational goals, and desired patient health outcomes. Local organizations drew on internal resources and, if needed, technical assistance from IPs. Reportedly, ClASS-initiated changes and remedial action plans made LPs more competitive for PEPFAR funding. LPs also attributed their successful funding applications to their preexisting systems and reputation. Bureaucracy, complex and competing tasks, and staff attrition impeded progress toward the desired changes. Although CDC continues to provide technical assistance through IPs, declining PEPFAR funds threaten the consolidation of gains, smooth program transition, and continuity of treatment services. Conclusions The well

  4. Constraining high-energy cosmic neutrino sources: Implications and prospects

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Waxman, Eli

    2016-11-01

    We consider limits on the local (z =0 ) density (n0) of extragalactic neutrino sources set by the nondetection of steady high-energy neutrino sources producing ≳50 TeV muon multiplets in the present IceCube data, taking into account the redshift evolution, luminosity function, and neutrino spectrum of the sources. We show that the lower limit depends moderately on source spectra and strongly on redshift evolution. We find n0≳10-8- 10-7 Mpc-3 for standard candle sources evolving rapidly, ns∝(1+z ) 3 , and n0≳10-6- 10-5 Mpc-3 for nonevolving sources. The corresponding upper limits on their neutrino luminosity are Lνμ eff≲1 042- 1 043 erg s-1 and Lνμ eff≲1 041- 1 042 erg s-1 , respectively. Applying these results to a wide range of classes of potential sources, we show that powerful "blazar" jets associated with active galactic nuclei are unlikely to be the dominant sources. For almost all other steady candidate source classes (including starbursts, radio galaxies, and galaxy clusters and groups), an order of magnitude increase in the detector sensitivity at ˜0.1 - 1 PeV will enable a detection (as point sources) of the few brightest objects. Such an increase, which may be provided by next-generation detectors like IceCube-Gen2 and an upgraded KM3NET, can improve the limit on n0 by more than 2 orders of magnitude. Future gamma-ray observations (by Fermi, the High-Altitude Water Cherenkov Observatory, and the Cherenkov Telescope Array) will play a key role in confirming the association of the neutrinos with their sources.

  5. Energy and other resource conservation within urbanizing areas

    NASA Astrophysics Data System (ADS)

    Rowe, Peter G.

    1982-05-01

    The reported research seeks to answer several questions regarding energy conservation within urbanizing areas. As a practical matter, to what extent can dependence upon exhaustible resources be reduced? Can these reductions be achieved without severely impairing social well-being and environmental quality? And, what seem to be the prevailing institutional constraints limiting energy conservation within urbanizing areas? The study area was the proposed “downtown” of The Woodlands, a new town north of Houston, Texas. Two plans were developed for this area. In one, no particular attempt was made to conserve energy (conventional plan), while in the other, energy conservation was a primary consideration (conservation plan). For both plans, estimates were made of energy consumption within buildings, in the transportation sector, and in the actual production of building materials themselves (embodied energy). In addition, economic and environmental analyses were performed, including investigation of other resource issues such as water supply, solid waste disposal, stormwater management, and atmospheric emissions. Alternative on-site power systems were also investigated. Within the bounds of economic feasibility and development practicality, it was found that application of energy-conserving methods could yield annual energy savings of as much as 23%, and reduce dependence on prime fuels by 30%. Adverse economic effects on consumers were found to be minimal and environmental quality could be sustained. The major institutional constraints appeared to be those associated with traditional property ownership and with the use of common property resources. The resistance to change of everyday practices in land development and building industries also seemed to constrain potential applications.

  6. Constraining Glacial Runoff Contributions to Water Resources in the Cordillera Real, Bolivia using Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Guido, Z.; McIntosh, J. C.; Papuga, S. A.

    2013-12-01

    Warming temperatures in recent decades have contributed to substantial reductions in glaciers in many mountain regions around the globe, including the South American Andes. Melting of these glaciers taps water resources accumulated in past climates, and the diminishing ice marks a decrease in a nonrenewable water source that begs the question: how will future water supplies be impacted by climate change. Water resource management and climate adaptation efforts can be informed by knowledge of the extent to which glaciers contribute to seasonal streamflows, but remote locations and scant monitoring often limit this quantification. In Bolivia, more than two million people draw water from watersheds fed, in part, by glaciers. The amount to which these glaciers contribute to the water supply, however, is not well constrained. We apply elemental and isotopic tracers in an end-member mixing model to quantify glacial runoff contributions to local water supplies. We present oxygen and deuterium isotopes and major anion concentrations (sulfate and chloride) of shallow groundwater, streams, reservoirs, small arroyos, and glacial runoff. Isotopic and anion mixing models suggest between 45-67% of the water measured in high altitude streams originated from within the glacial footprint during the 2011 wet season, while glacial runoff contributed about 42-53% of the water in reservoirs in the 2012 dry season. Data also show that shallow groundwater is connected to glacial-fed streams. Any future decrease in glacial runoff may contribute to a reduction in surface water supplies and lower groundwater levels downstream, perhaps below the depth of hand-dug wells common in rural communities.

  7. Development of protocol for the management of cervical cancer symptoms in resource-constrained developing countries.

    PubMed

    Kumar, Ramaiah Vinay; Bhasker, Suman

    2015-02-01

    Cervical cancer is the commonest malignancy of women in economically emerging countries. Patients have distressing symptoms from presentation through follow-up or end of life. Cervical cancer imposes significant burden on health care system due to distressing symptoms and associated loss of quality-adjusted life years (QALY). Multitude of drugs and surgical measures in various combinations can relieve these distressing symptoms and various clinical conditions. The protocols and guidelines for alleviation or relief of symptoms by general pharmacological and surgical measures form an important policy subject in planning cervical cancer management program. These protocol and guidelines are based on the mechanism of action of drugs, extrapolation from management of similar symptoms, and clinical situations arising out of other non-cancerous conditions and experience of health care professionals. Therefore, rigorous evaluation of effectiveness of supportive health care services in developing countries is the need of hour. However, evaluation of such protocol and guidelines are not feasible in emerging economies due to resource constraint. Industrialized affluent nations are also not able to implement and further support care guidelines despite its recognition as an integral part of multidisciplinary management of cancer. Aforementioned factors have created blind spot zone of management purview of cervical cancer. Hence, we attempt to develop protocol for management of adverse events of cervical cancer. Symptoms' and medical conditions' management guidelines evolved on the basis of empirical clinical practice in community and premier oncology centers in resource-constrained developing countries has been presented in this short report. This report should not be an end in itself but has to attract attention of policy-makers, academicians, researchers, and practitioners toward advancing supportive care needs of cancer patients in low- and middle-income countries (LMIC).

  8. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  9. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  10. Energy resources of the United States

    USGS Publications Warehouse

    Theobald, P.K.; Schweinfurth, Stanley P.; Duncan, Donald Cave

    1972-01-01

    Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. The estimates, compiled by specialists of the U.S. Geological Survey, are generally made on geologic projections of favorable rocks and on anticipated frequency of the energy resource in the favorable rocks. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total coal resource base in the United States is estimated to be about 3,200 billion tons, of which 200-390 billion tons can be considered in the category identified and recoverable. More than 70 percent of current production comes from the Appalachian basin where the resource base, better known than for the United States as a whole, is about 330 billion tons, of which 22 billion tons is identified and recoverable. Coals containing less than 1 percent sulfur are the premium coals. These are abundant in the western coal fields, but in the Appalachian basin the resource base for low-sulfur coal is estimated to be only a little more than 100 billion tons, of which 12 billion tons is identified and recoverable. Of the many estimates of petroleum liquids and natural-gas resources, those of the U.S. Geological Survey are the largest because, in general, our estimates include the largest proportion of favorable ground for exploration. We estimate the total resource base for petroleum liquids to be about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural

  11. E-learning in medical education in resource constrained low- and middle-income countries

    PubMed Central

    2013-01-01

    Background In the face of severe faculty shortages in resource-constrained countries, medical schools look to e-learning for improved access to medical education. This paper summarizes the literature on e-learning in low- and middle-income countries (LMIC), and presents the spectrum of tools and strategies used. Methods Researchers reviewed literature using terms related to e-learning and pre-service education of health professionals in LMIC. Search terms were connected using the Boolean Operators “AND” and “OR” to capture all relevant article suggestions. Using standard decision criteria, reviewers narrowed the article suggestions to a final 124 relevant articles. Results Of the relevant articles found, most referred to e-learning in Brazil (14 articles), India (14), Egypt (10) and South Africa (10). While e-learning has been used by a variety of health workers in LMICs, the majority (58%) reported on physician training, while 24% focused on nursing, pharmacy and dentistry training. Although reasons for investing in e-learning varied, expanded access to education was at the core of e-learning implementation which included providing supplementary tools to support faculty in their teaching, expanding the pool of faculty by connecting to partner and/or community teaching sites, and sharing of digital resources for use by students. E-learning in medical education takes many forms. Blended learning approaches were the most common methodology presented (49 articles) of which computer-assisted learning (CAL) comprised the majority (45 articles). Other approaches included simulations and the use of multimedia software (20 articles), web-based learning (14 articles), and eTutor/eMentor programs (3 articles). Of the 69 articles that evaluated the effectiveness of e-learning tools, 35 studies compared outcomes between e-learning and other approaches, while 34 studies qualitatively analyzed student and faculty attitudes toward e-learning modalities. Conclusions E

  12. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks.

    PubMed

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-04-28

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme.

  13. Exponential Arithmetic Based Self-Healing Group Key Distribution Scheme with Backward Secrecy under the Resource-Constrained Wireless Networks

    PubMed Central

    Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun

    2016-01-01

    In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550

  14. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  15. Energy resource management for energy-intensive manufacturing industries

    SciTech Connect

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  16. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.

    PubMed

    Dickman, Elizabeth M; Newell, Jennifer M; González, María J; Vanni, Michael J

    2008-11-25

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

  17. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    SciTech Connect

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  18. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    DOE PAGES

    Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea

    2014-01-01

    A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less

  19. Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence

    SciTech Connect

    Hee, S.; Vázquez, J. A.; Handley, W. J.; Hobson, M. P.; Lasenby, A. N.

    2016-12-01

    Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance ΛCDM model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ confidence intervals of the posterior distribution. In order to identify the power of different datasets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. Moreover, this formalism quantifies the information the data add when moving from priors to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to provide much more constraining power in comparison to the Lyman-α datasets. Furthermore, SNIa and BAO constrain most strongly around redshift range 0.1 - 0.5, whilst the Lyman-α data constrains weakly over a broader range. We do not attribute the supernegative favouring to any particular dataset, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.

  20. Energy resources - cornucopia or empty barrel?

    USGS Publications Warehouse

    McCabe, P.J.

    1998-01-01

    Over the last 25 yr, considerable debate has continued about the future supply of fossil fuel. On one side are those who believe we are rapidly depleting resources and that the resulting shortages will have a profound impact on society. On the other side are those who see no impending crisis because long-term trends are for cheaper prices despite rising production. The concepts of resources and reserves have historically created considerable misunderstanding in the minds of many nongeologists. Hubbert-type predictions of energy production assume that there is a finite supply of energy that is measurable; however, estimates of resources and reserves are inventories of the amounts of a fossil fuel perceived to be available over some future period of time. As those resources/reserves are depleted over time, additional amounts of fossil fuels are inventoried. Throughout most of this century, for example, crude oil reserves in the United States have represented a 10-14-yr supply. For the last 50 yr, resource crude oil estimates have represented about a 60-70-yr supply for the United States. Division of reserve or resource estimates by current or projected annual consumption therefore is circular in reasoning and can lead to highly erroneous conclusions. Production histories of fossil fuels are driven more by demand than by the geologic abundance of the resource. Examination of some energy resources with well-documented histories leads to two conceptual models that relate production to price. The closed-market model assumes that there is only one source of energy available. Although the price initially may fall because of economies of scale long term, prices rise as the energy source is depleted and it becomes progressively more expensive to extract. By contrast, the open-market model assumes that there is a variety of available energy sources and that competition among them leads to long-term stable or falling prices. At the moment, the United States and the world

  1. An Algorithm for Real-Time Optimal Photocurrent Estimation Including Transient Detection for Resource-Constrained Imaging Applications

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael; Crill, Brendan; Ryan, Matthew; Staniszewski, Zak

    2016-06-01

    Mega-pixel charge-integrating detectors are common in near-IR imaging applications. Optimal signal-to-noise ratio estimates of the photocurrents, which are particularly important in the low-signal regime, are produced by fitting linear models to sequential reads of the charge on the detector. Algorithms that solve this problem have a long history, but can be computationally intensive. Furthermore, the cosmic ray background is appreciable for these detectors in Earth orbit, particularly above the Earth’s magnetic poles and the South Atlantic Anomaly, and on-board reduction routines must be capable of flagging affected pixels. In this paper, we present an algorithm that generates optimal photocurrent estimates and flags random transient charge generation from cosmic rays, and is specifically designed to fit on a computationally restricted platform. We take as a case study the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), a NASA Small Explorer astrophysics experiment concept, and show that the algorithm can easily fit in the resource-constrained environment of such a restricted platform. Detailed simulations of the input astrophysical signals and detector array performance are used to characterize the fitting routines in the presence of complex noise properties and charge transients. We use both Hubble Space Telescope Wide Field Camera-3 and Wide-field Infrared Survey Explorer to develop an empirical understanding of the susceptibility of near-IR detectors in low earth orbit and build a model for realistic cosmic ray energy spectra and rates. We show that our algorithm generates an unbiased estimate of the true photocurrent that is identical to that from a standard line fitting package, and characterize the rate, energy, and timing of both detected and undetected transient events. This algorithm has significant potential for imaging with charge-integrating detectors in astrophysics, earth science, and remote

  2. Experimentation in the Use of Service Orientation in Resource-Constrained Environments

    DTIC Science & Technology

    2016-06-13

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...Historical info, Medical Data Constrained Nodes Real time Images and Video 5 Joe Seibel :SATURN 2011 © 2011 Carnegie Mellon University 5/11/2011...Unconstrained Nodes Constrained Nodes Real time sensor data Handheld and Mobile Node Arrows represent communication via web services Engineering Decision

  3. 75 FR 75335 - Integration of Variable Energy Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... Energy Federal Energy Regulatory Commission 18 CFR Part 35 Integration of Variable Energy Resources...; ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 35 Integration of Variable Energy Resources November 18, 2010. AGENCY: Federal Energy Regulatory Commission. ACTION: Notice of...

  4. Density slope of the symmetry energy L (ρ0) constrained by proton radioactivity

    NASA Astrophysics Data System (ADS)

    Wan, Niu; Xu, Chang; Ren, Zhongzhou

    2016-10-01

    Background: Recently, the cluster radioactivity of heavy nuclei decaying to 208Pb was successfully used to constrain the density slope of the symmetry energy L (ρ0) at saturation density ρ0. Purpose: By using well-measured experimental decay energy and half-life, proton radioactivity is proposed to further constrain L (ρ0) in this work. Method: From the Hugenholtz-Van Hove theorem, L (ρ0) is found to be directly related to the magnitude of the symmetry potential, which can be extracted from the proton radioactivity within the density-dependent cluster model. Results: By investigating the radioactivity of proton emitters with large isospin asymmetry, the value of the density slope is found to be L (ρ0)=51.8 ±7.2 MeV.

  5. Energy losses in thermally cycled optical fibers constrained in small bend radii

    SciTech Connect

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  6. Arctic energy opportunities: US resources and development

    SciTech Connect

    Frye, K.N.

    1986-04-01

    The importance of the Arctic's dual energy and environmental challenges led the US in July 1984, to pass Public Law 98-373 - the Arctic Research and Policy Act of 1984. The purpose of this law is to provide for a comprehensive national policy dealing with national research needs and objectives in the Arctic with particular emphasis on resource development. This policy also emphasizes the need for greater coordination of available research dollars to better focus the rational and planned development of our Arctic resources. This Act sets forth as it principal finding the declaration that the Arctic, onshore and offshore, contains vital energy resources that can reduce the nation's dependence on foreign oil and improve the national balance of payments. It further provides that the Federal Government, in cooperation with state and local governments, should focus its efforts on the collection and characterization of basic data related to biological, material, geophysical, social, and behavioral phenomena in the Arctic. To carry out this new legislation, the President established an Arctic Research Commission and the Interagency Arctic Research Policy Committee that includes the Department of Energy, as well as representatives from the Departments of Commerce, Defense, Interior, State, and other agencies, with the representative of the National Science Foundation serving as the Chairperson. This Interagency Committee is working cooperatively with all parts of the US government and the State of Alaska to develop a five-year Arctic research policy implementation program plan.

  7. World Energy Resources and New Technologies

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  8. Developing Water Resource Security in a Greenhouse Gas Constrained Context - A Case Study in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; Aghakouchak, A.; Samuelsen, S.

    2015-12-01

    The onset of drought conditions in regions such as California due to shortfalls in precipitation has brought refreshed attention to the vulnerability of our water supply paradigm to changes in climate patterns. In the face of a changing climate which can exacerbate drought conditions in already dry areas, building resiliency into our water supply infrastructure requires some decoupling of water supply availability from climate behavior through conservation, efficiency, and alternative water supply measures such as desalination and water reuse. The installation of these measures requires varying degrees of direct energy inputs and/or impacts the energy usage of the water supply infrastructure (conveyance, treatment, distribution, wastewater treatment). These impacts have implications for greenhouse gas emissions from direct fuel usage or impacts on the emissions from the electric grid. At the scale that these measures may need to be deployed to secure water supply availability, especially under climate change impacted hydrology, they can potentially pose obstacles for meeting greenhouse gas emissions reduction and renewable utilization goals. Therefore, the portfolio of these measures must be such that detrimental impacts on greenhouse gas emissions are minimized. This study combines climate data with a water reservoir network model and an electric grid dispatch model for the water-energy system of California to evaluate 1) the different pathways and scale of alternative water resource measures needed to secure water supply availability and 2) the impacts of following these pathways on the ability to meet greenhouse gas and renewable utilization goals. It was discovered that depending on the water supply measure portfolio implemented, impacts on greenhouse gas emissions and renewable utilization can either be beneficial or detrimental, and optimizing the portfolio is more important under climate change conditions due to the scale of measures required.

  9. 77 FR 43592 - System Energy Resources, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ..., 2012, System Energy Resources, Inc. (System Energy Resources), submitted a supplement to its petition... supplement, System Energy Resources supplements its March 28 petition to provide additional information and... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  10. Visualizing Energy Resources Dynamically on Earth

    SciTech Connect

    Shankar, Mallikarjun; Stovall, John P.; Sorokine, Alexandre; Bhaduri, Budhendra L.; King, Jr., Thomas J.

    2008-01-01

    For the North American hurricane season, in partnership with the Tennessee Valley Authority (TVA) and working with the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, we have developed a capability that helps visualize the status of the electric transmission system infrastructure. The capability toolkit, called VERDE - Visualizing Energy Resources Dynamically on Earth, takes advantage of the Google Earth platform to display spatiotemporally informed power grid and related data. Custom libraries describe the electrical transmission network in the Eastern United States and the dynamic status of each transmission line. Standard Google Earth layers provide additional spatial context. In addition to live status, VERDE provides a framework and mechanism to ingest and intuitively present predictive models, data from different sources, and response needs.

  11. Constraining the dark energy equation of state using Bayes theorem and the Kullback-Leibler divergence

    NASA Astrophysics Data System (ADS)

    Hee, S.; Vázquez, J. A.; Handley, W. J.; Hobson, M. P.; Lasenby, A. N.

    2017-04-01

    Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era cosmic microwave background, baryonic acoustic oscillations (BAO), Type Ia supernova (SNIa) and Lyman α (Lyα) data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance Λ cold dark matter (ΛCDM) model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other, a supernegative equation of state (also known as 'phantom dark energy') is identified within the 1.5σ confidence intervals of the posterior distribution. To identify the power of different data sets in constraining the dark energy equation of state, we use a novel formulation of the Kullback-Leibler divergence. This formalism quantifies the information the data add when moving from priors to posteriors for each possible data set combination. The SNIa and BAO data sets are shown to provide much more constraining power in comparison to the Lyα data sets. Further, SNIa and BAO constrain most strongly around redshift range 0.1-0.5, whilst the Lyα data constrain weakly over a broader range. We do not attribute the supernegative favouring to any particular data set, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.

  12. SAMURAI-TPC: A Time Projection Chamber for Constraining the Asymmetry Energy at High Density

    NASA Astrophysics Data System (ADS)

    McIntosh, A. B.; Maass, N.; Yennello, S. J.; Barney, J.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Estee, J.; Gilbert, J.; Lu, F.; Lynch, W. G.; Shane, R.; Tsang, M. B.; Famiano, M.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Samurai-Tpc Collaboration

    2011-10-01

    The SAMURAI-TPC is a time projection chamber designed to measure pions and light charged particles. By measuring pion yield ratios and particle flow in heavy ion collisions around E = 200A MeV, we expect to constrain the behavior of the nuclear asymmetry energy around twice saturation density. In this talk, the design and construction of the TPC components will be discussed. Upon completion, the SAMURAI-TPC will be installed in the SAMURAI spectrometer at the Radioactive Isotope Beam Facility at RIKEN, Japan. This work is supported by the Department of Energy (DE-SC0004835).

  13. Energy and Resources Group, University of California, Berkeley.

    ERIC Educational Resources Information Center

    Christensen, Mark N.

    1987-01-01

    Describes an interdisciplinary program at the University of California (Berkeley) that addresses the multifaceted problems of energy and resources through a teaching and resource program. Discusses the program's structure, curriculum, research activities, students, resources, and problems and possibilities. (TW)

  14. Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence

    DOE PAGES

    Hee, S.; Vázquez, J. A.; Handley, W. J.; ...

    2016-12-01

    Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance ΛCDM model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ confidence intervals of the posterior distribution. In order to identify themore » power of different datasets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. Moreover, this formalism quantifies the information the data add when moving from priors to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to provide much more constraining power in comparison to the Lyman-α datasets. Furthermore, SNIa and BAO constrain most strongly around redshift range 0.1 - 0.5, whilst the Lyman-α data constrains weakly over a broader range. We do not attribute the supernegative favouring to any particular dataset, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.« less

  15. Energy-efficient population coding constrains network size of a neuronal array system

    NASA Astrophysics Data System (ADS)

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-01

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost.

  16. Energy-efficient population coding constrains network size of a neuronal array system

    PubMed Central

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-01

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost. PMID:26781354

  17. Energy-efficient population coding constrains network size of a neuronal array system.

    PubMed

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-19

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost.

  18. Constraining the symmetry energy content of nuclear matter from nuclear masses: A covariance analysis

    NASA Astrophysics Data System (ADS)

    Mondal, C.; Agrawal, B. K.; De, J. N.

    2015-08-01

    Elements of nuclear symmetry energy evaluated from different energy density functionals parametrized by fitting selective bulk properties of few representative nuclei are seen to vary widely. Those obtained from experimental data on nuclear masses across the periodic table, however, show that they are better constrained. A possible direction in reconciling this paradox may be gleaned from comparison of results obtained from use of the binding energies in the fitting protocol within a microscopic model with two sets of nuclei, one a representative standard set and another where very highly asymmetric nuclei are additionally included. A covariance analysis reveals that the additional fitting protocol reduces the uncertainties in the nuclear symmetry energy coefficient, its slope parameter, as well as the neutron-skin thickness in 208Pb nucleus by ˜50 % . The central values of these entities are also seen to be slightly reduced.

  19. Future petroleum energy resources of the world

    USGS Publications Warehouse

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  20. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    SciTech Connect

    Schwartz, Lisa; Wei, Max; Morrow, William; Deason, Jeff; Schiller, Steven R.; Leventis, Greg; Smith, Sarah; Leow, Woei Ling; Levin, Todd; Plotkin, Steven; Zhou, Yan

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  1. Constraining the Properties of Dark Energy Using Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, D.; Ricker, G.

    Gamma-ray bursts GRBs are the most brilliant events in the universe The intrinsic luminosities of the bursts span more than five decades At first glance therefore these events would hardly seem to be a promising means of constraining the properties of dark energy However very recently a relation between the peak energy of the burst spectrum the isotropic-equivalent energy of the burst and the time of the jet break in the optical afterglow of the burst -- all in the rest frame of the burst source --have been found for long GRBs In a way that is exactly analogous to the way in which the relation between the peak luminosity and the rate of decline of the light curve of Type Ia supernovae can be used to make Type Ia supernovae excellent standard candles for cosmology so too the relation recently found for GRBs holds great promise for making these brilliant events standard candles Still more recently it has been pointed out that if short GRBs are due to the merger of NS-NS or NS-BH binaries -- for which there is now compelling evidence following the localizations in the past year of several short GRBs by HETE-2 and Swift -- and if they are detected in gamma-rays and by gravitational wave experiments they can be used as standard sirens to constrain the properties of dark energy We discuss the promise of these two approaches and their current status We then describe in detail a concept for a MIDEX-class mission that would be able to detect 2000 GRBs in two years and would use the resulting large samples of short and long bursts to constrain

  2. Smart Operations in Distributed Energy Resources System

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  3. Dual job holding by public sector health professionals in highly resource-constrained settings: problem or solution?

    PubMed Central

    Jan, Stephen; Bian, Ying; Jumpa, Manuel; Meng, Qingyue; Nyazema, Norman; Prakongsai, Phusit; Mills, Anne

    2005-01-01

    This paper examines the policy options for the regulation of dual job holding by medical professionals in highly resource-constrained settings. Such activity is generally driven by a lack of resources in the public sector and low pay, and has been associated with the unauthorized use of public resources and corruption. It is also typically poorly regulated; regulations are either lacking, or when they exist, are vague or poorly implemented because of low regulatory capacity. This paper draws on the limited evidence available on this topic to assess a number of regulatory options in relation to the objectives of quality of care and access to services, as well as some of the policy constraints that can undermine implementation in resource-poor settings. The approach taken in highlighting these broader social objectives seeks to avoid the value judgements regarding dual working and some of its associated forms of behaviour that have tended to characterize previous analyses. Dual practice is viewed as a possible system solution to issues such as limited public sector resources (and incomes), low regulatory capacity and the interplay between market forces and human resources. This paper therefore offers some support for policies that allow for the official recognition of such activity and embrace a degree of professional self-regulation. In providing clearer policy guidance, future research in this area needs to adopt a more evaluative approach than that which has been used to date. PMID:16283054

  4. Investigating Urban Eighth-Grade Students' Knowledge of Energy Resources

    ERIC Educational Resources Information Center

    Bodzin, Alec

    2012-01-01

    This study investigated urban eighth-grade students' knowledge of energy resources and associated issues including energy acquisition, energy generation, storage and transport, and energy consumption and conservation. A 39 multiple-choice-item energy resources knowledge assessment was completed by 1043 eighth-grade students in urban schools in two…

  5. 2016 Offshore Wind Energy Resource Assessment for the United States

    SciTech Connect

    Musial, Walt; Heimiller, Donna; Beiter, Philipp; Scott, George; Draxl, Caroline

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  6. 78 FR 78466 - Meeting of the Regional Energy Resource Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Meeting of the Regional Energy Resource Council AGENCY: Tennessee Valley Authority (TVA). ACTION: Notice of Meeting. SUMMARY: The TVA Regional Energy Resource Council (RERC) will hold an orientation meeting... Tennessee Valley. The RERC was established to advise TVA on its energy resource activities and...

  7. 78 FR 60366 - Meeting of the Regional Energy Resource Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... RERC was established to advise TVA on its energy resource activities and the priorities among competing... Meeting of the Regional Energy Resource Council AGENCY: Tennessee Valley Authority (TVA). ACTION: Notice of meeting. SUMMARY: The TVA Regional Energy Resource Council (RERC) will hold an orientation...

  8. Pulsed-resource dynamics constrain the evolution of predator-prey interactions.

    PubMed

    Friman, Ville-Petri; Laakso, Jouni

    2011-03-01

    Although temporal variability in the physical environment plays a major role in population fluctuations, little is known about how it drives the ecological and evolutionary dynamics of species interactions. We studied experimentally how extrinsic resource pulses affect evolutionary and ecological dynamics between the prey bacterium Serratia marcescens and the predatory protozoan Tetrahymena thermophila. Predation increased the frequency of defensive, nonpigmented prey types, which bore competitive costs in terms of reduced maximum growth rate, most in a constant-resource environment. Furthermore, the predator densities of the pulsed-resource environment regularly fluctuated above and below the mean predator densities of the constant environment. These results suggest that selection favored fast-growing competitor prey types over defensive but slower-growing prey types more often in the pulsed-resource environment (abundance of resources and low predation risk). As a result, the selection for prey defense fluctuated more in the pulsed-resource environment, leading to a weaker mean response in prey defense. At the ecological level, the evolution of prey defense weakened the relative strength of top-down regulation on prey community. This was more evident in the constant-resource environment, whereas the slow emergence of defensive prey types gradually decreased the amplitude of predator peaks in the pulsed-resource environment. Our study suggests that rapid evolution plays a smaller role in the ecological dynamics of communities dominated by resource pulses.

  9. Doing more with less: Teacher professional learning communities in resource-constrained primary schools in rural China.

    PubMed

    Sargent, Tanja C; Hannum, Emily C

    2009-01-01

    Teacher professional learning communities provide environments in which teachers engage in regular research and collaboration. They have been found effective as a means for connecting professional learning to the day-to-day realities faced by teachers in the classroom. In this paper, we draw on survey data collected in primary schools serving 71 villages in rural Gansu Province, as well as transcripts from in-depth interviews with 30 teachers. Our findings indicate that professional learning communities penetrate to some of China's most resource-constrained schools, but that their nature and development are shaped by institutional supports, principal leadership, and teachers' own initiative.

  10. CONSTRAINING THE DARK ENERGY EQUATION OF STATE USING LISA OBSERVATIONS OF SPINNING MASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-10

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  11. Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-01

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a ΛCDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2σ error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  12. Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    NASA Astrophysics Data System (ADS)

    Kohley, Z.; Christian, G.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Jones, M.; Smith, J. K.; Snyder, J.; Spyrou, A.; Thoennessen, M.

    2013-10-01

    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg+9Be reaction. The fragmentation reaction was simulated with the constrained molecular dynamics model (CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at subsaturation densities. Through comparison of these simulations with the experimental data, constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive-beam-induced reactions.

  13. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  14. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  15. Wind energy resource atlas. Volume 4. The Northeast region

    SciTech Connect

    Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-09-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

  16. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  17. Investigating Urban Eighth-Grade Students' Knowledge of Energy Resources

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec

    2012-05-01

    This study investigated urban eighth-grade students' knowledge of energy resources and associated issues including energy acquisition, energy generation, storage and transport, and energy consumption and conservation. A 39 multiple-choice-item energy resources knowledge assessment was completed by 1043 eighth-grade students in urban schools in two cities in Pennsylvania, USA. Mean scores for the entire assessment measure indicated low conceptual energy knowledge of the eighth-grade students. Subscale means revealed that student understandings of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation are not satisfactory. Distractor analysis identified many misunderstandings that eighth-grade students hold with regard to energy resources. Findings revealed that students did not have a sound knowledge and understanding of basic scientific energy resources facts, issues related to energy sources and resources, general trends in the US energy resource supply and use, and the impact energy resource development and use can have on society and the environment. Implications for teacher enactment of energy resources curriculum activities are discussed.

  18. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  19. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  20. 75 FR 3461 - Minnesota Energy Resources Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Minnesota Energy Resources Corporation; Notice of Filing January 13, 2010. Take notice that on December 29, 2009, Minnesota Energy Resources Corporation (MERC) filed to...

  1. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  2. Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)

    NASA Astrophysics Data System (ADS)

    Bohrson, Wendy A.; Spera, Frank J.

    2003-02-01

    A wealth of geochemical and petrological data provide evidence that the processes of fractional crystallization, assimilation, and magma recharge (replenishment) dominate the chemical signatures of many terrestrial igneous rocks. Previous work [Spera and Bohrson, 2001; Bohrson and Spera, 2001] has established the importance of integrating energy, species and mass conservation into simulations of complex magma chamber processes. An extended version of the energy-constrained formulation, Energy-Constrained Recharge, Assimilation, Fractional Crystallization (EC-RAFC), tracks mass and compositional variations of melt, cumulates, and enclaves in a magma body undergoing simultaneous recharge, assimilation, and fractional crystallization [Spera and Bohrson, 2002]. Because many EC-RAFC results are distinct from those predicted by extant RAFC formulations, the primary goal of this paper is to present a range of geochemical and mass relationships for selected cases that highlight issues relevant to modern petrology. Among the plethora of petrologic problems that have important, well-documented analogues in nature are the geochemical distinctions that arise when a magma body undergoes continuous versus episodic recharge, the connection between erupted magmas and associated cumulate bodies, the behavior of recharge-fractionation dominated systems (RFC), thermodynamic conditions that promote the formation of enclaves versus cumulates, and the conditions under which magma bodies may be described as chemically homogeneous. Investigation of the effects of continuous versus episodic recharge for mafic magma undergoing RAFC in the lower crust indicates that the resulting geochemical trends for melt and solids are sensitive to the intensity and composition of recharge, suggesting that EC-RAFC may be used as a tool to distinguish the nature of the recharge events. Compared to the record preserved in melts, the geochemical and mass characteristics of solids associated with particular

  3. Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)

    SciTech Connect

    Wendy A. Bohrson Department of Geological Sciences, Central Washington University, Ellensburg, Washington, 98926, USA; Frank J. Spera Institute for Crustal Studies and Department of Geological Sciences, University of California, Santa Barbara, California, 93106, USA

    2003-07-01

    A wealth of geochemical and petrological data provide evidence that the processes of fractional crystallization, assimilation, and magma recharge (replenishment) dominate the chemical signatures of many terrestrial igneous rocks. Previous work [ Spera and Bohrson, 2001 ; Bohrson and Spera, 2001 ] has established the importance of integrating energy, species and mass conservation into simulations of complex magma chamber processes. An extended version of the energy-constrained formulation, Energy-Constrained Recharge, Assimilation, Fractional Crystallization (EC-RAFC), tracks mass and compositional variations of melt, cumulates, and enclaves in a magma body undergoing simultaneous recharge, assimilation, and fractional crystallization [ Spera and Bohrson, 2002 ]. Because many EC-RAFC results are distinct from those predicted by extant RAFC formulations, the primary goal of this paper is to present a range of geochemical and mass relationships for selected cases that highlight issues relevant to modern petrology. Among the plethora of petrologic problems that have important, well-documented analogues in nature are the geochemical distinctions that arise when a magma body undergoes continuous versus episodic recharge, the connection between erupted magmas and associated cumulate bodies, the behavior of recharge-fractionation dominated systems (RFC), thermodynamic conditions that promote the formation of enclaves versus cumulates, and the conditions under which magma bodies may be described as chemically homogeneous. Investigation of the effects of continuous versus episodic recharge for mafic magma undergoing RAFC in the lower crust indicates that the resulting geochemical trends for melt and solids are sensitive to the intensity and composition of recharge, suggesting that EC-RAFC may be used as a tool to distinguish the nature of the recharge events. Compared to the record preserved in melts, the geochemical and mass characteristics of solids associated with

  4. Distributed Energy Resources Market Diffusion Model

    SciTech Connect

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase

  5. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation.

    PubMed

    Stenrup, Michael; Lindh, Roland; Fdez Galván, Ignacio

    2015-08-15

    A method is proposed to easily reduce the number of energy evaluations required to compute numerical gradients when constraints are imposed on the system, especially in connection with rigid fragment optimization. The method is based on the separation of the coordinate space into a constrained and an unconstrained space, and the numerical differentiation is done exclusively in the unconstrained space. The decrease in the number of energy calculations can be very important if the system is significantly constrained. The performance of the method is tested on systems that can be considered as composed of several rigid groups or molecules, and the results show that the error with respect to conventional optimizations is of the order of the convergence criteria. Comparison with another method designed for rigid fragment optimization proves the present method to be competitive. The proposed method can also be applied to combine numerical and analytical gradients computed at different theory levels, allowing an unconstrained optimization with numerical differentiation restricted to the most significant degrees of freedom. This approach can be a practical alternative when analytical gradients are not available at the desired computational level and full numerical differentiation is not affordable.

  6. A constrained reduced-dimensionality search algorithm to follow chemical reactions on potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Lankau, Timm; Yu, Chin-Hui

    2013-06-01

    A constrained reduced-dimensionality algorithm can be used to efficiently locate transition states and products in reactions involving conformational changes. The search path (SP) is constructed stepwise from linear combinations of a small set of manually chosen internal coordinates, namely the predictors. The majority of the internal coordinates, the correctors, are optimized at every step of the SP to minimize the total energy of the system so that the path becomes a minimum energy path connecting products and transition states with the reactants. Problems arise when the set of predictors needs to include weak coordinates, for example, dihedral angles, as well as strong ones such as bond distances. Two principal constraining methods for the weak coordinates are proposed to mend this situation: static and dynamic constraints. Dynamic constraints are automatically activated and revoked depending on the state of the weak coordinates among the predictors, while static ones require preset control factors and act permanently. All these methods enable the successful application (4 reactions are presented involving cyclohexane, alanine dipeptide, trimethylsulfonium chloride, and azafulvene) of the reduced dimensionality method to reactions where the reaction path covers large conformational changes in addition to the formation/breaking of chemical bonds. Dynamic constraints are found to be the most efficient method as they require neither additional information about the geometry of the transition state nor fine tuning of control parameters.

  7. Wind energy resource atlas. Volume 5: the East Central Region

    SciTech Connect

    Brode, R.; Stoner, R.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-01-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters. States include Delaware, Maryland, Kentucky, North Carolina, Tennessee, Virginia, and West Virginia.

  8. Demand management in healthcare IT. Controlling IT demand to meet constrained IT resource supply.

    PubMed

    Mohrmann, Gregg; Schlusberg, Craig; Kropf, Roger

    2007-01-01

    Healthcare is behind other industries in the ability to manage and control increasing demand for IT services, and to ensure that IT staff are available when and where needed. From everyday support requests to large capital projects, the IT department's ability to meet demand is limited. Organizational and IT leaders need to proactively address this issue and do a better job of predicting when services will be needed and whether appropriate resources will be available. This article describes the common issues that healthcare IT departments face in the efficient delivery of services as a result of factors such as budget constraints, skill sets and project dependencies. Best practices for controlling demand are discussed, including resource allocation, governance processes and a graphical analysis of forecasted vs. actual thresholds. Using specific healthcare provider examples, the article intends to provide IT management with an approach to predicting and controlling resource demand.

  9. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  10. Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems

    NASA Astrophysics Data System (ADS)

    Bartell, Richard J.; Perram, Glen P.; Fiorino, Steven T.; Long, Scott N.; Houle, Marken J.; Rice, Christopher A.; Manning, Zachary P.; Bunch, Dustin W.; Krizo, Matthew J.; Gravley, Liesebet E.

    2005-06-01

    The Air Force Institute of Technology's Center for Directed Energy has developed a software model, the High Energy Laser End-to-End Operational Simulation (HELEEOS), under the sponsorship of the High Energy Laser Joint Technology Office (JTO), to facilitate worldwide comparisons across a broad range of expected engagement scenarios of expected performance of a diverse range of weight-constrained high energy laser system types. HELEEOS has been designed to meet JTO's goals of supporting a broad range of analyses applicable to the operational requirements of all the military services, constraining weapon effectiveness through accurate engineering performance assessments allowing its use as an investment strategy tool, and the establishment of trust among military leaders. HELEEOS is anchored to respected wave optics codes and all significant degradation effects, including thermal blooming and optical turbulence, are represented in the model. The model features operationally oriented performance metrics, e.g. dwell time required to achieve a prescribed probability of kill and effective range. Key features of HELEEOS include estimation of the level of uncertainty in the calculated Pk and generation of interactive nomographs to allow the user to further explore a desired parameter space. Worldwide analyses are enabled at five wavelengths via recently available databases capturing climatological, seasonal, diurnal, and geographical spatial-temporal variability in atmospheric parameters including molecular and aerosol absorption and scattering profiles and optical turbulence strength. Examples are provided of the impact of uncertainty in weight-power relationships, coupled with operating condition variability, on results of performance comparisons between chemical and solid state lasers.

  11. Integrated assessment of dispersed energy resources deployment

    SciTech Connect

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  12. Sustaining Lesson Study: Resources and Factors that Support and Constrain Mathematics Teachers' Ability to Continue After the Grant Ends

    NASA Astrophysics Data System (ADS)

    Druken, Bridget Kinsella

    Lesson study, a teacher-led vehicle for inquiring into teacher practice through creating, enacting, and reflecting on collaboratively designed research lessons, has been shown to improve mathematics teacher practice in the United States, such as improving knowledge about mathematics, changing teacher practice, and developing communities of teachers. Though it has been described as a sustainable form of professional development, little research exists on what might support teachers in continuing to engage in lesson study after a grant ends. This qualitative and multi-case study investigates the sustainability of lesson study as mathematics teachers engage in a district scale-up lesson study professional experience after participating in a three-year California Mathematics Science Partnership (CaMSP) grant to improve algebraic instruction. To do so, I first provide a description of material (e.g. curricular materials and time), human (attending district trainings and interacting with mathematics coaches), and social (qualities like trust, shared values, common goals, and expectations developed through relationships with others) resources present in the context of two school districts as reported by participants. I then describe practices of lesson study reported to have continued. I also report on teachers' conceptions of what it means to engage in lesson study. I conclude by describing how these results suggest factors that supported and constrained teachers' in continuing lesson study. To accomplish this work, I used qualitative methods of grounded theory informed by a modified sustainability framework on interview, survey, and case study data about teachers, principals, and Teachers on Special Assignment (TOSAs). Four cases were selected to show the varying levels of lesson study practices that continued past the conclusion of the grant. Analyses reveal varying levels of integration, linkage, and synergy among both formally and informally arranged groups of

  13. The U.S. Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2006-01-01

    The United States uses tremendous amounts of geologic energy resources. In 2004 alone, the United States consumed more than 7.4 billion barrels of oil, 21.9 trillion cubic feet of natural gas, and 1.1 billion short tons of coal. Forecasts indicate the Nation's need for energy resources will continue to grow, raising several questions: How much domestic and foreign petroleum resources are available to meet the growing energy demands of the Nation and world? Does the United States have coal deposits of sufficient quantity and quality to meet demand over the next century? What other geologic energy resources can be added to the U.S. energy mix? How do the occurrence and use of energy resources affect environmental quality and human health? Unbiased information from robust scientific studies is needed for sound energy policy and resource management decisions addressing these issues. The U.S. Geological Survey Energy Resources Program provides impartial, scientifically robust information to advance the understanding of geologically based energy resources including: petroleum (oil, natural gas, natural gas liquids), coal, gas hydrates, geothermal resources, oil shale, oil sands, uranium, and heavy oil and natural bitumen. This information can be used to contribute to plans for a secure energy future and to facilitate evaluation and responsible use of resources.

  14. Selection and Storage of Perceptual Groups Is Constrained by a Discrete Resource in Working Memory

    ERIC Educational Resources Information Center

    Anderson, David E.; Vogel, Edward K.; Awh, Edward

    2013-01-01

    Perceptual grouping can lead observers to perceive a multielement scene as a smaller number of hierarchical units. Past work has shown that grouping enables more elements to be stored in visual working memory (WM). Although this may appear to contradict so-called discrete resource models that argue for fixed item limits in WM storage, it is also…

  15. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource

    NASA Astrophysics Data System (ADS)

    White, J. T.; Karakhanian, A.; Connor, C. B.; Connor, L.; Hughes, J. D.; Malservisi, R.; Wetmore, P.

    2015-06-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  16. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  17. Renewable Energy Resources in the United Kingdom.

    ERIC Educational Resources Information Center

    Roberts, Michael J.; Thomas, M. Pugh

    1990-01-01

    This paper defines renewable energy and outlines possible sources of this energy. Supplies, and ethics are considered. The position of renewable energy sources in the energy policy of Great Britain are discussed. (CW)

  18. Resource Letter PSEn-1: Physics and society: Energy

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2007-04-01

    This Resource Letter provides a guide to the physics-related literature about energy-and-society. Journal articles, books, and websites are cited for the following topics: general references, textbooks, other pedagogical resources, population growth, fossil fuels, global warming, nuclear power, side effects of nuclear power, fusion power, renewable resources (including hydroelectric, biofuels, wind, photovoltaics, direct solar, geothermal, hydrogen, and energy storage), energy efficiency, and transportation efficiency.

  19. Automated classification of multispectral MR images using unsupervised constrained energy minimization based on fuzzy logic.

    PubMed

    Lin, Geng-Cheng; Wang, Chuin-Mu; Wang, Wen-June; Sun, Sheng-Yih

    2010-06-01

    Constrained energy minimization (CEM) has proven highly effective for hyperspectral (or multispectral) target detection and classification. It requires a complete knowledge of the desired target signature in images. This work presents "Unsupervised CEM (UCEM)," a novel approach to automatically target detection and classification in multispectral magnetic resonance (MR) images. The UCEM involves two processes, namely, target generation process (TGP) and CEM. The TGP is a fuzzy-set process that generates a set of potential targets from unknown information and then applies these targets to be desired targets in CEM. Finally, two sets of images, namely, computer-generated phantom images and real MR images, are used in the experiments to evaluate the effectiveness of UCEM. Experimental results demonstrate that UCEM segments a multispectral MR image much more effectively than either Functional MRI of the Brain's (FMRIB's) automated segmentation tool or fuzzy C-means does.

  20. Multi-excitation Raman difference spectroscopy based on modified multi-energy constrained iterative deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong

    2013-12-01

    Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.

  1. Constraining Dark Matter-Neutrino Interactions with High-Energy Astrophysical Neutrinos

    NASA Astrophysics Data System (ADS)

    Arguelles, Carlos

    2017-01-01

    IceCube has continued to observe cosmic neutrinos since their discovery. The origin of these cosmic neutrinos is still unknown. Moreover, their arrival direction is compatible with an isotropic distribution. The this observation, together with dedicated studies looking for galactic plane correlations, suggest that the observed astrophysical neutrinos are of extragalactic origin. If there is a dark matter-neutrino interaction, then the observed neutrino flux and its spatial distribution would be distorted. We perform a likelihood analysis using four years of IceCube's high energy starting events to constrain the strength dark matter neutrino interactions in the context of simplified models. Finally, we compare our results with cosmology and highlight the complementary between the two constraints.

  2. State Energy Alternatives: Alternative Energy Resources by State

    DOE Data Explorer

    This U.S. map provides state by state information on incentives and laws related to alternative fuels and advanced vehicles. Discover what's available in each state for innovation grants, infrastructure grants, and production grants and who to contact. Find out how many alternative refueling stations are available in each state and where they are. Tennessee, for example, in 2009, has 114 alternative refueling stations: 36 biodiesel, 1 electrical, 29 ethanol, 4 natural gas, and 44 propane. There are also 5 Truck Stop Electrification (TSE) sites in Tennessee. Users can also find out from this map interface the contacts for Clean Cities in a state, information about renewable energy projects and activities in each state, fuel prices across a state, and biomass potential resources and current production in each state.

  3. Management of late-preterm and term infants with hyperbilirubinaemia in resource-constrained settings.

    PubMed

    Olusanya, Bolajoko O; Ogunlesi, Tinuade A; Kumar, Praveen; Boo, Nem-Yun; Iskander, Iman F; de Almeida, Maria Fernanda B; Vaucher, Yvonne E; Slusher, Tina M

    2015-04-12

    Hyperbilirubinaemia is a ubiquitous transitional morbidity in the vast majority of newborns and a leading cause of hospitalisation in the first week of life worldwide. While timely and effective phototherapy and exchange transfusion are well proven treatments for severe neonatal hyperbilirubinaemia, inappropriate or ineffective treatment of hyperbilirubinaemia, at secondary and tertiary hospitals, still prevails in many poorly-resourced countries accounting for a disproportionately high burden of bilirubin-induced mortality and long-term morbidity. As part of the efforts to curtail the widely reported risks of frequent but avoidable bilirubin-induced neurologic dysfunction (acute bilirubin encephalopathy (ABE) and kernicterus) in low and middle-income countries (LMICs) with significant resource constraints, this article presents a practical framework for the management of late-preterm and term infants (≥ 35 weeks of gestation) with clinically significant hyperbilirubinaemia in these countries particularly where local practice guidelines are lacking. Standard and validated protocols were followed in adapting available evidence-based national guidelines on the management of hyperbilirubinaemia through a collaboration among clinicians and experts on newborn jaundice from different world regions. Tasks and resources required for the comprehensive management of infants with or at risk of severe hyperbilirubinaemia at all levels of healthcare delivery are proposed, covering primary prevention, early detection, diagnosis, monitoring, treatment, and follow-up. Additionally, actionable treatment or referral levels for phototherapy and exchange transfusion are proposed within the context of several confounding factors such as widespread exclusive breastfeeding, infections, blood group incompatibilities and G6PD deficiency, which place infants at high risk of severe hyperbilirubinaemia and bilirubin-induced neurologic dysfunction in LMICs, as well as the limited facilities

  4. How CMB and large-scale structure constrain chameleon interacting dark energy

    SciTech Connect

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y. E-mail: subinoy@iiap.res.in

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  5. The U.S.Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  6. Resource-Constrained Information Management: Providing Governments with Information for Earthquake Preparedness.

    PubMed

    Vatenmacher, Michael; Isaac, Shabtai; Svoray, Tal

    2017-02-07

    This study seeks to attain a better understanding of the information that is required by governments to prepare for earthquakes, and of the constraints they face in obtaining this information. The contributions of the study are two-fold. A survey that was conducted among those responsible for earthquake preparedness actions in different governmental agencies and at different levels revealed on the one hand a desire for information on a broad range of topics, but on the other hand that no resources were allocated in practice to gather this information. A Geographic Information System-based process that was developed following the survey, allowed the required information on seismic hazards and loss and damage risks to be rapidly collected, mapped and integrated. This supported the identification of high-priority areas, for which a more detailed analysis could be initiated. An implementation of the process showed promise, and confirmed its feasibility. Its relative simplicity may ensure that an earthquake preparedness process is initiated by governments that are otherwise reluctant to allocate resources for this purpose.

  7. Resource constrained design of artificial neural networks using comparator neural network

    NASA Technical Reports Server (NTRS)

    Wah, Benjamin W.; Karnik, Tanay S.

    1992-01-01

    We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.

  8. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    SciTech Connect

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan; Jain, Abhinandan

    2016-01-28

    energy distortions encountered in constrained ICMD simulations of peptide molecules.

  9. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    PubMed Central

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    energy distortions encountered in constrained ICMD simulations of peptide molecules. PMID:26827207

  10. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    energy distortions encountered in constrained ICMD simulations of peptide molecules.

  11. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    energy distortions encountered in constrained ICMD simulations of peptide molecules.

  12. Power Play: Harnessing Resources for Energy Education.

    ERIC Educational Resources Information Center

    Glass, Lynn W.

    1982-01-01

    Discusses sources of energy education materials, including businesses, industries, and private organizations. Provides names/addresses of principle energy trade associations and guidelines for evaluating energy education materials developed by the private sector. (JN)

  13. Resource Recovery. Energy and Environment. Teacher's Aid.

    ERIC Educational Resources Information Center

    Reynolds, Smith and Hills, Inc., Jacksonville, FL.

    Designed to assist students in understanding solid waste resource recovery, this teaching aid package aims to get students involved in practical activities that require participation, observation, and interpretation. Provided in this package are definitions, methods, causes and effects, costs, and benefits of resource recovery presented in the…

  14. Development of a severity of illness scoring system (ITAT) for resource-constrained hospitals in developing countries

    PubMed Central

    Olson, Dan; Davis, Nicole L.; Milazi, Robert; Lufesi, Norman; Miller, William C.; Preidis, Geoffrey A.; Hosseinipour, Mina C.; McCollum, Eric D.

    2013-01-01

    Objective To develop a new pediatric illness severity score, called Inpatient Triage, Assessment, and Treatment (ITAT), for resource-limited settings to identify hospitalized patients at highest risk of death and facilitate urgent clinical re-evaluation. Methods We performed a nested case-control study at a Malawian referral hospital. The ITAT score was derived from 4 equally-weighted variables, yielding a cumulative score between 0 and 8. Variables included oxygen saturation, temperature, and age-adjusted heart and respiratory rates. We compared the ITAT score between cases (deaths) and controls (discharges) in predicting death within 2 days. Our analysis includes predictive statistics, bivariable and multivariable logistic regression, and calculation of data-driven scores. Results A total of 54 cases and 161 controls were included in the analysis. The area under the receiver operating characteristic curve was 0.76. At an ITAT cutoff of 4, the sensitivity, specificity, and likelihood ratio were 0.44, 0.86, and 1.70, respectively. A cumulative ITAT score of 4 or higher was associated with increased odds of death (OR: 4.80; 95% CI: 2.39 – 9.64). A score of 2 for all individual vital signs was a statistically significant independent predictor of death. Conclusions We developed an inpatient triage tool (ITAT) appropriate for resource-constrained hospitals that identifies high-risk children after hospital admission. Further research is needed to study how best to operationalize ITAT in developing countries. PMID:23758198

  15. Prophylactic Phenylephrine Infusions to Reduce Severe Spinal Anesthesia Hypotension During Cesarean Delivery in a Resource-Constrained Environment.

    PubMed

    Bishop, David G; Cairns, Carel; Grobbelaar, Mariette; Rodseth, Reitze N

    2017-02-24

    Phenylephrine infusions are considered as standard management for obstetric spinal hypotension, but there remains reluctance to implement them in resource-limited contexts. This prospective, alternating intervention study of patients undergoing elective or urgent cesarean delivery under spinal anesthesia compared a vasopressor bolus strategy to fixed-rate, low-dose prophylactic phenylephrine infusion with supplemental boluses. The primary outcome was the incidence of severe hypotension (mean arterial pressure <70% baseline or systolic blood pressure <80 mm Hg). Fewer patients receiving prophylactic phenylephrine infusions had severe hypotension (47.4% [n = 120/253] vs 62.1% [n = 157/253], P = .001, estimated relative risk 0.84, 95% confidence interval 0.69-1.02), with no significant difference in the rate of hypertension (15% [n = 39/253] vs 11% [n = 27/253], P = .11, estimated relative risk 1.39, confidence interval 0.87-2.20). Guidelines for resource-constrained settings should consider a fixed, low-dose phenylephrine infusion in combination with rescue vasopressor bolus therapy.

  16. Improved triage and emergency care for children reduces inpatient mortality in a resource-constrained setting.

    PubMed Central

    Molyneux, Elizabeth; Ahmad, Shafique; Robertson, Ann

    2006-01-01

    PROBLEM: Early assessment, prioritization for treatment and management of sick children attending a health service are critical to achieving good outcomes. Many hospitals in developing countries see large numbers of patients and have few staff, so patients often have to wait before being assessed and treated. APPROACH: We present the example of a busy Under-Fives Clinic that provided outpatient services, immunizations and treatment for medical emergencies. The clinic was providing an inadequate service resulting in some inappropriate admissions and a high case-fatality rate. We assessed the deficiencies and sought resources to improve services. LOCAL SETTING: A busy paediatric outpatient clinic in a public tertiary care hospital in Blantyre, Malawi. RELEVANT CHANGES: The main changes we made were to train staff in emergency care and triage, improve patient flow through the department and to develop close cooperation between inpatient and outpatient services. Training coincided with a restructuring of the physical layout of the department. The changes were put in place when the department reopened in January 2001. LESSONS LEARNED: Improvements in the process and delivery of care and the ability to prioritize clinical management are essential to good practice. Making the changes described above has streamlined the delivery of care and led to a reduction in inpatient mortality from 10-18% before the changes were made (before 2001) to 6-8% after. PMID:16628305

  17. Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Moresco, Michele; Jimenez, Raul; Verde, Licia; Cimatti, Andrea; Pozzetti, Lucia; Maraston, Claudia; Thomas, Daniel

    2016-12-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in the redshift range 0energy. For the curvature our constraints are Ωk = 0.003 ± 0.003, considering also CMB data. We also find that H(z) data from cosmic chronometers are important to constrain parameters that do no affect directly the expansion history, by breaking or reducing degeneracies with other parameters. We find that Neff = 3.17 ± 0.15, thus excluding the possibility of an extra (sterile) neutrino at more than 5 σ, and put competitive limits on the sum of neutrino masses, Σ mν< 0.27 eV at 95% confidence level. Finally, we constrain the redshift evolution of dark energy by exploring separately the early and late-Universe, and find a dark energy equation of state evolution w(z) consistent with that in the ΛCDM model at the ± 0.4 level over the entire redshift range 0 < z < 2.

  18. Wind Power: An Emerging Energy Resource

    ERIC Educational Resources Information Center

    Deal, Walter F.

    2010-01-01

    One may ask the question, What is energy? Typically the first answers that come to mind are oil, coal, and natural gas or nuclear energy. Most human activities require some form of energy consumption. This may be the energy produced by the food that one eats or the gasoline that is used in cars, trucks, buses, and other vehicles. One cannot ignore…

  19. Women: Tapping a New Resource for Energy.

    ERIC Educational Resources Information Center

    Consumer Action Now, New York, NY.

    In 1973 the Arab oil embargo triggered what has come to be known as the "energy crisis." In 1974, Consumer Action Now (CAN) decided to devote its full efforts to the grave issues of energy and to look for options that would preserve our choices as a new energy era is entered. Any transition to a more energy-efficient society depends on a…

  20. Community Design for Optimal Energy and Resource Utilization.

    ERIC Educational Resources Information Center

    Bilenky, Stephen; And Others

    Presented is a study which investigated the energy and resource dynamics of a semi-autonomous domestic system for 30 people. The investigation is organized on three levels: (1) developing a preliminary design and design parameters; (2) development and quantification of the energy and resource dynamics; and (3) designing a model to extrapolate…

  1. Constrained Broyden Dimer Method with Bias Potential for Exploring Potential Energy Surface of Multistep Reaction Process.

    PubMed

    Shang, Cheng; Liu, Zhi-Pan

    2012-07-10

    To predict the chemical activity of new matter is an ultimate goal in chemistry. The identification of reaction pathways using modern quantum mechanics calculations, however, often requires a high demand in computational power and good chemical intuition on the reaction. Here, a new reaction path searching method is developed by combining our recently developed transition state (TS) location method, namely, the constrained Broyden dimer method, with a basin-filling method via bias potentials, which allows the system to walk out from the energy traps at a given reaction direction. In the new method, the reaction path searching starts from an initial state without the need for preguessing the TS-like or final state structure and can proceed iteratively to the final state by locating all related TSs and intermediates. In each elementary reaction step, a reaction direction, such as a bond breaking, needs to be specified, the information of which is refined and preserved as a normal mode through biased dimer rotation. The method is tested successfully on the Baker reaction system (50 elementary reactions) with good efficiency and stability and is also applied to the potential energy surface exploration of multistep reaction processes in the gas phase and on the surface. The new method can be applied for the computational screening of new catalytic materials with a minimum requirement of chemical intuition.

  2. Nonlinear stochastic controllers for power-flow-constrained vibratory energy harvesters

    NASA Astrophysics Data System (ADS)

    Cassidy, Ian L.; Scruggs, Jeffrey T.

    2013-06-01

    This study addresses the formulation of nonlinear feedback controllers for stochastically excited vibratory energy harvesters. Maximizing the average power generated from such systems requires the transducer current to be regulated using a bi-directional power electronic converter. There are many applications where the implementation of these types of converters is infeasible, due to the higher parasitic losses they must sustain. If instead the transducer current is regulated using a converter capable of single-directional power-flow, then these parasitic losses can be reduced significantly. However, the constraint on the power-flow directionality restricts the domain of feasible feedback laws. The only feasible linear feedback law imposes a static relationship between current and voltage, i.e., a static admittance. In stochastic response, the power generation performance can be enhanced significantly beyond that of the optimal static admittance, using nonlinear feedback. In this paper, a general approach to nonlinear control synthesis for power-flow-constrained energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance in stationary stochastic response. Simulation results are presented for a single-degree-of-freedom resonant oscillator with an electromagnetic transducer, as well as for a piezoelectric bimorph cantilever beam.

  3. Constraining Very High-Energy Gamma Ray Sources Using IceCube Neutrino Observations

    NASA Astrophysics Data System (ADS)

    Vance, Gregory; Feintzeig, J.; Karle, A.; IceCube Collaboration

    2014-01-01

    Modern gamma ray astronomy has revealed the most violent, energetic objects in the known universe, from nearby supernova remnants to distant active galactic nuclei. In an effort to discover more about the fundamental nature of such objects, we present searches for astrophysical neutrinos in coincidence with known gamma ray sources. Searches were conducted using data from IceCube Neutrino Observatory, a cubic-kilometer neutrino detector that is sensitive to astrophysical particles with energies above 1 TeV. The detector is situated at the South Pole, and uses more than 5,000 photomultiplier tubes to detect Cherenkov light from the interactions of particles within the ice. Existing models of proton-proton interactions allow us to link gamma ray fluxes to the production of high-energy neutrinos, so neutrino data from IceCube can be used to constrain the mechanisms by which gamma ray sources create such energetic photons. For a few particularly bright sources, such as the blazar Markarian 421, IceCube is beginning to reach the point where actual constraints can be made. As more years of data are analyzed, the limits will improve and stronger constraints will become possible. This work was supported in part by the National Science Foundation's REU Program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  4. Obtain Resources for Climate & Energy Programs

    EPA Pesticide Factsheets

    This phase of the Local Climate Action Framework will help users identify and pursue the resources needed for program/project implementation, including internal or external funding, existing or new staff time, technical expertise, or stakeholder buy-in.

  5. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  6. Operational Parameters, Considerations, and Design Decisions for Resource-Constrained Ion Trap Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Danell, Ryan M.; VanAmerom, Friso H. W.; Pinnick, Veronica; Cotter, Robert J.; Brickerhoff, William; Mahaffy, Paul

    2011-01-01

    Mass spectrometers are increasingly finding applications in new and unique areas, often in situations where key operational resources (i.e. power, weight and size) are limited. One such example is the Mars Organic Molecule Analyzer (MOMA). This instrument is a joint venture between NASA and the European Space Agency (ESA) to develop an ion trap mass spectrometer for chemical analysis on Mars. The constraints on such an instrument are significant as are the performance requirements. While the ideal operating parameters for an ion trap are generally well characterized, methods to maintain analytical performance with limited power and system weight need to be investigated and tested. Methods Experiments have been performed on two custom ion trap mass spectrometers developed as prototypes for the MOMA instrument. This hardware consists of quadrupole ion trap electrodes that are 70% the size of common commercial instrumentation. The trapping RF voltage is created with a custom tank circuit that can be tuned over a range of RF frequencies and is driven using laboratory supplies and amplifiers. The entire instrument is controlled with custom Lab VIEW software that allows a high degree of flexibility in the definition of the scan function defining the ion trap experiment. Ions are typically generated via an internal electron ionization source, however, a laser desorption source is also in development for analysis of larger intact molecules. Preliminary Data The main goals in this work have been to reduce the power required to generate the radio frequency trapping field used in an ion trap mass spectrometer. Generally minimizing the power will also reduce the volume and mass of the electronics to support the instrument. In order to achieve optimum performance, commercial instruments typically utilize RF frequencies in the 1 MHz range. Without much concern for power usage, they simply generate the voltage required to access the mass range of interest. In order to reduce the

  7. Macronutrient Supplementation for Malnourished HIV-infected Adults: A Review of the Evidence in Resource-Adequate and Resource-Constrained Settings

    PubMed Central

    Koethe, John R.; Chi, Benjamin H.; Megazzini, Karen M.; Heimburger, Douglas C.; Stringer, Jeffrey S. A.

    2011-01-01

    Access to antiretroviral therapy (ART) for HIV infection has expanded rapidly throughout sub-Saharan Africa, but malnutrition and food insecurity have emerged as major barriers to program success. Protein-calorie malnutrition (a common form in the region) hastens HIV disease progression, and food insecurity is a barrier to medication adherence. Analyses of patient outcomes have identified a low body mass index (BMI) at ART initiation as an independent predictor of early mortality, but the causes of low BMI are multi-factorial may represent normal anthropometric variation, chronic inadequate food intake, or wasting associated with HIV and other infections. While there is much experience population-level humanitarian food assistance, few data exist to measure the effectiveness of macronutrient supplementation or to identify individuals most likely to benefit. In this report, we review the current evidence supporting macronutrient supplementation for HIV-infected adults; clinical trials in resource-adequate and resource-constrained settings; and highlight priority areas for future research. PMID:19624276

  8. Energy Systems Integration: Demonstrating Distributed Resource Communications

    SciTech Connect

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  9. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  10. Constraining Quasar Properties with Variability via the Dark Energy Survey and Australian DES

    NASA Astrophysics Data System (ADS)

    Mudd, Dale; Martini, Paul; Dark Energy Survey, Australian DES

    2017-01-01

    I am using the unique combination of the Dark Energy Survey (DES) and Australian DES to characterize the black hole mass and its immediate environment in quasars. There is a radial temperature gradient in the accretion disk. Time delays across multiple bands can be used to constrain the overall scale of the accretion disk as well as its temperature profile. We have measured photometric time lags as a function of wavelength in over a dozen quasars with the DES data. This is a sizable increase to the number of measured disk sizes. The longer time delay between the continuum and emission lines gives the radius of the broad line region. We apply the virial theorem to calculate black hole masses with these size measurements for the broad line region, combined with the characteristic velocity width of the line. While this has been done for many local active galactic nuclei with the H Beta line, we will make these measurements out to z ~ 4 for other broad lines, as well as greatly expand the sample size. These quasars will provide new radius-luminosity relationships to allow for more accurate single-epoch black hole mass estimates over a large fraction of the age of the universe, especially at the peak of quasar activity.

  11. DOE's Tribal Energy Program Offers Resources

    SciTech Connect

    Douglas C. MacCourt, Chair, Indian Law Practice, Ater Wynne LLP

    2010-06-01

    This handbook is an accessible reference for those who are new to tribal energy project development or who seek a refresher on key development issues as they navigate the project development process. Building upon the wealth of feedback and experiences shared by tribal and other participants in tribal energy workshops conducted by the National Renewable Energy Laboratory, it is designed to provide tribal leaders, tribal economic and energy enterprises, and those supporting them with a general overview of the renewable energy project development process. It includes information on how to structure a renewable energy project transaction to protect tribal interests, with an emphasis on joint project development efforts undertaken with nontribal parties; a general overview of key energy development agreements, including power sale agreements, transmission and interconnection agreements, and land leases; and a detailed discussion of ways tribes can finance renewable energy projects, the sources of funding or financing that may be available, the types of investors that may be available, and federal tax incentives for renewable energy projects. The guide also includes a glossary of some of the most commonly used technical terms.

  12. Energy resources development: Politics and policies

    SciTech Connect

    Ender, R.L.; Kim, J.C.

    1987-01-01

    This volume is designed to address the diverse set of energy issues from both policy and political perspectives. The articles raise more questions than they answer, but agree on one point in the energy debate: short-term changes in supply and price are largely irrelevant to long-term issues. The contributions to this book were written after the crisis of the 1970s and before the free fall of prices in the mid-1980s. However, public interest had already waned and energy was no longer a ''national agenda'' issue. While this book would seem to be addressing an issue of less public importance, the authors realize that the cycle of world events will again bring energy forward for greater scrutiny and debate. Although the attention given to energy policy waxes and wanes, the need persists to formulate consistent public approaches and solutions to the problems posed in providing energy to an industrial nation. The wide divergence of energy policy problems under the four administrations demonstrates the lack of consensus on what the real problems are, or what should be done. The articles for this book were selected to address what the current energy issues are, what policy attempts have been made to solve energy problems, and what the policy implications in the future are. Fifteen articles cannot encompass all the aspects of the subject; however, they make significant contributions in analyzing many of its important facts.

  13. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  14. Post-approval monitoring and oversight of U.S.-initiated human subjects research in resource-constrained countries.

    PubMed

    Brown, Brandon; Kinsler, Janni; Folayan, Morenike O; Allen, Karen; Cáceres, Carlos F

    2014-06-01

    The history of human subjects research and controversial procedures in relation to it has helped form the field of bioethics. Ethically questionable elements may be identified during research design, research implementation, management at the study site, or actions by a study's investigator or other staff. Post-approval monitoring (PAM) may prevent violations from occurring or enable their identification at an early stage. In U.S.-initiated human subjects research taking place in resource-constrained countries with limited development of research regulatory structures, arranging a site visit from a U.S. research ethics committee (REC) becomes difficult, thus creating a potential barrier to regulatory oversight by the parent REC. However, this barrier may be overcome through the use of digital technologies, since much of the world has at least remote access to the Internet. Empirical research is needed to pilot test the use of these technologies for research oversight to ensure the protection of human subjects taking part in research worldwide.

  15. Development and Validation of a Simple Risk Score for Undiagnosed Type 2 Diabetes in a Resource-Constrained Setting

    PubMed Central

    Gilman, Robert H.; Sanchez-Abanto, Jose R.; Study Group, CRONICAS Cohort

    2016-01-01

    Objective. To develop and validate a risk score for detecting cases of undiagnosed diabetes in a resource-constrained country. Methods. Two population-based studies in Peruvian population aged ≥35 years were used in the analysis: the ENINBSC survey (n = 2,472) and the CRONICAS Cohort Study (n = 2,945). Fasting plasma glucose ≥7.0 mmol/L was used to diagnose diabetes in both studies. Coefficients for risk score were derived from the ENINBSC data and then the performance was validated using both baseline and follow-up data of the CRONICAS Cohort Study. Results. The prevalence of undiagnosed diabetes was 2.0% in the ENINBSC survey and 2.9% in the CRONICAS Cohort Study. Predictors of undiagnosed diabetes were age, diabetes in first-degree relatives, and waist circumference. Score values ranged from 0 to 4, with an optimal cutoff ≥2 and had a moderate performance when applied in the CRONICAS baseline data (AUC = 0.68; 95% CI: 0.62–0.73; sensitivity 70%; specificity 59%). When predicting incident cases, the AUC was 0.66 (95% CI: 0.61–0.71), with a sensitivity of 69% and specificity of 59%. Conclusions. A simple nonblood based risk score based on age, diabetes in first-degree relatives, and waist circumference can be used as a simple screening tool for undiagnosed and incident cases of diabetes in Peru. PMID:27689096

  16. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    PubMed

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control.

  17. Development and Validation of a Simple Risk Score for Undiagnosed Type 2 Diabetes in a Resource-Constrained Setting.

    PubMed

    Bernabe-Ortiz, Antonio; Smeeth, Liam; Gilman, Robert H; Sanchez-Abanto, Jose R; Checkley, William; Miranda, J Jaime; Study Group, Cronicas Cohort

    Objective. To develop and validate a risk score for detecting cases of undiagnosed diabetes in a resource-constrained country. Methods. Two population-based studies in Peruvian population aged ≥35 years were used in the analysis: the ENINBSC survey (n = 2,472) and the CRONICAS Cohort Study (n = 2,945). Fasting plasma glucose ≥7.0 mmol/L was used to diagnose diabetes in both studies. Coefficients for risk score were derived from the ENINBSC data and then the performance was validated using both baseline and follow-up data of the CRONICAS Cohort Study. Results. The prevalence of undiagnosed diabetes was 2.0% in the ENINBSC survey and 2.9% in the CRONICAS Cohort Study. Predictors of undiagnosed diabetes were age, diabetes in first-degree relatives, and waist circumference. Score values ranged from 0 to 4, with an optimal cutoff ≥2 and had a moderate performance when applied in the CRONICAS baseline data (AUC = 0.68; 95% CI: 0.62-0.73; sensitivity 70%; specificity 59%). When predicting incident cases, the AUC was 0.66 (95% CI: 0.61-0.71), with a sensitivity of 69% and specificity of 59%. Conclusions. A simple nonblood based risk score based on age, diabetes in first-degree relatives, and waist circumference can be used as a simple screening tool for undiagnosed and incident cases of diabetes in Peru.

  18. Energy Education Resource Guide for Driver Education.

    ERIC Educational Resources Information Center

    Meyerhoff, Richard

    This guide is designed to help driver education teachers in Iowa to integrate energy conservation education into the traditional high school driver education course. Following an explanation of the necessity for teaching energy conservation with driver education, the course guide is divided into seven units. The units cover vehicle selection,…

  19. Building America - Resources for Energy Efficient Homes

    SciTech Connect

    2012-04-19

    Building America publications help builders achieve whole-house energy savings in five major climate zones. Using the recommendation and process improvements outlined in the Best Practices Series handbooks, builders can re-engineer their designs to improve energy performance and quality. Case studies for new and existing homes provide results from actual projects.

  20. Terminology Guideline for Classifying Offshore Wind Energy Resources

    SciTech Connect

    Beiter, Philipp; Musial, Walt

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  1. New Mexico energy research resource registry. Researchers and facilities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

  2. Energy Education Resources: Kindergarten through 12th Grade.

    ERIC Educational Resources Information Center

    Energy Information Administration (DOE), Washington, DC.

    This resource guide provides students, educators, and other information users with a list of generally available free or low-cost energy-related educational materials. The 163 organizations listed are each related to the subject fields of coal, electricity, energy efficiency/energy conservation, the environment, geosciences/earth sciences, natural…

  3. Practical Materials for Teaching. Resource File: Edition I. Energy Management.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This directory lists energy education programs directed at increasing the energy conservation awareness of scientists, engineers, managers, and technicians working in fields where they are responsible for managing energy consumption. The resource is prepared to help with the process of identifying, selecting, and obtaining materials for promoting…

  4. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  5. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered

  6. 77 FR 41481 - Integration of Variable Energy Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... avoid inadvertently stifling the growth ] of renewable energy resources in an effort to protect the... nearly double between 2009 and 2035.\\29\\ This recent and future growth is being facilitated...

  7. Energy Crisis: Libya's and Nigeria's Role. Resource Packet.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    This resource packet contains practical suggestions and resource materials to help secondary teachers teach about Libya's and Nigeria's roles in the energy crisis. Students become acquainted with the governments and cultures of the two countries, examine their social problems, and learn how the Libyan and Nigerian governments are using money from…

  8. The selfish brain: Competition for energy resources.

    PubMed

    Peters, Achim

    2011-01-01

    Obesity and type 2 diabetes have become the major health problems in many industrialized countries. Here, I present the unconventional concept that a healthy organism maintains its systemic homeostasis by a "competent brain-pull", i.e., the brain's ability to properly demand glucose from the body, and that the underlying cause of obesity is "incompetent brain-pull." I describe the energy fluxes from the environment, through the body, toward the brain as the final consumer in a "supply chain" model. There is data-based support for the hypothesis, which states that under conditions of food abundance incompetent brain-pull will lead to build ups in the supply chain culminating in obesity and type 2 diabetes. There is also support for the related hypothesis, which states that under conditions of food deprivation, a competent brain-pull mechanism is indispensable for the continuation of the brain's high energy level. To experimentally determine how the competent brain-pull functions to demand for cerebral energy, healthy young men undergoing psychosocial stress were studied. It was found that the brain under stressful conditions demands for energy from the body by using a brain-pull mechanism, which is referred to as "cerebral insulin suppression" and in so doing it can satisfy its excessive needs during stress. This article gives an overview about the recent work on the "Selfish Brain" theory dealing with the maintenance of the cerebral and peripheral energy homeostasis.

  9. Resource Letter DEAU-1: Dark energy and the accelerating universe

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2008-03-01

    This Resource Letter provides a guide to the literature on dark energy and the accelerating universe. It is intended to be of use to researchers, teachers, and students at several levels. Journal articles, books, and websites are cited for the following topics: Einstein's cosmological constant, quintessence or dynamical scalar fields, modified cosmic gravity, relations to high-energy physics, cosmological probes and observations, terrestrial probes, calculational tools and parameter estimation, teaching strategies and educational resources, and the fate of the universe.

  10. Tackling the climate targets set by the Paris Agreement (COP 21): Green leadership empowers public hospitals to overcome obstacles and challenges in a resource-constrained environment.

    PubMed

    Weimann, E; Patel, B

    2016-12-21

    The healthcare sector itself contributes to climate change, the creation of hazardous waste, use of toxic metals such as mercury, and water and air pollution. To mitigate the effect of healthcare provision on the deteriorating environment and avoid creating further challenges for already burdened health systems, Global Green Hospitals was formed as a global network. Groote Schuur Hospital (GSH), as the leading academic hospital in Africa, joined the network in 2014. Since then, several projects have been initiated to reduce the amount of general waste, energy consumption and food waste, and create an environmentally friendlier and more sustainable hospital in a resource-constrained public healthcare setting. We outline the various efforts made to reduce the carbon footprint of GSH and reduce waste and hazardous substances such as mercury and polystyrene, and elaborate how obstacles and resistance to change were overcome. The hospital was able to halve the amount of coal and water used, increase recycling by 50% over 6 months, replace polystyrene cups and packaging with Forest Stewardship Council recyclable paper-based products, reduce the effect of food wastage by making use of local farmers, and implement measures to reduce the amount of expired pharmaceutical drugs. To improve commitment from all involved roleplayers, political leadership, supportive government policies and financial funding is mandatory, or public hospitals will be unable to tackle the exponentially increasing costs related to climate change and its effects on healthcare.

  11. Energy resources through photochemistry and catalysis

    SciTech Connect

    Graetzel, M.

    1983-01-01

    Topics included in this book are the development of molecular photocatalytic systems for solar-energy conversion, catalysis for oxygen and hydrogen evolution from water, photoelectrolysis of water, and sensitization of semiconductors. Examples are given for the photogeneration of hydrogen and oxygen from water.

  12. Energy Guide: A Directory of Information Resources.

    ERIC Educational Resources Information Center

    Bemis, Virginia; And Others

    This guide is a collection of various information sources pertaining to energy. The chapters separate references according to the type of material (instructional aids, texts, periodicals, reference materials), or the issuing organization (non-government organizations, government services, courses, programs, centers, and research projects). One…

  13. Environmental Action Energy Conservation. Teacher Resource Guide.

    ERIC Educational Resources Information Center

    1998

    The environmental education curriculum called Environment ACTION is designed to empower students with the knowledge and skills necessary to make meaningful environmental changes. This module provides step-by-step instructions on how to explore the sources, production, uses, and environmental effects of energy in their schools and home. There are…

  14. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  15. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  16. Energy Resources Technical Training and Development Programs for American Indians.

    ERIC Educational Resources Information Center

    Cameron, Roy E.; White, W. Sedgefield

    Programs concerning environmental energy and energy-resource development were designed and implemented by the Argonne National Laboratory (ANL) to provide information, training, and technical assistance to Native American tribes. Conducted on reservations in an attempt to partially meet the needs and concerns of American Indians regarding the…

  17. Toward a Regional Geography of Renewable Electrical Energy Resources.

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  18. Resources for Teaching about Energy in the Social Studies Classroom.

    ERIC Educational Resources Information Center

    Sherman, Robin; Stone, Kim

    1992-01-01

    Lists instructional resources for use by social studies teachers in teaching about energy. Includes curriculum materials, videotapes, organizations, government agencies, and industry trade associations that can provide information. Suggests items on energy conservation, global warming, ecology, nuclear power, fossil fuels, oil spills, and…

  19. Energy resource requirements of a solar heating system

    NASA Astrophysics Data System (ADS)

    Rogers, D. W. O.

    1980-01-01

    The paper addresses the question of the total energy resource use of a solar hot water and space heating system compared to the traditional oil, gas and electric heating options. The methods of energy analysis have been applied to a liquid-based, short-term storage solar space and water heating system for a dwelling in Toronto, and the results indicate that the indirect use of energy resources does not have a major impact on the overall energy conservation characteristics of the system which, being in many respects a worst case, takes 1.0-3.5 years of operation to conserve the energy resources, required to build, operate and maintain the system. Over the assumed 20-year lifetime the solar heating system, sized to provide 50% of the heating requirement to a house, uses between 53 and 62% as many energy resources as a conventional system, heating the same house. The energy-conservation characteristics of the system can be completely negated by the use of thermally generated electricity as backup in a 50% solar heating system which replaces oil or gas heating. The collectors and annual operating energy for the pumps were found to be the two most significant factors in the analysis.

  20. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    NASA Astrophysics Data System (ADS)

    Caprini, Chiara; Tamanini, Nicola

    2016-10-01

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 lesssim z lesssim 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z lesssim 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.

  1. BUILDING TRIBAL CAPABILITIES IN ENERGY RESOURCE TRIBES

    SciTech Connect

    Mary Lopez

    2003-04-01

    The CERT Tribal Internship Program is part of the education and training opportunities provided by CERT to accelerate the development of American Indian technical professionals available to serve Tribes and expand the pool of these professionals. Tribes are severely impacted by the inadequate number of Indian professionals available to serve and facilitate Tribal participation and support of the energy future of Tribes,and subsequently the energy future of the nation. By providing interns with hands-on work experience in their field of study two goals are accomplished: (1) the intern is provided opportunities for professional enhancement; and (2) The pool of Indian professionals available to meet the needs of Tribal government and Tribal communities in general is increased. As of January 17, 2003, Lance M Wyatt successfully completed his internship with the Interagency Working Group on Environmental Justice on the Task Force that specifically focuses their work on Tribal nations. While working as an intern with the National Transportation Program, Albuquerque operations, Jacqueline Agnew received an offer to work for the Alaska Native Health Board in Anchorage, Alaska. This was an opportunity that Ms. Agnew did not feel she could afford to forego and she left her internship position in February 2003. At present, CERT is in the process of finding another qualified individual to replace the internship position vacated by Ms. Agnew. Mr. Wyatt's and Ms. Agnew's final comments are given.

  2. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  3. National Renewable Energy Laboratory Information Resources Catalogue. A collection of energy efficiency and renewable energy information resources

    NASA Astrophysics Data System (ADS)

    1994-05-01

    NREL's first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL's outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be accessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL's series publications written for specific audiences and presenting a wide range of subjects. NREL's General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  4. Pyramid Resource Center-Green Energy Center

    SciTech Connect

    Flory, Paul, D.

    2011-09-02

    There are currently over 3,500 USA/Canadian landfills listed by the EPA/EC and like numbers in Europe that are producing methane-rich landfill gas (LFG). This gas is typically made up of 50-percent methane (CH4), 35-percent carbon dioxide (CO2), and 2 to 25% nitrogen and oxygen (N2 & O2), plus dozens of dilute contaminants. LFG is classified as a renewable fuel, because it is generated via biological decay of municipal solid waste, a constant byproduct of human activity. To date, most LFG has been allowed to escape into the atmosphere. On account of its high CH4 content, LFG may contribute to climate change, as CH4 is one of the most harmful greenhouse gases with 21 times the global warming potential of CO2. Of the landfills that collect LFG, most simply flare it. In the past decade, some landfills have begun to use LFG for electricity generation or for direct combustion as low Btu gas. Very few landfills upgrade LFG to high Btu gas. A patented CO2 WashTM process developed by Acrion Technologies Inc., and licensed to Firm Green Inc. shows promise as an economically and environmentally sustainable process to recover energy and prevent pollution from landfills. The CO2 WashTM has already been proven at lab-scale. It upgrades LFG, which consists of 50% methane (CH4) + 35% carbon dioxide (CO2) + 2 to 25% nitrogen + oxygen (N2+O2), 1 to 2% water vapor, and dozens of contaminants (which total a few hundred to a few thousand parts per million). CH4, which by itself has an energy content of 1,012 British thermal units (Btu) per standard cubic foot (SCF), is the only component in LFG that contributes to its energy content, which is therefore about 400-550 Btu/SCF. Accordingly, raw LFG is usually referred to as medium-Btu gas. To be salable, it is necessary to remove essentially all the components besides CH4, while keeping the vast majority of the revenue producing CH4. This is high-Btu gas, yielding 850 to 1,000 Btu/SCF. The CO2 WashTM process upgrades LFG to about 930 Btu

  5. Wind Energy Resource Assessment for Airborne Wind Turbines

    NASA Astrophysics Data System (ADS)

    Woodrow, A.

    2015-12-01

    Google, through its Makani project, is developing a new type of wind energy conversion device called an energy kite. Using a tethered airfoil flying in vertical loops, energy kites access stronger, more consistent wind resources at altitudes between 100-500m AGL. By eliminating mass and cost of the tower, nacelle, and gearbox of a conventional wind turbine, and by increasing the capacity factor of energy generation, energy kites promise to significantly reduce the levelized cost of wind energy. The focus of this presentation will be on the approach Makani has taken to characterize the wind resource at 100-500m, where far less study has taken place compared to the atmosphere accessed by conventional wind turbines.

  6. An assessment of solar energy as a national energy resource

    NASA Technical Reports Server (NTRS)

    Donovan, P.; Woodward, W.; Cherry, W. E.; Morse, F. H.; Herwig, L. O.

    1972-01-01

    The applications are discussed of solar energy for thermal energy for buildings; chemical and biological conversion of organic materials to liquid, solid, and gaseous fuels; and the generation of electricity. It is concluded that if solar development programs are successful, building heating for public use is possible within 5 years, building cooling in 6 to 10 years, synthetic fuels from organic materials in 5 to 8 years, and electricity production in 10 to 15 years.

  7. Energy Resources Performance Report, FY 1991 and FY 1992.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-07-01

    Once the Federal Columbia River Power System provided all the power our customers needed and surplus energy, which we sold to others. However, we planned for the time when the surplus would disappear. With our customers, we developed centralized, region-wide conservation programs to conserve energy and build the knowledge and ability to save more energy when needed. We began to look at conservation as a resource, comparing it with supply-side alternatives. Much was accomplished. In Bonneville`s service area in the 1980s, our customers acquired 300 average megawatts (aMW) of conservation savings. How? By weatherizing about 240,000 homes, by making aluminum plants, other industrial plants and commercial buildings more efficient, and also by encouraging states to adopt energy-efficient building codes. Now, our energy surplus is gone. Our customers need energy, and in a hurry. While we plan how much energy will be needed, when and by which customers, we must concurrently accelerate our efforts to acquire resources. Our 1990 Resource Program launched a strategy to do just that, starting in 1991 and 1992, with continuing activities in 1993--1995. The goals and plans of the 1990 Resource Program are still being implemented.

  8. Energy education resources: Kindergarten through 12th grade

    SciTech Connect

    1998-09-01

    Energy Education Resources: Kindergarten Through 12th Grade is published by the National Energy Information Center (NEIC) a service of the Energy Information Administration (EIA), to provide students, educators, and other information users, a list of generally available free or low-cost energy-related educational materials. Each entry includes the address, telephone number, and description of the organization and the energy-related materials available. Most of the entries also include Internet (Web) and electronic mail (E-Mail) addresses. Each entry is followed by a number, which is referenced in the subject index in the back of this book.

  9. Constraining the properties of AGN host galaxies with spectral energy distribution modelling

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Charmandaris, V.; Georgakakis, A.; Bernhard, E.; Mitchell, P. D.; Buat, V.; Elbaz, D.; LeFloc'h, E.; Lacey, C. G.; Magdis, G. E.; Xilouris, M.

    2015-04-01

    Detailed studies of the spectral energy distribution (SED) of normal galaxies have increasingly been used to understand the physical mechanism dominating their integrated emission, mainly owing to the availability of high quality multi-wavelength data from the UV to the far-infrared (FIR). However, systems hosting dust-enshrouded nuclear starbursts and/or an accreting supermassive black hole (an active galactic nucleus or AGN) are especially challenging to study. This is due to the complex interplay between the heating by massive stars and the AGN, the absorption and emission of radiation from dust, as well as the presence of the underlying old stellar population. We used the latest release of CIGALE, a fast state-of-the-art galaxy SED-fitting model relying on energy balance, to study the influence of an AGN in a self consistent manner in estimating both the star formation rate (SFR) and stellar mass in galaxies, as well as to calculate the contribution of the AGN to the power output of the host. Using the semi-analytical galaxy formation model galform, we created a suite of mock galaxy SEDs using realistic star formation histories (SFH). We also added an AGN of Type-1, Type-2, or intermediate-type whose contribution to the bolometric luminosity can be variable. We performed an SED-fitting of these catalogues with CIGALE, assuming three different SFHs: a single-exponentially-decreasing (1τ-dec), a double-exponentially-decreasing (2τ-dec), and a delayed SFH. Constraining the overall contribution of an AGN to the total infrared luminosity (fracAGN) is very challenging for fracAGN< 20%, with uncertainties of ~5-30% for higher fractions depending on the AGN type, while FIR and sub-mm are essential. The AGN power has an impact on the estimation of M∗ in Type-1 and intermediate-type AGNs but has no effect on galaxies hosting Type-2 AGNs. We find that in the absence of AGN emission, the best estimates of M∗ are obtained using the 2τ-dec model but at the expense of

  10. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    NASA Astrophysics Data System (ADS)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  11. Generalization of the Manley-Rowe relations for non-periodic signals constrained in bandwidth with finite energy

    NASA Technical Reports Server (NTRS)

    Proksch, P.

    1979-01-01

    General relations for the energy spectral densities of nonperiodic signals constrained in bandwidth in nonlinear reactances are derived. It is assumed that the charge-voltage characteristics of the reactances are polynomials. In addition certain conditions for the frequency bands of the signals must be met. By contrast with the Manley-Rowe relations integrals with respect to frequency appear instead of the ratios power over frequency. The integrands are energy spectral densities divided by frequency. For parametric devices inequalities can be derived for the ratios of the energy levels in the different circuits and the limiting frequencies of the energy spectral densities. With these inequalities it is possible to determine limits for the energy levels.

  12. The Texas Energy-Only Resource Adequacy Mechanism

    SciTech Connect

    Schubert, Eric S.; Hurlbut, David; Adib, Parviz; Oren, Shmuel

    2006-12-15

    On Sept. 13, 2006, the Public Utility Commission of Texas put into effect a new Resource Adequacy and Market Power Rule which establishes an Energy-Only resource adequacy mechanism in the ERCOT electricity market, relaxes the $1,000 per MWh offer cap, and replaced existing market mitigation procedures with more market transparency and prompt information disclosure. The authors describe the motivation and rationale underlying the new rule, its development process, and its implementation details. (author)

  13. Applying International Standards for Hydrokinetic Energy Resource Assessments

    NASA Astrophysics Data System (ADS)

    Haas, K. A.

    2015-12-01

    The extraction of hydrokinetic energy is the conversion of the kinetic energy of moving water into another more useful form of energy, frequently electricity. This water motion may be in the form of waves, tides, ocean currents or river flows. In addition to the development of the technology, the successful extraction of hydrokinetic energy requires a better understanding of physical, environmental and social aspects of the resource and their interactions with the technology. To assist with the development of the hydrokinetic industry as a whole, much work over the past decade has been completed developing international technical standards which can be used by the full range of stakeholders in the hydrokinetic industry. To support the design of projects for tidal energy extraction, a new International Electrotechnical Commission (IEC) Technical Specification (TS) has recently been published outlining a standardized methodology for performing resource assessments. In addition, presently work is ongoing on producing another TS for performing resource assessments on in-stream river projects. While the specific technology for extracting the energy from tidal and river flows may be similar, the methodologies for performing the respective resource assessments is quite different due to the differing nature of the physical processes involved. This presentation will discuss both the tidal and in-stream river methodologies, highlighting their respective key aspects. In addition, a case study illustrating the use of the published tidal TS will be presented.

  14. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    SciTech Connect

    Bebic, Jovan; Hinkle, Gene; Matic, Slobodan; Schmitt, William

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage and adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.

  15. 78 FR 72878 - Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Integration of Variable Energy Resources; Notice Of Filing Procedures for... to compliance obligations in Integration of Variable Energy Resources, Order No. 764, FERC...

  16. Estimating Renewable Energy Resources of Russia: Goals and Perspectives

    NASA Astrophysics Data System (ADS)

    Kiseleva, S.; Rafikova, J.; Shakun, V.

    2012-10-01

    During the last several years in some regions of Russian Federation one can observe a growing interest in renewable energy projects motivated by a necessity to have stable, affordable and autonomous energy sources. Besides, there has been an advance in legal initiatives designed to regulate the development of renewable energy sources in Russia. Some governmental regulations having for an object to stimulate this area, have already been accepted. The regulation contains the target value parameters of the output volume of the electric energy output volumes with the use of renewable energy sources (except hydroelectric power plants with the established capacity exceeding 25 MW. The work shows the results of resource estimating wind, solar, biomass energy resources for Russia, using GIS methods, which allow one to provide more exact predictions for the energy development, and therefore to prove investments and to pass to working out the equipment design of energy plants based on renewable energy sources. Current matters are relating to opportunities and perspectives of renewable sector in Russia.

  17. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    SciTech Connect

    Rivero, Mariah

    2016-02-28

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "all resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.

  18. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented.

  19. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    SciTech Connect

    Not Available

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  20. Methodology for evaluation of European wave energy resource

    SciTech Connect

    Pontes, T.

    1994-12-31

    This paper presents the work performed in order to establish a common methodology for evaluation of the European offshore as well as shoreline wave energy resource. It includes a review (1) on the background theory of ocean waves that is required to deal with resource evaluation, (2) on the phenomena involved in and the methods used to calculate the transformation that waves undergo as they approach the coastline through waters of decreasing depth as well as (3) on the adequate wave data available in Europe. A methodology (proposed to and accepted by the European Community) for the assessment of the European wave energy resource is described. Further research and development work in this field is identified.

  1. World Energy Resources program U. S. Geological Survey

    SciTech Connect

    Masters, C.D.

    1986-05-01

    In 1973, with the OPEC embargo, the US was jarred into the world of insecure energy supplies - a harsh reality considering that throughout much of our history we had sufficient domestic supplies of oil and gas to meet all of our requirements. The US Government's response in 1973 was to assess domestic oil and gas potential, which was found to be substantial but nonetheless short of long-term requirements. Born of the need to become more certain about foreign as well has domestic resources, and working in conjunction with the Foreign Energy Supply Assessment Program of the US Department of Energy, the US Geological Survey undertook a program to develop a technical understanding of the reserves and undiscovered recoverable resources of petroleum in every basin in the world with petroleum potential. The World Energy Resources Program prepared an assessment of ultimate resources of crude oil for the World Petroleum Congress (WPC) in 1983, and a revision and update (including nature gas, crude oil, extra heavy oil, and tar sands) are planned for WPC in 1987. This poster session attempts to engender awareness of our scenario of world ultimate petroleum occurrence and to show some elements of the geology that guided our thinking.

  2. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  3. 75 FR 4316 - Integration of Variable Energy Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... rates are just and reasonable, eliminate impediments to open access transmission service for all... processing software should be filed in native applications or print-to-PDF format and not in a scanned format... renewable energy resources that are characterized by variability in the fuel source that is beyond...

  4. Review of Test Facilities for Distributed Energy Resources

    SciTech Connect

    AKHIL,ABBAS ALI; MARNAY,CHRIS; KIPMAN,TIMOTHY

    2003-05-01

    Since initiating research on integration of distributed energy resources (DER) in 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) has been actively assessing and reviewing existing DER test facilities for possible demonstrations of advanced DER system integration concepts. This report is a compendium of information collected by the CERTS team on DER test facilities during this period.

  5. Energy resources of the developing countries and some priority markets for the use of solar energy

    NASA Technical Reports Server (NTRS)

    Siddiqi, T. A.; Hein, G. F.

    1977-01-01

    Energy consumption for the developed and non-developed world is expressed as a function of GNP. An almost straight-line graph results when energy consumption statistics are treated in this manner. The richest countries consume the most energy, and the poorest countries the least. It therefore follows that greater energy production in the developing countries (leading to greater energy consumption) will contribute to their economic growth. Energy resources in the developing countries are compared, including: solid fossil fuels, crude oil, natural gas, oil shale, and uranium. Mention is also made of the potential of renewable energy resources, such as solar, wind, and hydroelectric power, in the underdeveloped world; and it is these resources which offer the greatest possibilities for economic improvement if the money is forthcoming, i.e., from the world bank, to fund the necessary technology.

  6. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  7. Teaching About Energy. Vol. 3. Units 3 through 8 of the Energy 80 Resource Book.

    ERIC Educational Resources Information Center

    Enterprise for Education, Santa Monica, CA.

    This document is the third of a three-volume teacher resource book for use with the Energy 80 energy education program. The program is designed to enhance students' understanding of energy, either through supplements to traditional courses, such as mathematics, science, social studies, or homemaking, or by developing a mini-course or…

  8. Teaching About Energy. Vol. 2. Units 1 and 2 of the Energy 80 Resource Book.

    ERIC Educational Resources Information Center

    Enterprise for Education, Santa Monica, CA.

    This document is the second of a three-volume teacher resource book for use with the Energy 80 energy education program. The program is designed to enhance students' understanding of energy, either through supplements to traditional courses, such as mathematics, science, social studies, or homemaking, or by developing a mini-course or…

  9. ERG--Energy Resources Game: Simulation Gaming of Regional Energy Management

    ERIC Educational Resources Information Center

    Wolf, Lyle P.; Laessig, Robert E.

    1973-01-01

    ERG--the Energy Resources Game--is a computer based game which explores questions regarding regional energy supply and demand, such as population and economic growth goals; acceptable levels of dependence on imported energy; and acceptable levels of environmental impact. (JA)

  10. Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR)

    SciTech Connect

    Singh, Ruchi; Tuffner, Francis K.; Fuller, Jason C.; Schneider, Kevin P.

    2011-10-10

    Conservation Voltage Reduction (CVR) is one of the cheapest technologies which can be intelligently leveraged to provide considerable energy savings. The addition of renewables in the form of distributed resources can affect the entire power system, but more importantly, affects the traditional substation control schemes at the distribution level. This paper looks at the effect on energy consumption, peak load reduction, and voltage profile changes due to the addition of distributed generation in a distribution feeder using combinations of volt var control. An IEEE 13-node system is used to simulate the various cases. Energy savings and peak load reduction for different simulation scenarios are compared.

  11. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  12. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

  13. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-09-01

    Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.

  14. Negative energy balance in a male songbird, the Abert's Towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-07-10

    Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.

  15. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation

    PubMed Central

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre

    2015-01-01

    ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925

  16. Use of dried-blood-spot samples and in-house assays to identify antiretroviral drug resistance in HIV-infected children in resource-constrained settings.

    PubMed

    Ziemniak, Carrie; Mengistu, Yohannes; Ruff, Andrea; Chen, Ya-Hui; Khaki, Leila; Bedri, Abubaker; Simen, Birgitte B; Palumbo, Paul; Eshleman, Susan H; Persaud, Deborah

    2011-12-01

    Monitoring HIV drug resistance is an important component of the World Health Organization's global HIV program. HIV drug resistance testing is optimal with commercially available clinically validated test kits using plasma; however, that type of testing may not be feasible or affordable in resource-constrained settings. HIV genotyping from dried blood spots (DBS) with noncommercial (in-house) assays may facilitate the capture of HIV drug resistance outcomes in resource-constrained settings but has had varying rates of success. With in-house assays for HIV reverse transcriptase, we evaluated the yield of genotyping DBS samples collected from HIV-infected children who were enrolled in two clinical trials conducted in sub-Saharan Africa (median HIV viral load, 5.88 log(10) HIV RNA copies/ml; range, 4.04 to 6.99). Overall, HIV genotypes were obtained for 94 (89.5%) of 105 samples tested (95% and 84% from clinical trials #1 and #2, respectively); however, successful analysis of 15 (16.1%) of the 94 samples required repeat testing using a different set of primers on previously synthesized cDNA. The yield of genotyping was lower on the DBS that were stored suboptimally from clinical trial #2 (56% versus 88% for optimally stored). Concordance with plasma genotypes derived using a clinically validated, commercial kit-based assay (ViroSeq HIV-1 genotyping system) was also assessed in a subset of children with paired testing. For 34 samples with paired DBS and plasma genotypes, there was 100% concordance for major drug resistance mutations. DBS genotyping using in-house assays provides an alternative for antiretroviral drug resistance testing in children in resource-constrained regions but may require region-specific optimization before widespread use.

  17. CAN THE DIFFERENTIAL EMISSION MEASURE CONSTRAIN THE TIMESCALE OF ENERGY DEPOSITION IN THE CORONA?

    SciTech Connect

    Guennou, C.; Auchere, F.; Bocchialini, K.; Parenti, S.

    2013-09-01

    In this paper, the ability of the Hinode/EIS instrument to detect radiative signatures of coronal heating is investigated. Recent observational studies of active region cores suggest that both the low and high frequency heating mechanisms are consistent with observations. Distinguishing between these possibilities is important for identifying the physical mechanism(s) of the heating. The differential emission measure (DEM) tool is one diagnostic that allows us to make this distinction, through the amplitude of the DEM slope coolward of the coronal peak. It is therefore crucial to understand the uncertainties associated with these measurements. Using proper estimations of the uncertainties involved in the problem of DEM inversion, we derive confidence levels on the observed DEM slope. Results show that the uncertainty in the slope reconstruction strongly depends on the number of lines constraining the slope. Typical uncertainty is estimated to be about {+-}1.0 in the more favorable cases.

  18. A Guide for Vocational Energy Education: Resources, Key People, Classroom Materials. Oregon Vocational Energy Education Project.

    ERIC Educational Resources Information Center

    Oregon Vocational Association, Gervais.

    Intended as a resource tool for integrating energy and conservation education into the vocational skills areas, this resource guide consists of listings of instructional and technical materials pertaining to 14 vocational curriculum areas. These areas are agriculture, agriculture/agribusiness, architecture, automotive, business, construction,…

  19. Using the World Health Organization's 4S-Framework to Strengthen National Strategies, Policies and Services to Address Mental Health Problems in Adolescents in Resource-Constrained Settings

    PubMed Central

    2011-01-01

    Background Most adolescents live in resource-constrained countries and their mental health has been less well recognised than other aspects of their health. The World Health Organization's 4-S Framework provides a structure for national initiatives to improve adolescent health through: gathering and using strategic information; developing evidence-informed policies; scaling up provision and use of health services; and strengthening linkages with other government sectors. The aim of this paper is to discuss how the findings of a recent systematic review of mental health problems in adolescents in resource-constrained settings might be applied using the 4-S Framework. Method Analysis of the implications of the findings of a systematic search of the English-language literature for national strategies, policies, services and cross-sectoral linkages to improve the mental health of adolescents in resource-constrained settings. Results Data are available for only 33/112 [29%] resource-constrained countries, but in all where data are available, non-psychotic mental health problems in adolescents are identifiable, prevalent and associated with reduced quality of life, impaired participation and compromised development. In the absence of evidence about effective interventions in these settings expert opinion is that a broad public policy response which addresses direct strategies for prevention, early intervention and treatment; health service and health workforce requirements; social inclusion of marginalised groups of adolescents; and specific education is required. Specific endorsed strategies include public education, parent education, training for teachers and primary healthcare workers, psycho-educational curricula, identification through periodic screening of the most vulnerable and referral for care, and the availability of counsellors or other identified trained staff members in schools from whom adolescents can seek assistance for personal, peer and family

  20. The Ha Noi Expert Statement: recognition of maternal mental health in resource-constrained settings is essential for achieving the Millennium Development Goals.

    PubMed

    Fisher, Jane Rw; de Mello, Meena Cabral; Izutsu, Takashi; Tran, Tuan

    2011-01-07

    Mental health problems in women during pregnancy and after childbirth and their adverse consequences for child health and development have received sustained detailed attention in high-income countries. In contrast, evidence has only been generated more recently in resource-constrained settings.In June 2007 the United Nations Population Fund, the World Health Organization, the Key Centre for Women's Health in Society, a WHO Collaborating Centre for Women's Health and the Research and Training Centre for Community Development in Vietnam convened the first international expert meeting on maternal mental health and child health and development in resource-constrained settings. It aimed to appraise the evidence about the nature, prevalence and risks for common perinatal mental disorders in women; the consequences of these for child health and development and ameliorative strategies in these contexts.The substantial disparity in rates of perinatal mental disorders between women living in high- and low-income settings, suggests social rather than biological determinants. Risks in resource-constrained contexts include: poverty; crowded living situations; limited reproductive autonomy; unintended pregnancy; lack of empathy from the intimate partner; rigid gender stereotypes about responsibility for household work and infant care; family violence; poor physical health and discrimination. Development is adversely affected if infants lack day-to-day interactions with a caregiver who can interpret their cues, and respond effectively. Women with compromised mental health are less able to provide sensitive, responsive infant care. In resource-constrained settings infants whose mothers are depressed are less likely to thrive and to receive optimal care than those whose mothers are well.The meeting outcome is the Hanoi Expert Statement (Additional file 1). It argues that the Millennium Development Goals to improve maternal health, reduce child mortality, promote gender equality

  1. Multi-objective optimal dispatch of distributed energy resources

    NASA Astrophysics Data System (ADS)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  2. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  3. 77 FR 21557 - System Energy Resources, Inc.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission System Energy Resources, Inc.; Notice of Petition for Declaratory Order Take notice that on March 28, 2012, System Energy Resources, Inc. (System Energy Resources), submitted...

  4. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  5. Optimal Voltage Regulation for Unbalanced Distribution Networks Considering Distributed Energy Resources

    SciTech Connect

    Xu, Yan; Tomsovic, Kevin

    2015-01-01

    With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative quadratic constrained quadratic programming model to minimize voltage deviations and maximize distributed energy resource (DER) active power output in a three phase unbalanced distribution system is developed. The optimization model is based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DERs). To avoid the oscillation of solution when it is close to the optimum, a golden search method is introduced to control the step size. Numerical simulations on modified IEEE 13 nodes test feeders show the efficiency of the proposed model. Compared to the results solved by heuristic search (harmony algorithm), the proposed model converges quickly to the global optimum.

  6. Simulating and validating coastal gradients in wind energy resources

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Floors, Rogier; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Badger, Merete; Peña, Alfredo; Hasager, Charlotte

    2016-04-01

    The experimental campaign of the RUNE (Reducing Uncertainty of Near-shore wind resource Estimates) project took place on the western coast of Denmark during the winter 2015-2016. The campaign used onshore scanning lidar technology combined with ocean and satellite information and produced a unique dataset to study the transition in boundary layer dynamics across the coastal zone. The RUNE project aims at reducing the uncertainty of near-shore wind resource estimates produced by mesoscale modeling. With this in mind, simulations using the Weather Research and Forecasting (WRF) model were performed to identify the sensitivity in the coastal gradients of wind energy resources to various model parameters and model inputs. Among these: model horizontal grid spacing and the planetary boundary layer and surface-layer scheme. We report on the differences amongst these simulations and preliminary results on the comparison of the model simulations with the RUNE observations of lidar and satellite measurements and near coastal tall mast.

  7. Resource file: practical publications for energy management, edition III

    SciTech Connect

    Not Available

    1980-03-01

    The Resource File is an in-depth bibliography of 166 practical and action-oriented energy conservation publications and materials. It is a reference tool, designed for Federal, state, and local energy managers or people who are asked to recommend how-to conservation guides to the public. Each listing describes a publication's intended audience and provides a summary of its contents. Included are operations and maintenance manuals, life-cycle costing handbooks, home insulation manuals, films on fuel-saving driving techniques, and courses devoted exclusively to home weatherization. 166 items.

  8. The Prospects for Constraining Dark Energy withFuture X-ray Cluster Gas Mass Fraction Measurements

    SciTech Connect

    Rapetti, David; Allen, Steven W.

    2007-10-15

    We examine the ability of a future X-ray observatory, with capabilities similar to those planned for the Constellation-X mission, to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of {approx}500 hot (kT{approx}> 5keV), X-ray bright, dynamically relaxed clusters, to a precision of {approx}5 percent, can be used to constrain dark energy with a Dark Energy Task Force (DETF; Albrecht et al. 2006) figure of merit of 20-50. Such constraints are comparable to those predicted by the DETF for other leading, planned 'Stage IV' dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short 'snapshot' observations with the new X-ray observatory should then be able to identify a sample of {approx}500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work to be made; these surveys also show that X-ray flux contamination from point sources is likely to be small for the majority of the targets of interest. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilities the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties, for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment offers a competitive and complementary approach to the best other large, planned dark energy experiments. In particular, the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic oscillation

  9. Biomass energy: the scale of the potential resource.

    PubMed

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  10. THE ROLE OF STRUCTURED MAGNETIC FIELDS ON CONSTRAINING PROPERTIES OF TRANSIENT SOURCES OF ULTRA-HIGH-ENERGY COSMIC RAYS

    SciTech Connect

    Takami, Hajime; Murase, Kohta

    2012-03-20

    We study how the properties of transient sources of ultra-high-energy cosmic rays (UHECRs) can be accessed by exploiting UHECR experiments, taking into account the propagation of UHECRs in magnetic structures which the sources are embedded in, i.e., clusters of galaxies and filamentary structures. Adopting simplified analytical models, we demonstrate that the structured extragalactic magnetic fields (EGMFs) play crucial roles in unveiling the properties of the transient sources. These EGMFs unavoidably cause significant delay in the arrival time of UHECRs as well as the Galactic magnetic field, even if the strength of magnetic fields in voids is zero. Then, we show that, given good knowledge on the structured EGMFs, UHECR observations with high statistics above 10{sup 20} eV allow us to constrain the generation rate of transient UHECR sources and their energy input per burst, which can be compared with the rates and energy release of known astrophysical phenomena. We also demonstrate that identifying the energy dependence of the apparent number density of UHECR sources at the highest energies is crucial to such transient sources. Future UHECR experiments with extremely large exposure are required to reveal the nature of transient UHECR sources.

  11. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  12. Clinical and Environmental Surveillance for Vibrio cholerae in Resource Constrained Areas: Application during a 1-Year Surveillance in the Far North Region of Cameroon

    PubMed Central

    Debes, Amanda K.; Ateudjieu, Jerome; Guenou, Etienne; Ebile, Walter; Sonkoua, Isaac Tadzong; Njimbia, Anthony Chebe; Steinwald, Peter; Ram, Malathi; Sack, David A.

    2016-01-01

    Biological confirmation of the presence of Vibrio cholerae in clinical and environmental samples is often constrained due to resource- and labor-intensive gold standard methods. To develop low-cost, simple, and sustainable surveillance techniques, we modified previously published specimen sampling and culture techniques and applied the use of enriched dipstick testing in conjunction with the use of filter paper for DNA specimen preservation during clinical and environmental surveillance in the Far North of Cameroon from August 2013 to October 2014. The enriched dipstick methodology during routine use in a remote setting demonstrated a specificity of 99.8% compared with polymerase chain reaction (PCR). The novel application of filter paper as a preservation method for cholera DNA specimens reduced the need for cold chain storage and allowed for PCR characterization and confirmation of V. cholerae. The application of basic technologies such as the enriched dipstick, the use of simplified gauze filtration for environmental sample collection, and the use of filter paper for sample preservation enabled early case identification with reduced logistics and supply cost while reporting minimal false-positive results. Simplified laboratory and epidemiological methodologies can improve the feasibility of cholera surveillance in rural and resource-constrained areas, facilitating early case detection and rapid response implementation. PMID:26755564

  13. Clinical and Environmental Surveillance for Vibrio cholerae in Resource Constrained Areas: Application During a 1-Year Surveillance in the Far North Region of Cameroon.

    PubMed

    Debes, Amanda K; Ateudjieu, Jerome; Guenou, Etienne; Ebile, Walter; Sonkoua, Isaac Tadzong; Njimbia, Anthony Chebe; Steinwald, Peter; Ram, Malathi; Sack, David A

    2016-03-01

    Biological confirmation of the presence of Vibrio cholerae in clinical and environmental samples is often constrained due to resource- and labor-intensive gold standard methods. To develop low-cost, simple, and sustainable surveillance techniques, we modified previously published specimen sampling and culture techniques and applied the use of enriched dipstick testing in conjunction with the use of filter paper for DNA specimen preservation during clinical and environmental surveillance in the Far North of Cameroon from August 2013 to October 2014. The enriched dipstick methodology during routine use in a remote setting demonstrated a specificity of 99.8% compared with polymerase chain reaction (PCR). The novel application of filter paper as a preservation method for cholera DNA specimens reduced the need for cold chain storage and allowed for PCR characterization and confirmation of V. cholerae. The application of basic technologies such as the enriched dipstick, the use of simplified gauze filtration for environmental sample collection, and the use of filter paper for sample preservation enabled early case identification with reduced logistics and supply cost while reporting minimal false-positive results. Simplified laboratory and epidemiological methodologies can improve the feasibility of cholera surveillance in rural and resource-constrained areas, facilitating early case detection and rapid response implementation.

  14. Improved one-way hash chain and revocation polynomial-based self-healing group key distribution schemes in resource-constrained wireless networks.

    PubMed

    Chen, Huifang; Xie, Lei

    2014-12-18

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked.

  15. Improved One-Way Hash Chain and Revocation Polynomial-Based Self-Healing Group Key Distribution Schemes in Resource-Constrained Wireless Networks

    PubMed Central

    Chen, Huifang; Xie, Lei

    2014-01-01

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204

  16. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  17. Nonregenerative natural resources in a sustainable system of energy supply.

    PubMed

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution.

  18. Energy Security and National Security; Securing U.S. Energy Resources

    DTIC Science & Technology

    2009-03-19

    from- waste , hydropower, geothermal, and biomass could play an increasingly important role in our nation’s energy supply as they continue to become more...proven, long-standing renewable resource. Wind, geothermal, and biomass power are increasingly competitive economically. Energy- from- waste is also...up more fuel for tanks, Humvees and other military equipment.”46 The Army has selected six sites for biomass / waste -to-energy demonstrations through a

  19. Controlled elastic postbuckling of bilaterally constrained non-prismatic columns: application to enhanced quasi-static energy harvesters

    NASA Astrophysics Data System (ADS)

    Liu, Suihan; Burgueño, Rigoberto

    2016-12-01

    Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.

  20. Analysis of market penetration of renewable energy alternatives under uncertain and carbon constrained world

    EPA Science Inventory

    Future energy prices and supply, availability and costs can have a significant impact on how fast and cost effectively we could abate carbon emissions. Two-staged decision making methods embedded in U.S. EPA's MARKAL modeling system will be utilized to find the most robust mitig...

  1. Constraining the Symmetry Energy:. a Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Colonna, M.; Greco, V.; Ferini, G.; Rizzo, C.; Rizzo, J.; Baran, V.; Gaitanos, T.; Prassa, V.; Wolter, H. H.; Zielinska-Pfabe, M.

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e.to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso - EOS are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a "direct" study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected "neutron trapping" effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.

  2. Deep geothermal resources and energy: Current research and developments

    NASA Astrophysics Data System (ADS)

    Manzella, A.; Milsch, H.; Hahne, B.; van Wees, J. D.; Bruhn, D.

    2012-04-01

    Energy from deep geothermal resources plays an increasing role in many European countries in their efforts to increase the proportion of renewables in their energy portfolio. Deep geothermal heat and electric power have a high load factor, are sustainable and environmentally friendly. However, the safe, sustainable, and economic development of deep geothermal resources, also in less favourable regions, faces a number of issues requiring substantial research efforts: (1) The probability of finding an unknown geothermal reservoir has to be improved. (2) Drilling methods have to be better adapted and developed to the specific needs of geothermal development. (3) The assessment of the geothermal potential should provide more reliable and clear guidelines for the development. (4) Stimulation methods for enhanced geothermal systems (EGS) have to be refined to increase the success rate and reduce the risk associated with induced seismicity. (5) Operation and maintenance in aggressive geothermal environments require specific solutions for corrosion and scaling problems. (6) Last but not least, emerging activities to harness energy from supercritical reservoirs would make significant progress with qualified input from research. In particular, sedimentary basins like e.g. the North German and Polish Basin, the Pannonian Basin, the Po Valley, the Bavarian Molasse Basin or the Upper Rhine Graben have a high geothermal potential, even if geothermal gradients are moderate. We will highlight projects that aim at optimizing exploration, characterization, and modeling prior to drilling and at a better understanding of physical, hydraulic and chemical processes during operation of a geothermal power plant. This includes geophysical, geological and geochemical investigations regarding potential geothermal reservoirs in sedimentary basins, as well as modelling of geothermally relevant reservoir parameters that influence the potential performance and long-term behavior of a future

  3. A strategy for mineral and energy resource independence

    USGS Publications Warehouse

    Carter, W.D.

    1983-01-01

    Data acquired by Landsats 1, 2, and 3, are beginning to provide the information on which an improved mineral and energy resource exploration strategy can be based. Landsat 4 is expected to augment this capability with its higher resolution (30 m) and additional spectral bands in the Thematic Mapper (TM) designed specifically to discriminate clay minerals associated with mineral alteration. In addition, a new global magnetic anomaly map, derived from the recent Magsat mission, has recently been compiled by the National Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), and others. Preliminary, extremely small-scale renditions of this map indicate that global coverage is nearly complete and that the map will improve upon a previous one derived from Polar Orbiting Geophysical Observatory (POGO) data. Digital processing of the Landsat image data and Magsat geophysical data can be used to create three-dimensional stereoscopic models for which Landsat images provide surface reference to deep structural anomalies. Comparative studies of national Landsat lineament maps, Magsat stereoscopic models, and metallogenic information derived from the Computerized Resources Information Bank (CRIB) inventory of U.S. mineral resources, provide a way of identifying and selecting exploration areas that have mineral resource potential. Landsat images and computer-compatible tapes can provide new and better mosaics and also provide the capability for a closer look at promising sites. ?? 1983.

  4. Wave energy resource assessment based on satellite observations around Indonesia

    NASA Astrophysics Data System (ADS)

    Ribal, Agustinus; Zieger, Stefan

    2016-06-01

    A preliminary assessment of wave energy resource around Indonesian's ocean has been carried out by means of analyzing satellite observations. The wave energy flux or wave power can be approximated using parameterized sea states. Wave power scales with significant wave height, characteristic wave period and water depth. In this approach, the significant wave heights were obtained from ENVISAT (Environmental Satellite) data which have been calibrated. However, as the characteristic wave period is rarely specified and therefore must be estimated from other variables when information about the wave spectra is unknown. Here, the characteristic wave period was calculated with an empirical model that utilizes altimeter estimates of wave height and backscatter coefficient originally proposed. For the Indonesian region, wave power energy is calculated over two periods of one year each and was compared with the results from global hindcast carried out with a recent release of wave model WAVEWATCH III. We found that, the most promising wave power energy regions around the Indonesian archipelago are located in the south of Java island and the south west of Sumatera island. In these locations, about 20 - 30 kW/m (90th percentile: 30-50 kW/m, 99th percentile: 40-60 kW/m) wave power energy on average has been found around south of Java island during 2010. Similar results have been found during 2011 at the same locations. Some small areas which are located around north of Irian Jaya (West Papua) are also very promising and need further investigation to determine its capacity as a wave energy resource.

  5. Modeling of customer adoption of distributed energy resources

    SciTech Connect

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible

  6. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  7. Geothermal energy resource assessment of parts of Alaska. Final report

    SciTech Connect

    Wescott, E.M.; Turner, D.L.; Kienle, J.

    1982-08-01

    The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

  8. Constraining the slope parameter of the symmetry energy from nuclear structure

    NASA Astrophysics Data System (ADS)

    Inakura, T.; Nakada, H.

    2015-12-01

    Four quantities deducible from nuclear structure experiments have been claimed to correlate with the slope parameter L of the symmetry energy: neutron skin thickness, cross section of low-energy dipole (LED) mode, dipole polarizability αD, and αDS0 (i.e., product of αD and symmetry energy S0). By means of calculations in the Hartree-Fock plus random-phase approximation with various effective interactions, we compare the correlations between L and these four quantities. The correlation derived from different interactions and the correlation from a class of interactions that are identical in symmetric matter as well as in S0 are simultaneously examined. These two types of correlation may behave differently, as exemplified in the correlation of αD to L . It is found that the neutron skin thickness and αDS0 correlate well to L , and therefore are suitable for narrowing down the value of L via experiments. The LED emergence and upgrowth makes the αDS0-L correlation strong, although these correlations are disarranged when a neutron halo appears in the ground state.

  9. Strategies for Energy Efficient Resource Management of Hybrid Programming Models

    SciTech Connect

    Li, Dong; Supinski, Bronis de; Schulz, Martin; Nikolopoulos, Dimitrios S; Cameron, Kirk W.

    2013-01-01

    Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.

  10. Constraining Dark Matter Interactions with Pseudoscalar and Scalar Mediators Using Collider Searches for Multijets plus Missing Transverse Energy.

    PubMed

    Buchmueller, Oliver; Malik, Sarah A; McCabe, Christopher; Penning, Bjoern

    2015-10-30

    The monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multijet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator M_{A} is more than twice the dark matter mass m_{DM}. With the forthcoming run of the Large Hadron Collider at higher energies, the remaining regions of the parameter space where M_{A}>2m_{DM} will be fully explored. Furthermore, we highlight the importance of complementing the monojet final state with multijet final states to maximize the sensitivity of the search for the production of dark matter at colliders.

  11. A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression

    SciTech Connect

    Mizukami, Wataru Tew, David P.; Habershon, Scott

    2014-10-14

    We present a new approach to semi-global potential energy surface fitting that uses the least absolute shrinkage and selection operator (LASSO) constrained least squares procedure to exploit an extremely flexible form for the potential function, while at the same time controlling the risk of overfitting and avoiding the introduction of unphysical features such as divergences or high-frequency oscillations. Drawing from a massively redundant set of overlapping distributed multi-dimensional Gaussian functions of inter-atomic separations we build a compact full-dimensional surface for malonaldehyde, fit to explicitly correlated coupled cluster CCSD(T)(F12*) energies with a root mean square deviations accuracy of 0.3%–0.5% up to 25 000 cm{sup −1} above equilibrium. Importance-sampled diffusion Monte Carlo calculations predict zero point energies for malonaldehyde and its deuterated isotopologue of 14 715.4(2) and 13 997.9(2) cm{sup −1} and hydrogen transfer tunnelling splittings of 21.0(4) and 3.2(4) cm{sup −1}, respectively, which are in excellent agreement with the experimental values of 21.583 and 2.915(4) cm{sup −1}.

  12. Lower Velocity Sites Improve the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Robins, P. E.; Lewis, M. J.; Neill, S. P.; Hashemi, M. R.; Stephenson, G.

    2015-12-01

    It is essential that developers have detailed knowledge of the tidal-stream energy resource. ROMS hydrodynamic models (~1 km resolution) of key areas in northwest Europe, were used to examine the spatial and temporal distribution of the tidal-stream resource. Currently, sites with peak spring tide velocities (M2 and S2 constituents) in excess of 2.5 m/s and water depths between 25 and 50 m are preferred. When assuming this so-called "1st generation" criteria, a limited resource with limited scope for long-term sustainability of the industry was calculated for the Irish Sea; a key area for UK development. Selecting sites that also included 20% lower velocities (>2 m/s) and deeper water locations (>25m) resulted in a seven-fold increase in the available resource (for the Irish Sea). Although new engineering challenges will be encountered (e.g. more wave exposed locations) by developing these 2nd generation tidal-stream energy sites (>2m/s and >25m), some oceanographic challenges would be improved. For example, the flood-ebb tidal flow is not typically rectilinear at 1st generation UK sites (a mean error from rectilinear of ~20° in this assumption), which is reduced to near-rectilinear flow (˜3° error) when including 2nd generation sites. Analysis of our northwest European model revealed more phase diversity is offered by developing lower tidal energy sites, allowing firm and constant electricity generation. Moreover, at 1st generation sites, we calculate significant, and unaccounted, variability in annual practical power generation. For example, mean peak spring tidal velocities can under-estimate the annual practical resource by up to 25%, for regions experiencing similar mean peak spring tidal velocities, due to the ratio of M2 and S2, together with the influence of other tidal constituents, such as K1 and O1. Therefore, based on prevalence, firm power and engineering challengers, we find a strong case for developing lower flow technologies.

  13. Non-energy resources, Connecticut and Rhode Island coastal waters

    USGS Publications Warehouse

    Neff, N.F.; Lewis, R.S.

    1989-01-01

    Cores collected from Long Island Sound, Connecticut, were used to establish control on the geologic framework of the area. Lithologic and stratigraphic analyses verified the presence of the following units: (1) Cretaceous coastal plain, (2) Pleistocene glacial till, (3) late Pleistocene glacial lake, (4) late Pleistocene glacial outwash, and (5) Holocene fluvial, estuarine and marine deposits. Cores collected in Block Island Sound, Rhode Island, were obtained from inferred, relict shoreline features and were analyzed for heavy mineral content. Concentrations ranged from 0.3 to 3.4%; no significant downcore changes were found. The results indicated that surficial sediments in areas of high-velocity tidal flow yield greater amounts of heavy minerals than do inferred placer deposits. During the second phase of the program of study, Connecticut and Rhode Island pooled resources to develop a study plan for the comprehensive quantification of all non-energy resources in the adjacent waters of the states. A literature and data survey was conducted to assess the occurrence, extent, and accessibility of these resources. Sand and gravel and heavy minerals were found in concentrations offering potential for resource exploitation. Constraints on exploitation include (1) water depth restrictions for the protection of shellfish beds and public beaches, (2) fishing activities, (3) military, commercial, and fishing vessel traffic, (4) seafloor cable routes and (5) dump sites. Deposits composed of Pleistocene glacial sediments and/or Holocene marine sediments in regions of little or no user conflict were identified as sites potentially suitable for resource exploitation. The study plan stated additional data needs (geophysical profiling and vibracore sampling) at these sites. Subsequent to these recommendations, high-resolution seismic profiles and sidescan sonographs were obtained from these sites. Seismic stratigraphic analyses confirm the presence of extensive deposits of

  14. The quest for greenhouse-constrained technologies amid other concerns for environment and energy

    SciTech Connect

    McGill, R.N.

    1991-01-01

    As we approach the 21st century, sentiments run high in the US for improved air quality in our cities and for a more secure energy future, hopefully to be manifest in lesser dependence on foreign supplies of oil. These sentiments are reflected in intense political activity on both the federal and state levels to enact legislation that will help alleviate both problems. At the same time though, the recent emergence of awareness of a threat of global warming due to ever increasing emissions of greenhouse gases has only served as an additional complicating factor, one which has not been fully dealt with either socially or politically in the US. Much discussion and deliberation on the issue of the greenhouse effect is underway in the US and aimed at understanding the size of the problem as well as identifying options for solutions. This paper will review the recent political climate on issues of environment and energy and will include brief descriptions of the recent US Clean Air Act Amendments, the California Clean Air Act, the National Energy Strategy, and the Alternative Motor Fuels Act of 1988. These policies and programs form a backdrop for the additional and more recent challenges brought about by the issue of global warming. To integrate all of these concerns will require complex solutions. First an understanding and discussion of all the options must exist. It is that integration process that is currently underway in the US. The paper will also review the current understanding of greenhouse gas emissions as well as options for mitigating them, especially as related to the transportation sector. 15 refs., 13 figs., 6 tabs.

  15. Parallel Harmony Search Based Distributed Energy Resource Optimization

    SciTech Connect

    Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin

    2015-01-01

    This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electrical power distribution systems operation.

  16. Space resources. Volume 2: Energy, power, and transport

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    This volume of the Space Resources report covers a number of technical and policy issues concerning the energy and power to carry out advanced space missions and the means of transportation to get to the sites of those missions. Discussed in the first half of this volume are the technologies which might be used to provide power and a variety of ways to convert power from one form to another, store it, move it wherever it is needed, and use it. In the second half of this volume, various kinds of transportation, including both interplanetary and surface systems, are discussed.

  17. Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains

    NASA Astrophysics Data System (ADS)

    Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar

    2015-02-01

    Temporal variation of secondary cosmic rays (SCR) flux was measured during the full and new moon and days close to them at Department of Physics, University of Mumbai, Mumbai (Geomagnetic latitude: 10.6 °N), India. The measurements were done by using NaI (Tl) scintillation detector with energy threshold of 200 keV. The SCR flux showed sudden enhancement for approximately about 2 hour during few days out of all observations. The maximum enhancement in SCR flux is about 200 % as compared to the diurnal trend of SCR temporal variations. Weather parameters (temperature and relative humidity) were continuously monitored during all observations. The influences of geomagnetic field, interplanetary parameters and tidal effect on SCR flux have been considered. Summed spectra corresponding to enhancement duration indicates appearance of atmospheric radioactivity which shows single gamma ray line. Detail investigation revealed the presence of radioactive Ar41. Present study indicates origin of Ar41 could be due to anthropogenic source or due to gravitational tidal forces. This measurements point out limitations on low energy SCR flux monitoring. This study will help many researchers in measurements of SCR flux during eclipses and to find unknown mechanism behind decrease/increase in SCR flux during solar/lunar eclipse.

  18. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  19. Geology and mineral and energy resources, Roswell Resource Area, New Mexico; an interactive computer presentation

    USGS Publications Warehouse

    Tidball, Ronald R.; Bartsch-Winkler, S. B.

    1995-01-01

    This Compact Disc-Read Only Memory (CD-ROM) contains a program illustrating the geology and mineral and energy resources of the Roswell Resource Area, an administrative unit of the U.S. Bureau of Land Management in east-central New Mexico. The program enables the user to access information on the geology, geochemistry, geophysics, mining history, metallic and industrial mineral commodities, hydrocarbons, and assessments of the area. The program was created with the display software, SuperCard, version 1.5, by Aldus. The program will run only on a Macintosh personal computer. This CD-ROM was produced in accordance with Macintosh HFS standards. The program was developed on a Macintosh II-series computer with system 7.0.1. The program is a compiled, executable form that is nonproprietary and does not require the presence of the SuperCard software.

  20. Female size constrains egg size via the influence of reproductive organ size and resource storage in the seed beetle Callosobruchus chinensis.

    PubMed

    Yanagi, Shin-Ichi; Tuda, Midori

    2012-11-01

    The standard egg size model predicts that a mother lays an optimal size of eggs in a given environment. However, there is evidence that larger females lay larger eggs across diverse animal taxa. This positive correlation suggests there are morphological constraints on egg size imposed by the size of the maternal organ through which eggs pass during oviposition. There is also evidence that large mothers that have greater capital resources produce large eggs. We tested whether morphological (ovipositor width) or physiological (maternal body weight as a measure of capital resources) mechanisms constrain egg size, using an inbred line of seed beetles, Callosobruchus chinensis. In addition, we tested whether having a wide ovipositor relative to body size is costly in terms of egg production. Egg width but not length increased with ovipositor width. Egg length and width increased with body weight. The cost of wider ovipositor was not detected. We conclude that females adjust egg size depending on capital resource level under the morphological constraint.

  1. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  2. 76 FR 34684 - Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... of Energy Efficiency and Renewable Energy Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design Conditions AGENCY: Office of Energy Efficiency and Renewable... meteorological and oceanographic information to support cost-effective deployment of offshore renewable...

  3. A prefeasibility study of energy resource options in Hainan, China

    SciTech Connect

    Hill, L.J.; Russell, M. |; Barron, W.F.; LaRocco, P.; Shen, Z.

    1992-10-01

    This study identifies a strategy that (1) provides future energy services for Hainan in the least environmentally degrading way, (2) eliminates the need to build significant amounts of new fossil-fueled, electric generating capacity, saving capital to invest in other development projects, (3) lowers the cost that Hainan households and businesses will pay to light their homes and run their industries, (4) reduces the future coal import bill, and (5) improves the prospects for export industries. implementing this strategy will promote economic development and growth in Hainan, improve the standard of living, and preserve to the greatest extent possible Hainan`s rich environmental resource base, a key requirement for its tourist industry. The focus of this strategy is to adapt proven policies and techniques for producing and using energy more efficiently to existing conditions in Hainan. This Report applies the principles of integrated resource planning (IRP) and the experiences in other countries to outline a strategy for the Province. The experience is that fuel consumption can be reduced without lessening the ability of consumers, industry, and the government to obtain the energy services that higher use of fuel would otherwise bring. Further, those energy services can be provided with less capital investment than would be necessary if traditional practices were followed. Both of these results have obvious and important development and environmental benefits. In short, consumers have more money available to buy other things; production costs are lowered, improving the ability of firms to compete in international markets; and more capital is available to invest in new machinery and equipment that produces goods and services to use in Hainan or to export to other countries.

  4. A prefeasibility study of energy resource options in Hainan, China

    SciTech Connect

    Hill, L.J.; Russell, M. Tennessee Univ., Knoxville, TN ); Barron, W.F. ); LaRocco, P. ); Shen, Z. )

    1992-10-01

    This study identifies a strategy that (1) provides future energy services for Hainan in the least environmentally degrading way, (2) eliminates the need to build significant amounts of new fossil-fueled, electric generating capacity, saving capital to invest in other development projects, (3) lowers the cost that Hainan households and businesses will pay to light their homes and run their industries, (4) reduces the future coal import bill, and (5) improves the prospects for export industries. implementing this strategy will promote economic development and growth in Hainan, improve the standard of living, and preserve to the greatest extent possible Hainan's rich environmental resource base, a key requirement for its tourist industry. The focus of this strategy is to adapt proven policies and techniques for producing and using energy more efficiently to existing conditions in Hainan. This Report applies the principles of integrated resource planning (IRP) and the experiences in other countries to outline a strategy for the Province. The experience is that fuel consumption can be reduced without lessening the ability of consumers, industry, and the government to obtain the energy services that higher use of fuel would otherwise bring. Further, those energy services can be provided with less capital investment than would be necessary if traditional practices were followed. Both of these results have obvious and important development and environmental benefits. In short, consumers have more money available to buy other things; production costs are lowered, improving the ability of firms to compete in international markets; and more capital is available to invest in new machinery and equipment that produces goods and services to use in Hainan or to export to other countries.

  5. Open-System Magmatic Processes: Energy-Constrained Recharge, Assimilation and Fractional Crystallization (EC-RAFC)

    NASA Astrophysics Data System (ADS)

    Spera, F. J.; Bohrson, W. A.

    2001-12-01

    Geochemical data for igneous rocks provide conclusive evidence for the occurrence of open-system processes within magma bodies, the most critical of which are magma recharge (including enclave formation), assimilation of anatectic melt, and formation of cumulates by fractional crystallization. We have previously derived a model that tracks the composition of a magma body undergoing AFC; explicit in this model is accounting of country rock heating and the compositional effects of partial melting. The EC-AFC algorithm is based on solution of a system of differential equations that express conservation of energy (enthalpy), mass and species (trace elements and isotope ratios) (Spera and Bohrson 2001, Bohrson and Spera 2001). Here EC-AFC is extended to incorporate the effects of enthalpy, matter and species transport during magma recharge; this model, EC-RAFC, tracks the trace element and isotopic composition of melt, enclaves and cumulates as thermal equilibration is approached. EC-RAFC is formulated as a set of 3+t+i+s coupled nonlinear ordinary differential equations, where the number of trace elements, radiogenic and stable isotope ratios simultaneously modeled are t, i, and s, respectively. Solution of the EC-RAFC equations provides values for the average temperature of wallrock, mass of melt within the magma body, mass of cumulates and enclaves, mass of wall rock, mass of anatectic melt assimilated, concentration of t trace elements and i+s isotopic ratios in standing melt, cumulates, enclaves and anatectic melt as a function of the local temperature of standing magma. Input parameters include equilibration temperature, initial temperature and composition of magma, recharge magma, and wallrock, distribution coefficients, heat of fusion of wallrock and heats of crystallization of pristine and recharge magma, and isobaric specific heat capacities of all constituents. The magma recharge mass function is specified a priori and defines how recharge magma is added to

  6. 25 CFR 162.520 - Who owns the energy resource information obtained under the WEEL?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Weels § 162.520 Who owns the energy resource information obtained under the WEEL? (a) The WEEL must specify the ownership of any energy... 25 Indians 1 2013-04-01 2013-04-01 false Who owns the energy resource information obtained...

  7. 25 CFR 162.520 - Who owns the energy resource information obtained under the WEEL?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Weels § 162.520 Who owns the energy resource information obtained under the WEEL? (a) The WEEL must specify the ownership of any energy... 25 Indians 1 2014-04-01 2014-04-01 false Who owns the energy resource information obtained...

  8. 78 FR 28005 - System Energy Resources, Inc.; Grand Gulf Nuclear Station; Order Approving Direct and Indirect...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... COMMISSION System Energy Resources, Inc.; Grand Gulf Nuclear Station; Order Approving Direct and Indirect Transfers of Early Site Permit and Approving Conforming Amendment I System Energy Resources, Inc. (SERI), is... direct transfer of Grand Gulf ESP Site, to a new limited liability company, System Energy Resource,...

  9. Towards constraining future rainfall in the Sahel using the moist static energy budget

    NASA Astrophysics Data System (ADS)

    Hill, S. A.; Ming, Y.; Held, I.; Zhao, M.

    2015-12-01

    Wet-season rainfall in the Sahel varies dramatically among climate model future projections. Its behavior is usefully characterized by the vertically integrated moist static energy (MSE) budget, which stipulates a balance between the net top of atmosphere radiative flux (Rtoa) and the divergence of MSE by convection and by horizontal advection. We analyze this budget in multiple general circulation models in present-day and idealized warming experiments. All models simulate a climatological leading-order budget wherein Rtoa is balanced by horizontal advection of low MSE air from the Sahara, rather than by convection as in classical theories. Convection transitions from net divergence to convergence of MSE moving northward as the convective depth steadily lowers, but its mean height over the Sahel varies appreciably among models. This model variation imprints on the hydrological and energetic responses to global warming, as the resultant stabilization of the tropical upper troposphere inhibits convection more in models with climatologically deeper convection. Meanwhile, the semi-arid nature of the region's land permits a simple approximation of the change in Rtoa solely in terms of climatological radiative and hydrological properties and the change in precipitation. Taken together, these point towards meaningful constraints on future Sahelian rainfall purely in terms of present-day quantities, and we discuss the prospects of using this framework to ultimately falsify model projections.

  10. Field cage development for a time-projection chamber to constrain the nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Estee, J.; Barney, J.; Chajecki, Z.; Famiano, M.; Dunn, J.; Lu, F.; Lynch, W. G.; McIntosh, A. B.; Isobe, T.; Murakami, T.; Sakurai, H.; Shane, R.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Yennello, S.

    2012-10-01

    The SAMURAI time-projection chamber (sTPC) is being developed for use in the dipole magnet of the newly-commissioned SAMURAI spectrometer at the RIBF facility in Japan. The main scientific objective of the sTPC is to provide constraints on the nuclear symmetry energy at supra-saturation densities. The TPC allows for tracking and identification of light charged particles such as pions, protons, tritons and ^3He. The sTPC must have a Cartesian geometry to match the symmetry of the dipole magnet. The walls of the field cage (FC) detector volume consist of sections of rigid, two-layer circuit boards. Inside and outside copper strips form decreasing equipotentials via a resistor chain, and create a uniform electric field with a maximum of 400 V/cm. The FC volume is hermetically sealed from the enclosure volume to create an insulation volume which can be filled with dry N2 to inhibit corona discharge. I will be presenting the current status of the design and assembly of the sTPC field cage.

  11. Effective field theory of cosmic acceleration: Constraining dark energy with CMB data

    NASA Astrophysics Data System (ADS)

    Raveri, Marco; Hu, Bin; Frusciante, Noemi; Silvestri, Alessandra

    2014-08-01

    We introduce EFTCAMB/EFTCosmoMC as publicly available patches to the commonly used camb/CosmoMC codes. We briefly describe the structure of the codes, their applicability and main features. To illustrate the use of these patches, we obtain constraints on parametrized pure effective field theory and designer f(R) models, both on ΛCDM and wCDM background expansion histories, using data from Planck temperature and lensing potential spectra, WMAP low-ℓ polarization spectra (WP), and baryon acoustic oscillations (BAO). Upon inspecting the theoretical stability of the models on the given background, we find nontrivial parameter spaces that we translate into viability priors. We use different combinations of data sets to show their individual effects on cosmological and model parameters. Our data analysis results show that, depending on the adopted data sets, in the wCDM background case these viability priors could dominate the marginalized posterior distributions. Interestingly, with Planck +WP+BAO+lensing data, in f(R) gravity models, we get very strong constraints on the constant dark energy equation of state, w0∈(-1,-0.9997) (95% C.L.).

  12. Locoregional recurrences after post-operative volumetric modulated arc radiotherapy (VMAT) in oral cavity cancers in a resource constrained setting: experience and lessons learned

    PubMed Central

    Patil, V M; Babu, S; Muttath, G; Thiagarajan, S K

    2015-01-01

    Objective: The conformal nature of dose distribution produced by volumetric modulated arc radiotherapy (VMAT) increases the risk of geographic miss. Data regarding patterns of failure after VMAT in oral cavity cancers in resource-constrained settings are scarce. The aim of the present study was to ascertain the patterns of failure in patients receiving adjuvant VMAT intensity-modulated radiotherapy (IMRT) for oral cavity cancer in Malabar Cancer Center, Kerala, India. Methods: Data of patients with oral cavity cancer receiving adjuvant VMAT IMRT between April 2012 and March 2014 were collected. Recurrent volumes were delineated on the treatment planning images and classified as defined by Dawson et al (Dawson LA, Anzai Y, Marsh L, Martel MK, Paulino A, Ship JA, et al. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2000; 46: 1117–26). Results: 75 patients with a median follow-up of 24 months were analysed. 41 (55%) patients had oral tongue cancers and 52 (69%) of the patients had Stage IVA cancers. The 2-year locoregional recurrence-free survival, disease-free survival and overall survival were 88.9%, 82.1% and 80.5%, respectively. With a median time to failure of 6.5 months, five infield and three outfield failures were identified. Conclusion: A relatively low rate of outfield failure and lack of marginal failure attests to the efficacy of VMAT in such patients. Modifications to our existing target delineation policy have been proposed. Advances in knowledge: The use of standardized target delineation methods allows safe use of VMAT IMRT even in resource-constrained settings. PMID:25645107

  13. Role for Distributed Energy Resources (DER) in the Digital Economy

    SciTech Connect

    Key, Thomas S

    2007-11-01

    A large, and growing, part of the Nation's economy either serves or depends upon the information technology industry. These high-tech or "digital" enterprises are characterized by a dependence on electronic devices, need for completely reliable power supply, and intolerance to any power quality problems. In some cases these enterprises are densely populated with electronic loads and have very high energy usage per square foot. Serving these enterprises presents both electric power and equipment cooling challenges. Traditional electric utilities are often hard-pressed to deliver power that meets the stringent requirements of digital customers, and the economic and social consequences of a service quality or reliability problem can be large. New energy delivery and control options must be developed to effectively serve a digital economy. This report explores how distributed energy resources, partnerships between utility and customer to share the responsibility for service quality, innovative facility designs, higher energy efficiencies and waste-heat utilization can be coupled to meet the needs of a growing digital economy.

  14. Planning and scheduling virtual training for U.S. military units in a resource-constrained environment

    NASA Astrophysics Data System (ADS)

    McGinnis, Michael L.; Phelan, Robert G., Jr.

    1997-06-01

    The United States Army is presently developing a new family of high technology, computer-based training facilities called the Combined Arms Tactical Trainer (CATT). The first of these will be the Close Combat Tactical Trainer (CCTT) where soldiers from armored and mechanized forces at battalion and below will conduct realistic training in manned modules using semi- automated forces (SAF) that operate on a digitized, virtual battlefield. The major scheduling tasks for planning a days' training include selecting training scenarios, scheduling the scenarios throughout the planning horizon, and scheduling training resources for conducting each training scenario. CCTT scheduling is complicated by several factors. Multiple scenarios may be scheduled simultaneously, training scenario duration varies by scenario, and resources for conducting each scenario vary by scenario type and may vary within a scenario type as well. This paper presets a heuristic approach to the CCTT scheduling problem. Scheduling results from the automated scheduling system demonstrate that the heuristic provides 'good' training schedules in a timely manner.

  15. Volunteerism among out-of-school adolescent reproductive health peer educators: is it a sustainable strategy in resource constrained countries?

    PubMed

    Simba, Daudi O; Kakoko, Deodatus C

    2009-09-01

    Out-of-school peer educators [PE] are resourceful in transmitting reproductive health information but their retention remains a contentious issue. This study aimed to assess motivation and sustainability of out-of-school PEs in disseminating reproductive health information among adolescents. A structured questionnaire was used to interview 406 PEs in Mbeya region, Tanzania. Focus Group Discussions [FGDs] were also conducted with the PEs and other relevant stakeholders. Most PEs had hopes for future employment and allowances through continuous training. The fact that majority of PEs had primary level education [89%] and were either peasants or self employed [92%] posed a serious question as to whether voluntary work is for the less educated, peasants and self-employed. Sustenance of PEs needs to be a continuous activity aimed at increasing the number of trained adolescents from their own social and economic groups. Otherwise, provision of transport and compensation for time spent should be considered.

  16. Full-term newborns with normal birth weight requiring special care in a resource-constrained setting

    PubMed Central

    Olusanya, Bolajoko O.

    2013-01-01

    Introduction The level of clinical care and facilities to support the often more viable full-term newborns with normal birth weight compared with preterm/low birth weight newborns that require special care at birth are likely to be attainable in many resource-poor settings. However, the nature of the required care is not evident in current literature. This study therefore set out to determine maternal and perinatal profile of surviving full-term newborns with normal birth weight in a poorly-resourced setting. Methods A retrospective cohort study of newborns with gestational age ≥37 weeks and birth weight ≥2500g recruited in an inner-city maternity hospital in Lagos, Nigeria. Primary factors/outcomes were determined by multivariate logistic regression analyses and population attributable risk (PAR). Results Of the 2687 full-term newborns with normal birth weight studied, 242 (9.0%) were admitted into special care baby unit (SCBU) representing 53.6% of all SCBU admissions. Fetal distress, low 5-minute Apgar scores, neonatal sepsis and hyperbilirubinemia as well as maternal factors such as primiparity, type of employment, lack of antenatal care and emergency cesarean delivery were predictive of SCBU admission. The leading contributors to SCBU admission were neonatal sepsis (PAR=96.8%), and hyperbilirubinemia (PAR=58.7%). Conclusion A significant proportion of newborns requiring special care are full-term with normal birth weight and are associated with modifiable risk factors that can be effectively addressed at appropriately equipped secondary-level hospitals. Prenatal maternal education on avoidable risk factors is warranted. PMID:24062865

  17. Cost-effective choices of marine fuels in a carbon-constrained world: results from a global energy model.

    PubMed

    Taljegard, Maria; Brynolf, Selma; Grahn, Maria; Andersson, Karin; Johnson, Hannes

    2014-11-04

    The regionalized Global Energy Transition model has been modified to include a more detailed shipping sector in order to assess what marine fuels and propulsion technologies might be cost-effective by 2050 when achieving an atmospheric CO2 concentration of 400 or 500 ppm by the year 2100. The robustness of the results was examined in a Monte Carlo analysis, varying uncertain parameters and technology options, including the amount of primary energy resources, the availability of carbon capture and storage (CCS) technologies, and costs of different technologies and fuels. The four main findings are (i) it is cost-effective to start the phase out of fuel oil from the shipping sector in the next decade; (ii) natural gas-based fuels (liquefied natural gas and methanol) are the most probable substitutes during the study period; (iii) availability of CCS, the CO2 target, the liquefied natural gas tank cost and potential oil resources affect marine fuel choices significantly; and (iv) biofuels rarely play a major role in the shipping sector, due to limited supply and competition for bioenergy from other energy sectors.

  18. State Energy Efficiency Resource Standards: Design, Status, and Impacts

    SciTech Connect

    Steinberg, D.; Zinaman, O.

    2014-05-01

    An energy efficiency resource standard (EERS) is a policy that requires utilities or other entities to achieve a specified amount of energy savings through customer energy efficiency programs within a specified timeframe. EERSs may apply to electricity usage, natural gas usage, or both. This paper provides an overview of the key design features of EERSs for electricity, reviews the variation in design of EERSs across states, and provides an estimate of the amount of savings required by currently specified EERSs in each state. As of December, 2013, 23 states have active and binding EERSs for electricity. We estimate that state EERSs will require annual electricity savings of approximately 8-11% of total projected demand by 2020 in states with EERSs, however the level of savings targeted by the policies varies significantly across states. In addition to the variation in targeted savings, the design of EERSs varies significantly across states leading to differences in the suite of incentives created by the policy, the flexibility of compliance with the policy, the balance of benefits and costs of the policy between producers and consumers, and the certainty with which the policy will drive long-term savings.

  19. 75 FR 36128 - Green Energy Resources, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... COMMISSION Green Energy Resources, Inc.; Order of Suspension of Trading June 22, 2010. It appears to the... securities of Green Energy Resources, Inc. (``Green Energy'') because of questions regarding the accuracy of statements by Green Energy in press releases concerning, among other things, the company's involvement in...

  20. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  1. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    NASA Astrophysics Data System (ADS)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  2. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    SciTech Connect

    Nesseris, Savvas; Blake, Chris; Davis, Tamara; Parkinson, David E-mail: cblake@astro.swin.edu.au E-mail: d.parkinson@uq.edu.au

    2011-07-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 < z < 0.9. We use this data in two ways. Firstly we constrain the matter density of the Universe, Ω{sub m} (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, G{sub eff}, that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-dot{sub eff}(t{sub 0}) = −1.19 ± 0.95·10{sup −20} h{sup 2} yr{sup −2}, where h is defined via H{sub 0} = 100 h km s{sup −1} Mpc{sup −1}, while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-dot{sub eff}(t{sub 0}) = −3.6 ± 6.8·10{sup −21} h{sup 2} yr{sup −2}, both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ{sub 8} using the WiggleZ data is σ{sub 8} = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ{sub 8} = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation.

  3. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  4. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  5. Solar energy resources at South region of Brazil

    NASA Astrophysics Data System (ADS)

    Vinicius Fiorin, Daniel; Schuch, Nelson Jorge; Ramos Martins, Fernando; Bueno Pereira, Enio; Ceconi, Marcio; Brackmann, Rodrigo; Guarnieri, Ricardo André

    The Center for Weather Forecast and Climate Studies at the Brazilian National Institute for Space Research, Ministry of Science and Technology - CPTEC/INP-MCT, have installed throughout Brazilian territory several sites to acquired solar irradiation data used to assess the renewable energy potential of Brazil as part of SONDA project (www.cptec.inpe.br/sonda/). One of ground sites is located at the Southern Space Observatory-SSO/CRS/CIE/INPE-MCT, (29o S; 53o W), in São Martinho da Serra, RS, South of Brazil, where diffuse and global solar a irradiation are measured by CM 22 and CM21 Pyrhanometers), direct solar radiation are measured by Pyrheliometer NIP and opaque and thin cloudiness fractions were esteemed by a Total Sky Imager TSI-440 (YES, Inc). Our concern is with the fact that the current world energy scenery, characterized by petroleum sources exhaustion and environmental concerns, point out to the use of clean and renewable energy sources such as the solar energy. This work aims to the evaluation of the solar energy resource by using stochastic models relating the cloud cover fraction and solar radiation parameters such as diffuse-to-direct-beam ratio (DDB), diffuse-toglobal solar irradiation ratio (K), diffuse-to-TOA irradiation ratio (KD ), and global-to-TOA irradiation ratio (KT ), measured with the SONDA Project, where TOA is the total irradiation that reach the atmosphere. Only data collected for zenithal solar angle (SZA) lesser than 75 deg for the period between September/2005 to September/2007 were used. The ground data were averaged for fifteen minutes intervals in order to reduce the influence of high frequency variability of cloud cover. It was observed low correlation (around 0.55) among the diffuse to TOA irradiation ratio and cloud cover. Better correlation (about 0.94) were obtained for K parameter. The statistic deviations RMSE (23-28%) and MBE (0.3-5%) were calculated to validate and compare the models performance. The results showed more

  6. Geothermal resources and energy complex use in Russia

    NASA Astrophysics Data System (ADS)

    Svalova, V.

    2009-04-01

    Geothermal energy use is the perspective way to clean sustainable development of the world. Russia has rich high and low temperature geothermal resources and makes good steps in their use. In Russia the geothermal resources are used predominantly for heat supply both heating of several cities and settlements on Northern Caucasus and Kamchatka with a total number of the population 500000. Besides in some regions of country the deep heat is used for greenhouses of common area 465000 m2. Most active the hydrothermal resources are used in Krasnodar territory, Dagestan and on Kamchatka. The approximately half of extracted resources is applied for heat supply of habitation and industrial puttings, third - to a heating of greenhouses, and about 13 % - for industrial processes. Besides the thermal waters are used approximately on 150 health resorts and 40 factories on bottling mineral water. The most perspective direction of usage of low temperature geothermal resources is the use of heat pumps. This way is optimal for many regions of Russia - in its European part, on Ural and others. The electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands. At present three stations work in Kamchatka: Pauzhetka GeoPP (11MW e installed capacity) and two Severo-Mutnovka GeoPP ( 12 and 50 MWe). Moreover, another GeoPP of 100 MVe is now under preparation in the same place. Two small GeoPP are in operation in Kuril's Kunashir Isl, and Iturup Isl, with installed capacity of 2,б MWe and 6 MWe respectively. There are two possible uses of geothermal resources depending on structure and properties of thermal waters: heat/power and mineral extraction. The heat/power direction is preferable for low mineralized waters when valuable components in industrial concentration are absent, and the general mineralization does not interfere with normal operation of system. When high potential geothermal waters are characterized by the high

  7. Job satisfaction in relation to energy resource consciousness and perceptions of energy utilization in selected Illinois manufacturing firms

    SciTech Connect

    Haynes, T.S.

    1986-01-01

    This study was developed through a synthesis and review of literature and research related to the current status of job satisfaction, energy resources, and perceptions of how energy is utilized in the manufacturing work environment. This synthesis and review revolved around several proven contributing factors of job satisfaction, such as age, education, and challenge from work itself. Quality of work life programs and their components are discussed in relation to their impact on job satisfaction. The nature of energy resource utilization is traced back through history with an emphasis on the limitations of current resources and options for the future. The review highlights the current debate over what should be the future path of energy resource development. The concept of satisfaction of human needs is reviewed and related to job satisfaction and energy resources. The purpose of this research study was to contribute to the understanding of how perceptions of energy resources relate to job satisfaction. Results of the study indicated that there were no significant differences between an individual's energy resource consciousness and perceptions of energy utilization in the work place, energy resource consciousness and job satisfaction, and job satisfaction and perceptions of energy utilization in the workplace.

  8. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  9. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    SciTech Connect

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility

  10. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff.

  11. A credibility-based chance-constrained optimization model for integrated agricultural and water resources management: A case study in South Central China

    NASA Astrophysics Data System (ADS)

    Lu, Hongwei; Du, Peng; Chen, Yizhong; He, Li

    2016-06-01

    This study presents a credibility-based chance-constrained optimization model for integrated agricultural irrigation and water resources management. The model not only deals with parameter uncertainty represented as fuzzy sets, but also provides a credibility level which indicates the confidence level of the generated optimal management strategies. The model is used on a real-world case study in South Central China. Results from the case study reveal that: (1) a reduction in credibility level would result in an increasing planting area of watermelon, but impaired the planting acreage of high-quality rice and silk; (2) groundwater allocation would be prioritized for reducing surface water utilization cost; (3) the actual phosphorus and nitrogen emissions reached their limit values in most of the zones over the planning horizon (i.e., phosphorus and nitrogen emissions reaching 969 tonnes and 3814 tonnes under λ = 1.00, respectively; phosphorus and nitrogen emissions reaching 972 tonnes and 3891 tonnes under λ = 0.70, respectively). When the credibility level reduces from 1.00 to 0.70, system benefit would rise by 32.60% and groundwater consumption would be reduced by 79.51%. However, the pollutant discharge would not increase as expected, which would be reduced by 40.14% on the contrary. If system benefit is not of major concern, an aggressive strategy is suggested by selecting a rather low credibility level (say, 0.70). This strategy is suggested for guaranteeing protection of local groundwater resources and mitigation of local environmental deterioration by sacrificing part of system benefit.

  12. Mineral and Energy Resources of the Roswell Resource Area, East-Central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.; Donatich, Alessandro J.

    1995-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial

  13. Multimode Resource-Constrained Multiple Project Scheduling Problem under Fuzzy Random Environment and Its Application to a Large Scale Hydropower Construction Project

    PubMed Central

    Xu, Jiuping

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708

  14. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs

    NASA Astrophysics Data System (ADS)

    Philipsen, R. H. H. M.; Sánchez, C. I.; Maduskar, P.; Melendez, J.; Peters-Bax, L.; Peter, J. G.; Dawson, R.; Theron, G.; Dheda, K.; van Ginneken, B.

    2015-07-01

    Molecular tests hold great potential for tuberculosis (TB) diagnosis, but are costly, time consuming, and HIV-infected patients are often sputum scarce. Therefore, alternative approaches are needed. We evaluated automated digital chest radiography (ACR) as a rapid and cheap pre-screen test prior to Xpert MTB/RIF (Xpert). 388 suspected TB subjects underwent chest radiography, Xpert and sputum culture testing. Radiographs were analysed by computer software (CAD4TB) and specialist readers, and abnormality scores were allocated. A triage algorithm was simulated in which subjects with a score above a threshold underwent Xpert. We computed sensitivity, specificity, cost per screened subject (CSS), cost per notified TB case (CNTBC) and throughput for different diagnostic thresholds. 18.3% of subjects had culture positive TB. For Xpert alone, sensitivity was 78.9%, specificity 98.1%, CSS $13.09 and CNTBC $90.70. In a pre-screening setting where 40% of subjects would undergo Xpert, CSS decreased to $6.72 and CNTBC to $54.34, with eight TB cases missed and throughput increased from 45 to 113 patients/day. Specialists, on average, read 57% of radiographs as abnormal, reducing CSS ($8.95) and CNTBC ($64.84). ACR pre-screening could substantially reduce costs, and increase daily throughput with few TB cases missed. These data inform public health policy in resource-constrained settings.

  15. Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction project.

    PubMed

    Xu, Jiuping; Feng, Cuiying

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

  16. An atlas of the wave energy resource in Europe

    SciTech Connect

    Pontes, M.T.; Athanassoulis, G.A.; Barstow, S.; Cavaleri, L.; Holmes, B.; Mollison, D.; Oliveira-Pires, H.

    1995-12-31

    This paper presents an Atlas of the European offshore wave energy resource that is being developed within the scope of an European project. It will be mainly based on wave estimates produced by the numerical wind-wave model WAM that is in routine operation at the European Centre for Medium-Range Weather Forecasts, Reading, UK. This model was chosen after a preliminary verification of two models again buoy data for a one-year period. Wave measurements will be used for the Norwegian Sea and the North Sea. The Atlas will be produced as a user-friendly software package for MS-DOS microcomputers permitting fast retrieval of information as well as saving and printing of statistics and maps. The Atlas will include annual and seasonal statistics of significant wave height, mean and peak period, mean direction and wave power levels (global values as well as directional distributions). These data will be both presented as tables, graphs and as geographic maps.

  17. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect

    Turner, D.L.; Wescott, E.M.

    1986-12-01

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  18. Tidal Energy Resource Assessment in Chacao Channel, Chile

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Suarez, L.; Cienfuegos, R.; Thomson, J. M.

    2014-12-01

    The Chacao Channel, located in Los Lagos region in Chile (41º S; 73º W), is a highly energetic tidal channel, with a complex hydrodynamics resulting from the propagation of tidal waves through a narrow channel. The channel flow exhibits bi-directional tidal currents up to 4 to 5 m/s along with a high tidal range up to 6 m in its east end (Aiken, 2008: Cáceres et al., 2003). The channel has previously been identified as one of the most attractive sites in Chile for tidal energy extraction (Garrad Hassan and Partners, 2009); however this statement is based on global model predictions over coarse bathymetric information. In this investigation, the first hydrodynamic characterization of the Chacao channel is carried out in order to assess the hydrokinetic power available and to select the most interesting spots where the first tidal energy extraction devices might be installed in Chile. The Chacao channel hydrodynamic characterization and resource assessment is carried out in two stages: field measurements and numerical hydrodynamic modeling. The first stage involves a 10 m resolution multi-beam bathymetry of the channel, sea-level measurements using 6 tidal gauges distributed over the channel berms, tidal current measurements with 6 ADCPs distributed along the channel, and detailed measurements of turbulence in a specific spot in the channel using the Tidal Turbulence Mooring (TTM) developed by Thomson et al. (2013). In a second stage, numerical hydrodynamic modeling using FVCOM (Chen et al., 2003) was prepared for the entire Chacao channel region, using the field data collected in the first stage for calibration and validation of the model. The obtained results allow us to define suitable sites for marine energy extraction, finding large areas with 30 to 60 m depths where horizontal currents are above 1.5 m/s during 60% of the time of a 28 days tidal cycle, however the high levels of turbulence detected by the TTM indicate the need for more detailed studies on the

  19. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  20. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  1. Supplement to energy for rural development: Renewable resources and alternative technologies for developing countries

    NASA Astrophysics Data System (ADS)

    The publication energy for rural development: renewable resources and alternative technologies for developing countries, which presented information on a variety of subjects, including direct uses of solar energy (heating, cooling, distillation, crop drying, photovoltaics), indirect uses of solar energy (wind power, hydropower, photosynthesis, biomass), geothermal energy, and energy storage is reviewed. New technologies developed and advances made in technologies are discussed.

  2. Summary of the mineral- and energy-resource endowment, BLM roswell resource area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Sutphin, D.M.; Ball, M.M.; Korzeb, S.L.; Kness, R.F.; Dutchover, J.T.

    1993-01-01

    In this summary of two comprehensive resource reports produced by the U.S. Bureau of Mines and the U.S. Geological Survey for the U.S. Bureau of Land Management, we discuss the mineral- and energyresource endowment of the 14-millon-acre Roswell Resource Area, New Mexico, managed by the Bureau of Land Management. The Bureau and Survey reports result from separate studies that are compilations of published and unpublished data and integrate new findings on the geology, geochemistry, geophysics, mineral, industrial, and energy commodities, and resources for the seven-county area. The reports have been used by the Bureau of Land Management in preparation of the Roswell Resource Area Resource Management Plan, and will have future use in nationwide mineral- and energy-resource inventories and assessments, as reference and training documents, and as public-information tools. In the Roswell Resource Area, many metals, industrial mineral commodities, and energy resources are being, or have been, produced or prospected. These include metals and high-technology materials, such as copper, gold, silver, thorium, uranium and/or vanadium, rare-earth element minerals, iron, manganese, tungsten, lead, zinc, and molybdenum; industrial mineral resources, including barite, limestone/dolomite, caliche, clay, fluorspar, gypsum, scoria, aggregate, and sand and gravel; and fuels and associated resources, such as oil, gas, tar sand and heavy oil, coal, and gases associated with hydrocarbons. Other commodities that have yet to be identified in economic concentrations include potash, halite, polyhalite, anhydrite, sulfur, feldspar, building stone and decorative rock, brines, various gases associated with oil and gas exploration, and carbon dioxide. ?? 1993 Oxford University Press.

  3. Characterization of U. S. energy resources and reserves

    SciTech Connect

    Not Available

    1989-12-01

    This report provides a comprehensive overview of the best available estimates of the total domestic energy potential within the United States. The array of energy sources include those appropriate for power generation, liquid fuels, and direct heat applications. The energy sources examined are: geothermal energy, solar energy, biomass energy, wind energy, shale oil, coal, petroleum, natural gas, peat, uranium, and hydropower. 37 refs., 7 figs., 59 tabs.

  4. Hot dry rock geothermal energy -- a renewable energy resource that is ready for development now

    SciTech Connect

    Brown, D.W.; Potter, R.M.; Myers, C.W.

    1990-01-01

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. The earth's heat represents an almost unlimited source of energy that can begin to be exploited within the next decade through the HDR heat-mining concept being actively developed in the United States, Great Britain, Japan, and several other countries. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow- tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  5. Resources

    MedlinePlus

    ... can be found on the web, through local libraries, your health care provider, and the yellow pages under "social service organizations." AIDS - resources Alcoholism - resources Allergy - resources ...

  6. Outlook for U. S. forest resources for energy and wood products

    SciTech Connect

    Peterson, R.M.

    1984-01-01

    There will be increased demands placed on our forest resources in the future to generate energy an wood products. Recent legislation, such as the Resources Planning Act, will help to organize efforts to meet thes demands. Forest Service programs encourage intensive forest land management to produce more timber from our natural lands and greater utilization of our timber resources through more efficient production systems.

  7. Role of nuclear energy to a future society of shortage of energy resources and global warming

    NASA Astrophysics Data System (ADS)

    Saito, Shinzo

    2010-03-01

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO 2 as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  8. 25 CFR 224.73 - How will the scope of energy resource development affect the Secretary's determination of the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy resource development under the TERA will include a determination as to each type of energy... 25 Indians 1 2014-04-01 2014-04-01 false How will the scope of energy resource development affect... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE...

  9. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    SciTech Connect

    Whissel, John C.; Piche, Matthew

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  10. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers

    USGS Publications Warehouse

    Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.

    2013-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.

  11. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  12. 78 FR 28002 - In the Matter of South Mississippi Electric Power Association, System Energy Resources, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... COMMISSION In the Matter of South Mississippi Electric Power Association, System Energy Resources, Inc., Grand Gulf Nuclear Station, Units No. 1; Order Approving Direct and Indirect Transfers of License and Approving Conforming Amendment I South Mississippi Electric Power Association, System Energy Resources,...

  13. Integrating renewable energy resources with energy storage for grid-connected systems

    NASA Astrophysics Data System (ADS)

    Carr, Joseph

    Renewable energy resources have been growing at a rapidly accelerating rate as an alternative for fossil fuels in the modern electric grid. As their penetration increases, variability in these resources, particularly wind and solar, poses a risk of instability on the grid. Energy storage can be used to mitigate this risk as well as provide other benefits to the larger grid. In this dissertation, a novel high frequency common bus multiport converter is proposed as a new integration scheme to improve efficiency of the power electronics interface by reducing the number of conversion steps and to reduce the system size by replacing the line frequency transformer with a high frequency transformer tied to the common bus. Two main innovations are introduced: a new switching scheme for the H-bridges on the common bus which allows them to operate in parallel without interfering in each others operation, and a novel single-phase to three-phase matrix converter which converts the high frequency bus to the line frequency in a single conversion stage. This proposed converter is simulated to develop the inner loop control methodology, then a low power prototype is constructed and tested to verify its operation. The results of these tests demonstrate the feasibility of the proposed ideas as well as suggesting new avenues of research to further improve the proposed system.

  14. Constraining the dark fluid

    SciTech Connect

    Kunz, Martin; Liddle, Andrew R.; Parkinson, David; Gao Changjun

    2009-10-15

    Cosmological observations are normally fit under the assumption that the dark sector can be decomposed into dark matter and dark energy components. However, as long as the probes remain purely gravitational, there is no unique decomposition and observations can only constrain a single dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this dark fluid in a model-independent way, demonstrating, in particular, that the data cannot be fit by a dark fluid with a single constant equation of state. Parametrizing the dark fluid equation of state by a variety of polynomials in the scale factor a, we use current kinematical data to constrain the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of separate dark matter and cosmological constant contributions, our results cover other model types including unified dark energy/matter scenarios.

  15. Assessment of solar and wind energy resources in Ethiopia. I. Solar energy

    SciTech Connect

    Drake, F.; Mulugetta, Y.

    1996-09-01

    This paper describes how data from a variety of sources are merged to present new countrywide maps of the solar energy distribution over Ethiopia. The spatial coverage of stations with radiation data was found to be unsatisfactory for the purpose of a countrywide solar energy assessment exercise. Therefore, radiation had to be predicted from sunshine hours by employing empirical models. Using data from seven stations in Ethiopia, linear and quadratic correlation relationships between monthly mean daily solar radiation and sunshine hours per day have been developed. These regional models show a distinct improvement over previously employed countrywide models. To produce a national solar-energy distribution profile, a spatial extension of the radiation/sunshine relationships had to be carried out. To do this, the intercepts(a) and slopes(b) of each of the seven linear regression equations and another six from previous studies, completed in neighbouring Sudan, Kenya and Yemen, were used to interpolate the corresponding values to areas between them. Subsequent to these procedures, 142 stations providing only sunshine data were assigned their `appropriate` a and b values to estimate the amount of solar radiation received, which was then used to produce annual and monthly solar radiation distribution maps for Ethiopia. The results show that in all regions solar energy is an abundant resource. 19 refs., 11 figs., 4 tabs.

  16. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  17. Petroleum and the Environment: Teaching about Petroleum and the Future of Energy Resources

    ERIC Educational Resources Information Center

    Hudson, Travis; Camphire, Geoffrey

    2005-01-01

    Students live in a world that is powered by petroleum and other energy resources to an unsurpassed degree. The United States today consumes more than 24% of all the energy used in the world--and about 60% of this energy is provided by petroleum (oil and natural gas). The availability of abundant, inexpensive energy is the main reason that the…

  18. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers and the public

    USGS Publications Warehouse

    Carr, N.B.; Babel, N.; Diffendorfer, J.; Ignizio, D.; Hawkins, S.; Latysh, N.; Leib, K.; Linard, J.; Matherne, A.

    2012-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of oil, gas (including shale gas and coal-bed methane), and uranium, as well as renewable energy resources such as geothermal, solar, and wind. Much of the development in the West is occurring on public lands, including those under Federal and State jurisdictions. In Colorado and New Mexico, these public lands make up about 40 percent of the land area. Both states benefit from the revenue generated by energy production, but resource managers and other decisionmakers must balance the benefits of energy development with the potential consequences for ecosystems, recreation, and other resources. Although a substantial amount of geospatial data on existing energy development and energy potential is available, much of this information is not readily accessible to natural resource decisionmakers, policymakers, or the public. Furthermore, the data often exist in varied formats, requiring considerable processing before these datasets can be used to evaluate tradeoffs among resources, compare development alternatives, or quantify cumulative impacts. To allow for a comprehensive evaluation among different energy types, an interdisciplinary team of U.S. Geological Survey (USGS) scientists has developed an online Interactive Energy Atlas for Colorado and New Mexico. The Energy and Environment in the Rocky Mountain Area (EERMA) interdisciplinary team includes investigators from several USGS science centers1. The purpose of the EERMA Interactive Energy Atlas is to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The Atlas is designed to meet the needs of various users, including GIS analysts, resource managers, policymakers, and the public, who seek information about energy in the western United States. Currently, the Atlas has two primary capabilities, a GIS data viewer and an

  19. Market Design Simulations with Variable Energy Resources (VERs) (Presentation)

    SciTech Connect

    Ela, E.

    2011-06-01

    Presented at the FERC Technical Conference, 29 June 2011, Washington, D.C. This presentation describes NREL research regarding variable generation resources, operating reserves, unit commitment, economic dispatch, and introduces a new and novel modeling tool called 'FESTIV.'

  20. Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada

    SciTech Connect

    Hopper, Nichole; Barbose, Galen; Goldman, Charles; Schlegel, Jeff

    2008-09-15

    This article examines the future role of energy efficiency as a resource in the Western United States and Canada, as envisioned in the most recent resource plans issued by 16 utilities, representing about 60percent of the region's load. Utility and third-party administered energy efficiency programs proposed by 15 utilities over a ten-year horizon would save almost 19,000 GWh annually, about 5.2percent of forecast load. There are clear regional trends in the aggressiveness of proposed energy savings. California's investor-owned utilities (IOUs) had the most aggressive savings targets, followed by IOUs in the Pacific Northwest, and the lowest savings were proposed by utilities in Inland West states and by two public utilities on the West coast. The adoption of multiple, aggressive policies targeting energy efficiency and climate change appear to produce sizeable energy efficiency commitments. Certain specific policies, such as mandated energy savings goals for California's IOUs and energy efficiency provisions in Nevada's Renewable Portfolio Standard had a direct impact on the level of energy savings included in the resource plans. Other policies, such as revenue decoupling and shareholder incentives, and voluntary or legislatively mandated greenhouse gas emission reduction policies, may have also impacted utilities' energy efficiency commitments, though the effects of these policies are not easily measured. Despite progress among the utilities in our sample, more aggressive energy efficiency strategies that include high-efficiency standards for additional appliances and equipment, tighter building codes for new construction and renovation, as well as more comprehensive ratepayer-funded energy efficiency programs are likely to be necessary to achieve a region-wide goal of meeting 20percent of electricity demand with efficiency in 2020.

  1. Annual Report: Unconventional Fossil Energy Resource Program (30 September 2013)

    SciTech Connect

    Soong, Yee; Guthrie, George

    2014-03-11

    Yee Soong, Technical Coordinator, George Guthrie, Focus Area Lead, UFER Annual Report, NETL-TRS-UFER-2013, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 2013, p 14.

  2. Ephedra and Energy Drinks on College Campuses. Infofacts/Resources

    ERIC Educational Resources Information Center

    Kapner, Daniel Ari

    2008-01-01

    The February 2003 death of Baltimore Orioles pitcher Steve Bechler, who according to the coroner's report died after taking ephedrine alkaloids (ephedra), has garnered national attention for the topic of nutritional supplements and energy drinks. Energy drinks and energy-enhancing pills, diet aids, muscle-enlargers, and other supplements fall…

  3. Energy education resources, kindergarten through 12th grade

    SciTech Connect

    Altman, P.

    1991-12-13

    This publication is the result of a study undertaken by the National Energy Information Center (NEIC), a service of the Energy Information Administration (EIA), to provide its customers with a list of generally available free or low-cost energy-related educational materials for primary and secondary students and educators. The list is updated once a year.

  4. Energy education resources: Kindergarten through 12th grade

    SciTech Connect

    Altman, P.

    1992-12-01

    This publication is the result of a study undertaken by the National Energy Information Center (NEIC), a service of the Energy Information Administration (EIA), to provide its customers with a list of generally available free or low-cost energy-related education materials for primary and secondary students and educators. The list is updated once a year.

  5. Energy education resources. Kindergarten through 12th grade

    SciTech Connect

    1995-02-17

    This publication is the result of a study undertaken by the National Energy Information Center (NEIC), a service of the Energy Information Administration (EIA), to provide its customers with a list of generally available free or low-cost energy-related educational materials for students and educators. The list is updated once a year.

  6. DR Resources for Energy and Ancillary Services in the West (Presentation)

    SciTech Connect

    Hummon, M.; Kiliccote, S.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility however, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado "test system". We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating reserves: frequency regulation, contingency reserve, and flexibility (or ramping) reserve. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves.

  7. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  8. Wind energy resource atlas. Volume 3. Great Lakes Region

    SciTech Connect

    Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  9. Wind energy resource atlas. Volume 7. The south central region

    SciTech Connect

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  10. Wind energy resource atlas: Volume 6. The Southeast region

    SciTech Connect

    Zabransky, J.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-01-01

    The Southeast atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the Southeast region (Alabama, Florida, Georgia, Mississippi, and South Carolina). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction and duration frequencies of the wind at these locations.

  11. USDOE/Russian Ministry of Fuel and Energy joint collaboration for renewable energy resources

    SciTech Connect

    Touryan, K.

    1997-12-01

    This paper describes a joint collaboration between the US and Russia to develop renewable energy resources. There are five main goals of the project. First is to establish Intersolarcenter as a sister organization to NREL for joint R&D activities, and to provide training to the staff. Second is to install demonstration systems in parks and selected locations around Moscow. Third is to install pilot projects: a wind/diesel hybrid system at 21 sites in the northern territories; a 500 kW biomass power plant in the Arkhangelsk Region. Fourth is to assist in the start-up operations of a 2 MW/yr Triple Junction amorphous-Si manufacturing facility in Moscow using US technology. Fifth is to explore the possibilities of financing large-scale wind/hybrid and biomass power systems for the nouthern territories (possibly 900 sites).

  12. The xerolithic geothermal (``hot dry rock``) energy resource of the United States: An update

    SciTech Connect

    Nunz, G.J.

    1993-07-01

    This report presents revised estimates, based upon the most current geothermal gradient data, of the xerolithic geothermal (``hot dry rock`` or HDR) energy resources of the United States. State-by-state tabular listings are provided of the HDR energy resource base, the accessible resource base, and the potentially useful resource base. The latter further subdivided into components with potential for electricity generation, process heat, and space heat. Comparisons are made with present estimates of fossil fuel reserves. A full-sized geothermal gradient contour map is provided as a supplement in a pocket inside the back cover of the report.

  13. Recent wind resource characterization activities at the National Renewable Energy Laboratory

    SciTech Connect

    Elliott, D L; Schwartz, M N

    1997-07-01

    The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

  14. Care Groups II: A Summary of the Child Survival Outcomes Achieved Using Volunteer Community Health Workers in Resource-Constrained Settings

    PubMed Central

    Morrow, Melanie; Davis, Thomas; Borger, Sarah; Weiss, Jennifer; DeCoster, Mary; Ricca, Jim; Ernst, Pieter

    2015-01-01

    The Care Group approach, described in detail in a companion paper in this journal, uses volunteers to convey health promotion messages to their neighbors. This article summarizes the available evidence on the effectiveness of the Care Group approach, drawing on articles published in the peer-reviewed literature as well as data from unpublished but publicly available project evaluations and summary analyses of these evaluations. When implemented by strong international NGOs with adequate funding, Care Groups have been remarkably effective in increasing population coverage of key child survival interventions. There is strong evidence that Care Groups can reduce childhood undernutrition and reduce the prevalence of diarrhea. Finally, evidence from multiple sources, comprising independent assessments of mortality impact, vital events collected by Care Group Volunteers themselves, and analyses using the Lives Saved Tool (LiST), that Care Groups are effective in reducing under-5 mortality. For example, the average decline in under-5 mortality, estimated using LiST, among 8 Care Group projects was 32%. In comparison, among 12 non-Care Group child survival projects, the under-5 mortality declined, on average, by an estimated 11%. Care Group projects cost in the range of US$3–$8 per beneficiary per year. The cost per life saved is in the range of $441–$3,773, and the cost per disability-adjusted life year (DALY) averted is in the range of $15–$126. The Care Group approach, when implemented as described, appears to be highly cost-effective based on internationally accepted criteria. Care Groups represent an important and promising innovative, low-cost approach to increasing the coverage of key child survival interventions in high-mortality, resource-constrained settings. Next steps include further specifying the adjustments needed in government health systems to successfully incorporate the Care Group approach, testing the feasibility of these adjustments and of the

  15. Renewable energy resources in a restructured electric industry

    SciTech Connect

    Galen, P.S.

    1996-12-31

    This paper highlights a conference presentation addressing changes in the residential energy sector in view of the increasing competitiveness of the energy market. Renewable energy characteristics are briefly outlined, and capacity and generation data for non-hydroelectric power in 1994 are listed. A review of critical factors in renewables development and policy responses to market impediments is made. Current market barriers are identified, and proposals for Federal policies are made. 17 tabs., 2 figs.

  16. Optimizing Resource and Energy Recovery for Municipal Solid Waste Management

    EPA Science Inventory

    Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...

  17. Energy Resources Program of the U.S. Geological Survey

    USGS Publications Warehouse

    Weedman, Suzanne

    2001-01-01

    Our Nation faces the simultaneous challenges of increasing demand for energy, declining domestic production from existing oil and gas fields, and increasing expectations for environmental protection. The Energy Information Administration (2000) forecasts that worldwide energy consumption will increase 32 percent between 1999 and 2020 because of growth of the world economy. Forecasts indicate that in the same time period, U.S. natural gas consumption will increase 62 percent, petroleum consumption will increase 33 percent, and coal consumption will increase 22 percent. The U.S. Geological Survey provides the objective scientific information our society needs for sound decisions regarding land management, environmental quality, and economic, energy, and strategic policy.

  18. Comparative Cost-Benefit Analysis of Renewable Energy Resource Trade Offs for Military Installations

    DTIC Science & Technology

    2012-12-01

    sunlight, wind, geothermal heat and tides. Energy efficiency can be defined as obtaining more with limited resources. In a system , it is the ratio...Solar hot water systems . • Energy-efficient appliances, heat pumps, lights. • Proper building placement to take advantage of sunlight and ventilation...energy generation. 4. Geothermal Energy and How It Works Geothermal energy is harnessed from heat within the Earth. The Earth’s heat is generated

  19. Energy, Natural Resources, and the Environment in the Eighties.

    ERIC Educational Resources Information Center

    President's Commission for a National Agenda for the Eighties, Washington, DC.

    Presented are the findings of a national panel which investigated the present situation and future policy options regarding energy and the environment. Three sections comprise the report: (1) a chapter dealing with energy supply, consumption, pricing and policy; (2) an analysis of environmental issues such as land use, toxic substances,…

  20. Energy education resources: Kindergarten through 12th grade

    SciTech Connect

    1994-02-24

    This publication provides EIA customers with a list of generally available free or low-cost energy-related educational materials for primary and secondary students and educators. The list is updated once a year. The list is only to aid educators and students in locating materials; it is the responsibility of the educators to help their students draw conclusions about energy issues.

  1. National Energy Education Development (NEED) [Resources Local Participation Kit.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    National Energy Education Development (NEED) is concerned with the dissemination of energy education information, the way children learn best, and the type of citizens students will become. Cooperative learning, where students take responsibility for their own learning and that of others in their group, class, school, and their community, is…

  2. Towards Designing an Integrated Earth Observation System for the Provision of Solar Energy Resource and Assessment

    NASA Technical Reports Server (NTRS)

    Stackouse, Paul W., Jr.; Renne, D.; Beyer, H.-G.; Wald, L.; Meyers, R.; Perez, R.; Suri, M.

    2006-01-01

    The GEOSS strategic plan specifically targets the area of improved energy resource management due to the importance of these to the economic and social viability of every nation of the world. With the world s increasing demand for energy resources, the need for new alternative energy resources grows. This paper overviews a new initiative within the International Energy Agency that addresses needs to better manage and develop solar energy resources worldwide. The goal is to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information of the solar radiation resources at the Earth's surface in easily-accessible formats and understandable quality metrics. The scope of solar resource assessment information includes historic data sets and currently derived data products using satellite imagery and other means. Thus, this new task will address the needs of the solar energy sector while at the same time will serve as a model that satisfies GEOSS objectives and goals.

  3. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-10-01

    band ratios and the most popular spectral vegetation indices. For instance, the use of combined texture ratios yielded the highest R2 values of 0.76 (RMSE = 9.55 t ha-1 (18.07%) and CV-RMSE of 0.18); 0.74 (RMSE = 12.81 t ha-1 (17.72%) and CV-RMSE of 0.08); 0.74 (RMSE = 12.67 t ha-1 (06.15%) and CV-RMSE of 0.06) and 0.53 (RMSE = 20.15 t ha-1 (14.40%) and CV-RMSE of 0.15) overall for Eucalyptus dunii, Eucalyptus grandis, Pinus taeda individually and all species, respectively. Overall, the findings of this study provide the necessary insight and motivation to the remote sensing community, particularly in resource constrained regions, to shift towards embracing various texture metrics obtained from the readily-available and cheap multispectral Landsat-8 OLI sensor.

  4. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    PubMed

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  5. Assessment of regional wind energy resources over the Ukraine

    NASA Astrophysics Data System (ADS)

    Sobchenko, Anastasiia; Khomenko, Inna

    2015-04-01

    The purpose of the study has been to provide a preliminary assessment of different regions of the Ukraine. Investigation is based on thirty-minute wind observations collected through an 8-year period (January 1, 2002 to December 31, 2008) for seven airports of the Ukraine. For renewal of vertical profile of the wind direction and speed radiosounding data were used. By applying of the probabilistic analysis techniques to series of wind data and the wind extreme values, yearly, monthly and diurnal variation of wind speed and direction are derived. Based on these results theoretical distribution functions and exceeding probability are found for each airport. The statistic characteristics obtained were compared with the correspondent values provided for 1936-1960 and 1961-1990 periods and site-related temporal changeability is determined. For each period considered assessment of wind resources at 10 meters height is carried out. Since the geostrophic wind are frequently used to calculate the surface wind at heights between 10 and 200 m, in the research the distribution of the geostrophic wind for each airport were determined. Comparative analysis of distribution and statistic characteristics of geostrophic and surface winds are made. The relation between a set of values of the geostrophic wind and a set of values of the surface wind speed was provided for each airport. Using different relationship for variation of wind speed with height wind resources at heights between 10 and 200 were assessed. The results obtained show that with the lapse of the time wind speed and wind resources is decreased half the size. It is reflected general tendencies in the wind speed changeability over the European territory. Places which are most perspective for wind turbine installation are off-shore sites such as Odessa, and sites situated in the Crimea mountain (Simferopol) and the Donetsk ridge (Donetsk). The results derived in the contribution may be used for modeling and mapping wind

  6. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  7. Energy resources in southern Africa: a select bibliography

    SciTech Connect

    Cavan, A.

    1981-01-01

    The aims, progress, and possibilities involved in Southern Africa's energy development are the subject of this 473-item bibliography. The primary items of information described in this document are relatively recent (1975-81), originate from both indigenous and international sources, and are mostly in English, although a few are in French and Portuguese. The presented information focuses on the African continent, the Southern African region, and the nations of Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, Swaziland, South Africa, Tanzania, Zambia, and Zimbabwe. The energy source topics include alcohol, coal, gas, oil, solar, uranium, water, wind, and wood; as well as a general energy-development category.

  8. Federal Energy Resources Modernization Coordinating Committee. Semiannual Report, October 1, 1991 Through March 31, 1992

    SciTech Connect

    Parker, G B

    1992-07-01

    This report summarizes the broad range of activities supported by Federal Energy Management Program (FEMP) and other federal agencies focused on meeting the President`s Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the FERM Coordinating Committee, and as such include activities undertaken from October 1, 1991, through March 31, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for the federal energy manager to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems modernization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities.

  9. Optimizing resource and energy recovery for materials and waste management

    EPA Science Inventory

    Decisions affecting materials management today are generally based on cost and a presumption of favorable outcomes without an understanding of the environmental tradeoffs. However, there is a growing demand to better understand and quantify the net environmental and energy trade-...

  10. Clean Energy: No Longer a Luxury! Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    This learning activity provides an overview of the problem of clean energy sources and examination of alternatives. Student activity, quiz with answers, related activities, and nine references are provided. (SK)

  11. Climate and Energy Resources for State, Local and Tribal Governments

    EPA Pesticide Factsheets

    EPA's State and Local Climate and Energy Program helps state, local and tribal governments develop and implement policies and programs that reduce greenhouse gas emissions and improve air quality and public health.

  12. A National Research Council Evaluation of the Department of Energy's Marine and Hydrokinetic Resource Assessments

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Holmes, K. J.; Cooke, D.

    2012-12-01

    Marine and hydrokinetic (MHK) resources are increasingly becoming part of energy regulatory, planning, and marketing activities in the U.S. and elsewhere. In particular, state-based renewable portfolio standards and federal production and investment tax credits have led to an increased interest in the possible deployment of MHK technologies. The Energy Policy Act of 2005 (Public Law 109-58) directed the Department of Energy (DOE) to estimate the size of the MHK resource base. In order to help DOE prioritize its overall portfolio of future research, increase the understanding of the potential for MHK resource development, and direct MHK device and/or project developers to locations of greatest promise, the DOE Wind and Water Power Program requested that the National Research Council (NRC) provide an evaluation of the detailed assessments being conducted by five individual resource assessment groups. These resource assessment groups were contracted to estimate the amount of extractable energy from wave, tidal, ocean current, ocean thermal energy conversion, and riverine resources. Performing these assessments requires that each resource assessment group estimate the average power density of the resource base, as well as the basic technology characteristics and spatial and temporal constituents that convert power into electricity for that resource. The NRC committee evaluated the methodologies, technologies, and assumptions associated with each of these resource assessments. The committee developed a conceptual framework for delineating the processes used to develop the assessment results requested by the DOE, with definitions of the theoretical, technical, and practical resource to clarify elements of the overall resource assessment process. This allowed the NRC committee to make a comparison of different methods, terminology, and processes among the five resource assessment groups. The committee concluded that the overall approach taken by the wave resource and

  13. Energy Demand and Resources of Japan. Volume I

    DTIC Science & Technology

    1973-08-01

    of such cechnology trans- fers include: • Coal Utilization — Coal Gasification • Direct Process Use of Nuclear Energy — High Temperature Gas...not be large. Coal gasification , on the other hand, could contributp significantly towards offsetting an increasing Japanese dependence on...imported petroleum. Achievement of economical coal gasification in either the U.S. or Japan would provide both with a practical alternative energy source

  14. Process applications for geothermal energy resources. Final report

    SciTech Connect

    Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

    1981-08-01

    The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

  15. Energy: The Ultimate Resource? Resource Papers for College Geography, No. 77-4.

    ERIC Educational Resources Information Center

    Cook, Earl

    This paper, intended for instructors and students in undergraduate courses in geography and environmental studies, discusses the significance of energy to our life and our life-styles. The document is designed to be used in a variety of ways--as background reading for a mini-conference on energy legislation and the geographic problems that are…

  16. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  17. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  18. 75 FR 11164 - Integration of Variable Energy Resources; Notice Extending Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Power Administration (BPA) filed a motion requesting an extension of at least fourteen days.\\2\\ \\1\\ Integration of Variable Energy Resources, 130 FERC ] 61,053 (2010). \\2\\ BPA indicates, however, that...

  19. Proceedings of the National Conference on Energy Resource Management. Volume 1: Techniques, Procedures and Data Bases

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O. (Editor); Schiffman, Y. M. (Editor)

    1982-01-01

    Topics dealing with the integration of remotely sensed data with geographic information system for application in energy resources management are discussed. Associated remote sensing and image analysis techniques are also addressed.

  20. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Development Office (IEED) authorized by OMB Control Number 1076-0167. This information collection expires June... Number: 1076-0167. Title: Tribal Energy Resource Agreements, 25 CFR 224. Brief Description of...

  1. Alternative Resources for Curriculum Balance in Nutrition, Economics, Energy, Environmental, Consumer & Citizenship Education.

    ERIC Educational Resources Information Center

    Harty, Sheila, Comp.

    This annotated directory lists selected informational and educational resources in the subject areas predominant in corporate education efforts. Organized by categories of nutrition, economics, energy, environmental consumer and citizenship education, this list is intended to help provide a balance of resources and perspectives for the classroom…

  2. Satellite Power System (SPS) resource requirements (critical materials, energy and land)

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    The resource impacts of the proposed satellite power system are evaluated. Three classes of resource impacts are considered separately: critical materials, energy, and land use. The analysis focuses on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.

  3. Energy resource recovery facility for Kent and Sussex counties, Delaware

    NASA Astrophysics Data System (ADS)

    1981-11-01

    An outline of factors which should be considered in planning a solid waste facility is presented. The following topics are considered: (1) information on the technical findings; (2) existing waste disposal facilities, future systems, and waste characteristics; (3) markets for the waste resources are identified; (4) presents a rational means for site evaluation by assigning numerical values to four principal factors in decision making; (5) the refuse derived fuel system and the modular combustion system is described; (6) risks and implementation issues for the most promising systems are identified.

  4. CONFRRM Solar Energy Resource Data: Data from the Cooperative Network for Renewable Resource Measurements

    DOE Data Explorer

    The Cooperative Network for Renewable Resource Measurements (CONFRRM) is a cooperative effort between NREL and other agencies to conduct long-term solar radiation and wind measurements at selected locations in the United States. CONFRRM expands the geographic coverage of measurement locations and provides high quality data for determining site-specific resources, as well as data for the validation and testing of models to predict available resources based on meteorological or satellite data. Twelve sites are currently active in the CONFRRM network. CONFRRM complements and provides additional geographic coverage to the National Oceanic and Atmospheric Administration's (NOAA's) Integrated Surface Irradiance Study (ISIS) network. Solar data elements measured and reported by the CONFRRM sites include global horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance measured with a LI-COR pyranometer. Meteorological data include air temperature, relative humidity, pressure, wind speed, wind direction and peak wind speed. Data logger temperature and battery voltage may also be reported. Prior to January 1, 1996, five CONFRRM sites together with South Caroline State College in Orangeburg, South Carolina, made up the Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network, located in the Southeastern United States. In January 1997 the HBCU sites became part of CONFRRM.

  5. Integrated Potential-field Studies in Support of Energy Resource Assessment in Frontier Areas of Alaska

    NASA Astrophysics Data System (ADS)

    Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.

    2008-05-01

    In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and

  6. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    USGS Publications Warehouse

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R., II

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  7. Study on Absorption Heat Pump Using Untapped Energy Resource

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroaki; Hihara, Eiji; Bando, Shigeru; Oka, Masahiro; Ichikawa, Toru; Kojima, Hiroshi

    The spread of absorption heat pump is considered an effective strategy to reduce the emission of greenhouse gases andthe heat island impact. However, its large volume and low efficiency as compare to vapor-compression system haverestricted its application area. In order to develop a compact and high-efficiency absorption heat pump, we propose a newtype of system which adopting triple effect cycle at cooling, while double effect at heating. In addition, unused energy,such as sewage water, is used in this system to improve the COP furthermore. System performances were evaluated by discussing the COP, highest pressure, highest temperature, strongest solutionconcentration, and energy consumption at part-load operation. By using sewage water as heat source, COP increaseswhile the highest pressure, highest temperature and strongest solution concentration decrease. From a standpointofperformance at heating and energy consumption, it is found that the proposed system works well and more effective thanthe existing system.

  8. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    NASA Astrophysics Data System (ADS)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  9. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... different types of energy resources? 224.64 Section 224.64 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... develop that type of energy resource and will trigger the public notice and opportunity for...

  10. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... different types of energy resources? 224.64 Section 224.64 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... develop that type of energy resource and will trigger the public notice and opportunity for...

  11. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... different types of energy resources? 224.64 Section 224.64 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... develop that type of energy resource and will trigger the public notice and opportunity for...

  12. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... different types of energy resources? 224.64 Section 224.64 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... develop that type of energy resource and will trigger the public notice and opportunity for...

  13. 25 CFR 224.64 - How may a tribe assume management of development of different types of energy resources?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... different types of energy resources? 224.64 Section 224.64 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... Requirements § 224.64 How may a tribe assume management of development of different types of energy resources... develop that type of energy resource and will trigger the public notice and opportunity for...

  14. Evaluation of reed resources in Latvia and analysis of its use for energy production.

    PubMed

    Cubars, Edgars; Noviks, Gotfrids

    2012-04-01

    The increasing demand for energy, limited resources of fossil fuel, as well as pollution of the environment and changes in the global climate have raised more interest about the renewable resources. The use of renewable resources has become a very important partof European Union policy. The aim of the paper was to analyse reed resources in Latvia, its dynamics, volume and quality to produce clean energy. The use of reeds as a renewable energy resource contributes in minimizing fossil fuel consumption. The paper presents the results of a research of reed resources in lakes of Latgale (a region in Latvia). The investigation of reed resources showed that in the region they are scattered and rational usage of them is connected with environmental aspects. The greatest amounts of reed resources are concentrated in the biggest lake in Latvia- Lubana Lake and near to it. Studies showed thatthe reed areas in Lubana Lake and Kvapanu ponds have doubled since 1997 and as a result these water reservoirs are becoming overgrown. Using direct measurement methods and metering from distance, it was stated that the total reed resources of greatest Lake - Lubanas are about 6830 tons year(-1) in area of 734 hectares and are situated in 701 reed blocks. The aggregated reed resources of Latgale region are 18 000 tons year(-1) of dry biomass. The investigation proved that reed resources of the region are sufficient to replace up to 21 thousand tons of different fossil fuels. The physical properties of the reed were measured. Carbon quantity, ash content and structure, moisture content proved that reeds are a profitable fuel for heat energy production. Balanced harvesting of reed gives a positive influence on environment.

  15. Energy Resources Available to the United States, 1985 to 2000.

    ERIC Educational Resources Information Center

    Hayes, Earl T.

    1979-01-01

    Our energy growth is slowing down and will level off in the 1990s. Our oil and gas production passed a peak in the early 1970s. Coal is the only fossil fuel capable of increased production. Finding rates for petroleum, natural gas, and uranium are less than half what they were twenty years ago. (Author/BB)

  16. Exploring constrained quantum control landscapes

    NASA Astrophysics Data System (ADS)

    Moore, Katharine W.; Rabitz, Herschel

    2012-10-01

    The broad success of optimally controlling quantum systems with external fields has been attributed to the favorable topology of the underlying control landscape, where the landscape is the physical observable as a function of the controls. The control landscape can be shown to contain no suboptimal trapping extrema upon satisfaction of reasonable physical assumptions, but this topological analysis does not hold when significant constraints are placed on the control resources. This work employs simulations to explore the topology and features of the control landscape for pure-state population transfer with a constrained class of control fields. The fields are parameterized in terms of a set of uniformly spaced spectral frequencies, with the associated phases acting as the controls. This restricted family of fields provides a simple illustration for assessing the impact of constraints upon seeking optimal control. Optimization results reveal that the minimum number of phase controls necessary to assure a high yield in the target state has a special dependence on the number of accessible energy levels in the quantum system, revealed from an analysis of the first- and second-order variation of the yield with respect to the controls. When an insufficient number of controls and/or a weak control fluence are employed, trapping extrema and saddle points are observed on the landscape. When the control resources are sufficiently flexible, solutions producing the globally maximal yield are found to form connected "level sets" of continuously variable control fields that preserve the yield. These optimal yield level sets are found to shrink to isolated points on the top of the landscape as the control field fluence is decreased, and further reduction of the fluence turns these points into suboptimal trapping extrema on the landscape. Although constrained control fields can come in many forms beyond the cases explored here, the behavior found in this paper is illustrative of

  17. Evaluation Framework and Tools for Distributed Energy Resources

    SciTech Connect

    Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay , Chris

    2003-02-01

    The Energy Information Administration's (EIA) 2002 Annual Energy Outlook (AEO) forecast anticipates the need for 375 MW of new generating capacity (or about one new power plant) per week for the next 20 years, most of which is forecast to be fueled by natural gas. The Distributed Energy and Electric Reliability Program (DEER) of the Department of Energy (DOE), has set a national goal for DER to capture 20 percent of new electric generation capacity additions by 2020 (Office of Energy Efficiency and Renewable Energy 2000). Cumulatively, this amounts to about 40 GW of DER capacity additions from 2000-2020. Figure ES-1 below compares the EIA forecast and DEER's assumed goal for new DER by 2020 while applying the same definition of DER to both. This figure illustrates that the EIA forecast is consistent with the overall DEER DER goal. For the purposes of this study, Berkeley Lab needed a target level of small-scale DER penetration upon which to hinge consideration of benefits and costs. Because the AEO2002 forecasted only 3.1 GW of cumulative additions from small-scale DER in the residential and commercial sectors, another approach was needed to estimate the small-scale DER target. The focus here is on small-scale DER technologies under 500 kW. The technology size limit is somewhat arbitrary, but the key results of interest are marginal additional costs and benefits around an assumed level of penetration that existing programs might achieve. Berkeley Lab assumes that small-scale DER has the same growth potential as large scale DER in AEO2002, about 38 GW. This assumption makes the small-scale goal equivalent to 380,000 DER units of average size 100 kW. This report lays out a framework whereby the consequences of meeting this goal might be estimated and tallied up. The framework is built around a list of major benefits and a set of tools that might be applied to estimate them. This study lists some of the major effects of an emerging paradigm shift away from central

  18. Long term variability of wind energy resources in Hungary

    NASA Astrophysics Data System (ADS)

    Peline Nemeth, Csilla; Bartholy, Judit; Pongracz, Rita

    2016-04-01

    Hungary is targeting to double green its energy capacity by 2020. Currently, the total capacity of 172 wind turbines in Hungary is 329 MW, which is less than 1.5% of total energy consumption of the country. Different scenarios suggest that the capacity for the wind energy will increase to around 1000 MW by 2030, which highlights the importance of projecting the potential changes of the available wind energy. For this purpose, simulated wind climate variability is evaluated for the future periods of 2021-2050 and 2071-2100 relative to the 1961-1990 reference period. The research is using the following main steps. (1) Since projected wind speed is highly overestimated by the simulation of the regional climate model RegCM for the reference period (1961-1990), a bias correction is necessary to apply to the raw simulated wind data using CARPATCLIM as a reference database. The bias correction method is based on fitting the empirical cumulative density functions of simulated daily time series to the observations for each gridcell using monthly multiplicative correction factors. (2) Thus, for the evaluation of the projected climate change, bias-corrected RegCM outputs are used. Projected monthly wind speed changes in the median and the 90th percentile are relatively small (below 0.4 m/s and 0.6 m/s, respectively) for both future periods (2021-2050 and 2071-2100), however, estimated monthly changes of the 99th percentile may reach 2 m/s in several regions in the country. Differences of the medians do not exceed 0.4 m/s. (3) In order to estimate the available wind energy in the country, changes of the third power of daily wind speed at 100 meter averaged for northwestern gridcells (where most of the wind parks are installed) are calculated for the future periods of 2021-2050 and 2071-2100 relative to the 1961-1990 reference period. Based on the RegCM regional climate model simulations for the Hungary, as a consequence of warming climatic conditions, the available wind energy

  19. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  20. Assessment of grid-friendly collective optimization framework for distributed energy resources

    SciTech Connect

    Pensini, Alessandro; Robinson, Matthew; Heine, Nicholas; Stadler, Michael; Mammoli, Andrea

    2015-11-04

    Distributed energy resources have the potential to provide services to facilities and buildings at lower cost and environmental impact in comparison to traditional electric-gridonly services. The reduced cost could result from a combination of higher system efficiency and exploitation of electricity tariff structures. Traditionally, electricity tariffs are designed to encourage the use of ‘off peak’ power and discourage the use of ‘onpeak’ power, although recent developments in renewable energy resources and distributed generation systems (such as their increasing levels of penetration and their increased controllability) are resulting in pressures to adopt tariffs of increasing complexity. Independently of the tariff structure, more or less sophisticated methods exist that allow distributed energy resources to take advantage of such tariffs, ranging from simple pre-planned schedules to Software-as-a-Service schedule optimization tools. However, as the penetration of distributed energy resources increases, there is an increasing chance of a ‘tragedy of the commons’ mechanism taking place, where taking advantage of tariffs for local benefit can ultimately result in degradation of service and higher energy costs for all. In this work, we use a scheduling optimization tool, in combination with a power distribution system simulator, to investigate techniques that could mitigate the deleterious effect of ‘selfish’ optimization, so that the high-penetration use of distributed energy resources to reduce operating costs remains advantageous while the quality of service and overall energy cost to the community is not affected.

  1. Global impacts of energy demand on the freshwater resources of nations.

    PubMed

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  2. Global impacts of energy demand on the freshwater resources of nations

    PubMed Central

    Holland, Robert Alan; Scott, Kate A.; Flörke, Martina; Brown, Gareth; Ewers, Robert M.; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-01-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy. PMID:26627262

  3. The Fourth R. Resourcefulness in School Energy Conservation. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Tenneco, Inc., Houston, TX.

    An energy audit is a building inspection that, when complete, provides a profile of the building's energy usage. The energy audit determines how energy is used; simple maintenance and operating procedures to conserve energy; and the need, if any, for purchase of new energy saving equipment or modifications to the building. Schoolhouse Energy…

  4. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    SciTech Connect

    Wan, Y.; Renne, O.D.; Junfeng, Li

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  5. Early organic evolution: Implications for mineral and energy resources

    SciTech Connect

    Schidlowski, M.

    1992-01-01

    Early Organic Evolution is the proceedings of the ninth Alfred Wegener Conference, the final meeting of IGCP Project 157 held in Germany in 1988. Over the past 15 years, Project 157 has promoted the blending of organic geochemistry, economic geology, and evolutionary biology. This IGCP publication covers a diverse set of topics and truly reflects the interdisciplinary nature of the field of early organic evolution. In the second and largest section, seventeen papers on organic matter in ancient sediments discuss the chemical analysis of early sediments, gas, and oil. The reader is treated to a review of carbon isotope chemistry and a [delta][sup 13]C walk through the past 3.8 billion years, and even deeper yet into the mantle. Following this is a series of papers carefully describing elemental, isotopic, and organic geochemical (particularly biomarker) data from ancient sediments found throughout the earth. This section ends very strongly with the paper by Fowler on the influence of a single alga on Ordovician oils and rocks from Canada. He first gives a detailed account of the considerable chemical and microscopic evidence showing that minimally reworked Gloeocapsomorpha prisca is the main contributor of organic matter to the oil and rock and then goes on to discuss the nature of the organism. In general, this book reviews information presented in other places, but still serves as a good resource for those interested in the evolution of the Earth.

  6. FLASTAR: Florida Alliance for Saving Taxes and Energy Resources. Final Report.

    ERIC Educational Resources Information Center

    Sherwin, John R.; Parker, Danny S.

    A study of the Florida Public Building Loan Concept pilot program determined its effectiveness in helping to upgrade building energy systems. The pilot program, termed FLASTAR (Florida Alliance for Saving Taxes and Resources), involved the comprehensive metering of an elementary school to demonstrate energy savings potential after retrofitting…

  7. Developing Clean Energy Projects on Tribal Lands: Data and Resources for Tribes (Book)

    SciTech Connect

    Not Available

    2012-12-01

    This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential maps for various technologies, information about the activities of DOE-IE, and resources for Tribes.

  8. Energy Conservation in Construction Trades. Special Packages: Instructional Resources for Vocational Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    Designed for secondary and postsecondary vocational teachers and administrators, this resource package on energy conservation in construction trades contains three sections of information. Section I provides an instructional module (developed by the Wisconsin Vocational Studies Center) on solar energy; the module is organized into seven units:…

  9. Proceedings of the National Conference on Energy Resource Management. Volume 2: Applications

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O. (Editor); Schiffman, Y. M. (Editor)

    1982-01-01

    Subject areas related to the integration of remotely sensed data with geographic information systems for application in energy resource management are covered. The current trends and advances in the application of these systems to a number of energy concerns are addressed.

  10. Socio-Cultural Factors and Energy Resource Development in Rural Areas in the West.

    ERIC Educational Resources Information Center

    Albrecht, Stan L.

    Drawing upon and synthesizing social and demographic data (1940-70) from 14 counties in the Rocky Mountain West which are currently facing extensive population growth as the result of large scale energy resource development, a preliminary model of potential sociocultural impact was developed. Including national energy needs and traditional…

  11. Gills Onions Advanced Energy Recovery System: Turning a Waste Liability into a Renewable Resource

    DTIC Science & Technology

    2011-01-13

    Anaerobic Municipal Solid Waste Food Waste from Residential & Food Service Digestion Fats, Oil, and Grease...FOG) from Food Service Anaerobic Methane Wastewater Treatment Bi lid Digestion Fuel Cells oso s Think Holistically! Your Take Away Points...Gills Onions Advanced Energy Recovery System Turning a Waste Liability into a Renewable Resource Waste to Energy Using Fuel Cells

  12. Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Suter, James L.; Sprik, Michiel; Boek, Edo S.

    2012-08-01

    Ab initio Molecular dynamics have been performed to study the free energy of adsorption of alkali atoms onto smectite clay surfaces and to identify the most favourable region in the interlayer for the cations. This is achieved by potential of mean force calculations using a constraint method to determine the lowest free energy configurations of lithium, potassium and sodium beidellite and sodium montmorillonite clays with a monolayer and bilayer of water present in the interlayer region. The constraint method has allowed us to examine the changes in the lowest free energy configuration for each ion with increasing hydration. From this, we can interpret the likelihood of clay swelling from the monolayer to bilayer coverage and compare with experimental observations. We find, that with a bilayer of water present, both lithium beidellite and sodium montmorillonite have their free energy minimum in the centre of the interlayer. For monolayer coverage, the free energy minimum for lithium, sodium and potassium beidellite is approximately the mid-point of the interlayer. Na-beidellite has a lowest free energy region at 6.1 Å from the centre of the clay layer for both mono- and bi-layer coverage, while for the potassium counter-ion, commonly used as swelling inhibitor, the free energy profile for K-beidellite shows peaks close to both surfaces at approximately 6.2 and 8.6 Å. We find that for systems where the free energy minimum remains in the middle of the interlayer when the hydration levels increase from monolayer to bilayer, it is known experimentally that these systems will swell in contact with water. The move to the middle of the interlayer with increasing hydration is associated with the full hydration sphere of the ion being composed purely of water oxygen atoms, and no clay surface oxygen atoms.

  13. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  14. Managing large energy and mineral resources (EMR) projects in challenging environments

    NASA Astrophysics Data System (ADS)

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their

  15. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.

    PubMed

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π(∗) ((1)La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the (1)La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral (1)La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  16. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  17. A framework for quantitative assessment of impacts related to energy and mineral resource development

    USGS Publications Warehouse

    Haines, Seth S.; Diffendorfer, James; Balistrieri, Laurie S.; Berger, Byron R.; Cook, Troy A.; Gautier, Donald L.; Gallegos, Tanya J.; Gerritsen, Margot; Graffy, Elisabeth; Hawkins, Sarah; Johnson, Kathleen; Macknick, Jordan; McMahon, Peter; Modde, Tim; Pierce, Brenda; Schuenemeyer, John H.; Semmens, Darius; Simon, Benjamin; Taylor, Jason; Walton-Day, Katherine

    2013-01-01

    Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sage grouse leks and piñon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. The framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.

  18. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca)

    SciTech Connect

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2004-04-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  19. Constraining the density dependence of the symmetry energy using the multiplicity and average pT ratios of charged pions

    NASA Astrophysics Data System (ADS)

    Cozma, M. D.

    2017-01-01

    The charged pion multiplicity ratio in intermediate-energy heavy-ion collisions, a probe of the density dependence of symmetry energy above the saturation point, has been proven in a previous study to be extremely sensitive to the strength of the isovector Δ (1232 ) potential in nuclear matter. As there is no knowledge, either from theory or experiment, about the magnitude of this quantity, the extraction of constraints on the slope of the symmetry energy at saturation by using exclusively the mentioned observable is hindered at present. It is shown that, by including the ratio of average pT of charged pions / in the list of fitted observables, the noted problem can be circumvented. A realistic description of this observable requires accounting for the interaction of pions with the dense nuclear matter environment by the incorporation of the so-called S -wave and P -wave pion optical potentials. This is performed within the framework of a quantum molecular dynamics transport model that enforces the conservation of the total energy of the system. It is shown that constraints on the slope of the symmetry energy at saturation density and the strength of the Δ (1232) potential can be simultaneously extracted. A symmetry energy with a value of the slope parameter L >50 MeV is favored, at 1 σ confidence level, from a comparison with published FOPI experimental data. A precise constraint will require experimental data more accurate than presently available, particularly for the charged pion multiplicity ratio, and better knowledge of the density and momentum dependence of the pion potential for the whole range of these two variables probed in intermediate-energy heavy-ion collisions.

  20. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    NASA Astrophysics Data System (ADS)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  1. Using radiative energy losses to constrain the magnetization and magnetic reconnection rate at the base of black hole jets

    NASA Astrophysics Data System (ADS)

    Potter, William J.

    2017-02-01

    We calculate the severe radiative energy losses which occur at the base of black hole jets using a relativistic fluid jet model, including in situ acceleration of non-thermal leptons by magnetic reconnection. Our results demonstrate that including a self-consistent treatment of radiative energy losses is necessary to perform accurate magnetohydrodynamic simulations of powerful jets and that jet spectra calculated via post-processing are liable to vastly overestimate the amount of non-thermal emission. If no more than 95 per cent of the initial total jet power is radiated away by the plasma travels as it travels along the length of the jet, we can place a lower bound on the magnetization of the jet plasma at the base of the jet. For typical powerful jets, we find that the plasma at the jet base is required to be highly magnetized, with at least 10 000 times more energy contained in magnetic fields than in non-thermal leptons. Using a simple power-law model of magnetic reconnection, motivated by simulations of collisionless reconnection, we determine the allowed range of the large-scale average reconnection rate along the jet, by restricting the total radiative energy losses incurred and the distance at which the jet first comes into equipartition. We calculate analytic expressions for the cumulative radiative energy losses due to synchrotron and inverse-Compton emission along jets, and derive analytic formulae for the constraint on the initial magnetization.

  2. Analysis of requirements for accelerating the development of geothermal energy resources in California

    NASA Technical Reports Server (NTRS)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  3. A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points

    NASA Astrophysics Data System (ADS)

    Lajnef, N.; Burgueño, R.; Borchani, W.; Sun, Y.

    2014-05-01

    A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer’s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters’ natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (≪1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.

  4. Geologic sequestration of carbon dioxide - an energy resource perspective

    SciTech Connect

    Robert C. Burruss; Sean T. Brennan

    2003-03-15

    Most energy used to meet human needs is derived from the combustion of fossil fuels (natural gas, oil, and coal), which releases carbon to the atmosphere, primarily as carbon dioxide (CO{sub 2}). The atmospheric concentration of CO{sub 2}, a greenhouse gas, is increasing, raising concerns that solar heat will be trapped and the average surficial temperature of the Earth will rise in response. Global warming studies predict that climate changes resulting from increases in atmospheric CO{sub 2} will adversely affect life on Earth. In the 200 years since the industrial revolution, the world's population has grown from about 800 million to over 6 billion people and the CO{sub 2} content of the atmosphere has risen from about 280 to about 360 parts per million by volume, a 30 percent increase. International concern about potential global climate change has spurred discussions about limiting the amount of CO{sub 2} and other greenhouse gases released to the atmosphere. 1 ref., 3 figs.

  5. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  6. Federal Energy Resources Modernization Coordinating Committee; Semiannual report, April 1, 1992--September 30, 1992

    SciTech Connect

    Parker, G. B.

    1993-04-01

    This report summarizes the broad range of activities that are focused on meeting the President's Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the Federal Energy Resource Modernization (FERM) Coordinating Committee, and as such include activities undertaken from April 1, 1992, through September 30, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for federal energy managers to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems revitalization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities. Lighting systems and air conditioning projects at federal facilities, especially military bases are updated.

  7. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  8. Thermal-based modeling of coupled carbon, water and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Anderson, M. C.; Houborg, R.; Gitelson, A.; Kustas, W. P.

    2014-10-01

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light-use-efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of Absorbed Photosynthetically Active Radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote sensing-based Two-Source Energy Balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is non-linearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in-situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  9. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Anderson, M. C.; Houborg, R.; Gitelson, A.; Kustas, W. P.

    2015-03-01

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  10. Essays on environmental, energy, and natural resource economics

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    My dissertation focuses on examining the interrelationship among the environment, energy and economic development. In the first essay, I explore the effects of increased uncertainty over future output prices, input costs and productivity levels on intertemporal emission permits trading. In a dynamic programming setting, a permit price is a convex function of each of these three sources of uncertainty. Increased uncertainty about future market conditions increases the expected permit price and causes risk-neutral firms to reduce ex ante emissions to smooth marginal abatement costs over time. Empirical analysis shows that increased price volatility induced by electricity market restructuring could explain 8-11% of the allowances banked during Phase I of the U.S. sulfur dioxide trading program. Numerical simulation suggests that high uncertainty may generate substantial initial compliance costs, thereby deterring new entrants and reducing efficiency; sharp emission spikes are also more likely to occur under industry-wide uncertainty shocks. In the second essay, I examine whether electricity restructuring improves the efficiency of U.S. nuclear power generation. Based on the full sample of 73 investor-owned nuclear plants in the United States from 1992 to 1998, I estimate cross-sectional and longitudinal efficiency changes associated with restructuring, at the plant level. Various modeling strategies are presented to deal with the policy endogeneity bias that high cost plants are more likely to be restructured. Overall, I find a strikingly positive relationship between the multiple steps of restructuring and plant operating efficiency. In the third essay, I estimate the economic impact of China's national land conversion program on local farm-dependent economies. The impact of the program on 14 industrial sectors in Gansu provinces are investigated using an input-output model. Due to regulatory restrictions, the agricultural sector cannot automatically expand or shrink

  11. Constraining in-medium heavy-quark energy-loss mechanisms via angular correlations between heavy and light mesons

    NASA Astrophysics Data System (ADS)

    Rohrmoser, M.; Gossiaux, P.-B.; Gousset, T.; Aichelin, J.

    2017-01-01

    Two-particle correlations obtained from parton showers that pass the hot and dense medium of the quark gluon plasma (QGP) can be used as an alternative observable, in addition to the combination of the nuclear modification factor RAA and the elliptic flow v 2, to study the mechanisms of in-medium heavy quark energy-loss. In particular, angular correlations represent a promising tool to distinguish between energy loss due to collisional and radiative interactions of jet and medium particles. To this end, parton cascades were created in Monte-Carlo simulations, where individual particles can undergo both parton splitting as well as an effective jet-medium interaction. A first model simulates the effects of induced radiations on parton cascades. Its consequences on angular correlations of partons within jets were studied in detail, with particular focus on angular broadening. The results can be compared to a second model that effectively describes elastic scatterings of jet and medium particles.

  12. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    SciTech Connect

    Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

    2010-06-10

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

  13. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    NASA Astrophysics Data System (ADS)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  14. Renewable-energy-resource options for the food-processing industry

    SciTech Connect

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.

    1981-09-01

    The food processing industry generates significant quantities of organic process wastes which often require treatment prior to disposal or result in additional expenses for disposal. The food processing industry also requires fuel and electricity to provide the process energy to convert raw materials into finished food products. Depending on the particular process, organic wastes can represent a potential resource for conversion to energy products that can be used for providing process energy or other energy products. This document reports the results of an evaluation of renewable energy resource options for the food processing industry. The options evaluated were direct combustion for providing process heat, fermentation for ethanol production and anaerobic digestion for generation of methane.

  15. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  16. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  17. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  18. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  19. A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems

    SciTech Connect

    Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv; Jayaraman, Prem Prakash; Kolodziej, Joanna; Balaji, Pavan; Zeadally, Sherali; Malluhi, Qutaibah Marwan; Tziritas, Nikos; Vishnu, Abhinav; Khan, Samee U.; Zomaya, Albert

    2014-06-06

    In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subject that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.

  20. Results at Mallik highlight progress in gas hydrate energy resource research and development

    USGS Publications Warehouse

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  1. Thorium Deposits of the United States - Energy Resources for the Future?

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Gillerman, Virginia S.; Armbrustmacher, Theodore J.

    2009-01-01

    Many nations are exploring new ways to meet their growing energy supply needs, with a particular focus upon methods that produce lower carbon dioxide emissions compared to traditional oil, natural gas, and coal power plants. As a result, thorium-based nuclear power has experienced renewed attention as a potential energy source. Thus, it benefits the United States and other countries to identify and evaluate their indigenous thorium resources. This report describes the geology and resources of the principal thorium districts of the United States.

  2. Local government involvement in long term resource planning for community energy systems

    SciTech Connect

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  3. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  4. Joint Resource Allocation of Spectrum Sensing and Energy Harvesting in an Energy-Harvesting-Based Cognitive Sensor Network.

    PubMed

    Liu, Xin; Lu, Weidang; Ye, Liang; Li, Feng; Zou, Deyue

    2017-03-16

    The cognitive sensor (CS) can transmit data to the control center in the same spectrum that is licensed to the primary user (PU) when the absence of the PU is detected by spectrum sensing. However, the battery energy of the CS is limited due to its small size, deployment in atrocious environments and long-term working. In this paper, an energy-harvesting-based CS is described, which senses the PU together with collecting the radio frequency energy to supply data transmission. In order to improve the transmission performance of the CS, we have proposed the joint resource allocation of spectrum sensing and energy harvesting in the cases of a single energy-harvesting-based CS and an energy-harvesting-based cognitive sensor network (CSN), respectively. Based on the proposed frame structure, we have formulated the resource allocation as a class of joint optimization problems, which seek to maximize the transmission rate of the CS by jointly optimizing sensing time, harvesting time and the numbers of sensing nodes and harvesting nodes. Using the half searching method and the alternating direction optimization, we have achieved the sub-optimal solution by converting the joint optimization problem into several convex sub-optimization problems. The simulation results have indicated the predominance of the proposed energy-harvesting-based CS and CSN models.

  5. Joint Resource Allocation of Spectrum Sensing and Energy Harvesting in an Energy-Harvesting-Based Cognitive Sensor Network

    PubMed Central

    Liu, Xin; Lu, Weidang; Ye, Liang; Li, Feng; Zou, Deyue

    2017-01-01

    The cognitive sensor (CS) can transmit data to the control center in the same spectrum that is licensed to the primary user (PU) when the absence of the PU is detected by spectrum sensing. However, the battery energy of the CS is limited due to its small size, deployment in atrocious environments and long-term working. In this paper, an energy-harvesting-based CS is described, which senses the PU together with collecting the radio frequency energy to supply data transmission. In order to improve the transmission performance of the CS, we have proposed the joint resource allocation of spectrum sensing and energy harvesting in the cases of a single energy-harvesting-based CS and an energy-harvesting-based cognitive sensor network (CSN), respectively. Based on the proposed frame structure, we have formulated the resource allocation as a class of joint optimization problems, which seek to maximize the transmission rate of the CS by jointly optimizing sensing time, harvesting time and the numbers of sensing nodes and harvesting nodes. Using the half searching method and the alternating direction optimization, we have achieved the sub-optimal solution by converting the joint optimization problem into several convex sub-optimization problems. The simulation results have indicated the predominance of the proposed energy-harvesting-based CS and CSN models. PMID:28300763

  6. ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. II. LAGRANGIAN CONSTRAINED ANALYSIS

    SciTech Connect

    Vasil, Geoffrey M.; Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Wood, Toby S.

    2013-08-20

    The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set.

  7. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops

    PubMed Central

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links. PMID:26890878

  8. Energy Conservation and Gravity Waves in Sound-proof Treatments of Stellar Interiors. II. Lagrangian Constrained Analysis

    NASA Astrophysics Data System (ADS)

    Vasil, Geoffrey M.; Lecoanet, Daniel; Brown, Benjamin P.; Wood, Toby S.; Zweibel, Ellen G.

    2013-08-01

    The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set.

  9. Energy Conserving Lifestyles: Final Report to the California Energy Resources Conservation and Development Commission.

    ERIC Educational Resources Information Center

    Schwartz, Seymour I.

    This report examines the broad topic of energy use and its relationship to lifestyles. The emphasis is on three energy conserving lifestyle models: (1) the rural alternative lifestyle; (2) new towns; and (3) energy conserving subdivisions in existing cities. The first chapter presents an introduction. Chapter two examines the back-to-the-land…

  10. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    NASA Astrophysics Data System (ADS)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  11. Evaluating Programs That Promote Climate and Energy Education-Meeting Teacher Needs for Online Resources

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.

    2011-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.

  12. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    SciTech Connect

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but

  13. Adapting an evidence-based intervention for autism spectrum disorder for scaling up in resource-constrained settings: the development of the PASS intervention in South Asia

    PubMed Central

    Divan, Gauri; Hamdani, Syed Usman; Vajartkar, Vivek; Minhas, Ayesha; Taylor, Carol; Aldred, Catherine; Leadbitter, Kathy; Rahman, Atif; Green, Jonathan; Patel, Vikram

    2015-01-01

    Background Evidence-based interventions for autism spectrum disorders evaluated in high-income countries typically require highly specialised manpower, which is a scarce resource in most low- and middle-income settings. This resource limitation results in most children not having access to evidence-based interventions. Objective This paper reports on the systematic adaptation of an evidence-based intervention, the Preschool Autism Communication Therapy (PACT) evaluated in a large trial in the United Kingdom for delivery in a low-resource setting through the process of task-shifting. Design The adaptation process used the Medical Research Council framework for the development and adaptation of complex interventions, focusing on qualitative methods and case series and was conducted simultaneously in India and Pakistan. Results The original intervention delivered by speech and language therapists in a high-resource setting required adaptation in some aspects of its content and delivery to enhance contextual acceptability and to enable the intervention to be delivered by non-specialists. Conclusions The resulting intervention, the Parent-mediated intervention for Autism Spectrum Disorder in South Asia (PASS), shares the core theoretical foundations of the original PACT but is adapted in several respects to enhance its acceptability, feasibility, and scalability in low-resource settings. PMID:26243710

  14. 76 FR 37804 - NextEra Energy Resources, LLC, Peetz Logan Interconnect, LLC, PWEC, LLC; Notice of Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Energy Regulatory Commission NextEra Energy Resources, LLC, Peetz Logan Interconnect, LLC, PWEC, LLC...Era Energy Resources, LLC (NextEra) and two of its indirect subsidiaries, Peetz Logan Interconnect... convenience in this petition, all of NextEra's Logan County, Colorado projects collectively are...

  15. An analysis of wind and solar energy resources for the State of Kuwait

    NASA Astrophysics Data System (ADS)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  16. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  17. Geothermal energy resources of Navy/Marine Corps installations on the Atlantic and Gulf Coastal plain

    NASA Astrophysics Data System (ADS)

    Edsall, D. W.

    1980-03-01

    The search for alternative energy sources is of great importance to the U.S. Navy. Preliminary examination of data from the literature, bottom hole temperatures from existing deep wells, and heat flow measurements in wells drilled at selected sites as part of a current research program sponsored by the Department of Energy have demonstrated that low temperature waters (-212 F or 100 C) may be available at moderate depths in the major sedimentary basins along the Atlantic and east Gulf Coastal Plain. Although the possible geothermal energy resources present here are not sufficient for electrical power generation, they appear adequate for space heating and cooling. The Navy should take a leading role in planning and executing exploratory drilling and resource evaluation programs, especially at the following installations, all of which are major energy users: Norfolk, Portsmouth, and Virginia Beach, Virginia; Charleston, South Carolina; and Pensacola, Milton, and Panama City, Florida.

  18. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    SciTech Connect

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  19. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  20. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  1. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  2. On the intersection of two potential energy surfaces of the same symmetry. Systematic characterization using a Lagrange multiplier constrained procedure

    NASA Astrophysics Data System (ADS)

    Manaa, M. Riad; Yarkony, David R.

    1993-10-01

    Two nonrelativistic Born-Oppenheimer potential energy surfaces of the same space-spin symmetry may intersect on a surface of dimension N-2, where N is the number of internal nuclear degrees of freedom. Characterization of this entire surface can be quite costly. An algorithm, employing multiconfiguration self-consistent-field (MCSCF)/configuration interaction(CI) wave functions and analytic gradient techniques, is presented that avoids the determination of the full N-2 dimensional surface, while directly locating portions of the crossing surface that are energetically important. The algorithm determines extrema of the Lagrangian function LIJ(R,ξ,λ) = EI(R) + ξ1[EI(R) - EJ(R)] + ξ2HIJ(R)/2+ ∑Mk=1λkCk(R), where Ck(R) is any geometric equality constraint such as RKL2-αKL2=0, or RKL2-RMN2=0, RKL=‖RK-RL‖ and the ξ and λ are Lagrange multipliers. The efficacy of this algorithm is demonstrated using a MCSCF/first order CI description of 1,22A' states of HCO.

  3. Energy conservation in ethanol production from renewable resources and non-petroleum energy sources

    SciTech Connect

    Not Available

    1981-03-01

    The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

  4. Sizing Energy Storage to Accommodate High Penetration of Variable Energy Resources

    SciTech Connect

    Makarov, Yuri V.; Du, Pengwei; Kintner-Meyer, Michael C. W.; Jin, Chunlian; Illian, Howard F.

    2012-01-01

    Abstract—The variability and non-dispatchable nature of wind and solar energy production presents substantial challenges for maintaining system balance. Depending on the economic considerations, energy storage can be a viable solution to balance energy production with consumption. This paper proposes to use discrete Fourier transform to decompose the required balancing power into different time-varying periodic components, i.e., intra-week, intra-day, intra-hour, and real-time. Each component can be used to quantify the maximum energy storage requirement for different types of energy storage. This requirement is the physical limit that could be theoretically accommodated by a power system. The actual energy storage capacity can be further quantified within this limit by the cost-benefit analysis (future work). The proposed approach has been successfully used in a study conducted for the 2030 Western Electricity Coordinating Council (WECC) system model. Some results of this study are provided in this paper.

  5. Constraining the minute amount of audible energy radiated from binary collisions of light plastic spheres in conditions of incomplete angular coverage of the measured pressure.

    PubMed

    Petculescu, Andi; Riner, Joshua

    2010-10-01

    Usually, the energy released as air-coupled sound following a collision is dismissed as negligible. The goal of this Letter is to quantify the value of this small but measurable quantity, since it can be useful to impact studies. Measurements of sound radiation from binary collisions of polypropylene balls were performed in order to constrain the fraction of incident energy radiated as sound in air. In the experiments, one ball is released from rest, directly above a stationary target ball. The transient acoustic waveforms are detected by a microphone rotated about the impact point at a radius of 10 cm. The sound pressure was measured as a function of the polar angle θ (the azimuthal symmetry of the problem was verified by rotating the microphone in the horizontal plane). The angular pattern has two main lobes that are asymmetric with respect to the impact plane. This asymmetry is ascribable to interference and/or scattering effects. Gaps in the acoustic measurements at the "poles" (i.e., around 0° and 180°) pose a challenge similar to that of extrapolating the cosmic microwave background in the galactic "cut." The data was continued in the gaps by polynomial interpolation rather than least-squares fitting, a choice dictated by the accuracy of the reconstructed pattern. The acoustic energy radiated during the impact, estimated by multiplying the collision time by the sound intensity integrated over a spherical surface centered at the impact point, is calculated as four orders of magnitude smaller than the incident energy (0.23 μJ versus 1.6 mJ).

  6. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water.

    PubMed

    Cozzini, Pietro; Fornabaio, Micaela; Marabotti, Anna; Abraham, Donald J; Kellogg, Glen E; Mozzarelli, Andrea

    2002-06-06

    The prediction of the binding affinity between a protein and ligands is one of the most challenging issues for computational biochemistry and drug discovery. While the enthalpic contribution to binding is routinely available with molecular mechanics methods, the entropic contribution is more difficult to estimate. We describe and apply a relatively simple and intuitive calculation procedure for estimating the free energy of binding for 53 protein-ligand complexes formed by 17 proteins of known three-dimensional structure and characterized by different active site polarity. HINT, a software model based on experimental LogP(o/w) values for small organic molecules, was used to evaluate and score all atom-atom hydropathic interactions between the protein and the ligands. These total scores (H(TOTAL)), which have been previously shown to correlate with DeltaG(interaction) for protein-protein interactions, correlate with DeltaG(binding) for protein-ligand complexes in the present study with a standard error of +/-2.6 kcal mol(-1) from the equation DeltaG(binding) = -0.001 95 H(TOTAL) - 5.543. A more sophisticated model, utilizing categorized (by interaction class) HINT scores, produces a superior standard error of +/-1.8 kcal mol(-1). It is shown that within families of ligands for the same protein binding site, better models can be obtained with standard errors approaching +/-1.0 kcal mol(-1). Standardized methods for preparing crystallographic models for hydropathic analysis are also described. Particular attention is paid to the relationship between the ionization state of the ligands and the pH conditions under which the binding measurements are made. Sources and potential remedies of experimental and modeling errors affecting prediction of DeltaG(binding) are discussed.

  7. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  8. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  9. Energy and resource consumption of land-based hatchery systems for finfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early rearing of most marine species will be land-based because of the need for precise control of the rearing environment. This chapter evaluates the resource and energy requirements of six different types of land-based, hatchery production systems: flow-through with a gravity water supply, flo...

  10. Metadata in a Digital Special Library: The Energy and Environmental Information Resources Center in Lafayette, Louisiana.

    ERIC Educational Resources Information Center

    Foley, Dan

    1999-01-01

    Discusses three kinds of metadata--Dublin Core (DC), MARC21 (formerly USMARC), and Federal Geographic Data Committee (FGDC)--and how they are used in the Energy & Environmental Information Resources Center (EE-IR Center), a digital special library of text, numeric, and geospatial data in Lafayette, Louisiana. Includes 5 figures. (Contains 48…

  11. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania.

    PubMed

    Krause, Ariane; Rotter, Vera Susanne

    2017-07-15

    In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited.

  12. Finding a Place for Energy: Siting Coal Conversion Facilities. Resource Publications in Geography.

    ERIC Educational Resources Information Center

    Calzonetti, Frank J.; Eckert, Mark S.

    The process of identifying, licensing, and developing energy facility sites for the conversion of coal into more useful forms is the focus of this book, intended for geography students, professors, and researchers. The use of domestic coal resources will ameliorate U.S. dependency on imported fuel. However, because coal is a bulky, dirty fuel…

  13. Space technology in the discovery and development of mineral and energy resources

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.

    1977-01-01

    Space technology, applied to the discovery and extraction of mineral and energy resources, is summarized. Orbital remote sensing for geological purposes has been widely applied through the use of LANDSAT satellites. These techniques also have been of value for protection against environmental hazards and for a better understanding of crustal structure.

  14. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    SciTech Connect

    White, D.L.; Mihlmester, P.E.

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  15. Package of online Teacher Resources for Generate, the EPA Energy Game

    EPA Science Inventory

    These materials will enable teachers to make and utilize their own copy of the energy board game, called Generate, that has been developed in ORD and used in local EPA-RTP STEM outreach. The teacher resource package includes: (1) Webinar presentation for National Science Teach...

  16. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  17. Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328

    SciTech Connect

    Scott, G.

    2012-06-01

    In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

  18. Shallow Geothermal Admissibility Maps: a Methodology to Achieve a Sustainable Development of Shallow Geothermal Energy with Regards to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Bréthaut, D.; Parriaux, A.; Tacher, L.

    2009-04-01

    Implantation and use of shallow geothermal systems may have environmental impacts. Traditionally, risks are divided into 2 categories: direct and indirect. Direct risks are linked with the leakage of the circulating fluid (usually water with anti-freeze) of ground source heat pumps into the underground which may be a source of contamination. Indirect risks are linked with the borehole itself and the operation of the systems which can modify the groundwater flow, change groundwater temperature and chemistry, create bypasses from the surfaces to the aquifers or between two aquifers. Groundwater source heat pumps (GWSHP) may provoke indirect risks, while ground source heat pumps (GSHP) may provoke both direct and indirect risks. To minimize those environmental risks, the implantation of shallow geothermal systems must be regulated. In 2007, more than 7000 GSHP have been installed in Switzerland, which represents 1.5 Mio drilled meters. In the canton of Vaud, each shallow geothermal project has to be approved by the Department of the Environment. Approximately 1500 demands have been treated during 2007, about 15 times more than in 1990. Mapping shallow geothermal systems implantation restrictions due to environmental constrains permits: 1) to optimize the management and planning of the systems, 2) to minimize their impact on groundwater resources and 3) to facilitate administrative procedures for treating implantation demands. Such maps are called admissibility maps. Here, a methodology to elaborate them is presented and tested. Interactions between shallow geothermal energy and groundwater resources have been investigated. Admissibility criteria are proposed and structured into a flow chart which provides a decision making tool for shallow geothermal systems implantation. This approach has been applied to three areas of West Switzerland ranging from 2 to 6 km2. For each area, a geological investigation has been realized and complementary territorial information (e

  19. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix C - Validation Study

    SciTech Connect

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated.

  20. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.