Science.gov

Sample records for energy converter coupled

  1. Coupled Mooring Analyses for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Sirnivas, Senu; Yu, Yi-Hsiang; Hall, Matthew; Bosma, Bret

    2016-07-01

    A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.

  2. Coupled Mooring Analyses for the WEC-Sim Wave Energy Converter Design Tool

    SciTech Connect

    Sirnivas, Senu; Yu, Yi-Hsiang; Hall, Matthew; Bosma, Bret

    2016-06-24

    A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.

  3. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  4. Thermionic energy converters

    DOEpatents

    Monroe, Jr., James E.

    1977-08-09

    A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.

  5. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  6. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  7. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  8. Wind/water energy converter

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  9. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  10. Large wind energy converter: Growian 3 MW

    NASA Technical Reports Server (NTRS)

    Koerber, F.; Thiele, H. A.

    1979-01-01

    The main features of the Growian wind energy converter are presented. Energy yield, environmental impact, and construction of the energy converter are discussed. Reliability of the windpowered system is assessed.

  11. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  12. Radiant energy to electric energy converter

    NASA Technical Reports Server (NTRS)

    Sher, Arden (Inventor)

    1980-01-01

    Radiant energy is converted into electric energy by irradiating a capacitor including an ionic dielectric. The dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or silver bromide, so that a multiplicity of crystallites exist between electrodes of the capacitor. The radiant energy cyclically irradiates the dielectric so that the dielectric exhibits a cyclic photocapacitive like effect. Adjacent crystallites have abutting surfaces that enable the crystallites to effectively form a multiplicity of series capacitor elements between the electrodes. Each of the capacitor elements has a dipole layer only on or near its surface. The capacitor is initially charged to a voltage just below the dielectric breakdown voltage by connecting it across a DC source causing a current to flow through a charging resistor to the dielectric. The device can be utilized as a radiant energy detector or as a solar energy cell.

  13. Ocean floor mounting of wave energy converters

    DOEpatents

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  14. Laser energy converted into electric power

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1973-01-01

    Apparatus verifies concepts of converting laser energy directly into electric energy. Mirror, placed in beam and inclined at angle to it, directs small amount of incident radiation to monitor which establishes precise power levels and other beam characteristics. Second mirror and condensing lens direct bulk of laser energy into laser plasmadynamic converter.

  15. Controller for a wave energy converter

    DOEpatents

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  16. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  17. Real-time Coupled Ensemble Kalman Filter Forecasting & Nonlinear Model Predictive Control Approach for Optimal Power Take-off of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas; Previsic, Mirko

    2014-11-01

    In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the difficulty to increase the power take-off through the implementation of an active controller without a precise knowledge of the oncoming wavefield. This work represents the first attempt at defining a realistic control framework for optimal power take-off of a wave energy converter where the ocean wavefield is predicted through a nonlinear Ensemble Kalman filter which assimilates data from a wave measurement device, such as a Doppler radar or a measurement buoy. Knowledge of the future wave profile is then leveraged in a nonlinear direct multiple shooting model predictive control framework allowing the online optimization of the energy absorption under motion and machinery constraints of the device.

  18. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  19. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  20. Ocean wave energy converting vessel

    SciTech Connect

    Boyce, P.F.

    1986-08-26

    An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.

  1. Boost matrix converters in clean energy systems

    NASA Astrophysics Data System (ADS)

    Karaman, Ekrem

    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.

  2. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  3. Solar-energy-process-converter system

    SciTech Connect

    Shinn, W.A.

    1981-01-20

    A solar-energy-process-converter system whereby the energy from the sun is accumulated and projected by a parabolic reflector so as to impinge upon a cluster of thermocouples to create electrical energy for activating an electrolysis unit through which hydrogen and oxygen are generated and stored. The system can also include a steam-turbine electrical-generator plant that is adapted to be operated by the burning of the hydrogen and oxygen, and the gases can further be used to establish heat to drive a thermocouple electrical-generator plant, wherein the stored hydrogen is further employed as a fuel for vehicle and other engines.

  4. Energy utilization in fluctuating biological energy converters.

    PubMed

    Szőke, Abraham; Hajdu, Janos

    2016-05-01

    We have argued previously [Szoke et al., FEBS Lett. 553, 18-20 (2003); Curr. Chem. Biol. 1, 53-57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems.

  5. Energy utilization in fluctuating biological energy converters

    PubMed Central

    Szőke, Abraham; Hajdu, Janos

    2016-01-01

    We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems. PMID:27191009

  6. Stochastic Control of Inertial Sea Wave Energy Converter

    PubMed Central

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  7. Stochastic control of inertial sea wave energy converter.

    PubMed

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  8. Clustering of cycloidal wave energy converters

    SciTech Connect

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  9. Hot carrier metamaterial detectors and energy converters

    NASA Astrophysics Data System (ADS)

    Krayer, Lisa; Munday, Jeremy N.

    Metamaterials can be used to manipulate the flow of light in ways not typically available with traditional materials. Beyond their optical properties, metamaterials can be used as the basis for optoelectronic devices through the incorporation of a metal-semiconductor interface. The absorbed radiation in the metal can excite surface plasmons, which nonradiatively decay into hot electrons or holes that can be injected into the base semiconductor and contribute to photocurrent generation. In this talk, we will present our latest work on metamaterial photo-detectors and solar energy converters.

  10. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  11. Image processing to optimize wave energy converters

    NASA Astrophysics Data System (ADS)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  12. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOEpatents

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  13. Computer Simulation of a Traveling-Wave Direct Energy Converter

    NASA Astrophysics Data System (ADS)

    Katayama, Hideaki; Sato, Kunihiro; Miyawaki, Fujio

    Beam-circuit code is presented to simulate a Traveling-Wave Direct Energy Converter (TWDEC), which recovers the energy of fusion protons escaping from a FRC/D3He fusion reactor. A transmission line loop for propagation of the electrostatic traveling wave is designed using lumped constant elements L.C.R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson’s equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics. Traveling wave with a fixed frequency is excited spontaneously without any external power supply. The wave is kept its equilibrium state under loading, and the wave is stable to variation of the load.

  14. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  15. Converting acoustic energy into useful other energy forms

    DOEpatents

    Putterman, Seth J.; Barber, Bradley Paul; Hiller, Robert Anthony; Lofstedt, Ritva Maire Johanna

    1997-01-01

    Sonoluminescence is an off-equilibrium phenomenon in which the energy of a resonant sound wave in a liquid is highly concentrated so as to generate flashes of light. The conversion of sound to light represents an energy amplification of eleven orders of magnitude. The flashes which occur once per cycle of the audible or ultrasonic sound fields can be comprised of over one million photons and last for less 100 picoseconds. The emission displays a clocklike synchronicity; the jitter in time between consecutive flashes is less than fifty picoseconds. The emission is blue to the eye and has a broadband spectrum increasing from 700 nanometers to 200 nanometers. The peak power is about 100 milliWatts. The initial stage of the energy focusing is effected by the nonlinear oscillations of a gas bubble trapped in the liquid. For sufficiently high drive pressures an imploding shock wave is launched into the gas by the collapsing bubble. The reflection of the shock from its focal point results in high temperatures and pressures. The sonoluminescence light emission can be sustained by sensing a characteristic of the emission and feeding back changes into the driving mechanism. The liquid is in a sealed container and the seeding of the gas bubble is effected by locally heating the liquid after sealing the container. Different energy forms than light can be obtained from the converted acoustic energy. When the gas contains deuterium and tritium there is the feasibility of the other energy form being fusion, namely including the generation of neutrons.

  16. Loop Heat Pipe Operation with Thermoelectric Converters and Coupling Blocks

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Nagano, Hosei

    2007-01-01

    This paper presents theoretical and experimental studies on using thermoelectric converters (TECs) and coupling blocks to control the operating temperature of a miniature loop heat pipes (MLHP). The MLHP has two parallel evaporators and two parallel condensers, and each evaporator has its own integral compensation chamber (CC). A TEC is attached to each CC, and connected to the evaporator via a copper thermal strap. The TEC can provide both heating and cooling to the CC, therefore extending the LHP operating temperature over a larger range of the evaporator heat load. A bi-polar power supply is used for the TEC operation. The bipolar power supply automatically changes the direction of the current to the TEC, depending on whether the CC requires heating or cooling, to maintain the CC temperature at the desired set point. The TEC can also enhance the startup success by maintaining a constant CC temperature during the start-up transient. Several aluminum coupling blocks are installed between the vapor line and liquid line. The coupling blocks serve as a heat exchanger which preheats the cold returning liquid so as to reduce the amount of liquid subcooling, and hence the power required to maintain the CC at the desired set point temperature. This paper focuses on the savings of the CC control heater power afforded by the TECs when compared to traditional electric heaters. Tests were conducted by varying the evaporator power, the condenser sink temperature, the CC set point temperature, the number of coupling blocks, and the thermal conductance of the thermal strap. Test results show that the TECs are able to control the CC temperature within k0.5K under all test conditions, and the required TEC heater power is only a fraction of the required electric heater power.

  17. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  18. Parametric study of minimum converter loss in an energy-storage dc-to-dc converter

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1982-01-01

    Through a combination of analytical and numerical minimization procedures, a converter design that results in the minimum total converter loss (including core loss, winding loss, capacitor and energy-storage-reactor loss, and various losses in the semiconductor switches) is obtained. Because the initial phase involves analytical minimization, the computation time required by the subsequent phase of numerical minimization is considerably reduced in this combination approach. The effects of various loss parameters on the optimum values of the design variables are also examined.

  19. Converting Sunlight to Mechanical Energy: A Polymer Example of Entropy.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1987-01-01

    This experiment/demonstration provides elementary through high school science students with hands-on experience with polymer entropy. Construction of a simple machine for converting light into mechanical energy is described. (RH)

  20. Laser-to-electricity energy converter for short wavelengths

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1975-01-01

    Short-wavelength energy converter can be made using Schottky barrier structure. It has wider band gap than p-n junction silicon semiconductors, and thus it has improved response at wavelengths down to and including ultraviolet region.

  1. Traveling-Wave Direct Energy Converter for Fusion Products

    NASA Astrophysics Data System (ADS)

    Sato, Kunihiro; Katayama, Hideaki

    1999-11-01

    A Traveling-Wave Direct Energy Converter (TWDEC), which is designed to recover kinetic energy of fusion protons escaped from a FRC/ D^3He fusion reactor, is studied by numerical calculation and computer simulation. To develop a simulation code, a transmission line loop for an electrostatic traveling wave is designed using lumped constant elements L, C, R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson's equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics of the TWDEC. Traveling wave with a fixed frequency is excited spontaneously without any external electric power supply. High energy conversion rate of the TWDEC up to 0.8 is obtained both from orbit calculation and from computer simulation as a result of improvement of proton beam bunching. The wave keeps its equilibrium state under loading, and the wave responds to variation of the electric load stably.

  2. ENGINEERING INVESTIGATION OF A THERMOPHOTOVOLTAIC ENERGY CONVERTER.

    DTIC Science & Technology

    THERMOELECTRICITY, *PHOTOELECTRIC CELLS(SEMICONDUCTOR), *ENERGY CONVERSION, GENERATORS, ELECTRIC POWER PRODUCTION, POWER SUPPLIES, MATHEMATICAL ANALYSIS, PERFORMANCE(ENGINEERING), COOLING AND VENTILATING EQUIPMENT.

  3. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  4. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-07-01

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The US Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1,756 K (2,700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  5. Energy Savings Assessment for Digital-to-Analog Converter Boxes

    SciTech Connect

    Cheung, Hoi Ying Iris; Meier, Alan; Brown, Richard

    2011-01-18

    The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes.

  6. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  7. Converting energy to medical progress [nuclear medicine

    SciTech Connect

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  8. Microbial fuel cell energy harvesting using synchronous flyback converter

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Ren, Zhiyong Jason; Park, Jae-Do

    2014-02-01

    Microbial Fuel Cells (MFCs) use biodegradable substrates, such as wastewater and marine sediments to generate electrical energy. To harvest more energy from an MFC, power electronic converters have recently been used to replace resistors or charge pumps, because they have superior controllability on MFC's operating point and higher efficiency in energy storage for different applications. Conventional diode-based energy harvesters suffer from low efficiency because of the energy losses through the diode. Replacing the diode with a MOSFET can reduce the conduction loss, but it requires an isolated gate signal to control the floating secondary MOSFET, which makes the control circuitry complex. This study presents a new MFC energy harvesting regime using a synchronous flyback converter, which implements a transformer-based harvester with much simpler configuration and improves harvesting efficiency by 37.6% compared to a diode based boost converter, from 33.5% to 46.1%. The proposed harvester was able to store 2.27 J in the output capacitor out of 4.91 J generated energy from the MFC, while the boost converter can capture 1.67 J from 4.95 J.

  9. On the dynamics of a novel ocean wave energy converter

    NASA Astrophysics Data System (ADS)

    Orazov, B.; O'Reilly, O. M.; Savaş, Ö.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 25-65 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device's power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used.

  10. Efficiency of luminous-energy conversion in semiconducting photoelectrochemical converters

    SciTech Connect

    Kireev, V.B.; Trukhan, E.M.; Filimonov, D.A.

    1981-03-01

    Factors characterizing the conversion efficiency of luminous into chemical energy in semiconducting photoelectrochemical converters are examined. An expression for /gamma/sub //O is discussed in particular; /gamma/sub //O is the quantum yield of photocurrent of the minority carriers sustaining the reaction during which chemical energy is accumulated. The expression for /gamma/sub //O allows, both for the finite rate of electrode surface processes and for recombination in the semiconductor's space-charge layer. It is shown that over a wide range of converter parameters, recombination in the space-charge layer is one of the most important factors for the size of /gamma/sub //O. 17 refs.

  11. Development of a wind converter and investigation of its operational function. Part 1: Technical description of the wind energy converter

    NASA Astrophysics Data System (ADS)

    Molly, J. P.; Steinheber, R.

    1982-11-01

    A 10 kW wind energy converter was developed by using as far possible standard serial production parts. The design criteria and the description of the essential machinery components of the MODA 10 wind energy converter are discussed. For some special load cases the safety calculation of the important components is shown. The blade control system which qualified for small wind energy converters, is explained. Weight and cost of the MODA 10 are considered.

  12. Rectenna that converts infrared radiation to electrical energy

    DOEpatents

    Davids, Paul; Peters, David W.

    2016-09-06

    Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.

  13. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  14. Trimode Power Converter optimizes PV, diesel and battery energy sources

    NASA Astrophysics Data System (ADS)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  15. Development of compact thermal and electrical energy converters left heart assist systems.

    PubMed

    Moise, J C; Foerster, J M; Faeser, R J; Hellwig, J W

    1978-01-01

    The thermal converter for left heart assist systems consists of an engine which converts thermal energy to a flow of pressurized helium and a helium powered actuator/controller which powers and controls a PVAD pusher plate blood pump. The 0.43 L, 0.94 kg engine requires 20 watts of thermal input. In vitro and in vivo testing have demonstrated that the system synchronizes and provides left ventricle relief from 60 to 150 beats/min. The concepts potential for long life is based on: the inert environment for all internal components; the hermetic sealing capability resulting from a linear magnetic coupling blood pump drive; fluid control; and titanium external metal surfaces. Endurance testing has demonstrated that the converter shows promise of providing a high reliability 10 yr life. Many wear and fatigue sensitive components have demonstrated the 10 yr capability during accelerated life testing.

  16. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  17. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  18. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    SciTech Connect

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien; Ruehl, Kelley; Roy, Andre; Costello, Ronan; Laporte Weywada, Pauline; Bailey, Helen

    2017-01-01

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to model hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.

  19. Low Head, Vortex Induced Vibrations River Energy Converter

    SciTech Connect

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.

  20. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  1. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  2. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  3. Mode-size converter with high coupling efficiency and broad bandwidth.

    PubMed

    Fang, Qing; Song, Junfeng; Luo, Xianshu; Yu, Mingbin; Lo, Guoqiang; Liu, Yuliang

    2011-10-24

    An ultralow coupling loss and broad bandwidth fiber-to-waveguide mode-size converter is demonstrated for nano-scale waveguides on SOI platform using CMOS technology in this paper. The mode-size converter consists of a cantilevered PECVD SiO(2) waveguide and a-Si nano-tapers by removing the adjacent SiO(2) layer and underlying substrate Si. The a-Si waveguide is located at the center of the cantilevered SiO(2) waveguide. We characterized the cantilevered mode-size converter using cleaved optical single mode fiber with 10.5 µm mode field diameter. With refractive index (1.375) matching oil, the measured coupling efficiencies between the cleaved optical fiber and this converter are higher than 80% per facet and 70% per facet for TE and TM modes at 1600 nm, respectively. The polarization dependent loss and the coupling loss variation of this converter are less than 1.0 dB at the wavelength range of 1520~1640 nm. The 1-dB bandwidths for both TE and TM modes are more than 120 nm. The alignment tolerances for TE and TM modes are ± 2.8 µm and ± 2.1 µm at 1-dB excess loss in horizontal direction and vertical direction, respectively.

  4. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  5. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  6. PDT driven by energy-converting materials: a theoretical analysis

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.

    2009-02-01

    Materials have been developed which absorb radiation of one energy and emit light of another. We present a theoretical analysis of the use of these materials as light sources for photodynamic therapy (PDT). The advantage of this strategy is that radiation of higher particle energy (e.g. x ray or electron beam) or lower photon energy (e.g. infra-red) may have more favorable penetration in tissue or more readily available radiation sources than the radiation absorbed by the sensetizer. Our analysis is based on the transfer of energy from radiation fields to visible light. We analyze two scenarios: PDT pumped by (1) infrared light in a two-photon process and (2) ionizing radiation. In each case, we assume that the converting material and the sensitizer are matched sufficiently that the transfer of energy between them is essentially lossless. For the infinite and semiinfinite geometries typically used in PDT, we calculate the resulting photodynamic dose distribution, and compare it to the dose distribution expected for conventional PDT. We also calculate the dose of the incident beam (ionizing or infrared radiation) required to produce PDT-induced tumoricidal effects, and evaluate the expected toxicity in surrounding normal tissue. The toxicity is assumed to arise from thermal effects and acute ionizing radiation effects, for infrared and ionizing radiation, respectively. Our results predict that ionizing radiation will produce dose-limiting toxicity in most conventional geometries as a result of the high toxicity per unit energy of ionizing radiation. For infrared radiation, we predict that the toxicity can be moderated by proper choice of sensitizer and irradiation geometry and fractionation.

  7. Direct-coupling clutch control device for a torque converter in vehicular automatic transmission

    SciTech Connect

    Nishikawa, M.; Sakurai, Y.

    1986-01-21

    This patent describes a direct coupling clutch control device for a torque converter which is utilized in vehicular automatic transmissions. The appartus consists of a number of interactive components operating together to form a functional control device. The first member of the device described in the patent is a fluid-type torque converter equipped with an output element. Coupled to the torque converter is an auxiliary transmission which is capable of selecting any of a number of multi-staged transmission gear ratios. A hydraulic direct-coupling clutch is characterized in the patent as being located between the input and output members and functioning to mechanically couple these components. Closely associated with the clutch is a gear shift control modality which is discussed in detail in the patent in relation to its design function, of selecting any one transmission gear ratio in an automatic or manual fashion with the capacity for switching transmission modes engineered into the device. A direct-coupling clutch modality is depicted in the patent as possessing a variable characteristic by means of which the vehicle speed for commencing the actuation of the clutch is shifted with oil pressure magnitude to the lower speed side in correspondence with an automatic gear shift position of the gear shift control means and to the high speed side in accordance with a manual gear shift position.

  8. Selecting the pre-detection characteristics for fiber coupling of parametric down-converted biphoton modes

    NASA Astrophysics Data System (ADS)

    Anwar, Ali; Chithrabhanu, P.; Reddy, Salla Gangi; Lal, Nijil; Singh, R. P.

    2017-01-01

    Photon modes have an important role in characterizing the quantum sources of light. The two main pre-detection factors affecting the biphoton mode coupling in SPDC are the pump beam focusing parameter and the crystal thickness. We present the numerical and experimental results on the effect of pump focusing on conditional down-converted photon modes for a Type-I BBO crystal. We experimentally verify that biphoton coupling efficiency decreases asymptotically with pump beam focusing parameter. We attribute this behaviour to (a) the asymmetry in the spatial distribution of down-converted photons with the pump beam focusing parameter and (b) the ellipticity of biphoton modes introduced due to the focusing of the pump beam. We also show the ellipticity experimentally as well as quantify it with the focusing parameter. These results may be useful in selecting optimum conditions for generating efficient fiber coupled sources of heralded single photons and entangled photons for quantum information applications.

  9. Electron Thermionic Emission from Graphene and a Thermionic Energy Converter

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Jun; Ang, L. K.

    2015-01-01

    In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.

  10. Energy coupling in catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.; Choe, K. Y.

    1991-01-01

    The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported.

  11. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  12. A programmable transformer coupled converter for high-power space applications

    NASA Technical Reports Server (NTRS)

    Kapustka, R. E.; Bush, J. R., Jr.; Graves, J. R.; Lanier, J. R., Jr.

    1986-01-01

    A programmable transformer coupled converter (PTCC) is being developed by NASA/Marshall Space Flight Center for application in future large space power systems. The PTCC uses an internal microprocessor to control the output characteristics of its three Cuk integrated magnetics type power stages which have a combined capability of 5.4 kW (30 V at 180 A). Details of design trade-offs and test results are presented.

  13. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-11-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  14. Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling.

    PubMed

    Chiou, A; Yeh, P; Yang, C; Gu, C

    1995-05-15

    We report what is to our knowledge the first experimental demonstration of a photorefractive spatial mode converter (based on mutually pumped phase conjugation) that couples light efficiently from a multimode fiber into a singlemode fiber with an extremely large degree of tolerance to misalignment. Using an argon laser (514.5 nm) and a barium titanate crystal, we have demonstrated that the laser light can be coupled from a multimode fiber (core diameter 100 microm, numerical aperture 0.37) into a single-mode fiber (core diameter 2.9 microm, numerical aperture 0.11), with an efficiency of ~15% and an alignment tolerance of ~100 microm. The coupling efficiency is more than 2 orders of magnitude, and the tolerance to misalignments is more than 30 times better than the corresponding values achievable by conventional techniques.

  15. Table-aided design of the energy-storage reactor in dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Owen, H. A., Jr.

    1975-01-01

    A new procedure for the selection of magnetic cores for use in energy-storage dc-to-dc power converters which eliminates the need for an automated computer search algorithm and stored data file is presented. The converter configurations included in the procedure are the three commonly encountered single-winding converters for voltage step-up, for current step-up and for voltage step-up/current step-up, and for the two-winding converter for voltage step-up/current step-up. For each converter configuration, three types of controllers are considered - constant-frequency, constant on-time and constant off-time. Using concepts developed from analyses of these converters by considering the transfer of energy by means of an energy-storage inductor or transformer, a special table of parameters calculated from magnetic core data is constructed and leads to a considerably simplified design procedure.

  16. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  17. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  18. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  19. Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter

    DTIC Science & Technology

    2016-06-01

    ARL-TR-7675 ● JUNE 2016 US Army Research Laboratory Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy ...Laboratory Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter by Marc S Litz and Johnny A Russo Sensors and Electron...GaN) Betavoltaic Energy Converter 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William B Ray II, Marc S

  20. The impulsive effects of momentum transfer on the dynamics of a novel ocean wave energy converter

    NASA Astrophysics Data System (ADS)

    Diamond, Christopher A.; O'Reilly, Oliver M.; Savaş, Ömer

    2013-10-01

    In a recent paper by Orazov et al. [On the dynamics of a novel ocean wave energy converter. Journal of Sound and Vibration329 (24) (2010) 5058-5069], a wave energy converter (WEC) was proposed. The converter features a mass modulation scheme and a simple model was used to examine its efficacy. The simple model did not adequately account for the momentum transfer which takes place during the mass modulation. The purpose of the present paper is to account for this transfer and to show that the WEC equipped with a novel and more general mass modulation scheme has the potential to improve its energy harvesting capabilities.

  1. Full wave dc-to-dc converter using energy storage transformers

    NASA Technical Reports Server (NTRS)

    Moore, E. T.; Wilson, T. G.

    1969-01-01

    Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.

  2. 78 FR 40132 - Wave Energy Converter Prize Administration Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... available for public review on the DOE Office of Energy Efficiency and Renewable Energy (EERE) Web site at...) deep by 15.2 m (50 ft) wide trench parallel to the long side of the south side. Webinar...

  3. Enhancing energy harvesting by coupling monostable oscillators

    NASA Astrophysics Data System (ADS)

    Peña Rosselló, Julián I.; Wio, Horacio S.; Deza, Roberto R.; Hänggi, Peter

    2017-02-01

    The performance of a ring of linearly coupled, monostable nonlinear oscillators is optimized towards its goal of acting as energy harvester - through piezoelectric transduction - of mesoscopic fluctuations, which are modeled as Ornstein-Uhlenbeck noises. For a single oscillator, the maximum output voltage and overall efficiency are attained for a soft piecewise-linear potential (providing a weak attractive constant force) but they are still fairly large for a harmonic potential. When several harmonic springs are linearly and bidirectionally coupled to form a ring, it is found that counter-phase coupling can largely improve the performance while in-phase coupling worsens it. Moreover, it turns out that few (two or three) coupled units perform better than more.

  4. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect

    Polagye, B. L.; Copping, A. E.; Brown-Saracino, J.; Suryan, R.; Kramer, S.; Smith, C.

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  5. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    NASA Astrophysics Data System (ADS)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  6. Energy flow analysis of coupled structures

    NASA Astrophysics Data System (ADS)

    Cho, Phillip Eung-Ho

    1993-01-01

    Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged vibrational response of built-up structures at high audible frequencies. The procedure is based on two developments; firstly, the derivation of the partial differential equations that govern the propagation of energy-related quantities in simple structural elements such as rods, beams, plates, and acoustic cavities; secondly, the derivation of coupling relationships in terms of energy-related quantities that describe the transfer of energy for various joints (e.g., beam-to-beam, plate-to-plate, and structure-to acoustic field couplings). In this investigation, EFA is used to predict the vibrational response of various coupled structures. In the process of predicting the vibrational response of the coupled structures, the energy flow coupling relationships at the joints of these structures are derived. In addition, the finite element formulation of the governing energy equations are developed. Because the energy density is discontinuous at the joint, a special global assembly procedure is developed to assemble the finite element matrix equations into global matrix equations. The global matrix assembly procedure is predicated on the development of joint element matrix equations using energy flow coupling relationships for various structural joints. The results predicted by EFA for a frame structure with a three-dimensional joint, where four wave types propagate in the structure, are shown to be a reasonable approximation of the frequency-averaged 'exact' energetics, which are computed from classical displacement solutions. The accuracy of the results predicted by EFA increased with high mode count and modal overlap factor or high non-dimensional wavenumber band and non-dimensional damped wavenumber band in the frequency band of interest. An experimental investigation of vibrational response of a light truck frame structure was performed to verify the results of EFA when applied

  7. Energy Flow Analysis of Coupled Beams

    NASA Astrophysics Data System (ADS)

    Cho, P. E.; Bernhard, R. J.

    1998-04-01

    Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged vibrational response of built-up structures at high audible frequencies. The procedure is based on two developments; first, the derivation of the partial differential equations that govern the propagation of energy-related quantities in simple structural elements such as rods, beams, plates, and acoustic cavities; and second, the derivation of coupling relationships in terms of energy-related quantities that describe the transfer of energy for various joints (e.g., beam-to-beam, rod-to-beam, plate-to-plate, structure-to-acoustic field coupling). In this investigation, the energy flow coupling relationships at these joints for rods and beams are derived. EFA is used to predict the frequency-averaged vibrational response of a frame structure with a three-dimensional joint, where four wave types propagate in the structure. The predicted results of EFA are shown to be a good approximation of the frequency-averaged “exact” energetics, which are computed from classical displacement solutions.

  8. Design of the DFVLR 25 m wind energy converter and first operating results

    NASA Astrophysics Data System (ADS)

    Molly, J.-P.

    1984-12-01

    A wind energy converter, called Debra-25, has been developed jointly by the DFVLR (German Institute for Research and Experimentation in Aeronautics and Astronautics) and the Brazilian 'Centro Tecnico Aeroespacial' (CTA). The wind conditions at the coast in the northeastern part of Brazil are favorable for the operation of wind energy converters, while the existence of many small local electric power networks provides a suitable technological basis for the operation of such converters. Winds in the interior of the country, however, are less powerful than at the coast. It was, therefore, desirable to build a windmill which was adjustable to local wind conditions. Another objective was related to the possibility to be able to assemble and install the converter without heavy cranes. The Debra-25 has a rotor with a diameter of 25 m and provides a nominal electric power of 100 kW. The selected two-genertor concept is very suited for an operation at low wind pressure.

  9. Calculating the rate of exothermic energy release for catalytic converter efficiency monitoring

    SciTech Connect

    Hepburn, J.S.; Meitzler, A.H.

    1995-12-31

    This paper reports on the development of a new methodology for OBD-II catalyst efficiency monitoring. Temperature measurements taken from the center of the catalyst substrate or near the exterior surface of the catalyst brick were used in conjunction with macroscopic energy balances to calculate the instantaneous rate of exothermic energy generation within the catalyst. The total calculated rate of exothermic energy release over the FTP test cycle was within 10% of the actual or theoretical value and provided a good indicator of catalyst light-off for a variety of aged catalytic converters. Normalization of the rate of exothermic energy release in the front section of the converter by the mass flow rate of air inducted through the engine was found to provide a simple yet practical means of monitoring the converter under both FTP and varying types of road driving.

  10. The research of multilevel transistor inverter for converting energy of solar panels

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K. N.; Issembergenov, N. T.

    2015-09-01

    This article considers multilevel transistor inverter for converting energy of solar panels into electroenergy. The output of multilevel transistor inverter produces the voltage of almost sinusoidal form. The primary objective of this inverter is to transform solar energy into electroenergy of industrial frequency. The analysis of received output curves of voltage for sinusoidality has been conducted.

  11. Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions.

    PubMed

    Huang, Long-Biao; Bai, Gongxun; Wong, Man-Chung; Yang, Zhibin; Xu, Wei; Hao, Jianhua

    2016-04-13

    A magnetic-assisted noncontact triboelectric nanogenerator (TENG) is developed by combining a magnetic responsive layer with a TENG. The novel TENG device is applied to harvest mechanical energy which can be converted into electricity and light emissions. This work has potential for energy harvesting, magnetic sensors, self-powered electronics and optoelectronics applications.

  12. Muon detection studied by pulse-height energy analysis: Novel converter arrangements.

    PubMed

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  13. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    SciTech Connect

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-15

    Muons are conventionally measured by a plastic scintillator–photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  14. Device and method for converting wood into thermal energy

    SciTech Connect

    Lynch, R.A.

    1983-01-18

    A device and method for burning wood for the purpose of heat generation is disclosed. The device has a flat grate on which the fuel is placed and a vertical combustion air inlet passage which discharges the air as a wide, flat ribbon at one end of the combustion chamber substantially at the top surface of the grate. Combustion is confined to a zone which progressively moves along the grate away from the air unit. The combustion gases are collected at the top of the combustion chamber which is arched and arranged to cause them to spiral and while still in the combustion chamber and at autogenic temperature to mix with additional, partially heated air to complete the combustion process. The exhaust route for the combustion gases is elongated and doubled back upon itself to delay discharge and allow sufficient time to effectively heat exchange with the thermal energy transport and distribution medium.

  15. Thermocatalytic converter of solar energy to chemical energy with a high energy storage coefficient

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Parmon, V. N.; Aristov, Iu. I.; Zheivot, V. I.; Kirillov, V. A.

    1986-08-01

    Experimental results are presented on the efficiency of the thermochemical conversion of solar energy in processes involving the conversion of saturated hydrocarbons. Three reactions were considered: (1) CH4 + CO2 yields 2H2 + 2CO; (2) CH4 + H2O yields 3H2 + CO; and (3) CnH2N + 2 + nH2O yields (2n + 1)H2 + nCO where (n = 3,4). The study has demonstrated the promise of the vapor conversion of saturated gaseous hydrocarbons to achieve thermochemical conversion of solar energy and has confirmed the feasibility of obtaining a high storage coefficient of chemical energy in this process.

  16. Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint

    SciTech Connect

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-07-01

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  17. Application of the Most Likely Extreme Response Method for Wave Energy Converters

    SciTech Connect

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-06-24

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  18. Energy coupling mechanisms of MFS transporters

    PubMed Central

    Zhang, Xuejun C; Zhao, Yan; Heng, Jie; Jiang, Daohua

    2015-01-01

    Major facilitator superfamily (MFS) is a large class of secondary active transporters widely expressed across all life kingdoms. Although a common 12-transmembrane helix-bundle architecture is found in most MFS crystal structures available, a common mechanism of energy coupling remains to be elucidated. Here, we discuss several models for energy-coupling in the transport process of the transporters, largely based on currently available structures and the results of their biochemical analyses. Special attention is paid to the interaction between protonation and the negative-inside membrane potential. Also, functional roles of the conserved sequence motifs are discussed in the context of the 3D structures. We anticipate that in the near future, a unified picture of the functions of MFS transporters will emerge from the insights gained from studies of the common architectures and conserved motifs. PMID:26234418

  19. Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation

    PubMed Central

    2016-01-01

    We report a synthetic approach to form cubic Cu2O/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto Cu2O cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance. Materials were prepared at different Pd amounts and demonstrated a range of tandem catalytic reactivity. H2 was generated via photocatalytic proton reduction initiated by Cu2O, followed by Pd-catalyzed dehalogenation using in situ generated H2. The results indicate that material morphology and composition and substrate steric effects play important roles in controlling the overall reaction rate. Additionally, analysis of the postreacted materials revealed that a small number of the cubes had become hollow during the photodechlorination reaction. Such findings offer important insights regarding photocatalytic active sites and mechanisms, providing a pathway toward converting light-based energy to chemical energy for sustainable catalytic reactions not typically driven via light. PMID:27656687

  20. Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation.

    PubMed

    Nguyen, Michelle A; Zahran, Elsayed M; Wilbon, Azaan S; Besmer, Alexander V; Cendan, Vincent J; Ranson, William A; Lawrence, Randy L; Cohn, Joshua L; Bachas, Leonidas G; Knecht, Marc R

    2016-07-31

    We report a synthetic approach to form cubic Cu2O/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto Cu2O cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance. Materials were prepared at different Pd amounts and demonstrated a range of tandem catalytic reactivity. H2 was generated via photocatalytic proton reduction initiated by Cu2O, followed by Pd-catalyzed dehalogenation using in situ generated H2. The results indicate that material morphology and composition and substrate steric effects play important roles in controlling the overall reaction rate. Additionally, analysis of the postreacted materials revealed that a small number of the cubes had become hollow during the photodechlorination reaction. Such findings offer important insights regarding photocatalytic active sites and mechanisms, providing a pathway toward converting light-based energy to chemical energy for sustainable catalytic reactions not typically driven via light.

  1. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    NASA Astrophysics Data System (ADS)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  2. Analog to digital converter for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Shaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    The analog to digital converter stage derives a bit array of digital radiant energy signals representative of the amplitudes of an input radiant energy analog signal array and derives an output radiant energy analog signal array to serve as an input to succeeding stages. The converter stage includes a digital radiant energy array device which contains radiant energy array positions so that the analog array is less than a predetermined threshold level. A scaling device amplifies the radiant signal levels of the input array and the digital array so that the radiant energy signal level carried by the digital array corresponds to the threshold level. An adder device adds the signals of the scaled input and digital arrays at corresponding array positions to form the output analog array.

  3. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  4. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity.

  5. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  6. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

    PubMed Central

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  7. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  8. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  9. Thermal reliability and performance improvement of close-coupled catalytic converter

    SciTech Connect

    Hijikata, Toshihiko; Kurachi, Hiroshi; Katsube, Fumio; Honacker, H. van

    1996-09-01

    This paper proposes a high temperature catalytic converter design using a ceramic substrate and intumescent matting. It also describes the improvement of converter performance using an advanced thin wall ceramic substrate. Due to future tightening of emission regulations and improvement of fuel economy, higher exhaust gas temperatures are suggested. Therefore, reduction of thermal reliability of an intumescent mat will be a concern because the catalytic converter will be exposed to high temperatures. For this reason, a new design converter has been developed using a dual cone structure for both the inlet and outlet cones. This minimizes heat conduction through the cone and decreases the temperature affecting the mat area. This design converter, without the use of a heat-shield, reduces the converter surface temperature to 441 C despite a catalyst bed temperature of 1,050 C. The long term durability of the converter is demonstrated by the hot vibration test. Since the new design converter does not need a heat-shield, the catalyst diameter can be enlarged by the width of the air gap used in the current design converter. By using an advanced thin wall ceramic substrate, such as 0.11 mm/620 kcpsm (4 mil/400 cpsi), it is possible to improve emission performance and pressure drop compared with the conventional 0.16 mm/620 kcpsm (6 mil/400 cpsi) ceramic substrate.

  10. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect

    S. Merrill Skeist; Richard H. Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to

  11. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  12. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  13. Novel 2N bit bipolar photonic digital-to-analog converter based on optical DQPSK modulation coupled with differential detection.

    PubMed

    Liao, Jinxin; Wen, He; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili; Zhou, Bingkun

    2012-05-01

    A novel 2N bit bipolar photonic digital-to-analog converter (PDAC) scenario based on the optical differential quadrature phase shift keying (ODQPSK) modulation coupled with differential detection is proposed. Compared with other proposed schemes, this bipolar PDAC has a greater dynamic range and a larger noise margin with good scalabilities both in speed and resolution. We demonstrate a 4 bit PDAC in a proof-of-principle experiment at a sampling rate of 2.5 GS/s.

  14. New topology for DC/DC bidirectional converter for hybrid systems in renewable energy

    NASA Astrophysics Data System (ADS)

    Lopez, Juan Carlos; Ortega, Manuel; Jurado, Francisco

    2015-03-01

    This article presents a new isolated DC/DC bidirectional converter with soft switching, using a transformer with two voltage taps and two full bridges with insulated-gate bipolar transistors (IGBTs), one on each side of the transformer to be integrated in hybrid systems of renewable energy. A large voltage conversion ratio can be achieved using this converter, in buck and booster modes. Also medium and high DC power can be converted with a good efficiency. Analysis and switching techniques have been reported. To verify the principle of operation, a laboratory prototype of 10 kW has been performed. Experimental results are presented, operating in boost mode. The switching algorithm used has been modelled in MATLAB-Simulink to generate C code. This code has been implemented in a DSP F2812, which has been used to build the prototype.

  15. Estimation of Bidirectional Buck/boost DC/DC Converters with Electric Double-Layer Capacitors for Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Yamamoto, Masayoshi

    Renewable energy such as wind force and solar light has collected the attention as alternative energy sources of fossil fuel. An energy storage system with an electric double-layer capacitor (EDLC), which balances the demand and supply power, is required in order to introduce the electric power generating system that utilizes renewable energy. Currently, the research and development of these energy storage systems are actively carried out. In the energy storage system with an EDLC, the DC/DC converter having the function of the bidirectional power flow and the buck/boost performance is essential as an interface and power control circuit. There are two types of the bidirectional buck/boost DC/DC converters. One type consists of two buck/boost DC/DC converters with one reactor. The other type consists of two sets of two-quadrant DC/DC converters with one reactor. This paper discusses the comparison of these types of DC/DC converters with bidirectional power flow and buck/boost performance. The two types of DC/DC converters are estimated for their application to the energy storage system with the EDLC. As the voltage endurance of the device is lower and the mean current is smaller in the latter type of converter despite of having twice the number of devices compared to the former, the latter type of converter has the advantage of a smaller reactor, i.e., core volume and loss, and lower loss in the converter.

  16. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  17. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    PubMed

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  18. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting

    PubMed Central

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-01-01

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from −40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions. PMID:28282910

  19. A critique of the chemosmotic model of energy coupling.

    PubMed

    Green, D E

    1981-04-01

    The chemosmotic model provides a framework for visualizing energy-coupled reactions (vectorial reaction sequences, membrane-dependent gradient formation, and charge separation of reacting species) and a mechanism for energy coupling (indirect coupling between the driving and driven reaction sequences mediated by a membrane potential or a protonmotive force). The mechanistic parameters of this model have been examined from four standpoints: compatibility with the experimental realities, supporting evidence that is unambiguous, compatibility with the enzymic nature of energy coupling, and the capability for generating verifiable predictions. Recent developments that have clarified the mechanism of ion transport, the nature of the protonic changes that accompany energy coupling, and the enzymic nature of energy coupling systems have made such an examination both timely and necessary. After weighing the available evidence, it has been concluded that the chemosmotic principle of indirect coupling has no basis in fact and that it is physically unsound in respect to the mechanism of energy coupling and enzymic catalysis.

  20. Converter-based accumulation of electric energy generated by microbial biofuel cell

    NASA Astrophysics Data System (ADS)

    Reshetilov, A. N.; Kitova, A. E.; Dyakov, A. V.; Gotovtsev, P. M.; Vasilov, R. G.; Gutorov, M. A.

    2017-01-01

    Microbial biofuel cell (BFC) was used as a primary energy source for energy storage system. The converter BQ25504 (Texas Instruments) was applied for transformation of electrical energy from microwatt primary sources. The energy storage operation begins if BFC output voltage was higher or equal to 300 mV. In case of stationary operation it was possible to provide energy storage of BFC output voltage equal to 100 mV. The developed system based on converter enables to increase the initial voltage BFC of 0.5 V to 3.1 V; accumulated energy is stored on the various capacitors. Resulting voltage was stable with application of condensers with capacities from 100 μF to 6800 μF. In case of application of 3.1 V and 6800 μF condenser the storage energy was equal to 32.7 mJ. It was enough to provide short time operation of diode L-1154SURDK (2.0 V, 20 mA) and electrical motor M25E-4L (MITSUMI; 3.0 V, 100 mA). Designed system can be applied for energy supply of small electrical devices (for example remote sensors) and autonomous microrobots.

  1. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  2. Development of a wind energy converter and investigation of its operational function. Part 4: Test setup and results of measurement

    NASA Astrophysics Data System (ADS)

    Armbrust, S.; Molly, J. P.

    1982-12-01

    Measurements made during test operations at the MODA.10 plant as well as at a 25 years old 6 kW wind energy converter are presented. The test arrangements, measurement results of both wind energy converters, and the experience gained are described.

  3. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    SciTech Connect

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  4. Design of a mechanism for converting the energy of knee motions by using electroactive polymers.

    PubMed

    Armbruster, Pascal; Oster, Yannick; Vogt, Marcel; Pylatiuk, Christian

    2017-03-04

    Harvesting energy from human body motions has become a promising option to prolong battery life for powering medical devices for autonomy. Up to now, different generating principles including dielectric electroactive polymers (DEAPs) have been suggested for energy conversion. However, there is a lack of mechanisms that are specifically designed to convert energy with DEAPs. In a proof of concept study, a mechanical system was designed for stretching DEAPs in those phases of the gait cycle, in which the muscles mainly perform negative work. Rotational movements of the knee joint are transformed into linear movements by using a cable pull. The DEAP can be charged during the stretching phase and discharged during releasing and allows for the conversion of kinetic energy into electric energy. To evaluate the concept, tests were conducted. It was found that the developed body energy harvesting (BEH) system has a performance in the range of 24-40 μW at normal walking speed. The converted energy is sufficient for powering sensors in medical devices such as active orthoses or prostheses.

  5. Advanced Energy Conversion System Using Sinusoidal Voltage Tracking Buck-Boost Converter Cascaded Polarity Changing Inverter

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil A.

    2011-06-01

    This paper presents an advanced power converter employs a sinusoidal voltage absolute value tracking buck-boost DC-DC converter in the first power processing stage and a polarity changing full-bridge inverter in the second stage. The proposed power conversion system has the capability of delivering sinusoidal output and input current with unity power factor and good output voltage regulation. Consequently, the complete voltage regulator system, which is mainly suitable for new energy generation systems as well as energy storage systems, can be constructed compactly and inexpensively without DC link electrolytic capacitor. Also, the paper presents an auxiliary passive resonant circuit for soft switching operation. Simulation results using PSIM software are presented to verify the operation principles and feasibility of the proposed power conversion system.

  6. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  7. A new electrohydraulic energy converter for a left ventricular assist device.

    PubMed

    Affeld, K; Bailleu, A; Buss, A; Diluweit, J; Friedrichsen, U; Gadischke, J; Hanitsch, R; Hetzer, R; Huber, A; Kähler, J

    1994-07-01

    An energy converting system that can function for years without maintenance is required for the drive of a left ventricular assist device (LVAD). To meet the requirements of safety, the energy converter should have a simple design with few moving elements. The design applied herein has only one moving part and thus has greater inherent safety than competing systems. The only moving part is the rotor unit, comprised of the impeller of a centrifugal pump, the rotor of an electric motor, and the rotor of an electric axial actuator. A reversal of flow of the transmitter fluid can be achieved with an axial shift of this rotor unit. This fluid acts on the outer surface of a blood chamber and enables it to draw in blood and to expel it. Valves direct the flow of blood. The energy converter performs a flow of 12 L/min at a motor speed of 6,000 rpm against a pressure head of 115 mm Hg according to an output of the pulsatile blood pump of 5 L/min.

  8. Analytical studies on a traveling wave direct energy converter for D-{sup 3}He fusion

    SciTech Connect

    Syu, L.Y.; Tomita, Yukihiro; Momota, Hiromu; Miley, G.H.

    1995-04-01

    Analytical studies on a traveling wave direct energy converter (TWDEC) for D-{sup 3}He fueled fusion are carried out. The energy of 15 MeV carried by fusion protons is too high to handle with an electrostatic device. The TWDEC controls these high energy particles on the base of the principle of a Linac. This traveling wave method is discussed and the details of proton dynamics and excitation mechanism of electric power are clarified. The TWEDC consists of a modulator and decelerator. The applied traveling wave potential to the modulator modulates the velocity of fusion proton beams. This modulation makes a form of bunched protons at a down stream of the modulator. The decelerator has a set of meshed grids, each of which is connected to a transmission circuit. The phase velocity of excited wave on the transmission circuit is controlled the same way as that of decelerated protons. The kinetic energy 15 MeV of proton beams changes into an oscillating electromagnetic energy on the transmission circuit. This highly efficient direct energy converter of fusion protons brings a fusion reactor with a high plant efficiency. 4 refs., 4 figs.

  9. Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type

    SciTech Connect

    Khalil, E.M.; Abdalla, M. Sebawe . E-mail: m.sebawe@physics.org; Obada, A.S.-F.

    2006-02-15

    A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.

  10. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  11. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  12. Theoretical studies on performance evaluation of solar thermoelectronic energy converter with graphene emitter

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle; de, Dilip

    In this paper we consider detailed energy dynamics of solar thermoelectronic energy converter using graphene as the emitter. The emitter is heated by solar energy concentrated by a parabolic mirror concentrator. We study the performance evaluation of the energy conversion using temperature dependent work function of graphene and model the space charge problem by introducing a factor in the emitter and collector current densities. We present computations on power output and efficiency as function of solar insolation, height of emitter from the base of the mirror, reflection coefficient of the mirror, temperature and work function of collector. Effect of molecular doping on the performance of the graphene solar tech is also discussed. Please schedule our papers so that they are well separated in time for presentations.

  13. Physical measurements of breaking wave impact on a floating wave energy converter

    NASA Astrophysics Data System (ADS)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  14. Thrust to torque converter, particularly for coupling a reciprocating shaft to a rotary electrical generator or the like

    SciTech Connect

    Otters, J.L.

    1990-04-03

    This patent describes a mechanical linear-to-rotary motion converter. It comprises: a housing; a ball bearing input screw reciprocally mounted to the housing; a rotor; a first ball bearing nut coupling the input screw through a first overrunning clutch for turning the rotor in a given sense of rotation for a first direction of movement of the screw; a second ball bearing nut coupling the input screw through a reversing gear arrangement and a second overrunning clutch for turning the rotor in a given sense of rotation for an opposite direction of movement of the shaft; the first and second ball bearing nuts alternately driving the rotor for continuous rotation in the given sense responsive to linear reciprocating motion of the input shaft.

  15. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane.

  16. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  17. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    SciTech Connect

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-24

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  18. A 12 mV start-up converter using piezoelectric transformer for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Pillonnet, G.; Costa, F.

    2016-11-01

    This paper presents a novel topology of start-up converter for sub 100 mV thermal energy harvesting based on an Armstrong oscillator topology using a piezoelectric transformer (PT) and a normally-on MOSFET. Based on a Rosen-type PT and off-the-shelf components, the proposed startup topology begins to oscillate at 12 mV input voltage corresponding to a temperature gradient of 2°C and achieves 1 V output voltage with only 18 mV input voltage applied to the harvester.

  19. Experimental Investigation of Irregular Wave Cancellation Using a Cycloidal Wave Energy Converter

    DTIC Science & Technology

    2012-07-01

    CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming waves. The entire device is fully sub...300 scale wave tunnel experiment. A CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming...Prescribed by ANSI Std Z39-18 g Gravity constant, 9.81[m/s2] t Time [s] λ Wavelength [m] R = 60mm Wave Energy Converter Radius [m] c = 50mm Hydrofoil Chord

  20. A review of the thermoelectronic laser energy converter (TELEC) program at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Manista, E. J.; Thompson, R. W.

    1978-01-01

    The investigation of the Thermoelectronic Laser Energy Converter (TELEC) concept began with a feasibility study of a 1 megawatt sized TELEC system. The TELEC was to use either cesium vapor or hydrogen as the plasma medium. The cesium vapor TELEC appears to be the more practical device studied with an overall calculated conversion efficiency of greater than 48%. Following this study, a small TELEC cell was fabricated which demonstrated the conversion of a small amount of laser power to electrical power. The cell developed a short circuit current of 0.7 amperes and an open circuit voltage, as extrapolated from volt-ampere curves, of about 1.5 volts.

  1. Efficiency of a Traveling Wave Direct Energy Converter with High-Density Beam for Applications to Aneutronic Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso

    2012-03-01

    Due to the appeal of aneutronic fusion, a variety of reactor concepts have been proposed in past. In most cases, to achieve a positive net power balance these reactor concepts rely on a significant re-circulation of the energy produced to maintain a non-equilibrium configuration (unlike ignited plasmas). The availability of a direct conversion process with high efficiency is then critical for determining the feasibility of a reactor (particularly when the ``almost true aneutronic'' reaction like p-^11B is considered). A Traveling Wave Direct Energy Converter (TWDEC, [1]) is considered for the energy conversion of a high-density beam formed by the fusion products (MeV-range α-particles). As in [2], a PIC code is utilized for a realistic beam model. The study is focused on the possibility of obtaining high-efficiency coupling between a modulated high-density ``bunched'' beam, accounting also for a neutralizing electron environment, and the TWDEC electrode collector structure.[4pt] [1] Momota et al. (1999) Fus. Tech., 35, 60[0pt] [2] Y.Yasaka et al. (2009), Nucl. Fus., 49, 075009

  2. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  3. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  4. Development of a nearshore oscillating surge wave energy converter with variable geometry

    SciTech Connect

    Tom, N. M.; Lawson, M. J.; Yu, Y. H.; Wright, A. D.

    2016-10-01

    This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect to device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.

  5. A frequency up-converted electromagnetic energy harvester using human hand-shaking

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2013-12-01

    We present a frequency up-converted electromagnetic (EM) energy harvester that is capable of powering various portable devices and systems by hand-shaking. It consists of a freely movable ball to impact periodically (at low frequency) on the parabolic top surface of a mass of a cantilever beam allowing it to vibrate at higher (resonant) frequency. Relative motion between a magnet attached to the cantilever and a coil induces voltage. A prototype of the energy harvester has been fabricated and characterized by applying vibration from handshaking. The frequency and acceleration of the applied hand-shaking vibration has been experimentally found to be 4.6 Hz and 2g, respectively. With an optimum distance between magnet and coil, a maximum 672 mV peak-peak open circuit voltage of 370 Hz frequency and a maximum 413μW peak power delivered to an 85Ω matched load resistance have been obtained, respectively.

  6. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  7. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    EPA Science Inventory

    This report addresses the potential for using "Limbo Lands" as sites for renewable energy generating stations. Limbo Lands are considered as underused, formerly contaminated sites, and include former Superfund sites, landfills, brownfields, abandoned mine lands, former industrial...

  8. Numerical Modeling of Compliant-Moored System Dynamics with Applications to Marine Energy Converters

    NASA Astrophysics Data System (ADS)

    Nichol, Tyler

    The development of a numerical model simulating the dynamic response of compliant-moored submerged systems to non-uniform fluid flow is presented. The model is meant to serve as a computational tool with applications to compliant-moored marine energy converters by time-domain representation of the mooring dynamics. The scope of the initial code is restricted to full-submerged moored tidal turbines, though the model can be readily expanded to analyze wave energy converters as well. The system is modeled in a Lagrangian frame treating tidal turbines and structural elements as rigid bodies. Mooring lines are modeled as a series of discrete elastic segments, with parameters and force contributions lumped to point-mass nodes joining each segment. Full-range of motion is achieved using the alpha-beta-gamma Euler Angle method. The governing equations of motion of the system are derived computationally through implementation of Lagrange's Equation of Motion. The techniques employed to develop the symbolic expressions for the total kinetic, potential, and damping energies of the system and the forces acting on each element of the system are discussed. The system of differential equations obtained from evaluation of Lagrange's Equation with the developed symbolic expressions is solved numerically using a built-in MATLAB ordinary differential equation solver called ODE15i.m with the user defined initial condition of the system. Several validation tests are presented and their results discussed. Finally, an explanation of future plans for development of the model and application to existing tidal energy systems are presented.

  9. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    NASA Astrophysics Data System (ADS)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  10. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  11. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    NASA Astrophysics Data System (ADS)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  12. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator.

    PubMed

    Yang, Rusen; Qin, Yong; Li, Cheng; Zhu, Guang; Wang, Zhong Lin

    2009-03-01

    A living species has numerous sources of mechanical energy, such as muscle stretching, arm/leg swings, walking/running, heart beats, and blood flow. We demonstrate a piezoelectric nanowire based nanogenerator that converts biomechanical energy, such as the movement of a human finger and the body motion of a live hamster (Campbell's dwarf), into electricity. A single wire generator (SWG) consists of a flexible substrate with a ZnO nanowire affixed laterally at its two ends on the substrate surface. Muscle stretching results in the back and forth stretching of the substrate and the nanowire. The piezoelectric potential created inside the wire leads to the flow of electrons in the external circuit. The output voltage has been increased by integrating multiple SWGs. A series connection of four SWGs produced an output voltage of up to approximately 0.1-0.15 V. The success of energy harvesting from a tapping finger and a running hamster reveals the potential of using the nanogenerators for scavenging low-frequency energy from regular and irregular biomotion.

  13. On the concept of sloped motion for free-floating wave energy converters.

    PubMed

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  14. Modelling a point absorbing wave energy converter by the equivalent electric circuit theory: A feasibility study

    NASA Astrophysics Data System (ADS)

    Hai, Ling; Svensson, Olle; Isberg, Jan; Leijon, Mats

    2015-04-01

    There is a need to have a reliable tool to quickly assess wave energy converters (WECs). This paper explores whether it is possible to apply the equivalent electric circuit theory as an evaluation tool for point absorbing WEC system modelling. The circuits were developed starting from the force analysis, in which the hydrodynamic, mechanical, and electrical parameters were expressed by electrical components. A methodology on how to determine the parameters for electrical components has been explained. It is found that by using a multimeter, forces in the connection line and the absorbed electric power can be simulated and read directly from the electric circuit model. Finally, the circuit model has been validated against the full scale offshore experiment. The results indicated that the captured power could be predicted rather accurately and the line force could be estimated accurately near the designed working condition of the WEC.

  15. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  16. Parametric Study of Beta-Endpoint Energy in Direct Energy Converters

    DTIC Science & Technology

    2007-01-01

    in figure 1. The theory is similar to the first voltaic cell (2), where the more layers are stacked together; the higher the voltage can be expected...Inc., 2001, Ch 3, 4. 2. Letter to the Royal Society, dated March 20, 1800, Volta described the discovery of a new technique for a large voltaic pile ...generating the largest number density of carriers, and highest energy deposition efficiency in the first 10 μm of SiC. 15. SUBJECT TERMS SiC, DEC

  17. A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting system

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2014-03-01

    Interest on Dielectric ElectroActive Polymer (DEAP) generators has aroused among scientists in recent years, due to the former ones' documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter. On top of that, the shortage of commercially-available, high-efficient, high-voltage, low-power semiconductor devices limits the effective operational range of the power electronic converter. In this paper, a bidirectional tapped-inductor buck-boost converter is proposed, addressing high- efficient high step-up and high step-down voltage conversion ratios, for energy harvesting applications based on DEAP generators. The effective operational range of the converter is extended, by replacing its high-side switch with a string of three serialized MOSFETs, to accommodate the need for high-efficient high-voltage operation. Experiments conducted on a single DEAP generator - part of a quadruple DEAP generator energy harvesting system with all elements installed sequentially in the same circular disk with a 90° phase shift - validate the applicability of the proposed converter, demonstrating energy harvesting of 0.26 J, at 0.5 Hz and 60% delta- strain; characterized by an energy density of 1.25 J per kg of active material.

  18. The Coupled Pendulum--A Demonstration of Energy Conservation.

    ERIC Educational Resources Information Center

    Record, Daniel J.

    1978-01-01

    Presents a classroom demonstration that illustrates the Law of Conservation of Energy. The demonstration utilizes a coupled pendulum device that can easily be constructed from ordinary monofilament fishing line and two metal pendulum bobs. (HM)

  19. Oscillating-water-column wave-energy-converter based on dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.; Rosati Papini, G. P.; Bergamasco, M.

    2013-04-01

    Dielectric Elastomers (DE) have been largely studied as actuators and sensors. Fewer researches have addressed their application in the field of energy harvesting. Their light weightiness, low cost, high corrosion resistance, and their intrinsic high-voltage and cyclical-way of operation make DE suited for harvesting mechanical energy from sea waves. To date, the development of cost-effective Wave Energy Converters (WECs) is hindered by inherent limitations of available material technologies. State of the art WECs are indeed based on traditional mechanical components, hydraulic transmissions and electromagnetic generators, which are all made by stiff, bulky, heavy and costly metallic materials. As a consequence, existing WECs result in being expensive, difficult to assemble, sensitive to corrosion and hard to maintain in the marine environment. DE generators could be an enabling technology for overcoming the intrinsic limitations of current WEC technologies. In this context, this paper focuses on Polymer-based Oscillating-Water-Column (Poly-OWC) type WECs, and analyzes the viability of using DE generators as power-take-off systems. Regarding paper structure, the first sections introduce the working principle of OWC devices and discuss possible layouts for their DE-based power-take-off system. Then, a simplified hydraulic-electro-hyperelastic model of a two-dimensional Poly-OWC is described. Finally, preliminary simulation results are shown which provide insights on the potential capabilities of Poly-OWC.

  20. Experimental study of energy exchanges between two coupled granular gases

    NASA Astrophysics Data System (ADS)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2016-12-01

    We report on the energy exchanges between two granular gases of different densities coupled electromechanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the energy flux are asymmetric, very intermittent, and with most probable zero flux. We show that, for weak coupling, the main features of the energy exchanges can be explained considering the fluctuations of the two subsystems.

  1. Averaged energy inequalities for the nonminimally coupled classical scalar field

    SciTech Connect

    Fewster, Christopher J.; Osterbrink, Lutz W.

    2006-08-15

    The stress-energy tensor for the classical nonminimally coupled scalar field is known not to satisfy the pointwise energy conditions of general relativity. In this paper we show, however, that local averages of the classical stress-energy tensor satisfy certain inequalities. We give bounds for averages along causal geodesics and show, e.g., that in Ricci-flat background spacetimes, ANEC and AWEC are satisfied. Furthermore we use our result to show that in the classical situation we have an analogue to the phenomenon of quantum interest. These results lay the foundations for analogous energy inequalities for the quantized nonminimally coupled fields, which will be discussed elsewhere.

  2. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  3. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  4. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  5. Experimental study on load characteristics in a floating type pendulum wave energy converter

    NASA Astrophysics Data System (ADS)

    Murakami, Tengen; Imai, Yasutaka; Nagata, Shuichi

    2014-10-01

    A floating type pendulum wave energy converter (FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al. in 1998. They showed that this device had high energy conversion efficiency. In the previous research, the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys, belts and a generator. As a result, the influence of the electrical load on the generating efficiency was shown. Continuously, the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper. In a later part of this paper, the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research. From the above experiment, it may be concluded that the maximum primary conversion efficiency is achieved as high as 98% at the optimal load.

  6. Development of an optical fiber and photoelectric coupling V/F converter for 5.4-MV impulse generator

    NASA Astrophysics Data System (ADS)

    Guan, Genzhi

    1991-08-01

    The optical fiber and photoelectric V/F converter has good anti-interference performance. Using this converter as an A/D converter of the 5.4 MV impulse voltage generator with a microcomputer-controlled system can guarantee that the system work safely and reliably under strong influence from high voltage, heavy current, and a strong electromagnetic field. This paper describes the principles, performance, and operating results of this converter.

  7. Energy demand analytics using coupled technological and economic models

    EPA Science Inventory

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  8. Analytic energy gradients in closed-shell coupled-cluster theory with spin-orbit coupling.

    PubMed

    Wang, Fan; Gauss, Jürgen

    2008-11-07

    Gradients in closed-shell coupled-cluster (CC) theory with spin-orbit coupling included in the post Hartree-Fock treatment have been implemented at the CC singles and doubles (CCSD) level and at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The additional computational effort required in analytic energy-gradient calculations is roughly the same as that for ground-state energy calculations in the case of CCSD, and it is about twice in the case of CCSD(T) calculations. The structures, harmonic frequencies, and dipole moments of some heavy-element compounds have been calculated using the present analytic energy-gradient techniques including spin-orbit coupling. The results show that spin-orbit coupling can have a significant influence on both the equilibrium structure and the harmonic vibrational frequencies and that its inclusion is essential to obtain reliable and accurate estimates for geometrical parameters of heavy-element compounds.

  9. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    NASA Astrophysics Data System (ADS)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    not particularly powerful with values around 40-50 cm/s. However a detailed assessment, based on field measurements, will be conducted in the near future with the aim to identify specific areas close to the coast with stronger currents which make suitable the deployment of marine current turbines. Although the base Platform is not still available, PLOCAN has already started the activity as an ocean testbed providing services to a wave energy converter patented by the Spanish company PIPO Systems. A scaled 1:5 prototype will be deployed during January 2010 and monitored for several months. Current facilities available include some ODAS buoys (temperature, salinity, pH, oxygen, turbidity, wind, etc.), wave rider buoy, current meter profilers (ADCP and electromagnetic), system for data management, remote operated vehicles (ROV), autonomous underwater vehicles (AUV), and an oceanographic vessel. Future facilities include high frequency radar for wave and current measurements and submarine electro-optical cables to connect the Platform with the energy converters and with the shore station.

  10. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  11. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    SciTech Connect

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.

  12. A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2015-11-01

    We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.

  13. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.

    PubMed

    Li, Jianyong; Li, Jinhua; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC(2)) based on TiO2/Ti photoanode and Cu2O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO2/Ti photoanode to combine with photoholes of Cu2O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO2/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm(-2), open-circuit voltage 0.49 V, maximum power output 0.3610(-4)W cm(-2) was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8h for methyl orange, methylene blue, Congo red, respectively.

  14. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; ...

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  15. User's manual: Computer-aided design programs for inductor-energy-storage dc-to-dc electronic power converters

    NASA Technical Reports Server (NTRS)

    Huffman, S.

    1977-01-01

    Detailed instructions on the use of two computer-aided-design programs for designing the energy storage inductor for single winding and two winding dc to dc converters are provided. Step by step procedures are given to illustrate the formatting of user input data. The procedures are illustrated by eight sample design problems which include the user input and the computer program output.

  16. The ocean's gravitational potential energy budget in a coupled climate model

    NASA Astrophysics Data System (ADS)

    Butler, E. D.; Oliver, K. I.; Gregory, J. M.; Tailleux, R.

    2013-10-01

    This study examines, in a unified fashion, the budgets of ocean gravitational potential energy (GPE) and available gravitational potential energy (AGPE) in the control simulation of the coupled atmosphere-ocean general circulation model HadCM3. Only AGPE can be converted into kinetic energy by adiabatic processes. Diapycnal mixing supplies GPE but not AGPE, whereas the reverse is true of the combined effect of surface buoyancy forcing and convection. Mixing and buoyancy forcing thus play complementary roles in sustaining the large-scale circulation. However, the largest globally integrated source of GPE is resolved advection (+0.57 TW) and the largest sink is through parameterized eddy transports (-0.82 TW). The effect of these adiabatic processes on AGPE is identical to their effect on GPE, except for perturbations to both budgets due to numerical leakage exacerbated by nonlinearities in the equation of state.

  17. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    NASA Astrophysics Data System (ADS)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  18. Laser interaction based on resonance saturation (LIBORS): an alternative to inverse bremsstrahlung for coupling laser energy into a plasma.

    PubMed

    Measures, R M; Drewell, N; Cardinal, P

    1979-06-01

    Resonance saturation represents an efficient and rapid method of coupling laser energy into a gaseous medium. In the case of a plasma superelastic collision quenching of the laser maintained resonance state population effectively converts the laser beam energy into translational energy of the free electrons. Subsequently, ionization of the laser pumped species rapidly ensues as a result of both the elevated electron temperature and the effective reduction of the ionization energy for those atoms maintained in the resonance state by the laser radiation. This method of coupling laser energy into a plasma has several advantages over inverse bremsstrahlung and could therefore be applicable to several areas of current interest including plasma channel formation for transportation of electron and ion beams, x-ray laser development, laser fusion, negative ion beam production, and the conversion of laser energy to electricity.

  19. Testing coupled dark energy models with their cosmological background evolution

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen; Morrice, Jack

    2017-02-01

    We consider a cosmology in which dark matter and a quintessence scalar field responsible for the acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings, we perform a global analysis of the constraints on our model using Hubble parameter measurements, baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the additional disformal coupling relaxes the conformal coupling constraints. Moreover, we show that, at the background level, a disformal interaction within the dark sector is preferred to both Λ CDM and uncoupled quintessence, hence favoring interacting dark energy.

  20. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  1. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Nataraj

    especially if the application imposes a space/size constraint. Moreover, the bimorph with increased thickness will now require a larger mechanical force to deform the structure which can fall outside the input ambient excitation amplitude range. In contrast, the honeycomb core bimorph offers an advantage in terms of preserving the global geometric dimensions. The natural frequency of the honeycomb core bimorph can be altered by manipulating honeycomb cell design parameters, such as cell angle, cell wall thickness, vertical cell height and inclined cell length. This results in a change in the mass and stiffness properties of the substrate and hence the bimorph, thereby altering the natural frequency of the harvester. Design flexibility of honeycomb core bimorphs is demonstrated by varying honeycomb cell parameters to alter mass and stiffness properties for power harvesting. The influence of honeycomb cell parameters on power generation is examined to evaluate optimum design to attain highest specific power. In addition, the more compliant nature of a honeycomb core bimorph decreases susceptibility towards fatigue and can increase the operating lifetime of the harvester. The second component of this dissertation analyses an uncoupled equivalent circuit model for piezoelectric energy harvesting. Open circuit voltage developed on the piezoelectric materials can be easily computed either through analytical or finite element models. The efficacy of a method to determine power developed across a resistive load, by representing the coupled piezoelectric electromechanical problem with an external load as an open circuit voltage driven equivalent circuit, is evaluated. The lack of backward feedback at finite resistive loads resulting from such an equivalent representation is examined by comparing the equivalent circuit model to the governing equations of a fully coupled circuit model for the electromechanical problem. It is found that the backward feedback is insignificant for weakly

  2. Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2003-10-01

    Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective Yang-Mills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities OmegaLambda~0.7 for dark energy and Omegam~0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.

  3. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  4. Analysis of Waves in the Near-Field of Wave Energy Converter Arrays through Stereo Video

    NASA Astrophysics Data System (ADS)

    Black, C.; Haller, M. C.

    2013-12-01

    Oregon State University conducted a series of laboratory experiments to measure and quantify the near-field wave effects caused within arrays of 3 and 5 Wave Energy Converters (WEC). As the waves and WECs interact, significant scattering and radiation occurs increasing/decreasing the wave heights as well as changing the direction the wave is traveling. These effects may vary based on the number of WECs within an array and their respective locations. The findings of this analysis will assist in selecting the WEC farm location and in improving WEC design. Analyzing the near-field waves will help determine the relative importance of absorption, scattering, and radiation as a function of the incident wave conditions and device performance. The WEC mooring system design specifications may also be impacted if the wave heights in the near-field are greater than expected. It is imperative to fully understand the near-field waves before full-scale WEC farms can be installed. Columbia Power Technologies' Manta served as the test WEC prototype on a 1 to 33 scale. Twenty-three wave gages measured the wave heights in both regular and real sea conditions at locations surrounding and within the WEC arrays. While these gages give a good overall picture of the water elevation behavior, it is difficult to resolve the complicated wave field within the WEC array using point gages. Here stereo video techniques are applied to extract the 3D water surface elevations at high resolution in order to reconstruct the multi-directional wave field in the near-field of the WEC array. The video derived wave information will also be compared against the wave gage data.

  5. Cosmology with massive neutrinos coupled to dark energy.

    PubMed

    Brookfield, A W; van de Bruck, C; Mota, D F; Tocchini-Valentini, D

    2006-02-17

    Cosmological consequences of a coupling between massive neutrinos and dark energy are investigated. In such models, the neutrino mass is a function of a scalar field, which plays the role of dark energy. The evolution of the background and cosmological perturbations are discussed. We find that mass-varying neutrinos can leave a significant imprint on the anisotropies in the cosmic microwave background and even lead to a reduction of power on large angular scales.

  6. Dark energy from Gauss-Bonnet and nonminimal couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Jimenez, D. F.

    2014-12-01

    We consider a scalar-tensor model of dark energy with Gauss-Bonnet and nonminimal couplings. Exact cosmological solutions were found in the absence of potential that give equations of state of dark energy consistent with current observational constraints, but with different asymptotic behaviors depending on the couplings of the model. A detailed reconstruction procedure is given for the scalar potential and the Gauss-Bonnet coupling for any given cosmological scenario. In particular we consider conditions for the existence of a variety of cosmological solutions with accelerated expansion, including quintessence, phantom, de Sitter, and Little Rip. For the case of quintessence and phantom we have found a scalar potential of the Albrecht-Skordis type, where the potential is an exponential with a polynomial factor.

  7. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  8. Ovalis TAH: development and in vitro testing of a new electromechanical energy converter for a total artificial heart.

    PubMed

    Sauer, I M; Frank, J; Spiegelberg, A; Bücherl, E S

    2000-01-01

    A new electromechanical energy converting system has been developed to yield an efficient and durable orthotopic total artificial heart (TAH). The energy converter we developed transforms the unidirectional rotational motion of the motor into a longitudinal forward-reverse movement of an internal geared oval, linked directly to pusher plates on both sides. To ensure a permanent positive connection between the drive gear and the internally geared wheel, a ball bearing runs inside an oval shaped guide track. Motor, gear unit, and conical pusher plates are seated between alternately ejecting and filling ventricles. The unidirectional motion of the brushless DC motor affords easier motor control, reduces energy demand, and ensures longer life of the motor when compared with a bidirectional motion system. In vitro testing has been performed on a mock circulation loop. The overall system efficiency of the TAH Ovalis was 27-39% (mean, 36%) for the pump output range of 2-7 L/min. The maximum output of 7 L/min can be obtained with a pump rate of 130 min(-1) and an afterload pressure of 140 mm Hg. For an average sized human with a mean cardiac output of 6 L/min at a mean aortic pressure of 120 mm Hg, 5 watts of input power would be required. The size of the prototype is 560 cm3, the weight is 950 g. Our first in vitro studies demonstrated the excellent efficiency and pump performance of this new electromechanical energy converter. The results prove the feasibility of this new concept's use as an energy converter for a total artificial heart.

  9. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    NASA Astrophysics Data System (ADS)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  10. Interacting quintom dark energy with Nonminimal Derivative Coupling

    NASA Astrophysics Data System (ADS)

    Behrouz, Noushin; Nozari, Kourosh; Rashidi, Narges

    2017-03-01

    Following our recent work on interacting dark energy models (Nozari and Behrouz, 2016), we study cosmological dynamics of an extended dark energy model in which gravity is non-minimally coupled to the derivatives of a quintessence and a phantom field in a quintom model. There is also a phenomenological interaction between the dark energy and dark matter components. By considering an exponential potential as a self-interaction potential for quintom model, we obtain a scaling solution to alleviate the coincidence problem. The existence and stability of the critical points are discussed in details and it has been shown that in this setup the universe experiences a phantom divide crossing. We compare the model with recent observational data and find some constraints on the model's parameters. We investigate also perturbations around the homogeneous and isotropic background in our Nonminimal Derivative Coupling (NMDC) quintom model.

  11. Asymmetry bistability for a coupled dielectric elastomer minimum energy structure

    NASA Astrophysics Data System (ADS)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2016-11-01

    In this paper, a novel design of asymmetry bistability for a coupled dielectric elastomer minimum energy structure (DEMES) is presented. The structure can be stable both in the stretched and curved configurations, which are induced by the geometry coupling effect of two DEMESs with perpendicular bending axes. The unique asymmetry bistability and fully flexible compact design of the coupled DEMES can enrich the active morphing modes of the dielectric elastomer actuators. A theoretical model of the system’s strain energy is established to explain the bistability. Furthermore, a prototype is fabricated to verify the conceptual design. The experimental results show that when the applied voltage is below a critical transition one, the structure behaves as a conventional DEMES, once the applied voltage exceeds the critical voltage, the structure could change from the stretched (curved) configuration to the curved (stretched) configuration abruptly and maintain in a new stable configuration when the voltage is removed. A multi-segment structure with the coupled DEMES is also presented and fabricated, and it displays various voltage-actuated morphings. It indicates that the coupled DEMES and the multi-segment structures can be useful for the soft and shape-shifting robots.

  12. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  13. Nonlinear mode coupling and vibrational energy transfer in Yukawa clusters

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2015-11-01

    Nonlinear mode coupling and the subsequent vibrational energy transfer that results is an important topic in chemical physics research, ranging from small molecules consisting of several atoms to macromolecules such as those found in proteins and DNA. Nonlinear mode coupling is recognized as the mechanism leading to ergodicity, which is a foundational tenet of statistical mechanics. Over the past two decades, Yukawa systems of particles such as those found in complex plasma, have been shown to be an effective model across a large number of physical systems. In this research, nonlinear mode coupling in Yukawa clusters consisting of 3-10 particles is examined via numerical simulation of the vibrational energy transfer between modes starting from an initial excited state. The relationship between the energy transfer process and the internal resonance between modes having a specified frequency ratio and the temporal evolution of the system to a state of equal energy across all modes, i.e., the state of ergodicity, will be discussed. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  14. Laser Diode Integrated with a Dual-Waveguide Spot-Size Converter by Low-Energy Ion Implantation Quantum Well Intermixing

    NASA Astrophysics Data System (ADS)

    Hou, Lian-Ping; Zhu, Hong-Liang; Zhou, Fan; Wang, Lu-Feng; Bian, Jing; Wang, Wei

    2005-07-01

    A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 μm is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0 dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees ×18.0 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

  15. Capillary Waves And Energy Coupling In Laser Materials Processing

    NASA Astrophysics Data System (ADS)

    Gasser, A.; Herziger, G.; Holtgen, B.; Kreutz, E. W.; Treusch, H. G.

    1987-09-01

    Static and dynamic measurements of the incident laser power, of the diffuse and specular reflected power have been performed in order to determine the absorption behavior of various metals and semiconductors during the interaction with powerful CO2-and Nd:YAG-laser-radiation. The absorptivity of the vapor and laser-induced plasma was probed by high-speed photography and measurements of conductivity transients as a function of intensity, composition, and pressure of the ambient atmosphere. For Ienergy coupling is given by the temperature-dependent refractive index and absorption coefficient of matter. For I>IB the intensity-dependent energy coupling is governed by the generation of photon-induced plasma in the surface region in combination with the dynamics of the molten and vaporized material within the interaction zone giving in addition indication for capillary waves.

  16. Different sound decay patterns and energy feedback in coupled volumes.

    PubMed

    Pu, Hongjie; Qiu, Xiaojun; Wang, Jiqing

    2011-04-01

    Different non-exponential decays such as the concave and the convex double sloped decays in the coupled rooms provide distinct sound qualities. These are commonly considered to occur in the less reverberant sub-room and the more reverberant sub-room, respectively. However, numerical simulations and experiments in this paper show that the demarcation line is not located along the physical boundaries (e.g., the partition and the coupling aperture), but in the more reverberant sub-room. The sound field with the concave double sloped decay penetrates into the auxiliary sub-room to an extent which is influenced by the difference between the two natural reverberations of the sub-rooms. Furthermore the sound energy flows in different regions are investigated, demonstrating how energy feedback leads to the concave double sloped decay.

  17. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  18. Load estimator-based hybrid controller design for two-interleaved boost converter dedicated to renewable energy and automotive applications.

    PubMed

    Bougrine, Mohamed; Benmiloud, Mohammed; Benalia, Atallah; Delaleau, Emmanuel; Benbouzid, Mohamed

    2017-01-01

    This paper is devoted to the development of a hybrid controller for a two-interleaved boost converter dedicated to renewable energy and automotive applications. The control requirements, resumed in fast transient and low input current ripple, are formulated as a problem of fast stabilization of a predefined optimal limit cycle, and solved using hybrid automaton formalism. In addition, a real time estimation of the load is developed using an algebraic approach for online adjustment of the hybrid controller. Mathematical proofs are provided with simulations to illustrate the effectiveness and the robustness of the proposed controller despite different disturbances. Furthermore, a fuel cell system supplying a resistive load through a two-interleaved boost converter is also highlighted.

  19. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  20. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  1. Yang Mills condensate dark energy coupled with matter and radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xia, T. Y.; Zhao, W.

    2007-07-01

    The coincidence problem is studied for the dark energy model of effective Yang Mills condensate (YMC) in a flat expanding universe during the matter-dominated stage. The YMC energy ρy(t) is taken to represent the dark energy, which is coupled either with the matter ρm(t), or with both the matter and the radiation components ρr(t). The effective YM Lagrangian is completely determined by the quantum field theory up to 1-loop order with an energy scale ~10-3 eV as a model parameter, and for each coupling, there is an extra model parameter. We have studied extensively the coupling models: the YMC decaying into the matter and the radiation; or vice versa the matter and radiation decaying into the YMC. It is found that, starting from the equality of radiation-matter ρmi = ρri, for a wide range of initial conditions of ρyi = (10-10, 10-2)ρmi, the models have a scaling solution during the early stages, and the YMC levels off and becomes dominant at late time, and the present state with Ωy sime 0.7, Ωm sime 0.3 and Ωr sime 10-5 is always achieved. If the YMC decays into a component, then this component also levels off later and approaches a constant value asymptotically, and the equation of state (EoS) of the YMC wy = ρy/py crosses over -1 and takes the value wy sime -1.1 at z = 0. If the matter and radiation decay into the YMC, then ρm(t) ~ a(t)-3 and ρr(t) ~ a(t)-4 approximately for all the time, and wy approaches -1 but does not cross over -1. We have also demonstrated that, at t → ∞, the coupled dynamics for (ρy(t), ρm(t), ρr(t)) is a stable attractor. Therefore, under generic circumstances, the existence of the scaling solution during the early stages and the subsequential exit from the scaling regime around z sime (0.3 0.5) are inevitable. Thus the coincidence problem can be naturally solved in the YMC dark energy models.

  2. ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Fournier, K B; Brown, C G; May, M J; Dunlop, W H; Compton, S M; Kane, J O; Mirkarimi, P B; Guyton, R L; Huffman, E

    2012-01-05

    The energy-partitioning, energy-coupling (EPEC) experiments at the National Ignition Facility (NIF) will simultaneously measure the coupling of energy into both ground shock and air-blast overpressure from a laser-driven target. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of seismic and air-blast phenomena caused by a nuclear weapon. In what follows, we discuss the motivation for our investigation and briefly describe NIF. Then, we introduce the EPEC experiments, including diagnostics, in more detail.

  3. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  4. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  5. Energy Coupling During the August 2011 Magnetic Storm (Postprint)

    DTIC Science & Technology

    2014-08-27

    Laboratory Space Vehicles Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 AFRL -RV-PS-TP-2014-0008 9. SPONSORING / MONITORING...is unlimited. 14 DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM... AFRL -RV-PS- AFRL -RV-PS- TP-2014-0008 TP-2014-0008 ENERGY COUPLING DURING THE AUGUST 2011 MAGNETIC STORM (POSTPRINT) C. Y. Huang, et al. 27 August

  6. Dynamic energy release rate in couple-stress elasticity

    NASA Astrophysics Data System (ADS)

    Morini, L.; Piccolroaz, A.; Mishuris, G.

    2013-07-01

    This paper is concerned with energy release rate for dynamic steady state crack problems in elastic materials with microstructures. A Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behaviour of the material is described by the theory of couple-stress elasticity developed by Koiter. A general expression for the dynamic J-integral including both traslational and micro-rotational inertial contributions is derived, and the conservation of this integral on a path surrounding the crack tip is demonstrated.

  7. Exchange-coupled fct-FePd/α-Fe nanocomposite magnets converted from Pd/Fe3O4 core/shell nanoparticles.

    PubMed

    Liu, Fei; Dong, Yunhe; Yang, Wenlong; Yu, Jing; Xu, Zhichuan; Hou, Yanglong

    2014-11-10

    We report the controlled synthesis of exchange-coupled face-centered tetragonal (fct) FePd/α-Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high-temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct-FePd phase was formed by the interdiffusion between reduced α-Fe and face-centered cubic (fcc) Pd, whereas the excessive α-Fe remained around the fct-FePd grains, realizing exchange coupling between the soft magnetic α-Fe and hard magnetic fct-FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange-coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g(-1). This work provides a bottom-up approach using exchange-coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.

  8. Vacuum polarization corrections to low energy quark effective couplings

    NASA Astrophysics Data System (ADS)

    Paulo, Ademar; Braghin, Fabio L.

    2014-07-01

    In this work corrections to low energy punctual effective quark couplings up to the eighth order are calculated by considering vacuum polarization effects with the scalar quark-antiquark condensate. The departing point is a QCD-based Nambu-Jona-Lasinio model. By separating the quark field into two components, one that condenses and another one for interacting quarks, the former is integrated out with the help of usual auxiliary fields and an effective action in terms of interacting quark fields is found. The scalar auxiliary field reduces to the quark-antiquark condensate in the vacuum and the determinant is expanded in powers of the quark-antiquark bilinears generating chiral invariant effective 2N-quark interactions (N =2,3…). The corresponding coupling constants and effective masses are estimated, and the general trend is that for increasing the effective gluon mass the values of the effective coupling constants decrease. All the values are in good agreement with phenomenological fits.

  9. Testing coupled dark energy with large scale structure observation

    SciTech Connect

    Yang, Weiqiang; Xu, Lixin E-mail: lxxu@dlut.edu.cn

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3Hξ{sub x}ρ-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and fσ{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in σ regions: ξ{sub x} = 0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the σ region.

  10. Supernova constraints on multi-coupled dark energy

    SciTech Connect

    Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de

    2013-07-01

    The persisting consistency of ever more accurate observational data with the predictions of the standard ΛCDM cosmological model puts severe constraints on possible alternative scenarios, but still does not shed any light on the fundamental nature of the cosmic dark sector. As large deviations from a ΛCDM cosmology are ruled out by data, the path to detect possible features of alternative models goes necessarily through the definition of cosmological scenarios that leave almost unaffected the background and — to a lesser extent — the linear perturbations evolution of the universe. In this context, the Multi-coupled DE (McDE) model was proposed by Baldi [9] as a particular realization of an interacting Dark Energy field characterized by an effective screening mechanism capable of suppressing the effects of the coupling at the background and linear perturbation level. In the present paper, for the first time, we challenge the McDE scenario through a direct comparison with real data, in particular with the luminosity distance of Type Ia supernovae. By studying the existence and stability conditions of the critical points of the associated background dynamical system, we select only the cosmologically consistent solutions, and confront their background expansion history with data. Confirming previous qualitative results, the McDE scenario appears to be fully consistent with the adopted sample of Type Ia supernovae, even for coupling values corresponding to an associated scalar fifth-force about four orders of magnitude stronger than standard gravity. Our analysis demonstrates the effectiveness of the McDE background screening, and shows some new non-trivial asymptotic solutions for the future evolution of the universe. Clearly, linear perturbation data and, even more, nonlinear structure formation properties are expected to put much tighter constraints on the allowed coupling range. Nonetheless, our results show how the background expansion history might be

  11. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    NASA Astrophysics Data System (ADS)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  12. Photoexcited energy transfer in a weakly coupled dimer

    SciTech Connect

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  13. Photoexcited energy transfer in a weakly coupled dimer

    DOE PAGES

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; ...

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  14. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  15. Numerical Simulations of the Kinetic Energy Transfer in the Bath of a BOF Converter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaobin; Ersson, Mikael; Zhong, Liangcai; Jönsson, Pär

    2016-02-01

    The paper focuses on the fundamental aspects of the kinetic energy transfer from a top and bottom gas injection to the bath of the basic oxygen furnace (BOF) by applying a mathematical model. The analyses revealed that the energy transfer is less efficient when top lance height is lowered or the flowrate is increased in the top blowing operations. However, an inverse trend was found that the kinetic energy transfer is increased when the bottom flowrate is increased for the current bottom blowing operation conditions. The kinetic energy transfer index results indicated that the energy transfer for the bottom blowing is much more efficient than that of the top blowing operations. To understand the effects of the upper buoyant phase on the energy dissipation of the bulk liquid in the bath, different mass and physical properties of slag and foam were considered in the bottom blowing simulations. The slag on top of the bath is found to dissipate by 6.6, 9.4, and 11.2 pct for slag mass values of 5, 9, and 15 t compared to the case without slag atop the surface of the bath, respectively. The results showed that the kinetic energy transfer is not largely influenced by the viscosity of the upper slag or the foaming phases.

  16. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    PubMed

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  17. Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2004-01-01

    Since chemical reactions involve the breaking and making of bonds, understanding the relative strengths of bonds is of paramount importance in the study, teaching, and practice of chemistry. Further, it is showed that free atoms having p(super n) configuration with n = 2,3, or 4 are stabilized by exchange energy, and by spin-orbit coupling for n =…

  18. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    SciTech Connect

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  19. Balancing Power Absorption and Structural Loading for an Assymmetric Heave Wave-Energy Converter in Regular Waves: Preprint

    SciTech Connect

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-07-01

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  20. IR detection and energy harvesting using antenna coupled MIM tunnel diodes

    NASA Astrophysics Data System (ADS)

    Yesilkoy, Filiz

    The infrared (IR) spectrum lies between the microwave and optical frequency ranges, which are well suited for communication and energy harvesting purposes, respectively. The long wavelength IR (LWIR) spectrum, corresponding to wavelengths from 8microm to 15microm, includes the thermal radiation emitted by objects at room temperature and the Earth's terrestrial radiation. Therefore, LWIR detectors are very appealing for thermal imaging purposes. Thermal detectors developed so far either demand cryogenic operation for fast detection, or they rely on the accumulation of thermal energy in their mass and subsequent measurable changes in material properties. Therefore, they are relatively slow. Quantum detectors allow for tunable and instantaneous detection but are expensive and require complex processes for fabrication. Bolometer detectors are simple and cheap but do not allow for tunability or for rapid detection. Harvesting the LWIR radiation energy sourced by the Earth's heating/cooling cycle is very important for the development of mobile energy resources. While speed is not as significant an issue here, conversion efficiency is an eminent problem for cheap, large area energy transduction. This dissertation addresses the development of tunable, fast, and low cost wave detectors that can operate at room temperature and, when produced in large array format, can harvest Earth's terrestrial radiation energy. This dissertation demonstrates the design, fabrication and testing of Antenna Coupled Metal-Insulator-Metal (ACMIM) tunnel diodes optimized for 10microm wavelength radiation detection. ACMIM tunnel diodes operate as electromagnetic wave detectors: the incident radiation is coupled by an antenna and converted into a 30 terahertz signal that is rectified by a fast tunneling MIM diode. For efficient IR radiation coupling, the antenna geometry and its critical dimensions are studied using a commercial finite-element based multi-physics simulation tool, and the half

  1. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  2. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.

    PubMed

    Zhang, Qian; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2014-10-29

    The abundance of solar thermal energy and the widespread demands for waste heat recovery make thermoelectric generators (TEGs) very attractive in harvesting low-cost energy resources. Meanwhile, thermoelectric refrigeration is promising for local cooling and niche applications. In this context there is currently a growing interest in developing organic thermoelectric materials which are flexible, cost-effective, eco-friendly and potentially energy-efficient. In particular, the past several years have witnessed remarkable progress in organic thermoelectric materials and devices. In this review, thermoelectric properties of conducting polymers and small molecules are summarized, with recent progresses in materials, measurements and devices highlighted. Prospects and suggestions for future research efforts are also presented. The organic thermoelectric materials are emerging candidates for green energy conversion.

  3. Double opposite-end tubesheet design for a thermovoltaic energy converter

    DOEpatents

    Ashcroft, John M.; Campbell, Brian C.; Depoy, David M.

    2000-01-01

    A method and apparatus for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

  4. Double opposite-end tubesheet design for a thermovoltaic energy converter

    SciTech Connect

    Ashcroft, John M.; Campbell, Brain C.; DePoy, David M.

    1997-12-01

    A method and apparatus are disclosed for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

  5. Solar-powered Stirling engines - Energy converters on earth and in space

    NASA Astrophysics Data System (ADS)

    Kleinwaechter, H.; Kleinwaechter, J.

    The development of the crankshaft Stirling engine has resulted in a machine suitable for energy conversion on earth and in space, using solar energy. The principle of the Stirling engine is discussed, the realization of the engine in a variety of applications is shown. The advantages of the free-piston design of the Stirling engine are addressed, and the engine's use in a receiver antenna for direct reception from satellites is considered.

  6. Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis.

    PubMed

    Holade, Yaovi; Servat, Karine; Napporn, Teko W; Morais, Cláudia; Berjeaud, Jean-Marc; Kokoh, Kouakou B

    2016-02-08

    The selective electrochemical conversion of highly functionalized organic molecules into electricity, heat, and added-value chemicals for fine chemistry requires the development of highly selective, durable, and low-cost catalysts. Here, we propose an approach to make catalysts that can convert carbohydrates into chemicals selectively and produce electrical power and recoverable heat. A 100% Faradaic yield was achieved for the selective oxidation of the anomeric carbon of glucose and its related carbohydrates (C1-position) without any function protection. Furthermore, the direct glucose fuel cell (DGFC) enables an open-circuit voltage of 1.1 V in 0.5 m NaOH to be reached, a record. The optimized DGFC delivers an outstanding output power Pmax =2 mW cm(-2) with the selective conversion of 0.3 m glucose, which is of great interest for cogeneration. The purified reaction product will serve as a raw material in various industries, which thereby reduces the cost of the whole sustainable process.

  7. New generation polyphase resonant converter-modulators for the Korean atomic energy research institute

    SciTech Connect

    Reass, William A; Baca, David M; Gribble, Robert F

    2009-01-01

    This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.

  8. Synthesis and characterization of low work function alkali oxide thin films for unconventional thermionic energy converters

    NASA Astrophysics Data System (ADS)

    Giorgis, V.; Morini, F.; Zhu, T.; Robillard, J.-F.; Wallart, X.; Codron, J.-L.; Dubois, E.

    2016-11-01

    In this work, we present the synthesis and the characterization of low work function thin films for Micro Thermionic Converters (MTC). The objective is producing a device operating at relatively low temperature (<1000 K). We aim at improving the MTC efficiency by reducing the work function of the electrodes and increasing the emitted current density by alkali metal oxides electrodes coating. In particular, in this work, we analyse and compare the performances of two alkali metal oxides: potassium and caesium oxides. Our choice to exploit those materials relies on their low work function and their abundance. For both materials, we present the results on the synthesis of the oxides under high vacuum and controlled temperature. The oxide thin films were characterized by X-ray photoelectron spectroscopy, photoemission, and thermionic emission measurements. By exploiting the latter technique, a quantitative evaluation of the current density, emitted by the heated oxides, is obtained as a function of temperature. Our results demonstrate that it is possible to decrease the silicon work function by almost 3 eV, enabling significant thermionic currents despite relatively low temperatures (below 850 K).

  9. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  10. A method for EIA scoping of wave energy converters-based on classification of the used technology

    SciTech Connect

    Margheritini, Lucia; Hansen, Anne Merrild; Frigaard, Peter

    2012-01-15

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

  11. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  12. Nonconventional synchronization and energy localization in weakly coupled autogenerators

    NASA Astrophysics Data System (ADS)

    Kovaleva, Margarita; Pilipchuk, Valery; Manevitch, Leonid

    2016-09-01

    The present work follows our previous study dealing with a new type of synchronization in a system of two weakly coupled generalized van der Pol-Duffing autogenerators. The essence of the effect revealed is that the synchronized oscillations are not stationary but accompanied by the most intensive energy exchange between the oscillators. The phase shift between the generators remains constant most of the time, except for vanishingly small transitional intervals. The current analysis deals with a generalized model in order to clarify the frequency detuning effect. We found that varying the frequency detuning, nonlinearity, and dissipation parameters can lead to structural changes in phase diagrams of the energy exchange dynamics, with important transitions from the intensive energy exchange to its localization on one of the two oscillators. The main conclusion is that stationary and nonstationary synchronizations associate with nonlinear normal and local modes, respectively. The analysis uses phase plane diagrams, including the concept of limiting phase trajectories, whose role in nonstationary synchronization appears to be similar to the role of nonlinear normal modes in conventional stationary states.

  13. Thermal energy conversion by coupled shape memory and piezoelectric effects

    NASA Astrophysics Data System (ADS)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  14. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  15. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Theory Guide

    SciTech Connect

    Freedman, Vicky L.; Chen, Yousu; Gupta, Sumant K.

    2005-11-01

    This document presents the mathematical theory implemented in the CFEST (Coupled Flow, Energy, and Solute Transport) simulator. The simulator is a three-dimensional finite element model that can be used for evaluating flow and solute mass transport. Although the theory for thermal transport is presented in this guide, it has not yet been fully implemented in the simulator. The flow module is capable of simulating both confined and unconfined aquifer systems, as well as constant and variable density fluid flows. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. Mesh construction employs “collapsible”, hexahedral finite elements in a three-dimensional coordinate system. CFEST uses the Galerkin finite element method to convert the partial differential equations to algebraic form. To solve the coupled equations for momentum, solute and heat transport, either Picard or Newton-Raphson iterative schemes are used to treat nonlinearities. An upstream weighted residual finite-element method is used to solve the advective-dispersive transport and energy transfer equations, which circumvents problems of numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers available in ITPACK and PETSc, solvers that are available in the public domain. These solvers are based on the preconditioned conjugate gradient and ORTHOMIN methods for symmetric and a nonsymmetric matrices, respectively.

  16. Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion

    NASA Astrophysics Data System (ADS)

    McBride, A. T.; Javili, A.; Steinmann, P.; Bargmann, S.

    2011-10-01

    Surfaces can have a significant influence on the overall response of a continuum body but are often neglected or accounted for in an ad hoc manner. This work is concerned with a nonlinear continuum thermomechanics formulation which accounts for surface structures and includes the effects of diffusion and viscoelasticity. The formulation is presented within a thermodynamically consistent framework and elucidates the nature of the coupling between the various fields, and the surface and the bulk. Conservation principles are used to determine the form of the constitutive relations and the evolution equations. Restrictions on the jump in the temperature and the chemical potential between the surface and the bulk are not a priori assumptions, rather they arise from the reduced dissipation inequality on the surface and are shown to be satisfiable without imposing the standard assumptions of thermal and chemical slavery. The nature of the constitutive relations is made clear via an example wherein the form of the Helmholtz energy is explicitly given.

  17. Reconstructing the dark energy equation of state with varying couplings

    SciTech Connect

    Avelino, P. P.; Martins, C. J. A. P.; Nunes, N. J.; Olive, K. A.

    2006-10-15

    We revisit the idea of using varying couplings to probe the nature of dark energy, in particular, by reconstructing its equation of state. We show that for the class of models studied this method can be far superior to the standard methods (using type Ia supernovae or weak lensing). We also show that the simultaneous use of measurements of the fine-structure constant {alpha} and the electron-to-proton mass ratio {mu} allows a direct probe of grand unification scenarios. We present forecasts for the sensitivity of this method, both for the near future and for the next generation of spectrographs--for the latter we focus on the planned CODEX instrument for ESO's Extremely Large Telescope (formerly known as OWL). A high-accuracy reconstruction of the equation of state may be possible all the way up to redshift z{approx}4.

  18. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation

    NASA Astrophysics Data System (ADS)

    Santos, André A.; Venceslau, Sofia S.; Grein, Fabian; Leavitt, William D.; Dahl, Christiane; Johnston, David T.; Pereira, Inês A. C.

    2015-12-01

    Microbial sulfate reduction has governed Earth’s biogeochemical sulfur cycle for at least 2.5 billion years. However, the enzymatic mechanisms behind this pathway are incompletely understood, particularly for the reduction of sulfite—a key intermediate in the pathway. This critical reaction is performed by DsrAB, a widespread enzyme also involved in other dissimilatory sulfur metabolisms. Using in vitro assays with an archaeal DsrAB, supported with genetic experiments in a bacterial system, we show that the product of sulfite reduction by DsrAB is a protein-based trisulfide, in which a sulfite-derived sulfur is bridging two conserved cysteines of DsrC. Physiological studies also reveal that sulfate reduction rates are determined by cellular levels of DsrC. Dissimilatory sulfate reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation.

  19. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.

    PubMed

    Santos, André A; Venceslau, Sofia S; Grein, Fabian; Leavitt, William D; Dahl, Christiane; Johnston, David T; Pereira, Inês A C

    2015-12-18

    Microbial sulfate reduction has governed Earth's biogeochemical sulfur cycle for at least 2.5 billion years. However, the enzymatic mechanisms behind this pathway are incompletely understood, particularly for the reduction of sulfite-a key intermediate in the pathway. This critical reaction is performed by DsrAB, a widespread enzyme also involved in other dissimilatory sulfur metabolisms. Using in vitro assays with an archaeal DsrAB, supported with genetic experiments in a bacterial system, we show that the product of sulfite reduction by DsrAB is a protein-based trisulfide, in which a sulfite-derived sulfur is bridging two conserved cysteines of DsrC. Physiological studies also reveal that sulfate reduction rates are determined by cellular levels of DsrC. Dissimilatory sulfate reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation.

  20. Work function determination of promising electrode materials for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.

    1976-01-01

    The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.

  1. Modeling a thermionic energy converter using finite-difference time-domain particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lo, F. S.; Lu, P. S.; Ragan-Kelley, B.; Minnich, A. J.; Lee, T. H.; Lin, M. C.; Verboncoeur, J. P.

    2014-02-01

    A thermionic energy converter (TEC) is a static device that converts heat directly into electricity by boiling electrons off a hot emitter surface across a small inter-electrode gap to a cooler collector surface. The main challenge in TECs is overcoming the space charge limit, which limits the current transmitted across a gap of a given voltage and width. We have verified the feasibility of studying and developing a TEC using a bounded finite-difference time-domain particle-in-cell plasma simulation code, OOPD1, developed by Plasma Theory and Simulation Group, formerly at UC Berkeley and now at Michigan State University. In this preliminary work, a TEC has been modeled kinetically using OOPD1, and the accuracy has been verified by comparing with an analytically solvable case, giving good agreement. With further improvement of the code, one will be able to quickly and cheaply analyze space charge effects, and seek designs that mitigate the space charge effect, allowing TECs to become more efficient and cost-effective.

  2. Single-Switch Equalization Charger Using Multiple Stacked Buck-Boost Converters for Series-Connected Energy-Storage Modules

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Tanaka, Koji

    Series connections of energy-storage modules such as electric double-layer capacitors (EDLCs) and lithium-ion batteries result in voltage imbalance because of the nonuniform properties of individual modules. Conventional voltage equalizers based on traditional dc-dc converters require numerous switches and/or transformers, and therefore, their costs and complexity tend to increase. This paper proposes a novel single-switch equalization charger using multiple stacked buck-boost converters. The single-switch operation not only reduces the circuit complexity but also contributes to increasing the reliability. The fundamental operating principles and design procedures of key components are presented in detail. An experimental charge test using a 25W prototype of the proposed equalization charger was performed for four series-connected EDLC modules whose initial voltages were intentionally imbalanced. Experimental results demonstrated that the proposed equalization charger could charge the series-connected modules preferentially in the order of increasing module voltage and that all the modules could be charged up to a uniform voltage level.

  3. Effect of existing law on the financing of municipally sponsored systems for converting waste to energy

    SciTech Connect

    Rines, C.; Donnelly, P. F.

    1980-01-01

    The DOE Urban Waste Program to promote use of urban waste as a source of energy is discussed. Institutional impediments rather than technical problems are proving intractable. The planning and building of resource recovery facilities meets opposition by existing state and federal laws. The example of Hempstead, New York, illustrates the way laws can work against a city attempting to strike out in new directions. The resource recovery project and the obstacles the city had to overcome are described. (DC)

  4. Designing New Materials for Converting Solar Energy to Fuels via Quantum Mechanics

    DTIC Science & Technology

    2014-07-11

    free energies for reduction and oxidation determines whether photocatalysis is thermodynamically allowed. • Finally, we calculate surface redox...to make reliable predictions of each property of interest across multiple materials. Given the transition metal oxides we focused on – from the...Band Edge Positions We started by evaluating relevant properties of five candidate parent materials: manganese oxide (MnO), wüstite (FeO

  5. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    SciTech Connect

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  6. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOEpatents

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  7. Linear perturbation constraints on multi-coupled dark energy

    NASA Astrophysics Data System (ADS)

    Piloyan, Arpine; Marra, Valerio; Baldi, Marco; Amendola, Luca

    2014-02-01

    The Multi-coupled Dark Energy (McDE) scenario has been recently proposed as a specific example of a cosmological model characterized by a non-standard physics of the dark sector of the universe that nevertheless gives an expansion history which does not significantly differ from the one of the standard ΛCDM model. Thanks to a dynamical screening mechanism, in fact, the interaction between the Dark Energy field and the Dark Matter sector is effectively suppressed at the background level during matter domination. As a consequence, background observables cannot discriminate a McDE cosmology from ΛCDM for a wide range of model parameters. On the other hand, linear perturbations are expected to provide tighter bounds due to the existence of attractive and repulsive fifth-forces associated with the dark interactions. In this work, we present the first constraints on the McDE scenario obtained by comparing the predicted evolution of linear density perturbations with a large compilation of recent data sets for the growth rate fσ8, including 6dFGS, LRG, BOSS, WiggleZ and VIPERS. Confirming qualitative expectations, growth rate data provide much tighter bounds on the model parameters as compared to the extremely loose bounds that can be obtained when only the background expansion history is considered. In particular, the 95% confidence level on the coupling strength |β| is reduced from |β| <= 83 (background constraints only) to |β| <= 0.88 (background and linear perturbation constraints). We also investigate how these constraints further improve when using data from future wide-field surveys such as supernova data from LSST and growth rate data from Euclid-type missions. In this case the 95% confidence level on the coupling further reduce to |β| <= 0.85. Such constraints are in any case still consistent with a scalar fifth-force of gravitational strength, and we foresee that tighter bounds might be possibly obtained from the investigation of nonlinear structure

  8. Linear perturbation constraints on multi-coupled dark energy

    SciTech Connect

    Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de

    2014-02-01

    The Multi-coupled Dark Energy (McDE) scenario has been recently proposed as a specific example of a cosmological model characterized by a non-standard physics of the dark sector of the universe that nevertheless gives an expansion history which does not significantly differ from the one of the standard ΛCDM model. Thanks to a dynamical screening mechanism, in fact, the interaction between the Dark Energy field and the Dark Matter sector is effectively suppressed at the background level during matter domination. As a consequence, background observables cannot discriminate a McDE cosmology from ΛCDM for a wide range of model parameters. On the other hand, linear perturbations are expected to provide tighter bounds due to the existence of attractive and repulsive fifth-forces associated with the dark interactions. In this work, we present the first constraints on the McDE scenario obtained by comparing the predicted evolution of linear density perturbations with a large compilation of recent data sets for the growth rate fσ{sub 8}, including 6dFGS, LRG, BOSS, WiggleZ and VIPERS. Confirming qualitative expectations, growth rate data provide much tighter bounds on the model parameters as compared to the extremely loose bounds that can be obtained when only the background expansion history is considered. In particular, the 95% confidence level on the coupling strength |β| is reduced from |β| ≤ 83 (background constraints only) to |β| ≤ 0.88 (background and linear perturbation constraints). We also investigate how these constraints further improve when using data from future wide-field surveys such as supernova data from LSST and growth rate data from Euclid-type missions. In this case the 95% confidence level on the coupling further reduce to |β| ≤ 0.85. Such constraints are in any case still consistent with a scalar fifth-force of gravitational strength, and we foresee that tighter bounds might be possibly obtained from the investigation of nonlinear

  9. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy.

    PubMed

    Amthor, Jeffrey S

    2010-12-01

    The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the out-put:input stoichiometries of photosynthesis and photorespiration in C(3) and C(4) systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C(3) grain crop with a full canopy at 30°C and 350 ppm atmospheric [CO(2) ], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20°C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C(4) cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency.

  10. Performance analysis of frequency up-converting energy harvesters for human locomotion

    NASA Astrophysics Data System (ADS)

    Anderson, Brittany; Wickenheiser, Adam

    2012-04-01

    Energy harvesting from human locomotion is a challenging problem because the low frequencies involved are incompatible with small, light-weight transducers. Furthermore, frequency variations during changing levels of activity greatly reduce the effectiveness of tuned resonant devices. This paper presents the performance analysis and parameter study of energy harvesters utilizing magnetic interactions for frequency up-conversion. Ferrous structures are used to periodically attract a magnetic tip mass during low-frequency oscillations, producing a series of impulses. This technique allows resonant structures to be designed for much higher natural frequencies and reduces the effects of excitation frequency variation. Measured vibrational data from several human activities are used to provide a time-varying, broadband input to the energy harvesting system and are recreated in a laboratory setting for experimental validation. Optimal load resistances are calculated under several assumptions including sinusoidal, white noise, and band-limited noise base excitations. These values are tested using simulations with real-world accelerations and compared to steady-state power optimization results. The optimal load is presented for each input signal, and an estimation of the maximum average power harvested under idealized conditions is given. The frequency up-conversion technique is compared to linear, resonant structures to determine the impact of the nonlinearities. Furthermore, an analysis is performed to study the discrepancies between the simulated results and the predicted performance derived from frequency response functions to determine the importance of transients.

  11. Electrical energy converters for practical human total artificial hearts--an opinion in support of electropneumatic systems.

    PubMed

    Jarvik, R K

    1983-02-01

    Until recently, most artificial hearts have served as research tools to acquire further knowledge necessary ultimately to design practical systems for human use. Transcutaneous systems or percutaneous systems utilizing permanently implanted energy converters, batteries, and electronics packages have a number of substantial problems that would not exist if most system elements were kept outside the body. These problems include physiologic control, fit and fixation, foreign body infection, hermetic sealing, cable insulation and fatigue, inherent system complexity, stringent requirements for maintenance-free operation with long-term high reliability, and high cost. Percutaneous systems, particularly those in which only the blood pump is implanted, are an attractive choice for practical systems in the near future. A wearable, battery-powered electropneumatic total heart system should be developed.

  12. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  13. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  14. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  15. Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

  16. A coupled energy transport and hydrological model for urban canopies

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Bou-Zeid, E.; Smith, J. A.

    2011-12-01

    Urban land-atmosphere interaction has been attracting more research efforts in order to understand the complex physics of flow and mass and heat transport in urban surfaces and the lower urban atmosphere. In this work, we developed and implemented a new physically-based single-layer urban canopy model, coupling the surface exchange of energy and the subsurface transport of water/soil moisture. The new model incorporates sub-facet heterogeneity for each urban surface (roof, wall or ground). This better simulates the energy transport in urban canopy layers, especially over low-intensity built (suburban type) terrains that include a significant fraction of vegetated surfaces. We implemented detailed urban hydrological models for both natural terrains (bare soil and vegetation) and porous engineered materials with water-holding capacity (concrete, gravel, etc). The skill of the new scheme was tested against experimental data collected through a wireless sensor network deployed over the campus of Princeton University. The model performance was found to be robust and insensitive to changes in weather conditions or seasonal variability. Predictions of the volumetric soil water content were also in good agreement with field measurements, highlighting the model capability of capturing subsurface water transport for urban lawns. The new model was also applied to a case study assessing different strategies, i.e. white versus green roofs, in the mitigation of urban heat island effect.

  17. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  18. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    SciTech Connect

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  19. Converting campus waste into renewable energy - a case study for the University of Cincinnati.

    PubMed

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C

    2015-05-01

    This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively.

  20. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  1. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer

    PubMed Central

    Tang, Sai Chun; McDannold, Nathan J.

    2015-01-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems. PMID:26640745

  2. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    PubMed

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  3. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  4. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  5. Pulsed thermionic converter study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.

  6. Hydrophobic polymer covered by a grating electrode for converting the mechanical energy of water droplets into electrical energy

    NASA Astrophysics Data System (ADS)

    Helseth, L. E.; Guo, X. D.

    2016-04-01

    Water contact electric harvesting has a great potential as a new energy technology for powering small-scale electronics, but a better understanding of the dynamics governing the conversion from mechanical to electrical energy on the polymer surfaces is needed. Important questions are how current correlates with droplet kinetic energy and what happens to the charge dynamics when a large number of droplets are incident on the polymer simultaneously. Here we address these questions by studying the current that is generated in an external electrical circuit when water droplets impinge on hydrophobic fluorinated ethylene propylene film containing a grating electrode on the back side. Droplets moving down an inclined polymer plane exhibit a characteristic periodic current time trace, and it is found that the peak current scales with sine of the inclination angle. For single droplets in free fall impinging onto the polymer, it is found that the initial peak current scales with the height of the free fall. The transition from individual droplets to a nearly continuous stream was investigated using the spectral density of the current signal. In both regimes, the high frequency content of the spectral density scales as f -2. For low frequencies, the low frequency content at low volume rates was noisy but nearly constant, whereas for high volume rates an increase with frequency is observed. It is demonstrated that the output signal from the system exposed to water droplets from a garden hose can be rectified and harvested by a 33 μF capacitor, where the stored energy increases at a rate of about 20 μJ in 100 s.

  7. Alaskan wave and river hydrokinetic energy resource assessment, river energy converter testing and surface debris mitigation performance

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Kasper, J.; Schmid, J.; Duvoy, P.; Ravens, T. M.; Hansen, N.; Montlaur, A.

    2014-12-01

    The Alaska Hydrokinetic Energy Research Center (AHERC) is conducting a wave energy assessment study at Yakutat, Alaska, and conducting ongoing river technology studies at the Tanana River Tests Site (TRTS) at Nenana, Alaska. In Aug. 2013 an acoustic Doppler current profiler (ADCP) was deployed in 40 m of water off Cannon Beach in Yakutat, AK as part of the Yakutat area wave energy resource assessment. Over the course of the 1.5 year deployment, the ADCP will record area wave and current data in order to verify the area wave energy resource. Preliminary data analysis shows a vigorous wave field with maximum wave heights up to 16 m in Nov. 2013. In addition to the in-situ directional wave data recorded by the ADCP, a SWAN wave climatology spanning the past 20 years is being developed along with a simulation of the wave field for the near shore (5 mEnergy hydrokinetic turbine from river debris flows and to determine the effect of RDDP generated river current turbulence on turbine efficiency. Previous tests have shown that the RDDP effectively sheds debris, however, large debris objects can cause RDDP rotation about its mooring point requiring that a stable attachment between the RDDP and protected floating structure be in place to ensure that debris is diverted away from the protected structure. Performance tests of an Oceana hydrokinetic power turbine will be conducted in late August or early September, 2014 at the TRTS in realistic Alaskan river conditions of current turbulence, high sediment flow and debris. Measurements of river sediment concentration, current velocity and river stage will be made, and current turbulence will be derived. CFD simulations of the RDDP interaction with the river flow will be completed to compare current velocity and turbulence results, depending on

  8. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ► A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ► The fuel cell decomposes environmentally hazardous materials to produce electricity. ► Doping the anode with a transition metal oxide increases the visible light sensitivity. ► Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  9. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon

    2015-07-01

    A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  10. A Theory of Control for a Class of Electronic Power Processing Systems: Energy-Storage DC-To-DC Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III

    1977-01-01

    An analytically derived approach to the control of energy-storage dc-to-dc converters, which enables improved system performance and an extensive understanding of the manner in which this improved performance is accomplished, is presented. The control approach is derived from a state-plane analysis of dc-to-dc converter power stages which enables a graphical visualization of the movement of the system state during both steady state and transient operation. This graphical representation of the behavior of dc-to-dc converter systems yields considerable qualitative insight into the cause and effect relationships which exist between various commonly used converter control functions and the system performance which results from them.

  11. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  12. Thermionic converter

    DOEpatents

    Rasor, Ned S.; Britt, Edward J.

    1976-01-01

    A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.

  13. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  14. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Burns, R. K.

    1982-01-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  15. Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool: Preprint

    SciTech Connect

    Lawson, M.; Yu, Y. H.; Nelessen, A.; Ruehl, K.; Michelen, C.

    2014-05-01

    Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multi-body dynamics with hydrodynamic models based on the Cummins Equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of high performance computing resources necessitated by high-fidelity methods, such as Navier Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions in order to maximize power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions. In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device (referred to as instantaneous buoyancy and Froude-Krylov forces from herein) changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation.

  16. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    NASA Astrophysics Data System (ADS)

    Choo, Y. K.; Burns, R. K.

    1982-02-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  17. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  18. Microminiature thermionic converters

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2001-09-25

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  19. Measurement techniques for the characterization in the frequency domain of regulated energy-storage DC-to-DC converters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bahler, D. D.

    1978-01-01

    Procedures are presented for obtaining valid frequency-domain transfer functions of regulated reactor energy-storage dc-to-dc converters. These procedures are for measuring loop gain, closed loop gain, output impedance, and audio susceptibility. The applications of these measurements are discussed.

  20. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  1. Accounting for delay of energy transfer between coupled rooms in statistical-acoustics models of reverberant-energy decay.

    PubMed

    Summers, Jason E

    2012-08-01

    A statistical-acoustics model for energy decay in systems of two or more coupled rooms is introduced, which accounts for the distribution of delay in the transfer of energy between subrooms that results from the finite speed of sound. The method extends previous models based on systems of coupled ordinary differential equations by using functional differential equations to explicitly model dependence on prior values of energy in adjacent subrooms. Predictions of the model are illustrated for a two-room coupled system and compared with the predictions of a benchmark computational geometrical-acoustics model.

  2. Multilevel converters -- A new breed of power converters

    SciTech Connect

    Lai, J.S.; Peng, F.Z. |

    1995-09-01

    Multilevel voltage source converters are emerging as a new breed of power converter options for high-power applications. The multilevel voltage source converters typically synthesize the staircase voltage wave from several levels of dc capacitor voltages. One of the major limitations of the multilevel converters is the voltage unbalance between different levels. The techniques to balance the voltage between different levels normally involve voltage clamping or capacitor charge control. There are several ways of implementing voltage balance in multilevel converters. Without considering the traditional magnetic coupled converters, this paper presents three recently developed multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate dc sources. The operating principle, features, constraints, and potential applications of these converters will be discussed.

  3. Energy Band and Josephson Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Yu, Zi-Fa; Xue, Ju-Kui

    2015-10-01

    We theoretically investigate the energy band structure and Josephson dynamics of a spin-orbit coupled Bose-Einstein condensate in a double-well potential. We study the energy band structure and the corresponding tunneling dynamics of the system by properly adjusting the SO coupling, Raman coupling, Zeeman field and atomic interactions. The coupled effects of SO coupling, Raman coupling, Zeeman field and atomic interactions lead to the appearance of complex energy band structure including the loop structure. Particularly, the emergence of the loop structure in energy band also depends on SO coupling, Raman coupling, Zeeman field and atomic interactions. Correspondingly, the Josephson dynamics of the system are strongly related to the energy band structure. Especially, the emergence of the loop structure results in complex tunneling dynamics, including suppression-revival transitions and self-trapping of atoms transfer between two spin states and two wells. This engineering provides a possible means for studying energy level and corresponding dynamics of two-species SO coupled BECs. Supported by the National Natural Science Foundation of China under Grant Nos. 11274255 and 11305132, by Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, by the Natural Science Foundation of Gansu province under Grant No. 2011GS04358, and by Creation of Science and Technology of Northwest Normal University under Grant Nos. NWNU-KJCXGC-03-48, NWNU-LKQN-12-12

  4. Photocapacitive image converter

    NASA Astrophysics Data System (ADS)

    Miller, W. E.; Sher, A.; Tsuo, Y. H.

    1982-05-01

    An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.

  5. Constraining top-Higgs couplings at high and low energy

    NASA Astrophysics Data System (ADS)

    Mereghetti, Emanuele

    2017-03-01

    The study of the couplings of the Higgs boson and of the top quark plays a preeminent role at the LHC, and could unveil the first signs of new physics. I will discuss the interplay of direct and indirect probes of certain classes of top and Higgs couplings. Including constraints from collider observables, precision electroweak tests, flavor physics, and electric dipole moments (EDMs), I will show that indirect probes are competitive, if not dominant, for both the CP-even and CP-odd top and Higgs couplings we considered. I will discuss the role of theoretical uncertainties, associated with hadronic and nuclear matrix elements, and indicate targets to further improve the constraining power of EDM experiments.

  6. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  7. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  8. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  9. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    NASA Technical Reports Server (NTRS)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  10. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    PubMed

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  11. XTL Converter

    SciTech Connect

    Spurgeon, Steven R

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Header information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.

  12. Thermionic converter

    DOEpatents

    Fitzpatrick, G.O.

    1987-05-19

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  13. Non-minimal coupling of torsion-matter satisfying null energy condition for wormhole solutions

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila

    2016-12-01

    We explore wormhole solutions in a non-minimal torsion-matter coupled gravity by taking an explicit non-minimal coupling between the matter Lagrangian density and an arbitrary function of the torsion scalar. This coupling describes the transfer of energy and momentum between matter and torsion scalar terms. The violation of the null energy condition occurred through an effective energy-momentum tensor incorporating the torsion-matter non-minimal coupling, while normal matter is responsible for supporting the respective wormhole geometries. We consider the energy density in the form of non-monotonically decreasing function along with two types of models. The first model is analogous to the curvature-matter coupling scenario, that is, the torsion scalar with T-matter coupling, while the second one involves a quadratic torsion term. In both cases, we obtain wormhole solutions satisfying the null energy condition. Also, we find that the increasing value of the coupling constant minimizes or vanishes on the violation of the null energy condition through matter.

  14. Neurovascular coupling and energy metabolism in the developing brain

    PubMed Central

    Kozberg, M.; Hillman, E.

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. PMID:27130418

  15. A novel design of combining the angiotensin converting enzyme (ACE) inhibitor captopril with the angiotensin receptor blocker (ARB) losartan using homo coupling via PEG diacid linker.

    PubMed

    Hashemzadeh, Mehrnoosh; Park, Shery; Ju, Hee; Movahed, Mohammad R

    2013-12-01

    Cardiovascular disease is the leading cause of death in American adults. Furthermore, the incidence of congestive heart failure is on the rise as a major cause of hospitalization and mortality in this population. Angiotensin Converting Enzyme (ACE) inhibitors prevent the production of angiotensin II, which has been shown to reduce mortality in patients with congestive heart failure. Angiotensin II receptor blockers (ARB) were developed as a direct inhibitor of angiotensin II. ARBs have been shown to be effective in the treatment of patients with systolic heart failure but do not cause chronic coughing which is a common side effect of ACE inhibitors. In theory, a compound that has the combined effect of an ACE inhibitor and an ARB should be more effective in treating heart failure patients than either agents alone. Therefore, the purpose of this manuscript is to design and discuss the benefits of a new molecule, which combines captopril, an ACE inhibitor, with losartan, an ARB. In this experiment Captopril and Losartan were modified and synthesized separately and combined by homo or mono coupling. This was achieved by taking advantage of PEG (Polyethylene glycol) as a linker. It is expected that this molecule will have the combined modes of action of both ACEs and ARBs. Benefits from combination therapy include; increased efficacy, reduced adverse effects, convenience, compliance, and prolonged duration. Consequently, this combined molecule is expected to block the production of angiotensin II more efficiently and effectively. Although captopril and losartan work in the same system by blocking the effect of angiotensin II they have different action sites and mechanisms some patents are also discussed. Losartan blocks the AT1 receptor which is expressed on the cell surface, while captopril inhibits ACE, preventing production of angiotensin II, which is present in both the plasma and on the cell surface, especially on endothelial and smooth muscle cells.

  16. The Effect of Converting to a U.S. Hydrogen Fuel Cell Vehicle Fleet on Emissions and Energy Use

    NASA Astrophysics Data System (ADS)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    2004-12-01

    This study analyzes the potential change in emissions and energy use from replacing fossil-fuel based vehicles with hydrogen fuel cell vehicles. This study examines three different hydrogen production scenarios to determine their resultant emissions and energy usage: hydrogen produced via 1) steam reforming of methane, 2) coal gasification, or 3) wind electrolysis. The atmospheric model simulations require two primary sets of data: the actual emissions associated with hydrogen fuel production and use, and the corresponding reduction in emissions associated with reducing fossil fuel use. The net change in emissions is derived using 1) the U.S. EPA's National Emission Inventory (NEI) that incorporates several hundred categories of on-road vehicles and 2) a Process Chain Analysis (PCA) for the different hydrogen production scenarios. NEI: The quantity of hydrogen-related emission is ultimately a function of the projected hydrogen consumption in on-road vehicles. Data for hydrogen consumption from on-road vehicles was derived from the number of miles driven in each U.S. county based on 1999 NEI data, the average fleet mileage of all on-road vehicles, the average gasoline vehicle efficiency, and the efficiency of advanced 2004 fuel cell vehicles. PCA: PCA involves energy and mass balance calculations around the fuel extraction, production, transport, storage, and delivery processes. PCA was used to examine three different hydrogen production scenarios: In the first scenario, hydrogen is derived from natural gas, which is extracted from gas fields, stored, chemically processed, and transmitted through pipelines to distributed fuel processing units. The fuel processing units, situated in similar locations as gasoline refueling stations, convert natural gas to hydrogen via a combination of steam reforming and fuel oxidation. Purified hydrogen is compressed for use onboard fuel cell vehicles. In the second scenario, hydrogen is derived from coal, which is extracted from

  17. Dark Energy Coupled with Dark Matter in the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2004-06-01

    To model the observed Universe containing both dark energy and dark matter, we study the effective Yang Mills condensate model of dark energy and add a non-relativistic matter component as the dark matter, which is generated out of the decaying dark energy at a constant rate Gamma, a parameter of our model. For the Universe driven by these two components, the dynamic evolution still has asymptotic behaviour: the expansion of the Universe is accelerating with an asymptotically constant rate H, and the densities of both components approach to finite constant values. Moreover, OmegaLambdasimeq0.7 for dark energy and Omegamsimeq0.3 for dark matter are achieved if the decay rate Gamma is chosen such that Gamma/H~1.

  18. Low energy determination of the QCD strong coupling constant on the lattice

    SciTech Connect

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value αs( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  19. Low energy determination of the QCD strong coupling constant on the lattice

    DOE PAGES

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value αs( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  20. High energy similariton fiber laser using chirally-coupled-core fiber

    PubMed Central

    Lefrancois, Simon; Liu, Chi-Hung; Stock, Michelle L.; Sosnowski, Thomas S.; Galvanauskas, Almantas; Wise, Frank W.

    2013-01-01

    We present a high energy amplifier similariton laser based on chirally-coupled core fiber. Chirped pulse energies up to 61 nJ at 3.3 W average power are obtained with effectively singlemode output. The pulses can be compressed with a simple grating compressor to durations below 90 fs. We demonstrate for the first time a fused pump-signal combiner to confirm the integration potential of chirally-coupled core fibers. PMID:23282832

  1. Probing gravitational non-minimal coupling with dark energy surveys

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Wu, Yi-Peng

    2017-03-01

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ . The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ {>}0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G_eff subject to the hint of a non-zero ξ is constrained to -0.003< 1- G_eff/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1- G_eff/G < 2.2 × 10^{-5} when combining with Solar System tests.

  2. Directional energy focusing on monolayer graphene coupling system

    NASA Astrophysics Data System (ADS)

    Wei, Buzheng; Yang, Yuguang; Yao, Shuzhi; Xiao, Han; Jian, Shuisheng

    2017-03-01

    A directional energy focusing system based on parallel-monolayer graphene sheets is proposed and is analytically and numerically investigated in this paper. By properly designing the chemical potential distributions, we obtain a ˜0.8-nm-size focusing point at desired positions with energy enhancement factor of over 2410. The flexible tunability of the transmission properties enables us to shut one parallel pair propagation down and guide the waves to the other branch. The light signal at the focal point is efficiently slowed down to over 10,000 times the speed in vacuum as well. The proposed structure may find potential applications in integrated circuits, on-chip systems or energy storage.

  3. Preliminary Study of Coupling Electromagnetic Energy to Primasheet-1000 Explosive

    DTIC Science & Technology

    2013-05-01

    energy from a 160-kJ (5.5-kV) capacitor bank into the conductive zone behind the detonation front of an explosive reaction. The power supply employs a...6.5-kV, 0.010-F, 200-kJ capacitor bank . The explosive portion of the experimental apparatus consists of two copper plates (2.54 cm wide × 50 cm... capacitor bank , released, and transferred to a storage inductor. Upon initiation of the explosive, energy stored in the storage inductor is rapidly

  4. Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.; Parmar, M.

    2016-03-01

    The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each

  5. Distributed electrical leads for thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.; Britt, Edward J.

    1979-01-01

    In a thermionic converter, means are provided for coupling an electrical lead to at least one of the electrodes thereof. The means include a bus bar and a plurality of distributed leads coupled to the bus bar each of which penetrates through one electrode and are then coupled to the other electrode of the converter in spaced apart relation.

  6. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  7. Correlation energy per particle from the coupling-constant integration

    SciTech Connect

    Colonna, F.; Maynau, D.; Savin, A.

    2003-07-01

    The adiabatic connection can be used in density functional theory to define the unknown (exchange and) correlation density functional. Using conventional wave-function techniques, accurate estimates of thus defined (exchange and) correlation energy densities can be obtained for specified systems. In this paper, numerical results are presented for the He and the Be atom, as well as the isoelectron Ne ions. A generalized gradient approximation is tested against these results. The comparison shows that the generalized gradient approximation has the ability to detect local features (the shell structure). In one case (Ne{sup 6+}), however, it turns out that the accurate correlation energy per particle is lower than that obtained within the local-density approximation, and thus not properly corrected by the generalized gradient approximation.

  8. Energy levels of magneto-optical polaron in spherical quantum dot — Part 1: Strong coupling

    NASA Astrophysics Data System (ADS)

    Fotue, A. J.; Kenfack, S. C.; Issofa, N.; Tiotsop, M.; Fotsin, H.; Mainimo, E.; Fai, L. C.

    2015-09-01

    We investigate the influence of a magnetic field on the ground state energy of a polaron in a spherical semiconductor quantum dot (QD) using the modified LLP method. The ground state energy is split into sub-energy levels and there is a degeneracy of energy levels. It is also observed that the degenerate energy increase with the electron-phonon coupling constant and decrease with the magnetic field. The numerical results show that, under the influence of magnetic field and the interaction with the total momentum along the z-direction, the split energy increases and decreases with the longitudinal and the transverse confinement length, respectively.

  9. Demonstrating Energy Migration in Coupled Oscillators: A Central Concept in the Theory of Unimolecular Reactions

    ERIC Educational Resources Information Center

    Marcotte, Ronald E.

    2005-01-01

    This physical chemistry lecture demonstration is designed to aid the understanding of intramolecular energy transfer processes as part of the presentation of the theory of unimolecular reaction rates. Coupled pendulums are used to show the rate of migration of energy between oscillators under resonant and nonresonant conditions with varying…

  10. Reduced coupled-mode approach to electron-ion energy relaxation.

    PubMed

    Chapman, D A; Vorberger, J; Gericke, D O

    2013-07-01

    We present a reduced model for the energy transfer via coupled collective modes in two-temperature plasmas based on quantum statistical theory. The model is compared with exact numerical evaluations of the coupled-mode (CM) energy transfer rate and with alternative reduced approaches over a range of conditions in the warm dense matter (WDM) and inertial confinement fusion (ICF) regimes. Our approach shows excellent agreement with an exact treatment of the CM rate and supports the importance of the coupled-mode effect for the temperature and energy relaxation in WDM and ICF plasmas. We find that electronic damping of collective ion density fluctuations is crucial for correctly describing the mode spectrum and, thus, the energy exchange. The reduced CM approach is studied over a wide parameter space, enabling us to establish its limits of applicability.

  11. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  12. Self-powered microthermionic converter

    DOEpatents

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  13. Energy conditions for the four dimensional cosmological model with nonminimal derivative coupling of scalar field

    NASA Astrophysics Data System (ADS)

    Suroso, Agus; Zen, Freddy P.; Hikmawan, Getbogi

    2015-09-01

    The energy conditions is a set of linear equations of energy density ρ and pressure p which ensure the the field(s) that we used in our model is physically "reasonable". We study the energy conditions for four dimensional nonminimal derivative coupling of scalar field and curvature tensor. Considering the scalar field as a perfect fluid, we find some constraint for the coupling constant ξ in order the energy conditions is satisfied or violated. We find that strong energy conditions (SEC) is violated if -1/9H2 ≤ ξ < 1/18H2. For de Sitter solution a ∝ eH0t for some constant H0, we find that while null, weak, and dominant energy conditions violated when ξ <-[12 H02(2 +9 H02) ] -1 . The accelerating universe is exist for the power law solution (a ∝ tp for constant p) if ξ < 0.

  14. The fragment spin difference scheme for triplet-triplet energy transfer coupling

    NASA Astrophysics Data System (ADS)

    You, Zhi-Qiang; Hsu, Chao-Ping

    2010-08-01

    To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

  15. Studies on plasma direct energy converters for thermal and fusion-produced ions using slanted cusp magnetic and distributed electric fields

    NASA Astrophysics Data System (ADS)

    Yasaka, Y.; Goto, K.; Taniguchi, A.; Tsuji, A.; Takeno, H.

    2009-07-01

    Two types of direct energy converters, cusp direct energy converter (CUSPDEC) and travelling-wave (TW) DEC, used to produce electricity from thermal ions and fusion products in an advanced fuelled fusion, are investigated using small-scale devices. In CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce dc power. Efficiencies of energy conversion of separated ions with large thermal spread of energy are measured to be ~55%. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. From the measured voltage-current characteristics, the efficiency of this collector is estimated to be improved to 65-70%, which is consistent with the calculation. Fusion-produced fast ions enter into TWDEC and are velocity-modulated by RF fields, bunched and then decelerated by RF travelling-wave fields on the decelerator to produce RF power. The TWDEC device has shown that the energies of ions of 3-6 keV can be decreased by 10-15% for a one-wavelength decelerator. This would give a total efficiency of 60-70% for a full-length decelerator. A novel system is being investigated for further improvement, in which the incoming ions are deflected transversely, according to each energy, to form a fan-shaped beam and a distributed electrode array for modulation and deceleration generates travelling-waves appropriate to each ion path depending on the energy.

  16. Characteristic coupling time between axial and transverse energy modes for anti-hydrogen in magnetostatic traps

    NASA Astrophysics Data System (ADS)

    Zhong, Mike; Fajans, Joel

    2016-10-01

    For upcoming ALPHA collaboration laser spectroscopy and gravity experiments, the nature of the chaotic trajectories of individual antihydrogen atoms trapped in the octupole Ioffe magnetic trap is of importance. Of particular interest for experimental design is the coupling time between the axial and transverse modes of energy for the antihydrogen atoms. Using Monte Carlo simulations of semiclassical dynamics of antihydrogen trajectories, we quantify this characteristic coupling time between axial and transverse modes of energy. There appear to be two classes of trajectories: for orbits whose axial energy is higher than 10% of the total energy, the axial energy varies chaotically on the order of 1-10 seconds, whereas for orbits whose axial energy is around 10% of the total energy, the axial energy remains nearly constant on the order of 1000 seconds or longer. Furthermore, we search through parameter -space to find parameters of the magnetic trap that minimize and maximize this characteristic coupling time. This work was supported by the UC Berkeley Summer Undergraduate Research Fellowship, the Berkeley Research Computing program, the Department of Energy contract DE-FG02-06ER54904, and the National Science Foundation Grant 1500538-PHY.

  17. Sleep Apnea and Fatty Liver Are Coupled Via Energy Metabolism

    PubMed Central

    Arısoy, Ahmet; Sertoğullarından, Bunyamin; Ekin, Selami; Özgökçe, Mesut; Bulut, Mehmet Deniz; Huyut, Mehmet Tahir; Ölmez, Şehmus; Turan, Mahfuz

    2016-01-01

    Background Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by intermittent hypoxia. Non-alcoholic fatty liver disease is the most common cause of chronic liver disease worldwide. We aimed to evaluate the relationship between OSA and fatty liver. Material/Methods We enrolled 176 subjects to this study who underwent polysomnography (PSG) for suspected OSA. The control group included 42 simple snoring subjects. PSG, biochemical tests, and ultrasonographic examination were performed all subjects. Results The simple snoring and mild, moderate, and severe OSA groups included 18/42 (42.86%), 33/52 (63.5%), 27/34 (79.4%), and 28/48 (79.2%) subjects with hepatosteatosis, respectively. There were significant differences in hepatosteatosis and hepatosteatosis grade between the simple snoring and the moderate and severe OSA groups. Logistic regression analysis showed that BMI and average desaturation were independently and significantly related to hepatic steatosis. Conclusions Our study shows that BMI and the average desaturation contribute to non-alcoholic fatty liver in subjects with OSA. In this regard, sleep apnea may trigger metabolic mitochondrial energy associated processes thereby altering lipid metabolism and obesity as well. PMID:26993969

  18. Controlling energy transfer time between two coupled magnetic vortex-state disks

    NASA Astrophysics Data System (ADS)

    Vigo-Cotrina, H.; Guimarães, A. P.

    2016-12-01

    The influence of the in-plane uniaxial anisotropy (IPUA) in the mutual energy transfer time (τ) between two identical coupled nanodisks was studied. Using an analytical dipolar model, we obtained the interactions between the disks along x and y directions (the coupling integrals) as a function of the uniaxial anisotropy constant (K σ ) and the distance. We find that the IPUA increases the interaction between the disks allowing shorter energy transfer times. For our range of K σ values, we get a drop in the values of τ of up to about 70%. From the Lagrangian of the system, we obtained the equations of motion and the coupling frequencies of the dynamic system as a function of distance and K σ . The coupling frequencies were also obtained from micromagnetic simulations. Our results of the simulations are in agreement with the analytical results.

  19. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings.

    PubMed

    Muñoz-Losa, A; Curutchet, C; Fdez Galván, I; Mennucci, B

    2008-07-21

    We present a comparative study on the influence of the quantum mechanical (QM) method (including basis set) on the evaluation of transition energies, transition densities and dipoles, and excitation energy transfer (EET) electronic couplings for a series of chromophores (and the corresponding pairs) typically found in organic electro-optical devices and photosynthetic systems. On these systems we have applied five different QM levels of description of increasing accuracy (ZINDO, CIS, TD-DFT, CASSCF, and SAC-CI). In addition, we have tested the effects of a surrounding environment (either mimicking a solvent or a protein matrix) on excitation energies, transition dipoles, and electronic couplings through the polarizable continuum model (PCM) description. Overall, the results obtained suggest that the choice of the QM level of theory affects the electronic couplings much less than it affects excitation energies. We conclude that reasonable estimates can be obtained using moderate basis sets and inexpensive methods such as configuration interaction of single excitations or time-dependent density functional theory when appropriately coupled to realistic solvation models such as PCM.

  20. An intense NIR emission from Ca14Al10Zn6O35:Mn(4+),Yb(3+)via energy transfer for solar spectral converters.

    PubMed

    Lü, Wei; Jiao, Mengmeng; Shao, Baiqi; Zhao, Lingfei; Feng, Yang; You, Hongpeng

    2016-01-14

    To date, most current reports on the development and optimization of solar spectral converters have described the utilization of energy transfer among rare-earth ions. Here, we introduce non-rare-earth ion Mn(4+) to transfer energy to Yb(3+), which can exhibit strong near-infrared luminescence. It can harvest UV-blue photons and exhibits intense NIR emission of Yb(3+) around 1000 nm, perfectly matching the maximum spectral response of Si solar cells. It demonstrates for the first time that efficient energy transfer occurs with a decrease in the excited state lifetime and red photoluminescence (PL) from Mn(4+) with increasing Yb(3+) concentration. These results demonstrate that the Mn(4+) ions can be an efficient and direct sensitizer harvesting UV-blue photons. It could provide new avenues for developing harvesting Si-based solar cells.

  1. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    SciTech Connect

    Ann R. Dallman; Neary, Vincent S.

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  2. Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters.

    PubMed

    Ahuja, Tarushee; Wang, Dengchao; Tang, Zhenghua; Robinson, Donald A; Padelford, Jonathan W; Wang, Gangli

    2015-07-15

    Electron transfer activities of metal clusters are fundamentally significant and have promising potential in catalysis, charge or energy storage, sensing, biomedicine and other applications. Strong resonance coupling between the metal core energy states and the ligand molecular orbitals has not been established experimentally, albeit exciting progress has been achieved in the composition and structure determination of these types of nanomaterials recently. In this report, the coupling between core and ligand energy states is demonstrated by the rich electron transfer activities of Au130 clusters. Quantized electron transfers to the core and multi-electron transfers involving the durene-dithiolate ligands were observed at lower and higher potentials, respectively, in voltammetric studies. After a facile multi-electron oxidation from +1.34 to +1.40 V, several reversal reduction processes at more negative potentials, i.e. +0.91 V, +0.18 V and -0.34 V, were observed in an electrochemically irreversible fashion or with sluggish kinetics. The number of electrons and the shifts of the respective reduction potentials in the reversal process were attributed to the electronic coupling or energy relaxation processes. The electron transfer activities and subsequent relaxation processes are drastically reduced at lower temperatures. The time- and temperature-dependent relaxation, involving multiple energy states in the reversal reduction processes upon the oxidation of ligands, reveals the coupling between core and ligand energy states.

  3. Excited-State Energies and Electronic Couplings of DNA Base Dimers

    SciTech Connect

    Kozak, Christopher R.; Kistler, Kurt A.; Lu, Zhen; Matsika, Spiridoula

    2010-02-04

    The singlet excited electronic states of two π-stacked thymine molecules and their splittings due to electronic coupling have been investigated with a variety of computational methods. Focus has been given on the effect of intermolecular distance on these energies and couplings. Single-reference methods, CIS, CIS(2), EOMCCSD, TDDFT, and the multireference method CASSCF, have been used, and their performance has been compared. It is found that the excited-state energies are very sensitive to the applied method but the couplings are not as sensitive. Inclusion of diffuse functions in the basis set also affects the excitation energies significantly but not the couplings. TDDFT is inadequate in describing the states and their coupling, while CIS(2) gives results very similar to EOM-CCSD. Excited states of cytosine and adenine π-stacked dimers were also obtained and compared with those of thymine dimers to gain a more general picture of excited states in π-stacked DNA base dimers. The coupling is very sensitive to the relative position and orientation of the bases, indicating great variation in the degree of delocalization of the excited states between stacked bases in natural DNA as it fluctuates.

  4. Energy conserving coupling through small apertures in an infinite perfect conducting screen

    NASA Astrophysics Data System (ADS)

    Petzold, J.; Tkachenko, S.; Vick, R.

    2015-11-01

    Apertures in shielding enclosures are an important issue for determining shielding efficiencies. Various mathematical procedures and theories were employed to describe the coupling between the regions connected via an aperture in a well conducting plane. Bethe's theory describes the coupling via the equivalent problem of field excited dipole moments at the location of the aperture. This approach neglects the reaction of the dipole moments on the exciting field and therefore violates energy conservation. This work emphasizes an analytical approach for coupling between half-spaces through small apertures, inspired by the so called method of small antenna, which allows an understandable generalization of Bethe's theory.

  5. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies

    NASA Astrophysics Data System (ADS)

    Cai, Qiong; Adjiman, Claire S.; Brandon, Nigel P.

    2014-12-01

    The penetration of intermittent renewable energies requires the development of energy storage technologies. High temperature electrolysis using solid oxide electrolyser cells (SOECs) as a potential energy storage technology, provides the prospect of a cost-effective and energy efficient route to clean hydrogen production. The development of optimal control strategies when SOEC systems are coupled with intermittent renewable energies is discussed. Hydrogen production is examined in relation to energy consumption. Control strategies considered include maximizing hydrogen production, minimizing SOEC energy consumption and minimizing compressor energy consumption. Optimal control trajectories of the operating variables over a given period of time show feasible control for the chosen situations. Temperature control of the SOEC stack is ensured via constraints on the overall temperature difference across the cell and the local temperature gradient within the SOEC stack, to link materials properties with system performance; these constraints are successfully managed. The relative merits of the optimal control strategies are analyzed.

  6. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    PubMed Central

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  7. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  8. DC-to-DC switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)

    1980-01-01

    A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.

  9. The energy coupling function and the power generated by the solar wind-magnetosphere dynamo

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1980-01-01

    A solar wind parameter epsilon, known as the energy coupling function, has been shown to correlate with the power consumption in the magnetosphere. It is shown in the present paper that the parameter epsilon can be identified semi-quantitatively as the dynamo power delivered from the solar wind to an open magnetosphere. This identification not only provides a theoretical basis for the energy coupling function, but also constitutes an observational verification of the solar wind-magnetosphere dynamo along the magnetotail. Moreover, one can now conclude that a substorm results when the dynamo power exceeds 10 to the 18th erg/s.

  10. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  11. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  12. Entanglement of two qubits coupled to an XY spin chain: Role of energy current

    NASA Astrophysics Data System (ADS)

    Liu, Ben-Qiong; Shao, Bin; Zou, Jian

    2009-12-01

    We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.

  13. Entanglement of two qubits coupled to an XY spin chain: Role of energy current

    SciTech Connect

    Liu Benqiong; Shao Bin; Zou Jian

    2009-12-15

    We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.

  14. Magnetomechanical coupling factor and energy density of single crystal iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Datta, Supratik; Flatau, Alison B.

    2008-03-01

    Energy density and coupling factor are widely used as figures of merit for comparing different active materials. These parameters are usually evaluated as material constants assuming a linear behavior of the material over all operating ranges. In this work it is shown that the operating conditions have an effect on the energy density and coupling factor which cannot be ignored. A single crystal rod of Fe 84Ga 16 was characterized as a magnetostrictive actuator and sensor under different quasi-static stress and magnetic field conditions. The material showed a saturation magnetostriction of 247 μɛ and a maximum stress sensitivity of 45 T/GPa. A maximum energy density of 2.38 kJ/m 3 and coupling factor higher than 0.6 were calculated from experimental results. The experimental behavior was modeled using an energy based non-linear approach which was further used to calculate the coupling factor and energy density as continuous functions of stress and magnetic field in the material. Guidelines on optimal operating conditions for magnetostrictive actuators and sensors using FeGa alloys have been suggested.

  15. Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation.

    PubMed

    Luizard, Paul; Polack, Jean-Dominique; Katz, Brian F G

    2014-05-01

    Sound field behavior in performance spaces is a complex phenomenon. Issues regarding coupled spaces present additional concerns due to sound energy exchanges. Coupled volume concert halls have been of increasing interest in recent decades because this architectural principle offers the possibility to modify the hall's acoustical environment in a passive way by modifying the coupling area. Under specific conditions, the use of coupled reverberation chambers can provide non-exponential sound energy decay in the main room, resulting in both high clarity and long reverberation which are antagonistic parameters in a single volume room. Previous studies have proposed various sound energy decay models based on statistical acoustics and diffusion theory. Statistical acoustics assumes a perfectly uniform sound field within a given room whereas measurements show an attenuation of energy with increasing source-receiver distance. While previously proposed models based on diffusion theory use numerical solvers, the present study proposes a heuristic model of sound energy behavior based on an analytical solution of the commonly used diffusion equation and physically justified approximations. This model is validated by means of comparisons to scale model measurements and numerical geometrical acoustics simulations, both applied to the same simple concert hall geometry.

  16. Long-range correlation energy calculated from coupled atomic response functions

    SciTech Connect

    Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.

    2014-05-14

    An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.

  17. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  18. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  19. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter (90)Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  20. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  1. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  2. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  3. A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Park, Jae Y.

    2014-03-01

    We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.

  4. Electronic Couplings for Resonance Energy Transfer from CCSD Calculations: From Isolated to Solvated Systems.

    PubMed

    Caricato, Marco; Curutchet, Carles; Mennucci, Benedetta; Scalmani, Giovanni

    2015-11-10

    Quantum mechanical (QM) calculations of electronic couplings provide great insights for the study of resonance energy transfer (RET). However, most of these calculations rely on approximate QM methods due to the computational limitations imposed by the size of typical donor-acceptor systems. In this work, we present a novel implementation that allows computing electronic couplings at the coupled cluster singles and doubles (CCSD) level of theory. Solvent effects are also taken into account through the polarizable continuum model (PCM). As a test case, we use a dimer of indole, a common model system for tryptophan, which is routinely used as an intrinsic fluorophore in Förster resonance energy transfer studies. We consider two bright π → π* states, one of which has charge transfer character. Lastly, the results are compared with those obtained by applying TD-DFT in combination with one of the most popular density functionals, B3LYP.

  5. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect

    Pereira, D.; Linares, R.; and others

    2012-10-20

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  6. Symmetries and vanishing couplings in string-derived low energy effective field theory

    SciTech Connect

    Kobayashi, Tatsuo

    2012-07-27

    We study 4D low-energy effective field theory, derived from heterotic string theory on the orbifolds. In particular, we study Abelian and non-Abelian discrete symmetries and their anomalies. Furthermore, stringy computations also provide with stringy coupling selection rules.

  7. Preliminary Study of Coupling Electrical Energy to Detonation Reaction Zone of Primasheet-1000 Explosive

    DTIC Science & Technology

    2013-05-01

    Preliminary Study of Coupling Electrical Energy to Detonation Reaction Zone of Primasheet-1000 Explosive by Thuvan Piehler, Charles Hummer...1000 Explosive Thuvan Piehler, Charles Hummer, Richard Benjamin, Eugene Summers, and Kevin McNesby Weapons and Materials Research Directorate...5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Thuvan Piehler, Charles Hummer, Richard Benjamin, Eugene Summers, Kevin McNesby

  8. Energy structure of non-hydrogen-like impurities in quantum wells without spin-orbit coupling

    SciTech Connect

    Romanov, K. S. Averkiev, N. S.

    2012-06-15

    Hole states localized at an acceptor in a quantum well formed of a semiconductor with cubic symmetry without spin-orbit coupling (the symmetry {Gamma}{sub 15}) are considered. It is shown that the triply degenerate level is split, and the energies of the levels are calculated as functions of the well width.

  9. σCDM coupled to radiation: Dark energy and Universe acceleration

    NASA Astrophysics Data System (ADS)

    Abbyazov, Renat R.; Chervon, Sergey V.; Müller, Volker

    2015-07-01

    Recently, the Chiral Cosmological Model (CCM) coupled to cold dark matter (CDM) has been investigated as σCDM model to study the observed accelerated expansion of the Universe. Dark sector fields (as Dark Energy content) coupled to cosmic dust were considered as the source of Einstein gravity in Friedmann-Robertson-Walker (FRW) cosmology. Such model had a beginning at the matter-dominated era. The purposes of our present investigation are two-fold: To extend “life” of the σCDM for earlier times to radiation-dominated era and to take into account variation of the exponential potential V = V0exp -λ φ MP + V0exp -λ χ MP via variation of the interaction parameter λ. We use Markov Chain Monte Carlo (MCMC) procedure to investigate possible values of initial conditions constrained by the measured amount of the dark matter, dark energy and radiation component today. Our analysis includes dark energy contribution to critical density, the ratio of the kinetic and potential energies, deceleration parameter, effective equation of state (EoS) and evolution of DE EoS with variation of coupling constant λ. A comparison with the ΛCDM model was performed. A new feature of the model is the existence of some values of potential coupling constant, leading to a σCDM solution without transition into accelerated expansion epoch.

  10. Fitting and forecasting coupled dark energy in the non-linear regime

    SciTech Connect

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco E-mail: l.amendola@thphys.uni-heidelberg.de E-mail: v.pettorino@thphys.uni-heidelberg.de

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  11. Coupled dark matter-dark energy in light of near universe observations

    SciTech Connect

    Honorez, Laura Lopez; Mena, Olga E-mail: beth.ann.reid@gmail.com E-mail: liciaverde@gmail.com

    2010-09-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified — and thus can be probed by a combination of tests for the expansion history and the growth of structure —, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |ξ| < 0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models.

  12. Context-specific energy strategies: coupling energy system visions with feasible implementation scenarios.

    PubMed

    Trutnevyte, Evelina; Stauffacher, Michael; Schlegel, Matthias; Scholz, Roland W

    2012-09-04

    Conventional energy strategy defines an energy system vision (the goal), energy scenarios with technical choices and an implementation mechanism (such as economic incentives). Due to the lead of a generic vision, when applied in a specific regional context, such a strategy can deviate from the optimal one with, for instance, the lowest environmental impacts. This paper proposes an approach for developing energy strategies by simultaneously, rather than sequentially, combining multiple energy system visions and technically feasible, cost-effective energy scenarios that meet environmental constraints at a given place. The approach is illustrated by developing a residential heat supply strategy for a Swiss region. In the analyzed case, urban municipalities should focus on reducing heat demand, and rural municipalities should focus on harvesting local energy sources, primarily wood. Solar thermal units are cost-competitive in all municipalities, and their deployment should be fostered by information campaigns. Heat pumps and building refurbishment are not competitive; thus, economic incentives are essential, especially for urban municipalities. In rural municipalities, wood is cost-competitive, and community-based initiatives are likely to be most successful. Thus, the paper shows that energy strategies should be spatially differentiated. The suggested approach can be transferred to other regions and spatial scales.

  13. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE PAGES

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; ...

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, themore » velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  14. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; Jin, Ke; Crespillo, Miguel L.; Wang, Xuelin; Weber, William J.

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, the velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.

  15. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  16. Ion energy distribution functions in inductively coupled RF discharges in mixtures of chlorine and boron trichloride

    SciTech Connect

    Woodworth, J.R.; Nichols, C.A.; Hamilton, T.W.

    1997-02-01

    Plasma discharges involving mixtures of chlorine and boron trichloride are widely used to etch metals in the production of very-large-scale-integrated circuits. Energetic ions play a critical role in this process, influencing the etch rates, etch profiles, and selectivity to different materials. The authors are using a gridded energy analyzer to measure positive ion energy distributions and fluxes at the grounded electrode of high-density inductively-coupled rf discharges. In this paper, they present details of ion energies and fluxes in discharges containing mixtures of chlorine and boron trichloride.

  17. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    SciTech Connect

    Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E.; Luzzi, G. E-mail: Carlos.Martins@astro.up.pt E-mail: up110370652@alunos.fc.up.pt

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  18. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation.

    PubMed

    Zhang, Ning; Li, Xiyu; Ye, Huacheng; Chen, Shuangming; Ju, Huanxin; Liu, Daobin; Lin, Yue; Ye, Wei; Wang, Chengming; Xu, Qian; Zhu, Junfa; Song, Li; Jiang, Jun; Xiong, Yujie

    2016-07-20

    Modern development of chemical manufacturing requires a substantial reduction in energy consumption and catalyst cost. Sunlight-driven chemical transformation by metal oxides holds great promise for this goal; however, it remains a grand challenge to efficiently couple solar energy into many catalytic reactions. Here we report that defect engineering on oxide catalyst can serve as a versatile approach to bridge light harvesting with surface reactions by ensuring species chemisorption. The chemisorption not only spatially enables the transfer of photoexcited electrons to reaction species, but also alters the form of active species to lower the photon energy requirement for reactions. In a proof of concept, oxygen molecules are activated into superoxide radicals on defect-rich tungsten oxide through visible-near-infrared illumination to trigger organic aerobic couplings of amines to corresponding imines. The excellent efficiency and durability for such a highly important process in chemical transformation can otherwise be virtually impossible to attain by counterpart materials.

  19. Energy transmission in a mechanically-linked double-wall structure coupled to an acoustic enclosure

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Li, Y. Y.; Gao, J. X.

    2005-05-01

    The energy transmission in a mechanically linked double-wall structure into an acoustic enclosure is studied in this paper. Based on a fully coupled vibro-acoustic formulation, focus is put on investigating the effect of the air gap and mechanical links between the two panels on the energy transmission and noise insulation properties of such structures. An approximate formula reflecting the gap effect on the lower-order coupled frequencies of the system is proposed. A criterion, based on the ratio between the aerostatic stiffness of the gap cavity and the stiffness of the link, is proposed to predict the dominant transmitting path, with a view to provide guidelines for the design of appropriate control strategies. Numerical results reveal the existence of three distinct zones, within which energy transmission takes place following different mechanisms and transmitting paths. Corresponding effects on noise insulation properties of the double-wall structure are also investigated. .

  20. Energy transfer and motion synchronization between mechanical oscillators through microhydrodynamic coupling

    NASA Astrophysics Data System (ADS)

    Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping

    2017-03-01

    Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.

  1. Convertible Stadium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Air flotation technology used in NASA's Apollo program has found an interesting application in Hawaii's Aloha Stadium near Honolulu. The stadium's configuration can be changed, by moving entire 7,000-seat sections on a cushion of air, for best accommodation of spectators and participants at different types of events. In most stadiums, only a few hundred seats can be moved, by rolling sections on wheels or rails. At Aloha Stadium, 28,000 of the 50,000 seats can be repositioned for better spectator viewing and, additionally, for improved playing conditions. For example, a stadium designed primarily for football may compromise the baseball diamond by providing only a shallow outfield. Aloha's convertibility allows a full-size baseball field as well as optimum configurations for many other types of sports and special events. The photos show examples. The stadium owes its versatility to air flotation technology developed by General Motors. Its first large-scale application was movement of huge segments of the mammoth Saturn V moonbooster during assembly operations at Marshall Space Flight Center.

  2. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  3. Constraints on the coupling between dark energy and dark matter from CMB data

    SciTech Connect

    Murgia, R.; Gariazzo, S.; Fornengo, N. E-mail: gariazzo@to.infn.it

    2016-04-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H{sub 0} and σ{sub 8}, already present for standard cosmology, increases: this model in fact predicts lower H{sub 0} and higher σ{sub 8}, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H{sub 0} and σ{sub 8} nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.

  4. Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode

    NASA Astrophysics Data System (ADS)

    Mourokh, Lev G.; Nori, Franco

    2015-11-01

    Using methods from condensed matter and statistical physics, we examine the transport of excitons through the photosynthetic complex from a receiving antenna to a reaction center. Writing the equations of motion for the exciton creation-annihilation operators, we are able to describe the exciton dynamics, even in the regime when the reorganization energy is of the order of the intrasystem couplings. We determine the exciton transfer efficiency in the presence of a quenching field and protein environment. While the majority of the protein vibrational modes are treated as a heat bath, we address the situation when specific modes are strongly coupled to excitons and examine the effects of these modes on the energy transfer efficiency in the steady-state regime. Using the structural parameters of the Fenna-Matthews-Olson complex, we find that, for vibrational frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute this effect to the formation of a "mixed exciton-vibrational mode" where the exciton is transferred back and forth between the two pigments with the absorption or emission of vibrational quanta, instead of proceeding to the reaction center. The same effect suppresses the quantum beating at the vibrational frequency of 25 meV. We also show that the efficiency of the energy transfer can be enhanced when the vibrational mode strongly couples to the third pigment only, instead of coupling to the entire system.

  5. Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates

    NASA Technical Reports Server (NTRS)

    Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.

  6. Anomalous electron-ion energy coupling in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Turbulence is a ubiquitous phenomenon in nature, and it is well known that turbulence couples energy input to dissipation by cascade processes. Plasma turbulence play a critical role in tokamak confinement. Magnetized plasma turbulence is quasi 2D, anisotropic, wave like and two fluid (i.e. electrons and ions) in structure. Thus, weakly collisional plasma turbulence can mediate electron and ion energy transfer. The issue of anomalous electron and ion energy coupling is particularly important for low collisionality, electron heated plasmas, such as ITER. In this work, we reconsider the classic problem of turbulent heating and energy transfer pathways in drift wave turbulence. The total turbulent heating, composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating, is analyzed. In Chapter 2, the electron and ion energy exchange via linear wave and particle resonance will be computed. To address net heating, we show the turbulent heating in an annulus arises due to a wave energy flux differential across this region. We show this net heating is proportional to the Reynolds work on the zonal flow. Zonal flow friction heats ions, thus the turbulence and zonal flow interaction enters as an important energy transfer channel. Since zonal flows are nonlinearly generated, it follows that we should apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the virtual mode resonance in the electron drift wave turbulence, which will be discussed in Chapter 3. We defines a new collisionless turbulent energy transfer channel through nonlinear Landau damping in the electron and ion energy coupling process. The result shows that nonlinear ion heating can exceed quasilinear ion heating, so that nonlinear heating becomes the principal collisionless wave energy dissipation channel in electron drift wave turbulence. This follows since the beat mode resonates with the bulk of the ion distribution, in

  7. Disentangling the response of forest and grassland energy exchange to heatwaves under idealized land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    van Heerwaarden, C. C.; Teuling, A. J.

    2014-11-01

    This study investigates the difference in land-atmosphere interactions between grassland and forest during typical heatwave conditions in order to understand the controversial results of Teuling et al. (2010) (hereafter T10), who found the systematic occurrence of higher sensible heat fluxes over forest than over grassland during heatwaves. With a simple but accurate coupled land-atmosphere model, we show that existing parametrizations are able to reproduce the findings of T10 for normal summer and heatwave conditions. Furthermore, we demonstrate the sensitivity of the coupled system to changes in incoming radiation and early-morning temperature typical for European heatwaves. Our results suggest that the fast atmospheric control of stomatal resistance can explain the observed differences between grassland and forest. The atmospheric boundary layer has a buffering function therein: increases in stomatal resistance are largely compensated for by increases in the potential evaporation due to atmospheric warming and drying. In order to disentangle the contributions of differences in several static and dynamic properties between forest and grassland, we have performed a virtual experiment with artificial land-use types that are equal to grassland, but with one of its properties replaced by that of forest. From these, we confirm the important role of the fast physiological processes that lead to the closure of stomata. Nonetheless, for a full explanation of T10's results, the other properties (albedo, roughness and the ratio of minimum stomatal resistance to leaf-area index) play an important but indirect role; their influences mainly consist of strengthening the feedback that leads to the closure of the stomata by providing more energy that can be converted into sensible heat. The model experiment also confirms that, in line with the larger sensible heat flux, higher atmospheric temperatures occur over forest. As our parametrization for stomatal resistance is empirical

  8. Disentangling the response of forest and grassland energy exchange to heatwaves under idealized land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    van Heerwaarden, C. C.; Teuling, A. J.

    2014-04-01

    This study investigates the difference in land-atmosphere interactions between grassland and forest during typical heat wave conditions in order to understand the controversial results of Teuling et al. (2010) (T10, hereafter), who have found the systematic occurrence of higher sensible heat fluxes over forest than over grassland during heat wave conditions. With a simple, but accurate coupled land-atmosphere model, we are able to reproduce the findings of T10 for both normal summer and heat wave conditions, and to carefully explore the sensitivity of the coupled land-atmosphere system to changes in incoming radiation and early-morning temperature. Our results emphasize the importance of fast processes during the onset of heat waves, since we are able to explain the results of T10 without having to take into account changes in soil moisture. In order to disentangle the contribution of differences in several static and dynamic properties between forest and grassland, we have performed an experiment in which new land use types are created that are equal to grassland, but with one of its properties replaced by that of forest. From these, we conclude that the closure of stomata in the presence of dry air is by far the most important process in creating the different behavior of grassland and forest during the onset of a heat wave. However, we conclude that for a full explanation of the results of T10 also the other properties (albedo, roughness and the ratio of minimum stomatal resistance to leaf-area index) play an important, but indirect role; their influences mainly consist of strengthening the feedback that leads to the closure of the stomata by providing more energy that can be converted into sensible heat. The model experiment also confirms that, in line with the larger sensible heat flux, higher atmospheric temperatures occur over forest.

  9. From Waste to Watts: The fermentation of animal waste occuring in a digester producing methane gasses as a side product and converted to energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2015-12-01

    The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  10. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

  11. Nonadiabatic couplings in low-energy collisions of hydrogen ground-state atoms

    SciTech Connect

    Wolniewicz, L.

    2003-10-01

    The effect of nonadiabatic couplings on low-energy s-wave scattering of two hydrogen atoms is investigated. Coupling matrix elements are computed in a wide range of internuclear distances. The resulting scattering equations are numerically unstable and therefore are integrated only approximately. Computations are performed for H, D, and T atoms. The phase shifts in the zero velocity limit are inversely proportional to the nuclear reduced mass {delta}{sub 0}{approx_equal}0.392/{mu}. This leads to infinite scattering lengths.

  12. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    NASA Astrophysics Data System (ADS)

    Salavati-fard, T.; Vazifehshenas, T.

    2014-12-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field.

  13. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation

    PubMed Central

    Acin-Perez, Rebeca; Gatti, Domenico L.; Bai, Yidong; Manfredi, Giovanni

    2011-01-01

    Summary Rapid regulation of oxidative phosphorylation is crucial for mitochondrial adaptation to swift changes in fuels availability and energy demands. An intra-mitochondrial signaling pathway regulates cytochrome oxidase (COX), the terminal enzyme of the respiratory chain, through reversible phosphorylation. We find that PKA-mediated phosphorylation of a COX subunit dictates mammalian mitochondrial energy fluxes, and identify the specific residue (S58) of COX subunit IV-1 (COXIV-1) that is involved in this mechanism of metabolic regulation. Using protein mutagenesis, molecular dynamics simulations, and induced fit docking, we show that mitochondrial energy metabolism regulation by phosphorylation of COXIV-1 is coupled with prevention of COX allosteric inhibition by ATP. This regulatory mechanism is essential for efficient oxidative metabolism and cell survival. We propose that S58 COXIV-1 phosphorylation has evolved as a metabolic switch that allows mammalian mitochondria to rapidly toggle between energy utilization and energy storage. PMID:21641552

  14. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface

    NASA Astrophysics Data System (ADS)

    Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C.; van der Avoird, Ad

    2008-03-01

    A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations.

  15. Are post-exercise appetite sensations and energy intake coupled in children and adolescents?

    PubMed

    Thivel, David; Chaput, Jean-Philippe

    2014-06-01

    The effect of physical activity on energy balance is not restricted to its induced energy expenditure but also affects the control of energy intake and appetite. Although it is now clear that physical exercise affects subsequent energy intake and appetite, the mechanisms involved remain uncertain. Most previous studies have assessed both post-exercise energy intake and appetite but mainly focussed their analyses on food consumption, and it remains unclear whether changes in appetite provide an accurate reflection of changes in energy intake. This brief review aims to analyse conjointly the effective energy intake and appetite sensation responses to acute exercise in children and adolescents to examine whether or not these responses to exercise are coupled. After an overview of the available literature, we conclude that acute exercise has an uncoupling effect on energy intake and appetite sensations in both lean and overweight/obese youth. Although methodological issues between studies can be highlighted, lack of consideration of inter-individual variability in terms of energy intake and appetite could be one of the main explanations for such a conclusion. It now appears necessary to further consider the impact of acute exercise and then chronic physical activity on an individual basis in the regulation of energy balance to prescribe successful weight loss programmes.

  16. Higgs boson self-coupling at a high-energy γγ collider

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Rodríguez, A.; Peressutti, Javier; Sampayo, O. A.

    2011-09-01

    We analyzed the double production and the triple self-coupling of the standard model Higgs boson at future γγ collider energies, with the reactions \\gamma \\gamma \\rightarrow f \\bar{f} HH (f = b, t). We evaluated the total cross-section for f\\bar{f}HH and calculated the total number of events considering the complete set of Feynman diagrams at the tree level and for different values of the triple coupling κλHHH. We have also analyzed the sensitivity for the considered reaction and we show the results as 95% CL regions in the κ-MH plane for different values of the center-of-mass energy and different levels of background. The numerical computation was done for the energies which are expected to be available at a possible future linear γγ collider with a center-of-mass energy 500-3000 GeV and luminosities of 1 and 5\\hspace{1.42262pt} ab^{-1}. We found that the number of events for the process \\gamma \\gamma \\rightarrow t \\bar{t} HH, taking into account the decay products of both t and H, is small but enough to obtain information on the triple Higgs boson self-coupling in an independent way, complementing other studies on the triple vertex.

  17. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    PubMed Central

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-01-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures. PMID:27677356

  18. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    NASA Astrophysics Data System (ADS)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  19. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester.

    PubMed

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-28

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1(st) and 2(nd) primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  20. A two-way coupled mode formalism that satisfies energy conservation for impedance boundaries in underwater acoustics.

    PubMed

    Stotts, Steven A; Koch, Robert A

    2015-11-01

    This paper shows that energy conservation and the derivation of the two-way coupled mode range equations can be extended in three dimensions to complex mode functions and eigenvalues. Furthermore, the energy in the coupled mode formulation is conserved for finite thickness fluid ocean waveguides with a penetrable bottom boundary beneath any range dependence. The derivations rely on completeness and a modified orthonormality statement. The mode coupling coefficients are specified solely and explicitly by the waveguide range dependence. The statement of energy conservation is applied to a numerical coupled mode calculation.

  1. Effect of coupled channels on the energy dependence of phenomenological optical potential parameters

    NASA Astrophysics Data System (ADS)

    Al-Rayashi, W. S.; Jaghoub, M. I.

    2016-06-01

    The phenomenological optical potential parameters are known to vary with incident energy due to sources of nonlocalities in the nucleon-nucleus elastic scattering process. Here we investigate the effect of one source, which is coupling the ground-state elastic channel to collective inelastic excitations on the energy dependence of the optical potential parameters. For incident energies in the range 10-70 MeV, we considered elastic and inelastic nucleon scattering from light, medium, and heavy nuclei ranging from 6Li to 208Pb. The potential parameters were first determined by fitting the elastic angular distributions only. Then we included coupling to collective excitation channels and determined the potential parameters that reproduced the elastic and inelastic angular distribution data simultaneously. Our results show that coupling to inelastic excitations reduces the energy variations of the potential parameters compared to that of the elastic scattering case. In particular, the our best fit values for the real part of the spin-orbit term are highly stable as a function of energy. The values of the surface imaginary term are not only more stable but are also reduced compared to the elastic case. The reduction is a direct consequence of the channel coupling accounting explicitly for part of the flux removed from the elastic channel. In the fitting process we also searched for the best fit values of the deformation parameters. Our values compare well with the corresponding ones obtained in previous works. Finally, we used our best fit values for the potential and deformation parameters to theoretically predict the total elastic, total cross section, and polarization data. The predicted values are in very good agreement with the experimental data.

  2. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.

    PubMed

    Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-06-01

    Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H2. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15USD/m(3)(effluent). With a VFA minimum selling price of 330 USD/tCOD, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H2. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform.

  3. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  4. Economics and benefits of converting from anhydrous ammonia to ammonium hydroxide for NOx control at the Commerce Refuse to Energy Facility

    SciTech Connect

    Smisko, J.; Eaton, M.A.

    1996-09-01

    The Commerce Refuse to Energy Facility, which is operated by the Los Angeles County Sanitation Districts (Districts), first burned refuse in late 1986. This facility was the first US refuse plant to use anhydrous ammonia for NOx control. Although technically effective and economical, the system was converted from anhydrous ammonia (gaseous) to ammonium hydroxide (liquid or aqua ammonia) in May 1995. This change was made to eliminate the potential release of gaseous ammonia if an accidental leak occurred. This paper will include discussions on: (1) the design layout of the new system, (2) the capital cost of the conversion; (3) the change in operating cost; and (4) NOx emissions before and after the conversion.

  5. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  6. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    PubMed

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.

  7. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  8. Regulated dc-to-dc converter for voltage step-up or step-down with input-output isolation

    NASA Technical Reports Server (NTRS)

    Feng, S. Y.; Wilson, T. G. (Inventor)

    1973-01-01

    A closed loop regulated dc-to-dc converter employing an unregulated two winding inductive energy storage converter is provided by using a magnetically coupled multivibrator acting as duty cycle generator to drive the converter. The multivibrator is comprised of two transistor switches and a saturable transformer. The output of the converter is compared with a reference in a comparator which transmits a binary zero until the output exceeds the reference. When the output exceeds the reference, the binary output of the comparator drives transistor switches to turn the multivibrator off. The multivibrator is unbalanced so that a predetermined transistor will always turn on first when the binary feedback signal becomes zero.

  9. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  10. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  11. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason Erik

    A frequency-dependent model for levels and decay rates of reverberant energy in systems of coupled rooms is developed and compared with measurements conducted in a 1:10 scale model and in Bass Hall, Fort Worth, TX. Schroeder frequencies of subrooms, fSch, characteristic size of coupling apertures, a, relative to wavelength lambda, and characteristic size of room surfaces, l, relative to lambda define the frequency regions. At high frequencies [HF (f >> f Sch, a >> lambda, l >> lambda)], this work improves upon prior statistical-acoustics (SA) coupled-ODE models by incorporating geometrical-acoustics (GA) corrections for the model of decay within subrooms and the model of energy transfer between subrooms. Previous researchers developed prediction algorithms based on computational GA. Comparisons of predictions derived from beam-axis tracing with scale-model measurements indicate that systematic errors for coupled rooms result from earlier tail-correction procedures that assume constant quadratic growth of reflection density. A new algorithm is developed that uses ray tracing rather than tail correction in the late part and is shown to correct this error. At midfrequencies [MF (f >> f Sch, a ˜ lambda)], HF models are modified to account for wave effects at coupling apertures by including analytically or heuristically derived power transmission coefficients tau. This work improves upon prior SA models of this type by developing more accurate estimates of random-incidence tau. While the accuracy of the MF models is difficult to verify, scale-model measurements evidence the expected behavior. The Biot-Tolstoy-Medwin-Svensson (BTMS) time-domain edge-diffraction model is newly adapted to study transmission through apertures. Multiple-order BTMS scattering is theoretically and experimentally shown to be inaccurate due to the neglect of slope diffraction. At low frequencies (f ˜ f Sch), scale-model measurements have been qualitatively explained by application of

  12. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Rok; Koo, Weoncheol; Kim, Moo-Hyun

    2013-12-01

    A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  13. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation – Economic and energy assessment

    SciTech Connect

    Bonk, Fabian Bastidas-Oyanedel, Juan-Rodrigo Schmidt, Jens Ejbye

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • The cost and energy demand for dark fermentation using OFMSW were established. • Dark fermentation using OFMSW can produce a carbon source for bioprocesses of about 330 USD/t{sub COD}. • A maximum purification cost of VFAs from dark fermentation using OFMSW was established to 15 USD/m{sup 3}. • Replacing fossil fuel based products by dark fermentation will probably lead to net energy savings. - Abstract: Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H{sub 2}. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15 USD/m{sup 3}{sub effluent}. With a VFA minimum selling price of 330 USD/t{sub COD}, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H{sub 2}. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform.

  14. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons

    PubMed Central

    Dunkelberger, A. D.; Spann, B. T.; Fears, K. P.; Simpkins, B. S.; Owrutsky, J. C.

    2016-01-01

    Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. PMID:27874010

  15. Magnetic energy coupling system based on micro-electro-mechanical system coils

    NASA Astrophysics Data System (ADS)

    Li, Xiuhan; Yuan, Quan; Yang, Tianyang; Liu, Jian; Zhang, Haixia

    2012-04-01

    In this paper, a high efficiency wireless energy transfer system based on MEMS coils is first developed. The permanent magnetic core used in the transmitting coil can not only enhance the magnetic flux but also applies a strong and uniform magnetic field distribution around the core. Ansoft hfss is then used to analyze the performance of two coupling coils designed to be resonated at the same frequency. The distribution of magnetic field strength and coupling efficiency is modeled and characterized. High-performance bio-compatible MEMS coils were fabricated on a glass wafer by thick glue photolithography and electroplating technique. We measured a peak value of energy transfer at the resonant frequency of 23 MHz, and the coupling efficiency is higher than 10% within the distance of 10-20 cm by sweeping frequencies from 1 MHz to 200 MHz. Experiments also show that the resonant coupling efficiency is not much affected by the relative position of the two coils in a large range.

  16. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Sheng, Shiqi; Tu, Z. C.

    2013-10-01

    A unified χ-criterion for heat devices (including heat engines and refrigerators), which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance (de Tomás et al 2012 Phys. Rev. E 85 010104), is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures Tc and Th( > Tc). By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum χ asymptotically approaches \\sqrt{\\varepsilon _C} when the relative temperature difference between two heat baths \\varepsilon _C^{-1}\\equiv (T_h-T_c)/T_c is sufficiently small. Correspondingly, the efficiency at maximum χ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be \\eta _C/2+\\eta _C^2/8 up to the second order term of ηC ≡ (Th - Tc)/Th, which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left-right symmetry (Esposito et al 2009 Phys. Rev. Lett. 102 130602).

  17. Coupled atmospheric, land surface, and subsurface modeling: Exploring water and energy feedbacks in three-dimensions

    NASA Astrophysics Data System (ADS)

    Davison, Jason H.; Hwang, Hyoun-Tae; Sudicky, Edward A.; Lin, John C.

    2015-12-01

    Human activities amplified by climate change pose a significant threat to the sustainability of water resources. Coupled climate-hydrologic simulations commonly predict these threats by combining shallow 1-D land surface models (LSMs) with traditional 2-D and 3-D hydrology models. However, these coupled models limit the moisture and energy-feedback dynamics to the shallow near-surface. This paper presents a novel analysis by applying an integrated variably-saturated subsurface/surface hydrology and heat transport model, HydroGeoSphere (HGS), as a land surface model (LSM). Furthermore, this article demonstrates the coupling of HGS to a simple 0-D atmospheric boundary layer (ABL) model. We then applied our coupled HGS-ABL model to three separate test cases and reproduced the strong correlation between the atmospheric energy balance to the depth of the groundwater table. From our simulations, we found that conventional LSMs may overestimate surface temperatures for extended drought periods because they underestimate the heat storage in the groundwater zone. Our final test case of the atmospheric response to drought conditions illustrated that deeper roots buffered the atmosphere better than shallow roots by maintaining higher latent heat fluxes, lower sensible heat fluxes, and lower surface and atmospheric temperatures.

  18. Nuclear symmetry energy in a modified quark-meson coupling model

    NASA Astrophysics Data System (ADS)

    Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.

    2015-10-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. We find an analytic expression for the symmetry energy Esym as a function of its slope L . Our result establishes a linear correlation between L and Esym. We also analyze the constraint on neutron star radii in (p n ) matter with β equilibrium.

  19. Linear-response theory for Mukherjee's multireference coupled-cluster method: excitation energies.

    PubMed

    Jagau, Thomas-C; Gauss, Jürgen

    2012-07-28

    The recently presented linear-response function for Mukherjee's multireference coupled-cluster method (Mk-MRCC) [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012)] is employed to determine vertical excitation energies within the singles and doubles approximation (Mk-MRCCSD-LR) for ozone as well as for o-benzyne, m-benzyne, and p-benzyne, which display increasing multireference character in their ground states. In order to assess the impact of a multireference ground-state wavefunction on excitation energies, we compare all our results to those obtained at the single-reference coupled-cluster level of theory within the singles and doubles as well as within the singles, doubles, and triples approximation. Special attention is paid to the artificial splitting of certain excited states which arises from the redundancy intrinsic to Mk-MRCC theory and hinders the straightforward application of the Mk-MRCC-LR method.

  20. Application of the generalized quasi-complementary energy principle to the fluid-solid coupling problem

    NASA Astrophysics Data System (ADS)

    Liang, Li-Fu; Liu, Zong-Min; Guo, Qing-Yong

    2009-03-01

    The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.

  1. Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels

    NASA Astrophysics Data System (ADS)

    Sarma, Raktim; Yamilov, Alexey G.; Petrenko, Sasha; Bromberg, Yaron; Cao, Hui

    2016-08-01

    We demonstrate experimentally the efficient control of light intensity distribution inside a random scattering system. The adaptive wave front shaping technique is applied to a silicon waveguide containing scattering nanostructures, and the on-chip coupling scheme enables access to all input spatial modes. By selectively coupling the incident light to the open or closed channels of the disordered system, we not only vary the total energy stored inside the system by a factor of 7.4, but also change the energy density distribution from an exponential decay to a linear decay and to a profile peaked near the center. This work provides an on-chip platform for controlling light-matter interactions in turbid media.

  2. Laser controlled coupled cantilevers for precise measurements and energy transfer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cao, Gengyu

    2016-09-01

    Coupled cantilevers are trapped by laser in a 3-mirror configuration. We studied the signal transduction between the cantilevers by laser control. A force or displacement sensor with such laser trapping technique could achieve much higher sensitivity, as high as 3-4 orders as compared to a single cantilever. We also studied the energy transfer processes by laser trapping and manipulation. Rabi oscillations are observed. Quantum analog Landau-Zener Tunneling and Landau-Zener-Stuckelburg interferometry are realized in the classical regime. We have proved that the energy or signals could be transferred from one cantilever to the other in the real-space by laser manipulation. Laser manipulated coupled cantilvers have great potentials in precision measurements and in quantum information processing.

  3. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  4. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  5. Low energy gauge couplings in grand unified theories and high precision physics

    SciTech Connect

    Lynn, B.W. |

    1993-09-01

    I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.

  6. Energy preserving integration of the strongly coupled nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akkoyunlu, C.

    2015-03-01

    In this paper, average vector field method (AVF) is derived for strongly coupled Schrödinger equation (SCNLS). The SCNLS equation is discretized in space by finite differences and is solved in time by structure preserving AVF method. Numerical results for different paremeter compare with the Lobatto IIIA-IIIB method. The results indicate that AVF method are effective to preserve global energy and momentum.

  7. Testing modified gravity with Planck: The case of coupled dark energy

    NASA Astrophysics Data System (ADS)

    Pettorino, Valeria

    2013-09-01

    The Planck collaboration has recently published maps of the cosmic microwave background (CMB) radiation, in good agreement with a ΛCDM model, a fit especially valid for multipoles ℓ>40. We explore here the possibility that dark energy is dynamical and gravitational attraction between dark matter particles is effectively different from the standard one in general relativity: this is the case of coupled dark energy models, where dark matter particles feel the presence of a fifth force, larger than gravity by a factor 2β2, defining an effective gravitational constant Geff=G(1+2β2). We investigate constraints on the strength of the coupling β in view of Planck data. Interestingly, we show that a nonzero coupling is compatible with data and find a likelihood peak at β=0.036±0.016 [Planck+WMAPpolarization(WP)+baryonicacousticoscillations(BAO)] (compatible with zero at 2.2σ). The significance of the peak increases to β=0.066±0.018 [Planck+WP+HubbleSpaceTelescope(HST)] (around 3.6σ from zero coupling) when Planck is combined to HST data by . This peak comes mostly from the small difference between the Hubble parameter determined with CMB measurements and the one coming from astrophysics measurements and is already present in the combination with BAO. Future observations and further tests of current observations are needed to determine whether the discrepancy is due to systematics in any of the data sets. Our aim here is not to claim new physics but rather to show that a clear understanding of such tension has a considerable impact on dark energy models: it can be used to provide information on dynamical dark energy and modified gravity, allowing us to test the strength of an effective fifth force.

  8. The Near-Earth Orbital Environment Coupling to Its Energy Sources

    DTIC Science & Technology

    1990-05-21

    NP F49620-87-C-0039 Bolling AFB DC 20332-6448 V3 11 . S&UPPUMENTAAY NOTIS 12& 11111MUr1 I AVAILAMUJT STATMUlI 11iL OISTIMIOUT1 COO4 Approved for...Coupling to its Energy Sources MCDONNELL Final Report DOUGLAS (0002AA) CORPORATION A.OSR.TR. 9 0 06 58 April 1990 F49620-87-C-0039 Accession For NTIS GRA...3.3 Magnetosheath Model 11 3.4 Low-Latitude Boundary Layer Model 14 3.5 Calculation Procedure 14 4. Results 17 4.1 LLBL Structure 17 4.2 Energy Spectra

  9. Negative space charge effects in photon-enhanced thermionic emission solar converters

    SciTech Connect

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  10. Quantum Transfer Energy and Nonlocal Correlation in a Dimer with Time-Dependent Coupling Effect

    NASA Astrophysics Data System (ADS)

    El-Shishtawy, Reda M.; Berrada, K.; Haddon, Robert C.; Al-Hadeethi, Yas F.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.

    2017-02-01

    The presence of coherence phenomenon due to the interference of probability amplitude terms, is one of the most important features of quantum mechanics theory. Recent experiments show the presence of quantum processes whose coherence provided over suddenly large interval-time. In particular, photosynthetic mechanisms in light-harvesting complexes provide oscillatory behaviors in quantum mechanics due to quantum coherence. In this work, we investigate the coherent quantum transfer energy for a single-excitation and nonlocal correlation in a dimer system modelled by a two-level atom system with and without time-dependent coupling effect. We analyze and explore the required conditions that are feasible with real experimental realization for optimal transfer of quantum energy and generation of nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation transfer energy is greatly benefits from the combination of the energy detuning and time-dependent coupling effect. We investigate the presence of quantum correlations in the dimer using the entanglement of formation. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. On the other hand, we study the dynamical behavior of the quantum variance when performing a measurement on an observable of the density matrix operator. Finally, an interesting relationship between the transfer probability, entanglement and quantum variance is explored during the time evolution in terms of the physical parameters.

  11. Apparatuses and method for converting electromagnetic radiation to direct current

    DOEpatents

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  12. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-03-01

    WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.

  13. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics

    PubMed Central

    Pandey, Ajay K.

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs. PMID:25585937

  14. A collimator-converter system for IEC propulsion

    NASA Astrophysics Data System (ADS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D-3He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D-3He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MWf fusion power and converting it to 150 MWc electricity. Its size is 150 m(length)×6.6 m(diameter) in size and 185 tons in weight. .

  15. Improved Transient and Steady-State Performances of Series Resonant ZCS High-Frequency Inverter-Coupled Voltage Multiplier Converter with Dual Mode PFM Control Scheme

    NASA Astrophysics Data System (ADS)

    Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo

    The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for

  16. A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Sotoodeh, Pedram

    This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.

  17. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  18. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    SciTech Connect

    Fay, Stéphane

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  19. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    NASA Astrophysics Data System (ADS)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  20. Enrichment and stability: a phenomenological coupling of energy value and carrying capacity.

    PubMed

    Roy, Shovonlal; Chattopadhyay, J

    2007-01-01

    Simple predator-prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the 'paradox of enrichment'. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator-prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator-prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer-grazer system persists for only an intermediate zone of production--a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator-prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig's paradox.

  1. Multiscale equatorial electrojet turbulence: Energy conservation, coupling, and cascades in a baseline 2-D fluid model

    NASA Astrophysics Data System (ADS)

    Hassan, Ehab; Hatch, D. R.; Morrison, P. J.; Horton, W.

    2016-09-01

    Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. Simulations with parameters set to various ionospheric background conditions revealed properties of the gradient-drift and Farley-Buneman instabilities. Notably, sharper density gradients increase linear growth rates at all scales, whereas variations in cross-field E × B drift velocity only affect small-scale instabilities. A formalism defining turbulent fluctuation energy for the system is introduced, and the turbulence is analyzed within this framework. This exercise serves as a useful verification test of the numerical simulations and also elucidates the physics underlying the ionospheric turbulence. Various physical mechanisms involved in the energetics are categorized as sources, sinks, nonlinear transfer, and cross-field coupling. The physics of the nonlinear transfer terms is studied to identify their roles in producing energy cascades, which explain the generation of small-scale structures that are stable in the linear regime. The theory of two-step energy cascading to generate the 3 m plasma irregularities in the equatorial electrojet is verified for the first time in the fluid regime. In addition, the nonlinearity of the system allows the possibility of an inverse energy cascade, potentially responsible for generating large-scale plasma structures at the top of the electrojet as found in different rocket and radar observations.

  2. Solar Atmospheric Magnetic Energy Coupling: Broad Plasma Conditions and Spectrum Regimes

    NASA Astrophysics Data System (ADS)

    Orange, N. Brice; Chesny, David L.; Gendre, Bruce; Morris, David C.; Oluseyi, Hakeem M.

    2016-12-01

    Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency across large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.

  3. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.

    PubMed

    Qiao, Yan; Polzer, Frank; Kirmse, Holm; Steeg, Egon; Kühn, Sergei; Friede, Sebastian; Kirstein, Stefan; Rabe, Jürgen P

    2015-02-24

    Resonant coupling between distinct excitons in organic supramolecular assemblies and inorganic semiconductors is supposed to offer an approach to optoelectronic devices. Here, we report on colloidal nanohybrids consisting of self-assembled tubular J-aggregates decorated with semiconductor quantum dots (QDs) via electrostatic self-assembly. The role of QDs in the energy transfer process can be switched from a donor to an acceptor by tuning its size and thereby the excitonic transition energy while keeping the chemistry unaltered. QDs are located within a close distance (<4 nm) to the J-aggregate surface, without harming the tubular structures and optical properties of J-aggregates. The close proximity of J-aggregates and QDs allows the strong excitation energy transfer coupling, which is around 92% in the case of energy transfer from the QD donor to the J-aggregate acceptor and approximately 20% in the reverse case. This system provides a model of an organic-inorganic light-harvesting complex using methods of self-assembly in aqueous solution, and it highlights a route toward hierarchical synthesis of structurally well-defined supramolecular objects with advanced functionality.

  4. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    PubMed

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  5. CMOS-compatible spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment

    NASA Astrophysics Data System (ADS)

    Picard, Marie-Josée.; Latrasse, Christine; Larouche, Carl; Painchaud, Yves; Poulin, Michel; Pelletier, François; Guy, Martin

    2016-03-01

    One of the biggest challenges of silicon photonics is the efficient coupling of light between the sub-micron SiP waveguides and a standard optical fiber (SMF-28). We recently proposed a novel approach based on a spot-size converter (SSC) that fulfills this need. The SSC integrates a tapered silicon waveguide and a superimposed structure made of a plurality of rods of high index material, disposed in an array-like configuration and embedded in a cladding of lower index material. This superimposed structure defines a waveguide designed to provide an efficient adiabatic transfer, through evanescent coupling, to a 220 nm thick Si waveguide tapered down to a narrow tip on one side, while providing a large mode overlap to the optical fiber on the other side. An initial demonstration was made using a SSC fabricated with post-processing steps. Great coupling to a SMF-28 fiber with a loss of 0.6 dB was obtained for TEpolarized light at 1550 nm with minimum wavelength dependence. In this paper, SSCs designed for operation at 1310 and 1550 nm for TE/TM polarizations and entirely fabricated in a CMOS fab are presented.

  6. Dual-facet coupling of SOA array on 4-μm silicon-on-insulator implementing a hybrid integrated SOA-MZI wavelength converter

    NASA Astrophysics Data System (ADS)

    Alexoudi, T.; Fitsios, D.; Kanellos, G. T.; Pleros, N.; Tekin, T.; Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Aalto, T.

    2014-03-01

    Hybrid integration on Silicon-on-Insulator (SOI) has emerged as a practical solution for compact and high-performance Photonic Integrated Circuits (PICs). It aims at combining the cost-effectiveness and CMOS-compatibility benefits of the low-loss SOI waveguide platform with the versatile active optical functions that can be realized by III-V photonic materials. The utilization of SOI, as an integration board, with μm-scale dimensions allows for an excellent optical mode matching between silicon rib waveguides and active chips, allowing for minimal-loss coupling of the pre-fabricated IIIV components. While dual-facet coupling as well as III-V multi-element array bonding should be employed to enable enhanced active on-chip functions, so far only single side SOA bonding has been reported. In the present communication, we present a novel integration scheme that flip-chip bonds a 6-SOA array on 4-μm thick SOI technology by coupling both lateral SOA facets to the waveguides, and report on the experimental results of wavelength conversion operation of a dual-element Semiconductor Optical Amplifier - Mach Zehnder Interferometer (SOA-MZI) circuit. Thermocompression bonding was applied to integrate the pre-fabricated SOAs on SOI, with vertical and horizontal alignment performed successfully at both SOA facets. The demonstrated device has a footprint of 8.2mm x 0.3mm and experimental evaluation revealed a 12Gb/s wavelength conversion operation capability with only 0.8dB power penalty for the first SOA-MZI-on-SOI circuit and a 10Gb/s wavelength conversion operation capability with 2 dB power penalty for the second SOA-MZI circuit. Our experiments show how dual facet integration can significantly increase the level of optical functionalities achievable by flip-chip hybrid technology and pave the way for more advanced and more densely PICs.

  7. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will

  8. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  9. The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    NASA Technical Reports Server (NTRS)

    Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.

    1984-01-01

    The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.

  10. Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development

    SciTech Connect

    Long, Wen; Jung, Ki Won; Yang, Zhaoqing; Copping, Andrea; Deng, Z. Daniel

    2016-03-01

    An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.

  11. Meridional energy transport in the coupled atmosphere-ocean system: Compensation and partitioning

    NASA Astrophysics Data System (ADS)

    Farneti, R.; Vallis, G. K.

    2012-04-01

    The variability and compensation of the energy transport in the atmosphere and ocean are discussed with a hierarchy of coupled models. A state-of-the-art Coupled Model (GFDL CM2.1), an Intermediate Complexity Climate Model (GFDL ICCM) and a simple Energy Balance Model (EBM) are used in this study. For decadal time scales, a high degree of compensation is found for the transport in the Northern Hemisphere in the Atlantic sector. The variability of the total, or planetary, heat transport (PHT) is much smaller than the variability in either the atmosphere (AHT) or ocean (OHT) alone, a feature sometimes referred to as `Bjerknes compensation'. In the coupled models used, natural decadal variability stems from the Atlantic meridional overturning circulation (AMOC), and variations in the strength of the AMOC tend to lead the variability in the OHT. Furthermore, the PHT is positively correlated with the OHT, implying that the atmosphere is compensating, but imperfectly, for variations in the ocean transport. In the Southern Hemisphere no significant anticorrelation is found between OHT and AHT, consistent with the absence of decadal scale variability in the ocean. For both coupled models, the strongest anticorrelation between transports is found at the period of AMOC variability and decreases as the time scale decreases. Unlike the AHT and AMOC, the AHT and the transport in the oceanic gyres are positively correlated, suggesting that coupling between the wind-driven ocean circulation and the atmosphere militates against long-term variability involving the wind-driven flow. Moisture and sensible heat transports in the atmosphere are also positively correlated at decadal time scales. In the Northern Hemisphere compensation is weaker at low latitudes than at high. This is consistent with the notion that at low latitudes a larger fraction of the oceanic transport is due to the wind-driven warm cell, and the atmospheric and wind-driven oceanic energy transports vary in unison

  12. Ion flux, ion energy distribution and neutral density in an inductively coupled argon discharge

    NASA Astrophysics Data System (ADS)

    Chevolleau, T.; Fukarek, W.

    2000-11-01

    The dependence of ion flux, ion energy distribution and neutral density of a planar radiofrequency (RF) driven inductively coupled plasma source on pressure and power is analysed using a plasma monitor and a Faraday cup. The ion flux is about 7 mA cm-2 at 5 Pa and 300 W and increases as RF power and argon pressure increase. The ion energy distribution consists of a single peak with a full width at half maximum of 3 eV for a discharge power in the range from 50 to 300 W and for a pressure in the range from 0.5 to 5 Pa. This indicates that inductive coupling mainly drives the discharge while capacitive coupling between coil and plasma is weak. A significant decrease in Ar neutral density is observed when the plasma is ignited. The Ar depletion increases with increasing RF power and increasing Ar base pressure and reaches 30% at 5 Pa and 300 W. The contributions of the different mechanisms resulting in an Ar depletion are estimated and compared. The decrease in neutral density cannot be explained by the ionization of Ar atoms only but is significantly attributed to the heating of Ar atoms by collisions with energetic particles. The increase in neutral gas temperature is estimated and found to be in reasonable agreement with measurements of the gas temperature reported previously by other groups.

  13. IREB Converter to AC Pulses.

    DTIC Science & Technology

    and the end of the center conductor. the modulated IREB induces a voltage in the coaxial transmission line. This voltage appears across the gap to slow ... down the electrons and to convert the kinetic energy of the IREB into electrical energy that propagates along the coaxial transmission line. (PATENT)

  14. Towards a more detailed representation of the energy balance in a coupled land surface model

    NASA Astrophysics Data System (ADS)

    Ryder, J.; Polcher, J.; Luyssaert, S.

    2012-04-01

    Currently, the land-surface region sequesters 25% of global CO2 emissions. In addition to climate change, increasing atmospheric CO2 concentrations, fertilisation and nitrogen deposition, this sink is thought to be largely due to land management. When applied deliberately to enhance the terrestrial carbon sink strength, this land management may have unintended effects on the energy budget, potentially offsetting the radiative effect of carbon sequestration. As with other land surface models, the present release of ORCHIDEE (the land surface model of the IPSL Earth system model) has difficulties in reproducing consistently observed energy balances (Pitman et al., 2009; Jimenez et al., 2011; de Noblet-Ducoudré et al., 2011). Hence, the model must be improved to be better able to study the radiative effect of forest management and land use change. This observation serves as a starting point in this research - improving the level of detail in energy balance simulations of the surface layer. We here outline the structure of a new detailed and practical simulation of the energy budget that is currently under development within the surface model ORCHIDEE, and will be coupled to the atmospheric model LMDZ. The most detailed simulations of the surface layer energy budget are detailed iterative multi-layer canopy models, such as Ogeé et al. (2003), which are linked to specific measurement sites and do not interact with the atmosphere. In this current project, we aim to create a model that will implement the insights obtained in those previous studies and improve upon the present ORCHIDEE parameterisation, but will run stably and efficiently when coupled to an atmospheric model. This work involves a replacement of the existing allocation of 14 different types of vegetation within each surface tile (the 'Plant Functional Types') by a more granular scheme that can be modified to reflect changes in attributes such as vegetation density, leaf type, distribution (clumping

  15. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES

  16. On the evolution of jet energy and opening angle in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-01

    We calculate how the energy and the opening angle of jets in {N} = 4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet /dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet /dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that {N} = 4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the {N} = 4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  17. On the evolution of jet energy and opening angle in strongly coupled plasma

    SciTech Connect

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-17

    We calculate how the energy and the opening angle of jets in N = 4SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dEjet/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dEjet/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N = 4SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N = 4SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. In conclusion, we close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  18. On the evolution of jet energy and opening angle in strongly coupled plasma

    DOE PAGES

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-17

    We calculate how the energy and the opening angle of jets in N = 4SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dEjet/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dEjet/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening anglemore » that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N = 4SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N = 4SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. In conclusion, we close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.« less

  19. Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime

    NASA Astrophysics Data System (ADS)

    Balci, Sinan; Kocabas, Coskun; Küçüköz, Betül; Karatay, Ahmet; Akhüseyin, Elif; Gul Yaglioglu, H.; Elmali, Ayhan

    2014-08-01

    We investigate ultrafast energy transfer between excitons and plasmons in ensembles of core-shell type nanoparticles consisting of metal core covered with a concentric thin J-aggregate (JA) shell. The high electric field localization by the Ag nanoprisms and the high oscillator strength of the JAs allow us to probe this interaction in the ultrastrong plasmon-exciton coupling regime. Linear and nonlinear optical properties of the coupled system have been measured using transient absorption spectroscopy revealing that the hybrid system shows half-plasmonic and half-excitonic properties. The tunability of the nanoprism plasmon resonance provides a flexible platform to study the dynamics of the hybrid state in a broad range of wavelengths.

  20. A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD)

    DOE PAGES

    Baudin, Pablo; Bykov, Dmytro; Liakh, Dmitry I.; ...

    2017-02-22

    Here, the recently developed Local Framework for calculating Excitation energies (LoFEx) is extended to the coupled cluster singles and doubles (CCSD) model. In the new scheme, a standard CCSD excitation energy calculation is carried out within a reduced excitation orbital space (XOS), which is composed of localised molecular orbitals and natural transition orbitals determined from time-dependent Hartree–Fock theory. The presented algorithm uses a series of reduced second-order approximate coupled cluster singles and doubles (CC2) calculations to optimise the XOS in a black-box manner. This ensures that the requested CCSD excitation energies have been determined to a predefined accuracy compared tomore » a conventional CCSD calculation. We present numerical LoFEx-CCSD results for a set of medium-sized organic molecules, which illustrate the black-box nature of the approach and the computational savings obtained for transitions that are local compared to the size of the molecule. In fact, for such local transitions, the LoFEx-CCSD scheme can be applied to molecular systems where a conventional CCSD implementation is intractable.« less

  1. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  2. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    NASA Astrophysics Data System (ADS)

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    2016-10-01

    We present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to the proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. While these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.

  3. Roles of energy conservation and climate feedback in Bjerknes compensation: a coupled modeling study

    NASA Astrophysics Data System (ADS)

    Dai, Haijin; Yang, Haijun; Yin, Jie

    2016-10-01

    The roles of energy balance and climate feedback in Bjerknes compensation (BJC) are studied through wind-perturbation experiments in a coupled climate model. Shutting down surface winds over the ocean causes significant reductions in both wind-driven and thermohaline overturning circulations, leading to a remarkable decrease in poleward ocean heat transport (OHT). The sea surface temperature (SST) responds with an increasing meridional gradient, resulting in a stronger Hadley Cell, and thus an enhanced atmosphere heat transport (AHT), compensating the OHT decrease. This is the so-called BJC. Coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy conservation, and local climate feedback determines the degree of BJC, consistent with our previous theoretical results. Negative (positive or zero) local feedback results in AHT change undercompensating (overcompensating or perfectly compensating) OHT change. Using the radiative kernel technique, the general local feedback between the radiative balance at the top of the atmosphere and surface temperature can be partitioned into individual feedbacks that are related to perturbations in temperature, water vapor, surface albedo, and clouds. We find that the overcompensation in the tropics (extratropics) is mainly caused by positive feedbacks related to water vapor and clouds (surface albedo). The longwave feedbacks related to SST and atmospheric temperature are always negative and strong outside the tropics, well offsetting positive feedbacks in most regions and resulting in undercompensation. Different dominant feedbacks give different BJC scenarios at different regions, acting together to maintain the local energy balance.

  4. Fluorescent probe environment and the structural and charge changes in energy coupling of mitochondrial membranes.

    PubMed

    Chance, B

    1970-10-01

    The use of fluorescent probes to give continuous readouts of the structural states of mitochondrial membranes during energy coupling seems a logical extension of their use in the study of protein structural changes. A clear correlation of the probes' fluorescence characteristics with the acquisition of energy coupling can be demonstrated in fragmented and natural membrane using 1-anilinonaphthalene-8-sulfonate (ANS) and ethidium bromide respectively. The present contribution attempts to bring together contemporary viewpoints of this and other laboratories and the recent experimental data and give some detailed information on probe environment and on the structural or charge changes occurring upon energization. The energy-dependent region of the membrane is located at an aqueous interface between an outer layer of proteins (presumably cytochromes) and the membrane permeability barrier; the aromatic portion of ANS appears to be located in the lipid phase and the sulfonic acid group in the aqueous phase. The aqueous phase is probably a structured water region near paramagnetic membrane components such as cytochrome. Membrane energization arising from altered redox potential changes of cytochromes (b(T)) is communicated to the water structure through altered structural states of the hemoproteins, causing a decreased volume of the structured water region and increased interaction with the paramagnetic components in the energized state. Attendant alterations of protonic equilibria of membrane components induce both local and transmembrane changes in charge distribution, with consequent movements of ions, including the probe molecules themselves.

  5. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis.

    PubMed

    Xu, Ke; Zhang, Minhua; Zhao, Qin; Yu, Fang; Guo, Hui; Wang, Chengyuan; He, Fangyuan; Ding, Jianping; Zhang, Peng

    2013-05-09

    ATP-binding cassette (ABC) transporters, composed of importers and exporters, form one of the biggest protein superfamilies that transport a variety of substrates across the membrane, powered by ATP hydrolysis. Most ABC transporters are composed of two transmembrane domains and two cytoplasmic nucleotide-binding domains. Also, importers from prokaryotes usually have extra solute-binding proteins in the periplasm that are responsible for the binding of substrates. Structures of importers have been reported that suggested a two-state model for the transport mechanism. Energy-coupling factor (ECF) transporters belong to a new class of ATP-binding cassette importers. Each ECF transporter comprises an energy-coupling module consisting of a transmembrane T protein (EcfT), two nucleotide-binding proteins (EcfA and EcfA'), and another transmembrane substrate-specific binding S protein (EcfS). Despite the similarities with ABC transporters, ECF transporters have different organizational and functional properties. The lack of solute-binding proteins in ECF transporters differentiates them clearly from the canonical ABC importers. Previously reported structures of the EcfS proteins RibU and ThiT clearly demonstrated the binding site of substrate riboflavin and thiamine, respectively. However, the organization of the four different components and the transport mechanism of ECF transporters remain unknown. Here we present the structure of an intact folate ECF transporter from Lactobacillus brevis at a resolution of 3 Å. This structure was captured in an inward-facing, nucleotide-free conformation with no bound substrate. The folate-binding protein FolT is nearly parallel to the membrane and is bound almost entirely by EcfT, which adopts an L shape and connects to EcfA and EcfA' through two coupling helices. Two conserved XRX motifs from the coupling helices of EcfT have a vital role in energy coupling by docking into EcfA-EcfA'. We propose a transport model that involves a

  6. Catalytic converter with thermoelectric generator

    SciTech Connect

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  7. Energy coupling and plume dynamics during high power laser heating of metals

    SciTech Connect

    Jeong, S. |

    1997-05-01

    High power laser heating of metals was studied utilizing experimental and numerical methods with an emphasis on the laser energy coupling with a target and on the dynamics of the laser generated vapor flow. Rigorous theoretical modeling of the heating, melting, and evaporation of metals due to laser radiation with a power density below the plasma shielding threshold was carried out. Experimentally, the probe beam deflection technique was utilized to measure the propagation of a laser induced shock wave. The effects of a cylindrical cavity in a metal surface on the laser energy coupling with a solid were investigated utilizing photothermal deflection measurements. A numerical calculation of target temperature and photothermal deflection was performed to compare with the measured results. Reflection of the heating laser beam inside the cavity was found to increase the photothermal deflection amplitude significantly and to enhance the overall energy coupling between a heating laser beam and a solid. Next, unsteady vaporization of metals due to nanosecond pulsed laser heating with an ambient gas at finite pressure was analyzed with a one dimensional thermal evaporation model for target heating and one dimensional compressible flow equations for inviscid fluid for the vapor flow. Lastly, the propagation of a shock wave during excimer laser heating of aluminum was measured with the probe beam deflection technique. The transit time of the shock wave was measured at the elevation of the probe beam above the target surface; these results were compared with the predicted behavior using ideal blast wave theory. The propagation of a gaseous material plume was also observed from the deflection of the probe beam at later times.

  8. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Onar, Omer C

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  9. Multireference coupled-cluster calculation of the dissociation energy profile of triplet ketene

    NASA Astrophysics Data System (ADS)

    Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki

    2011-07-01

    Triplet ketene exhibits a steplike structure in the experimentally observed photodissociation rates, but its mechanism is still unknown despite many theoretical efforts. Here we revisit this problem by calculating the potential energy profile of triplet ketene with the Adamowicz and Mukherjee multireference coupled-cluster (MRCC) theories. At the MRCCSD level, the imaginary frequency of the dissociation barrier is calculated to be about 300i cm-1, which is slightly smaller than the previous estimates but is still much greater than the expected maximum value for reproducing the observed steps (100i cm-1). This implies that other types of mechanisms (including nonadiabatic ones) may be more plausible for the observed steps.

  10. Low-energy theorems for pion photoproduction from nuclei and pion-nucleus coupling constants

    SciTech Connect

    Radutskii, G.M.; Serdyutskii, V.A.

    1982-10-01

    New low-energy theorems for pion photoproduction in light nuclei are derived using a model that allows one to extract all the information contained in the current algebra and the CVC and PCAC hypotheses. From the comparison with the experimental total cross sections for threshold photoproduction of charged pions on the nuclei /sup 6/Li, /sup 12/C, and /sup 14/N, the values of the pion-nucleus coupling constants are obtained and the magnitude of the electric quadrupole moment of the /sup 12/N nucleus is predicted.

  11. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  12. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism.

    PubMed

    Tota, Santoshkumar; Nath, Chandishwar; Najmi, Abul Kalam; Shukla, Rakesh; Hanif, Kashif

    2012-06-15

    Evidences indicate that inhibition of central Renin angiotensin system (RAS) ameliorates memory impairment in animals and humans. Earlier we have reported involvement of central angiotensin converting enzyme (ACE) in streptozotocin induced neurodegeneration and memory impairment. The present study investigated the role of central ACE in cholinergic neurotransmission, brain energy metabolism and cerebral blood flow (CBF) in model of memory impairment induced by injection of scopolamine in mice. Perindopril (0.05 and 0.1 mg/kg, PO) was given orally for one week before administration of scopolamine (3mg/kg, IP). Then, memory function was evaluated by Morris water maze and passive avoidance tests. CBF was measured by laser Doppler flowmetry. Biochemical and molecular parameters were estimated after the completion of behavioral studies. Scopolamine caused impairment in memory which was associated with reduced CBF, acetylcholine (ACh) level and elevated acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level. Perindopril ameliorated scopolamine induced amnesia in both the behavioral paradigms. Further, perindopril prevented elevation of AChE and MDA level in mice brain. There was a significant increase in CBF and ACh level in perindopril treated mice. However, scopolamine had no significant effect on ATP level and mRNA expression of angiotensin receptors and ACE in cortex and hippocampus. But, perindopril significantly decreased ACE activity in brain without affecting its mRNA expression. The study clearly showed the interaction between ACE and cholinergic neurotransmission and beneficial effect of perindopril can be attributed to improvement in central cholinergic neurotransmission and CBF.

  13. Experimental study of the lift and drag characteristics of a cascade of flat plates in a configuration of interest for tidal energy converters

    NASA Astrophysics Data System (ADS)

    Fedoul, Faical; Parras, Luis; Del Pino, Carlos; Fernandez-Feria, Ramon

    2012-11-01

    Wind tunnel experiments are conducted for the flow around both a single flat plate and a cascade of three parallel flat plates at different angles of incidence to compare their lift and drag coefficients in a range of Reynolds number about 105, and for two values of the aspect ratio of the flat plates. The selected cascade configuration is of interest for a particular type of tidal energy converter. The lift and drag characteristics of the central plate in the cascade are compared to those of the isolated plate, finding that there exist an angle of incidence, which depends on the Reynolds number and the aspect ratio, above which the effective lift of the plate in the cascade becomes larger than that of an isolated plate. These experimental results, which are also analyzed in the light of theoretical predictions, are used as a guide for the design of the optimum configuration of the cascade which extracts the maximum power from a tidal current for a given value of the Reynolds number. Supported by the Ministerio de Ciencia e Innovacion (Spain) Grant no. ENE2010-16851.

  14. Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system

    NASA Astrophysics Data System (ADS)

    Li, Hai-Tao; Qin, Wei-Yang

    2016-11-01

    In order to improve the transform efficiency of bi-stable energy harvester (BEH), this paper proposes an advanced bi-stable energy harvester (ABEH), which is composed of two bi-stable beams coupling through their magnets. Theoretical analyzes and simulations for the ABEH are carried out. First, the mathematical model is established and its dynamical equations are derived. The formulas of magnetic force in two directions are given. The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells. To demonstrate the ABEH’s advantage in harvesting energy, comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations. Our results reveal that the ABEH’s inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations. Thus, it can generate a higher output power. The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance. Project supported by the National Natural Science Foundation of China (Grant No. 11172234) and the Scholarship from China Scholarship Council (Grant No. 201506290092).

  15. Ion energy and angular distributions in inductively coupled Argon RF discharges

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10{sup 12}/cm{sup 3} electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased.

  16. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach

    NASA Astrophysics Data System (ADS)

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C.

    2017-02-01

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 106 leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  17. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.

    PubMed

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C

    2017-02-14

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 10(6) leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  18. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    NASA Astrophysics Data System (ADS)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  19. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production.

    PubMed

    Iaquaniello, G; Salladini, A; Palo, E; Centi, G

    2015-02-01

    Catalytic partial oxidation coupled with membrane purification is a new process scheme to improve resource and energy efficiency in a well-established and large scale-process like syngas production. Experimentation in a semi industrial-scale unit (20 Nm(3)  h(-1) production) shows that a novel syngas production scheme based on a pre-reforming stage followed by a membrane for hydrogen separation, a catalytic partial oxidation step, and a further step of syngas purification by membrane allows the oxygen-to-carbon ratio to be decreased while maintaining levels of feed conversion. For a total feed conversion of 40 %, for example, the integrated novel architecture reduces oxygen consumption by over 50 %, with thus a corresponding improvement in resource efficiency and an improved energy efficiency and economics, these factors largely depending on the air separation stage used to produce pure oxygen.

  20. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Tang, Lihua

    2017-03-01

    The operating bandwidth of energy harvesters is one main concern in vibration energy harvesting due to the random and time-varying nature of most vibration sources. Recent research efforts have been made to address this issue including exploiting multimodal structures and nonlinear dynamics. These ideas have yielded some exciting results to leverage the broadband performance. Hybrid configurations combining these ideas are expected to provide an even better operating bandwidth and yet to be studied. In this paper, a bistable two-degree-of-freedom (2-DOF) piezoelectric energy harvester (PEH) with magnetic coupling is proposed, in which a linear parasitic oscillator attached to the main energy harvesting beam is used to generate two resonant peaks and the magnetic coupling is used to generate nonlinear dynamics, thus to achieve broadband electrical outputs. A nonlinear electromechanical model of the proposed harvester is established and the parametric study is conducted for various parasitic oscillator configurations. Experiment is subsequently performed to validate the theoretical analysis. The results indicate that nonlinear responses can appear at any of the two peaks or at both. One strong nonlinear peak in addition to a quasi-linear peak can be achieved by adequate adjustment of the parasitic oscillator. This is advantageous over the optimal linear 2-DOF PEH in terms of wider bandwidth thanks to the involved nonlinear dynamics. In addition, the load resistance has significant influence around the peak with strong nonlinear responses, resulting in evident peak shift. The best power output is accompanied with a shrunk bandwidth due to the peak shift.

  1. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    SciTech Connect

    Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it

    2013-09-01

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to

  2. Dark energy constraints from ESPRESSO tests of the stability of fundamental couplings

    NASA Astrophysics Data System (ADS)

    Leite, A. C. O.; Martins, C. J. A. P.; Molaro, P.; Corre, D.; Cristiani, S.

    2016-12-01

    ESPRESSO is a high-resolution-ultrastable spectrograph for the Very Large Telescope, whose commissioning will start in 2017. One of its key science goals is to test the stability of nature's fundamental couplings with unprecedented accuracy and control of possible systematics. A total of 27 nights of the ESPRESSO Consortium's guaranteed time observations (GTO) will be spent in testing the stability of the fine-structure constant and other fundamental couplings. A set of 14 priority optimal targets have been selected for the GTO period. Here we briefly discuss the criteria underlying this selection and describe the selected targets, and then we present detailed forecasts of the impact of these measurements on fundamental physics and cosmology, focusing on dark energy constraints and using future supernova Type Ia surveys as a comparison point. We show how canonical reconstructions of the dark energy equation of state are improved by the extended redshift range enabled by these spectroscopic measurements, and also quantify additional improvements foreseen for a future ELT-HIRES instrument.

  3. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy.

    PubMed

    Flauraud, Valentin; Bernasconi, Gabriel D; Butet, Jérémy; Alexander, Duncan T L; Martin, Olivier J F; Brugger, Juergen

    2017-03-14

    While plasmonic antennas composed of building blocks made of the same material have been thoroughly studied, recent investigations have highlighted the unique opportunities enabled by making compositionally asymmetric plasmonic systems. So far, mainly heterostructures composed of nanospheres and nanodiscs have been investigated, revealing opportunities for the design of Fano resonant nanostructures, directional scattering, sensing and catalytic applications. In this article, an improved fabrication method is reported that enables precise tuning of the heterodimer geometry, with interparticle distances made down to a few nanometers between Au-Ag and Au-Al nanoparticles. A wide range of mode energy detuning and coupling conditions are observed by near field hyperspectral imaging performed with electron energy loss spectroscopy, supported by full wave analysis numerical simulations. These results provide direct insights into the mode hybridization of plasmonic heterodimers, pointing out the influence of each dimer constituent in the overall electromagnetic response. By relating the coupling of non-dipolar modes and plasmon-interband interaction with the dimer geometry, this work facilitates the development of plasmonic heterostructures with tailored responses, beyond the possibilities offered by homodimers.

  4. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    DOE PAGES

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; ...

    2016-09-27

    Here, we applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM)max of 50×10–5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount (~1 cm/s)more » to avert collision ~a year in advance. Comet model calculations indicate for CM = 5 × 10–4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5 × 1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.« less

  5. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    SciTech Connect

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; Furnish, M. D.

    2016-09-27

    Here, we applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM)max of 50×10–5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount (~1 cm/s) to avert collision ~a year in advance. Comet model calculations indicate for CM = 5 × 10–4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5 × 1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.

  6. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    PubMed

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  7. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    PubMed Central

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  8. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    NASA Astrophysics Data System (ADS)

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; Furnish, M. D.

    2016-12-01

    We applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM) max of 50×10-5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount ( 1 cm/s) to avert collision a year in advance. Comet model calculations indicate for CM=5×10-4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5×1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.

  9. Ionosphere-Thermosphere Coupling and Energy Partitioning During Two HSS Events

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga; Mannucci, Anthony; Meng, Xing; Tsurutani, Bruce; Mlynczak, Martin; Hunt, Linda; Redmon, Robert; Green, Janet

    2015-04-01

    We analyze external driving of the ionosphere-thermosphere (IT) system during two CIR-HSS events, on 29 April - 4 May 2011 and on 8-12 May 2012. By studying similar CIR-HSS events in the same phase of a solar cycle and the same season we aim to understand differences and similarities in the magnetosphere-IT coupling caused by external driving and other factors (pre-conditioning or driving from below). We focus on understanding energy and momentum transfer (with solar wind coupling functions, Joule heating, nitric oxide (NO) infrared cooling radiation and energetic particle precipitation) and corresponding energy partitioning in the IT system. We utilize observations from DMSP, POES/MEPED and TIMED/SABER. We use the Global Ionosphere-Thermosphere Model (GITM, Ridley et al., 2006) with different driving inputs to understand the IT response. We outline a physics-based approach for forecasting moderate to intense storms in the Earth's upper atmosphere caused by solar wind disturbances. Ridley, A. J., Y. Deng, and G. Toth (2006), The global ionosphere-thermosphere model, Journal of Atmospheric and Solar-Terrestrial Physics, 68(8), 839-864, doi:10.1016/j.jastp.2006.01.008.

  10. Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes.

    PubMed

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2017-02-02

    Protein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom. The structural ensemble derived from the MSES simulation yielded the FES of the coupling, described in terms of both the ligand's and protein's degrees of freedom at atomic resolution, and revealed the tight coupling between the two degrees of freedom. The derived FES led to the determination of definite structural states, which suggested the dominant pathways of glutamine binding to GlnBP: first, glutamine migrates via diffusion to form a dominant encounter complex with Arg75 on the large domain of GlnBP, through strong polar interactions. Subsequently, the closing motion of GlnBP occurs to form ligand interactions with the small domain, finally completing the native-specific complex structure. The formation of hydrogen bonds between glutamine and the small domain is considered to be a rate-limiting step, inducing desolvation of the protein-ligand interface to form the specific native complex. The key interactions to attain high specificity for glutamine, the "door keeper" existing between the two domains (Asp10-Lys115) and the "hydrophobic sandwich" formed between the ligand glutamine and Phe13/Phe50, have been successfully mapped on the pathway derived from the FES.

  11. The Role of the Ring Current in Inner Magnetosphere Cross-Energy Coupling

    NASA Astrophysics Data System (ADS)

    Jordanova, V.

    2014-12-01

    The ring current plays an important role in the processes of energy transport through the inner magnetosphere into the subauroral ionosphere, and as a source of particle precipitation into the atmospheric regions located equatorward of the auroral zone. A large fraction of the solar wind energy transferred into the magnetosphere during geomagnetic storms is consumed by the buildup of the storm-time ring current. As the ring current decays during the storm recovery phase, its energy is released into the atmosphere, ionosphere, and plasmasphere causing effects such as subauroral electron temperature enhancements, detached proton arcs, and energetic neutral atom (ENA) fluxes. Ring current pressure gradients drive the Region-2 field-aligned currents that further modify the overall convection pattern and can have significant feedback on ring current dynamics. In addition, the storm-time ring current development affects radiation belt dynamics in various ways: a) it depresses the background magnetic field on the nightside, which affects the subsequent transport of radiation belt electrons, b) its electron component represents a highly variable, asymmetric, low-energy seed population of the radiation belts, and c) the unstable ring current ion and electron populations generate electromagnetic ion cyclotron (EMIC), magnetosonic, and chorus waves (with different intensities and spatial distributions) that scatter radiation belt particles. Results from recent ring current modeling studies using self-consistently calculated electric and magnetic fields that illustrate these coupling processes are presented and discussed.

  12. Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

    SciTech Connect

    Jiménez, Jose Beltrán; Maroto, Antonio L. E-mail: maroto@fis.ucm.es

    2010-12-01

    In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10{sup −9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.

  13. Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.

    PubMed

    Gibson, J; Penfold, T J

    2017-03-22

    The temperature dependent rate of a thermally activated process is given by the Arrhenius equation. The exponential decrease in the rate with activation energy, which this imposes, strongly promotes processes with small activation barriers. This criterion is one of the most challenging during the design of thermally activated delayed fluorescence (TADF) emitters used in organic light emitting diodes. The small activation energy is usually achieved with donor-acceptor charge transfer complexes. However, this sacrifices the radiative rate and is therefore incommensurate with the high luminescence quantum yields required for applications. Herein we demonstrate that the spin-vibronic mechanism, operative for efficient TADF, overcomes this limitation. Nonadiabatic coupling between the lowest two triplet states give rise to a strong enhancement of the rate of reserve intersystem crossing via a second order mechanism and promotes population transfer between the T1 to T2 states. Consequently the rISC mechanism is actually operative between initial and final state exhibiting an energy gap that is smaller than between the T1 and S1 states. This contributes to the small activation energies for molecules exhibiting a large optical gap, identifies limitations of the present design procedures and provides a basis from which to construct TADF molecules with simultaneous high radiative and rISC rates.

  14. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean.

    PubMed

    Byrne, D; Münnich, M; Frenger, I; Gruber, N

    2016-06-13

    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10-200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere-ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front.

  15. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  16. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean

    PubMed Central

    Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.

    2016-01-01

    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447

  17. A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units.

    PubMed

    Westerhoff, H V; Melandri, B A; Venturoli, G; Azzone, G F; Kell, D B

    1984-12-17

    Experimental data are reviewed that are not in keeping with the scheme of 'delocalized' protonic coupling in membrane-linked free-energy transduction. It turns out that there are three main types of anomalies: (i) rates of electron transfer and of ATP synthesis do not solely depend on their own driving force and on delta mu H, (ii) the ('static head') ratio of delta Gp to delta mu H varies with delta mu H and (iii) inhibition of either some of the electron-transfer chains or some of the H+-ATPases, does not cause an overcapacity in the other, non-inhibited proton pumps. None of the earlier free-energy coupling schemes, alternative to delocalized protonic coupling, can account for these three anomalies. We propose to add a fifth postulate, namely that of the coupling unit, to the four existing postulates of 'delocalized protonic coupling' and show that, with this postulate, protonic coupling can again account for most experimental observations. We also discuss: (i) how experimental data that might seem to be at odds with the 'coupling unit' hypothesis can be accounted for and (ii) the problem of the spatial arrangement of the electrical field in the different free-energy coupling schemes.

  18. Electronic couplings and on-site energies for hole transfer in DNA: Systematic quantum mechanical/molecular dynamic study

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2008-03-01

    The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15ns MD trajectories for several DNA oligomers, we calculate the average coupling squares ⟨V2⟩ and the energies of basepair triplets XG +Y and XA +Y, where X, Y =G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ˜0.07eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The XG +Y are by 0.5eV more stable than XA +Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.

  19. Electronic couplings and on-site energies for hole transfer in DNA: systematic quantum mechanical/molecular dynamic study.

    PubMed

    Voityuk, Alexander A

    2008-03-21

    The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the pi stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares V(2) and the energies of basepair triplets XG(+)Y and XA(+)Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15,000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, approximately 0.07 eV, while the interstrand couplings are quite different. The energies of hole states G(+) and A(+) in the stack depend on the nature of the neighboring pairs. The XG(+)Y are by 0.5 eV more stable than XA(+)Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.

  20. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2016-10-25

    G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.

  1. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, Mark Alan

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  2. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  3. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.

    PubMed

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2013-08-13

    Complete-active-space self-consistent-field (CASSCF) calculations provide useful reference wave functions for configuration interaction or perturbation theory calculations of excited-state potential energy surfaces including dynamical electron correlation. However, the canonical molecular orbitals (MOs) of CASSCF calculations usually have mixed character in regions of strong interaction of two or more electronic states; therefore, they are unsuitable for diabatization using the configurational uniformity approach. Here, CASSCF diabatic MOs for phenol have been obtained by the 4-fold way, and comparison to the CASSCF canonical MOs shows that they are much smoother. Using these smooth CASSCF diabatic MOs, we performed direct diabatization calculations for the three low-lying states ((1)ππ, (1)ππ*, and (1)πσ*) and their diabatic (scalar) couplings at the dynamically correlated multiconfiguration quasidegenerate perturbation theory (MC-QDPT) level. We present calculations along the O-H stretching and C-C-O-H torsion coordinates for the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. The seams of (1)ππ*/(1)πσ* and (1)ππ/(1)πσ* diabatic crossings are plotted as functions of these coordinates. We also present diabatization calculations for displacements along the out-of-plane ring distortion modes 16a and 16b of the phenyl group. The dominant coupling modes of the two conical intersections ((1)ππ*/(1)πσ* and (1)ππ/(1)πσ*) are discussed. The present diabatization method is confirmed to be valid even for significantly distorted ring structures by diabatization calculations along a reaction path connecting the planar equilibrium geometry of phenol to its strongly distorted prefulvenic form. The present work provides insight into the mode specificity of phenol photodissociation and shows that diabatization at the MC-QDPT level employing CASSCF diabatic MOs can be a good starting point for multidimensional dynamics

  4. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    PubMed

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  5. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification.

    PubMed

    Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S

    2016-12-02

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  6. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification

    NASA Astrophysics Data System (ADS)

    Chiaramello, M.; Amiranoff, F.; Riconda, C.; Weber, S.

    2016-12-01

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  7. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    PubMed

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed.

  8. Study of G-protein-coupled receptor-protein interactions by bioluminescence resonance energy transfer.

    PubMed

    Kroeger, Karen M; Eidne, Karin A

    2004-01-01

    Complex networks of protein-protein interactions are key determinants of cellular function, including those regulated by G-protein-coupled receptors (GPCRs). Formation of either stable or transitory complexes are involved in regulating all aspects of receptor function, from ligand binding through to signal transduction, desensitization, resensitization and downregulation. Today, 50% of all recently launched drugs are targeted against GPCRs. This particular class of proteins is extremely useful as a drug target because the receptors are partly located outside the cell, simplifying bioavailability and delivery of drugs directed against them. However, being located within the cell membrane causes difficulties for the study of GPCR function and bioluminescence resonance energy transfer (BRET), a naturally occurring phenomenon, represents a newly emerging, powerful tool with which to investigate and monitor dynamic interactions involving this receptor class. BRET is a noninvasive, highly sensitive technique, performed as a simple homogeneous assay. involving the proximity-dependent transfer of energy from an energy donor to acceptor resulting in the emission of light. This technology has several advantages over alternative approaches as the detection occurs within live cells, in real time, and is not restricted to a particular cellular compartment. The use of such biophysical techniques as BRET, will not only increase our understanding of the nature of GPCR regulation and the protein complexes involved, but could also potentially lead to the development of novel therapeutics that modulate these interactions.

  9. The diagnostics of the energy coupling efficiency in the Fast Ignition integrated experiment

    NASA Astrophysics Data System (ADS)

    Arikawa, Y.; Fujioka, S.; Morace, A.; Zhang, Z.; Nagai, T.; Taga, M.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Hattori, S.; Lee, S. H.; Ikenouchi, T.; Hosoda, T.; Sunahara, A.; Ozaki, T.; Johzaki, T.; Nagatomo, H.; Yamanoi, K.; Shimizu, T.; Tokita, S.; Fujimoto, Y.; Kawanaka, J.; Nakata, Y.; Nakai, M.; Shiraga, H.; Jitsuno, H.; Sarukura, N.; Miyanaga, N.; Norimatsu, T.; Nishimura, H.; FIREX-group; Azechi, H.

    2016-03-01

    The energy coupling efficiency (CE) in Fast Ignition (FI) laser fusion was studied at GEKKO XII and LFEx laser facility by using newly developed targets and plasma diagnostic instruments. The gated-liquid scintillator neutron detectors had been upgraded by using neutron collimators for intense background fluxes of γ-rays and neutrons in the FI experiment. Clear fusion neutron signal was successfully recorded in the sub-kJ heating FI experiment. Up to 5 times neutron yield enhancement was observed, and the CE of the heating laser to core plasma was estimated to be 1.6% for cone-in-shell target implosion by 9 beams and core heating by LFEX pulse 115 ps before bang time. The laser-to-electron energy conversion efficiency was separately diagnosed using a newly developed target and resulted to be 45%. The fast electron energy spectrum was estimated to be 2.3 MeV slope temperature by hard x-ray spectroscopy. Monte Carlo simulations demonstrate the consistency of the data set.

  10. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation.

  11. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.

    PubMed

    Takatsuka, Kazuo

    2007-10-18

    Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.

  12. Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective

    NASA Astrophysics Data System (ADS)

    Bernasconi, G. D.; Flauraud, V.; Alexander, D. T. L.; Brugger, J.; Martin, O. J. F.; Butet, J.

    2016-09-01

    Electron energy-loss spectroscopy (EELS) has become an experimental method of choice for the investigation of localized surface plasmon resonances, allowing the simultaneous mapping of the associated field distributions and their resonant energies with a nanoscale spatial resolution. The experimental observations have been well-supported by numerical models based on the computation of the Lorentz force acting on the impinging electrons by the scattered field. However, in this framework, the influence of the intrinsic properties of the plasmonic nanostructures studied with the electron energy-loss (EEL) measurements is somehow hidden in the global response. To overcome this limitation, we propose to go beyond this standard, and well-established, electron perspective and instead to interpret the EELS data using directly the intrinsic properties of the nanostructures, without regard to the force acting on the electron. The proposed method is particularly well-suited for the description of coupled plasmonic systems, because the role played by each individual nanoparticle in the observed EEL spectrum can be clearly disentangled, enabling a more subtle understanding of the underlying physical processes. As examples, we consider different plasmonic geometries in order to emphasize the benefits of this new conceptual approach for interpreting experimental EELS data. In particular, we use it to describe results from samples made by traditional thin film patterning and by arranging colloidal nanostructures.

  13. Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism.

    PubMed

    Saks, V A; Kuznetsov, A V; Vendelin, M; Guerrero, K; Kay, L; Seppet, E K

    2004-01-01

    In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.

  14. Energy generation coupled to azoreduction by membranous vesicles from Shewanella decolorationis S12.

    PubMed

    Hong, Yi-Guo; Guo, Jun; Sun, Guo-Ping

    2009-01-01

    Previous studies have demonstrated that Shewanella decolorationis S12 can grow on the azo compound amaranth as the sole electron acceptor. Thus, to explore the mechanism of energy generation in this metabolism, membranous vesicles (MVs) were prepared and the mechanism of energy generation investigated. The membrane, which was fragmentized during preparation, automatically formed vesicles ranging from 37.5-112.5 nm in diameter under electron micrograph observation. Energy was conserved when coupling the azoreduction by the MVs of an azo compound or Fe(III) as the sole electron acceptor with H2, formate, or lactate as the electron donor. The amaranth reduction by the vesicles was found to be inhibited by specific respiratory inhibitors, including Cu(2+) ions, dicumarol, stigmatellin, and metyrapone, indicating that the azoreduction was indeed a respiration reaction. This finding was further confirmed by the fact that the ATP synthesis was repressed by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). Therefore, this study offers solid evidence of a mechanism of microbial dissimilatory azoreduction on a subcell level.

  15. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit

  16. Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles.

    PubMed

    Cao, Yue; Xie, Tao; Qian, Ruo-Can; Long, Yi-Tao

    2017-01-01

    Plasmon resonance energy transfer (PRET) from a single metallic nanoparticle to the molecules adsorbed on its surface has attracted more and more attentions in recent years. Here, a molecular beacon (MB)-regulated PRET coupling system composed of gold nanoparticles (GNPs) and chromophore molecules has been designed to study the influence of PRET effect on the scattering spectra of GNPs. In this system, the chromophore molecules are tagged to the 5'-end of MB, which can form a hairpin structure and modified on the surface of GNPs by its thiol-labeled 3'-end. Therefore, the distance between GNPs and chromophore molecules can be adjusted through the open and close of the MB loop. From the peak shift, the PRET interactions of different GNPs-chromophore molecules coupling pairs have been calculated by discrete dipole approximation and the fitting results match well with the experimental data. Therefore, the proposed system has been successfully applied for the analysis of PRET situation between various metallic nanoparticles and chromophore molecules, and provides a useful tool for the potential application in screening the PRET-based nanoplasmonic sensors.

  17. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    NASA Astrophysics Data System (ADS)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  18. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    SciTech Connect

    Warehime, Mick; Kłos, Jacek; Alexander, Millard H.

    2015-01-21

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  19. Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure

    NASA Astrophysics Data System (ADS)

    Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu

    2016-08-01

    The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.

  20. Tailoring interfacial exchange coupling with low-energy ion beam bombardment: Tuning the interface roughness

    SciTech Connect

    Lin, K.-W.; Shueh, C.; Huang, H.-R.; Hsu, H.-F.; Mirza, M.; Lierop, J. van

    2012-03-19

    By ascertaining NiO surface roughness in a Ni{sub 80}Fe{sub 20}/NiO film system, we were able to correlate the effects of altered interface roughness from low-energy ion-beam bombardment of the NiO layer and the different thermal instabilities in the NiO nanocrystallites. From experiment and by modelling the temperature dependence of the exchange bias field and coercivity, we have found that reducing the interface roughness and changing the interface texture from an irregular to striped conformation enhanced the exchange coupling strength. Our results were in good agreement with recent simulations using the domain state model that incorporated interface mixing.